1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net-sysfs.c - network device class and attributes 4 * 5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org> 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/kernel.h> 10 #include <linux/netdevice.h> 11 #include <linux/if_arp.h> 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 #include <linux/nsproxy.h> 15 #include <net/sock.h> 16 #include <net/net_namespace.h> 17 #include <linux/rtnetlink.h> 18 #include <linux/vmalloc.h> 19 #include <linux/export.h> 20 #include <linux/jiffies.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/of.h> 23 #include <linux/of_net.h> 24 #include <linux/cpu.h> 25 26 #include "net-sysfs.h" 27 28 #ifdef CONFIG_SYSFS 29 static const char fmt_hex[] = "%#x\n"; 30 static const char fmt_dec[] = "%d\n"; 31 static const char fmt_ulong[] = "%lu\n"; 32 static const char fmt_u64[] = "%llu\n"; 33 34 static inline int dev_isalive(const struct net_device *dev) 35 { 36 return dev->reg_state <= NETREG_REGISTERED; 37 } 38 39 /* use same locking rules as GIF* ioctl's */ 40 static ssize_t netdev_show(const struct device *dev, 41 struct device_attribute *attr, char *buf, 42 ssize_t (*format)(const struct net_device *, char *)) 43 { 44 struct net_device *ndev = to_net_dev(dev); 45 ssize_t ret = -EINVAL; 46 47 read_lock(&dev_base_lock); 48 if (dev_isalive(ndev)) 49 ret = (*format)(ndev, buf); 50 read_unlock(&dev_base_lock); 51 52 return ret; 53 } 54 55 /* generate a show function for simple field */ 56 #define NETDEVICE_SHOW(field, format_string) \ 57 static ssize_t format_##field(const struct net_device *dev, char *buf) \ 58 { \ 59 return sprintf(buf, format_string, dev->field); \ 60 } \ 61 static ssize_t field##_show(struct device *dev, \ 62 struct device_attribute *attr, char *buf) \ 63 { \ 64 return netdev_show(dev, attr, buf, format_##field); \ 65 } \ 66 67 #define NETDEVICE_SHOW_RO(field, format_string) \ 68 NETDEVICE_SHOW(field, format_string); \ 69 static DEVICE_ATTR_RO(field) 70 71 #define NETDEVICE_SHOW_RW(field, format_string) \ 72 NETDEVICE_SHOW(field, format_string); \ 73 static DEVICE_ATTR_RW(field) 74 75 /* use same locking and permission rules as SIF* ioctl's */ 76 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, 77 const char *buf, size_t len, 78 int (*set)(struct net_device *, unsigned long)) 79 { 80 struct net_device *netdev = to_net_dev(dev); 81 struct net *net = dev_net(netdev); 82 unsigned long new; 83 int ret = -EINVAL; 84 85 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 86 return -EPERM; 87 88 ret = kstrtoul(buf, 0, &new); 89 if (ret) 90 goto err; 91 92 if (!rtnl_trylock()) 93 return restart_syscall(); 94 95 if (dev_isalive(netdev)) { 96 ret = (*set)(netdev, new); 97 if (ret == 0) 98 ret = len; 99 } 100 rtnl_unlock(); 101 err: 102 return ret; 103 } 104 105 NETDEVICE_SHOW_RO(dev_id, fmt_hex); 106 NETDEVICE_SHOW_RO(dev_port, fmt_dec); 107 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec); 108 NETDEVICE_SHOW_RO(addr_len, fmt_dec); 109 NETDEVICE_SHOW_RO(ifindex, fmt_dec); 110 NETDEVICE_SHOW_RO(type, fmt_dec); 111 NETDEVICE_SHOW_RO(link_mode, fmt_dec); 112 113 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr, 114 char *buf) 115 { 116 struct net_device *ndev = to_net_dev(dev); 117 118 return sprintf(buf, fmt_dec, dev_get_iflink(ndev)); 119 } 120 static DEVICE_ATTR_RO(iflink); 121 122 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf) 123 { 124 return sprintf(buf, fmt_dec, dev->name_assign_type); 125 } 126 127 static ssize_t name_assign_type_show(struct device *dev, 128 struct device_attribute *attr, 129 char *buf) 130 { 131 struct net_device *ndev = to_net_dev(dev); 132 ssize_t ret = -EINVAL; 133 134 if (ndev->name_assign_type != NET_NAME_UNKNOWN) 135 ret = netdev_show(dev, attr, buf, format_name_assign_type); 136 137 return ret; 138 } 139 static DEVICE_ATTR_RO(name_assign_type); 140 141 /* use same locking rules as GIFHWADDR ioctl's */ 142 static ssize_t address_show(struct device *dev, struct device_attribute *attr, 143 char *buf) 144 { 145 struct net_device *ndev = to_net_dev(dev); 146 ssize_t ret = -EINVAL; 147 148 read_lock(&dev_base_lock); 149 if (dev_isalive(ndev)) 150 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len); 151 read_unlock(&dev_base_lock); 152 return ret; 153 } 154 static DEVICE_ATTR_RO(address); 155 156 static ssize_t broadcast_show(struct device *dev, 157 struct device_attribute *attr, char *buf) 158 { 159 struct net_device *ndev = to_net_dev(dev); 160 161 if (dev_isalive(ndev)) 162 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len); 163 return -EINVAL; 164 } 165 static DEVICE_ATTR_RO(broadcast); 166 167 static int change_carrier(struct net_device *dev, unsigned long new_carrier) 168 { 169 if (!netif_running(dev)) 170 return -EINVAL; 171 return dev_change_carrier(dev, (bool)new_carrier); 172 } 173 174 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr, 175 const char *buf, size_t len) 176 { 177 return netdev_store(dev, attr, buf, len, change_carrier); 178 } 179 180 static ssize_t carrier_show(struct device *dev, 181 struct device_attribute *attr, char *buf) 182 { 183 struct net_device *netdev = to_net_dev(dev); 184 185 if (netif_running(netdev)) 186 return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev)); 187 188 return -EINVAL; 189 } 190 static DEVICE_ATTR_RW(carrier); 191 192 static ssize_t speed_show(struct device *dev, 193 struct device_attribute *attr, char *buf) 194 { 195 struct net_device *netdev = to_net_dev(dev); 196 int ret = -EINVAL; 197 198 if (!rtnl_trylock()) 199 return restart_syscall(); 200 201 if (netif_running(netdev)) { 202 struct ethtool_link_ksettings cmd; 203 204 if (!__ethtool_get_link_ksettings(netdev, &cmd)) 205 ret = sprintf(buf, fmt_dec, cmd.base.speed); 206 } 207 rtnl_unlock(); 208 return ret; 209 } 210 static DEVICE_ATTR_RO(speed); 211 212 static ssize_t duplex_show(struct device *dev, 213 struct device_attribute *attr, char *buf) 214 { 215 struct net_device *netdev = to_net_dev(dev); 216 int ret = -EINVAL; 217 218 if (!rtnl_trylock()) 219 return restart_syscall(); 220 221 if (netif_running(netdev)) { 222 struct ethtool_link_ksettings cmd; 223 224 if (!__ethtool_get_link_ksettings(netdev, &cmd)) { 225 const char *duplex; 226 227 switch (cmd.base.duplex) { 228 case DUPLEX_HALF: 229 duplex = "half"; 230 break; 231 case DUPLEX_FULL: 232 duplex = "full"; 233 break; 234 default: 235 duplex = "unknown"; 236 break; 237 } 238 ret = sprintf(buf, "%s\n", duplex); 239 } 240 } 241 rtnl_unlock(); 242 return ret; 243 } 244 static DEVICE_ATTR_RO(duplex); 245 246 static ssize_t dormant_show(struct device *dev, 247 struct device_attribute *attr, char *buf) 248 { 249 struct net_device *netdev = to_net_dev(dev); 250 251 if (netif_running(netdev)) 252 return sprintf(buf, fmt_dec, !!netif_dormant(netdev)); 253 254 return -EINVAL; 255 } 256 static DEVICE_ATTR_RO(dormant); 257 258 static const char *const operstates[] = { 259 "unknown", 260 "notpresent", /* currently unused */ 261 "down", 262 "lowerlayerdown", 263 "testing", /* currently unused */ 264 "dormant", 265 "up" 266 }; 267 268 static ssize_t operstate_show(struct device *dev, 269 struct device_attribute *attr, char *buf) 270 { 271 const struct net_device *netdev = to_net_dev(dev); 272 unsigned char operstate; 273 274 read_lock(&dev_base_lock); 275 operstate = netdev->operstate; 276 if (!netif_running(netdev)) 277 operstate = IF_OPER_DOWN; 278 read_unlock(&dev_base_lock); 279 280 if (operstate >= ARRAY_SIZE(operstates)) 281 return -EINVAL; /* should not happen */ 282 283 return sprintf(buf, "%s\n", operstates[operstate]); 284 } 285 static DEVICE_ATTR_RO(operstate); 286 287 static ssize_t carrier_changes_show(struct device *dev, 288 struct device_attribute *attr, 289 char *buf) 290 { 291 struct net_device *netdev = to_net_dev(dev); 292 293 return sprintf(buf, fmt_dec, 294 atomic_read(&netdev->carrier_up_count) + 295 atomic_read(&netdev->carrier_down_count)); 296 } 297 static DEVICE_ATTR_RO(carrier_changes); 298 299 static ssize_t carrier_up_count_show(struct device *dev, 300 struct device_attribute *attr, 301 char *buf) 302 { 303 struct net_device *netdev = to_net_dev(dev); 304 305 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count)); 306 } 307 static DEVICE_ATTR_RO(carrier_up_count); 308 309 static ssize_t carrier_down_count_show(struct device *dev, 310 struct device_attribute *attr, 311 char *buf) 312 { 313 struct net_device *netdev = to_net_dev(dev); 314 315 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count)); 316 } 317 static DEVICE_ATTR_RO(carrier_down_count); 318 319 /* read-write attributes */ 320 321 static int change_mtu(struct net_device *dev, unsigned long new_mtu) 322 { 323 return dev_set_mtu(dev, (int)new_mtu); 324 } 325 326 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr, 327 const char *buf, size_t len) 328 { 329 return netdev_store(dev, attr, buf, len, change_mtu); 330 } 331 NETDEVICE_SHOW_RW(mtu, fmt_dec); 332 333 static int change_flags(struct net_device *dev, unsigned long new_flags) 334 { 335 return dev_change_flags(dev, (unsigned int)new_flags, NULL); 336 } 337 338 static ssize_t flags_store(struct device *dev, struct device_attribute *attr, 339 const char *buf, size_t len) 340 { 341 return netdev_store(dev, attr, buf, len, change_flags); 342 } 343 NETDEVICE_SHOW_RW(flags, fmt_hex); 344 345 static ssize_t tx_queue_len_store(struct device *dev, 346 struct device_attribute *attr, 347 const char *buf, size_t len) 348 { 349 if (!capable(CAP_NET_ADMIN)) 350 return -EPERM; 351 352 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len); 353 } 354 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec); 355 356 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val) 357 { 358 dev->gro_flush_timeout = val; 359 return 0; 360 } 361 362 static ssize_t gro_flush_timeout_store(struct device *dev, 363 struct device_attribute *attr, 364 const char *buf, size_t len) 365 { 366 if (!capable(CAP_NET_ADMIN)) 367 return -EPERM; 368 369 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout); 370 } 371 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong); 372 373 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr, 374 const char *buf, size_t len) 375 { 376 struct net_device *netdev = to_net_dev(dev); 377 struct net *net = dev_net(netdev); 378 size_t count = len; 379 ssize_t ret = 0; 380 381 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 382 return -EPERM; 383 384 /* ignore trailing newline */ 385 if (len > 0 && buf[len - 1] == '\n') 386 --count; 387 388 if (!rtnl_trylock()) 389 return restart_syscall(); 390 391 if (dev_isalive(netdev)) { 392 ret = dev_set_alias(netdev, buf, count); 393 if (ret < 0) 394 goto err; 395 ret = len; 396 netdev_state_change(netdev); 397 } 398 err: 399 rtnl_unlock(); 400 401 return ret; 402 } 403 404 static ssize_t ifalias_show(struct device *dev, 405 struct device_attribute *attr, char *buf) 406 { 407 const struct net_device *netdev = to_net_dev(dev); 408 char tmp[IFALIASZ]; 409 ssize_t ret = 0; 410 411 ret = dev_get_alias(netdev, tmp, sizeof(tmp)); 412 if (ret > 0) 413 ret = sprintf(buf, "%s\n", tmp); 414 return ret; 415 } 416 static DEVICE_ATTR_RW(ifalias); 417 418 static int change_group(struct net_device *dev, unsigned long new_group) 419 { 420 dev_set_group(dev, (int)new_group); 421 return 0; 422 } 423 424 static ssize_t group_store(struct device *dev, struct device_attribute *attr, 425 const char *buf, size_t len) 426 { 427 return netdev_store(dev, attr, buf, len, change_group); 428 } 429 NETDEVICE_SHOW(group, fmt_dec); 430 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store); 431 432 static int change_proto_down(struct net_device *dev, unsigned long proto_down) 433 { 434 return dev_change_proto_down(dev, (bool)proto_down); 435 } 436 437 static ssize_t proto_down_store(struct device *dev, 438 struct device_attribute *attr, 439 const char *buf, size_t len) 440 { 441 return netdev_store(dev, attr, buf, len, change_proto_down); 442 } 443 NETDEVICE_SHOW_RW(proto_down, fmt_dec); 444 445 static ssize_t phys_port_id_show(struct device *dev, 446 struct device_attribute *attr, char *buf) 447 { 448 struct net_device *netdev = to_net_dev(dev); 449 ssize_t ret = -EINVAL; 450 451 if (!rtnl_trylock()) 452 return restart_syscall(); 453 454 if (dev_isalive(netdev)) { 455 struct netdev_phys_item_id ppid; 456 457 ret = dev_get_phys_port_id(netdev, &ppid); 458 if (!ret) 459 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); 460 } 461 rtnl_unlock(); 462 463 return ret; 464 } 465 static DEVICE_ATTR_RO(phys_port_id); 466 467 static ssize_t phys_port_name_show(struct device *dev, 468 struct device_attribute *attr, char *buf) 469 { 470 struct net_device *netdev = to_net_dev(dev); 471 ssize_t ret = -EINVAL; 472 473 if (!rtnl_trylock()) 474 return restart_syscall(); 475 476 if (dev_isalive(netdev)) { 477 char name[IFNAMSIZ]; 478 479 ret = dev_get_phys_port_name(netdev, name, sizeof(name)); 480 if (!ret) 481 ret = sprintf(buf, "%s\n", name); 482 } 483 rtnl_unlock(); 484 485 return ret; 486 } 487 static DEVICE_ATTR_RO(phys_port_name); 488 489 static ssize_t phys_switch_id_show(struct device *dev, 490 struct device_attribute *attr, char *buf) 491 { 492 struct net_device *netdev = to_net_dev(dev); 493 ssize_t ret = -EINVAL; 494 495 if (!rtnl_trylock()) 496 return restart_syscall(); 497 498 if (dev_isalive(netdev)) { 499 struct netdev_phys_item_id ppid = { }; 500 501 ret = dev_get_port_parent_id(netdev, &ppid, false); 502 if (!ret) 503 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); 504 } 505 rtnl_unlock(); 506 507 return ret; 508 } 509 static DEVICE_ATTR_RO(phys_switch_id); 510 511 static struct attribute *net_class_attrs[] __ro_after_init = { 512 &dev_attr_netdev_group.attr, 513 &dev_attr_type.attr, 514 &dev_attr_dev_id.attr, 515 &dev_attr_dev_port.attr, 516 &dev_attr_iflink.attr, 517 &dev_attr_ifindex.attr, 518 &dev_attr_name_assign_type.attr, 519 &dev_attr_addr_assign_type.attr, 520 &dev_attr_addr_len.attr, 521 &dev_attr_link_mode.attr, 522 &dev_attr_address.attr, 523 &dev_attr_broadcast.attr, 524 &dev_attr_speed.attr, 525 &dev_attr_duplex.attr, 526 &dev_attr_dormant.attr, 527 &dev_attr_operstate.attr, 528 &dev_attr_carrier_changes.attr, 529 &dev_attr_ifalias.attr, 530 &dev_attr_carrier.attr, 531 &dev_attr_mtu.attr, 532 &dev_attr_flags.attr, 533 &dev_attr_tx_queue_len.attr, 534 &dev_attr_gro_flush_timeout.attr, 535 &dev_attr_phys_port_id.attr, 536 &dev_attr_phys_port_name.attr, 537 &dev_attr_phys_switch_id.attr, 538 &dev_attr_proto_down.attr, 539 &dev_attr_carrier_up_count.attr, 540 &dev_attr_carrier_down_count.attr, 541 NULL, 542 }; 543 ATTRIBUTE_GROUPS(net_class); 544 545 /* Show a given an attribute in the statistics group */ 546 static ssize_t netstat_show(const struct device *d, 547 struct device_attribute *attr, char *buf, 548 unsigned long offset) 549 { 550 struct net_device *dev = to_net_dev(d); 551 ssize_t ret = -EINVAL; 552 553 WARN_ON(offset > sizeof(struct rtnl_link_stats64) || 554 offset % sizeof(u64) != 0); 555 556 read_lock(&dev_base_lock); 557 if (dev_isalive(dev)) { 558 struct rtnl_link_stats64 temp; 559 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 560 561 ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset)); 562 } 563 read_unlock(&dev_base_lock); 564 return ret; 565 } 566 567 /* generate a read-only statistics attribute */ 568 #define NETSTAT_ENTRY(name) \ 569 static ssize_t name##_show(struct device *d, \ 570 struct device_attribute *attr, char *buf) \ 571 { \ 572 return netstat_show(d, attr, buf, \ 573 offsetof(struct rtnl_link_stats64, name)); \ 574 } \ 575 static DEVICE_ATTR_RO(name) 576 577 NETSTAT_ENTRY(rx_packets); 578 NETSTAT_ENTRY(tx_packets); 579 NETSTAT_ENTRY(rx_bytes); 580 NETSTAT_ENTRY(tx_bytes); 581 NETSTAT_ENTRY(rx_errors); 582 NETSTAT_ENTRY(tx_errors); 583 NETSTAT_ENTRY(rx_dropped); 584 NETSTAT_ENTRY(tx_dropped); 585 NETSTAT_ENTRY(multicast); 586 NETSTAT_ENTRY(collisions); 587 NETSTAT_ENTRY(rx_length_errors); 588 NETSTAT_ENTRY(rx_over_errors); 589 NETSTAT_ENTRY(rx_crc_errors); 590 NETSTAT_ENTRY(rx_frame_errors); 591 NETSTAT_ENTRY(rx_fifo_errors); 592 NETSTAT_ENTRY(rx_missed_errors); 593 NETSTAT_ENTRY(tx_aborted_errors); 594 NETSTAT_ENTRY(tx_carrier_errors); 595 NETSTAT_ENTRY(tx_fifo_errors); 596 NETSTAT_ENTRY(tx_heartbeat_errors); 597 NETSTAT_ENTRY(tx_window_errors); 598 NETSTAT_ENTRY(rx_compressed); 599 NETSTAT_ENTRY(tx_compressed); 600 NETSTAT_ENTRY(rx_nohandler); 601 602 static struct attribute *netstat_attrs[] __ro_after_init = { 603 &dev_attr_rx_packets.attr, 604 &dev_attr_tx_packets.attr, 605 &dev_attr_rx_bytes.attr, 606 &dev_attr_tx_bytes.attr, 607 &dev_attr_rx_errors.attr, 608 &dev_attr_tx_errors.attr, 609 &dev_attr_rx_dropped.attr, 610 &dev_attr_tx_dropped.attr, 611 &dev_attr_multicast.attr, 612 &dev_attr_collisions.attr, 613 &dev_attr_rx_length_errors.attr, 614 &dev_attr_rx_over_errors.attr, 615 &dev_attr_rx_crc_errors.attr, 616 &dev_attr_rx_frame_errors.attr, 617 &dev_attr_rx_fifo_errors.attr, 618 &dev_attr_rx_missed_errors.attr, 619 &dev_attr_tx_aborted_errors.attr, 620 &dev_attr_tx_carrier_errors.attr, 621 &dev_attr_tx_fifo_errors.attr, 622 &dev_attr_tx_heartbeat_errors.attr, 623 &dev_attr_tx_window_errors.attr, 624 &dev_attr_rx_compressed.attr, 625 &dev_attr_tx_compressed.attr, 626 &dev_attr_rx_nohandler.attr, 627 NULL 628 }; 629 630 static const struct attribute_group netstat_group = { 631 .name = "statistics", 632 .attrs = netstat_attrs, 633 }; 634 635 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211) 636 static struct attribute *wireless_attrs[] = { 637 NULL 638 }; 639 640 static const struct attribute_group wireless_group = { 641 .name = "wireless", 642 .attrs = wireless_attrs, 643 }; 644 #endif 645 646 #else /* CONFIG_SYSFS */ 647 #define net_class_groups NULL 648 #endif /* CONFIG_SYSFS */ 649 650 #ifdef CONFIG_SYSFS 651 #define to_rx_queue_attr(_attr) \ 652 container_of(_attr, struct rx_queue_attribute, attr) 653 654 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) 655 656 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, 657 char *buf) 658 { 659 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 660 struct netdev_rx_queue *queue = to_rx_queue(kobj); 661 662 if (!attribute->show) 663 return -EIO; 664 665 return attribute->show(queue, buf); 666 } 667 668 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, 669 const char *buf, size_t count) 670 { 671 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 672 struct netdev_rx_queue *queue = to_rx_queue(kobj); 673 674 if (!attribute->store) 675 return -EIO; 676 677 return attribute->store(queue, buf, count); 678 } 679 680 static const struct sysfs_ops rx_queue_sysfs_ops = { 681 .show = rx_queue_attr_show, 682 .store = rx_queue_attr_store, 683 }; 684 685 #ifdef CONFIG_RPS 686 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf) 687 { 688 struct rps_map *map; 689 cpumask_var_t mask; 690 int i, len; 691 692 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 693 return -ENOMEM; 694 695 rcu_read_lock(); 696 map = rcu_dereference(queue->rps_map); 697 if (map) 698 for (i = 0; i < map->len; i++) 699 cpumask_set_cpu(map->cpus[i], mask); 700 701 len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 702 rcu_read_unlock(); 703 free_cpumask_var(mask); 704 705 return len < PAGE_SIZE ? len : -EINVAL; 706 } 707 708 static ssize_t store_rps_map(struct netdev_rx_queue *queue, 709 const char *buf, size_t len) 710 { 711 struct rps_map *old_map, *map; 712 cpumask_var_t mask; 713 int err, cpu, i; 714 static DEFINE_MUTEX(rps_map_mutex); 715 716 if (!capable(CAP_NET_ADMIN)) 717 return -EPERM; 718 719 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 720 return -ENOMEM; 721 722 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 723 if (err) { 724 free_cpumask_var(mask); 725 return err; 726 } 727 728 map = kzalloc(max_t(unsigned int, 729 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), 730 GFP_KERNEL); 731 if (!map) { 732 free_cpumask_var(mask); 733 return -ENOMEM; 734 } 735 736 i = 0; 737 for_each_cpu_and(cpu, mask, cpu_online_mask) 738 map->cpus[i++] = cpu; 739 740 if (i) { 741 map->len = i; 742 } else { 743 kfree(map); 744 map = NULL; 745 } 746 747 mutex_lock(&rps_map_mutex); 748 old_map = rcu_dereference_protected(queue->rps_map, 749 mutex_is_locked(&rps_map_mutex)); 750 rcu_assign_pointer(queue->rps_map, map); 751 752 if (map) 753 static_branch_inc(&rps_needed); 754 if (old_map) 755 static_branch_dec(&rps_needed); 756 757 mutex_unlock(&rps_map_mutex); 758 759 if (old_map) 760 kfree_rcu(old_map, rcu); 761 762 free_cpumask_var(mask); 763 return len; 764 } 765 766 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 767 char *buf) 768 { 769 struct rps_dev_flow_table *flow_table; 770 unsigned long val = 0; 771 772 rcu_read_lock(); 773 flow_table = rcu_dereference(queue->rps_flow_table); 774 if (flow_table) 775 val = (unsigned long)flow_table->mask + 1; 776 rcu_read_unlock(); 777 778 return sprintf(buf, "%lu\n", val); 779 } 780 781 static void rps_dev_flow_table_release(struct rcu_head *rcu) 782 { 783 struct rps_dev_flow_table *table = container_of(rcu, 784 struct rps_dev_flow_table, rcu); 785 vfree(table); 786 } 787 788 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 789 const char *buf, size_t len) 790 { 791 unsigned long mask, count; 792 struct rps_dev_flow_table *table, *old_table; 793 static DEFINE_SPINLOCK(rps_dev_flow_lock); 794 int rc; 795 796 if (!capable(CAP_NET_ADMIN)) 797 return -EPERM; 798 799 rc = kstrtoul(buf, 0, &count); 800 if (rc < 0) 801 return rc; 802 803 if (count) { 804 mask = count - 1; 805 /* mask = roundup_pow_of_two(count) - 1; 806 * without overflows... 807 */ 808 while ((mask | (mask >> 1)) != mask) 809 mask |= (mask >> 1); 810 /* On 64 bit arches, must check mask fits in table->mask (u32), 811 * and on 32bit arches, must check 812 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow. 813 */ 814 #if BITS_PER_LONG > 32 815 if (mask > (unsigned long)(u32)mask) 816 return -EINVAL; 817 #else 818 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) 819 / sizeof(struct rps_dev_flow)) { 820 /* Enforce a limit to prevent overflow */ 821 return -EINVAL; 822 } 823 #endif 824 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); 825 if (!table) 826 return -ENOMEM; 827 828 table->mask = mask; 829 for (count = 0; count <= mask; count++) 830 table->flows[count].cpu = RPS_NO_CPU; 831 } else { 832 table = NULL; 833 } 834 835 spin_lock(&rps_dev_flow_lock); 836 old_table = rcu_dereference_protected(queue->rps_flow_table, 837 lockdep_is_held(&rps_dev_flow_lock)); 838 rcu_assign_pointer(queue->rps_flow_table, table); 839 spin_unlock(&rps_dev_flow_lock); 840 841 if (old_table) 842 call_rcu(&old_table->rcu, rps_dev_flow_table_release); 843 844 return len; 845 } 846 847 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init 848 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map); 849 850 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init 851 = __ATTR(rps_flow_cnt, 0644, 852 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); 853 #endif /* CONFIG_RPS */ 854 855 static struct attribute *rx_queue_default_attrs[] __ro_after_init = { 856 #ifdef CONFIG_RPS 857 &rps_cpus_attribute.attr, 858 &rps_dev_flow_table_cnt_attribute.attr, 859 #endif 860 NULL 861 }; 862 ATTRIBUTE_GROUPS(rx_queue_default); 863 864 static void rx_queue_release(struct kobject *kobj) 865 { 866 struct netdev_rx_queue *queue = to_rx_queue(kobj); 867 #ifdef CONFIG_RPS 868 struct rps_map *map; 869 struct rps_dev_flow_table *flow_table; 870 871 map = rcu_dereference_protected(queue->rps_map, 1); 872 if (map) { 873 RCU_INIT_POINTER(queue->rps_map, NULL); 874 kfree_rcu(map, rcu); 875 } 876 877 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); 878 if (flow_table) { 879 RCU_INIT_POINTER(queue->rps_flow_table, NULL); 880 call_rcu(&flow_table->rcu, rps_dev_flow_table_release); 881 } 882 #endif 883 884 memset(kobj, 0, sizeof(*kobj)); 885 dev_put(queue->dev); 886 } 887 888 static const void *rx_queue_namespace(struct kobject *kobj) 889 { 890 struct netdev_rx_queue *queue = to_rx_queue(kobj); 891 struct device *dev = &queue->dev->dev; 892 const void *ns = NULL; 893 894 if (dev->class && dev->class->ns_type) 895 ns = dev->class->namespace(dev); 896 897 return ns; 898 } 899 900 static void rx_queue_get_ownership(struct kobject *kobj, 901 kuid_t *uid, kgid_t *gid) 902 { 903 const struct net *net = rx_queue_namespace(kobj); 904 905 net_ns_get_ownership(net, uid, gid); 906 } 907 908 static struct kobj_type rx_queue_ktype __ro_after_init = { 909 .sysfs_ops = &rx_queue_sysfs_ops, 910 .release = rx_queue_release, 911 .default_groups = rx_queue_default_groups, 912 .namespace = rx_queue_namespace, 913 .get_ownership = rx_queue_get_ownership, 914 }; 915 916 static int rx_queue_add_kobject(struct net_device *dev, int index) 917 { 918 struct netdev_rx_queue *queue = dev->_rx + index; 919 struct kobject *kobj = &queue->kobj; 920 int error = 0; 921 922 /* Kobject_put later will trigger rx_queue_release call which 923 * decreases dev refcount: Take that reference here 924 */ 925 dev_hold(queue->dev); 926 927 kobj->kset = dev->queues_kset; 928 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, 929 "rx-%u", index); 930 if (error) 931 goto err; 932 933 if (dev->sysfs_rx_queue_group) { 934 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group); 935 if (error) 936 goto err; 937 } 938 939 kobject_uevent(kobj, KOBJ_ADD); 940 941 return error; 942 943 err: 944 kobject_put(kobj); 945 return error; 946 } 947 948 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid, 949 kgid_t kgid) 950 { 951 struct netdev_rx_queue *queue = dev->_rx + index; 952 struct kobject *kobj = &queue->kobj; 953 int error; 954 955 error = sysfs_change_owner(kobj, kuid, kgid); 956 if (error) 957 return error; 958 959 if (dev->sysfs_rx_queue_group) 960 error = sysfs_group_change_owner( 961 kobj, dev->sysfs_rx_queue_group, kuid, kgid); 962 963 return error; 964 } 965 #endif /* CONFIG_SYSFS */ 966 967 int 968 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 969 { 970 #ifdef CONFIG_SYSFS 971 int i; 972 int error = 0; 973 974 #ifndef CONFIG_RPS 975 if (!dev->sysfs_rx_queue_group) 976 return 0; 977 #endif 978 for (i = old_num; i < new_num; i++) { 979 error = rx_queue_add_kobject(dev, i); 980 if (error) { 981 new_num = old_num; 982 break; 983 } 984 } 985 986 while (--i >= new_num) { 987 struct kobject *kobj = &dev->_rx[i].kobj; 988 989 if (!refcount_read(&dev_net(dev)->count)) 990 kobj->uevent_suppress = 1; 991 if (dev->sysfs_rx_queue_group) 992 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group); 993 kobject_put(kobj); 994 } 995 996 return error; 997 #else 998 return 0; 999 #endif 1000 } 1001 1002 static int net_rx_queue_change_owner(struct net_device *dev, int num, 1003 kuid_t kuid, kgid_t kgid) 1004 { 1005 #ifdef CONFIG_SYSFS 1006 int error = 0; 1007 int i; 1008 1009 #ifndef CONFIG_RPS 1010 if (!dev->sysfs_rx_queue_group) 1011 return 0; 1012 #endif 1013 for (i = 0; i < num; i++) { 1014 error = rx_queue_change_owner(dev, i, kuid, kgid); 1015 if (error) 1016 break; 1017 } 1018 1019 return error; 1020 #else 1021 return 0; 1022 #endif 1023 } 1024 1025 #ifdef CONFIG_SYSFS 1026 /* 1027 * netdev_queue sysfs structures and functions. 1028 */ 1029 struct netdev_queue_attribute { 1030 struct attribute attr; 1031 ssize_t (*show)(struct netdev_queue *queue, char *buf); 1032 ssize_t (*store)(struct netdev_queue *queue, 1033 const char *buf, size_t len); 1034 }; 1035 #define to_netdev_queue_attr(_attr) \ 1036 container_of(_attr, struct netdev_queue_attribute, attr) 1037 1038 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) 1039 1040 static ssize_t netdev_queue_attr_show(struct kobject *kobj, 1041 struct attribute *attr, char *buf) 1042 { 1043 const struct netdev_queue_attribute *attribute 1044 = to_netdev_queue_attr(attr); 1045 struct netdev_queue *queue = to_netdev_queue(kobj); 1046 1047 if (!attribute->show) 1048 return -EIO; 1049 1050 return attribute->show(queue, buf); 1051 } 1052 1053 static ssize_t netdev_queue_attr_store(struct kobject *kobj, 1054 struct attribute *attr, 1055 const char *buf, size_t count) 1056 { 1057 const struct netdev_queue_attribute *attribute 1058 = to_netdev_queue_attr(attr); 1059 struct netdev_queue *queue = to_netdev_queue(kobj); 1060 1061 if (!attribute->store) 1062 return -EIO; 1063 1064 return attribute->store(queue, buf, count); 1065 } 1066 1067 static const struct sysfs_ops netdev_queue_sysfs_ops = { 1068 .show = netdev_queue_attr_show, 1069 .store = netdev_queue_attr_store, 1070 }; 1071 1072 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf) 1073 { 1074 unsigned long trans_timeout; 1075 1076 spin_lock_irq(&queue->_xmit_lock); 1077 trans_timeout = queue->trans_timeout; 1078 spin_unlock_irq(&queue->_xmit_lock); 1079 1080 return sprintf(buf, "%lu", trans_timeout); 1081 } 1082 1083 static unsigned int get_netdev_queue_index(struct netdev_queue *queue) 1084 { 1085 struct net_device *dev = queue->dev; 1086 unsigned int i; 1087 1088 i = queue - dev->_tx; 1089 BUG_ON(i >= dev->num_tx_queues); 1090 1091 return i; 1092 } 1093 1094 static ssize_t traffic_class_show(struct netdev_queue *queue, 1095 char *buf) 1096 { 1097 struct net_device *dev = queue->dev; 1098 int index; 1099 int tc; 1100 1101 if (!netif_is_multiqueue(dev)) 1102 return -ENOENT; 1103 1104 index = get_netdev_queue_index(queue); 1105 1106 /* If queue belongs to subordinate dev use its TC mapping */ 1107 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1108 1109 tc = netdev_txq_to_tc(dev, index); 1110 if (tc < 0) 1111 return -EINVAL; 1112 1113 /* We can report the traffic class one of two ways: 1114 * Subordinate device traffic classes are reported with the traffic 1115 * class first, and then the subordinate class so for example TC0 on 1116 * subordinate device 2 will be reported as "0-2". If the queue 1117 * belongs to the root device it will be reported with just the 1118 * traffic class, so just "0" for TC 0 for example. 1119 */ 1120 return dev->num_tc < 0 ? sprintf(buf, "%u%d\n", tc, dev->num_tc) : 1121 sprintf(buf, "%u\n", tc); 1122 } 1123 1124 #ifdef CONFIG_XPS 1125 static ssize_t tx_maxrate_show(struct netdev_queue *queue, 1126 char *buf) 1127 { 1128 return sprintf(buf, "%lu\n", queue->tx_maxrate); 1129 } 1130 1131 static ssize_t tx_maxrate_store(struct netdev_queue *queue, 1132 const char *buf, size_t len) 1133 { 1134 struct net_device *dev = queue->dev; 1135 int err, index = get_netdev_queue_index(queue); 1136 u32 rate = 0; 1137 1138 if (!capable(CAP_NET_ADMIN)) 1139 return -EPERM; 1140 1141 err = kstrtou32(buf, 10, &rate); 1142 if (err < 0) 1143 return err; 1144 1145 if (!rtnl_trylock()) 1146 return restart_syscall(); 1147 1148 err = -EOPNOTSUPP; 1149 if (dev->netdev_ops->ndo_set_tx_maxrate) 1150 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate); 1151 1152 rtnl_unlock(); 1153 if (!err) { 1154 queue->tx_maxrate = rate; 1155 return len; 1156 } 1157 return err; 1158 } 1159 1160 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init 1161 = __ATTR_RW(tx_maxrate); 1162 #endif 1163 1164 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init 1165 = __ATTR_RO(tx_timeout); 1166 1167 static struct netdev_queue_attribute queue_traffic_class __ro_after_init 1168 = __ATTR_RO(traffic_class); 1169 1170 #ifdef CONFIG_BQL 1171 /* 1172 * Byte queue limits sysfs structures and functions. 1173 */ 1174 static ssize_t bql_show(char *buf, unsigned int value) 1175 { 1176 return sprintf(buf, "%u\n", value); 1177 } 1178 1179 static ssize_t bql_set(const char *buf, const size_t count, 1180 unsigned int *pvalue) 1181 { 1182 unsigned int value; 1183 int err; 1184 1185 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) { 1186 value = DQL_MAX_LIMIT; 1187 } else { 1188 err = kstrtouint(buf, 10, &value); 1189 if (err < 0) 1190 return err; 1191 if (value > DQL_MAX_LIMIT) 1192 return -EINVAL; 1193 } 1194 1195 *pvalue = value; 1196 1197 return count; 1198 } 1199 1200 static ssize_t bql_show_hold_time(struct netdev_queue *queue, 1201 char *buf) 1202 { 1203 struct dql *dql = &queue->dql; 1204 1205 return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); 1206 } 1207 1208 static ssize_t bql_set_hold_time(struct netdev_queue *queue, 1209 const char *buf, size_t len) 1210 { 1211 struct dql *dql = &queue->dql; 1212 unsigned int value; 1213 int err; 1214 1215 err = kstrtouint(buf, 10, &value); 1216 if (err < 0) 1217 return err; 1218 1219 dql->slack_hold_time = msecs_to_jiffies(value); 1220 1221 return len; 1222 } 1223 1224 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init 1225 = __ATTR(hold_time, 0644, 1226 bql_show_hold_time, bql_set_hold_time); 1227 1228 static ssize_t bql_show_inflight(struct netdev_queue *queue, 1229 char *buf) 1230 { 1231 struct dql *dql = &queue->dql; 1232 1233 return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed); 1234 } 1235 1236 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init = 1237 __ATTR(inflight, 0444, bql_show_inflight, NULL); 1238 1239 #define BQL_ATTR(NAME, FIELD) \ 1240 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \ 1241 char *buf) \ 1242 { \ 1243 return bql_show(buf, queue->dql.FIELD); \ 1244 } \ 1245 \ 1246 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \ 1247 const char *buf, size_t len) \ 1248 { \ 1249 return bql_set(buf, len, &queue->dql.FIELD); \ 1250 } \ 1251 \ 1252 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \ 1253 = __ATTR(NAME, 0644, \ 1254 bql_show_ ## NAME, bql_set_ ## NAME) 1255 1256 BQL_ATTR(limit, limit); 1257 BQL_ATTR(limit_max, max_limit); 1258 BQL_ATTR(limit_min, min_limit); 1259 1260 static struct attribute *dql_attrs[] __ro_after_init = { 1261 &bql_limit_attribute.attr, 1262 &bql_limit_max_attribute.attr, 1263 &bql_limit_min_attribute.attr, 1264 &bql_hold_time_attribute.attr, 1265 &bql_inflight_attribute.attr, 1266 NULL 1267 }; 1268 1269 static const struct attribute_group dql_group = { 1270 .name = "byte_queue_limits", 1271 .attrs = dql_attrs, 1272 }; 1273 #endif /* CONFIG_BQL */ 1274 1275 #ifdef CONFIG_XPS 1276 static ssize_t xps_cpus_show(struct netdev_queue *queue, 1277 char *buf) 1278 { 1279 struct net_device *dev = queue->dev; 1280 int cpu, len, num_tc = 1, tc = 0; 1281 struct xps_dev_maps *dev_maps; 1282 cpumask_var_t mask; 1283 unsigned long index; 1284 1285 if (!netif_is_multiqueue(dev)) 1286 return -ENOENT; 1287 1288 index = get_netdev_queue_index(queue); 1289 1290 if (dev->num_tc) { 1291 /* Do not allow XPS on subordinate device directly */ 1292 num_tc = dev->num_tc; 1293 if (num_tc < 0) 1294 return -EINVAL; 1295 1296 /* If queue belongs to subordinate dev use its map */ 1297 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1298 1299 tc = netdev_txq_to_tc(dev, index); 1300 if (tc < 0) 1301 return -EINVAL; 1302 } 1303 1304 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 1305 return -ENOMEM; 1306 1307 rcu_read_lock(); 1308 dev_maps = rcu_dereference(dev->xps_cpus_map); 1309 if (dev_maps) { 1310 for_each_possible_cpu(cpu) { 1311 int i, tci = cpu * num_tc + tc; 1312 struct xps_map *map; 1313 1314 map = rcu_dereference(dev_maps->attr_map[tci]); 1315 if (!map) 1316 continue; 1317 1318 for (i = map->len; i--;) { 1319 if (map->queues[i] == index) { 1320 cpumask_set_cpu(cpu, mask); 1321 break; 1322 } 1323 } 1324 } 1325 } 1326 rcu_read_unlock(); 1327 1328 len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 1329 free_cpumask_var(mask); 1330 return len < PAGE_SIZE ? len : -EINVAL; 1331 } 1332 1333 static ssize_t xps_cpus_store(struct netdev_queue *queue, 1334 const char *buf, size_t len) 1335 { 1336 struct net_device *dev = queue->dev; 1337 unsigned long index; 1338 cpumask_var_t mask; 1339 int err; 1340 1341 if (!netif_is_multiqueue(dev)) 1342 return -ENOENT; 1343 1344 if (!capable(CAP_NET_ADMIN)) 1345 return -EPERM; 1346 1347 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1348 return -ENOMEM; 1349 1350 index = get_netdev_queue_index(queue); 1351 1352 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 1353 if (err) { 1354 free_cpumask_var(mask); 1355 return err; 1356 } 1357 1358 err = netif_set_xps_queue(dev, mask, index); 1359 1360 free_cpumask_var(mask); 1361 1362 return err ? : len; 1363 } 1364 1365 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init 1366 = __ATTR_RW(xps_cpus); 1367 1368 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf) 1369 { 1370 struct net_device *dev = queue->dev; 1371 struct xps_dev_maps *dev_maps; 1372 unsigned long *mask, index; 1373 int j, len, num_tc = 1, tc = 0; 1374 1375 index = get_netdev_queue_index(queue); 1376 1377 if (dev->num_tc) { 1378 num_tc = dev->num_tc; 1379 tc = netdev_txq_to_tc(dev, index); 1380 if (tc < 0) 1381 return -EINVAL; 1382 } 1383 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1384 if (!mask) 1385 return -ENOMEM; 1386 1387 rcu_read_lock(); 1388 dev_maps = rcu_dereference(dev->xps_rxqs_map); 1389 if (!dev_maps) 1390 goto out_no_maps; 1391 1392 for (j = -1; j = netif_attrmask_next(j, NULL, dev->num_rx_queues), 1393 j < dev->num_rx_queues;) { 1394 int i, tci = j * num_tc + tc; 1395 struct xps_map *map; 1396 1397 map = rcu_dereference(dev_maps->attr_map[tci]); 1398 if (!map) 1399 continue; 1400 1401 for (i = map->len; i--;) { 1402 if (map->queues[i] == index) { 1403 set_bit(j, mask); 1404 break; 1405 } 1406 } 1407 } 1408 out_no_maps: 1409 rcu_read_unlock(); 1410 1411 len = bitmap_print_to_pagebuf(false, buf, mask, dev->num_rx_queues); 1412 bitmap_free(mask); 1413 1414 return len < PAGE_SIZE ? len : -EINVAL; 1415 } 1416 1417 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf, 1418 size_t len) 1419 { 1420 struct net_device *dev = queue->dev; 1421 struct net *net = dev_net(dev); 1422 unsigned long *mask, index; 1423 int err; 1424 1425 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1426 return -EPERM; 1427 1428 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1429 if (!mask) 1430 return -ENOMEM; 1431 1432 index = get_netdev_queue_index(queue); 1433 1434 err = bitmap_parse(buf, len, mask, dev->num_rx_queues); 1435 if (err) { 1436 bitmap_free(mask); 1437 return err; 1438 } 1439 1440 cpus_read_lock(); 1441 err = __netif_set_xps_queue(dev, mask, index, true); 1442 cpus_read_unlock(); 1443 1444 bitmap_free(mask); 1445 return err ? : len; 1446 } 1447 1448 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init 1449 = __ATTR_RW(xps_rxqs); 1450 #endif /* CONFIG_XPS */ 1451 1452 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = { 1453 &queue_trans_timeout.attr, 1454 &queue_traffic_class.attr, 1455 #ifdef CONFIG_XPS 1456 &xps_cpus_attribute.attr, 1457 &xps_rxqs_attribute.attr, 1458 &queue_tx_maxrate.attr, 1459 #endif 1460 NULL 1461 }; 1462 ATTRIBUTE_GROUPS(netdev_queue_default); 1463 1464 static void netdev_queue_release(struct kobject *kobj) 1465 { 1466 struct netdev_queue *queue = to_netdev_queue(kobj); 1467 1468 memset(kobj, 0, sizeof(*kobj)); 1469 dev_put(queue->dev); 1470 } 1471 1472 static const void *netdev_queue_namespace(struct kobject *kobj) 1473 { 1474 struct netdev_queue *queue = to_netdev_queue(kobj); 1475 struct device *dev = &queue->dev->dev; 1476 const void *ns = NULL; 1477 1478 if (dev->class && dev->class->ns_type) 1479 ns = dev->class->namespace(dev); 1480 1481 return ns; 1482 } 1483 1484 static void netdev_queue_get_ownership(struct kobject *kobj, 1485 kuid_t *uid, kgid_t *gid) 1486 { 1487 const struct net *net = netdev_queue_namespace(kobj); 1488 1489 net_ns_get_ownership(net, uid, gid); 1490 } 1491 1492 static struct kobj_type netdev_queue_ktype __ro_after_init = { 1493 .sysfs_ops = &netdev_queue_sysfs_ops, 1494 .release = netdev_queue_release, 1495 .default_groups = netdev_queue_default_groups, 1496 .namespace = netdev_queue_namespace, 1497 .get_ownership = netdev_queue_get_ownership, 1498 }; 1499 1500 static int netdev_queue_add_kobject(struct net_device *dev, int index) 1501 { 1502 struct netdev_queue *queue = dev->_tx + index; 1503 struct kobject *kobj = &queue->kobj; 1504 int error = 0; 1505 1506 /* Kobject_put later will trigger netdev_queue_release call 1507 * which decreases dev refcount: Take that reference here 1508 */ 1509 dev_hold(queue->dev); 1510 1511 kobj->kset = dev->queues_kset; 1512 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, 1513 "tx-%u", index); 1514 if (error) 1515 goto err; 1516 1517 #ifdef CONFIG_BQL 1518 error = sysfs_create_group(kobj, &dql_group); 1519 if (error) 1520 goto err; 1521 #endif 1522 1523 kobject_uevent(kobj, KOBJ_ADD); 1524 return 0; 1525 1526 err: 1527 kobject_put(kobj); 1528 return error; 1529 } 1530 1531 static int tx_queue_change_owner(struct net_device *ndev, int index, 1532 kuid_t kuid, kgid_t kgid) 1533 { 1534 struct netdev_queue *queue = ndev->_tx + index; 1535 struct kobject *kobj = &queue->kobj; 1536 int error; 1537 1538 error = sysfs_change_owner(kobj, kuid, kgid); 1539 if (error) 1540 return error; 1541 1542 #ifdef CONFIG_BQL 1543 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid); 1544 #endif 1545 return error; 1546 } 1547 #endif /* CONFIG_SYSFS */ 1548 1549 int 1550 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1551 { 1552 #ifdef CONFIG_SYSFS 1553 int i; 1554 int error = 0; 1555 1556 for (i = old_num; i < new_num; i++) { 1557 error = netdev_queue_add_kobject(dev, i); 1558 if (error) { 1559 new_num = old_num; 1560 break; 1561 } 1562 } 1563 1564 while (--i >= new_num) { 1565 struct netdev_queue *queue = dev->_tx + i; 1566 1567 if (!refcount_read(&dev_net(dev)->count)) 1568 queue->kobj.uevent_suppress = 1; 1569 #ifdef CONFIG_BQL 1570 sysfs_remove_group(&queue->kobj, &dql_group); 1571 #endif 1572 kobject_put(&queue->kobj); 1573 } 1574 1575 return error; 1576 #else 1577 return 0; 1578 #endif /* CONFIG_SYSFS */ 1579 } 1580 1581 static int net_tx_queue_change_owner(struct net_device *dev, int num, 1582 kuid_t kuid, kgid_t kgid) 1583 { 1584 #ifdef CONFIG_SYSFS 1585 int error = 0; 1586 int i; 1587 1588 for (i = 0; i < num; i++) { 1589 error = tx_queue_change_owner(dev, i, kuid, kgid); 1590 if (error) 1591 break; 1592 } 1593 1594 return error; 1595 #else 1596 return 0; 1597 #endif /* CONFIG_SYSFS */ 1598 } 1599 1600 static int register_queue_kobjects(struct net_device *dev) 1601 { 1602 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; 1603 1604 #ifdef CONFIG_SYSFS 1605 dev->queues_kset = kset_create_and_add("queues", 1606 NULL, &dev->dev.kobj); 1607 if (!dev->queues_kset) 1608 return -ENOMEM; 1609 real_rx = dev->real_num_rx_queues; 1610 #endif 1611 real_tx = dev->real_num_tx_queues; 1612 1613 error = net_rx_queue_update_kobjects(dev, 0, real_rx); 1614 if (error) 1615 goto error; 1616 rxq = real_rx; 1617 1618 error = netdev_queue_update_kobjects(dev, 0, real_tx); 1619 if (error) 1620 goto error; 1621 txq = real_tx; 1622 1623 return 0; 1624 1625 error: 1626 netdev_queue_update_kobjects(dev, txq, 0); 1627 net_rx_queue_update_kobjects(dev, rxq, 0); 1628 #ifdef CONFIG_SYSFS 1629 kset_unregister(dev->queues_kset); 1630 #endif 1631 return error; 1632 } 1633 1634 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid) 1635 { 1636 int error = 0, real_rx = 0, real_tx = 0; 1637 1638 #ifdef CONFIG_SYSFS 1639 if (ndev->queues_kset) { 1640 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid); 1641 if (error) 1642 return error; 1643 } 1644 real_rx = ndev->real_num_rx_queues; 1645 #endif 1646 real_tx = ndev->real_num_tx_queues; 1647 1648 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid); 1649 if (error) 1650 return error; 1651 1652 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid); 1653 if (error) 1654 return error; 1655 1656 return 0; 1657 } 1658 1659 static void remove_queue_kobjects(struct net_device *dev) 1660 { 1661 int real_rx = 0, real_tx = 0; 1662 1663 #ifdef CONFIG_SYSFS 1664 real_rx = dev->real_num_rx_queues; 1665 #endif 1666 real_tx = dev->real_num_tx_queues; 1667 1668 net_rx_queue_update_kobjects(dev, real_rx, 0); 1669 netdev_queue_update_kobjects(dev, real_tx, 0); 1670 #ifdef CONFIG_SYSFS 1671 kset_unregister(dev->queues_kset); 1672 #endif 1673 } 1674 1675 static bool net_current_may_mount(void) 1676 { 1677 struct net *net = current->nsproxy->net_ns; 1678 1679 return ns_capable(net->user_ns, CAP_SYS_ADMIN); 1680 } 1681 1682 static void *net_grab_current_ns(void) 1683 { 1684 struct net *ns = current->nsproxy->net_ns; 1685 #ifdef CONFIG_NET_NS 1686 if (ns) 1687 refcount_inc(&ns->passive); 1688 #endif 1689 return ns; 1690 } 1691 1692 static const void *net_initial_ns(void) 1693 { 1694 return &init_net; 1695 } 1696 1697 static const void *net_netlink_ns(struct sock *sk) 1698 { 1699 return sock_net(sk); 1700 } 1701 1702 const struct kobj_ns_type_operations net_ns_type_operations = { 1703 .type = KOBJ_NS_TYPE_NET, 1704 .current_may_mount = net_current_may_mount, 1705 .grab_current_ns = net_grab_current_ns, 1706 .netlink_ns = net_netlink_ns, 1707 .initial_ns = net_initial_ns, 1708 .drop_ns = net_drop_ns, 1709 }; 1710 EXPORT_SYMBOL_GPL(net_ns_type_operations); 1711 1712 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env) 1713 { 1714 struct net_device *dev = to_net_dev(d); 1715 int retval; 1716 1717 /* pass interface to uevent. */ 1718 retval = add_uevent_var(env, "INTERFACE=%s", dev->name); 1719 if (retval) 1720 goto exit; 1721 1722 /* pass ifindex to uevent. 1723 * ifindex is useful as it won't change (interface name may change) 1724 * and is what RtNetlink uses natively. 1725 */ 1726 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); 1727 1728 exit: 1729 return retval; 1730 } 1731 1732 /* 1733 * netdev_release -- destroy and free a dead device. 1734 * Called when last reference to device kobject is gone. 1735 */ 1736 static void netdev_release(struct device *d) 1737 { 1738 struct net_device *dev = to_net_dev(d); 1739 1740 BUG_ON(dev->reg_state != NETREG_RELEASED); 1741 1742 /* no need to wait for rcu grace period: 1743 * device is dead and about to be freed. 1744 */ 1745 kfree(rcu_access_pointer(dev->ifalias)); 1746 netdev_freemem(dev); 1747 } 1748 1749 static const void *net_namespace(struct device *d) 1750 { 1751 struct net_device *dev = to_net_dev(d); 1752 1753 return dev_net(dev); 1754 } 1755 1756 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid) 1757 { 1758 struct net_device *dev = to_net_dev(d); 1759 const struct net *net = dev_net(dev); 1760 1761 net_ns_get_ownership(net, uid, gid); 1762 } 1763 1764 static struct class net_class __ro_after_init = { 1765 .name = "net", 1766 .dev_release = netdev_release, 1767 .dev_groups = net_class_groups, 1768 .dev_uevent = netdev_uevent, 1769 .ns_type = &net_ns_type_operations, 1770 .namespace = net_namespace, 1771 .get_ownership = net_get_ownership, 1772 }; 1773 1774 #ifdef CONFIG_OF_NET 1775 static int of_dev_node_match(struct device *dev, const void *data) 1776 { 1777 int ret = 0; 1778 1779 if (dev->parent) 1780 ret = dev->parent->of_node == data; 1781 1782 return ret == 0 ? dev->of_node == data : ret; 1783 } 1784 1785 /* 1786 * of_find_net_device_by_node - lookup the net device for the device node 1787 * @np: OF device node 1788 * 1789 * Looks up the net_device structure corresponding with the device node. 1790 * If successful, returns a pointer to the net_device with the embedded 1791 * struct device refcount incremented by one, or NULL on failure. The 1792 * refcount must be dropped when done with the net_device. 1793 */ 1794 struct net_device *of_find_net_device_by_node(struct device_node *np) 1795 { 1796 struct device *dev; 1797 1798 dev = class_find_device(&net_class, NULL, np, of_dev_node_match); 1799 if (!dev) 1800 return NULL; 1801 1802 return to_net_dev(dev); 1803 } 1804 EXPORT_SYMBOL(of_find_net_device_by_node); 1805 #endif 1806 1807 /* Delete sysfs entries but hold kobject reference until after all 1808 * netdev references are gone. 1809 */ 1810 void netdev_unregister_kobject(struct net_device *ndev) 1811 { 1812 struct device *dev = &ndev->dev; 1813 1814 if (!refcount_read(&dev_net(ndev)->count)) 1815 dev_set_uevent_suppress(dev, 1); 1816 1817 kobject_get(&dev->kobj); 1818 1819 remove_queue_kobjects(ndev); 1820 1821 pm_runtime_set_memalloc_noio(dev, false); 1822 1823 device_del(dev); 1824 } 1825 1826 /* Create sysfs entries for network device. */ 1827 int netdev_register_kobject(struct net_device *ndev) 1828 { 1829 struct device *dev = &ndev->dev; 1830 const struct attribute_group **groups = ndev->sysfs_groups; 1831 int error = 0; 1832 1833 device_initialize(dev); 1834 dev->class = &net_class; 1835 dev->platform_data = ndev; 1836 dev->groups = groups; 1837 1838 dev_set_name(dev, "%s", ndev->name); 1839 1840 #ifdef CONFIG_SYSFS 1841 /* Allow for a device specific group */ 1842 if (*groups) 1843 groups++; 1844 1845 *groups++ = &netstat_group; 1846 1847 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211) 1848 if (ndev->ieee80211_ptr) 1849 *groups++ = &wireless_group; 1850 #if IS_ENABLED(CONFIG_WIRELESS_EXT) 1851 else if (ndev->wireless_handlers) 1852 *groups++ = &wireless_group; 1853 #endif 1854 #endif 1855 #endif /* CONFIG_SYSFS */ 1856 1857 error = device_add(dev); 1858 if (error) 1859 return error; 1860 1861 error = register_queue_kobjects(ndev); 1862 if (error) { 1863 device_del(dev); 1864 return error; 1865 } 1866 1867 pm_runtime_set_memalloc_noio(dev, true); 1868 1869 return error; 1870 } 1871 1872 /* Change owner for sysfs entries when moving network devices across network 1873 * namespaces owned by different user namespaces. 1874 */ 1875 int netdev_change_owner(struct net_device *ndev, const struct net *net_old, 1876 const struct net *net_new) 1877 { 1878 struct device *dev = &ndev->dev; 1879 kuid_t old_uid, new_uid; 1880 kgid_t old_gid, new_gid; 1881 int error; 1882 1883 net_ns_get_ownership(net_old, &old_uid, &old_gid); 1884 net_ns_get_ownership(net_new, &new_uid, &new_gid); 1885 1886 /* The network namespace was changed but the owning user namespace is 1887 * identical so there's no need to change the owner of sysfs entries. 1888 */ 1889 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid)) 1890 return 0; 1891 1892 error = device_change_owner(dev, new_uid, new_gid); 1893 if (error) 1894 return error; 1895 1896 error = queue_change_owner(ndev, new_uid, new_gid); 1897 if (error) 1898 return error; 1899 1900 return 0; 1901 } 1902 1903 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 1904 const void *ns) 1905 { 1906 return class_create_file_ns(&net_class, class_attr, ns); 1907 } 1908 EXPORT_SYMBOL(netdev_class_create_file_ns); 1909 1910 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 1911 const void *ns) 1912 { 1913 class_remove_file_ns(&net_class, class_attr, ns); 1914 } 1915 EXPORT_SYMBOL(netdev_class_remove_file_ns); 1916 1917 int __init netdev_kobject_init(void) 1918 { 1919 kobj_ns_type_register(&net_ns_type_operations); 1920 return class_register(&net_class); 1921 } 1922