1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net-sysfs.c - network device class and attributes 4 * 5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org> 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/kernel.h> 10 #include <linux/netdevice.h> 11 #include <linux/if_arp.h> 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/isolation.h> 15 #include <linux/nsproxy.h> 16 #include <net/sock.h> 17 #include <net/net_namespace.h> 18 #include <linux/rtnetlink.h> 19 #include <linux/vmalloc.h> 20 #include <linux/export.h> 21 #include <linux/jiffies.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/of.h> 24 #include <linux/of_net.h> 25 #include <linux/cpu.h> 26 #include <net/netdev_rx_queue.h> 27 28 #include "dev.h" 29 #include "net-sysfs.h" 30 31 #ifdef CONFIG_SYSFS 32 static const char fmt_hex[] = "%#x\n"; 33 static const char fmt_dec[] = "%d\n"; 34 static const char fmt_ulong[] = "%lu\n"; 35 static const char fmt_u64[] = "%llu\n"; 36 37 /* Caller holds RTNL or dev_base_lock */ 38 static inline int dev_isalive(const struct net_device *dev) 39 { 40 return dev->reg_state <= NETREG_REGISTERED; 41 } 42 43 /* use same locking rules as GIF* ioctl's */ 44 static ssize_t netdev_show(const struct device *dev, 45 struct device_attribute *attr, char *buf, 46 ssize_t (*format)(const struct net_device *, char *)) 47 { 48 struct net_device *ndev = to_net_dev(dev); 49 ssize_t ret = -EINVAL; 50 51 read_lock(&dev_base_lock); 52 if (dev_isalive(ndev)) 53 ret = (*format)(ndev, buf); 54 read_unlock(&dev_base_lock); 55 56 return ret; 57 } 58 59 /* generate a show function for simple field */ 60 #define NETDEVICE_SHOW(field, format_string) \ 61 static ssize_t format_##field(const struct net_device *dev, char *buf) \ 62 { \ 63 return sysfs_emit(buf, format_string, dev->field); \ 64 } \ 65 static ssize_t field##_show(struct device *dev, \ 66 struct device_attribute *attr, char *buf) \ 67 { \ 68 return netdev_show(dev, attr, buf, format_##field); \ 69 } \ 70 71 #define NETDEVICE_SHOW_RO(field, format_string) \ 72 NETDEVICE_SHOW(field, format_string); \ 73 static DEVICE_ATTR_RO(field) 74 75 #define NETDEVICE_SHOW_RW(field, format_string) \ 76 NETDEVICE_SHOW(field, format_string); \ 77 static DEVICE_ATTR_RW(field) 78 79 /* use same locking and permission rules as SIF* ioctl's */ 80 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, 81 const char *buf, size_t len, 82 int (*set)(struct net_device *, unsigned long)) 83 { 84 struct net_device *netdev = to_net_dev(dev); 85 struct net *net = dev_net(netdev); 86 unsigned long new; 87 int ret; 88 89 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 90 return -EPERM; 91 92 ret = kstrtoul(buf, 0, &new); 93 if (ret) 94 goto err; 95 96 if (!rtnl_trylock()) 97 return restart_syscall(); 98 99 if (dev_isalive(netdev)) { 100 ret = (*set)(netdev, new); 101 if (ret == 0) 102 ret = len; 103 } 104 rtnl_unlock(); 105 err: 106 return ret; 107 } 108 109 NETDEVICE_SHOW_RO(dev_id, fmt_hex); 110 NETDEVICE_SHOW_RO(dev_port, fmt_dec); 111 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec); 112 NETDEVICE_SHOW_RO(addr_len, fmt_dec); 113 NETDEVICE_SHOW_RO(ifindex, fmt_dec); 114 NETDEVICE_SHOW_RO(type, fmt_dec); 115 NETDEVICE_SHOW_RO(link_mode, fmt_dec); 116 117 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr, 118 char *buf) 119 { 120 struct net_device *ndev = to_net_dev(dev); 121 122 return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev)); 123 } 124 static DEVICE_ATTR_RO(iflink); 125 126 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf) 127 { 128 return sysfs_emit(buf, fmt_dec, dev->name_assign_type); 129 } 130 131 static ssize_t name_assign_type_show(struct device *dev, 132 struct device_attribute *attr, 133 char *buf) 134 { 135 struct net_device *ndev = to_net_dev(dev); 136 ssize_t ret = -EINVAL; 137 138 if (ndev->name_assign_type != NET_NAME_UNKNOWN) 139 ret = netdev_show(dev, attr, buf, format_name_assign_type); 140 141 return ret; 142 } 143 static DEVICE_ATTR_RO(name_assign_type); 144 145 /* use same locking rules as GIFHWADDR ioctl's */ 146 static ssize_t address_show(struct device *dev, struct device_attribute *attr, 147 char *buf) 148 { 149 struct net_device *ndev = to_net_dev(dev); 150 ssize_t ret = -EINVAL; 151 152 read_lock(&dev_base_lock); 153 if (dev_isalive(ndev)) 154 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len); 155 read_unlock(&dev_base_lock); 156 return ret; 157 } 158 static DEVICE_ATTR_RO(address); 159 160 static ssize_t broadcast_show(struct device *dev, 161 struct device_attribute *attr, char *buf) 162 { 163 struct net_device *ndev = to_net_dev(dev); 164 165 if (dev_isalive(ndev)) 166 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len); 167 return -EINVAL; 168 } 169 static DEVICE_ATTR_RO(broadcast); 170 171 static int change_carrier(struct net_device *dev, unsigned long new_carrier) 172 { 173 if (!netif_running(dev)) 174 return -EINVAL; 175 return dev_change_carrier(dev, (bool)new_carrier); 176 } 177 178 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr, 179 const char *buf, size_t len) 180 { 181 struct net_device *netdev = to_net_dev(dev); 182 183 /* The check is also done in change_carrier; this helps returning early 184 * without hitting the trylock/restart in netdev_store. 185 */ 186 if (!netdev->netdev_ops->ndo_change_carrier) 187 return -EOPNOTSUPP; 188 189 return netdev_store(dev, attr, buf, len, change_carrier); 190 } 191 192 static ssize_t carrier_show(struct device *dev, 193 struct device_attribute *attr, char *buf) 194 { 195 struct net_device *netdev = to_net_dev(dev); 196 197 if (netif_running(netdev)) 198 return sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev)); 199 200 return -EINVAL; 201 } 202 static DEVICE_ATTR_RW(carrier); 203 204 static ssize_t speed_show(struct device *dev, 205 struct device_attribute *attr, char *buf) 206 { 207 struct net_device *netdev = to_net_dev(dev); 208 int ret = -EINVAL; 209 210 /* The check is also done in __ethtool_get_link_ksettings; this helps 211 * returning early without hitting the trylock/restart below. 212 */ 213 if (!netdev->ethtool_ops->get_link_ksettings) 214 return ret; 215 216 if (!rtnl_trylock()) 217 return restart_syscall(); 218 219 if (netif_running(netdev) && netif_device_present(netdev)) { 220 struct ethtool_link_ksettings cmd; 221 222 if (!__ethtool_get_link_ksettings(netdev, &cmd)) 223 ret = sysfs_emit(buf, fmt_dec, cmd.base.speed); 224 } 225 rtnl_unlock(); 226 return ret; 227 } 228 static DEVICE_ATTR_RO(speed); 229 230 static ssize_t duplex_show(struct device *dev, 231 struct device_attribute *attr, char *buf) 232 { 233 struct net_device *netdev = to_net_dev(dev); 234 int ret = -EINVAL; 235 236 /* The check is also done in __ethtool_get_link_ksettings; this helps 237 * returning early without hitting the trylock/restart below. 238 */ 239 if (!netdev->ethtool_ops->get_link_ksettings) 240 return ret; 241 242 if (!rtnl_trylock()) 243 return restart_syscall(); 244 245 if (netif_running(netdev)) { 246 struct ethtool_link_ksettings cmd; 247 248 if (!__ethtool_get_link_ksettings(netdev, &cmd)) { 249 const char *duplex; 250 251 switch (cmd.base.duplex) { 252 case DUPLEX_HALF: 253 duplex = "half"; 254 break; 255 case DUPLEX_FULL: 256 duplex = "full"; 257 break; 258 default: 259 duplex = "unknown"; 260 break; 261 } 262 ret = sysfs_emit(buf, "%s\n", duplex); 263 } 264 } 265 rtnl_unlock(); 266 return ret; 267 } 268 static DEVICE_ATTR_RO(duplex); 269 270 static ssize_t testing_show(struct device *dev, 271 struct device_attribute *attr, char *buf) 272 { 273 struct net_device *netdev = to_net_dev(dev); 274 275 if (netif_running(netdev)) 276 return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev)); 277 278 return -EINVAL; 279 } 280 static DEVICE_ATTR_RO(testing); 281 282 static ssize_t dormant_show(struct device *dev, 283 struct device_attribute *attr, char *buf) 284 { 285 struct net_device *netdev = to_net_dev(dev); 286 287 if (netif_running(netdev)) 288 return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev)); 289 290 return -EINVAL; 291 } 292 static DEVICE_ATTR_RO(dormant); 293 294 static const char *const operstates[] = { 295 "unknown", 296 "notpresent", /* currently unused */ 297 "down", 298 "lowerlayerdown", 299 "testing", 300 "dormant", 301 "up" 302 }; 303 304 static ssize_t operstate_show(struct device *dev, 305 struct device_attribute *attr, char *buf) 306 { 307 const struct net_device *netdev = to_net_dev(dev); 308 unsigned char operstate; 309 310 read_lock(&dev_base_lock); 311 operstate = netdev->operstate; 312 if (!netif_running(netdev)) 313 operstate = IF_OPER_DOWN; 314 read_unlock(&dev_base_lock); 315 316 if (operstate >= ARRAY_SIZE(operstates)) 317 return -EINVAL; /* should not happen */ 318 319 return sysfs_emit(buf, "%s\n", operstates[operstate]); 320 } 321 static DEVICE_ATTR_RO(operstate); 322 323 static ssize_t carrier_changes_show(struct device *dev, 324 struct device_attribute *attr, 325 char *buf) 326 { 327 struct net_device *netdev = to_net_dev(dev); 328 329 return sysfs_emit(buf, fmt_dec, 330 atomic_read(&netdev->carrier_up_count) + 331 atomic_read(&netdev->carrier_down_count)); 332 } 333 static DEVICE_ATTR_RO(carrier_changes); 334 335 static ssize_t carrier_up_count_show(struct device *dev, 336 struct device_attribute *attr, 337 char *buf) 338 { 339 struct net_device *netdev = to_net_dev(dev); 340 341 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count)); 342 } 343 static DEVICE_ATTR_RO(carrier_up_count); 344 345 static ssize_t carrier_down_count_show(struct device *dev, 346 struct device_attribute *attr, 347 char *buf) 348 { 349 struct net_device *netdev = to_net_dev(dev); 350 351 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count)); 352 } 353 static DEVICE_ATTR_RO(carrier_down_count); 354 355 /* read-write attributes */ 356 357 static int change_mtu(struct net_device *dev, unsigned long new_mtu) 358 { 359 return dev_set_mtu(dev, (int)new_mtu); 360 } 361 362 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr, 363 const char *buf, size_t len) 364 { 365 return netdev_store(dev, attr, buf, len, change_mtu); 366 } 367 NETDEVICE_SHOW_RW(mtu, fmt_dec); 368 369 static int change_flags(struct net_device *dev, unsigned long new_flags) 370 { 371 return dev_change_flags(dev, (unsigned int)new_flags, NULL); 372 } 373 374 static ssize_t flags_store(struct device *dev, struct device_attribute *attr, 375 const char *buf, size_t len) 376 { 377 return netdev_store(dev, attr, buf, len, change_flags); 378 } 379 NETDEVICE_SHOW_RW(flags, fmt_hex); 380 381 static ssize_t tx_queue_len_store(struct device *dev, 382 struct device_attribute *attr, 383 const char *buf, size_t len) 384 { 385 if (!capable(CAP_NET_ADMIN)) 386 return -EPERM; 387 388 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len); 389 } 390 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec); 391 392 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val) 393 { 394 WRITE_ONCE(dev->gro_flush_timeout, val); 395 return 0; 396 } 397 398 static ssize_t gro_flush_timeout_store(struct device *dev, 399 struct device_attribute *attr, 400 const char *buf, size_t len) 401 { 402 if (!capable(CAP_NET_ADMIN)) 403 return -EPERM; 404 405 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout); 406 } 407 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong); 408 409 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val) 410 { 411 WRITE_ONCE(dev->napi_defer_hard_irqs, val); 412 return 0; 413 } 414 415 static ssize_t napi_defer_hard_irqs_store(struct device *dev, 416 struct device_attribute *attr, 417 const char *buf, size_t len) 418 { 419 if (!capable(CAP_NET_ADMIN)) 420 return -EPERM; 421 422 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs); 423 } 424 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec); 425 426 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr, 427 const char *buf, size_t len) 428 { 429 struct net_device *netdev = to_net_dev(dev); 430 struct net *net = dev_net(netdev); 431 size_t count = len; 432 ssize_t ret = 0; 433 434 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 435 return -EPERM; 436 437 /* ignore trailing newline */ 438 if (len > 0 && buf[len - 1] == '\n') 439 --count; 440 441 if (!rtnl_trylock()) 442 return restart_syscall(); 443 444 if (dev_isalive(netdev)) { 445 ret = dev_set_alias(netdev, buf, count); 446 if (ret < 0) 447 goto err; 448 ret = len; 449 netdev_state_change(netdev); 450 } 451 err: 452 rtnl_unlock(); 453 454 return ret; 455 } 456 457 static ssize_t ifalias_show(struct device *dev, 458 struct device_attribute *attr, char *buf) 459 { 460 const struct net_device *netdev = to_net_dev(dev); 461 char tmp[IFALIASZ]; 462 ssize_t ret = 0; 463 464 ret = dev_get_alias(netdev, tmp, sizeof(tmp)); 465 if (ret > 0) 466 ret = sysfs_emit(buf, "%s\n", tmp); 467 return ret; 468 } 469 static DEVICE_ATTR_RW(ifalias); 470 471 static int change_group(struct net_device *dev, unsigned long new_group) 472 { 473 dev_set_group(dev, (int)new_group); 474 return 0; 475 } 476 477 static ssize_t group_store(struct device *dev, struct device_attribute *attr, 478 const char *buf, size_t len) 479 { 480 return netdev_store(dev, attr, buf, len, change_group); 481 } 482 NETDEVICE_SHOW(group, fmt_dec); 483 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store); 484 485 static int change_proto_down(struct net_device *dev, unsigned long proto_down) 486 { 487 return dev_change_proto_down(dev, (bool)proto_down); 488 } 489 490 static ssize_t proto_down_store(struct device *dev, 491 struct device_attribute *attr, 492 const char *buf, size_t len) 493 { 494 return netdev_store(dev, attr, buf, len, change_proto_down); 495 } 496 NETDEVICE_SHOW_RW(proto_down, fmt_dec); 497 498 static ssize_t phys_port_id_show(struct device *dev, 499 struct device_attribute *attr, char *buf) 500 { 501 struct net_device *netdev = to_net_dev(dev); 502 ssize_t ret = -EINVAL; 503 504 /* The check is also done in dev_get_phys_port_id; this helps returning 505 * early without hitting the trylock/restart below. 506 */ 507 if (!netdev->netdev_ops->ndo_get_phys_port_id) 508 return -EOPNOTSUPP; 509 510 if (!rtnl_trylock()) 511 return restart_syscall(); 512 513 if (dev_isalive(netdev)) { 514 struct netdev_phys_item_id ppid; 515 516 ret = dev_get_phys_port_id(netdev, &ppid); 517 if (!ret) 518 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id); 519 } 520 rtnl_unlock(); 521 522 return ret; 523 } 524 static DEVICE_ATTR_RO(phys_port_id); 525 526 static ssize_t phys_port_name_show(struct device *dev, 527 struct device_attribute *attr, char *buf) 528 { 529 struct net_device *netdev = to_net_dev(dev); 530 ssize_t ret = -EINVAL; 531 532 /* The checks are also done in dev_get_phys_port_name; this helps 533 * returning early without hitting the trylock/restart below. 534 */ 535 if (!netdev->netdev_ops->ndo_get_phys_port_name && 536 !netdev->devlink_port) 537 return -EOPNOTSUPP; 538 539 if (!rtnl_trylock()) 540 return restart_syscall(); 541 542 if (dev_isalive(netdev)) { 543 char name[IFNAMSIZ]; 544 545 ret = dev_get_phys_port_name(netdev, name, sizeof(name)); 546 if (!ret) 547 ret = sysfs_emit(buf, "%s\n", name); 548 } 549 rtnl_unlock(); 550 551 return ret; 552 } 553 static DEVICE_ATTR_RO(phys_port_name); 554 555 static ssize_t phys_switch_id_show(struct device *dev, 556 struct device_attribute *attr, char *buf) 557 { 558 struct net_device *netdev = to_net_dev(dev); 559 ssize_t ret = -EINVAL; 560 561 /* The checks are also done in dev_get_phys_port_name; this helps 562 * returning early without hitting the trylock/restart below. This works 563 * because recurse is false when calling dev_get_port_parent_id. 564 */ 565 if (!netdev->netdev_ops->ndo_get_port_parent_id && 566 !netdev->devlink_port) 567 return -EOPNOTSUPP; 568 569 if (!rtnl_trylock()) 570 return restart_syscall(); 571 572 if (dev_isalive(netdev)) { 573 struct netdev_phys_item_id ppid = { }; 574 575 ret = dev_get_port_parent_id(netdev, &ppid, false); 576 if (!ret) 577 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id); 578 } 579 rtnl_unlock(); 580 581 return ret; 582 } 583 static DEVICE_ATTR_RO(phys_switch_id); 584 585 static ssize_t threaded_show(struct device *dev, 586 struct device_attribute *attr, char *buf) 587 { 588 struct net_device *netdev = to_net_dev(dev); 589 ssize_t ret = -EINVAL; 590 591 if (!rtnl_trylock()) 592 return restart_syscall(); 593 594 if (dev_isalive(netdev)) 595 ret = sysfs_emit(buf, fmt_dec, netdev->threaded); 596 597 rtnl_unlock(); 598 return ret; 599 } 600 601 static int modify_napi_threaded(struct net_device *dev, unsigned long val) 602 { 603 int ret; 604 605 if (list_empty(&dev->napi_list)) 606 return -EOPNOTSUPP; 607 608 if (val != 0 && val != 1) 609 return -EOPNOTSUPP; 610 611 ret = dev_set_threaded(dev, val); 612 613 return ret; 614 } 615 616 static ssize_t threaded_store(struct device *dev, 617 struct device_attribute *attr, 618 const char *buf, size_t len) 619 { 620 return netdev_store(dev, attr, buf, len, modify_napi_threaded); 621 } 622 static DEVICE_ATTR_RW(threaded); 623 624 static struct attribute *net_class_attrs[] __ro_after_init = { 625 &dev_attr_netdev_group.attr, 626 &dev_attr_type.attr, 627 &dev_attr_dev_id.attr, 628 &dev_attr_dev_port.attr, 629 &dev_attr_iflink.attr, 630 &dev_attr_ifindex.attr, 631 &dev_attr_name_assign_type.attr, 632 &dev_attr_addr_assign_type.attr, 633 &dev_attr_addr_len.attr, 634 &dev_attr_link_mode.attr, 635 &dev_attr_address.attr, 636 &dev_attr_broadcast.attr, 637 &dev_attr_speed.attr, 638 &dev_attr_duplex.attr, 639 &dev_attr_dormant.attr, 640 &dev_attr_testing.attr, 641 &dev_attr_operstate.attr, 642 &dev_attr_carrier_changes.attr, 643 &dev_attr_ifalias.attr, 644 &dev_attr_carrier.attr, 645 &dev_attr_mtu.attr, 646 &dev_attr_flags.attr, 647 &dev_attr_tx_queue_len.attr, 648 &dev_attr_gro_flush_timeout.attr, 649 &dev_attr_napi_defer_hard_irqs.attr, 650 &dev_attr_phys_port_id.attr, 651 &dev_attr_phys_port_name.attr, 652 &dev_attr_phys_switch_id.attr, 653 &dev_attr_proto_down.attr, 654 &dev_attr_carrier_up_count.attr, 655 &dev_attr_carrier_down_count.attr, 656 &dev_attr_threaded.attr, 657 NULL, 658 }; 659 ATTRIBUTE_GROUPS(net_class); 660 661 /* Show a given an attribute in the statistics group */ 662 static ssize_t netstat_show(const struct device *d, 663 struct device_attribute *attr, char *buf, 664 unsigned long offset) 665 { 666 struct net_device *dev = to_net_dev(d); 667 ssize_t ret = -EINVAL; 668 669 WARN_ON(offset > sizeof(struct rtnl_link_stats64) || 670 offset % sizeof(u64) != 0); 671 672 read_lock(&dev_base_lock); 673 if (dev_isalive(dev)) { 674 struct rtnl_link_stats64 temp; 675 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 676 677 ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset)); 678 } 679 read_unlock(&dev_base_lock); 680 return ret; 681 } 682 683 /* generate a read-only statistics attribute */ 684 #define NETSTAT_ENTRY(name) \ 685 static ssize_t name##_show(struct device *d, \ 686 struct device_attribute *attr, char *buf) \ 687 { \ 688 return netstat_show(d, attr, buf, \ 689 offsetof(struct rtnl_link_stats64, name)); \ 690 } \ 691 static DEVICE_ATTR_RO(name) 692 693 NETSTAT_ENTRY(rx_packets); 694 NETSTAT_ENTRY(tx_packets); 695 NETSTAT_ENTRY(rx_bytes); 696 NETSTAT_ENTRY(tx_bytes); 697 NETSTAT_ENTRY(rx_errors); 698 NETSTAT_ENTRY(tx_errors); 699 NETSTAT_ENTRY(rx_dropped); 700 NETSTAT_ENTRY(tx_dropped); 701 NETSTAT_ENTRY(multicast); 702 NETSTAT_ENTRY(collisions); 703 NETSTAT_ENTRY(rx_length_errors); 704 NETSTAT_ENTRY(rx_over_errors); 705 NETSTAT_ENTRY(rx_crc_errors); 706 NETSTAT_ENTRY(rx_frame_errors); 707 NETSTAT_ENTRY(rx_fifo_errors); 708 NETSTAT_ENTRY(rx_missed_errors); 709 NETSTAT_ENTRY(tx_aborted_errors); 710 NETSTAT_ENTRY(tx_carrier_errors); 711 NETSTAT_ENTRY(tx_fifo_errors); 712 NETSTAT_ENTRY(tx_heartbeat_errors); 713 NETSTAT_ENTRY(tx_window_errors); 714 NETSTAT_ENTRY(rx_compressed); 715 NETSTAT_ENTRY(tx_compressed); 716 NETSTAT_ENTRY(rx_nohandler); 717 718 static struct attribute *netstat_attrs[] __ro_after_init = { 719 &dev_attr_rx_packets.attr, 720 &dev_attr_tx_packets.attr, 721 &dev_attr_rx_bytes.attr, 722 &dev_attr_tx_bytes.attr, 723 &dev_attr_rx_errors.attr, 724 &dev_attr_tx_errors.attr, 725 &dev_attr_rx_dropped.attr, 726 &dev_attr_tx_dropped.attr, 727 &dev_attr_multicast.attr, 728 &dev_attr_collisions.attr, 729 &dev_attr_rx_length_errors.attr, 730 &dev_attr_rx_over_errors.attr, 731 &dev_attr_rx_crc_errors.attr, 732 &dev_attr_rx_frame_errors.attr, 733 &dev_attr_rx_fifo_errors.attr, 734 &dev_attr_rx_missed_errors.attr, 735 &dev_attr_tx_aborted_errors.attr, 736 &dev_attr_tx_carrier_errors.attr, 737 &dev_attr_tx_fifo_errors.attr, 738 &dev_attr_tx_heartbeat_errors.attr, 739 &dev_attr_tx_window_errors.attr, 740 &dev_attr_rx_compressed.attr, 741 &dev_attr_tx_compressed.attr, 742 &dev_attr_rx_nohandler.attr, 743 NULL 744 }; 745 746 static const struct attribute_group netstat_group = { 747 .name = "statistics", 748 .attrs = netstat_attrs, 749 }; 750 751 static struct attribute *wireless_attrs[] = { 752 NULL 753 }; 754 755 static const struct attribute_group wireless_group = { 756 .name = "wireless", 757 .attrs = wireless_attrs, 758 }; 759 760 static bool wireless_group_needed(struct net_device *ndev) 761 { 762 #if IS_ENABLED(CONFIG_CFG80211) 763 if (ndev->ieee80211_ptr) 764 return true; 765 #endif 766 #if IS_ENABLED(CONFIG_WIRELESS_EXT) 767 if (ndev->wireless_handlers) 768 return true; 769 #endif 770 return false; 771 } 772 773 #else /* CONFIG_SYSFS */ 774 #define net_class_groups NULL 775 #endif /* CONFIG_SYSFS */ 776 777 #ifdef CONFIG_SYSFS 778 #define to_rx_queue_attr(_attr) \ 779 container_of(_attr, struct rx_queue_attribute, attr) 780 781 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) 782 783 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, 784 char *buf) 785 { 786 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 787 struct netdev_rx_queue *queue = to_rx_queue(kobj); 788 789 if (!attribute->show) 790 return -EIO; 791 792 return attribute->show(queue, buf); 793 } 794 795 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, 796 const char *buf, size_t count) 797 { 798 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 799 struct netdev_rx_queue *queue = to_rx_queue(kobj); 800 801 if (!attribute->store) 802 return -EIO; 803 804 return attribute->store(queue, buf, count); 805 } 806 807 static const struct sysfs_ops rx_queue_sysfs_ops = { 808 .show = rx_queue_attr_show, 809 .store = rx_queue_attr_store, 810 }; 811 812 #ifdef CONFIG_RPS 813 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf) 814 { 815 struct rps_map *map; 816 cpumask_var_t mask; 817 int i, len; 818 819 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 820 return -ENOMEM; 821 822 rcu_read_lock(); 823 map = rcu_dereference(queue->rps_map); 824 if (map) 825 for (i = 0; i < map->len; i++) 826 cpumask_set_cpu(map->cpus[i], mask); 827 828 len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask)); 829 rcu_read_unlock(); 830 free_cpumask_var(mask); 831 832 return len < PAGE_SIZE ? len : -EINVAL; 833 } 834 835 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue, 836 cpumask_var_t mask) 837 { 838 static DEFINE_MUTEX(rps_map_mutex); 839 struct rps_map *old_map, *map; 840 int cpu, i; 841 842 map = kzalloc(max_t(unsigned int, 843 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), 844 GFP_KERNEL); 845 if (!map) 846 return -ENOMEM; 847 848 i = 0; 849 for_each_cpu_and(cpu, mask, cpu_online_mask) 850 map->cpus[i++] = cpu; 851 852 if (i) { 853 map->len = i; 854 } else { 855 kfree(map); 856 map = NULL; 857 } 858 859 mutex_lock(&rps_map_mutex); 860 old_map = rcu_dereference_protected(queue->rps_map, 861 mutex_is_locked(&rps_map_mutex)); 862 rcu_assign_pointer(queue->rps_map, map); 863 864 if (map) 865 static_branch_inc(&rps_needed); 866 if (old_map) 867 static_branch_dec(&rps_needed); 868 869 mutex_unlock(&rps_map_mutex); 870 871 if (old_map) 872 kfree_rcu(old_map, rcu); 873 return 0; 874 } 875 876 int rps_cpumask_housekeeping(struct cpumask *mask) 877 { 878 if (!cpumask_empty(mask)) { 879 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN)); 880 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ)); 881 if (cpumask_empty(mask)) 882 return -EINVAL; 883 } 884 return 0; 885 } 886 887 static ssize_t store_rps_map(struct netdev_rx_queue *queue, 888 const char *buf, size_t len) 889 { 890 cpumask_var_t mask; 891 int err; 892 893 if (!capable(CAP_NET_ADMIN)) 894 return -EPERM; 895 896 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 897 return -ENOMEM; 898 899 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 900 if (err) 901 goto out; 902 903 err = rps_cpumask_housekeeping(mask); 904 if (err) 905 goto out; 906 907 err = netdev_rx_queue_set_rps_mask(queue, mask); 908 909 out: 910 free_cpumask_var(mask); 911 return err ? : len; 912 } 913 914 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 915 char *buf) 916 { 917 struct rps_dev_flow_table *flow_table; 918 unsigned long val = 0; 919 920 rcu_read_lock(); 921 flow_table = rcu_dereference(queue->rps_flow_table); 922 if (flow_table) 923 val = (unsigned long)flow_table->mask + 1; 924 rcu_read_unlock(); 925 926 return sysfs_emit(buf, "%lu\n", val); 927 } 928 929 static void rps_dev_flow_table_release(struct rcu_head *rcu) 930 { 931 struct rps_dev_flow_table *table = container_of(rcu, 932 struct rps_dev_flow_table, rcu); 933 vfree(table); 934 } 935 936 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 937 const char *buf, size_t len) 938 { 939 unsigned long mask, count; 940 struct rps_dev_flow_table *table, *old_table; 941 static DEFINE_SPINLOCK(rps_dev_flow_lock); 942 int rc; 943 944 if (!capable(CAP_NET_ADMIN)) 945 return -EPERM; 946 947 rc = kstrtoul(buf, 0, &count); 948 if (rc < 0) 949 return rc; 950 951 if (count) { 952 mask = count - 1; 953 /* mask = roundup_pow_of_two(count) - 1; 954 * without overflows... 955 */ 956 while ((mask | (mask >> 1)) != mask) 957 mask |= (mask >> 1); 958 /* On 64 bit arches, must check mask fits in table->mask (u32), 959 * and on 32bit arches, must check 960 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow. 961 */ 962 #if BITS_PER_LONG > 32 963 if (mask > (unsigned long)(u32)mask) 964 return -EINVAL; 965 #else 966 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) 967 / sizeof(struct rps_dev_flow)) { 968 /* Enforce a limit to prevent overflow */ 969 return -EINVAL; 970 } 971 #endif 972 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); 973 if (!table) 974 return -ENOMEM; 975 976 table->mask = mask; 977 for (count = 0; count <= mask; count++) 978 table->flows[count].cpu = RPS_NO_CPU; 979 } else { 980 table = NULL; 981 } 982 983 spin_lock(&rps_dev_flow_lock); 984 old_table = rcu_dereference_protected(queue->rps_flow_table, 985 lockdep_is_held(&rps_dev_flow_lock)); 986 rcu_assign_pointer(queue->rps_flow_table, table); 987 spin_unlock(&rps_dev_flow_lock); 988 989 if (old_table) 990 call_rcu(&old_table->rcu, rps_dev_flow_table_release); 991 992 return len; 993 } 994 995 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init 996 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map); 997 998 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init 999 = __ATTR(rps_flow_cnt, 0644, 1000 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); 1001 #endif /* CONFIG_RPS */ 1002 1003 static struct attribute *rx_queue_default_attrs[] __ro_after_init = { 1004 #ifdef CONFIG_RPS 1005 &rps_cpus_attribute.attr, 1006 &rps_dev_flow_table_cnt_attribute.attr, 1007 #endif 1008 NULL 1009 }; 1010 ATTRIBUTE_GROUPS(rx_queue_default); 1011 1012 static void rx_queue_release(struct kobject *kobj) 1013 { 1014 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1015 #ifdef CONFIG_RPS 1016 struct rps_map *map; 1017 struct rps_dev_flow_table *flow_table; 1018 1019 map = rcu_dereference_protected(queue->rps_map, 1); 1020 if (map) { 1021 RCU_INIT_POINTER(queue->rps_map, NULL); 1022 kfree_rcu(map, rcu); 1023 } 1024 1025 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); 1026 if (flow_table) { 1027 RCU_INIT_POINTER(queue->rps_flow_table, NULL); 1028 call_rcu(&flow_table->rcu, rps_dev_flow_table_release); 1029 } 1030 #endif 1031 1032 memset(kobj, 0, sizeof(*kobj)); 1033 netdev_put(queue->dev, &queue->dev_tracker); 1034 } 1035 1036 static const void *rx_queue_namespace(const struct kobject *kobj) 1037 { 1038 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1039 struct device *dev = &queue->dev->dev; 1040 const void *ns = NULL; 1041 1042 if (dev->class && dev->class->ns_type) 1043 ns = dev->class->namespace(dev); 1044 1045 return ns; 1046 } 1047 1048 static void rx_queue_get_ownership(const struct kobject *kobj, 1049 kuid_t *uid, kgid_t *gid) 1050 { 1051 const struct net *net = rx_queue_namespace(kobj); 1052 1053 net_ns_get_ownership(net, uid, gid); 1054 } 1055 1056 static const struct kobj_type rx_queue_ktype = { 1057 .sysfs_ops = &rx_queue_sysfs_ops, 1058 .release = rx_queue_release, 1059 .default_groups = rx_queue_default_groups, 1060 .namespace = rx_queue_namespace, 1061 .get_ownership = rx_queue_get_ownership, 1062 }; 1063 1064 static int rx_queue_default_mask(struct net_device *dev, 1065 struct netdev_rx_queue *queue) 1066 { 1067 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL) 1068 struct cpumask *rps_default_mask = READ_ONCE(dev_net(dev)->core.rps_default_mask); 1069 1070 if (rps_default_mask && !cpumask_empty(rps_default_mask)) 1071 return netdev_rx_queue_set_rps_mask(queue, rps_default_mask); 1072 #endif 1073 return 0; 1074 } 1075 1076 static int rx_queue_add_kobject(struct net_device *dev, int index) 1077 { 1078 struct netdev_rx_queue *queue = dev->_rx + index; 1079 struct kobject *kobj = &queue->kobj; 1080 int error = 0; 1081 1082 /* Kobject_put later will trigger rx_queue_release call which 1083 * decreases dev refcount: Take that reference here 1084 */ 1085 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1086 1087 kobj->kset = dev->queues_kset; 1088 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, 1089 "rx-%u", index); 1090 if (error) 1091 goto err; 1092 1093 if (dev->sysfs_rx_queue_group) { 1094 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group); 1095 if (error) 1096 goto err; 1097 } 1098 1099 error = rx_queue_default_mask(dev, queue); 1100 if (error) 1101 goto err; 1102 1103 kobject_uevent(kobj, KOBJ_ADD); 1104 1105 return error; 1106 1107 err: 1108 kobject_put(kobj); 1109 return error; 1110 } 1111 1112 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid, 1113 kgid_t kgid) 1114 { 1115 struct netdev_rx_queue *queue = dev->_rx + index; 1116 struct kobject *kobj = &queue->kobj; 1117 int error; 1118 1119 error = sysfs_change_owner(kobj, kuid, kgid); 1120 if (error) 1121 return error; 1122 1123 if (dev->sysfs_rx_queue_group) 1124 error = sysfs_group_change_owner( 1125 kobj, dev->sysfs_rx_queue_group, kuid, kgid); 1126 1127 return error; 1128 } 1129 #endif /* CONFIG_SYSFS */ 1130 1131 int 1132 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1133 { 1134 #ifdef CONFIG_SYSFS 1135 int i; 1136 int error = 0; 1137 1138 #ifndef CONFIG_RPS 1139 if (!dev->sysfs_rx_queue_group) 1140 return 0; 1141 #endif 1142 for (i = old_num; i < new_num; i++) { 1143 error = rx_queue_add_kobject(dev, i); 1144 if (error) { 1145 new_num = old_num; 1146 break; 1147 } 1148 } 1149 1150 while (--i >= new_num) { 1151 struct kobject *kobj = &dev->_rx[i].kobj; 1152 1153 if (!refcount_read(&dev_net(dev)->ns.count)) 1154 kobj->uevent_suppress = 1; 1155 if (dev->sysfs_rx_queue_group) 1156 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group); 1157 kobject_put(kobj); 1158 } 1159 1160 return error; 1161 #else 1162 return 0; 1163 #endif 1164 } 1165 1166 static int net_rx_queue_change_owner(struct net_device *dev, int num, 1167 kuid_t kuid, kgid_t kgid) 1168 { 1169 #ifdef CONFIG_SYSFS 1170 int error = 0; 1171 int i; 1172 1173 #ifndef CONFIG_RPS 1174 if (!dev->sysfs_rx_queue_group) 1175 return 0; 1176 #endif 1177 for (i = 0; i < num; i++) { 1178 error = rx_queue_change_owner(dev, i, kuid, kgid); 1179 if (error) 1180 break; 1181 } 1182 1183 return error; 1184 #else 1185 return 0; 1186 #endif 1187 } 1188 1189 #ifdef CONFIG_SYSFS 1190 /* 1191 * netdev_queue sysfs structures and functions. 1192 */ 1193 struct netdev_queue_attribute { 1194 struct attribute attr; 1195 ssize_t (*show)(struct netdev_queue *queue, char *buf); 1196 ssize_t (*store)(struct netdev_queue *queue, 1197 const char *buf, size_t len); 1198 }; 1199 #define to_netdev_queue_attr(_attr) \ 1200 container_of(_attr, struct netdev_queue_attribute, attr) 1201 1202 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) 1203 1204 static ssize_t netdev_queue_attr_show(struct kobject *kobj, 1205 struct attribute *attr, char *buf) 1206 { 1207 const struct netdev_queue_attribute *attribute 1208 = to_netdev_queue_attr(attr); 1209 struct netdev_queue *queue = to_netdev_queue(kobj); 1210 1211 if (!attribute->show) 1212 return -EIO; 1213 1214 return attribute->show(queue, buf); 1215 } 1216 1217 static ssize_t netdev_queue_attr_store(struct kobject *kobj, 1218 struct attribute *attr, 1219 const char *buf, size_t count) 1220 { 1221 const struct netdev_queue_attribute *attribute 1222 = to_netdev_queue_attr(attr); 1223 struct netdev_queue *queue = to_netdev_queue(kobj); 1224 1225 if (!attribute->store) 1226 return -EIO; 1227 1228 return attribute->store(queue, buf, count); 1229 } 1230 1231 static const struct sysfs_ops netdev_queue_sysfs_ops = { 1232 .show = netdev_queue_attr_show, 1233 .store = netdev_queue_attr_store, 1234 }; 1235 1236 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf) 1237 { 1238 unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout); 1239 1240 return sysfs_emit(buf, fmt_ulong, trans_timeout); 1241 } 1242 1243 static unsigned int get_netdev_queue_index(struct netdev_queue *queue) 1244 { 1245 struct net_device *dev = queue->dev; 1246 unsigned int i; 1247 1248 i = queue - dev->_tx; 1249 BUG_ON(i >= dev->num_tx_queues); 1250 1251 return i; 1252 } 1253 1254 static ssize_t traffic_class_show(struct netdev_queue *queue, 1255 char *buf) 1256 { 1257 struct net_device *dev = queue->dev; 1258 int num_tc, tc; 1259 int index; 1260 1261 if (!netif_is_multiqueue(dev)) 1262 return -ENOENT; 1263 1264 if (!rtnl_trylock()) 1265 return restart_syscall(); 1266 1267 index = get_netdev_queue_index(queue); 1268 1269 /* If queue belongs to subordinate dev use its TC mapping */ 1270 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1271 1272 num_tc = dev->num_tc; 1273 tc = netdev_txq_to_tc(dev, index); 1274 1275 rtnl_unlock(); 1276 1277 if (tc < 0) 1278 return -EINVAL; 1279 1280 /* We can report the traffic class one of two ways: 1281 * Subordinate device traffic classes are reported with the traffic 1282 * class first, and then the subordinate class so for example TC0 on 1283 * subordinate device 2 will be reported as "0-2". If the queue 1284 * belongs to the root device it will be reported with just the 1285 * traffic class, so just "0" for TC 0 for example. 1286 */ 1287 return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) : 1288 sysfs_emit(buf, "%d\n", tc); 1289 } 1290 1291 #ifdef CONFIG_XPS 1292 static ssize_t tx_maxrate_show(struct netdev_queue *queue, 1293 char *buf) 1294 { 1295 return sysfs_emit(buf, "%lu\n", queue->tx_maxrate); 1296 } 1297 1298 static ssize_t tx_maxrate_store(struct netdev_queue *queue, 1299 const char *buf, size_t len) 1300 { 1301 struct net_device *dev = queue->dev; 1302 int err, index = get_netdev_queue_index(queue); 1303 u32 rate = 0; 1304 1305 if (!capable(CAP_NET_ADMIN)) 1306 return -EPERM; 1307 1308 /* The check is also done later; this helps returning early without 1309 * hitting the trylock/restart below. 1310 */ 1311 if (!dev->netdev_ops->ndo_set_tx_maxrate) 1312 return -EOPNOTSUPP; 1313 1314 err = kstrtou32(buf, 10, &rate); 1315 if (err < 0) 1316 return err; 1317 1318 if (!rtnl_trylock()) 1319 return restart_syscall(); 1320 1321 err = -EOPNOTSUPP; 1322 if (dev->netdev_ops->ndo_set_tx_maxrate) 1323 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate); 1324 1325 rtnl_unlock(); 1326 if (!err) { 1327 queue->tx_maxrate = rate; 1328 return len; 1329 } 1330 return err; 1331 } 1332 1333 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init 1334 = __ATTR_RW(tx_maxrate); 1335 #endif 1336 1337 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init 1338 = __ATTR_RO(tx_timeout); 1339 1340 static struct netdev_queue_attribute queue_traffic_class __ro_after_init 1341 = __ATTR_RO(traffic_class); 1342 1343 #ifdef CONFIG_BQL 1344 /* 1345 * Byte queue limits sysfs structures and functions. 1346 */ 1347 static ssize_t bql_show(char *buf, unsigned int value) 1348 { 1349 return sysfs_emit(buf, "%u\n", value); 1350 } 1351 1352 static ssize_t bql_set(const char *buf, const size_t count, 1353 unsigned int *pvalue) 1354 { 1355 unsigned int value; 1356 int err; 1357 1358 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) { 1359 value = DQL_MAX_LIMIT; 1360 } else { 1361 err = kstrtouint(buf, 10, &value); 1362 if (err < 0) 1363 return err; 1364 if (value > DQL_MAX_LIMIT) 1365 return -EINVAL; 1366 } 1367 1368 *pvalue = value; 1369 1370 return count; 1371 } 1372 1373 static ssize_t bql_show_hold_time(struct netdev_queue *queue, 1374 char *buf) 1375 { 1376 struct dql *dql = &queue->dql; 1377 1378 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); 1379 } 1380 1381 static ssize_t bql_set_hold_time(struct netdev_queue *queue, 1382 const char *buf, size_t len) 1383 { 1384 struct dql *dql = &queue->dql; 1385 unsigned int value; 1386 int err; 1387 1388 err = kstrtouint(buf, 10, &value); 1389 if (err < 0) 1390 return err; 1391 1392 dql->slack_hold_time = msecs_to_jiffies(value); 1393 1394 return len; 1395 } 1396 1397 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init 1398 = __ATTR(hold_time, 0644, 1399 bql_show_hold_time, bql_set_hold_time); 1400 1401 static ssize_t bql_show_inflight(struct netdev_queue *queue, 1402 char *buf) 1403 { 1404 struct dql *dql = &queue->dql; 1405 1406 return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed); 1407 } 1408 1409 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init = 1410 __ATTR(inflight, 0444, bql_show_inflight, NULL); 1411 1412 #define BQL_ATTR(NAME, FIELD) \ 1413 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \ 1414 char *buf) \ 1415 { \ 1416 return bql_show(buf, queue->dql.FIELD); \ 1417 } \ 1418 \ 1419 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \ 1420 const char *buf, size_t len) \ 1421 { \ 1422 return bql_set(buf, len, &queue->dql.FIELD); \ 1423 } \ 1424 \ 1425 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \ 1426 = __ATTR(NAME, 0644, \ 1427 bql_show_ ## NAME, bql_set_ ## NAME) 1428 1429 BQL_ATTR(limit, limit); 1430 BQL_ATTR(limit_max, max_limit); 1431 BQL_ATTR(limit_min, min_limit); 1432 1433 static struct attribute *dql_attrs[] __ro_after_init = { 1434 &bql_limit_attribute.attr, 1435 &bql_limit_max_attribute.attr, 1436 &bql_limit_min_attribute.attr, 1437 &bql_hold_time_attribute.attr, 1438 &bql_inflight_attribute.attr, 1439 NULL 1440 }; 1441 1442 static const struct attribute_group dql_group = { 1443 .name = "byte_queue_limits", 1444 .attrs = dql_attrs, 1445 }; 1446 #endif /* CONFIG_BQL */ 1447 1448 #ifdef CONFIG_XPS 1449 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index, 1450 int tc, char *buf, enum xps_map_type type) 1451 { 1452 struct xps_dev_maps *dev_maps; 1453 unsigned long *mask; 1454 unsigned int nr_ids; 1455 int j, len; 1456 1457 rcu_read_lock(); 1458 dev_maps = rcu_dereference(dev->xps_maps[type]); 1459 1460 /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0 1461 * when dev_maps hasn't been allocated yet, to be backward compatible. 1462 */ 1463 nr_ids = dev_maps ? dev_maps->nr_ids : 1464 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues); 1465 1466 mask = bitmap_zalloc(nr_ids, GFP_NOWAIT); 1467 if (!mask) { 1468 rcu_read_unlock(); 1469 return -ENOMEM; 1470 } 1471 1472 if (!dev_maps || tc >= dev_maps->num_tc) 1473 goto out_no_maps; 1474 1475 for (j = 0; j < nr_ids; j++) { 1476 int i, tci = j * dev_maps->num_tc + tc; 1477 struct xps_map *map; 1478 1479 map = rcu_dereference(dev_maps->attr_map[tci]); 1480 if (!map) 1481 continue; 1482 1483 for (i = map->len; i--;) { 1484 if (map->queues[i] == index) { 1485 __set_bit(j, mask); 1486 break; 1487 } 1488 } 1489 } 1490 out_no_maps: 1491 rcu_read_unlock(); 1492 1493 len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids); 1494 bitmap_free(mask); 1495 1496 return len < PAGE_SIZE ? len : -EINVAL; 1497 } 1498 1499 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf) 1500 { 1501 struct net_device *dev = queue->dev; 1502 unsigned int index; 1503 int len, tc; 1504 1505 if (!netif_is_multiqueue(dev)) 1506 return -ENOENT; 1507 1508 index = get_netdev_queue_index(queue); 1509 1510 if (!rtnl_trylock()) 1511 return restart_syscall(); 1512 1513 /* If queue belongs to subordinate dev use its map */ 1514 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1515 1516 tc = netdev_txq_to_tc(dev, index); 1517 if (tc < 0) { 1518 rtnl_unlock(); 1519 return -EINVAL; 1520 } 1521 1522 /* Make sure the subordinate device can't be freed */ 1523 get_device(&dev->dev); 1524 rtnl_unlock(); 1525 1526 len = xps_queue_show(dev, index, tc, buf, XPS_CPUS); 1527 1528 put_device(&dev->dev); 1529 return len; 1530 } 1531 1532 static ssize_t xps_cpus_store(struct netdev_queue *queue, 1533 const char *buf, size_t len) 1534 { 1535 struct net_device *dev = queue->dev; 1536 unsigned int index; 1537 cpumask_var_t mask; 1538 int err; 1539 1540 if (!netif_is_multiqueue(dev)) 1541 return -ENOENT; 1542 1543 if (!capable(CAP_NET_ADMIN)) 1544 return -EPERM; 1545 1546 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1547 return -ENOMEM; 1548 1549 index = get_netdev_queue_index(queue); 1550 1551 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 1552 if (err) { 1553 free_cpumask_var(mask); 1554 return err; 1555 } 1556 1557 if (!rtnl_trylock()) { 1558 free_cpumask_var(mask); 1559 return restart_syscall(); 1560 } 1561 1562 err = netif_set_xps_queue(dev, mask, index); 1563 rtnl_unlock(); 1564 1565 free_cpumask_var(mask); 1566 1567 return err ? : len; 1568 } 1569 1570 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init 1571 = __ATTR_RW(xps_cpus); 1572 1573 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf) 1574 { 1575 struct net_device *dev = queue->dev; 1576 unsigned int index; 1577 int tc; 1578 1579 index = get_netdev_queue_index(queue); 1580 1581 if (!rtnl_trylock()) 1582 return restart_syscall(); 1583 1584 tc = netdev_txq_to_tc(dev, index); 1585 rtnl_unlock(); 1586 if (tc < 0) 1587 return -EINVAL; 1588 1589 return xps_queue_show(dev, index, tc, buf, XPS_RXQS); 1590 } 1591 1592 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf, 1593 size_t len) 1594 { 1595 struct net_device *dev = queue->dev; 1596 struct net *net = dev_net(dev); 1597 unsigned long *mask; 1598 unsigned int index; 1599 int err; 1600 1601 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1602 return -EPERM; 1603 1604 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1605 if (!mask) 1606 return -ENOMEM; 1607 1608 index = get_netdev_queue_index(queue); 1609 1610 err = bitmap_parse(buf, len, mask, dev->num_rx_queues); 1611 if (err) { 1612 bitmap_free(mask); 1613 return err; 1614 } 1615 1616 if (!rtnl_trylock()) { 1617 bitmap_free(mask); 1618 return restart_syscall(); 1619 } 1620 1621 cpus_read_lock(); 1622 err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS); 1623 cpus_read_unlock(); 1624 1625 rtnl_unlock(); 1626 1627 bitmap_free(mask); 1628 return err ? : len; 1629 } 1630 1631 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init 1632 = __ATTR_RW(xps_rxqs); 1633 #endif /* CONFIG_XPS */ 1634 1635 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = { 1636 &queue_trans_timeout.attr, 1637 &queue_traffic_class.attr, 1638 #ifdef CONFIG_XPS 1639 &xps_cpus_attribute.attr, 1640 &xps_rxqs_attribute.attr, 1641 &queue_tx_maxrate.attr, 1642 #endif 1643 NULL 1644 }; 1645 ATTRIBUTE_GROUPS(netdev_queue_default); 1646 1647 static void netdev_queue_release(struct kobject *kobj) 1648 { 1649 struct netdev_queue *queue = to_netdev_queue(kobj); 1650 1651 memset(kobj, 0, sizeof(*kobj)); 1652 netdev_put(queue->dev, &queue->dev_tracker); 1653 } 1654 1655 static const void *netdev_queue_namespace(const struct kobject *kobj) 1656 { 1657 struct netdev_queue *queue = to_netdev_queue(kobj); 1658 struct device *dev = &queue->dev->dev; 1659 const void *ns = NULL; 1660 1661 if (dev->class && dev->class->ns_type) 1662 ns = dev->class->namespace(dev); 1663 1664 return ns; 1665 } 1666 1667 static void netdev_queue_get_ownership(const struct kobject *kobj, 1668 kuid_t *uid, kgid_t *gid) 1669 { 1670 const struct net *net = netdev_queue_namespace(kobj); 1671 1672 net_ns_get_ownership(net, uid, gid); 1673 } 1674 1675 static const struct kobj_type netdev_queue_ktype = { 1676 .sysfs_ops = &netdev_queue_sysfs_ops, 1677 .release = netdev_queue_release, 1678 .default_groups = netdev_queue_default_groups, 1679 .namespace = netdev_queue_namespace, 1680 .get_ownership = netdev_queue_get_ownership, 1681 }; 1682 1683 static int netdev_queue_add_kobject(struct net_device *dev, int index) 1684 { 1685 struct netdev_queue *queue = dev->_tx + index; 1686 struct kobject *kobj = &queue->kobj; 1687 int error = 0; 1688 1689 /* Kobject_put later will trigger netdev_queue_release call 1690 * which decreases dev refcount: Take that reference here 1691 */ 1692 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1693 1694 kobj->kset = dev->queues_kset; 1695 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, 1696 "tx-%u", index); 1697 if (error) 1698 goto err; 1699 1700 #ifdef CONFIG_BQL 1701 error = sysfs_create_group(kobj, &dql_group); 1702 if (error) 1703 goto err; 1704 #endif 1705 1706 kobject_uevent(kobj, KOBJ_ADD); 1707 return 0; 1708 1709 err: 1710 kobject_put(kobj); 1711 return error; 1712 } 1713 1714 static int tx_queue_change_owner(struct net_device *ndev, int index, 1715 kuid_t kuid, kgid_t kgid) 1716 { 1717 struct netdev_queue *queue = ndev->_tx + index; 1718 struct kobject *kobj = &queue->kobj; 1719 int error; 1720 1721 error = sysfs_change_owner(kobj, kuid, kgid); 1722 if (error) 1723 return error; 1724 1725 #ifdef CONFIG_BQL 1726 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid); 1727 #endif 1728 return error; 1729 } 1730 #endif /* CONFIG_SYSFS */ 1731 1732 int 1733 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1734 { 1735 #ifdef CONFIG_SYSFS 1736 int i; 1737 int error = 0; 1738 1739 /* Tx queue kobjects are allowed to be updated when a device is being 1740 * unregistered, but solely to remove queues from qdiscs. Any path 1741 * adding queues should be fixed. 1742 */ 1743 WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num, 1744 "New queues can't be registered after device unregistration."); 1745 1746 for (i = old_num; i < new_num; i++) { 1747 error = netdev_queue_add_kobject(dev, i); 1748 if (error) { 1749 new_num = old_num; 1750 break; 1751 } 1752 } 1753 1754 while (--i >= new_num) { 1755 struct netdev_queue *queue = dev->_tx + i; 1756 1757 if (!refcount_read(&dev_net(dev)->ns.count)) 1758 queue->kobj.uevent_suppress = 1; 1759 #ifdef CONFIG_BQL 1760 sysfs_remove_group(&queue->kobj, &dql_group); 1761 #endif 1762 kobject_put(&queue->kobj); 1763 } 1764 1765 return error; 1766 #else 1767 return 0; 1768 #endif /* CONFIG_SYSFS */ 1769 } 1770 1771 static int net_tx_queue_change_owner(struct net_device *dev, int num, 1772 kuid_t kuid, kgid_t kgid) 1773 { 1774 #ifdef CONFIG_SYSFS 1775 int error = 0; 1776 int i; 1777 1778 for (i = 0; i < num; i++) { 1779 error = tx_queue_change_owner(dev, i, kuid, kgid); 1780 if (error) 1781 break; 1782 } 1783 1784 return error; 1785 #else 1786 return 0; 1787 #endif /* CONFIG_SYSFS */ 1788 } 1789 1790 static int register_queue_kobjects(struct net_device *dev) 1791 { 1792 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; 1793 1794 #ifdef CONFIG_SYSFS 1795 dev->queues_kset = kset_create_and_add("queues", 1796 NULL, &dev->dev.kobj); 1797 if (!dev->queues_kset) 1798 return -ENOMEM; 1799 real_rx = dev->real_num_rx_queues; 1800 #endif 1801 real_tx = dev->real_num_tx_queues; 1802 1803 error = net_rx_queue_update_kobjects(dev, 0, real_rx); 1804 if (error) 1805 goto error; 1806 rxq = real_rx; 1807 1808 error = netdev_queue_update_kobjects(dev, 0, real_tx); 1809 if (error) 1810 goto error; 1811 txq = real_tx; 1812 1813 return 0; 1814 1815 error: 1816 netdev_queue_update_kobjects(dev, txq, 0); 1817 net_rx_queue_update_kobjects(dev, rxq, 0); 1818 #ifdef CONFIG_SYSFS 1819 kset_unregister(dev->queues_kset); 1820 #endif 1821 return error; 1822 } 1823 1824 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid) 1825 { 1826 int error = 0, real_rx = 0, real_tx = 0; 1827 1828 #ifdef CONFIG_SYSFS 1829 if (ndev->queues_kset) { 1830 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid); 1831 if (error) 1832 return error; 1833 } 1834 real_rx = ndev->real_num_rx_queues; 1835 #endif 1836 real_tx = ndev->real_num_tx_queues; 1837 1838 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid); 1839 if (error) 1840 return error; 1841 1842 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid); 1843 if (error) 1844 return error; 1845 1846 return 0; 1847 } 1848 1849 static void remove_queue_kobjects(struct net_device *dev) 1850 { 1851 int real_rx = 0, real_tx = 0; 1852 1853 #ifdef CONFIG_SYSFS 1854 real_rx = dev->real_num_rx_queues; 1855 #endif 1856 real_tx = dev->real_num_tx_queues; 1857 1858 net_rx_queue_update_kobjects(dev, real_rx, 0); 1859 netdev_queue_update_kobjects(dev, real_tx, 0); 1860 1861 dev->real_num_rx_queues = 0; 1862 dev->real_num_tx_queues = 0; 1863 #ifdef CONFIG_SYSFS 1864 kset_unregister(dev->queues_kset); 1865 #endif 1866 } 1867 1868 static bool net_current_may_mount(void) 1869 { 1870 struct net *net = current->nsproxy->net_ns; 1871 1872 return ns_capable(net->user_ns, CAP_SYS_ADMIN); 1873 } 1874 1875 static void *net_grab_current_ns(void) 1876 { 1877 struct net *ns = current->nsproxy->net_ns; 1878 #ifdef CONFIG_NET_NS 1879 if (ns) 1880 refcount_inc(&ns->passive); 1881 #endif 1882 return ns; 1883 } 1884 1885 static const void *net_initial_ns(void) 1886 { 1887 return &init_net; 1888 } 1889 1890 static const void *net_netlink_ns(struct sock *sk) 1891 { 1892 return sock_net(sk); 1893 } 1894 1895 const struct kobj_ns_type_operations net_ns_type_operations = { 1896 .type = KOBJ_NS_TYPE_NET, 1897 .current_may_mount = net_current_may_mount, 1898 .grab_current_ns = net_grab_current_ns, 1899 .netlink_ns = net_netlink_ns, 1900 .initial_ns = net_initial_ns, 1901 .drop_ns = net_drop_ns, 1902 }; 1903 EXPORT_SYMBOL_GPL(net_ns_type_operations); 1904 1905 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env) 1906 { 1907 const struct net_device *dev = to_net_dev(d); 1908 int retval; 1909 1910 /* pass interface to uevent. */ 1911 retval = add_uevent_var(env, "INTERFACE=%s", dev->name); 1912 if (retval) 1913 goto exit; 1914 1915 /* pass ifindex to uevent. 1916 * ifindex is useful as it won't change (interface name may change) 1917 * and is what RtNetlink uses natively. 1918 */ 1919 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); 1920 1921 exit: 1922 return retval; 1923 } 1924 1925 /* 1926 * netdev_release -- destroy and free a dead device. 1927 * Called when last reference to device kobject is gone. 1928 */ 1929 static void netdev_release(struct device *d) 1930 { 1931 struct net_device *dev = to_net_dev(d); 1932 1933 BUG_ON(dev->reg_state != NETREG_RELEASED); 1934 1935 /* no need to wait for rcu grace period: 1936 * device is dead and about to be freed. 1937 */ 1938 kfree(rcu_access_pointer(dev->ifalias)); 1939 netdev_freemem(dev); 1940 } 1941 1942 static const void *net_namespace(const struct device *d) 1943 { 1944 const struct net_device *dev = to_net_dev(d); 1945 1946 return dev_net(dev); 1947 } 1948 1949 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid) 1950 { 1951 const struct net_device *dev = to_net_dev(d); 1952 const struct net *net = dev_net(dev); 1953 1954 net_ns_get_ownership(net, uid, gid); 1955 } 1956 1957 static struct class net_class __ro_after_init = { 1958 .name = "net", 1959 .dev_release = netdev_release, 1960 .dev_groups = net_class_groups, 1961 .dev_uevent = netdev_uevent, 1962 .ns_type = &net_ns_type_operations, 1963 .namespace = net_namespace, 1964 .get_ownership = net_get_ownership, 1965 }; 1966 1967 #ifdef CONFIG_OF 1968 static int of_dev_node_match(struct device *dev, const void *data) 1969 { 1970 for (; dev; dev = dev->parent) { 1971 if (dev->of_node == data) 1972 return 1; 1973 } 1974 1975 return 0; 1976 } 1977 1978 /* 1979 * of_find_net_device_by_node - lookup the net device for the device node 1980 * @np: OF device node 1981 * 1982 * Looks up the net_device structure corresponding with the device node. 1983 * If successful, returns a pointer to the net_device with the embedded 1984 * struct device refcount incremented by one, or NULL on failure. The 1985 * refcount must be dropped when done with the net_device. 1986 */ 1987 struct net_device *of_find_net_device_by_node(struct device_node *np) 1988 { 1989 struct device *dev; 1990 1991 dev = class_find_device(&net_class, NULL, np, of_dev_node_match); 1992 if (!dev) 1993 return NULL; 1994 1995 return to_net_dev(dev); 1996 } 1997 EXPORT_SYMBOL(of_find_net_device_by_node); 1998 #endif 1999 2000 /* Delete sysfs entries but hold kobject reference until after all 2001 * netdev references are gone. 2002 */ 2003 void netdev_unregister_kobject(struct net_device *ndev) 2004 { 2005 struct device *dev = &ndev->dev; 2006 2007 if (!refcount_read(&dev_net(ndev)->ns.count)) 2008 dev_set_uevent_suppress(dev, 1); 2009 2010 kobject_get(&dev->kobj); 2011 2012 remove_queue_kobjects(ndev); 2013 2014 pm_runtime_set_memalloc_noio(dev, false); 2015 2016 device_del(dev); 2017 } 2018 2019 /* Create sysfs entries for network device. */ 2020 int netdev_register_kobject(struct net_device *ndev) 2021 { 2022 struct device *dev = &ndev->dev; 2023 const struct attribute_group **groups = ndev->sysfs_groups; 2024 int error = 0; 2025 2026 device_initialize(dev); 2027 dev->class = &net_class; 2028 dev->platform_data = ndev; 2029 dev->groups = groups; 2030 2031 dev_set_name(dev, "%s", ndev->name); 2032 2033 #ifdef CONFIG_SYSFS 2034 /* Allow for a device specific group */ 2035 if (*groups) 2036 groups++; 2037 2038 *groups++ = &netstat_group; 2039 2040 if (wireless_group_needed(ndev)) 2041 *groups++ = &wireless_group; 2042 #endif /* CONFIG_SYSFS */ 2043 2044 error = device_add(dev); 2045 if (error) 2046 return error; 2047 2048 error = register_queue_kobjects(ndev); 2049 if (error) { 2050 device_del(dev); 2051 return error; 2052 } 2053 2054 pm_runtime_set_memalloc_noio(dev, true); 2055 2056 return error; 2057 } 2058 2059 /* Change owner for sysfs entries when moving network devices across network 2060 * namespaces owned by different user namespaces. 2061 */ 2062 int netdev_change_owner(struct net_device *ndev, const struct net *net_old, 2063 const struct net *net_new) 2064 { 2065 kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID; 2066 kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID; 2067 struct device *dev = &ndev->dev; 2068 int error; 2069 2070 net_ns_get_ownership(net_old, &old_uid, &old_gid); 2071 net_ns_get_ownership(net_new, &new_uid, &new_gid); 2072 2073 /* The network namespace was changed but the owning user namespace is 2074 * identical so there's no need to change the owner of sysfs entries. 2075 */ 2076 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid)) 2077 return 0; 2078 2079 error = device_change_owner(dev, new_uid, new_gid); 2080 if (error) 2081 return error; 2082 2083 error = queue_change_owner(ndev, new_uid, new_gid); 2084 if (error) 2085 return error; 2086 2087 return 0; 2088 } 2089 2090 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 2091 const void *ns) 2092 { 2093 return class_create_file_ns(&net_class, class_attr, ns); 2094 } 2095 EXPORT_SYMBOL(netdev_class_create_file_ns); 2096 2097 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 2098 const void *ns) 2099 { 2100 class_remove_file_ns(&net_class, class_attr, ns); 2101 } 2102 EXPORT_SYMBOL(netdev_class_remove_file_ns); 2103 2104 int __init netdev_kobject_init(void) 2105 { 2106 kobj_ns_type_register(&net_ns_type_operations); 2107 return class_register(&net_class); 2108 } 2109