1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net-sysfs.c - network device class and attributes 4 * 5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org> 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/kernel.h> 10 #include <linux/netdevice.h> 11 #include <linux/if_arp.h> 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/isolation.h> 15 #include <linux/nsproxy.h> 16 #include <net/sock.h> 17 #include <net/net_namespace.h> 18 #include <linux/rtnetlink.h> 19 #include <linux/vmalloc.h> 20 #include <linux/export.h> 21 #include <linux/jiffies.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/of.h> 24 #include <linux/of_net.h> 25 #include <linux/cpu.h> 26 #include <net/netdev_rx_queue.h> 27 28 #include "dev.h" 29 #include "net-sysfs.h" 30 31 #ifdef CONFIG_SYSFS 32 static const char fmt_hex[] = "%#x\n"; 33 static const char fmt_dec[] = "%d\n"; 34 static const char fmt_ulong[] = "%lu\n"; 35 static const char fmt_u64[] = "%llu\n"; 36 37 /* Caller holds RTNL or dev_base_lock */ 38 static inline int dev_isalive(const struct net_device *dev) 39 { 40 return dev->reg_state <= NETREG_REGISTERED; 41 } 42 43 /* use same locking rules as GIF* ioctl's */ 44 static ssize_t netdev_show(const struct device *dev, 45 struct device_attribute *attr, char *buf, 46 ssize_t (*format)(const struct net_device *, char *)) 47 { 48 struct net_device *ndev = to_net_dev(dev); 49 ssize_t ret = -EINVAL; 50 51 read_lock(&dev_base_lock); 52 if (dev_isalive(ndev)) 53 ret = (*format)(ndev, buf); 54 read_unlock(&dev_base_lock); 55 56 return ret; 57 } 58 59 /* generate a show function for simple field */ 60 #define NETDEVICE_SHOW(field, format_string) \ 61 static ssize_t format_##field(const struct net_device *dev, char *buf) \ 62 { \ 63 return sysfs_emit(buf, format_string, dev->field); \ 64 } \ 65 static ssize_t field##_show(struct device *dev, \ 66 struct device_attribute *attr, char *buf) \ 67 { \ 68 return netdev_show(dev, attr, buf, format_##field); \ 69 } \ 70 71 #define NETDEVICE_SHOW_RO(field, format_string) \ 72 NETDEVICE_SHOW(field, format_string); \ 73 static DEVICE_ATTR_RO(field) 74 75 #define NETDEVICE_SHOW_RW(field, format_string) \ 76 NETDEVICE_SHOW(field, format_string); \ 77 static DEVICE_ATTR_RW(field) 78 79 /* use same locking and permission rules as SIF* ioctl's */ 80 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, 81 const char *buf, size_t len, 82 int (*set)(struct net_device *, unsigned long)) 83 { 84 struct net_device *netdev = to_net_dev(dev); 85 struct net *net = dev_net(netdev); 86 unsigned long new; 87 int ret; 88 89 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 90 return -EPERM; 91 92 ret = kstrtoul(buf, 0, &new); 93 if (ret) 94 goto err; 95 96 if (!rtnl_trylock()) 97 return restart_syscall(); 98 99 if (dev_isalive(netdev)) { 100 ret = (*set)(netdev, new); 101 if (ret == 0) 102 ret = len; 103 } 104 rtnl_unlock(); 105 err: 106 return ret; 107 } 108 109 NETDEVICE_SHOW_RO(dev_id, fmt_hex); 110 NETDEVICE_SHOW_RO(dev_port, fmt_dec); 111 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec); 112 NETDEVICE_SHOW_RO(addr_len, fmt_dec); 113 NETDEVICE_SHOW_RO(ifindex, fmt_dec); 114 NETDEVICE_SHOW_RO(type, fmt_dec); 115 NETDEVICE_SHOW_RO(link_mode, fmt_dec); 116 117 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr, 118 char *buf) 119 { 120 struct net_device *ndev = to_net_dev(dev); 121 122 return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev)); 123 } 124 static DEVICE_ATTR_RO(iflink); 125 126 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf) 127 { 128 return sysfs_emit(buf, fmt_dec, dev->name_assign_type); 129 } 130 131 static ssize_t name_assign_type_show(struct device *dev, 132 struct device_attribute *attr, 133 char *buf) 134 { 135 struct net_device *ndev = to_net_dev(dev); 136 ssize_t ret = -EINVAL; 137 138 if (ndev->name_assign_type != NET_NAME_UNKNOWN) 139 ret = netdev_show(dev, attr, buf, format_name_assign_type); 140 141 return ret; 142 } 143 static DEVICE_ATTR_RO(name_assign_type); 144 145 /* use same locking rules as GIFHWADDR ioctl's */ 146 static ssize_t address_show(struct device *dev, struct device_attribute *attr, 147 char *buf) 148 { 149 struct net_device *ndev = to_net_dev(dev); 150 ssize_t ret = -EINVAL; 151 152 read_lock(&dev_base_lock); 153 if (dev_isalive(ndev)) 154 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len); 155 read_unlock(&dev_base_lock); 156 return ret; 157 } 158 static DEVICE_ATTR_RO(address); 159 160 static ssize_t broadcast_show(struct device *dev, 161 struct device_attribute *attr, char *buf) 162 { 163 struct net_device *ndev = to_net_dev(dev); 164 165 if (dev_isalive(ndev)) 166 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len); 167 return -EINVAL; 168 } 169 static DEVICE_ATTR_RO(broadcast); 170 171 static int change_carrier(struct net_device *dev, unsigned long new_carrier) 172 { 173 if (!netif_running(dev)) 174 return -EINVAL; 175 return dev_change_carrier(dev, (bool)new_carrier); 176 } 177 178 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr, 179 const char *buf, size_t len) 180 { 181 struct net_device *netdev = to_net_dev(dev); 182 183 /* The check is also done in change_carrier; this helps returning early 184 * without hitting the trylock/restart in netdev_store. 185 */ 186 if (!netdev->netdev_ops->ndo_change_carrier) 187 return -EOPNOTSUPP; 188 189 return netdev_store(dev, attr, buf, len, change_carrier); 190 } 191 192 static ssize_t carrier_show(struct device *dev, 193 struct device_attribute *attr, char *buf) 194 { 195 struct net_device *netdev = to_net_dev(dev); 196 197 if (netif_running(netdev)) 198 return sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev)); 199 200 return -EINVAL; 201 } 202 static DEVICE_ATTR_RW(carrier); 203 204 static ssize_t speed_show(struct device *dev, 205 struct device_attribute *attr, char *buf) 206 { 207 struct net_device *netdev = to_net_dev(dev); 208 int ret = -EINVAL; 209 210 /* The check is also done in __ethtool_get_link_ksettings; this helps 211 * returning early without hitting the trylock/restart below. 212 */ 213 if (!netdev->ethtool_ops->get_link_ksettings) 214 return ret; 215 216 if (!rtnl_trylock()) 217 return restart_syscall(); 218 219 if (netif_running(netdev)) { 220 struct ethtool_link_ksettings cmd; 221 222 if (!__ethtool_get_link_ksettings(netdev, &cmd)) 223 ret = sysfs_emit(buf, fmt_dec, cmd.base.speed); 224 } 225 rtnl_unlock(); 226 return ret; 227 } 228 static DEVICE_ATTR_RO(speed); 229 230 static ssize_t duplex_show(struct device *dev, 231 struct device_attribute *attr, char *buf) 232 { 233 struct net_device *netdev = to_net_dev(dev); 234 int ret = -EINVAL; 235 236 /* The check is also done in __ethtool_get_link_ksettings; this helps 237 * returning early without hitting the trylock/restart below. 238 */ 239 if (!netdev->ethtool_ops->get_link_ksettings) 240 return ret; 241 242 if (!rtnl_trylock()) 243 return restart_syscall(); 244 245 if (netif_running(netdev)) { 246 struct ethtool_link_ksettings cmd; 247 248 if (!__ethtool_get_link_ksettings(netdev, &cmd)) { 249 const char *duplex; 250 251 switch (cmd.base.duplex) { 252 case DUPLEX_HALF: 253 duplex = "half"; 254 break; 255 case DUPLEX_FULL: 256 duplex = "full"; 257 break; 258 default: 259 duplex = "unknown"; 260 break; 261 } 262 ret = sysfs_emit(buf, "%s\n", duplex); 263 } 264 } 265 rtnl_unlock(); 266 return ret; 267 } 268 static DEVICE_ATTR_RO(duplex); 269 270 static ssize_t testing_show(struct device *dev, 271 struct device_attribute *attr, char *buf) 272 { 273 struct net_device *netdev = to_net_dev(dev); 274 275 if (netif_running(netdev)) 276 return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev)); 277 278 return -EINVAL; 279 } 280 static DEVICE_ATTR_RO(testing); 281 282 static ssize_t dormant_show(struct device *dev, 283 struct device_attribute *attr, char *buf) 284 { 285 struct net_device *netdev = to_net_dev(dev); 286 287 if (netif_running(netdev)) 288 return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev)); 289 290 return -EINVAL; 291 } 292 static DEVICE_ATTR_RO(dormant); 293 294 static const char *const operstates[] = { 295 "unknown", 296 "notpresent", /* currently unused */ 297 "down", 298 "lowerlayerdown", 299 "testing", 300 "dormant", 301 "up" 302 }; 303 304 static ssize_t operstate_show(struct device *dev, 305 struct device_attribute *attr, char *buf) 306 { 307 const struct net_device *netdev = to_net_dev(dev); 308 unsigned char operstate; 309 310 operstate = READ_ONCE(netdev->operstate); 311 if (!netif_running(netdev)) 312 operstate = IF_OPER_DOWN; 313 314 if (operstate >= ARRAY_SIZE(operstates)) 315 return -EINVAL; /* should not happen */ 316 317 return sysfs_emit(buf, "%s\n", operstates[operstate]); 318 } 319 static DEVICE_ATTR_RO(operstate); 320 321 static ssize_t carrier_changes_show(struct device *dev, 322 struct device_attribute *attr, 323 char *buf) 324 { 325 struct net_device *netdev = to_net_dev(dev); 326 327 return sysfs_emit(buf, fmt_dec, 328 atomic_read(&netdev->carrier_up_count) + 329 atomic_read(&netdev->carrier_down_count)); 330 } 331 static DEVICE_ATTR_RO(carrier_changes); 332 333 static ssize_t carrier_up_count_show(struct device *dev, 334 struct device_attribute *attr, 335 char *buf) 336 { 337 struct net_device *netdev = to_net_dev(dev); 338 339 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count)); 340 } 341 static DEVICE_ATTR_RO(carrier_up_count); 342 343 static ssize_t carrier_down_count_show(struct device *dev, 344 struct device_attribute *attr, 345 char *buf) 346 { 347 struct net_device *netdev = to_net_dev(dev); 348 349 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count)); 350 } 351 static DEVICE_ATTR_RO(carrier_down_count); 352 353 /* read-write attributes */ 354 355 static int change_mtu(struct net_device *dev, unsigned long new_mtu) 356 { 357 return dev_set_mtu(dev, (int)new_mtu); 358 } 359 360 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr, 361 const char *buf, size_t len) 362 { 363 return netdev_store(dev, attr, buf, len, change_mtu); 364 } 365 NETDEVICE_SHOW_RW(mtu, fmt_dec); 366 367 static int change_flags(struct net_device *dev, unsigned long new_flags) 368 { 369 return dev_change_flags(dev, (unsigned int)new_flags, NULL); 370 } 371 372 static ssize_t flags_store(struct device *dev, struct device_attribute *attr, 373 const char *buf, size_t len) 374 { 375 return netdev_store(dev, attr, buf, len, change_flags); 376 } 377 NETDEVICE_SHOW_RW(flags, fmt_hex); 378 379 static ssize_t tx_queue_len_store(struct device *dev, 380 struct device_attribute *attr, 381 const char *buf, size_t len) 382 { 383 if (!capable(CAP_NET_ADMIN)) 384 return -EPERM; 385 386 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len); 387 } 388 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec); 389 390 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val) 391 { 392 WRITE_ONCE(dev->gro_flush_timeout, val); 393 return 0; 394 } 395 396 static ssize_t gro_flush_timeout_store(struct device *dev, 397 struct device_attribute *attr, 398 const char *buf, size_t len) 399 { 400 if (!capable(CAP_NET_ADMIN)) 401 return -EPERM; 402 403 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout); 404 } 405 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong); 406 407 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val) 408 { 409 WRITE_ONCE(dev->napi_defer_hard_irqs, val); 410 return 0; 411 } 412 413 static ssize_t napi_defer_hard_irqs_store(struct device *dev, 414 struct device_attribute *attr, 415 const char *buf, size_t len) 416 { 417 if (!capable(CAP_NET_ADMIN)) 418 return -EPERM; 419 420 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs); 421 } 422 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec); 423 424 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr, 425 const char *buf, size_t len) 426 { 427 struct net_device *netdev = to_net_dev(dev); 428 struct net *net = dev_net(netdev); 429 size_t count = len; 430 ssize_t ret = 0; 431 432 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 433 return -EPERM; 434 435 /* ignore trailing newline */ 436 if (len > 0 && buf[len - 1] == '\n') 437 --count; 438 439 if (!rtnl_trylock()) 440 return restart_syscall(); 441 442 if (dev_isalive(netdev)) { 443 ret = dev_set_alias(netdev, buf, count); 444 if (ret < 0) 445 goto err; 446 ret = len; 447 netdev_state_change(netdev); 448 } 449 err: 450 rtnl_unlock(); 451 452 return ret; 453 } 454 455 static ssize_t ifalias_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 const struct net_device *netdev = to_net_dev(dev); 459 char tmp[IFALIASZ]; 460 ssize_t ret = 0; 461 462 ret = dev_get_alias(netdev, tmp, sizeof(tmp)); 463 if (ret > 0) 464 ret = sysfs_emit(buf, "%s\n", tmp); 465 return ret; 466 } 467 static DEVICE_ATTR_RW(ifalias); 468 469 static int change_group(struct net_device *dev, unsigned long new_group) 470 { 471 dev_set_group(dev, (int)new_group); 472 return 0; 473 } 474 475 static ssize_t group_store(struct device *dev, struct device_attribute *attr, 476 const char *buf, size_t len) 477 { 478 return netdev_store(dev, attr, buf, len, change_group); 479 } 480 NETDEVICE_SHOW(group, fmt_dec); 481 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store); 482 483 static int change_proto_down(struct net_device *dev, unsigned long proto_down) 484 { 485 return dev_change_proto_down(dev, (bool)proto_down); 486 } 487 488 static ssize_t proto_down_store(struct device *dev, 489 struct device_attribute *attr, 490 const char *buf, size_t len) 491 { 492 return netdev_store(dev, attr, buf, len, change_proto_down); 493 } 494 NETDEVICE_SHOW_RW(proto_down, fmt_dec); 495 496 static ssize_t phys_port_id_show(struct device *dev, 497 struct device_attribute *attr, char *buf) 498 { 499 struct net_device *netdev = to_net_dev(dev); 500 ssize_t ret = -EINVAL; 501 502 /* The check is also done in dev_get_phys_port_id; this helps returning 503 * early without hitting the trylock/restart below. 504 */ 505 if (!netdev->netdev_ops->ndo_get_phys_port_id) 506 return -EOPNOTSUPP; 507 508 if (!rtnl_trylock()) 509 return restart_syscall(); 510 511 if (dev_isalive(netdev)) { 512 struct netdev_phys_item_id ppid; 513 514 ret = dev_get_phys_port_id(netdev, &ppid); 515 if (!ret) 516 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id); 517 } 518 rtnl_unlock(); 519 520 return ret; 521 } 522 static DEVICE_ATTR_RO(phys_port_id); 523 524 static ssize_t phys_port_name_show(struct device *dev, 525 struct device_attribute *attr, char *buf) 526 { 527 struct net_device *netdev = to_net_dev(dev); 528 ssize_t ret = -EINVAL; 529 530 /* The checks are also done in dev_get_phys_port_name; this helps 531 * returning early without hitting the trylock/restart below. 532 */ 533 if (!netdev->netdev_ops->ndo_get_phys_port_name && 534 !netdev->devlink_port) 535 return -EOPNOTSUPP; 536 537 if (!rtnl_trylock()) 538 return restart_syscall(); 539 540 if (dev_isalive(netdev)) { 541 char name[IFNAMSIZ]; 542 543 ret = dev_get_phys_port_name(netdev, name, sizeof(name)); 544 if (!ret) 545 ret = sysfs_emit(buf, "%s\n", name); 546 } 547 rtnl_unlock(); 548 549 return ret; 550 } 551 static DEVICE_ATTR_RO(phys_port_name); 552 553 static ssize_t phys_switch_id_show(struct device *dev, 554 struct device_attribute *attr, char *buf) 555 { 556 struct net_device *netdev = to_net_dev(dev); 557 ssize_t ret = -EINVAL; 558 559 /* The checks are also done in dev_get_phys_port_name; this helps 560 * returning early without hitting the trylock/restart below. This works 561 * because recurse is false when calling dev_get_port_parent_id. 562 */ 563 if (!netdev->netdev_ops->ndo_get_port_parent_id && 564 !netdev->devlink_port) 565 return -EOPNOTSUPP; 566 567 if (!rtnl_trylock()) 568 return restart_syscall(); 569 570 if (dev_isalive(netdev)) { 571 struct netdev_phys_item_id ppid = { }; 572 573 ret = dev_get_port_parent_id(netdev, &ppid, false); 574 if (!ret) 575 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id); 576 } 577 rtnl_unlock(); 578 579 return ret; 580 } 581 static DEVICE_ATTR_RO(phys_switch_id); 582 583 static ssize_t threaded_show(struct device *dev, 584 struct device_attribute *attr, char *buf) 585 { 586 struct net_device *netdev = to_net_dev(dev); 587 ssize_t ret = -EINVAL; 588 589 if (!rtnl_trylock()) 590 return restart_syscall(); 591 592 if (dev_isalive(netdev)) 593 ret = sysfs_emit(buf, fmt_dec, netdev->threaded); 594 595 rtnl_unlock(); 596 return ret; 597 } 598 599 static int modify_napi_threaded(struct net_device *dev, unsigned long val) 600 { 601 int ret; 602 603 if (list_empty(&dev->napi_list)) 604 return -EOPNOTSUPP; 605 606 if (val != 0 && val != 1) 607 return -EOPNOTSUPP; 608 609 ret = dev_set_threaded(dev, val); 610 611 return ret; 612 } 613 614 static ssize_t threaded_store(struct device *dev, 615 struct device_attribute *attr, 616 const char *buf, size_t len) 617 { 618 return netdev_store(dev, attr, buf, len, modify_napi_threaded); 619 } 620 static DEVICE_ATTR_RW(threaded); 621 622 static struct attribute *net_class_attrs[] __ro_after_init = { 623 &dev_attr_netdev_group.attr, 624 &dev_attr_type.attr, 625 &dev_attr_dev_id.attr, 626 &dev_attr_dev_port.attr, 627 &dev_attr_iflink.attr, 628 &dev_attr_ifindex.attr, 629 &dev_attr_name_assign_type.attr, 630 &dev_attr_addr_assign_type.attr, 631 &dev_attr_addr_len.attr, 632 &dev_attr_link_mode.attr, 633 &dev_attr_address.attr, 634 &dev_attr_broadcast.attr, 635 &dev_attr_speed.attr, 636 &dev_attr_duplex.attr, 637 &dev_attr_dormant.attr, 638 &dev_attr_testing.attr, 639 &dev_attr_operstate.attr, 640 &dev_attr_carrier_changes.attr, 641 &dev_attr_ifalias.attr, 642 &dev_attr_carrier.attr, 643 &dev_attr_mtu.attr, 644 &dev_attr_flags.attr, 645 &dev_attr_tx_queue_len.attr, 646 &dev_attr_gro_flush_timeout.attr, 647 &dev_attr_napi_defer_hard_irqs.attr, 648 &dev_attr_phys_port_id.attr, 649 &dev_attr_phys_port_name.attr, 650 &dev_attr_phys_switch_id.attr, 651 &dev_attr_proto_down.attr, 652 &dev_attr_carrier_up_count.attr, 653 &dev_attr_carrier_down_count.attr, 654 &dev_attr_threaded.attr, 655 NULL, 656 }; 657 ATTRIBUTE_GROUPS(net_class); 658 659 /* Show a given an attribute in the statistics group */ 660 static ssize_t netstat_show(const struct device *d, 661 struct device_attribute *attr, char *buf, 662 unsigned long offset) 663 { 664 struct net_device *dev = to_net_dev(d); 665 ssize_t ret = -EINVAL; 666 667 WARN_ON(offset > sizeof(struct rtnl_link_stats64) || 668 offset % sizeof(u64) != 0); 669 670 read_lock(&dev_base_lock); 671 if (dev_isalive(dev)) { 672 struct rtnl_link_stats64 temp; 673 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 674 675 ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset)); 676 } 677 read_unlock(&dev_base_lock); 678 return ret; 679 } 680 681 /* generate a read-only statistics attribute */ 682 #define NETSTAT_ENTRY(name) \ 683 static ssize_t name##_show(struct device *d, \ 684 struct device_attribute *attr, char *buf) \ 685 { \ 686 return netstat_show(d, attr, buf, \ 687 offsetof(struct rtnl_link_stats64, name)); \ 688 } \ 689 static DEVICE_ATTR_RO(name) 690 691 NETSTAT_ENTRY(rx_packets); 692 NETSTAT_ENTRY(tx_packets); 693 NETSTAT_ENTRY(rx_bytes); 694 NETSTAT_ENTRY(tx_bytes); 695 NETSTAT_ENTRY(rx_errors); 696 NETSTAT_ENTRY(tx_errors); 697 NETSTAT_ENTRY(rx_dropped); 698 NETSTAT_ENTRY(tx_dropped); 699 NETSTAT_ENTRY(multicast); 700 NETSTAT_ENTRY(collisions); 701 NETSTAT_ENTRY(rx_length_errors); 702 NETSTAT_ENTRY(rx_over_errors); 703 NETSTAT_ENTRY(rx_crc_errors); 704 NETSTAT_ENTRY(rx_frame_errors); 705 NETSTAT_ENTRY(rx_fifo_errors); 706 NETSTAT_ENTRY(rx_missed_errors); 707 NETSTAT_ENTRY(tx_aborted_errors); 708 NETSTAT_ENTRY(tx_carrier_errors); 709 NETSTAT_ENTRY(tx_fifo_errors); 710 NETSTAT_ENTRY(tx_heartbeat_errors); 711 NETSTAT_ENTRY(tx_window_errors); 712 NETSTAT_ENTRY(rx_compressed); 713 NETSTAT_ENTRY(tx_compressed); 714 NETSTAT_ENTRY(rx_nohandler); 715 716 static struct attribute *netstat_attrs[] __ro_after_init = { 717 &dev_attr_rx_packets.attr, 718 &dev_attr_tx_packets.attr, 719 &dev_attr_rx_bytes.attr, 720 &dev_attr_tx_bytes.attr, 721 &dev_attr_rx_errors.attr, 722 &dev_attr_tx_errors.attr, 723 &dev_attr_rx_dropped.attr, 724 &dev_attr_tx_dropped.attr, 725 &dev_attr_multicast.attr, 726 &dev_attr_collisions.attr, 727 &dev_attr_rx_length_errors.attr, 728 &dev_attr_rx_over_errors.attr, 729 &dev_attr_rx_crc_errors.attr, 730 &dev_attr_rx_frame_errors.attr, 731 &dev_attr_rx_fifo_errors.attr, 732 &dev_attr_rx_missed_errors.attr, 733 &dev_attr_tx_aborted_errors.attr, 734 &dev_attr_tx_carrier_errors.attr, 735 &dev_attr_tx_fifo_errors.attr, 736 &dev_attr_tx_heartbeat_errors.attr, 737 &dev_attr_tx_window_errors.attr, 738 &dev_attr_rx_compressed.attr, 739 &dev_attr_tx_compressed.attr, 740 &dev_attr_rx_nohandler.attr, 741 NULL 742 }; 743 744 static const struct attribute_group netstat_group = { 745 .name = "statistics", 746 .attrs = netstat_attrs, 747 }; 748 749 static struct attribute *wireless_attrs[] = { 750 NULL 751 }; 752 753 static const struct attribute_group wireless_group = { 754 .name = "wireless", 755 .attrs = wireless_attrs, 756 }; 757 758 static bool wireless_group_needed(struct net_device *ndev) 759 { 760 #if IS_ENABLED(CONFIG_CFG80211) 761 if (ndev->ieee80211_ptr) 762 return true; 763 #endif 764 #if IS_ENABLED(CONFIG_WIRELESS_EXT) 765 if (ndev->wireless_handlers) 766 return true; 767 #endif 768 return false; 769 } 770 771 #else /* CONFIG_SYSFS */ 772 #define net_class_groups NULL 773 #endif /* CONFIG_SYSFS */ 774 775 #ifdef CONFIG_SYSFS 776 #define to_rx_queue_attr(_attr) \ 777 container_of(_attr, struct rx_queue_attribute, attr) 778 779 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) 780 781 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, 782 char *buf) 783 { 784 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 785 struct netdev_rx_queue *queue = to_rx_queue(kobj); 786 787 if (!attribute->show) 788 return -EIO; 789 790 return attribute->show(queue, buf); 791 } 792 793 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, 794 const char *buf, size_t count) 795 { 796 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 797 struct netdev_rx_queue *queue = to_rx_queue(kobj); 798 799 if (!attribute->store) 800 return -EIO; 801 802 return attribute->store(queue, buf, count); 803 } 804 805 static const struct sysfs_ops rx_queue_sysfs_ops = { 806 .show = rx_queue_attr_show, 807 .store = rx_queue_attr_store, 808 }; 809 810 #ifdef CONFIG_RPS 811 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf) 812 { 813 struct rps_map *map; 814 cpumask_var_t mask; 815 int i, len; 816 817 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 818 return -ENOMEM; 819 820 rcu_read_lock(); 821 map = rcu_dereference(queue->rps_map); 822 if (map) 823 for (i = 0; i < map->len; i++) 824 cpumask_set_cpu(map->cpus[i], mask); 825 826 len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask)); 827 rcu_read_unlock(); 828 free_cpumask_var(mask); 829 830 return len < PAGE_SIZE ? len : -EINVAL; 831 } 832 833 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue, 834 cpumask_var_t mask) 835 { 836 static DEFINE_MUTEX(rps_map_mutex); 837 struct rps_map *old_map, *map; 838 int cpu, i; 839 840 map = kzalloc(max_t(unsigned int, 841 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), 842 GFP_KERNEL); 843 if (!map) 844 return -ENOMEM; 845 846 i = 0; 847 for_each_cpu_and(cpu, mask, cpu_online_mask) 848 map->cpus[i++] = cpu; 849 850 if (i) { 851 map->len = i; 852 } else { 853 kfree(map); 854 map = NULL; 855 } 856 857 mutex_lock(&rps_map_mutex); 858 old_map = rcu_dereference_protected(queue->rps_map, 859 mutex_is_locked(&rps_map_mutex)); 860 rcu_assign_pointer(queue->rps_map, map); 861 862 if (map) 863 static_branch_inc(&rps_needed); 864 if (old_map) 865 static_branch_dec(&rps_needed); 866 867 mutex_unlock(&rps_map_mutex); 868 869 if (old_map) 870 kfree_rcu(old_map, rcu); 871 return 0; 872 } 873 874 int rps_cpumask_housekeeping(struct cpumask *mask) 875 { 876 if (!cpumask_empty(mask)) { 877 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN)); 878 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ)); 879 if (cpumask_empty(mask)) 880 return -EINVAL; 881 } 882 return 0; 883 } 884 885 static ssize_t store_rps_map(struct netdev_rx_queue *queue, 886 const char *buf, size_t len) 887 { 888 cpumask_var_t mask; 889 int err; 890 891 if (!capable(CAP_NET_ADMIN)) 892 return -EPERM; 893 894 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 895 return -ENOMEM; 896 897 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 898 if (err) 899 goto out; 900 901 err = rps_cpumask_housekeeping(mask); 902 if (err) 903 goto out; 904 905 err = netdev_rx_queue_set_rps_mask(queue, mask); 906 907 out: 908 free_cpumask_var(mask); 909 return err ? : len; 910 } 911 912 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 913 char *buf) 914 { 915 struct rps_dev_flow_table *flow_table; 916 unsigned long val = 0; 917 918 rcu_read_lock(); 919 flow_table = rcu_dereference(queue->rps_flow_table); 920 if (flow_table) 921 val = (unsigned long)flow_table->mask + 1; 922 rcu_read_unlock(); 923 924 return sysfs_emit(buf, "%lu\n", val); 925 } 926 927 static void rps_dev_flow_table_release(struct rcu_head *rcu) 928 { 929 struct rps_dev_flow_table *table = container_of(rcu, 930 struct rps_dev_flow_table, rcu); 931 vfree(table); 932 } 933 934 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 935 const char *buf, size_t len) 936 { 937 unsigned long mask, count; 938 struct rps_dev_flow_table *table, *old_table; 939 static DEFINE_SPINLOCK(rps_dev_flow_lock); 940 int rc; 941 942 if (!capable(CAP_NET_ADMIN)) 943 return -EPERM; 944 945 rc = kstrtoul(buf, 0, &count); 946 if (rc < 0) 947 return rc; 948 949 if (count) { 950 mask = count - 1; 951 /* mask = roundup_pow_of_two(count) - 1; 952 * without overflows... 953 */ 954 while ((mask | (mask >> 1)) != mask) 955 mask |= (mask >> 1); 956 /* On 64 bit arches, must check mask fits in table->mask (u32), 957 * and on 32bit arches, must check 958 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow. 959 */ 960 #if BITS_PER_LONG > 32 961 if (mask > (unsigned long)(u32)mask) 962 return -EINVAL; 963 #else 964 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) 965 / sizeof(struct rps_dev_flow)) { 966 /* Enforce a limit to prevent overflow */ 967 return -EINVAL; 968 } 969 #endif 970 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); 971 if (!table) 972 return -ENOMEM; 973 974 table->mask = mask; 975 for (count = 0; count <= mask; count++) 976 table->flows[count].cpu = RPS_NO_CPU; 977 } else { 978 table = NULL; 979 } 980 981 spin_lock(&rps_dev_flow_lock); 982 old_table = rcu_dereference_protected(queue->rps_flow_table, 983 lockdep_is_held(&rps_dev_flow_lock)); 984 rcu_assign_pointer(queue->rps_flow_table, table); 985 spin_unlock(&rps_dev_flow_lock); 986 987 if (old_table) 988 call_rcu(&old_table->rcu, rps_dev_flow_table_release); 989 990 return len; 991 } 992 993 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init 994 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map); 995 996 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init 997 = __ATTR(rps_flow_cnt, 0644, 998 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); 999 #endif /* CONFIG_RPS */ 1000 1001 static struct attribute *rx_queue_default_attrs[] __ro_after_init = { 1002 #ifdef CONFIG_RPS 1003 &rps_cpus_attribute.attr, 1004 &rps_dev_flow_table_cnt_attribute.attr, 1005 #endif 1006 NULL 1007 }; 1008 ATTRIBUTE_GROUPS(rx_queue_default); 1009 1010 static void rx_queue_release(struct kobject *kobj) 1011 { 1012 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1013 #ifdef CONFIG_RPS 1014 struct rps_map *map; 1015 struct rps_dev_flow_table *flow_table; 1016 1017 map = rcu_dereference_protected(queue->rps_map, 1); 1018 if (map) { 1019 RCU_INIT_POINTER(queue->rps_map, NULL); 1020 kfree_rcu(map, rcu); 1021 } 1022 1023 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); 1024 if (flow_table) { 1025 RCU_INIT_POINTER(queue->rps_flow_table, NULL); 1026 call_rcu(&flow_table->rcu, rps_dev_flow_table_release); 1027 } 1028 #endif 1029 1030 memset(kobj, 0, sizeof(*kobj)); 1031 netdev_put(queue->dev, &queue->dev_tracker); 1032 } 1033 1034 static const void *rx_queue_namespace(const struct kobject *kobj) 1035 { 1036 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1037 struct device *dev = &queue->dev->dev; 1038 const void *ns = NULL; 1039 1040 if (dev->class && dev->class->ns_type) 1041 ns = dev->class->namespace(dev); 1042 1043 return ns; 1044 } 1045 1046 static void rx_queue_get_ownership(const struct kobject *kobj, 1047 kuid_t *uid, kgid_t *gid) 1048 { 1049 const struct net *net = rx_queue_namespace(kobj); 1050 1051 net_ns_get_ownership(net, uid, gid); 1052 } 1053 1054 static const struct kobj_type rx_queue_ktype = { 1055 .sysfs_ops = &rx_queue_sysfs_ops, 1056 .release = rx_queue_release, 1057 .default_groups = rx_queue_default_groups, 1058 .namespace = rx_queue_namespace, 1059 .get_ownership = rx_queue_get_ownership, 1060 }; 1061 1062 static int rx_queue_default_mask(struct net_device *dev, 1063 struct netdev_rx_queue *queue) 1064 { 1065 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL) 1066 struct cpumask *rps_default_mask = READ_ONCE(dev_net(dev)->core.rps_default_mask); 1067 1068 if (rps_default_mask && !cpumask_empty(rps_default_mask)) 1069 return netdev_rx_queue_set_rps_mask(queue, rps_default_mask); 1070 #endif 1071 return 0; 1072 } 1073 1074 static int rx_queue_add_kobject(struct net_device *dev, int index) 1075 { 1076 struct netdev_rx_queue *queue = dev->_rx + index; 1077 struct kobject *kobj = &queue->kobj; 1078 int error = 0; 1079 1080 /* Kobject_put later will trigger rx_queue_release call which 1081 * decreases dev refcount: Take that reference here 1082 */ 1083 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1084 1085 kobj->kset = dev->queues_kset; 1086 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, 1087 "rx-%u", index); 1088 if (error) 1089 goto err; 1090 1091 if (dev->sysfs_rx_queue_group) { 1092 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group); 1093 if (error) 1094 goto err; 1095 } 1096 1097 error = rx_queue_default_mask(dev, queue); 1098 if (error) 1099 goto err; 1100 1101 kobject_uevent(kobj, KOBJ_ADD); 1102 1103 return error; 1104 1105 err: 1106 kobject_put(kobj); 1107 return error; 1108 } 1109 1110 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid, 1111 kgid_t kgid) 1112 { 1113 struct netdev_rx_queue *queue = dev->_rx + index; 1114 struct kobject *kobj = &queue->kobj; 1115 int error; 1116 1117 error = sysfs_change_owner(kobj, kuid, kgid); 1118 if (error) 1119 return error; 1120 1121 if (dev->sysfs_rx_queue_group) 1122 error = sysfs_group_change_owner( 1123 kobj, dev->sysfs_rx_queue_group, kuid, kgid); 1124 1125 return error; 1126 } 1127 #endif /* CONFIG_SYSFS */ 1128 1129 int 1130 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1131 { 1132 #ifdef CONFIG_SYSFS 1133 int i; 1134 int error = 0; 1135 1136 #ifndef CONFIG_RPS 1137 if (!dev->sysfs_rx_queue_group) 1138 return 0; 1139 #endif 1140 for (i = old_num; i < new_num; i++) { 1141 error = rx_queue_add_kobject(dev, i); 1142 if (error) { 1143 new_num = old_num; 1144 break; 1145 } 1146 } 1147 1148 while (--i >= new_num) { 1149 struct kobject *kobj = &dev->_rx[i].kobj; 1150 1151 if (!refcount_read(&dev_net(dev)->ns.count)) 1152 kobj->uevent_suppress = 1; 1153 if (dev->sysfs_rx_queue_group) 1154 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group); 1155 kobject_put(kobj); 1156 } 1157 1158 return error; 1159 #else 1160 return 0; 1161 #endif 1162 } 1163 1164 static int net_rx_queue_change_owner(struct net_device *dev, int num, 1165 kuid_t kuid, kgid_t kgid) 1166 { 1167 #ifdef CONFIG_SYSFS 1168 int error = 0; 1169 int i; 1170 1171 #ifndef CONFIG_RPS 1172 if (!dev->sysfs_rx_queue_group) 1173 return 0; 1174 #endif 1175 for (i = 0; i < num; i++) { 1176 error = rx_queue_change_owner(dev, i, kuid, kgid); 1177 if (error) 1178 break; 1179 } 1180 1181 return error; 1182 #else 1183 return 0; 1184 #endif 1185 } 1186 1187 #ifdef CONFIG_SYSFS 1188 /* 1189 * netdev_queue sysfs structures and functions. 1190 */ 1191 struct netdev_queue_attribute { 1192 struct attribute attr; 1193 ssize_t (*show)(struct netdev_queue *queue, char *buf); 1194 ssize_t (*store)(struct netdev_queue *queue, 1195 const char *buf, size_t len); 1196 }; 1197 #define to_netdev_queue_attr(_attr) \ 1198 container_of(_attr, struct netdev_queue_attribute, attr) 1199 1200 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) 1201 1202 static ssize_t netdev_queue_attr_show(struct kobject *kobj, 1203 struct attribute *attr, char *buf) 1204 { 1205 const struct netdev_queue_attribute *attribute 1206 = to_netdev_queue_attr(attr); 1207 struct netdev_queue *queue = to_netdev_queue(kobj); 1208 1209 if (!attribute->show) 1210 return -EIO; 1211 1212 return attribute->show(queue, buf); 1213 } 1214 1215 static ssize_t netdev_queue_attr_store(struct kobject *kobj, 1216 struct attribute *attr, 1217 const char *buf, size_t count) 1218 { 1219 const struct netdev_queue_attribute *attribute 1220 = to_netdev_queue_attr(attr); 1221 struct netdev_queue *queue = to_netdev_queue(kobj); 1222 1223 if (!attribute->store) 1224 return -EIO; 1225 1226 return attribute->store(queue, buf, count); 1227 } 1228 1229 static const struct sysfs_ops netdev_queue_sysfs_ops = { 1230 .show = netdev_queue_attr_show, 1231 .store = netdev_queue_attr_store, 1232 }; 1233 1234 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf) 1235 { 1236 unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout); 1237 1238 return sysfs_emit(buf, fmt_ulong, trans_timeout); 1239 } 1240 1241 static unsigned int get_netdev_queue_index(struct netdev_queue *queue) 1242 { 1243 struct net_device *dev = queue->dev; 1244 unsigned int i; 1245 1246 i = queue - dev->_tx; 1247 BUG_ON(i >= dev->num_tx_queues); 1248 1249 return i; 1250 } 1251 1252 static ssize_t traffic_class_show(struct netdev_queue *queue, 1253 char *buf) 1254 { 1255 struct net_device *dev = queue->dev; 1256 int num_tc, tc; 1257 int index; 1258 1259 if (!netif_is_multiqueue(dev)) 1260 return -ENOENT; 1261 1262 if (!rtnl_trylock()) 1263 return restart_syscall(); 1264 1265 index = get_netdev_queue_index(queue); 1266 1267 /* If queue belongs to subordinate dev use its TC mapping */ 1268 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1269 1270 num_tc = dev->num_tc; 1271 tc = netdev_txq_to_tc(dev, index); 1272 1273 rtnl_unlock(); 1274 1275 if (tc < 0) 1276 return -EINVAL; 1277 1278 /* We can report the traffic class one of two ways: 1279 * Subordinate device traffic classes are reported with the traffic 1280 * class first, and then the subordinate class so for example TC0 on 1281 * subordinate device 2 will be reported as "0-2". If the queue 1282 * belongs to the root device it will be reported with just the 1283 * traffic class, so just "0" for TC 0 for example. 1284 */ 1285 return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) : 1286 sysfs_emit(buf, "%d\n", tc); 1287 } 1288 1289 #ifdef CONFIG_XPS 1290 static ssize_t tx_maxrate_show(struct netdev_queue *queue, 1291 char *buf) 1292 { 1293 return sysfs_emit(buf, "%lu\n", queue->tx_maxrate); 1294 } 1295 1296 static ssize_t tx_maxrate_store(struct netdev_queue *queue, 1297 const char *buf, size_t len) 1298 { 1299 struct net_device *dev = queue->dev; 1300 int err, index = get_netdev_queue_index(queue); 1301 u32 rate = 0; 1302 1303 if (!capable(CAP_NET_ADMIN)) 1304 return -EPERM; 1305 1306 /* The check is also done later; this helps returning early without 1307 * hitting the trylock/restart below. 1308 */ 1309 if (!dev->netdev_ops->ndo_set_tx_maxrate) 1310 return -EOPNOTSUPP; 1311 1312 err = kstrtou32(buf, 10, &rate); 1313 if (err < 0) 1314 return err; 1315 1316 if (!rtnl_trylock()) 1317 return restart_syscall(); 1318 1319 err = -EOPNOTSUPP; 1320 if (dev->netdev_ops->ndo_set_tx_maxrate) 1321 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate); 1322 1323 rtnl_unlock(); 1324 if (!err) { 1325 queue->tx_maxrate = rate; 1326 return len; 1327 } 1328 return err; 1329 } 1330 1331 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init 1332 = __ATTR_RW(tx_maxrate); 1333 #endif 1334 1335 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init 1336 = __ATTR_RO(tx_timeout); 1337 1338 static struct netdev_queue_attribute queue_traffic_class __ro_after_init 1339 = __ATTR_RO(traffic_class); 1340 1341 #ifdef CONFIG_BQL 1342 /* 1343 * Byte queue limits sysfs structures and functions. 1344 */ 1345 static ssize_t bql_show(char *buf, unsigned int value) 1346 { 1347 return sysfs_emit(buf, "%u\n", value); 1348 } 1349 1350 static ssize_t bql_set(const char *buf, const size_t count, 1351 unsigned int *pvalue) 1352 { 1353 unsigned int value; 1354 int err; 1355 1356 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) { 1357 value = DQL_MAX_LIMIT; 1358 } else { 1359 err = kstrtouint(buf, 10, &value); 1360 if (err < 0) 1361 return err; 1362 if (value > DQL_MAX_LIMIT) 1363 return -EINVAL; 1364 } 1365 1366 *pvalue = value; 1367 1368 return count; 1369 } 1370 1371 static ssize_t bql_show_hold_time(struct netdev_queue *queue, 1372 char *buf) 1373 { 1374 struct dql *dql = &queue->dql; 1375 1376 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); 1377 } 1378 1379 static ssize_t bql_set_hold_time(struct netdev_queue *queue, 1380 const char *buf, size_t len) 1381 { 1382 struct dql *dql = &queue->dql; 1383 unsigned int value; 1384 int err; 1385 1386 err = kstrtouint(buf, 10, &value); 1387 if (err < 0) 1388 return err; 1389 1390 dql->slack_hold_time = msecs_to_jiffies(value); 1391 1392 return len; 1393 } 1394 1395 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init 1396 = __ATTR(hold_time, 0644, 1397 bql_show_hold_time, bql_set_hold_time); 1398 1399 static ssize_t bql_show_inflight(struct netdev_queue *queue, 1400 char *buf) 1401 { 1402 struct dql *dql = &queue->dql; 1403 1404 return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed); 1405 } 1406 1407 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init = 1408 __ATTR(inflight, 0444, bql_show_inflight, NULL); 1409 1410 #define BQL_ATTR(NAME, FIELD) \ 1411 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \ 1412 char *buf) \ 1413 { \ 1414 return bql_show(buf, queue->dql.FIELD); \ 1415 } \ 1416 \ 1417 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \ 1418 const char *buf, size_t len) \ 1419 { \ 1420 return bql_set(buf, len, &queue->dql.FIELD); \ 1421 } \ 1422 \ 1423 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \ 1424 = __ATTR(NAME, 0644, \ 1425 bql_show_ ## NAME, bql_set_ ## NAME) 1426 1427 BQL_ATTR(limit, limit); 1428 BQL_ATTR(limit_max, max_limit); 1429 BQL_ATTR(limit_min, min_limit); 1430 1431 static struct attribute *dql_attrs[] __ro_after_init = { 1432 &bql_limit_attribute.attr, 1433 &bql_limit_max_attribute.attr, 1434 &bql_limit_min_attribute.attr, 1435 &bql_hold_time_attribute.attr, 1436 &bql_inflight_attribute.attr, 1437 NULL 1438 }; 1439 1440 static const struct attribute_group dql_group = { 1441 .name = "byte_queue_limits", 1442 .attrs = dql_attrs, 1443 }; 1444 #endif /* CONFIG_BQL */ 1445 1446 #ifdef CONFIG_XPS 1447 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index, 1448 int tc, char *buf, enum xps_map_type type) 1449 { 1450 struct xps_dev_maps *dev_maps; 1451 unsigned long *mask; 1452 unsigned int nr_ids; 1453 int j, len; 1454 1455 rcu_read_lock(); 1456 dev_maps = rcu_dereference(dev->xps_maps[type]); 1457 1458 /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0 1459 * when dev_maps hasn't been allocated yet, to be backward compatible. 1460 */ 1461 nr_ids = dev_maps ? dev_maps->nr_ids : 1462 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues); 1463 1464 mask = bitmap_zalloc(nr_ids, GFP_NOWAIT); 1465 if (!mask) { 1466 rcu_read_unlock(); 1467 return -ENOMEM; 1468 } 1469 1470 if (!dev_maps || tc >= dev_maps->num_tc) 1471 goto out_no_maps; 1472 1473 for (j = 0; j < nr_ids; j++) { 1474 int i, tci = j * dev_maps->num_tc + tc; 1475 struct xps_map *map; 1476 1477 map = rcu_dereference(dev_maps->attr_map[tci]); 1478 if (!map) 1479 continue; 1480 1481 for (i = map->len; i--;) { 1482 if (map->queues[i] == index) { 1483 __set_bit(j, mask); 1484 break; 1485 } 1486 } 1487 } 1488 out_no_maps: 1489 rcu_read_unlock(); 1490 1491 len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids); 1492 bitmap_free(mask); 1493 1494 return len < PAGE_SIZE ? len : -EINVAL; 1495 } 1496 1497 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf) 1498 { 1499 struct net_device *dev = queue->dev; 1500 unsigned int index; 1501 int len, tc; 1502 1503 if (!netif_is_multiqueue(dev)) 1504 return -ENOENT; 1505 1506 index = get_netdev_queue_index(queue); 1507 1508 if (!rtnl_trylock()) 1509 return restart_syscall(); 1510 1511 /* If queue belongs to subordinate dev use its map */ 1512 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1513 1514 tc = netdev_txq_to_tc(dev, index); 1515 if (tc < 0) { 1516 rtnl_unlock(); 1517 return -EINVAL; 1518 } 1519 1520 /* Make sure the subordinate device can't be freed */ 1521 get_device(&dev->dev); 1522 rtnl_unlock(); 1523 1524 len = xps_queue_show(dev, index, tc, buf, XPS_CPUS); 1525 1526 put_device(&dev->dev); 1527 return len; 1528 } 1529 1530 static ssize_t xps_cpus_store(struct netdev_queue *queue, 1531 const char *buf, size_t len) 1532 { 1533 struct net_device *dev = queue->dev; 1534 unsigned int index; 1535 cpumask_var_t mask; 1536 int err; 1537 1538 if (!netif_is_multiqueue(dev)) 1539 return -ENOENT; 1540 1541 if (!capable(CAP_NET_ADMIN)) 1542 return -EPERM; 1543 1544 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1545 return -ENOMEM; 1546 1547 index = get_netdev_queue_index(queue); 1548 1549 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 1550 if (err) { 1551 free_cpumask_var(mask); 1552 return err; 1553 } 1554 1555 if (!rtnl_trylock()) { 1556 free_cpumask_var(mask); 1557 return restart_syscall(); 1558 } 1559 1560 err = netif_set_xps_queue(dev, mask, index); 1561 rtnl_unlock(); 1562 1563 free_cpumask_var(mask); 1564 1565 return err ? : len; 1566 } 1567 1568 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init 1569 = __ATTR_RW(xps_cpus); 1570 1571 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf) 1572 { 1573 struct net_device *dev = queue->dev; 1574 unsigned int index; 1575 int tc; 1576 1577 index = get_netdev_queue_index(queue); 1578 1579 if (!rtnl_trylock()) 1580 return restart_syscall(); 1581 1582 tc = netdev_txq_to_tc(dev, index); 1583 rtnl_unlock(); 1584 if (tc < 0) 1585 return -EINVAL; 1586 1587 return xps_queue_show(dev, index, tc, buf, XPS_RXQS); 1588 } 1589 1590 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf, 1591 size_t len) 1592 { 1593 struct net_device *dev = queue->dev; 1594 struct net *net = dev_net(dev); 1595 unsigned long *mask; 1596 unsigned int index; 1597 int err; 1598 1599 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1600 return -EPERM; 1601 1602 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1603 if (!mask) 1604 return -ENOMEM; 1605 1606 index = get_netdev_queue_index(queue); 1607 1608 err = bitmap_parse(buf, len, mask, dev->num_rx_queues); 1609 if (err) { 1610 bitmap_free(mask); 1611 return err; 1612 } 1613 1614 if (!rtnl_trylock()) { 1615 bitmap_free(mask); 1616 return restart_syscall(); 1617 } 1618 1619 cpus_read_lock(); 1620 err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS); 1621 cpus_read_unlock(); 1622 1623 rtnl_unlock(); 1624 1625 bitmap_free(mask); 1626 return err ? : len; 1627 } 1628 1629 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init 1630 = __ATTR_RW(xps_rxqs); 1631 #endif /* CONFIG_XPS */ 1632 1633 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = { 1634 &queue_trans_timeout.attr, 1635 &queue_traffic_class.attr, 1636 #ifdef CONFIG_XPS 1637 &xps_cpus_attribute.attr, 1638 &xps_rxqs_attribute.attr, 1639 &queue_tx_maxrate.attr, 1640 #endif 1641 NULL 1642 }; 1643 ATTRIBUTE_GROUPS(netdev_queue_default); 1644 1645 static void netdev_queue_release(struct kobject *kobj) 1646 { 1647 struct netdev_queue *queue = to_netdev_queue(kobj); 1648 1649 memset(kobj, 0, sizeof(*kobj)); 1650 netdev_put(queue->dev, &queue->dev_tracker); 1651 } 1652 1653 static const void *netdev_queue_namespace(const struct kobject *kobj) 1654 { 1655 struct netdev_queue *queue = to_netdev_queue(kobj); 1656 struct device *dev = &queue->dev->dev; 1657 const void *ns = NULL; 1658 1659 if (dev->class && dev->class->ns_type) 1660 ns = dev->class->namespace(dev); 1661 1662 return ns; 1663 } 1664 1665 static void netdev_queue_get_ownership(const struct kobject *kobj, 1666 kuid_t *uid, kgid_t *gid) 1667 { 1668 const struct net *net = netdev_queue_namespace(kobj); 1669 1670 net_ns_get_ownership(net, uid, gid); 1671 } 1672 1673 static const struct kobj_type netdev_queue_ktype = { 1674 .sysfs_ops = &netdev_queue_sysfs_ops, 1675 .release = netdev_queue_release, 1676 .default_groups = netdev_queue_default_groups, 1677 .namespace = netdev_queue_namespace, 1678 .get_ownership = netdev_queue_get_ownership, 1679 }; 1680 1681 static int netdev_queue_add_kobject(struct net_device *dev, int index) 1682 { 1683 struct netdev_queue *queue = dev->_tx + index; 1684 struct kobject *kobj = &queue->kobj; 1685 int error = 0; 1686 1687 /* Kobject_put later will trigger netdev_queue_release call 1688 * which decreases dev refcount: Take that reference here 1689 */ 1690 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1691 1692 kobj->kset = dev->queues_kset; 1693 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, 1694 "tx-%u", index); 1695 if (error) 1696 goto err; 1697 1698 #ifdef CONFIG_BQL 1699 error = sysfs_create_group(kobj, &dql_group); 1700 if (error) 1701 goto err; 1702 #endif 1703 1704 kobject_uevent(kobj, KOBJ_ADD); 1705 return 0; 1706 1707 err: 1708 kobject_put(kobj); 1709 return error; 1710 } 1711 1712 static int tx_queue_change_owner(struct net_device *ndev, int index, 1713 kuid_t kuid, kgid_t kgid) 1714 { 1715 struct netdev_queue *queue = ndev->_tx + index; 1716 struct kobject *kobj = &queue->kobj; 1717 int error; 1718 1719 error = sysfs_change_owner(kobj, kuid, kgid); 1720 if (error) 1721 return error; 1722 1723 #ifdef CONFIG_BQL 1724 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid); 1725 #endif 1726 return error; 1727 } 1728 #endif /* CONFIG_SYSFS */ 1729 1730 int 1731 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1732 { 1733 #ifdef CONFIG_SYSFS 1734 int i; 1735 int error = 0; 1736 1737 /* Tx queue kobjects are allowed to be updated when a device is being 1738 * unregistered, but solely to remove queues from qdiscs. Any path 1739 * adding queues should be fixed. 1740 */ 1741 WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num, 1742 "New queues can't be registered after device unregistration."); 1743 1744 for (i = old_num; i < new_num; i++) { 1745 error = netdev_queue_add_kobject(dev, i); 1746 if (error) { 1747 new_num = old_num; 1748 break; 1749 } 1750 } 1751 1752 while (--i >= new_num) { 1753 struct netdev_queue *queue = dev->_tx + i; 1754 1755 if (!refcount_read(&dev_net(dev)->ns.count)) 1756 queue->kobj.uevent_suppress = 1; 1757 #ifdef CONFIG_BQL 1758 sysfs_remove_group(&queue->kobj, &dql_group); 1759 #endif 1760 kobject_put(&queue->kobj); 1761 } 1762 1763 return error; 1764 #else 1765 return 0; 1766 #endif /* CONFIG_SYSFS */ 1767 } 1768 1769 static int net_tx_queue_change_owner(struct net_device *dev, int num, 1770 kuid_t kuid, kgid_t kgid) 1771 { 1772 #ifdef CONFIG_SYSFS 1773 int error = 0; 1774 int i; 1775 1776 for (i = 0; i < num; i++) { 1777 error = tx_queue_change_owner(dev, i, kuid, kgid); 1778 if (error) 1779 break; 1780 } 1781 1782 return error; 1783 #else 1784 return 0; 1785 #endif /* CONFIG_SYSFS */ 1786 } 1787 1788 static int register_queue_kobjects(struct net_device *dev) 1789 { 1790 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; 1791 1792 #ifdef CONFIG_SYSFS 1793 dev->queues_kset = kset_create_and_add("queues", 1794 NULL, &dev->dev.kobj); 1795 if (!dev->queues_kset) 1796 return -ENOMEM; 1797 real_rx = dev->real_num_rx_queues; 1798 #endif 1799 real_tx = dev->real_num_tx_queues; 1800 1801 error = net_rx_queue_update_kobjects(dev, 0, real_rx); 1802 if (error) 1803 goto error; 1804 rxq = real_rx; 1805 1806 error = netdev_queue_update_kobjects(dev, 0, real_tx); 1807 if (error) 1808 goto error; 1809 txq = real_tx; 1810 1811 return 0; 1812 1813 error: 1814 netdev_queue_update_kobjects(dev, txq, 0); 1815 net_rx_queue_update_kobjects(dev, rxq, 0); 1816 #ifdef CONFIG_SYSFS 1817 kset_unregister(dev->queues_kset); 1818 #endif 1819 return error; 1820 } 1821 1822 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid) 1823 { 1824 int error = 0, real_rx = 0, real_tx = 0; 1825 1826 #ifdef CONFIG_SYSFS 1827 if (ndev->queues_kset) { 1828 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid); 1829 if (error) 1830 return error; 1831 } 1832 real_rx = ndev->real_num_rx_queues; 1833 #endif 1834 real_tx = ndev->real_num_tx_queues; 1835 1836 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid); 1837 if (error) 1838 return error; 1839 1840 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid); 1841 if (error) 1842 return error; 1843 1844 return 0; 1845 } 1846 1847 static void remove_queue_kobjects(struct net_device *dev) 1848 { 1849 int real_rx = 0, real_tx = 0; 1850 1851 #ifdef CONFIG_SYSFS 1852 real_rx = dev->real_num_rx_queues; 1853 #endif 1854 real_tx = dev->real_num_tx_queues; 1855 1856 net_rx_queue_update_kobjects(dev, real_rx, 0); 1857 netdev_queue_update_kobjects(dev, real_tx, 0); 1858 1859 dev->real_num_rx_queues = 0; 1860 dev->real_num_tx_queues = 0; 1861 #ifdef CONFIG_SYSFS 1862 kset_unregister(dev->queues_kset); 1863 #endif 1864 } 1865 1866 static bool net_current_may_mount(void) 1867 { 1868 struct net *net = current->nsproxy->net_ns; 1869 1870 return ns_capable(net->user_ns, CAP_SYS_ADMIN); 1871 } 1872 1873 static void *net_grab_current_ns(void) 1874 { 1875 struct net *ns = current->nsproxy->net_ns; 1876 #ifdef CONFIG_NET_NS 1877 if (ns) 1878 refcount_inc(&ns->passive); 1879 #endif 1880 return ns; 1881 } 1882 1883 static const void *net_initial_ns(void) 1884 { 1885 return &init_net; 1886 } 1887 1888 static const void *net_netlink_ns(struct sock *sk) 1889 { 1890 return sock_net(sk); 1891 } 1892 1893 const struct kobj_ns_type_operations net_ns_type_operations = { 1894 .type = KOBJ_NS_TYPE_NET, 1895 .current_may_mount = net_current_may_mount, 1896 .grab_current_ns = net_grab_current_ns, 1897 .netlink_ns = net_netlink_ns, 1898 .initial_ns = net_initial_ns, 1899 .drop_ns = net_drop_ns, 1900 }; 1901 EXPORT_SYMBOL_GPL(net_ns_type_operations); 1902 1903 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env) 1904 { 1905 const struct net_device *dev = to_net_dev(d); 1906 int retval; 1907 1908 /* pass interface to uevent. */ 1909 retval = add_uevent_var(env, "INTERFACE=%s", dev->name); 1910 if (retval) 1911 goto exit; 1912 1913 /* pass ifindex to uevent. 1914 * ifindex is useful as it won't change (interface name may change) 1915 * and is what RtNetlink uses natively. 1916 */ 1917 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); 1918 1919 exit: 1920 return retval; 1921 } 1922 1923 /* 1924 * netdev_release -- destroy and free a dead device. 1925 * Called when last reference to device kobject is gone. 1926 */ 1927 static void netdev_release(struct device *d) 1928 { 1929 struct net_device *dev = to_net_dev(d); 1930 1931 BUG_ON(dev->reg_state != NETREG_RELEASED); 1932 1933 /* no need to wait for rcu grace period: 1934 * device is dead and about to be freed. 1935 */ 1936 kfree(rcu_access_pointer(dev->ifalias)); 1937 netdev_freemem(dev); 1938 } 1939 1940 static const void *net_namespace(const struct device *d) 1941 { 1942 const struct net_device *dev = to_net_dev(d); 1943 1944 return dev_net(dev); 1945 } 1946 1947 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid) 1948 { 1949 const struct net_device *dev = to_net_dev(d); 1950 const struct net *net = dev_net(dev); 1951 1952 net_ns_get_ownership(net, uid, gid); 1953 } 1954 1955 static struct class net_class __ro_after_init = { 1956 .name = "net", 1957 .dev_release = netdev_release, 1958 .dev_groups = net_class_groups, 1959 .dev_uevent = netdev_uevent, 1960 .ns_type = &net_ns_type_operations, 1961 .namespace = net_namespace, 1962 .get_ownership = net_get_ownership, 1963 }; 1964 1965 #ifdef CONFIG_OF 1966 static int of_dev_node_match(struct device *dev, const void *data) 1967 { 1968 for (; dev; dev = dev->parent) { 1969 if (dev->of_node == data) 1970 return 1; 1971 } 1972 1973 return 0; 1974 } 1975 1976 /* 1977 * of_find_net_device_by_node - lookup the net device for the device node 1978 * @np: OF device node 1979 * 1980 * Looks up the net_device structure corresponding with the device node. 1981 * If successful, returns a pointer to the net_device with the embedded 1982 * struct device refcount incremented by one, or NULL on failure. The 1983 * refcount must be dropped when done with the net_device. 1984 */ 1985 struct net_device *of_find_net_device_by_node(struct device_node *np) 1986 { 1987 struct device *dev; 1988 1989 dev = class_find_device(&net_class, NULL, np, of_dev_node_match); 1990 if (!dev) 1991 return NULL; 1992 1993 return to_net_dev(dev); 1994 } 1995 EXPORT_SYMBOL(of_find_net_device_by_node); 1996 #endif 1997 1998 /* Delete sysfs entries but hold kobject reference until after all 1999 * netdev references are gone. 2000 */ 2001 void netdev_unregister_kobject(struct net_device *ndev) 2002 { 2003 struct device *dev = &ndev->dev; 2004 2005 if (!refcount_read(&dev_net(ndev)->ns.count)) 2006 dev_set_uevent_suppress(dev, 1); 2007 2008 kobject_get(&dev->kobj); 2009 2010 remove_queue_kobjects(ndev); 2011 2012 pm_runtime_set_memalloc_noio(dev, false); 2013 2014 device_del(dev); 2015 } 2016 2017 /* Create sysfs entries for network device. */ 2018 int netdev_register_kobject(struct net_device *ndev) 2019 { 2020 struct device *dev = &ndev->dev; 2021 const struct attribute_group **groups = ndev->sysfs_groups; 2022 int error = 0; 2023 2024 device_initialize(dev); 2025 dev->class = &net_class; 2026 dev->platform_data = ndev; 2027 dev->groups = groups; 2028 2029 dev_set_name(dev, "%s", ndev->name); 2030 2031 #ifdef CONFIG_SYSFS 2032 /* Allow for a device specific group */ 2033 if (*groups) 2034 groups++; 2035 2036 *groups++ = &netstat_group; 2037 2038 if (wireless_group_needed(ndev)) 2039 *groups++ = &wireless_group; 2040 #endif /* CONFIG_SYSFS */ 2041 2042 error = device_add(dev); 2043 if (error) 2044 return error; 2045 2046 error = register_queue_kobjects(ndev); 2047 if (error) { 2048 device_del(dev); 2049 return error; 2050 } 2051 2052 pm_runtime_set_memalloc_noio(dev, true); 2053 2054 return error; 2055 } 2056 2057 /* Change owner for sysfs entries when moving network devices across network 2058 * namespaces owned by different user namespaces. 2059 */ 2060 int netdev_change_owner(struct net_device *ndev, const struct net *net_old, 2061 const struct net *net_new) 2062 { 2063 kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID; 2064 kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID; 2065 struct device *dev = &ndev->dev; 2066 int error; 2067 2068 net_ns_get_ownership(net_old, &old_uid, &old_gid); 2069 net_ns_get_ownership(net_new, &new_uid, &new_gid); 2070 2071 /* The network namespace was changed but the owning user namespace is 2072 * identical so there's no need to change the owner of sysfs entries. 2073 */ 2074 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid)) 2075 return 0; 2076 2077 error = device_change_owner(dev, new_uid, new_gid); 2078 if (error) 2079 return error; 2080 2081 error = queue_change_owner(ndev, new_uid, new_gid); 2082 if (error) 2083 return error; 2084 2085 return 0; 2086 } 2087 2088 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 2089 const void *ns) 2090 { 2091 return class_create_file_ns(&net_class, class_attr, ns); 2092 } 2093 EXPORT_SYMBOL(netdev_class_create_file_ns); 2094 2095 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 2096 const void *ns) 2097 { 2098 class_remove_file_ns(&net_class, class_attr, ns); 2099 } 2100 EXPORT_SYMBOL(netdev_class_remove_file_ns); 2101 2102 int __init netdev_kobject_init(void) 2103 { 2104 kobj_ns_type_register(&net_ns_type_operations); 2105 return class_register(&net_class); 2106 } 2107