xref: /openbmc/linux/net/core/net-sysfs.c (revision 2b1b1267080fe822789d0845a58ebb452724736b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/nsproxy.h>
15 #include <net/sock.h>
16 #include <net/net_namespace.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
20 #include <linux/jiffies.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/cpu.h>
25 
26 #include "net-sysfs.h"
27 
28 #ifdef CONFIG_SYSFS
29 static const char fmt_hex[] = "%#x\n";
30 static const char fmt_dec[] = "%d\n";
31 static const char fmt_ulong[] = "%lu\n";
32 static const char fmt_u64[] = "%llu\n";
33 
34 static inline int dev_isalive(const struct net_device *dev)
35 {
36 	return dev->reg_state <= NETREG_REGISTERED;
37 }
38 
39 /* use same locking rules as GIF* ioctl's */
40 static ssize_t netdev_show(const struct device *dev,
41 			   struct device_attribute *attr, char *buf,
42 			   ssize_t (*format)(const struct net_device *, char *))
43 {
44 	struct net_device *ndev = to_net_dev(dev);
45 	ssize_t ret = -EINVAL;
46 
47 	read_lock(&dev_base_lock);
48 	if (dev_isalive(ndev))
49 		ret = (*format)(ndev, buf);
50 	read_unlock(&dev_base_lock);
51 
52 	return ret;
53 }
54 
55 /* generate a show function for simple field */
56 #define NETDEVICE_SHOW(field, format_string)				\
57 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
58 {									\
59 	return sprintf(buf, format_string, dev->field);			\
60 }									\
61 static ssize_t field##_show(struct device *dev,				\
62 			    struct device_attribute *attr, char *buf)	\
63 {									\
64 	return netdev_show(dev, attr, buf, format_##field);		\
65 }									\
66 
67 #define NETDEVICE_SHOW_RO(field, format_string)				\
68 NETDEVICE_SHOW(field, format_string);					\
69 static DEVICE_ATTR_RO(field)
70 
71 #define NETDEVICE_SHOW_RW(field, format_string)				\
72 NETDEVICE_SHOW(field, format_string);					\
73 static DEVICE_ATTR_RW(field)
74 
75 /* use same locking and permission rules as SIF* ioctl's */
76 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
77 			    const char *buf, size_t len,
78 			    int (*set)(struct net_device *, unsigned long))
79 {
80 	struct net_device *netdev = to_net_dev(dev);
81 	struct net *net = dev_net(netdev);
82 	unsigned long new;
83 	int ret;
84 
85 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
86 		return -EPERM;
87 
88 	ret = kstrtoul(buf, 0, &new);
89 	if (ret)
90 		goto err;
91 
92 	if (!rtnl_trylock())
93 		return restart_syscall();
94 
95 	if (dev_isalive(netdev)) {
96 		ret = (*set)(netdev, new);
97 		if (ret == 0)
98 			ret = len;
99 	}
100 	rtnl_unlock();
101  err:
102 	return ret;
103 }
104 
105 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
106 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
107 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
108 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
109 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
110 NETDEVICE_SHOW_RO(type, fmt_dec);
111 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
112 
113 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
114 			   char *buf)
115 {
116 	struct net_device *ndev = to_net_dev(dev);
117 
118 	return sprintf(buf, fmt_dec, dev_get_iflink(ndev));
119 }
120 static DEVICE_ATTR_RO(iflink);
121 
122 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
123 {
124 	return sprintf(buf, fmt_dec, dev->name_assign_type);
125 }
126 
127 static ssize_t name_assign_type_show(struct device *dev,
128 				     struct device_attribute *attr,
129 				     char *buf)
130 {
131 	struct net_device *ndev = to_net_dev(dev);
132 	ssize_t ret = -EINVAL;
133 
134 	if (ndev->name_assign_type != NET_NAME_UNKNOWN)
135 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
136 
137 	return ret;
138 }
139 static DEVICE_ATTR_RO(name_assign_type);
140 
141 /* use same locking rules as GIFHWADDR ioctl's */
142 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
143 			    char *buf)
144 {
145 	struct net_device *ndev = to_net_dev(dev);
146 	ssize_t ret = -EINVAL;
147 
148 	read_lock(&dev_base_lock);
149 	if (dev_isalive(ndev))
150 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
151 	read_unlock(&dev_base_lock);
152 	return ret;
153 }
154 static DEVICE_ATTR_RO(address);
155 
156 static ssize_t broadcast_show(struct device *dev,
157 			      struct device_attribute *attr, char *buf)
158 {
159 	struct net_device *ndev = to_net_dev(dev);
160 
161 	if (dev_isalive(ndev))
162 		return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
163 	return -EINVAL;
164 }
165 static DEVICE_ATTR_RO(broadcast);
166 
167 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
168 {
169 	if (!netif_running(dev))
170 		return -EINVAL;
171 	return dev_change_carrier(dev, (bool)new_carrier);
172 }
173 
174 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
175 			     const char *buf, size_t len)
176 {
177 	return netdev_store(dev, attr, buf, len, change_carrier);
178 }
179 
180 static ssize_t carrier_show(struct device *dev,
181 			    struct device_attribute *attr, char *buf)
182 {
183 	struct net_device *netdev = to_net_dev(dev);
184 
185 	if (netif_running(netdev))
186 		return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev));
187 
188 	return -EINVAL;
189 }
190 static DEVICE_ATTR_RW(carrier);
191 
192 static ssize_t speed_show(struct device *dev,
193 			  struct device_attribute *attr, char *buf)
194 {
195 	struct net_device *netdev = to_net_dev(dev);
196 	int ret = -EINVAL;
197 
198 	if (!rtnl_trylock())
199 		return restart_syscall();
200 
201 	if (netif_running(netdev)) {
202 		struct ethtool_link_ksettings cmd;
203 
204 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
205 			ret = sprintf(buf, fmt_dec, cmd.base.speed);
206 	}
207 	rtnl_unlock();
208 	return ret;
209 }
210 static DEVICE_ATTR_RO(speed);
211 
212 static ssize_t duplex_show(struct device *dev,
213 			   struct device_attribute *attr, char *buf)
214 {
215 	struct net_device *netdev = to_net_dev(dev);
216 	int ret = -EINVAL;
217 
218 	if (!rtnl_trylock())
219 		return restart_syscall();
220 
221 	if (netif_running(netdev)) {
222 		struct ethtool_link_ksettings cmd;
223 
224 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
225 			const char *duplex;
226 
227 			switch (cmd.base.duplex) {
228 			case DUPLEX_HALF:
229 				duplex = "half";
230 				break;
231 			case DUPLEX_FULL:
232 				duplex = "full";
233 				break;
234 			default:
235 				duplex = "unknown";
236 				break;
237 			}
238 			ret = sprintf(buf, "%s\n", duplex);
239 		}
240 	}
241 	rtnl_unlock();
242 	return ret;
243 }
244 static DEVICE_ATTR_RO(duplex);
245 
246 static ssize_t testing_show(struct device *dev,
247 			    struct device_attribute *attr, char *buf)
248 {
249 	struct net_device *netdev = to_net_dev(dev);
250 
251 	if (netif_running(netdev))
252 		return sprintf(buf, fmt_dec, !!netif_testing(netdev));
253 
254 	return -EINVAL;
255 }
256 static DEVICE_ATTR_RO(testing);
257 
258 static ssize_t dormant_show(struct device *dev,
259 			    struct device_attribute *attr, char *buf)
260 {
261 	struct net_device *netdev = to_net_dev(dev);
262 
263 	if (netif_running(netdev))
264 		return sprintf(buf, fmt_dec, !!netif_dormant(netdev));
265 
266 	return -EINVAL;
267 }
268 static DEVICE_ATTR_RO(dormant);
269 
270 static const char *const operstates[] = {
271 	"unknown",
272 	"notpresent", /* currently unused */
273 	"down",
274 	"lowerlayerdown",
275 	"testing",
276 	"dormant",
277 	"up"
278 };
279 
280 static ssize_t operstate_show(struct device *dev,
281 			      struct device_attribute *attr, char *buf)
282 {
283 	const struct net_device *netdev = to_net_dev(dev);
284 	unsigned char operstate;
285 
286 	read_lock(&dev_base_lock);
287 	operstate = netdev->operstate;
288 	if (!netif_running(netdev))
289 		operstate = IF_OPER_DOWN;
290 	read_unlock(&dev_base_lock);
291 
292 	if (operstate >= ARRAY_SIZE(operstates))
293 		return -EINVAL; /* should not happen */
294 
295 	return sprintf(buf, "%s\n", operstates[operstate]);
296 }
297 static DEVICE_ATTR_RO(operstate);
298 
299 static ssize_t carrier_changes_show(struct device *dev,
300 				    struct device_attribute *attr,
301 				    char *buf)
302 {
303 	struct net_device *netdev = to_net_dev(dev);
304 
305 	return sprintf(buf, fmt_dec,
306 		       atomic_read(&netdev->carrier_up_count) +
307 		       atomic_read(&netdev->carrier_down_count));
308 }
309 static DEVICE_ATTR_RO(carrier_changes);
310 
311 static ssize_t carrier_up_count_show(struct device *dev,
312 				     struct device_attribute *attr,
313 				     char *buf)
314 {
315 	struct net_device *netdev = to_net_dev(dev);
316 
317 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
318 }
319 static DEVICE_ATTR_RO(carrier_up_count);
320 
321 static ssize_t carrier_down_count_show(struct device *dev,
322 				       struct device_attribute *attr,
323 				       char *buf)
324 {
325 	struct net_device *netdev = to_net_dev(dev);
326 
327 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
328 }
329 static DEVICE_ATTR_RO(carrier_down_count);
330 
331 /* read-write attributes */
332 
333 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
334 {
335 	return dev_set_mtu(dev, (int)new_mtu);
336 }
337 
338 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
339 			 const char *buf, size_t len)
340 {
341 	return netdev_store(dev, attr, buf, len, change_mtu);
342 }
343 NETDEVICE_SHOW_RW(mtu, fmt_dec);
344 
345 static int change_flags(struct net_device *dev, unsigned long new_flags)
346 {
347 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
348 }
349 
350 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
351 			   const char *buf, size_t len)
352 {
353 	return netdev_store(dev, attr, buf, len, change_flags);
354 }
355 NETDEVICE_SHOW_RW(flags, fmt_hex);
356 
357 static ssize_t tx_queue_len_store(struct device *dev,
358 				  struct device_attribute *attr,
359 				  const char *buf, size_t len)
360 {
361 	if (!capable(CAP_NET_ADMIN))
362 		return -EPERM;
363 
364 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
365 }
366 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
367 
368 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
369 {
370 	WRITE_ONCE(dev->gro_flush_timeout, val);
371 	return 0;
372 }
373 
374 static ssize_t gro_flush_timeout_store(struct device *dev,
375 				       struct device_attribute *attr,
376 				       const char *buf, size_t len)
377 {
378 	if (!capable(CAP_NET_ADMIN))
379 		return -EPERM;
380 
381 	return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
382 }
383 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
384 
385 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
386 {
387 	WRITE_ONCE(dev->napi_defer_hard_irqs, val);
388 	return 0;
389 }
390 
391 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
392 					  struct device_attribute *attr,
393 					  const char *buf, size_t len)
394 {
395 	if (!capable(CAP_NET_ADMIN))
396 		return -EPERM;
397 
398 	return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
399 }
400 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec);
401 
402 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
403 			     const char *buf, size_t len)
404 {
405 	struct net_device *netdev = to_net_dev(dev);
406 	struct net *net = dev_net(netdev);
407 	size_t count = len;
408 	ssize_t ret = 0;
409 
410 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
411 		return -EPERM;
412 
413 	/* ignore trailing newline */
414 	if (len >  0 && buf[len - 1] == '\n')
415 		--count;
416 
417 	if (!rtnl_trylock())
418 		return restart_syscall();
419 
420 	if (dev_isalive(netdev)) {
421 		ret = dev_set_alias(netdev, buf, count);
422 		if (ret < 0)
423 			goto err;
424 		ret = len;
425 		netdev_state_change(netdev);
426 	}
427 err:
428 	rtnl_unlock();
429 
430 	return ret;
431 }
432 
433 static ssize_t ifalias_show(struct device *dev,
434 			    struct device_attribute *attr, char *buf)
435 {
436 	const struct net_device *netdev = to_net_dev(dev);
437 	char tmp[IFALIASZ];
438 	ssize_t ret = 0;
439 
440 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
441 	if (ret > 0)
442 		ret = sprintf(buf, "%s\n", tmp);
443 	return ret;
444 }
445 static DEVICE_ATTR_RW(ifalias);
446 
447 static int change_group(struct net_device *dev, unsigned long new_group)
448 {
449 	dev_set_group(dev, (int)new_group);
450 	return 0;
451 }
452 
453 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
454 			   const char *buf, size_t len)
455 {
456 	return netdev_store(dev, attr, buf, len, change_group);
457 }
458 NETDEVICE_SHOW(group, fmt_dec);
459 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
460 
461 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
462 {
463 	return dev_change_proto_down(dev, (bool)proto_down);
464 }
465 
466 static ssize_t proto_down_store(struct device *dev,
467 				struct device_attribute *attr,
468 				const char *buf, size_t len)
469 {
470 	return netdev_store(dev, attr, buf, len, change_proto_down);
471 }
472 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
473 
474 static ssize_t phys_port_id_show(struct device *dev,
475 				 struct device_attribute *attr, char *buf)
476 {
477 	struct net_device *netdev = to_net_dev(dev);
478 	ssize_t ret = -EINVAL;
479 
480 	if (!rtnl_trylock())
481 		return restart_syscall();
482 
483 	if (dev_isalive(netdev)) {
484 		struct netdev_phys_item_id ppid;
485 
486 		ret = dev_get_phys_port_id(netdev, &ppid);
487 		if (!ret)
488 			ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
489 	}
490 	rtnl_unlock();
491 
492 	return ret;
493 }
494 static DEVICE_ATTR_RO(phys_port_id);
495 
496 static ssize_t phys_port_name_show(struct device *dev,
497 				   struct device_attribute *attr, char *buf)
498 {
499 	struct net_device *netdev = to_net_dev(dev);
500 	ssize_t ret = -EINVAL;
501 
502 	if (!rtnl_trylock())
503 		return restart_syscall();
504 
505 	if (dev_isalive(netdev)) {
506 		char name[IFNAMSIZ];
507 
508 		ret = dev_get_phys_port_name(netdev, name, sizeof(name));
509 		if (!ret)
510 			ret = sprintf(buf, "%s\n", name);
511 	}
512 	rtnl_unlock();
513 
514 	return ret;
515 }
516 static DEVICE_ATTR_RO(phys_port_name);
517 
518 static ssize_t phys_switch_id_show(struct device *dev,
519 				   struct device_attribute *attr, char *buf)
520 {
521 	struct net_device *netdev = to_net_dev(dev);
522 	ssize_t ret = -EINVAL;
523 
524 	if (!rtnl_trylock())
525 		return restart_syscall();
526 
527 	if (dev_isalive(netdev)) {
528 		struct netdev_phys_item_id ppid = { };
529 
530 		ret = dev_get_port_parent_id(netdev, &ppid, false);
531 		if (!ret)
532 			ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
533 	}
534 	rtnl_unlock();
535 
536 	return ret;
537 }
538 static DEVICE_ATTR_RO(phys_switch_id);
539 
540 static struct attribute *net_class_attrs[] __ro_after_init = {
541 	&dev_attr_netdev_group.attr,
542 	&dev_attr_type.attr,
543 	&dev_attr_dev_id.attr,
544 	&dev_attr_dev_port.attr,
545 	&dev_attr_iflink.attr,
546 	&dev_attr_ifindex.attr,
547 	&dev_attr_name_assign_type.attr,
548 	&dev_attr_addr_assign_type.attr,
549 	&dev_attr_addr_len.attr,
550 	&dev_attr_link_mode.attr,
551 	&dev_attr_address.attr,
552 	&dev_attr_broadcast.attr,
553 	&dev_attr_speed.attr,
554 	&dev_attr_duplex.attr,
555 	&dev_attr_dormant.attr,
556 	&dev_attr_testing.attr,
557 	&dev_attr_operstate.attr,
558 	&dev_attr_carrier_changes.attr,
559 	&dev_attr_ifalias.attr,
560 	&dev_attr_carrier.attr,
561 	&dev_attr_mtu.attr,
562 	&dev_attr_flags.attr,
563 	&dev_attr_tx_queue_len.attr,
564 	&dev_attr_gro_flush_timeout.attr,
565 	&dev_attr_napi_defer_hard_irqs.attr,
566 	&dev_attr_phys_port_id.attr,
567 	&dev_attr_phys_port_name.attr,
568 	&dev_attr_phys_switch_id.attr,
569 	&dev_attr_proto_down.attr,
570 	&dev_attr_carrier_up_count.attr,
571 	&dev_attr_carrier_down_count.attr,
572 	NULL,
573 };
574 ATTRIBUTE_GROUPS(net_class);
575 
576 /* Show a given an attribute in the statistics group */
577 static ssize_t netstat_show(const struct device *d,
578 			    struct device_attribute *attr, char *buf,
579 			    unsigned long offset)
580 {
581 	struct net_device *dev = to_net_dev(d);
582 	ssize_t ret = -EINVAL;
583 
584 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
585 		offset % sizeof(u64) != 0);
586 
587 	read_lock(&dev_base_lock);
588 	if (dev_isalive(dev)) {
589 		struct rtnl_link_stats64 temp;
590 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
591 
592 		ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
593 	}
594 	read_unlock(&dev_base_lock);
595 	return ret;
596 }
597 
598 /* generate a read-only statistics attribute */
599 #define NETSTAT_ENTRY(name)						\
600 static ssize_t name##_show(struct device *d,				\
601 			   struct device_attribute *attr, char *buf)	\
602 {									\
603 	return netstat_show(d, attr, buf,				\
604 			    offsetof(struct rtnl_link_stats64, name));	\
605 }									\
606 static DEVICE_ATTR_RO(name)
607 
608 NETSTAT_ENTRY(rx_packets);
609 NETSTAT_ENTRY(tx_packets);
610 NETSTAT_ENTRY(rx_bytes);
611 NETSTAT_ENTRY(tx_bytes);
612 NETSTAT_ENTRY(rx_errors);
613 NETSTAT_ENTRY(tx_errors);
614 NETSTAT_ENTRY(rx_dropped);
615 NETSTAT_ENTRY(tx_dropped);
616 NETSTAT_ENTRY(multicast);
617 NETSTAT_ENTRY(collisions);
618 NETSTAT_ENTRY(rx_length_errors);
619 NETSTAT_ENTRY(rx_over_errors);
620 NETSTAT_ENTRY(rx_crc_errors);
621 NETSTAT_ENTRY(rx_frame_errors);
622 NETSTAT_ENTRY(rx_fifo_errors);
623 NETSTAT_ENTRY(rx_missed_errors);
624 NETSTAT_ENTRY(tx_aborted_errors);
625 NETSTAT_ENTRY(tx_carrier_errors);
626 NETSTAT_ENTRY(tx_fifo_errors);
627 NETSTAT_ENTRY(tx_heartbeat_errors);
628 NETSTAT_ENTRY(tx_window_errors);
629 NETSTAT_ENTRY(rx_compressed);
630 NETSTAT_ENTRY(tx_compressed);
631 NETSTAT_ENTRY(rx_nohandler);
632 
633 static struct attribute *netstat_attrs[] __ro_after_init = {
634 	&dev_attr_rx_packets.attr,
635 	&dev_attr_tx_packets.attr,
636 	&dev_attr_rx_bytes.attr,
637 	&dev_attr_tx_bytes.attr,
638 	&dev_attr_rx_errors.attr,
639 	&dev_attr_tx_errors.attr,
640 	&dev_attr_rx_dropped.attr,
641 	&dev_attr_tx_dropped.attr,
642 	&dev_attr_multicast.attr,
643 	&dev_attr_collisions.attr,
644 	&dev_attr_rx_length_errors.attr,
645 	&dev_attr_rx_over_errors.attr,
646 	&dev_attr_rx_crc_errors.attr,
647 	&dev_attr_rx_frame_errors.attr,
648 	&dev_attr_rx_fifo_errors.attr,
649 	&dev_attr_rx_missed_errors.attr,
650 	&dev_attr_tx_aborted_errors.attr,
651 	&dev_attr_tx_carrier_errors.attr,
652 	&dev_attr_tx_fifo_errors.attr,
653 	&dev_attr_tx_heartbeat_errors.attr,
654 	&dev_attr_tx_window_errors.attr,
655 	&dev_attr_rx_compressed.attr,
656 	&dev_attr_tx_compressed.attr,
657 	&dev_attr_rx_nohandler.attr,
658 	NULL
659 };
660 
661 static const struct attribute_group netstat_group = {
662 	.name  = "statistics",
663 	.attrs  = netstat_attrs,
664 };
665 
666 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
667 static struct attribute *wireless_attrs[] = {
668 	NULL
669 };
670 
671 static const struct attribute_group wireless_group = {
672 	.name = "wireless",
673 	.attrs = wireless_attrs,
674 };
675 #endif
676 
677 #else /* CONFIG_SYSFS */
678 #define net_class_groups	NULL
679 #endif /* CONFIG_SYSFS */
680 
681 #ifdef CONFIG_SYSFS
682 #define to_rx_queue_attr(_attr) \
683 	container_of(_attr, struct rx_queue_attribute, attr)
684 
685 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
686 
687 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
688 				  char *buf)
689 {
690 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
691 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
692 
693 	if (!attribute->show)
694 		return -EIO;
695 
696 	return attribute->show(queue, buf);
697 }
698 
699 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
700 				   const char *buf, size_t count)
701 {
702 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
703 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
704 
705 	if (!attribute->store)
706 		return -EIO;
707 
708 	return attribute->store(queue, buf, count);
709 }
710 
711 static const struct sysfs_ops rx_queue_sysfs_ops = {
712 	.show = rx_queue_attr_show,
713 	.store = rx_queue_attr_store,
714 };
715 
716 #ifdef CONFIG_RPS
717 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
718 {
719 	struct rps_map *map;
720 	cpumask_var_t mask;
721 	int i, len;
722 
723 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
724 		return -ENOMEM;
725 
726 	rcu_read_lock();
727 	map = rcu_dereference(queue->rps_map);
728 	if (map)
729 		for (i = 0; i < map->len; i++)
730 			cpumask_set_cpu(map->cpus[i], mask);
731 
732 	len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
733 	rcu_read_unlock();
734 	free_cpumask_var(mask);
735 
736 	return len < PAGE_SIZE ? len : -EINVAL;
737 }
738 
739 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
740 			     const char *buf, size_t len)
741 {
742 	struct rps_map *old_map, *map;
743 	cpumask_var_t mask;
744 	int err, cpu, i;
745 	static DEFINE_MUTEX(rps_map_mutex);
746 
747 	if (!capable(CAP_NET_ADMIN))
748 		return -EPERM;
749 
750 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
751 		return -ENOMEM;
752 
753 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
754 	if (err) {
755 		free_cpumask_var(mask);
756 		return err;
757 	}
758 
759 	map = kzalloc(max_t(unsigned int,
760 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
761 		      GFP_KERNEL);
762 	if (!map) {
763 		free_cpumask_var(mask);
764 		return -ENOMEM;
765 	}
766 
767 	i = 0;
768 	for_each_cpu_and(cpu, mask, cpu_online_mask)
769 		map->cpus[i++] = cpu;
770 
771 	if (i) {
772 		map->len = i;
773 	} else {
774 		kfree(map);
775 		map = NULL;
776 	}
777 
778 	mutex_lock(&rps_map_mutex);
779 	old_map = rcu_dereference_protected(queue->rps_map,
780 					    mutex_is_locked(&rps_map_mutex));
781 	rcu_assign_pointer(queue->rps_map, map);
782 
783 	if (map)
784 		static_branch_inc(&rps_needed);
785 	if (old_map)
786 		static_branch_dec(&rps_needed);
787 
788 	mutex_unlock(&rps_map_mutex);
789 
790 	if (old_map)
791 		kfree_rcu(old_map, rcu);
792 
793 	free_cpumask_var(mask);
794 	return len;
795 }
796 
797 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
798 					   char *buf)
799 {
800 	struct rps_dev_flow_table *flow_table;
801 	unsigned long val = 0;
802 
803 	rcu_read_lock();
804 	flow_table = rcu_dereference(queue->rps_flow_table);
805 	if (flow_table)
806 		val = (unsigned long)flow_table->mask + 1;
807 	rcu_read_unlock();
808 
809 	return sprintf(buf, "%lu\n", val);
810 }
811 
812 static void rps_dev_flow_table_release(struct rcu_head *rcu)
813 {
814 	struct rps_dev_flow_table *table = container_of(rcu,
815 	    struct rps_dev_flow_table, rcu);
816 	vfree(table);
817 }
818 
819 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
820 					    const char *buf, size_t len)
821 {
822 	unsigned long mask, count;
823 	struct rps_dev_flow_table *table, *old_table;
824 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
825 	int rc;
826 
827 	if (!capable(CAP_NET_ADMIN))
828 		return -EPERM;
829 
830 	rc = kstrtoul(buf, 0, &count);
831 	if (rc < 0)
832 		return rc;
833 
834 	if (count) {
835 		mask = count - 1;
836 		/* mask = roundup_pow_of_two(count) - 1;
837 		 * without overflows...
838 		 */
839 		while ((mask | (mask >> 1)) != mask)
840 			mask |= (mask >> 1);
841 		/* On 64 bit arches, must check mask fits in table->mask (u32),
842 		 * and on 32bit arches, must check
843 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
844 		 */
845 #if BITS_PER_LONG > 32
846 		if (mask > (unsigned long)(u32)mask)
847 			return -EINVAL;
848 #else
849 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
850 				/ sizeof(struct rps_dev_flow)) {
851 			/* Enforce a limit to prevent overflow */
852 			return -EINVAL;
853 		}
854 #endif
855 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
856 		if (!table)
857 			return -ENOMEM;
858 
859 		table->mask = mask;
860 		for (count = 0; count <= mask; count++)
861 			table->flows[count].cpu = RPS_NO_CPU;
862 	} else {
863 		table = NULL;
864 	}
865 
866 	spin_lock(&rps_dev_flow_lock);
867 	old_table = rcu_dereference_protected(queue->rps_flow_table,
868 					      lockdep_is_held(&rps_dev_flow_lock));
869 	rcu_assign_pointer(queue->rps_flow_table, table);
870 	spin_unlock(&rps_dev_flow_lock);
871 
872 	if (old_table)
873 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
874 
875 	return len;
876 }
877 
878 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
879 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
880 
881 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
882 	= __ATTR(rps_flow_cnt, 0644,
883 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
884 #endif /* CONFIG_RPS */
885 
886 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
887 #ifdef CONFIG_RPS
888 	&rps_cpus_attribute.attr,
889 	&rps_dev_flow_table_cnt_attribute.attr,
890 #endif
891 	NULL
892 };
893 ATTRIBUTE_GROUPS(rx_queue_default);
894 
895 static void rx_queue_release(struct kobject *kobj)
896 {
897 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
898 #ifdef CONFIG_RPS
899 	struct rps_map *map;
900 	struct rps_dev_flow_table *flow_table;
901 
902 	map = rcu_dereference_protected(queue->rps_map, 1);
903 	if (map) {
904 		RCU_INIT_POINTER(queue->rps_map, NULL);
905 		kfree_rcu(map, rcu);
906 	}
907 
908 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
909 	if (flow_table) {
910 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
911 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
912 	}
913 #endif
914 
915 	memset(kobj, 0, sizeof(*kobj));
916 	dev_put(queue->dev);
917 }
918 
919 static const void *rx_queue_namespace(struct kobject *kobj)
920 {
921 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
922 	struct device *dev = &queue->dev->dev;
923 	const void *ns = NULL;
924 
925 	if (dev->class && dev->class->ns_type)
926 		ns = dev->class->namespace(dev);
927 
928 	return ns;
929 }
930 
931 static void rx_queue_get_ownership(struct kobject *kobj,
932 				   kuid_t *uid, kgid_t *gid)
933 {
934 	const struct net *net = rx_queue_namespace(kobj);
935 
936 	net_ns_get_ownership(net, uid, gid);
937 }
938 
939 static struct kobj_type rx_queue_ktype __ro_after_init = {
940 	.sysfs_ops = &rx_queue_sysfs_ops,
941 	.release = rx_queue_release,
942 	.default_groups = rx_queue_default_groups,
943 	.namespace = rx_queue_namespace,
944 	.get_ownership = rx_queue_get_ownership,
945 };
946 
947 static int rx_queue_add_kobject(struct net_device *dev, int index)
948 {
949 	struct netdev_rx_queue *queue = dev->_rx + index;
950 	struct kobject *kobj = &queue->kobj;
951 	int error = 0;
952 
953 	/* Kobject_put later will trigger rx_queue_release call which
954 	 * decreases dev refcount: Take that reference here
955 	 */
956 	dev_hold(queue->dev);
957 
958 	kobj->kset = dev->queues_kset;
959 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
960 				     "rx-%u", index);
961 	if (error)
962 		goto err;
963 
964 	if (dev->sysfs_rx_queue_group) {
965 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
966 		if (error)
967 			goto err;
968 	}
969 
970 	kobject_uevent(kobj, KOBJ_ADD);
971 
972 	return error;
973 
974 err:
975 	kobject_put(kobj);
976 	return error;
977 }
978 
979 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
980 				 kgid_t kgid)
981 {
982 	struct netdev_rx_queue *queue = dev->_rx + index;
983 	struct kobject *kobj = &queue->kobj;
984 	int error;
985 
986 	error = sysfs_change_owner(kobj, kuid, kgid);
987 	if (error)
988 		return error;
989 
990 	if (dev->sysfs_rx_queue_group)
991 		error = sysfs_group_change_owner(
992 			kobj, dev->sysfs_rx_queue_group, kuid, kgid);
993 
994 	return error;
995 }
996 #endif /* CONFIG_SYSFS */
997 
998 int
999 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1000 {
1001 #ifdef CONFIG_SYSFS
1002 	int i;
1003 	int error = 0;
1004 
1005 #ifndef CONFIG_RPS
1006 	if (!dev->sysfs_rx_queue_group)
1007 		return 0;
1008 #endif
1009 	for (i = old_num; i < new_num; i++) {
1010 		error = rx_queue_add_kobject(dev, i);
1011 		if (error) {
1012 			new_num = old_num;
1013 			break;
1014 		}
1015 	}
1016 
1017 	while (--i >= new_num) {
1018 		struct kobject *kobj = &dev->_rx[i].kobj;
1019 
1020 		if (!refcount_read(&dev_net(dev)->count))
1021 			kobj->uevent_suppress = 1;
1022 		if (dev->sysfs_rx_queue_group)
1023 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1024 		kobject_put(kobj);
1025 	}
1026 
1027 	return error;
1028 #else
1029 	return 0;
1030 #endif
1031 }
1032 
1033 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1034 				     kuid_t kuid, kgid_t kgid)
1035 {
1036 #ifdef CONFIG_SYSFS
1037 	int error = 0;
1038 	int i;
1039 
1040 #ifndef CONFIG_RPS
1041 	if (!dev->sysfs_rx_queue_group)
1042 		return 0;
1043 #endif
1044 	for (i = 0; i < num; i++) {
1045 		error = rx_queue_change_owner(dev, i, kuid, kgid);
1046 		if (error)
1047 			break;
1048 	}
1049 
1050 	return error;
1051 #else
1052 	return 0;
1053 #endif
1054 }
1055 
1056 #ifdef CONFIG_SYSFS
1057 /*
1058  * netdev_queue sysfs structures and functions.
1059  */
1060 struct netdev_queue_attribute {
1061 	struct attribute attr;
1062 	ssize_t (*show)(struct netdev_queue *queue, char *buf);
1063 	ssize_t (*store)(struct netdev_queue *queue,
1064 			 const char *buf, size_t len);
1065 };
1066 #define to_netdev_queue_attr(_attr) \
1067 	container_of(_attr, struct netdev_queue_attribute, attr)
1068 
1069 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1070 
1071 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1072 				      struct attribute *attr, char *buf)
1073 {
1074 	const struct netdev_queue_attribute *attribute
1075 		= to_netdev_queue_attr(attr);
1076 	struct netdev_queue *queue = to_netdev_queue(kobj);
1077 
1078 	if (!attribute->show)
1079 		return -EIO;
1080 
1081 	return attribute->show(queue, buf);
1082 }
1083 
1084 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1085 				       struct attribute *attr,
1086 				       const char *buf, size_t count)
1087 {
1088 	const struct netdev_queue_attribute *attribute
1089 		= to_netdev_queue_attr(attr);
1090 	struct netdev_queue *queue = to_netdev_queue(kobj);
1091 
1092 	if (!attribute->store)
1093 		return -EIO;
1094 
1095 	return attribute->store(queue, buf, count);
1096 }
1097 
1098 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1099 	.show = netdev_queue_attr_show,
1100 	.store = netdev_queue_attr_store,
1101 };
1102 
1103 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1104 {
1105 	unsigned long trans_timeout;
1106 
1107 	spin_lock_irq(&queue->_xmit_lock);
1108 	trans_timeout = queue->trans_timeout;
1109 	spin_unlock_irq(&queue->_xmit_lock);
1110 
1111 	return sprintf(buf, "%lu", trans_timeout);
1112 }
1113 
1114 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1115 {
1116 	struct net_device *dev = queue->dev;
1117 	unsigned int i;
1118 
1119 	i = queue - dev->_tx;
1120 	BUG_ON(i >= dev->num_tx_queues);
1121 
1122 	return i;
1123 }
1124 
1125 static ssize_t traffic_class_show(struct netdev_queue *queue,
1126 				  char *buf)
1127 {
1128 	struct net_device *dev = queue->dev;
1129 	int index;
1130 	int tc;
1131 
1132 	if (!netif_is_multiqueue(dev))
1133 		return -ENOENT;
1134 
1135 	index = get_netdev_queue_index(queue);
1136 
1137 	/* If queue belongs to subordinate dev use its TC mapping */
1138 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1139 
1140 	tc = netdev_txq_to_tc(dev, index);
1141 	if (tc < 0)
1142 		return -EINVAL;
1143 
1144 	/* We can report the traffic class one of two ways:
1145 	 * Subordinate device traffic classes are reported with the traffic
1146 	 * class first, and then the subordinate class so for example TC0 on
1147 	 * subordinate device 2 will be reported as "0-2". If the queue
1148 	 * belongs to the root device it will be reported with just the
1149 	 * traffic class, so just "0" for TC 0 for example.
1150 	 */
1151 	return dev->num_tc < 0 ? sprintf(buf, "%u%d\n", tc, dev->num_tc) :
1152 				 sprintf(buf, "%u\n", tc);
1153 }
1154 
1155 #ifdef CONFIG_XPS
1156 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1157 			       char *buf)
1158 {
1159 	return sprintf(buf, "%lu\n", queue->tx_maxrate);
1160 }
1161 
1162 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1163 				const char *buf, size_t len)
1164 {
1165 	struct net_device *dev = queue->dev;
1166 	int err, index = get_netdev_queue_index(queue);
1167 	u32 rate = 0;
1168 
1169 	if (!capable(CAP_NET_ADMIN))
1170 		return -EPERM;
1171 
1172 	err = kstrtou32(buf, 10, &rate);
1173 	if (err < 0)
1174 		return err;
1175 
1176 	if (!rtnl_trylock())
1177 		return restart_syscall();
1178 
1179 	err = -EOPNOTSUPP;
1180 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1181 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1182 
1183 	rtnl_unlock();
1184 	if (!err) {
1185 		queue->tx_maxrate = rate;
1186 		return len;
1187 	}
1188 	return err;
1189 }
1190 
1191 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1192 	= __ATTR_RW(tx_maxrate);
1193 #endif
1194 
1195 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1196 	= __ATTR_RO(tx_timeout);
1197 
1198 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1199 	= __ATTR_RO(traffic_class);
1200 
1201 #ifdef CONFIG_BQL
1202 /*
1203  * Byte queue limits sysfs structures and functions.
1204  */
1205 static ssize_t bql_show(char *buf, unsigned int value)
1206 {
1207 	return sprintf(buf, "%u\n", value);
1208 }
1209 
1210 static ssize_t bql_set(const char *buf, const size_t count,
1211 		       unsigned int *pvalue)
1212 {
1213 	unsigned int value;
1214 	int err;
1215 
1216 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1217 		value = DQL_MAX_LIMIT;
1218 	} else {
1219 		err = kstrtouint(buf, 10, &value);
1220 		if (err < 0)
1221 			return err;
1222 		if (value > DQL_MAX_LIMIT)
1223 			return -EINVAL;
1224 	}
1225 
1226 	*pvalue = value;
1227 
1228 	return count;
1229 }
1230 
1231 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1232 				  char *buf)
1233 {
1234 	struct dql *dql = &queue->dql;
1235 
1236 	return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1237 }
1238 
1239 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1240 				 const char *buf, size_t len)
1241 {
1242 	struct dql *dql = &queue->dql;
1243 	unsigned int value;
1244 	int err;
1245 
1246 	err = kstrtouint(buf, 10, &value);
1247 	if (err < 0)
1248 		return err;
1249 
1250 	dql->slack_hold_time = msecs_to_jiffies(value);
1251 
1252 	return len;
1253 }
1254 
1255 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1256 	= __ATTR(hold_time, 0644,
1257 		 bql_show_hold_time, bql_set_hold_time);
1258 
1259 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1260 				 char *buf)
1261 {
1262 	struct dql *dql = &queue->dql;
1263 
1264 	return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed);
1265 }
1266 
1267 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1268 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1269 
1270 #define BQL_ATTR(NAME, FIELD)						\
1271 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue,		\
1272 				 char *buf)				\
1273 {									\
1274 	return bql_show(buf, queue->dql.FIELD);				\
1275 }									\
1276 									\
1277 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue,		\
1278 				const char *buf, size_t len)		\
1279 {									\
1280 	return bql_set(buf, len, &queue->dql.FIELD);			\
1281 }									\
1282 									\
1283 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1284 	= __ATTR(NAME, 0644,				\
1285 		 bql_show_ ## NAME, bql_set_ ## NAME)
1286 
1287 BQL_ATTR(limit, limit);
1288 BQL_ATTR(limit_max, max_limit);
1289 BQL_ATTR(limit_min, min_limit);
1290 
1291 static struct attribute *dql_attrs[] __ro_after_init = {
1292 	&bql_limit_attribute.attr,
1293 	&bql_limit_max_attribute.attr,
1294 	&bql_limit_min_attribute.attr,
1295 	&bql_hold_time_attribute.attr,
1296 	&bql_inflight_attribute.attr,
1297 	NULL
1298 };
1299 
1300 static const struct attribute_group dql_group = {
1301 	.name  = "byte_queue_limits",
1302 	.attrs  = dql_attrs,
1303 };
1304 #endif /* CONFIG_BQL */
1305 
1306 #ifdef CONFIG_XPS
1307 static ssize_t xps_cpus_show(struct netdev_queue *queue,
1308 			     char *buf)
1309 {
1310 	struct net_device *dev = queue->dev;
1311 	int cpu, len, num_tc = 1, tc = 0;
1312 	struct xps_dev_maps *dev_maps;
1313 	cpumask_var_t mask;
1314 	unsigned long index;
1315 
1316 	if (!netif_is_multiqueue(dev))
1317 		return -ENOENT;
1318 
1319 	index = get_netdev_queue_index(queue);
1320 
1321 	if (dev->num_tc) {
1322 		/* Do not allow XPS on subordinate device directly */
1323 		num_tc = dev->num_tc;
1324 		if (num_tc < 0)
1325 			return -EINVAL;
1326 
1327 		/* If queue belongs to subordinate dev use its map */
1328 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1329 
1330 		tc = netdev_txq_to_tc(dev, index);
1331 		if (tc < 0)
1332 			return -EINVAL;
1333 	}
1334 
1335 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
1336 		return -ENOMEM;
1337 
1338 	rcu_read_lock();
1339 	dev_maps = rcu_dereference(dev->xps_cpus_map);
1340 	if (dev_maps) {
1341 		for_each_possible_cpu(cpu) {
1342 			int i, tci = cpu * num_tc + tc;
1343 			struct xps_map *map;
1344 
1345 			map = rcu_dereference(dev_maps->attr_map[tci]);
1346 			if (!map)
1347 				continue;
1348 
1349 			for (i = map->len; i--;) {
1350 				if (map->queues[i] == index) {
1351 					cpumask_set_cpu(cpu, mask);
1352 					break;
1353 				}
1354 			}
1355 		}
1356 	}
1357 	rcu_read_unlock();
1358 
1359 	len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
1360 	free_cpumask_var(mask);
1361 	return len < PAGE_SIZE ? len : -EINVAL;
1362 }
1363 
1364 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1365 			      const char *buf, size_t len)
1366 {
1367 	struct net_device *dev = queue->dev;
1368 	unsigned long index;
1369 	cpumask_var_t mask;
1370 	int err;
1371 
1372 	if (!netif_is_multiqueue(dev))
1373 		return -ENOENT;
1374 
1375 	if (!capable(CAP_NET_ADMIN))
1376 		return -EPERM;
1377 
1378 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1379 		return -ENOMEM;
1380 
1381 	index = get_netdev_queue_index(queue);
1382 
1383 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1384 	if (err) {
1385 		free_cpumask_var(mask);
1386 		return err;
1387 	}
1388 
1389 	err = netif_set_xps_queue(dev, mask, index);
1390 
1391 	free_cpumask_var(mask);
1392 
1393 	return err ? : len;
1394 }
1395 
1396 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1397 	= __ATTR_RW(xps_cpus);
1398 
1399 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1400 {
1401 	struct net_device *dev = queue->dev;
1402 	struct xps_dev_maps *dev_maps;
1403 	unsigned long *mask, index;
1404 	int j, len, num_tc = 1, tc = 0;
1405 
1406 	index = get_netdev_queue_index(queue);
1407 
1408 	if (dev->num_tc) {
1409 		num_tc = dev->num_tc;
1410 		tc = netdev_txq_to_tc(dev, index);
1411 		if (tc < 0)
1412 			return -EINVAL;
1413 	}
1414 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1415 	if (!mask)
1416 		return -ENOMEM;
1417 
1418 	rcu_read_lock();
1419 	dev_maps = rcu_dereference(dev->xps_rxqs_map);
1420 	if (!dev_maps)
1421 		goto out_no_maps;
1422 
1423 	for (j = -1; j = netif_attrmask_next(j, NULL, dev->num_rx_queues),
1424 	     j < dev->num_rx_queues;) {
1425 		int i, tci = j * num_tc + tc;
1426 		struct xps_map *map;
1427 
1428 		map = rcu_dereference(dev_maps->attr_map[tci]);
1429 		if (!map)
1430 			continue;
1431 
1432 		for (i = map->len; i--;) {
1433 			if (map->queues[i] == index) {
1434 				set_bit(j, mask);
1435 				break;
1436 			}
1437 		}
1438 	}
1439 out_no_maps:
1440 	rcu_read_unlock();
1441 
1442 	len = bitmap_print_to_pagebuf(false, buf, mask, dev->num_rx_queues);
1443 	bitmap_free(mask);
1444 
1445 	return len < PAGE_SIZE ? len : -EINVAL;
1446 }
1447 
1448 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1449 			      size_t len)
1450 {
1451 	struct net_device *dev = queue->dev;
1452 	struct net *net = dev_net(dev);
1453 	unsigned long *mask, index;
1454 	int err;
1455 
1456 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1457 		return -EPERM;
1458 
1459 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1460 	if (!mask)
1461 		return -ENOMEM;
1462 
1463 	index = get_netdev_queue_index(queue);
1464 
1465 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1466 	if (err) {
1467 		bitmap_free(mask);
1468 		return err;
1469 	}
1470 
1471 	cpus_read_lock();
1472 	err = __netif_set_xps_queue(dev, mask, index, true);
1473 	cpus_read_unlock();
1474 
1475 	bitmap_free(mask);
1476 	return err ? : len;
1477 }
1478 
1479 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1480 	= __ATTR_RW(xps_rxqs);
1481 #endif /* CONFIG_XPS */
1482 
1483 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1484 	&queue_trans_timeout.attr,
1485 	&queue_traffic_class.attr,
1486 #ifdef CONFIG_XPS
1487 	&xps_cpus_attribute.attr,
1488 	&xps_rxqs_attribute.attr,
1489 	&queue_tx_maxrate.attr,
1490 #endif
1491 	NULL
1492 };
1493 ATTRIBUTE_GROUPS(netdev_queue_default);
1494 
1495 static void netdev_queue_release(struct kobject *kobj)
1496 {
1497 	struct netdev_queue *queue = to_netdev_queue(kobj);
1498 
1499 	memset(kobj, 0, sizeof(*kobj));
1500 	dev_put(queue->dev);
1501 }
1502 
1503 static const void *netdev_queue_namespace(struct kobject *kobj)
1504 {
1505 	struct netdev_queue *queue = to_netdev_queue(kobj);
1506 	struct device *dev = &queue->dev->dev;
1507 	const void *ns = NULL;
1508 
1509 	if (dev->class && dev->class->ns_type)
1510 		ns = dev->class->namespace(dev);
1511 
1512 	return ns;
1513 }
1514 
1515 static void netdev_queue_get_ownership(struct kobject *kobj,
1516 				       kuid_t *uid, kgid_t *gid)
1517 {
1518 	const struct net *net = netdev_queue_namespace(kobj);
1519 
1520 	net_ns_get_ownership(net, uid, gid);
1521 }
1522 
1523 static struct kobj_type netdev_queue_ktype __ro_after_init = {
1524 	.sysfs_ops = &netdev_queue_sysfs_ops,
1525 	.release = netdev_queue_release,
1526 	.default_groups = netdev_queue_default_groups,
1527 	.namespace = netdev_queue_namespace,
1528 	.get_ownership = netdev_queue_get_ownership,
1529 };
1530 
1531 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1532 {
1533 	struct netdev_queue *queue = dev->_tx + index;
1534 	struct kobject *kobj = &queue->kobj;
1535 	int error = 0;
1536 
1537 	/* Kobject_put later will trigger netdev_queue_release call
1538 	 * which decreases dev refcount: Take that reference here
1539 	 */
1540 	dev_hold(queue->dev);
1541 
1542 	kobj->kset = dev->queues_kset;
1543 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1544 				     "tx-%u", index);
1545 	if (error)
1546 		goto err;
1547 
1548 #ifdef CONFIG_BQL
1549 	error = sysfs_create_group(kobj, &dql_group);
1550 	if (error)
1551 		goto err;
1552 #endif
1553 
1554 	kobject_uevent(kobj, KOBJ_ADD);
1555 	return 0;
1556 
1557 err:
1558 	kobject_put(kobj);
1559 	return error;
1560 }
1561 
1562 static int tx_queue_change_owner(struct net_device *ndev, int index,
1563 				 kuid_t kuid, kgid_t kgid)
1564 {
1565 	struct netdev_queue *queue = ndev->_tx + index;
1566 	struct kobject *kobj = &queue->kobj;
1567 	int error;
1568 
1569 	error = sysfs_change_owner(kobj, kuid, kgid);
1570 	if (error)
1571 		return error;
1572 
1573 #ifdef CONFIG_BQL
1574 	error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
1575 #endif
1576 	return error;
1577 }
1578 #endif /* CONFIG_SYSFS */
1579 
1580 int
1581 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1582 {
1583 #ifdef CONFIG_SYSFS
1584 	int i;
1585 	int error = 0;
1586 
1587 	for (i = old_num; i < new_num; i++) {
1588 		error = netdev_queue_add_kobject(dev, i);
1589 		if (error) {
1590 			new_num = old_num;
1591 			break;
1592 		}
1593 	}
1594 
1595 	while (--i >= new_num) {
1596 		struct netdev_queue *queue = dev->_tx + i;
1597 
1598 		if (!refcount_read(&dev_net(dev)->count))
1599 			queue->kobj.uevent_suppress = 1;
1600 #ifdef CONFIG_BQL
1601 		sysfs_remove_group(&queue->kobj, &dql_group);
1602 #endif
1603 		kobject_put(&queue->kobj);
1604 	}
1605 
1606 	return error;
1607 #else
1608 	return 0;
1609 #endif /* CONFIG_SYSFS */
1610 }
1611 
1612 static int net_tx_queue_change_owner(struct net_device *dev, int num,
1613 				     kuid_t kuid, kgid_t kgid)
1614 {
1615 #ifdef CONFIG_SYSFS
1616 	int error = 0;
1617 	int i;
1618 
1619 	for (i = 0; i < num; i++) {
1620 		error = tx_queue_change_owner(dev, i, kuid, kgid);
1621 		if (error)
1622 			break;
1623 	}
1624 
1625 	return error;
1626 #else
1627 	return 0;
1628 #endif /* CONFIG_SYSFS */
1629 }
1630 
1631 static int register_queue_kobjects(struct net_device *dev)
1632 {
1633 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1634 
1635 #ifdef CONFIG_SYSFS
1636 	dev->queues_kset = kset_create_and_add("queues",
1637 					       NULL, &dev->dev.kobj);
1638 	if (!dev->queues_kset)
1639 		return -ENOMEM;
1640 	real_rx = dev->real_num_rx_queues;
1641 #endif
1642 	real_tx = dev->real_num_tx_queues;
1643 
1644 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1645 	if (error)
1646 		goto error;
1647 	rxq = real_rx;
1648 
1649 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
1650 	if (error)
1651 		goto error;
1652 	txq = real_tx;
1653 
1654 	return 0;
1655 
1656 error:
1657 	netdev_queue_update_kobjects(dev, txq, 0);
1658 	net_rx_queue_update_kobjects(dev, rxq, 0);
1659 #ifdef CONFIG_SYSFS
1660 	kset_unregister(dev->queues_kset);
1661 #endif
1662 	return error;
1663 }
1664 
1665 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
1666 {
1667 	int error = 0, real_rx = 0, real_tx = 0;
1668 
1669 #ifdef CONFIG_SYSFS
1670 	if (ndev->queues_kset) {
1671 		error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
1672 		if (error)
1673 			return error;
1674 	}
1675 	real_rx = ndev->real_num_rx_queues;
1676 #endif
1677 	real_tx = ndev->real_num_tx_queues;
1678 
1679 	error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
1680 	if (error)
1681 		return error;
1682 
1683 	error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
1684 	if (error)
1685 		return error;
1686 
1687 	return 0;
1688 }
1689 
1690 static void remove_queue_kobjects(struct net_device *dev)
1691 {
1692 	int real_rx = 0, real_tx = 0;
1693 
1694 #ifdef CONFIG_SYSFS
1695 	real_rx = dev->real_num_rx_queues;
1696 #endif
1697 	real_tx = dev->real_num_tx_queues;
1698 
1699 	net_rx_queue_update_kobjects(dev, real_rx, 0);
1700 	netdev_queue_update_kobjects(dev, real_tx, 0);
1701 #ifdef CONFIG_SYSFS
1702 	kset_unregister(dev->queues_kset);
1703 #endif
1704 }
1705 
1706 static bool net_current_may_mount(void)
1707 {
1708 	struct net *net = current->nsproxy->net_ns;
1709 
1710 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1711 }
1712 
1713 static void *net_grab_current_ns(void)
1714 {
1715 	struct net *ns = current->nsproxy->net_ns;
1716 #ifdef CONFIG_NET_NS
1717 	if (ns)
1718 		refcount_inc(&ns->passive);
1719 #endif
1720 	return ns;
1721 }
1722 
1723 static const void *net_initial_ns(void)
1724 {
1725 	return &init_net;
1726 }
1727 
1728 static const void *net_netlink_ns(struct sock *sk)
1729 {
1730 	return sock_net(sk);
1731 }
1732 
1733 const struct kobj_ns_type_operations net_ns_type_operations = {
1734 	.type = KOBJ_NS_TYPE_NET,
1735 	.current_may_mount = net_current_may_mount,
1736 	.grab_current_ns = net_grab_current_ns,
1737 	.netlink_ns = net_netlink_ns,
1738 	.initial_ns = net_initial_ns,
1739 	.drop_ns = net_drop_ns,
1740 };
1741 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1742 
1743 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env)
1744 {
1745 	struct net_device *dev = to_net_dev(d);
1746 	int retval;
1747 
1748 	/* pass interface to uevent. */
1749 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
1750 	if (retval)
1751 		goto exit;
1752 
1753 	/* pass ifindex to uevent.
1754 	 * ifindex is useful as it won't change (interface name may change)
1755 	 * and is what RtNetlink uses natively.
1756 	 */
1757 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
1758 
1759 exit:
1760 	return retval;
1761 }
1762 
1763 /*
1764  *	netdev_release -- destroy and free a dead device.
1765  *	Called when last reference to device kobject is gone.
1766  */
1767 static void netdev_release(struct device *d)
1768 {
1769 	struct net_device *dev = to_net_dev(d);
1770 
1771 	BUG_ON(dev->reg_state != NETREG_RELEASED);
1772 
1773 	/* no need to wait for rcu grace period:
1774 	 * device is dead and about to be freed.
1775 	 */
1776 	kfree(rcu_access_pointer(dev->ifalias));
1777 	netdev_freemem(dev);
1778 }
1779 
1780 static const void *net_namespace(struct device *d)
1781 {
1782 	struct net_device *dev = to_net_dev(d);
1783 
1784 	return dev_net(dev);
1785 }
1786 
1787 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid)
1788 {
1789 	struct net_device *dev = to_net_dev(d);
1790 	const struct net *net = dev_net(dev);
1791 
1792 	net_ns_get_ownership(net, uid, gid);
1793 }
1794 
1795 static struct class net_class __ro_after_init = {
1796 	.name = "net",
1797 	.dev_release = netdev_release,
1798 	.dev_groups = net_class_groups,
1799 	.dev_uevent = netdev_uevent,
1800 	.ns_type = &net_ns_type_operations,
1801 	.namespace = net_namespace,
1802 	.get_ownership = net_get_ownership,
1803 };
1804 
1805 #ifdef CONFIG_OF_NET
1806 static int of_dev_node_match(struct device *dev, const void *data)
1807 {
1808 	for (; dev; dev = dev->parent) {
1809 		if (dev->of_node == data)
1810 			return 1;
1811 	}
1812 
1813 	return 0;
1814 }
1815 
1816 /*
1817  * of_find_net_device_by_node - lookup the net device for the device node
1818  * @np: OF device node
1819  *
1820  * Looks up the net_device structure corresponding with the device node.
1821  * If successful, returns a pointer to the net_device with the embedded
1822  * struct device refcount incremented by one, or NULL on failure. The
1823  * refcount must be dropped when done with the net_device.
1824  */
1825 struct net_device *of_find_net_device_by_node(struct device_node *np)
1826 {
1827 	struct device *dev;
1828 
1829 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
1830 	if (!dev)
1831 		return NULL;
1832 
1833 	return to_net_dev(dev);
1834 }
1835 EXPORT_SYMBOL(of_find_net_device_by_node);
1836 #endif
1837 
1838 /* Delete sysfs entries but hold kobject reference until after all
1839  * netdev references are gone.
1840  */
1841 void netdev_unregister_kobject(struct net_device *ndev)
1842 {
1843 	struct device *dev = &ndev->dev;
1844 
1845 	if (!refcount_read(&dev_net(ndev)->count))
1846 		dev_set_uevent_suppress(dev, 1);
1847 
1848 	kobject_get(&dev->kobj);
1849 
1850 	remove_queue_kobjects(ndev);
1851 
1852 	pm_runtime_set_memalloc_noio(dev, false);
1853 
1854 	device_del(dev);
1855 }
1856 
1857 /* Create sysfs entries for network device. */
1858 int netdev_register_kobject(struct net_device *ndev)
1859 {
1860 	struct device *dev = &ndev->dev;
1861 	const struct attribute_group **groups = ndev->sysfs_groups;
1862 	int error = 0;
1863 
1864 	device_initialize(dev);
1865 	dev->class = &net_class;
1866 	dev->platform_data = ndev;
1867 	dev->groups = groups;
1868 
1869 	dev_set_name(dev, "%s", ndev->name);
1870 
1871 #ifdef CONFIG_SYSFS
1872 	/* Allow for a device specific group */
1873 	if (*groups)
1874 		groups++;
1875 
1876 	*groups++ = &netstat_group;
1877 
1878 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
1879 	if (ndev->ieee80211_ptr)
1880 		*groups++ = &wireless_group;
1881 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
1882 	else if (ndev->wireless_handlers)
1883 		*groups++ = &wireless_group;
1884 #endif
1885 #endif
1886 #endif /* CONFIG_SYSFS */
1887 
1888 	error = device_add(dev);
1889 	if (error)
1890 		return error;
1891 
1892 	error = register_queue_kobjects(ndev);
1893 	if (error) {
1894 		device_del(dev);
1895 		return error;
1896 	}
1897 
1898 	pm_runtime_set_memalloc_noio(dev, true);
1899 
1900 	return error;
1901 }
1902 
1903 /* Change owner for sysfs entries when moving network devices across network
1904  * namespaces owned by different user namespaces.
1905  */
1906 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
1907 			const struct net *net_new)
1908 {
1909 	struct device *dev = &ndev->dev;
1910 	kuid_t old_uid, new_uid;
1911 	kgid_t old_gid, new_gid;
1912 	int error;
1913 
1914 	net_ns_get_ownership(net_old, &old_uid, &old_gid);
1915 	net_ns_get_ownership(net_new, &new_uid, &new_gid);
1916 
1917 	/* The network namespace was changed but the owning user namespace is
1918 	 * identical so there's no need to change the owner of sysfs entries.
1919 	 */
1920 	if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
1921 		return 0;
1922 
1923 	error = device_change_owner(dev, new_uid, new_gid);
1924 	if (error)
1925 		return error;
1926 
1927 	error = queue_change_owner(ndev, new_uid, new_gid);
1928 	if (error)
1929 		return error;
1930 
1931 	return 0;
1932 }
1933 
1934 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
1935 				const void *ns)
1936 {
1937 	return class_create_file_ns(&net_class, class_attr, ns);
1938 }
1939 EXPORT_SYMBOL(netdev_class_create_file_ns);
1940 
1941 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
1942 				 const void *ns)
1943 {
1944 	class_remove_file_ns(&net_class, class_attr, ns);
1945 }
1946 EXPORT_SYMBOL(netdev_class_remove_file_ns);
1947 
1948 int __init netdev_kobject_init(void)
1949 {
1950 	kobj_ns_type_register(&net_ns_type_operations);
1951 	return class_register(&net_class);
1952 }
1953