1 /* 2 * Generic address resolution entity 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Fixes: 14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 15 * Harald Welte Add neighbour cache statistics like rtstat 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/socket.h> 22 #include <linux/netdevice.h> 23 #include <linux/proc_fs.h> 24 #ifdef CONFIG_SYSCTL 25 #include <linux/sysctl.h> 26 #endif 27 #include <linux/times.h> 28 #include <net/net_namespace.h> 29 #include <net/neighbour.h> 30 #include <net/dst.h> 31 #include <net/sock.h> 32 #include <net/netevent.h> 33 #include <net/netlink.h> 34 #include <linux/rtnetlink.h> 35 #include <linux/random.h> 36 #include <linux/string.h> 37 #include <linux/log2.h> 38 39 #define NEIGH_DEBUG 1 40 41 #define NEIGH_PRINTK(x...) printk(x) 42 #define NEIGH_NOPRINTK(x...) do { ; } while(0) 43 #define NEIGH_PRINTK0 NEIGH_PRINTK 44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK 45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK 46 47 #if NEIGH_DEBUG >= 1 48 #undef NEIGH_PRINTK1 49 #define NEIGH_PRINTK1 NEIGH_PRINTK 50 #endif 51 #if NEIGH_DEBUG >= 2 52 #undef NEIGH_PRINTK2 53 #define NEIGH_PRINTK2 NEIGH_PRINTK 54 #endif 55 56 #define PNEIGH_HASHMASK 0xF 57 58 static void neigh_timer_handler(unsigned long arg); 59 static void __neigh_notify(struct neighbour *n, int type, int flags); 60 static void neigh_update_notify(struct neighbour *neigh); 61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev); 62 63 static struct neigh_table *neigh_tables; 64 #ifdef CONFIG_PROC_FS 65 static const struct file_operations neigh_stat_seq_fops; 66 #endif 67 68 /* 69 Neighbour hash table buckets are protected with rwlock tbl->lock. 70 71 - All the scans/updates to hash buckets MUST be made under this lock. 72 - NOTHING clever should be made under this lock: no callbacks 73 to protocol backends, no attempts to send something to network. 74 It will result in deadlocks, if backend/driver wants to use neighbour 75 cache. 76 - If the entry requires some non-trivial actions, increase 77 its reference count and release table lock. 78 79 Neighbour entries are protected: 80 - with reference count. 81 - with rwlock neigh->lock 82 83 Reference count prevents destruction. 84 85 neigh->lock mainly serializes ll address data and its validity state. 86 However, the same lock is used to protect another entry fields: 87 - timer 88 - resolution queue 89 90 Again, nothing clever shall be made under neigh->lock, 91 the most complicated procedure, which we allow is dev->hard_header. 92 It is supposed, that dev->hard_header is simplistic and does 93 not make callbacks to neighbour tables. 94 95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting 96 list of neighbour tables. This list is used only in process context, 97 */ 98 99 static DEFINE_RWLOCK(neigh_tbl_lock); 100 101 static int neigh_blackhole(struct sk_buff *skb) 102 { 103 kfree_skb(skb); 104 return -ENETDOWN; 105 } 106 107 static void neigh_cleanup_and_release(struct neighbour *neigh) 108 { 109 if (neigh->parms->neigh_cleanup) 110 neigh->parms->neigh_cleanup(neigh); 111 112 __neigh_notify(neigh, RTM_DELNEIGH, 0); 113 neigh_release(neigh); 114 } 115 116 /* 117 * It is random distribution in the interval (1/2)*base...(3/2)*base. 118 * It corresponds to default IPv6 settings and is not overridable, 119 * because it is really reasonable choice. 120 */ 121 122 unsigned long neigh_rand_reach_time(unsigned long base) 123 { 124 return (base ? (net_random() % base) + (base >> 1) : 0); 125 } 126 EXPORT_SYMBOL(neigh_rand_reach_time); 127 128 129 static int neigh_forced_gc(struct neigh_table *tbl) 130 { 131 int shrunk = 0; 132 int i; 133 134 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 135 136 write_lock_bh(&tbl->lock); 137 for (i = 0; i <= tbl->hash_mask; i++) { 138 struct neighbour *n, **np; 139 140 np = &tbl->hash_buckets[i]; 141 while ((n = *np) != NULL) { 142 /* Neighbour record may be discarded if: 143 * - nobody refers to it. 144 * - it is not permanent 145 */ 146 write_lock(&n->lock); 147 if (atomic_read(&n->refcnt) == 1 && 148 !(n->nud_state & NUD_PERMANENT)) { 149 *np = n->next; 150 n->dead = 1; 151 shrunk = 1; 152 write_unlock(&n->lock); 153 neigh_cleanup_and_release(n); 154 continue; 155 } 156 write_unlock(&n->lock); 157 np = &n->next; 158 } 159 } 160 161 tbl->last_flush = jiffies; 162 163 write_unlock_bh(&tbl->lock); 164 165 return shrunk; 166 } 167 168 static void neigh_add_timer(struct neighbour *n, unsigned long when) 169 { 170 neigh_hold(n); 171 if (unlikely(mod_timer(&n->timer, when))) { 172 printk("NEIGH: BUG, double timer add, state is %x\n", 173 n->nud_state); 174 dump_stack(); 175 } 176 } 177 178 static int neigh_del_timer(struct neighbour *n) 179 { 180 if ((n->nud_state & NUD_IN_TIMER) && 181 del_timer(&n->timer)) { 182 neigh_release(n); 183 return 1; 184 } 185 return 0; 186 } 187 188 static void pneigh_queue_purge(struct sk_buff_head *list) 189 { 190 struct sk_buff *skb; 191 192 while ((skb = skb_dequeue(list)) != NULL) { 193 dev_put(skb->dev); 194 kfree_skb(skb); 195 } 196 } 197 198 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev) 199 { 200 int i; 201 202 for (i = 0; i <= tbl->hash_mask; i++) { 203 struct neighbour *n, **np = &tbl->hash_buckets[i]; 204 205 while ((n = *np) != NULL) { 206 if (dev && n->dev != dev) { 207 np = &n->next; 208 continue; 209 } 210 *np = n->next; 211 write_lock(&n->lock); 212 neigh_del_timer(n); 213 n->dead = 1; 214 215 if (atomic_read(&n->refcnt) != 1) { 216 /* The most unpleasant situation. 217 We must destroy neighbour entry, 218 but someone still uses it. 219 220 The destroy will be delayed until 221 the last user releases us, but 222 we must kill timers etc. and move 223 it to safe state. 224 */ 225 skb_queue_purge(&n->arp_queue); 226 n->output = neigh_blackhole; 227 if (n->nud_state & NUD_VALID) 228 n->nud_state = NUD_NOARP; 229 else 230 n->nud_state = NUD_NONE; 231 NEIGH_PRINTK2("neigh %p is stray.\n", n); 232 } 233 write_unlock(&n->lock); 234 neigh_cleanup_and_release(n); 235 } 236 } 237 } 238 239 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 240 { 241 write_lock_bh(&tbl->lock); 242 neigh_flush_dev(tbl, dev); 243 write_unlock_bh(&tbl->lock); 244 } 245 EXPORT_SYMBOL(neigh_changeaddr); 246 247 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 248 { 249 write_lock_bh(&tbl->lock); 250 neigh_flush_dev(tbl, dev); 251 pneigh_ifdown(tbl, dev); 252 write_unlock_bh(&tbl->lock); 253 254 del_timer_sync(&tbl->proxy_timer); 255 pneigh_queue_purge(&tbl->proxy_queue); 256 return 0; 257 } 258 EXPORT_SYMBOL(neigh_ifdown); 259 260 static struct neighbour *neigh_alloc(struct neigh_table *tbl) 261 { 262 struct neighbour *n = NULL; 263 unsigned long now = jiffies; 264 int entries; 265 266 entries = atomic_inc_return(&tbl->entries) - 1; 267 if (entries >= tbl->gc_thresh3 || 268 (entries >= tbl->gc_thresh2 && 269 time_after(now, tbl->last_flush + 5 * HZ))) { 270 if (!neigh_forced_gc(tbl) && 271 entries >= tbl->gc_thresh3) 272 goto out_entries; 273 } 274 275 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC); 276 if (!n) 277 goto out_entries; 278 279 skb_queue_head_init(&n->arp_queue); 280 rwlock_init(&n->lock); 281 n->updated = n->used = now; 282 n->nud_state = NUD_NONE; 283 n->output = neigh_blackhole; 284 n->parms = neigh_parms_clone(&tbl->parms); 285 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n); 286 287 NEIGH_CACHE_STAT_INC(tbl, allocs); 288 n->tbl = tbl; 289 atomic_set(&n->refcnt, 1); 290 n->dead = 1; 291 out: 292 return n; 293 294 out_entries: 295 atomic_dec(&tbl->entries); 296 goto out; 297 } 298 299 static struct neighbour **neigh_hash_alloc(unsigned int entries) 300 { 301 unsigned long size = entries * sizeof(struct neighbour *); 302 struct neighbour **ret; 303 304 if (size <= PAGE_SIZE) { 305 ret = kzalloc(size, GFP_ATOMIC); 306 } else { 307 ret = (struct neighbour **) 308 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size)); 309 } 310 return ret; 311 } 312 313 static void neigh_hash_free(struct neighbour **hash, unsigned int entries) 314 { 315 unsigned long size = entries * sizeof(struct neighbour *); 316 317 if (size <= PAGE_SIZE) 318 kfree(hash); 319 else 320 free_pages((unsigned long)hash, get_order(size)); 321 } 322 323 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries) 324 { 325 struct neighbour **new_hash, **old_hash; 326 unsigned int i, new_hash_mask, old_entries; 327 328 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 329 330 BUG_ON(!is_power_of_2(new_entries)); 331 new_hash = neigh_hash_alloc(new_entries); 332 if (!new_hash) 333 return; 334 335 old_entries = tbl->hash_mask + 1; 336 new_hash_mask = new_entries - 1; 337 old_hash = tbl->hash_buckets; 338 339 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 340 for (i = 0; i < old_entries; i++) { 341 struct neighbour *n, *next; 342 343 for (n = old_hash[i]; n; n = next) { 344 unsigned int hash_val = tbl->hash(n->primary_key, n->dev); 345 346 hash_val &= new_hash_mask; 347 next = n->next; 348 349 n->next = new_hash[hash_val]; 350 new_hash[hash_val] = n; 351 } 352 } 353 tbl->hash_buckets = new_hash; 354 tbl->hash_mask = new_hash_mask; 355 356 neigh_hash_free(old_hash, old_entries); 357 } 358 359 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 360 struct net_device *dev) 361 { 362 struct neighbour *n; 363 int key_len = tbl->key_len; 364 u32 hash_val; 365 366 NEIGH_CACHE_STAT_INC(tbl, lookups); 367 368 read_lock_bh(&tbl->lock); 369 hash_val = tbl->hash(pkey, dev); 370 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) { 371 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) { 372 neigh_hold(n); 373 NEIGH_CACHE_STAT_INC(tbl, hits); 374 break; 375 } 376 } 377 read_unlock_bh(&tbl->lock); 378 return n; 379 } 380 EXPORT_SYMBOL(neigh_lookup); 381 382 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 383 const void *pkey) 384 { 385 struct neighbour *n; 386 int key_len = tbl->key_len; 387 u32 hash_val; 388 389 NEIGH_CACHE_STAT_INC(tbl, lookups); 390 391 read_lock_bh(&tbl->lock); 392 hash_val = tbl->hash(pkey, NULL); 393 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) { 394 if (!memcmp(n->primary_key, pkey, key_len) && 395 net_eq(dev_net(n->dev), net)) { 396 neigh_hold(n); 397 NEIGH_CACHE_STAT_INC(tbl, hits); 398 break; 399 } 400 } 401 read_unlock_bh(&tbl->lock); 402 return n; 403 } 404 EXPORT_SYMBOL(neigh_lookup_nodev); 405 406 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, 407 struct net_device *dev) 408 { 409 u32 hash_val; 410 int key_len = tbl->key_len; 411 int error; 412 struct neighbour *n1, *rc, *n = neigh_alloc(tbl); 413 414 if (!n) { 415 rc = ERR_PTR(-ENOBUFS); 416 goto out; 417 } 418 419 memcpy(n->primary_key, pkey, key_len); 420 n->dev = dev; 421 dev_hold(dev); 422 423 /* Protocol specific setup. */ 424 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 425 rc = ERR_PTR(error); 426 goto out_neigh_release; 427 } 428 429 /* Device specific setup. */ 430 if (n->parms->neigh_setup && 431 (error = n->parms->neigh_setup(n)) < 0) { 432 rc = ERR_PTR(error); 433 goto out_neigh_release; 434 } 435 436 n->confirmed = jiffies - (n->parms->base_reachable_time << 1); 437 438 write_lock_bh(&tbl->lock); 439 440 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1)) 441 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1); 442 443 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask; 444 445 if (n->parms->dead) { 446 rc = ERR_PTR(-EINVAL); 447 goto out_tbl_unlock; 448 } 449 450 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) { 451 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) { 452 neigh_hold(n1); 453 rc = n1; 454 goto out_tbl_unlock; 455 } 456 } 457 458 n->next = tbl->hash_buckets[hash_val]; 459 tbl->hash_buckets[hash_val] = n; 460 n->dead = 0; 461 neigh_hold(n); 462 write_unlock_bh(&tbl->lock); 463 NEIGH_PRINTK2("neigh %p is created.\n", n); 464 rc = n; 465 out: 466 return rc; 467 out_tbl_unlock: 468 write_unlock_bh(&tbl->lock); 469 out_neigh_release: 470 neigh_release(n); 471 goto out; 472 } 473 EXPORT_SYMBOL(neigh_create); 474 475 static u32 pneigh_hash(const void *pkey, int key_len) 476 { 477 u32 hash_val = *(u32 *)(pkey + key_len - 4); 478 hash_val ^= (hash_val >> 16); 479 hash_val ^= hash_val >> 8; 480 hash_val ^= hash_val >> 4; 481 hash_val &= PNEIGH_HASHMASK; 482 return hash_val; 483 } 484 485 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 486 struct net *net, 487 const void *pkey, 488 int key_len, 489 struct net_device *dev) 490 { 491 while (n) { 492 if (!memcmp(n->key, pkey, key_len) && 493 net_eq(pneigh_net(n), net) && 494 (n->dev == dev || !n->dev)) 495 return n; 496 n = n->next; 497 } 498 return NULL; 499 } 500 501 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 502 struct net *net, const void *pkey, struct net_device *dev) 503 { 504 int key_len = tbl->key_len; 505 u32 hash_val = pneigh_hash(pkey, key_len); 506 507 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 508 net, pkey, key_len, dev); 509 } 510 EXPORT_SYMBOL_GPL(__pneigh_lookup); 511 512 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 513 struct net *net, const void *pkey, 514 struct net_device *dev, int creat) 515 { 516 struct pneigh_entry *n; 517 int key_len = tbl->key_len; 518 u32 hash_val = pneigh_hash(pkey, key_len); 519 520 read_lock_bh(&tbl->lock); 521 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 522 net, pkey, key_len, dev); 523 read_unlock_bh(&tbl->lock); 524 525 if (n || !creat) 526 goto out; 527 528 ASSERT_RTNL(); 529 530 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 531 if (!n) 532 goto out; 533 534 write_pnet(&n->net, hold_net(net)); 535 memcpy(n->key, pkey, key_len); 536 n->dev = dev; 537 if (dev) 538 dev_hold(dev); 539 540 if (tbl->pconstructor && tbl->pconstructor(n)) { 541 if (dev) 542 dev_put(dev); 543 release_net(net); 544 kfree(n); 545 n = NULL; 546 goto out; 547 } 548 549 write_lock_bh(&tbl->lock); 550 n->next = tbl->phash_buckets[hash_val]; 551 tbl->phash_buckets[hash_val] = n; 552 write_unlock_bh(&tbl->lock); 553 out: 554 return n; 555 } 556 EXPORT_SYMBOL(pneigh_lookup); 557 558 559 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 560 struct net_device *dev) 561 { 562 struct pneigh_entry *n, **np; 563 int key_len = tbl->key_len; 564 u32 hash_val = pneigh_hash(pkey, key_len); 565 566 write_lock_bh(&tbl->lock); 567 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 568 np = &n->next) { 569 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 570 net_eq(pneigh_net(n), net)) { 571 *np = n->next; 572 write_unlock_bh(&tbl->lock); 573 if (tbl->pdestructor) 574 tbl->pdestructor(n); 575 if (n->dev) 576 dev_put(n->dev); 577 release_net(pneigh_net(n)); 578 kfree(n); 579 return 0; 580 } 581 } 582 write_unlock_bh(&tbl->lock); 583 return -ENOENT; 584 } 585 586 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 587 { 588 struct pneigh_entry *n, **np; 589 u32 h; 590 591 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 592 np = &tbl->phash_buckets[h]; 593 while ((n = *np) != NULL) { 594 if (!dev || n->dev == dev) { 595 *np = n->next; 596 if (tbl->pdestructor) 597 tbl->pdestructor(n); 598 if (n->dev) 599 dev_put(n->dev); 600 release_net(pneigh_net(n)); 601 kfree(n); 602 continue; 603 } 604 np = &n->next; 605 } 606 } 607 return -ENOENT; 608 } 609 610 static void neigh_parms_destroy(struct neigh_parms *parms); 611 612 static inline void neigh_parms_put(struct neigh_parms *parms) 613 { 614 if (atomic_dec_and_test(&parms->refcnt)) 615 neigh_parms_destroy(parms); 616 } 617 618 /* 619 * neighbour must already be out of the table; 620 * 621 */ 622 void neigh_destroy(struct neighbour *neigh) 623 { 624 struct hh_cache *hh; 625 626 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 627 628 if (!neigh->dead) { 629 printk(KERN_WARNING 630 "Destroying alive neighbour %p\n", neigh); 631 dump_stack(); 632 return; 633 } 634 635 if (neigh_del_timer(neigh)) 636 printk(KERN_WARNING "Impossible event.\n"); 637 638 while ((hh = neigh->hh) != NULL) { 639 neigh->hh = hh->hh_next; 640 hh->hh_next = NULL; 641 642 write_seqlock_bh(&hh->hh_lock); 643 hh->hh_output = neigh_blackhole; 644 write_sequnlock_bh(&hh->hh_lock); 645 if (atomic_dec_and_test(&hh->hh_refcnt)) 646 kfree(hh); 647 } 648 649 skb_queue_purge(&neigh->arp_queue); 650 651 dev_put(neigh->dev); 652 neigh_parms_put(neigh->parms); 653 654 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh); 655 656 atomic_dec(&neigh->tbl->entries); 657 kmem_cache_free(neigh->tbl->kmem_cachep, neigh); 658 } 659 EXPORT_SYMBOL(neigh_destroy); 660 661 /* Neighbour state is suspicious; 662 disable fast path. 663 664 Called with write_locked neigh. 665 */ 666 static void neigh_suspect(struct neighbour *neigh) 667 { 668 struct hh_cache *hh; 669 670 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 671 672 neigh->output = neigh->ops->output; 673 674 for (hh = neigh->hh; hh; hh = hh->hh_next) 675 hh->hh_output = neigh->ops->output; 676 } 677 678 /* Neighbour state is OK; 679 enable fast path. 680 681 Called with write_locked neigh. 682 */ 683 static void neigh_connect(struct neighbour *neigh) 684 { 685 struct hh_cache *hh; 686 687 NEIGH_PRINTK2("neigh %p is connected.\n", neigh); 688 689 neigh->output = neigh->ops->connected_output; 690 691 for (hh = neigh->hh; hh; hh = hh->hh_next) 692 hh->hh_output = neigh->ops->hh_output; 693 } 694 695 static void neigh_periodic_work(struct work_struct *work) 696 { 697 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 698 struct neighbour *n, **np; 699 unsigned int i; 700 701 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 702 703 write_lock_bh(&tbl->lock); 704 705 /* 706 * periodically recompute ReachableTime from random function 707 */ 708 709 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 710 struct neigh_parms *p; 711 tbl->last_rand = jiffies; 712 for (p = &tbl->parms; p; p = p->next) 713 p->reachable_time = 714 neigh_rand_reach_time(p->base_reachable_time); 715 } 716 717 for (i = 0 ; i <= tbl->hash_mask; i++) { 718 np = &tbl->hash_buckets[i]; 719 720 while ((n = *np) != NULL) { 721 unsigned int state; 722 723 write_lock(&n->lock); 724 725 state = n->nud_state; 726 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) { 727 write_unlock(&n->lock); 728 goto next_elt; 729 } 730 731 if (time_before(n->used, n->confirmed)) 732 n->used = n->confirmed; 733 734 if (atomic_read(&n->refcnt) == 1 && 735 (state == NUD_FAILED || 736 time_after(jiffies, n->used + n->parms->gc_staletime))) { 737 *np = n->next; 738 n->dead = 1; 739 write_unlock(&n->lock); 740 neigh_cleanup_and_release(n); 741 continue; 742 } 743 write_unlock(&n->lock); 744 745 next_elt: 746 np = &n->next; 747 } 748 /* 749 * It's fine to release lock here, even if hash table 750 * grows while we are preempted. 751 */ 752 write_unlock_bh(&tbl->lock); 753 cond_resched(); 754 write_lock_bh(&tbl->lock); 755 } 756 /* Cycle through all hash buckets every base_reachable_time/2 ticks. 757 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2 758 * base_reachable_time. 759 */ 760 schedule_delayed_work(&tbl->gc_work, 761 tbl->parms.base_reachable_time >> 1); 762 write_unlock_bh(&tbl->lock); 763 } 764 765 static __inline__ int neigh_max_probes(struct neighbour *n) 766 { 767 struct neigh_parms *p = n->parms; 768 return (n->nud_state & NUD_PROBE ? 769 p->ucast_probes : 770 p->ucast_probes + p->app_probes + p->mcast_probes); 771 } 772 773 static void neigh_invalidate(struct neighbour *neigh) 774 { 775 struct sk_buff *skb; 776 777 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 778 NEIGH_PRINTK2("neigh %p is failed.\n", neigh); 779 neigh->updated = jiffies; 780 781 /* It is very thin place. report_unreachable is very complicated 782 routine. Particularly, it can hit the same neighbour entry! 783 784 So that, we try to be accurate and avoid dead loop. --ANK 785 */ 786 while (neigh->nud_state == NUD_FAILED && 787 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 788 write_unlock(&neigh->lock); 789 neigh->ops->error_report(neigh, skb); 790 write_lock(&neigh->lock); 791 } 792 skb_queue_purge(&neigh->arp_queue); 793 } 794 795 /* Called when a timer expires for a neighbour entry. */ 796 797 static void neigh_timer_handler(unsigned long arg) 798 { 799 unsigned long now, next; 800 struct neighbour *neigh = (struct neighbour *)arg; 801 unsigned state; 802 int notify = 0; 803 804 write_lock(&neigh->lock); 805 806 state = neigh->nud_state; 807 now = jiffies; 808 next = now + HZ; 809 810 if (!(state & NUD_IN_TIMER)) { 811 #ifndef CONFIG_SMP 812 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n"); 813 #endif 814 goto out; 815 } 816 817 if (state & NUD_REACHABLE) { 818 if (time_before_eq(now, 819 neigh->confirmed + neigh->parms->reachable_time)) { 820 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh); 821 next = neigh->confirmed + neigh->parms->reachable_time; 822 } else if (time_before_eq(now, 823 neigh->used + neigh->parms->delay_probe_time)) { 824 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 825 neigh->nud_state = NUD_DELAY; 826 neigh->updated = jiffies; 827 neigh_suspect(neigh); 828 next = now + neigh->parms->delay_probe_time; 829 } else { 830 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 831 neigh->nud_state = NUD_STALE; 832 neigh->updated = jiffies; 833 neigh_suspect(neigh); 834 notify = 1; 835 } 836 } else if (state & NUD_DELAY) { 837 if (time_before_eq(now, 838 neigh->confirmed + neigh->parms->delay_probe_time)) { 839 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh); 840 neigh->nud_state = NUD_REACHABLE; 841 neigh->updated = jiffies; 842 neigh_connect(neigh); 843 notify = 1; 844 next = neigh->confirmed + neigh->parms->reachable_time; 845 } else { 846 NEIGH_PRINTK2("neigh %p is probed.\n", neigh); 847 neigh->nud_state = NUD_PROBE; 848 neigh->updated = jiffies; 849 atomic_set(&neigh->probes, 0); 850 next = now + neigh->parms->retrans_time; 851 } 852 } else { 853 /* NUD_PROBE|NUD_INCOMPLETE */ 854 next = now + neigh->parms->retrans_time; 855 } 856 857 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 858 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 859 neigh->nud_state = NUD_FAILED; 860 notify = 1; 861 neigh_invalidate(neigh); 862 } 863 864 if (neigh->nud_state & NUD_IN_TIMER) { 865 if (time_before(next, jiffies + HZ/2)) 866 next = jiffies + HZ/2; 867 if (!mod_timer(&neigh->timer, next)) 868 neigh_hold(neigh); 869 } 870 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 871 struct sk_buff *skb = skb_peek(&neigh->arp_queue); 872 /* keep skb alive even if arp_queue overflows */ 873 if (skb) 874 skb = skb_copy(skb, GFP_ATOMIC); 875 write_unlock(&neigh->lock); 876 neigh->ops->solicit(neigh, skb); 877 atomic_inc(&neigh->probes); 878 kfree_skb(skb); 879 } else { 880 out: 881 write_unlock(&neigh->lock); 882 } 883 884 if (notify) 885 neigh_update_notify(neigh); 886 887 neigh_release(neigh); 888 } 889 890 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 891 { 892 int rc; 893 unsigned long now; 894 895 write_lock_bh(&neigh->lock); 896 897 rc = 0; 898 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 899 goto out_unlock_bh; 900 901 now = jiffies; 902 903 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 904 if (neigh->parms->mcast_probes + neigh->parms->app_probes) { 905 atomic_set(&neigh->probes, neigh->parms->ucast_probes); 906 neigh->nud_state = NUD_INCOMPLETE; 907 neigh->updated = jiffies; 908 neigh_add_timer(neigh, now + 1); 909 } else { 910 neigh->nud_state = NUD_FAILED; 911 neigh->updated = jiffies; 912 write_unlock_bh(&neigh->lock); 913 914 kfree_skb(skb); 915 return 1; 916 } 917 } else if (neigh->nud_state & NUD_STALE) { 918 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 919 neigh->nud_state = NUD_DELAY; 920 neigh->updated = jiffies; 921 neigh_add_timer(neigh, 922 jiffies + neigh->parms->delay_probe_time); 923 } 924 925 if (neigh->nud_state == NUD_INCOMPLETE) { 926 if (skb) { 927 if (skb_queue_len(&neigh->arp_queue) >= 928 neigh->parms->queue_len) { 929 struct sk_buff *buff; 930 buff = __skb_dequeue(&neigh->arp_queue); 931 kfree_skb(buff); 932 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 933 } 934 __skb_queue_tail(&neigh->arp_queue, skb); 935 } 936 rc = 1; 937 } 938 out_unlock_bh: 939 write_unlock_bh(&neigh->lock); 940 return rc; 941 } 942 EXPORT_SYMBOL(__neigh_event_send); 943 944 static void neigh_update_hhs(struct neighbour *neigh) 945 { 946 struct hh_cache *hh; 947 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 948 = neigh->dev->header_ops->cache_update; 949 950 if (update) { 951 for (hh = neigh->hh; hh; hh = hh->hh_next) { 952 write_seqlock_bh(&hh->hh_lock); 953 update(hh, neigh->dev, neigh->ha); 954 write_sequnlock_bh(&hh->hh_lock); 955 } 956 } 957 } 958 959 960 961 /* Generic update routine. 962 -- lladdr is new lladdr or NULL, if it is not supplied. 963 -- new is new state. 964 -- flags 965 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 966 if it is different. 967 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 968 lladdr instead of overriding it 969 if it is different. 970 It also allows to retain current state 971 if lladdr is unchanged. 972 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 973 974 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 975 NTF_ROUTER flag. 976 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 977 a router. 978 979 Caller MUST hold reference count on the entry. 980 */ 981 982 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 983 u32 flags) 984 { 985 u8 old; 986 int err; 987 int notify = 0; 988 struct net_device *dev; 989 int update_isrouter = 0; 990 991 write_lock_bh(&neigh->lock); 992 993 dev = neigh->dev; 994 old = neigh->nud_state; 995 err = -EPERM; 996 997 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 998 (old & (NUD_NOARP | NUD_PERMANENT))) 999 goto out; 1000 1001 if (!(new & NUD_VALID)) { 1002 neigh_del_timer(neigh); 1003 if (old & NUD_CONNECTED) 1004 neigh_suspect(neigh); 1005 neigh->nud_state = new; 1006 err = 0; 1007 notify = old & NUD_VALID; 1008 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1009 (new & NUD_FAILED)) { 1010 neigh_invalidate(neigh); 1011 notify = 1; 1012 } 1013 goto out; 1014 } 1015 1016 /* Compare new lladdr with cached one */ 1017 if (!dev->addr_len) { 1018 /* First case: device needs no address. */ 1019 lladdr = neigh->ha; 1020 } else if (lladdr) { 1021 /* The second case: if something is already cached 1022 and a new address is proposed: 1023 - compare new & old 1024 - if they are different, check override flag 1025 */ 1026 if ((old & NUD_VALID) && 1027 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1028 lladdr = neigh->ha; 1029 } else { 1030 /* No address is supplied; if we know something, 1031 use it, otherwise discard the request. 1032 */ 1033 err = -EINVAL; 1034 if (!(old & NUD_VALID)) 1035 goto out; 1036 lladdr = neigh->ha; 1037 } 1038 1039 if (new & NUD_CONNECTED) 1040 neigh->confirmed = jiffies; 1041 neigh->updated = jiffies; 1042 1043 /* If entry was valid and address is not changed, 1044 do not change entry state, if new one is STALE. 1045 */ 1046 err = 0; 1047 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1048 if (old & NUD_VALID) { 1049 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1050 update_isrouter = 0; 1051 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1052 (old & NUD_CONNECTED)) { 1053 lladdr = neigh->ha; 1054 new = NUD_STALE; 1055 } else 1056 goto out; 1057 } else { 1058 if (lladdr == neigh->ha && new == NUD_STALE && 1059 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) || 1060 (old & NUD_CONNECTED)) 1061 ) 1062 new = old; 1063 } 1064 } 1065 1066 if (new != old) { 1067 neigh_del_timer(neigh); 1068 if (new & NUD_IN_TIMER) 1069 neigh_add_timer(neigh, (jiffies + 1070 ((new & NUD_REACHABLE) ? 1071 neigh->parms->reachable_time : 1072 0))); 1073 neigh->nud_state = new; 1074 } 1075 1076 if (lladdr != neigh->ha) { 1077 memcpy(&neigh->ha, lladdr, dev->addr_len); 1078 neigh_update_hhs(neigh); 1079 if (!(new & NUD_CONNECTED)) 1080 neigh->confirmed = jiffies - 1081 (neigh->parms->base_reachable_time << 1); 1082 notify = 1; 1083 } 1084 if (new == old) 1085 goto out; 1086 if (new & NUD_CONNECTED) 1087 neigh_connect(neigh); 1088 else 1089 neigh_suspect(neigh); 1090 if (!(old & NUD_VALID)) { 1091 struct sk_buff *skb; 1092 1093 /* Again: avoid dead loop if something went wrong */ 1094 1095 while (neigh->nud_state & NUD_VALID && 1096 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1097 struct neighbour *n1 = neigh; 1098 write_unlock_bh(&neigh->lock); 1099 /* On shaper/eql skb->dst->neighbour != neigh :( */ 1100 if (skb_dst(skb) && skb_dst(skb)->neighbour) 1101 n1 = skb_dst(skb)->neighbour; 1102 n1->output(skb); 1103 write_lock_bh(&neigh->lock); 1104 } 1105 skb_queue_purge(&neigh->arp_queue); 1106 } 1107 out: 1108 if (update_isrouter) { 1109 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ? 1110 (neigh->flags | NTF_ROUTER) : 1111 (neigh->flags & ~NTF_ROUTER); 1112 } 1113 write_unlock_bh(&neigh->lock); 1114 1115 if (notify) 1116 neigh_update_notify(neigh); 1117 1118 return err; 1119 } 1120 EXPORT_SYMBOL(neigh_update); 1121 1122 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1123 u8 *lladdr, void *saddr, 1124 struct net_device *dev) 1125 { 1126 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1127 lladdr || !dev->addr_len); 1128 if (neigh) 1129 neigh_update(neigh, lladdr, NUD_STALE, 1130 NEIGH_UPDATE_F_OVERRIDE); 1131 return neigh; 1132 } 1133 EXPORT_SYMBOL(neigh_event_ns); 1134 1135 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst, 1136 __be16 protocol) 1137 { 1138 struct hh_cache *hh; 1139 struct net_device *dev = dst->dev; 1140 1141 for (hh = n->hh; hh; hh = hh->hh_next) 1142 if (hh->hh_type == protocol) 1143 break; 1144 1145 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) { 1146 seqlock_init(&hh->hh_lock); 1147 hh->hh_type = protocol; 1148 atomic_set(&hh->hh_refcnt, 0); 1149 hh->hh_next = NULL; 1150 1151 if (dev->header_ops->cache(n, hh)) { 1152 kfree(hh); 1153 hh = NULL; 1154 } else { 1155 atomic_inc(&hh->hh_refcnt); 1156 hh->hh_next = n->hh; 1157 n->hh = hh; 1158 if (n->nud_state & NUD_CONNECTED) 1159 hh->hh_output = n->ops->hh_output; 1160 else 1161 hh->hh_output = n->ops->output; 1162 } 1163 } 1164 if (hh) { 1165 atomic_inc(&hh->hh_refcnt); 1166 dst->hh = hh; 1167 } 1168 } 1169 1170 /* This function can be used in contexts, where only old dev_queue_xmit 1171 worked, f.e. if you want to override normal output path (eql, shaper), 1172 but resolution is not made yet. 1173 */ 1174 1175 int neigh_compat_output(struct sk_buff *skb) 1176 { 1177 struct net_device *dev = skb->dev; 1178 1179 __skb_pull(skb, skb_network_offset(skb)); 1180 1181 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL, 1182 skb->len) < 0 && 1183 dev->header_ops->rebuild(skb)) 1184 return 0; 1185 1186 return dev_queue_xmit(skb); 1187 } 1188 EXPORT_SYMBOL(neigh_compat_output); 1189 1190 /* Slow and careful. */ 1191 1192 int neigh_resolve_output(struct sk_buff *skb) 1193 { 1194 struct dst_entry *dst = skb_dst(skb); 1195 struct neighbour *neigh; 1196 int rc = 0; 1197 1198 if (!dst || !(neigh = dst->neighbour)) 1199 goto discard; 1200 1201 __skb_pull(skb, skb_network_offset(skb)); 1202 1203 if (!neigh_event_send(neigh, skb)) { 1204 int err; 1205 struct net_device *dev = neigh->dev; 1206 if (dev->header_ops->cache && !dst->hh) { 1207 write_lock_bh(&neigh->lock); 1208 if (!dst->hh) 1209 neigh_hh_init(neigh, dst, dst->ops->protocol); 1210 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1211 neigh->ha, NULL, skb->len); 1212 write_unlock_bh(&neigh->lock); 1213 } else { 1214 read_lock_bh(&neigh->lock); 1215 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1216 neigh->ha, NULL, skb->len); 1217 read_unlock_bh(&neigh->lock); 1218 } 1219 if (err >= 0) 1220 rc = neigh->ops->queue_xmit(skb); 1221 else 1222 goto out_kfree_skb; 1223 } 1224 out: 1225 return rc; 1226 discard: 1227 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n", 1228 dst, dst ? dst->neighbour : NULL); 1229 out_kfree_skb: 1230 rc = -EINVAL; 1231 kfree_skb(skb); 1232 goto out; 1233 } 1234 EXPORT_SYMBOL(neigh_resolve_output); 1235 1236 /* As fast as possible without hh cache */ 1237 1238 int neigh_connected_output(struct sk_buff *skb) 1239 { 1240 int err; 1241 struct dst_entry *dst = skb_dst(skb); 1242 struct neighbour *neigh = dst->neighbour; 1243 struct net_device *dev = neigh->dev; 1244 1245 __skb_pull(skb, skb_network_offset(skb)); 1246 1247 read_lock_bh(&neigh->lock); 1248 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1249 neigh->ha, NULL, skb->len); 1250 read_unlock_bh(&neigh->lock); 1251 if (err >= 0) 1252 err = neigh->ops->queue_xmit(skb); 1253 else { 1254 err = -EINVAL; 1255 kfree_skb(skb); 1256 } 1257 return err; 1258 } 1259 EXPORT_SYMBOL(neigh_connected_output); 1260 1261 static void neigh_proxy_process(unsigned long arg) 1262 { 1263 struct neigh_table *tbl = (struct neigh_table *)arg; 1264 long sched_next = 0; 1265 unsigned long now = jiffies; 1266 struct sk_buff *skb, *n; 1267 1268 spin_lock(&tbl->proxy_queue.lock); 1269 1270 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1271 long tdif = NEIGH_CB(skb)->sched_next - now; 1272 1273 if (tdif <= 0) { 1274 struct net_device *dev = skb->dev; 1275 __skb_unlink(skb, &tbl->proxy_queue); 1276 if (tbl->proxy_redo && netif_running(dev)) 1277 tbl->proxy_redo(skb); 1278 else 1279 kfree_skb(skb); 1280 1281 dev_put(dev); 1282 } else if (!sched_next || tdif < sched_next) 1283 sched_next = tdif; 1284 } 1285 del_timer(&tbl->proxy_timer); 1286 if (sched_next) 1287 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1288 spin_unlock(&tbl->proxy_queue.lock); 1289 } 1290 1291 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1292 struct sk_buff *skb) 1293 { 1294 unsigned long now = jiffies; 1295 unsigned long sched_next = now + (net_random() % p->proxy_delay); 1296 1297 if (tbl->proxy_queue.qlen > p->proxy_qlen) { 1298 kfree_skb(skb); 1299 return; 1300 } 1301 1302 NEIGH_CB(skb)->sched_next = sched_next; 1303 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1304 1305 spin_lock(&tbl->proxy_queue.lock); 1306 if (del_timer(&tbl->proxy_timer)) { 1307 if (time_before(tbl->proxy_timer.expires, sched_next)) 1308 sched_next = tbl->proxy_timer.expires; 1309 } 1310 skb_dst_drop(skb); 1311 dev_hold(skb->dev); 1312 __skb_queue_tail(&tbl->proxy_queue, skb); 1313 mod_timer(&tbl->proxy_timer, sched_next); 1314 spin_unlock(&tbl->proxy_queue.lock); 1315 } 1316 EXPORT_SYMBOL(pneigh_enqueue); 1317 1318 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1319 struct net *net, int ifindex) 1320 { 1321 struct neigh_parms *p; 1322 1323 for (p = &tbl->parms; p; p = p->next) { 1324 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1325 (!p->dev && !ifindex)) 1326 return p; 1327 } 1328 1329 return NULL; 1330 } 1331 1332 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1333 struct neigh_table *tbl) 1334 { 1335 struct neigh_parms *p, *ref; 1336 struct net *net = dev_net(dev); 1337 const struct net_device_ops *ops = dev->netdev_ops; 1338 1339 ref = lookup_neigh_parms(tbl, net, 0); 1340 if (!ref) 1341 return NULL; 1342 1343 p = kmemdup(ref, sizeof(*p), GFP_KERNEL); 1344 if (p) { 1345 p->tbl = tbl; 1346 atomic_set(&p->refcnt, 1); 1347 p->reachable_time = 1348 neigh_rand_reach_time(p->base_reachable_time); 1349 1350 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1351 kfree(p); 1352 return NULL; 1353 } 1354 1355 dev_hold(dev); 1356 p->dev = dev; 1357 write_pnet(&p->net, hold_net(net)); 1358 p->sysctl_table = NULL; 1359 write_lock_bh(&tbl->lock); 1360 p->next = tbl->parms.next; 1361 tbl->parms.next = p; 1362 write_unlock_bh(&tbl->lock); 1363 } 1364 return p; 1365 } 1366 EXPORT_SYMBOL(neigh_parms_alloc); 1367 1368 static void neigh_rcu_free_parms(struct rcu_head *head) 1369 { 1370 struct neigh_parms *parms = 1371 container_of(head, struct neigh_parms, rcu_head); 1372 1373 neigh_parms_put(parms); 1374 } 1375 1376 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1377 { 1378 struct neigh_parms **p; 1379 1380 if (!parms || parms == &tbl->parms) 1381 return; 1382 write_lock_bh(&tbl->lock); 1383 for (p = &tbl->parms.next; *p; p = &(*p)->next) { 1384 if (*p == parms) { 1385 *p = parms->next; 1386 parms->dead = 1; 1387 write_unlock_bh(&tbl->lock); 1388 if (parms->dev) 1389 dev_put(parms->dev); 1390 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1391 return; 1392 } 1393 } 1394 write_unlock_bh(&tbl->lock); 1395 NEIGH_PRINTK1("neigh_parms_release: not found\n"); 1396 } 1397 EXPORT_SYMBOL(neigh_parms_release); 1398 1399 static void neigh_parms_destroy(struct neigh_parms *parms) 1400 { 1401 release_net(neigh_parms_net(parms)); 1402 kfree(parms); 1403 } 1404 1405 static struct lock_class_key neigh_table_proxy_queue_class; 1406 1407 void neigh_table_init_no_netlink(struct neigh_table *tbl) 1408 { 1409 unsigned long now = jiffies; 1410 unsigned long phsize; 1411 1412 write_pnet(&tbl->parms.net, &init_net); 1413 atomic_set(&tbl->parms.refcnt, 1); 1414 tbl->parms.reachable_time = 1415 neigh_rand_reach_time(tbl->parms.base_reachable_time); 1416 1417 if (!tbl->kmem_cachep) 1418 tbl->kmem_cachep = 1419 kmem_cache_create(tbl->id, tbl->entry_size, 0, 1420 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1421 NULL); 1422 tbl->stats = alloc_percpu(struct neigh_statistics); 1423 if (!tbl->stats) 1424 panic("cannot create neighbour cache statistics"); 1425 1426 #ifdef CONFIG_PROC_FS 1427 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat, 1428 &neigh_stat_seq_fops, tbl)) 1429 panic("cannot create neighbour proc dir entry"); 1430 #endif 1431 1432 tbl->hash_mask = 1; 1433 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1); 1434 1435 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1436 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1437 1438 if (!tbl->hash_buckets || !tbl->phash_buckets) 1439 panic("cannot allocate neighbour cache hashes"); 1440 1441 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 1442 1443 rwlock_init(&tbl->lock); 1444 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work); 1445 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time); 1446 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl); 1447 skb_queue_head_init_class(&tbl->proxy_queue, 1448 &neigh_table_proxy_queue_class); 1449 1450 tbl->last_flush = now; 1451 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1452 } 1453 EXPORT_SYMBOL(neigh_table_init_no_netlink); 1454 1455 void neigh_table_init(struct neigh_table *tbl) 1456 { 1457 struct neigh_table *tmp; 1458 1459 neigh_table_init_no_netlink(tbl); 1460 write_lock(&neigh_tbl_lock); 1461 for (tmp = neigh_tables; tmp; tmp = tmp->next) { 1462 if (tmp->family == tbl->family) 1463 break; 1464 } 1465 tbl->next = neigh_tables; 1466 neigh_tables = tbl; 1467 write_unlock(&neigh_tbl_lock); 1468 1469 if (unlikely(tmp)) { 1470 printk(KERN_ERR "NEIGH: Registering multiple tables for " 1471 "family %d\n", tbl->family); 1472 dump_stack(); 1473 } 1474 } 1475 EXPORT_SYMBOL(neigh_table_init); 1476 1477 int neigh_table_clear(struct neigh_table *tbl) 1478 { 1479 struct neigh_table **tp; 1480 1481 /* It is not clean... Fix it to unload IPv6 module safely */ 1482 cancel_delayed_work(&tbl->gc_work); 1483 flush_scheduled_work(); 1484 del_timer_sync(&tbl->proxy_timer); 1485 pneigh_queue_purge(&tbl->proxy_queue); 1486 neigh_ifdown(tbl, NULL); 1487 if (atomic_read(&tbl->entries)) 1488 printk(KERN_CRIT "neighbour leakage\n"); 1489 write_lock(&neigh_tbl_lock); 1490 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) { 1491 if (*tp == tbl) { 1492 *tp = tbl->next; 1493 break; 1494 } 1495 } 1496 write_unlock(&neigh_tbl_lock); 1497 1498 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1); 1499 tbl->hash_buckets = NULL; 1500 1501 kfree(tbl->phash_buckets); 1502 tbl->phash_buckets = NULL; 1503 1504 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1505 1506 free_percpu(tbl->stats); 1507 tbl->stats = NULL; 1508 1509 kmem_cache_destroy(tbl->kmem_cachep); 1510 tbl->kmem_cachep = NULL; 1511 1512 return 0; 1513 } 1514 EXPORT_SYMBOL(neigh_table_clear); 1515 1516 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1517 { 1518 struct net *net = sock_net(skb->sk); 1519 struct ndmsg *ndm; 1520 struct nlattr *dst_attr; 1521 struct neigh_table *tbl; 1522 struct net_device *dev = NULL; 1523 int err = -EINVAL; 1524 1525 if (nlmsg_len(nlh) < sizeof(*ndm)) 1526 goto out; 1527 1528 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1529 if (dst_attr == NULL) 1530 goto out; 1531 1532 ndm = nlmsg_data(nlh); 1533 if (ndm->ndm_ifindex) { 1534 dev = dev_get_by_index(net, ndm->ndm_ifindex); 1535 if (dev == NULL) { 1536 err = -ENODEV; 1537 goto out; 1538 } 1539 } 1540 1541 read_lock(&neigh_tbl_lock); 1542 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1543 struct neighbour *neigh; 1544 1545 if (tbl->family != ndm->ndm_family) 1546 continue; 1547 read_unlock(&neigh_tbl_lock); 1548 1549 if (nla_len(dst_attr) < tbl->key_len) 1550 goto out_dev_put; 1551 1552 if (ndm->ndm_flags & NTF_PROXY) { 1553 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1554 goto out_dev_put; 1555 } 1556 1557 if (dev == NULL) 1558 goto out_dev_put; 1559 1560 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1561 if (neigh == NULL) { 1562 err = -ENOENT; 1563 goto out_dev_put; 1564 } 1565 1566 err = neigh_update(neigh, NULL, NUD_FAILED, 1567 NEIGH_UPDATE_F_OVERRIDE | 1568 NEIGH_UPDATE_F_ADMIN); 1569 neigh_release(neigh); 1570 goto out_dev_put; 1571 } 1572 read_unlock(&neigh_tbl_lock); 1573 err = -EAFNOSUPPORT; 1574 1575 out_dev_put: 1576 if (dev) 1577 dev_put(dev); 1578 out: 1579 return err; 1580 } 1581 1582 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1583 { 1584 struct net *net = sock_net(skb->sk); 1585 struct ndmsg *ndm; 1586 struct nlattr *tb[NDA_MAX+1]; 1587 struct neigh_table *tbl; 1588 struct net_device *dev = NULL; 1589 int err; 1590 1591 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL); 1592 if (err < 0) 1593 goto out; 1594 1595 err = -EINVAL; 1596 if (tb[NDA_DST] == NULL) 1597 goto out; 1598 1599 ndm = nlmsg_data(nlh); 1600 if (ndm->ndm_ifindex) { 1601 dev = dev_get_by_index(net, ndm->ndm_ifindex); 1602 if (dev == NULL) { 1603 err = -ENODEV; 1604 goto out; 1605 } 1606 1607 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) 1608 goto out_dev_put; 1609 } 1610 1611 read_lock(&neigh_tbl_lock); 1612 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1613 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE; 1614 struct neighbour *neigh; 1615 void *dst, *lladdr; 1616 1617 if (tbl->family != ndm->ndm_family) 1618 continue; 1619 read_unlock(&neigh_tbl_lock); 1620 1621 if (nla_len(tb[NDA_DST]) < tbl->key_len) 1622 goto out_dev_put; 1623 dst = nla_data(tb[NDA_DST]); 1624 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1625 1626 if (ndm->ndm_flags & NTF_PROXY) { 1627 struct pneigh_entry *pn; 1628 1629 err = -ENOBUFS; 1630 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1631 if (pn) { 1632 pn->flags = ndm->ndm_flags; 1633 err = 0; 1634 } 1635 goto out_dev_put; 1636 } 1637 1638 if (dev == NULL) 1639 goto out_dev_put; 1640 1641 neigh = neigh_lookup(tbl, dst, dev); 1642 if (neigh == NULL) { 1643 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1644 err = -ENOENT; 1645 goto out_dev_put; 1646 } 1647 1648 neigh = __neigh_lookup_errno(tbl, dst, dev); 1649 if (IS_ERR(neigh)) { 1650 err = PTR_ERR(neigh); 1651 goto out_dev_put; 1652 } 1653 } else { 1654 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1655 err = -EEXIST; 1656 neigh_release(neigh); 1657 goto out_dev_put; 1658 } 1659 1660 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1661 flags &= ~NEIGH_UPDATE_F_OVERRIDE; 1662 } 1663 1664 if (ndm->ndm_flags & NTF_USE) { 1665 neigh_event_send(neigh, NULL); 1666 err = 0; 1667 } else 1668 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags); 1669 neigh_release(neigh); 1670 goto out_dev_put; 1671 } 1672 1673 read_unlock(&neigh_tbl_lock); 1674 err = -EAFNOSUPPORT; 1675 1676 out_dev_put: 1677 if (dev) 1678 dev_put(dev); 1679 out: 1680 return err; 1681 } 1682 1683 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1684 { 1685 struct nlattr *nest; 1686 1687 nest = nla_nest_start(skb, NDTA_PARMS); 1688 if (nest == NULL) 1689 return -ENOBUFS; 1690 1691 if (parms->dev) 1692 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex); 1693 1694 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)); 1695 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len); 1696 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen); 1697 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes); 1698 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes); 1699 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes); 1700 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time); 1701 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME, 1702 parms->base_reachable_time); 1703 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime); 1704 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time); 1705 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time); 1706 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay); 1707 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay); 1708 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime); 1709 1710 return nla_nest_end(skb, nest); 1711 1712 nla_put_failure: 1713 nla_nest_cancel(skb, nest); 1714 return -EMSGSIZE; 1715 } 1716 1717 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 1718 u32 pid, u32 seq, int type, int flags) 1719 { 1720 struct nlmsghdr *nlh; 1721 struct ndtmsg *ndtmsg; 1722 1723 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1724 if (nlh == NULL) 1725 return -EMSGSIZE; 1726 1727 ndtmsg = nlmsg_data(nlh); 1728 1729 read_lock_bh(&tbl->lock); 1730 ndtmsg->ndtm_family = tbl->family; 1731 ndtmsg->ndtm_pad1 = 0; 1732 ndtmsg->ndtm_pad2 = 0; 1733 1734 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id); 1735 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval); 1736 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1); 1737 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2); 1738 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3); 1739 1740 { 1741 unsigned long now = jiffies; 1742 unsigned int flush_delta = now - tbl->last_flush; 1743 unsigned int rand_delta = now - tbl->last_rand; 1744 1745 struct ndt_config ndc = { 1746 .ndtc_key_len = tbl->key_len, 1747 .ndtc_entry_size = tbl->entry_size, 1748 .ndtc_entries = atomic_read(&tbl->entries), 1749 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 1750 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 1751 .ndtc_hash_rnd = tbl->hash_rnd, 1752 .ndtc_hash_mask = tbl->hash_mask, 1753 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 1754 }; 1755 1756 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc); 1757 } 1758 1759 { 1760 int cpu; 1761 struct ndt_stats ndst; 1762 1763 memset(&ndst, 0, sizeof(ndst)); 1764 1765 for_each_possible_cpu(cpu) { 1766 struct neigh_statistics *st; 1767 1768 st = per_cpu_ptr(tbl->stats, cpu); 1769 ndst.ndts_allocs += st->allocs; 1770 ndst.ndts_destroys += st->destroys; 1771 ndst.ndts_hash_grows += st->hash_grows; 1772 ndst.ndts_res_failed += st->res_failed; 1773 ndst.ndts_lookups += st->lookups; 1774 ndst.ndts_hits += st->hits; 1775 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 1776 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 1777 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 1778 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 1779 } 1780 1781 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst); 1782 } 1783 1784 BUG_ON(tbl->parms.dev); 1785 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 1786 goto nla_put_failure; 1787 1788 read_unlock_bh(&tbl->lock); 1789 return nlmsg_end(skb, nlh); 1790 1791 nla_put_failure: 1792 read_unlock_bh(&tbl->lock); 1793 nlmsg_cancel(skb, nlh); 1794 return -EMSGSIZE; 1795 } 1796 1797 static int neightbl_fill_param_info(struct sk_buff *skb, 1798 struct neigh_table *tbl, 1799 struct neigh_parms *parms, 1800 u32 pid, u32 seq, int type, 1801 unsigned int flags) 1802 { 1803 struct ndtmsg *ndtmsg; 1804 struct nlmsghdr *nlh; 1805 1806 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1807 if (nlh == NULL) 1808 return -EMSGSIZE; 1809 1810 ndtmsg = nlmsg_data(nlh); 1811 1812 read_lock_bh(&tbl->lock); 1813 ndtmsg->ndtm_family = tbl->family; 1814 ndtmsg->ndtm_pad1 = 0; 1815 ndtmsg->ndtm_pad2 = 0; 1816 1817 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 1818 neightbl_fill_parms(skb, parms) < 0) 1819 goto errout; 1820 1821 read_unlock_bh(&tbl->lock); 1822 return nlmsg_end(skb, nlh); 1823 errout: 1824 read_unlock_bh(&tbl->lock); 1825 nlmsg_cancel(skb, nlh); 1826 return -EMSGSIZE; 1827 } 1828 1829 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 1830 [NDTA_NAME] = { .type = NLA_STRING }, 1831 [NDTA_THRESH1] = { .type = NLA_U32 }, 1832 [NDTA_THRESH2] = { .type = NLA_U32 }, 1833 [NDTA_THRESH3] = { .type = NLA_U32 }, 1834 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 1835 [NDTA_PARMS] = { .type = NLA_NESTED }, 1836 }; 1837 1838 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 1839 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 1840 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 1841 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 1842 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 1843 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 1844 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 1845 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 1846 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 1847 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 1848 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 1849 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 1850 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 1851 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 1852 }; 1853 1854 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1855 { 1856 struct net *net = sock_net(skb->sk); 1857 struct neigh_table *tbl; 1858 struct ndtmsg *ndtmsg; 1859 struct nlattr *tb[NDTA_MAX+1]; 1860 int err; 1861 1862 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 1863 nl_neightbl_policy); 1864 if (err < 0) 1865 goto errout; 1866 1867 if (tb[NDTA_NAME] == NULL) { 1868 err = -EINVAL; 1869 goto errout; 1870 } 1871 1872 ndtmsg = nlmsg_data(nlh); 1873 read_lock(&neigh_tbl_lock); 1874 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1875 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 1876 continue; 1877 1878 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) 1879 break; 1880 } 1881 1882 if (tbl == NULL) { 1883 err = -ENOENT; 1884 goto errout_locked; 1885 } 1886 1887 /* 1888 * We acquire tbl->lock to be nice to the periodic timers and 1889 * make sure they always see a consistent set of values. 1890 */ 1891 write_lock_bh(&tbl->lock); 1892 1893 if (tb[NDTA_PARMS]) { 1894 struct nlattr *tbp[NDTPA_MAX+1]; 1895 struct neigh_parms *p; 1896 int i, ifindex = 0; 1897 1898 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS], 1899 nl_ntbl_parm_policy); 1900 if (err < 0) 1901 goto errout_tbl_lock; 1902 1903 if (tbp[NDTPA_IFINDEX]) 1904 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 1905 1906 p = lookup_neigh_parms(tbl, net, ifindex); 1907 if (p == NULL) { 1908 err = -ENOENT; 1909 goto errout_tbl_lock; 1910 } 1911 1912 for (i = 1; i <= NDTPA_MAX; i++) { 1913 if (tbp[i] == NULL) 1914 continue; 1915 1916 switch (i) { 1917 case NDTPA_QUEUE_LEN: 1918 p->queue_len = nla_get_u32(tbp[i]); 1919 break; 1920 case NDTPA_PROXY_QLEN: 1921 p->proxy_qlen = nla_get_u32(tbp[i]); 1922 break; 1923 case NDTPA_APP_PROBES: 1924 p->app_probes = nla_get_u32(tbp[i]); 1925 break; 1926 case NDTPA_UCAST_PROBES: 1927 p->ucast_probes = nla_get_u32(tbp[i]); 1928 break; 1929 case NDTPA_MCAST_PROBES: 1930 p->mcast_probes = nla_get_u32(tbp[i]); 1931 break; 1932 case NDTPA_BASE_REACHABLE_TIME: 1933 p->base_reachable_time = nla_get_msecs(tbp[i]); 1934 break; 1935 case NDTPA_GC_STALETIME: 1936 p->gc_staletime = nla_get_msecs(tbp[i]); 1937 break; 1938 case NDTPA_DELAY_PROBE_TIME: 1939 p->delay_probe_time = nla_get_msecs(tbp[i]); 1940 break; 1941 case NDTPA_RETRANS_TIME: 1942 p->retrans_time = nla_get_msecs(tbp[i]); 1943 break; 1944 case NDTPA_ANYCAST_DELAY: 1945 p->anycast_delay = nla_get_msecs(tbp[i]); 1946 break; 1947 case NDTPA_PROXY_DELAY: 1948 p->proxy_delay = nla_get_msecs(tbp[i]); 1949 break; 1950 case NDTPA_LOCKTIME: 1951 p->locktime = nla_get_msecs(tbp[i]); 1952 break; 1953 } 1954 } 1955 } 1956 1957 if (tb[NDTA_THRESH1]) 1958 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 1959 1960 if (tb[NDTA_THRESH2]) 1961 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 1962 1963 if (tb[NDTA_THRESH3]) 1964 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 1965 1966 if (tb[NDTA_GC_INTERVAL]) 1967 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 1968 1969 err = 0; 1970 1971 errout_tbl_lock: 1972 write_unlock_bh(&tbl->lock); 1973 errout_locked: 1974 read_unlock(&neigh_tbl_lock); 1975 errout: 1976 return err; 1977 } 1978 1979 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 1980 { 1981 struct net *net = sock_net(skb->sk); 1982 int family, tidx, nidx = 0; 1983 int tbl_skip = cb->args[0]; 1984 int neigh_skip = cb->args[1]; 1985 struct neigh_table *tbl; 1986 1987 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 1988 1989 read_lock(&neigh_tbl_lock); 1990 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) { 1991 struct neigh_parms *p; 1992 1993 if (tidx < tbl_skip || (family && tbl->family != family)) 1994 continue; 1995 1996 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid, 1997 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 1998 NLM_F_MULTI) <= 0) 1999 break; 2000 2001 for (nidx = 0, p = tbl->parms.next; p; p = p->next) { 2002 if (!net_eq(neigh_parms_net(p), net)) 2003 continue; 2004 2005 if (nidx < neigh_skip) 2006 goto next; 2007 2008 if (neightbl_fill_param_info(skb, tbl, p, 2009 NETLINK_CB(cb->skb).pid, 2010 cb->nlh->nlmsg_seq, 2011 RTM_NEWNEIGHTBL, 2012 NLM_F_MULTI) <= 0) 2013 goto out; 2014 next: 2015 nidx++; 2016 } 2017 2018 neigh_skip = 0; 2019 } 2020 out: 2021 read_unlock(&neigh_tbl_lock); 2022 cb->args[0] = tidx; 2023 cb->args[1] = nidx; 2024 2025 return skb->len; 2026 } 2027 2028 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2029 u32 pid, u32 seq, int type, unsigned int flags) 2030 { 2031 unsigned long now = jiffies; 2032 struct nda_cacheinfo ci; 2033 struct nlmsghdr *nlh; 2034 struct ndmsg *ndm; 2035 2036 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2037 if (nlh == NULL) 2038 return -EMSGSIZE; 2039 2040 ndm = nlmsg_data(nlh); 2041 ndm->ndm_family = neigh->ops->family; 2042 ndm->ndm_pad1 = 0; 2043 ndm->ndm_pad2 = 0; 2044 ndm->ndm_flags = neigh->flags; 2045 ndm->ndm_type = neigh->type; 2046 ndm->ndm_ifindex = neigh->dev->ifindex; 2047 2048 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key); 2049 2050 read_lock_bh(&neigh->lock); 2051 ndm->ndm_state = neigh->nud_state; 2052 if ((neigh->nud_state & NUD_VALID) && 2053 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) { 2054 read_unlock_bh(&neigh->lock); 2055 goto nla_put_failure; 2056 } 2057 2058 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2059 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2060 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2061 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1; 2062 read_unlock_bh(&neigh->lock); 2063 2064 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes)); 2065 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci); 2066 2067 return nlmsg_end(skb, nlh); 2068 2069 nla_put_failure: 2070 nlmsg_cancel(skb, nlh); 2071 return -EMSGSIZE; 2072 } 2073 2074 static void neigh_update_notify(struct neighbour *neigh) 2075 { 2076 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2077 __neigh_notify(neigh, RTM_NEWNEIGH, 0); 2078 } 2079 2080 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2081 struct netlink_callback *cb) 2082 { 2083 struct net * net = sock_net(skb->sk); 2084 struct neighbour *n; 2085 int rc, h, s_h = cb->args[1]; 2086 int idx, s_idx = idx = cb->args[2]; 2087 2088 read_lock_bh(&tbl->lock); 2089 for (h = 0; h <= tbl->hash_mask; h++) { 2090 if (h < s_h) 2091 continue; 2092 if (h > s_h) 2093 s_idx = 0; 2094 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next) { 2095 if (dev_net(n->dev) != net) 2096 continue; 2097 if (idx < s_idx) 2098 goto next; 2099 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, 2100 cb->nlh->nlmsg_seq, 2101 RTM_NEWNEIGH, 2102 NLM_F_MULTI) <= 0) { 2103 read_unlock_bh(&tbl->lock); 2104 rc = -1; 2105 goto out; 2106 } 2107 next: 2108 idx++; 2109 } 2110 } 2111 read_unlock_bh(&tbl->lock); 2112 rc = skb->len; 2113 out: 2114 cb->args[1] = h; 2115 cb->args[2] = idx; 2116 return rc; 2117 } 2118 2119 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2120 { 2121 struct neigh_table *tbl; 2122 int t, family, s_t; 2123 2124 read_lock(&neigh_tbl_lock); 2125 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2126 s_t = cb->args[0]; 2127 2128 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) { 2129 if (t < s_t || (family && tbl->family != family)) 2130 continue; 2131 if (t > s_t) 2132 memset(&cb->args[1], 0, sizeof(cb->args) - 2133 sizeof(cb->args[0])); 2134 if (neigh_dump_table(tbl, skb, cb) < 0) 2135 break; 2136 } 2137 read_unlock(&neigh_tbl_lock); 2138 2139 cb->args[0] = t; 2140 return skb->len; 2141 } 2142 2143 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2144 { 2145 int chain; 2146 2147 read_lock_bh(&tbl->lock); 2148 for (chain = 0; chain <= tbl->hash_mask; chain++) { 2149 struct neighbour *n; 2150 2151 for (n = tbl->hash_buckets[chain]; n; n = n->next) 2152 cb(n, cookie); 2153 } 2154 read_unlock_bh(&tbl->lock); 2155 } 2156 EXPORT_SYMBOL(neigh_for_each); 2157 2158 /* The tbl->lock must be held as a writer and BH disabled. */ 2159 void __neigh_for_each_release(struct neigh_table *tbl, 2160 int (*cb)(struct neighbour *)) 2161 { 2162 int chain; 2163 2164 for (chain = 0; chain <= tbl->hash_mask; chain++) { 2165 struct neighbour *n, **np; 2166 2167 np = &tbl->hash_buckets[chain]; 2168 while ((n = *np) != NULL) { 2169 int release; 2170 2171 write_lock(&n->lock); 2172 release = cb(n); 2173 if (release) { 2174 *np = n->next; 2175 n->dead = 1; 2176 } else 2177 np = &n->next; 2178 write_unlock(&n->lock); 2179 if (release) 2180 neigh_cleanup_and_release(n); 2181 } 2182 } 2183 } 2184 EXPORT_SYMBOL(__neigh_for_each_release); 2185 2186 #ifdef CONFIG_PROC_FS 2187 2188 static struct neighbour *neigh_get_first(struct seq_file *seq) 2189 { 2190 struct neigh_seq_state *state = seq->private; 2191 struct net *net = seq_file_net(seq); 2192 struct neigh_table *tbl = state->tbl; 2193 struct neighbour *n = NULL; 2194 int bucket = state->bucket; 2195 2196 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 2197 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) { 2198 n = tbl->hash_buckets[bucket]; 2199 2200 while (n) { 2201 if (!net_eq(dev_net(n->dev), net)) 2202 goto next; 2203 if (state->neigh_sub_iter) { 2204 loff_t fakep = 0; 2205 void *v; 2206 2207 v = state->neigh_sub_iter(state, n, &fakep); 2208 if (!v) 2209 goto next; 2210 } 2211 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2212 break; 2213 if (n->nud_state & ~NUD_NOARP) 2214 break; 2215 next: 2216 n = n->next; 2217 } 2218 2219 if (n) 2220 break; 2221 } 2222 state->bucket = bucket; 2223 2224 return n; 2225 } 2226 2227 static struct neighbour *neigh_get_next(struct seq_file *seq, 2228 struct neighbour *n, 2229 loff_t *pos) 2230 { 2231 struct neigh_seq_state *state = seq->private; 2232 struct net *net = seq_file_net(seq); 2233 struct neigh_table *tbl = state->tbl; 2234 2235 if (state->neigh_sub_iter) { 2236 void *v = state->neigh_sub_iter(state, n, pos); 2237 if (v) 2238 return n; 2239 } 2240 n = n->next; 2241 2242 while (1) { 2243 while (n) { 2244 if (!net_eq(dev_net(n->dev), net)) 2245 goto next; 2246 if (state->neigh_sub_iter) { 2247 void *v = state->neigh_sub_iter(state, n, pos); 2248 if (v) 2249 return n; 2250 goto next; 2251 } 2252 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2253 break; 2254 2255 if (n->nud_state & ~NUD_NOARP) 2256 break; 2257 next: 2258 n = n->next; 2259 } 2260 2261 if (n) 2262 break; 2263 2264 if (++state->bucket > tbl->hash_mask) 2265 break; 2266 2267 n = tbl->hash_buckets[state->bucket]; 2268 } 2269 2270 if (n && pos) 2271 --(*pos); 2272 return n; 2273 } 2274 2275 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 2276 { 2277 struct neighbour *n = neigh_get_first(seq); 2278 2279 if (n) { 2280 --(*pos); 2281 while (*pos) { 2282 n = neigh_get_next(seq, n, pos); 2283 if (!n) 2284 break; 2285 } 2286 } 2287 return *pos ? NULL : n; 2288 } 2289 2290 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 2291 { 2292 struct neigh_seq_state *state = seq->private; 2293 struct net *net = seq_file_net(seq); 2294 struct neigh_table *tbl = state->tbl; 2295 struct pneigh_entry *pn = NULL; 2296 int bucket = state->bucket; 2297 2298 state->flags |= NEIGH_SEQ_IS_PNEIGH; 2299 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 2300 pn = tbl->phash_buckets[bucket]; 2301 while (pn && !net_eq(pneigh_net(pn), net)) 2302 pn = pn->next; 2303 if (pn) 2304 break; 2305 } 2306 state->bucket = bucket; 2307 2308 return pn; 2309 } 2310 2311 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 2312 struct pneigh_entry *pn, 2313 loff_t *pos) 2314 { 2315 struct neigh_seq_state *state = seq->private; 2316 struct net *net = seq_file_net(seq); 2317 struct neigh_table *tbl = state->tbl; 2318 2319 pn = pn->next; 2320 while (!pn) { 2321 if (++state->bucket > PNEIGH_HASHMASK) 2322 break; 2323 pn = tbl->phash_buckets[state->bucket]; 2324 while (pn && !net_eq(pneigh_net(pn), net)) 2325 pn = pn->next; 2326 if (pn) 2327 break; 2328 } 2329 2330 if (pn && pos) 2331 --(*pos); 2332 2333 return pn; 2334 } 2335 2336 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 2337 { 2338 struct pneigh_entry *pn = pneigh_get_first(seq); 2339 2340 if (pn) { 2341 --(*pos); 2342 while (*pos) { 2343 pn = pneigh_get_next(seq, pn, pos); 2344 if (!pn) 2345 break; 2346 } 2347 } 2348 return *pos ? NULL : pn; 2349 } 2350 2351 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 2352 { 2353 struct neigh_seq_state *state = seq->private; 2354 void *rc; 2355 loff_t idxpos = *pos; 2356 2357 rc = neigh_get_idx(seq, &idxpos); 2358 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2359 rc = pneigh_get_idx(seq, &idxpos); 2360 2361 return rc; 2362 } 2363 2364 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 2365 __acquires(tbl->lock) 2366 { 2367 struct neigh_seq_state *state = seq->private; 2368 2369 state->tbl = tbl; 2370 state->bucket = 0; 2371 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 2372 2373 read_lock_bh(&tbl->lock); 2374 2375 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 2376 } 2377 EXPORT_SYMBOL(neigh_seq_start); 2378 2379 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2380 { 2381 struct neigh_seq_state *state; 2382 void *rc; 2383 2384 if (v == SEQ_START_TOKEN) { 2385 rc = neigh_get_first(seq); 2386 goto out; 2387 } 2388 2389 state = seq->private; 2390 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 2391 rc = neigh_get_next(seq, v, NULL); 2392 if (rc) 2393 goto out; 2394 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2395 rc = pneigh_get_first(seq); 2396 } else { 2397 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 2398 rc = pneigh_get_next(seq, v, NULL); 2399 } 2400 out: 2401 ++(*pos); 2402 return rc; 2403 } 2404 EXPORT_SYMBOL(neigh_seq_next); 2405 2406 void neigh_seq_stop(struct seq_file *seq, void *v) 2407 __releases(tbl->lock) 2408 { 2409 struct neigh_seq_state *state = seq->private; 2410 struct neigh_table *tbl = state->tbl; 2411 2412 read_unlock_bh(&tbl->lock); 2413 } 2414 EXPORT_SYMBOL(neigh_seq_stop); 2415 2416 /* statistics via seq_file */ 2417 2418 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 2419 { 2420 struct proc_dir_entry *pde = seq->private; 2421 struct neigh_table *tbl = pde->data; 2422 int cpu; 2423 2424 if (*pos == 0) 2425 return SEQ_START_TOKEN; 2426 2427 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 2428 if (!cpu_possible(cpu)) 2429 continue; 2430 *pos = cpu+1; 2431 return per_cpu_ptr(tbl->stats, cpu); 2432 } 2433 return NULL; 2434 } 2435 2436 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2437 { 2438 struct proc_dir_entry *pde = seq->private; 2439 struct neigh_table *tbl = pde->data; 2440 int cpu; 2441 2442 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 2443 if (!cpu_possible(cpu)) 2444 continue; 2445 *pos = cpu+1; 2446 return per_cpu_ptr(tbl->stats, cpu); 2447 } 2448 return NULL; 2449 } 2450 2451 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 2452 { 2453 2454 } 2455 2456 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 2457 { 2458 struct proc_dir_entry *pde = seq->private; 2459 struct neigh_table *tbl = pde->data; 2460 struct neigh_statistics *st = v; 2461 2462 if (v == SEQ_START_TOKEN) { 2463 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n"); 2464 return 0; 2465 } 2466 2467 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 2468 "%08lx %08lx %08lx %08lx %08lx\n", 2469 atomic_read(&tbl->entries), 2470 2471 st->allocs, 2472 st->destroys, 2473 st->hash_grows, 2474 2475 st->lookups, 2476 st->hits, 2477 2478 st->res_failed, 2479 2480 st->rcv_probes_mcast, 2481 st->rcv_probes_ucast, 2482 2483 st->periodic_gc_runs, 2484 st->forced_gc_runs, 2485 st->unres_discards 2486 ); 2487 2488 return 0; 2489 } 2490 2491 static const struct seq_operations neigh_stat_seq_ops = { 2492 .start = neigh_stat_seq_start, 2493 .next = neigh_stat_seq_next, 2494 .stop = neigh_stat_seq_stop, 2495 .show = neigh_stat_seq_show, 2496 }; 2497 2498 static int neigh_stat_seq_open(struct inode *inode, struct file *file) 2499 { 2500 int ret = seq_open(file, &neigh_stat_seq_ops); 2501 2502 if (!ret) { 2503 struct seq_file *sf = file->private_data; 2504 sf->private = PDE(inode); 2505 } 2506 return ret; 2507 }; 2508 2509 static const struct file_operations neigh_stat_seq_fops = { 2510 .owner = THIS_MODULE, 2511 .open = neigh_stat_seq_open, 2512 .read = seq_read, 2513 .llseek = seq_lseek, 2514 .release = seq_release, 2515 }; 2516 2517 #endif /* CONFIG_PROC_FS */ 2518 2519 static inline size_t neigh_nlmsg_size(void) 2520 { 2521 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2522 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2523 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2524 + nla_total_size(sizeof(struct nda_cacheinfo)) 2525 + nla_total_size(4); /* NDA_PROBES */ 2526 } 2527 2528 static void __neigh_notify(struct neighbour *n, int type, int flags) 2529 { 2530 struct net *net = dev_net(n->dev); 2531 struct sk_buff *skb; 2532 int err = -ENOBUFS; 2533 2534 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 2535 if (skb == NULL) 2536 goto errout; 2537 2538 err = neigh_fill_info(skb, n, 0, 0, type, flags); 2539 if (err < 0) { 2540 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 2541 WARN_ON(err == -EMSGSIZE); 2542 kfree_skb(skb); 2543 goto errout; 2544 } 2545 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 2546 return; 2547 errout: 2548 if (err < 0) 2549 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 2550 } 2551 2552 #ifdef CONFIG_ARPD 2553 void neigh_app_ns(struct neighbour *n) 2554 { 2555 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST); 2556 } 2557 EXPORT_SYMBOL(neigh_app_ns); 2558 #endif /* CONFIG_ARPD */ 2559 2560 #ifdef CONFIG_SYSCTL 2561 2562 static struct neigh_sysctl_table { 2563 struct ctl_table_header *sysctl_header; 2564 struct ctl_table neigh_vars[__NET_NEIGH_MAX]; 2565 char *dev_name; 2566 } neigh_sysctl_template __read_mostly = { 2567 .neigh_vars = { 2568 { 2569 .ctl_name = NET_NEIGH_MCAST_SOLICIT, 2570 .procname = "mcast_solicit", 2571 .maxlen = sizeof(int), 2572 .mode = 0644, 2573 .proc_handler = proc_dointvec, 2574 }, 2575 { 2576 .ctl_name = NET_NEIGH_UCAST_SOLICIT, 2577 .procname = "ucast_solicit", 2578 .maxlen = sizeof(int), 2579 .mode = 0644, 2580 .proc_handler = proc_dointvec, 2581 }, 2582 { 2583 .ctl_name = NET_NEIGH_APP_SOLICIT, 2584 .procname = "app_solicit", 2585 .maxlen = sizeof(int), 2586 .mode = 0644, 2587 .proc_handler = proc_dointvec, 2588 }, 2589 { 2590 .procname = "retrans_time", 2591 .maxlen = sizeof(int), 2592 .mode = 0644, 2593 .proc_handler = proc_dointvec_userhz_jiffies, 2594 }, 2595 { 2596 .ctl_name = NET_NEIGH_REACHABLE_TIME, 2597 .procname = "base_reachable_time", 2598 .maxlen = sizeof(int), 2599 .mode = 0644, 2600 .proc_handler = proc_dointvec_jiffies, 2601 .strategy = sysctl_jiffies, 2602 }, 2603 { 2604 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME, 2605 .procname = "delay_first_probe_time", 2606 .maxlen = sizeof(int), 2607 .mode = 0644, 2608 .proc_handler = proc_dointvec_jiffies, 2609 .strategy = sysctl_jiffies, 2610 }, 2611 { 2612 .ctl_name = NET_NEIGH_GC_STALE_TIME, 2613 .procname = "gc_stale_time", 2614 .maxlen = sizeof(int), 2615 .mode = 0644, 2616 .proc_handler = proc_dointvec_jiffies, 2617 .strategy = sysctl_jiffies, 2618 }, 2619 { 2620 .ctl_name = NET_NEIGH_UNRES_QLEN, 2621 .procname = "unres_qlen", 2622 .maxlen = sizeof(int), 2623 .mode = 0644, 2624 .proc_handler = proc_dointvec, 2625 }, 2626 { 2627 .ctl_name = NET_NEIGH_PROXY_QLEN, 2628 .procname = "proxy_qlen", 2629 .maxlen = sizeof(int), 2630 .mode = 0644, 2631 .proc_handler = proc_dointvec, 2632 }, 2633 { 2634 .procname = "anycast_delay", 2635 .maxlen = sizeof(int), 2636 .mode = 0644, 2637 .proc_handler = proc_dointvec_userhz_jiffies, 2638 }, 2639 { 2640 .procname = "proxy_delay", 2641 .maxlen = sizeof(int), 2642 .mode = 0644, 2643 .proc_handler = proc_dointvec_userhz_jiffies, 2644 }, 2645 { 2646 .procname = "locktime", 2647 .maxlen = sizeof(int), 2648 .mode = 0644, 2649 .proc_handler = proc_dointvec_userhz_jiffies, 2650 }, 2651 { 2652 .ctl_name = NET_NEIGH_RETRANS_TIME_MS, 2653 .procname = "retrans_time_ms", 2654 .maxlen = sizeof(int), 2655 .mode = 0644, 2656 .proc_handler = proc_dointvec_ms_jiffies, 2657 .strategy = sysctl_ms_jiffies, 2658 }, 2659 { 2660 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS, 2661 .procname = "base_reachable_time_ms", 2662 .maxlen = sizeof(int), 2663 .mode = 0644, 2664 .proc_handler = proc_dointvec_ms_jiffies, 2665 .strategy = sysctl_ms_jiffies, 2666 }, 2667 { 2668 .ctl_name = NET_NEIGH_GC_INTERVAL, 2669 .procname = "gc_interval", 2670 .maxlen = sizeof(int), 2671 .mode = 0644, 2672 .proc_handler = proc_dointvec_jiffies, 2673 .strategy = sysctl_jiffies, 2674 }, 2675 { 2676 .ctl_name = NET_NEIGH_GC_THRESH1, 2677 .procname = "gc_thresh1", 2678 .maxlen = sizeof(int), 2679 .mode = 0644, 2680 .proc_handler = proc_dointvec, 2681 }, 2682 { 2683 .ctl_name = NET_NEIGH_GC_THRESH2, 2684 .procname = "gc_thresh2", 2685 .maxlen = sizeof(int), 2686 .mode = 0644, 2687 .proc_handler = proc_dointvec, 2688 }, 2689 { 2690 .ctl_name = NET_NEIGH_GC_THRESH3, 2691 .procname = "gc_thresh3", 2692 .maxlen = sizeof(int), 2693 .mode = 0644, 2694 .proc_handler = proc_dointvec, 2695 }, 2696 {}, 2697 }, 2698 }; 2699 2700 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 2701 int p_id, int pdev_id, char *p_name, 2702 proc_handler *handler, ctl_handler *strategy) 2703 { 2704 struct neigh_sysctl_table *t; 2705 const char *dev_name_source = NULL; 2706 2707 #define NEIGH_CTL_PATH_ROOT 0 2708 #define NEIGH_CTL_PATH_PROTO 1 2709 #define NEIGH_CTL_PATH_NEIGH 2 2710 #define NEIGH_CTL_PATH_DEV 3 2711 2712 struct ctl_path neigh_path[] = { 2713 { .procname = "net", .ctl_name = CTL_NET, }, 2714 { .procname = "proto", .ctl_name = 0, }, 2715 { .procname = "neigh", .ctl_name = 0, }, 2716 { .procname = "default", .ctl_name = NET_PROTO_CONF_DEFAULT, }, 2717 { }, 2718 }; 2719 2720 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 2721 if (!t) 2722 goto err; 2723 2724 t->neigh_vars[0].data = &p->mcast_probes; 2725 t->neigh_vars[1].data = &p->ucast_probes; 2726 t->neigh_vars[2].data = &p->app_probes; 2727 t->neigh_vars[3].data = &p->retrans_time; 2728 t->neigh_vars[4].data = &p->base_reachable_time; 2729 t->neigh_vars[5].data = &p->delay_probe_time; 2730 t->neigh_vars[6].data = &p->gc_staletime; 2731 t->neigh_vars[7].data = &p->queue_len; 2732 t->neigh_vars[8].data = &p->proxy_qlen; 2733 t->neigh_vars[9].data = &p->anycast_delay; 2734 t->neigh_vars[10].data = &p->proxy_delay; 2735 t->neigh_vars[11].data = &p->locktime; 2736 t->neigh_vars[12].data = &p->retrans_time; 2737 t->neigh_vars[13].data = &p->base_reachable_time; 2738 2739 if (dev) { 2740 dev_name_source = dev->name; 2741 neigh_path[NEIGH_CTL_PATH_DEV].ctl_name = dev->ifindex; 2742 /* Terminate the table early */ 2743 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14])); 2744 } else { 2745 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname; 2746 t->neigh_vars[14].data = (int *)(p + 1); 2747 t->neigh_vars[15].data = (int *)(p + 1) + 1; 2748 t->neigh_vars[16].data = (int *)(p + 1) + 2; 2749 t->neigh_vars[17].data = (int *)(p + 1) + 3; 2750 } 2751 2752 2753 if (handler || strategy) { 2754 /* RetransTime */ 2755 t->neigh_vars[3].proc_handler = handler; 2756 t->neigh_vars[3].strategy = strategy; 2757 t->neigh_vars[3].extra1 = dev; 2758 if (!strategy) 2759 t->neigh_vars[3].ctl_name = CTL_UNNUMBERED; 2760 /* ReachableTime */ 2761 t->neigh_vars[4].proc_handler = handler; 2762 t->neigh_vars[4].strategy = strategy; 2763 t->neigh_vars[4].extra1 = dev; 2764 if (!strategy) 2765 t->neigh_vars[4].ctl_name = CTL_UNNUMBERED; 2766 /* RetransTime (in milliseconds)*/ 2767 t->neigh_vars[12].proc_handler = handler; 2768 t->neigh_vars[12].strategy = strategy; 2769 t->neigh_vars[12].extra1 = dev; 2770 if (!strategy) 2771 t->neigh_vars[12].ctl_name = CTL_UNNUMBERED; 2772 /* ReachableTime (in milliseconds) */ 2773 t->neigh_vars[13].proc_handler = handler; 2774 t->neigh_vars[13].strategy = strategy; 2775 t->neigh_vars[13].extra1 = dev; 2776 if (!strategy) 2777 t->neigh_vars[13].ctl_name = CTL_UNNUMBERED; 2778 } 2779 2780 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL); 2781 if (!t->dev_name) 2782 goto free; 2783 2784 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name; 2785 neigh_path[NEIGH_CTL_PATH_NEIGH].ctl_name = pdev_id; 2786 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name; 2787 neigh_path[NEIGH_CTL_PATH_PROTO].ctl_name = p_id; 2788 2789 t->sysctl_header = 2790 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars); 2791 if (!t->sysctl_header) 2792 goto free_procname; 2793 2794 p->sysctl_table = t; 2795 return 0; 2796 2797 free_procname: 2798 kfree(t->dev_name); 2799 free: 2800 kfree(t); 2801 err: 2802 return -ENOBUFS; 2803 } 2804 EXPORT_SYMBOL(neigh_sysctl_register); 2805 2806 void neigh_sysctl_unregister(struct neigh_parms *p) 2807 { 2808 if (p->sysctl_table) { 2809 struct neigh_sysctl_table *t = p->sysctl_table; 2810 p->sysctl_table = NULL; 2811 unregister_sysctl_table(t->sysctl_header); 2812 kfree(t->dev_name); 2813 kfree(t); 2814 } 2815 } 2816 EXPORT_SYMBOL(neigh_sysctl_unregister); 2817 2818 #endif /* CONFIG_SYSCTL */ 2819 2820 static int __init neigh_init(void) 2821 { 2822 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL); 2823 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL); 2824 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info); 2825 2826 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info); 2827 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL); 2828 2829 return 0; 2830 } 2831 2832 subsys_initcall(neigh_init); 2833 2834