1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic address resolution entity 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 8 * 9 * Fixes: 10 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 11 * Harald Welte Add neighbour cache statistics like rtstat 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/slab.h> 17 #include <linux/kmemleak.h> 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/socket.h> 22 #include <linux/netdevice.h> 23 #include <linux/proc_fs.h> 24 #ifdef CONFIG_SYSCTL 25 #include <linux/sysctl.h> 26 #endif 27 #include <linux/times.h> 28 #include <net/net_namespace.h> 29 #include <net/neighbour.h> 30 #include <net/arp.h> 31 #include <net/dst.h> 32 #include <net/sock.h> 33 #include <net/netevent.h> 34 #include <net/netlink.h> 35 #include <linux/rtnetlink.h> 36 #include <linux/random.h> 37 #include <linux/string.h> 38 #include <linux/log2.h> 39 #include <linux/inetdevice.h> 40 #include <net/addrconf.h> 41 42 #include <trace/events/neigh.h> 43 44 #define DEBUG 45 #define NEIGH_DEBUG 1 46 #define neigh_dbg(level, fmt, ...) \ 47 do { \ 48 if (level <= NEIGH_DEBUG) \ 49 pr_debug(fmt, ##__VA_ARGS__); \ 50 } while (0) 51 52 #define PNEIGH_HASHMASK 0xF 53 54 static void neigh_timer_handler(struct timer_list *t); 55 static void __neigh_notify(struct neighbour *n, int type, int flags, 56 u32 pid); 57 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid); 58 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 59 struct net_device *dev); 60 61 #ifdef CONFIG_PROC_FS 62 static const struct seq_operations neigh_stat_seq_ops; 63 #endif 64 65 /* 66 Neighbour hash table buckets are protected with rwlock tbl->lock. 67 68 - All the scans/updates to hash buckets MUST be made under this lock. 69 - NOTHING clever should be made under this lock: no callbacks 70 to protocol backends, no attempts to send something to network. 71 It will result in deadlocks, if backend/driver wants to use neighbour 72 cache. 73 - If the entry requires some non-trivial actions, increase 74 its reference count and release table lock. 75 76 Neighbour entries are protected: 77 - with reference count. 78 - with rwlock neigh->lock 79 80 Reference count prevents destruction. 81 82 neigh->lock mainly serializes ll address data and its validity state. 83 However, the same lock is used to protect another entry fields: 84 - timer 85 - resolution queue 86 87 Again, nothing clever shall be made under neigh->lock, 88 the most complicated procedure, which we allow is dev->hard_header. 89 It is supposed, that dev->hard_header is simplistic and does 90 not make callbacks to neighbour tables. 91 */ 92 93 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) 94 { 95 kfree_skb(skb); 96 return -ENETDOWN; 97 } 98 99 static void neigh_cleanup_and_release(struct neighbour *neigh) 100 { 101 trace_neigh_cleanup_and_release(neigh, 0); 102 __neigh_notify(neigh, RTM_DELNEIGH, 0, 0); 103 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 104 neigh_release(neigh); 105 } 106 107 /* 108 * It is random distribution in the interval (1/2)*base...(3/2)*base. 109 * It corresponds to default IPv6 settings and is not overridable, 110 * because it is really reasonable choice. 111 */ 112 113 unsigned long neigh_rand_reach_time(unsigned long base) 114 { 115 return base ? (prandom_u32() % base) + (base >> 1) : 0; 116 } 117 EXPORT_SYMBOL(neigh_rand_reach_time); 118 119 static void neigh_mark_dead(struct neighbour *n) 120 { 121 n->dead = 1; 122 if (!list_empty(&n->gc_list)) { 123 list_del_init(&n->gc_list); 124 atomic_dec(&n->tbl->gc_entries); 125 } 126 } 127 128 static void neigh_update_gc_list(struct neighbour *n) 129 { 130 bool on_gc_list, exempt_from_gc; 131 132 write_lock_bh(&n->tbl->lock); 133 write_lock(&n->lock); 134 135 /* remove from the gc list if new state is permanent or if neighbor 136 * is externally learned; otherwise entry should be on the gc list 137 */ 138 exempt_from_gc = n->nud_state & NUD_PERMANENT || 139 n->flags & NTF_EXT_LEARNED; 140 on_gc_list = !list_empty(&n->gc_list); 141 142 if (exempt_from_gc && on_gc_list) { 143 list_del_init(&n->gc_list); 144 atomic_dec(&n->tbl->gc_entries); 145 } else if (!exempt_from_gc && !on_gc_list) { 146 /* add entries to the tail; cleaning removes from the front */ 147 list_add_tail(&n->gc_list, &n->tbl->gc_list); 148 atomic_inc(&n->tbl->gc_entries); 149 } 150 151 write_unlock(&n->lock); 152 write_unlock_bh(&n->tbl->lock); 153 } 154 155 static bool neigh_update_ext_learned(struct neighbour *neigh, u32 flags, 156 int *notify) 157 { 158 bool rc = false; 159 u8 ndm_flags; 160 161 if (!(flags & NEIGH_UPDATE_F_ADMIN)) 162 return rc; 163 164 ndm_flags = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0; 165 if ((neigh->flags ^ ndm_flags) & NTF_EXT_LEARNED) { 166 if (ndm_flags & NTF_EXT_LEARNED) 167 neigh->flags |= NTF_EXT_LEARNED; 168 else 169 neigh->flags &= ~NTF_EXT_LEARNED; 170 rc = true; 171 *notify = 1; 172 } 173 174 return rc; 175 } 176 177 static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np, 178 struct neigh_table *tbl) 179 { 180 bool retval = false; 181 182 write_lock(&n->lock); 183 if (refcount_read(&n->refcnt) == 1) { 184 struct neighbour *neigh; 185 186 neigh = rcu_dereference_protected(n->next, 187 lockdep_is_held(&tbl->lock)); 188 rcu_assign_pointer(*np, neigh); 189 neigh_mark_dead(n); 190 retval = true; 191 } 192 write_unlock(&n->lock); 193 if (retval) 194 neigh_cleanup_and_release(n); 195 return retval; 196 } 197 198 bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl) 199 { 200 struct neigh_hash_table *nht; 201 void *pkey = ndel->primary_key; 202 u32 hash_val; 203 struct neighbour *n; 204 struct neighbour __rcu **np; 205 206 nht = rcu_dereference_protected(tbl->nht, 207 lockdep_is_held(&tbl->lock)); 208 hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd); 209 hash_val = hash_val >> (32 - nht->hash_shift); 210 211 np = &nht->hash_buckets[hash_val]; 212 while ((n = rcu_dereference_protected(*np, 213 lockdep_is_held(&tbl->lock)))) { 214 if (n == ndel) 215 return neigh_del(n, np, tbl); 216 np = &n->next; 217 } 218 return false; 219 } 220 221 static int neigh_forced_gc(struct neigh_table *tbl) 222 { 223 int max_clean = atomic_read(&tbl->gc_entries) - tbl->gc_thresh2; 224 unsigned long tref = jiffies - 5 * HZ; 225 struct neighbour *n, *tmp; 226 int shrunk = 0; 227 228 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 229 230 write_lock_bh(&tbl->lock); 231 232 list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) { 233 if (refcount_read(&n->refcnt) == 1) { 234 bool remove = false; 235 236 write_lock(&n->lock); 237 if ((n->nud_state == NUD_FAILED) || 238 (tbl->is_multicast && 239 tbl->is_multicast(n->primary_key)) || 240 time_after(tref, n->updated)) 241 remove = true; 242 write_unlock(&n->lock); 243 244 if (remove && neigh_remove_one(n, tbl)) 245 shrunk++; 246 if (shrunk >= max_clean) 247 break; 248 } 249 } 250 251 tbl->last_flush = jiffies; 252 253 write_unlock_bh(&tbl->lock); 254 255 return shrunk; 256 } 257 258 static void neigh_add_timer(struct neighbour *n, unsigned long when) 259 { 260 neigh_hold(n); 261 if (unlikely(mod_timer(&n->timer, when))) { 262 printk("NEIGH: BUG, double timer add, state is %x\n", 263 n->nud_state); 264 dump_stack(); 265 } 266 } 267 268 static int neigh_del_timer(struct neighbour *n) 269 { 270 if ((n->nud_state & NUD_IN_TIMER) && 271 del_timer(&n->timer)) { 272 neigh_release(n); 273 return 1; 274 } 275 return 0; 276 } 277 278 static void pneigh_queue_purge(struct sk_buff_head *list) 279 { 280 struct sk_buff *skb; 281 282 while ((skb = skb_dequeue(list)) != NULL) { 283 dev_put(skb->dev); 284 kfree_skb(skb); 285 } 286 } 287 288 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev, 289 bool skip_perm) 290 { 291 int i; 292 struct neigh_hash_table *nht; 293 294 nht = rcu_dereference_protected(tbl->nht, 295 lockdep_is_held(&tbl->lock)); 296 297 for (i = 0; i < (1 << nht->hash_shift); i++) { 298 struct neighbour *n; 299 struct neighbour __rcu **np = &nht->hash_buckets[i]; 300 301 while ((n = rcu_dereference_protected(*np, 302 lockdep_is_held(&tbl->lock))) != NULL) { 303 if (dev && n->dev != dev) { 304 np = &n->next; 305 continue; 306 } 307 if (skip_perm && n->nud_state & NUD_PERMANENT) { 308 np = &n->next; 309 continue; 310 } 311 rcu_assign_pointer(*np, 312 rcu_dereference_protected(n->next, 313 lockdep_is_held(&tbl->lock))); 314 write_lock(&n->lock); 315 neigh_del_timer(n); 316 neigh_mark_dead(n); 317 if (refcount_read(&n->refcnt) != 1) { 318 /* The most unpleasant situation. 319 We must destroy neighbour entry, 320 but someone still uses it. 321 322 The destroy will be delayed until 323 the last user releases us, but 324 we must kill timers etc. and move 325 it to safe state. 326 */ 327 __skb_queue_purge(&n->arp_queue); 328 n->arp_queue_len_bytes = 0; 329 n->output = neigh_blackhole; 330 if (n->nud_state & NUD_VALID) 331 n->nud_state = NUD_NOARP; 332 else 333 n->nud_state = NUD_NONE; 334 neigh_dbg(2, "neigh %p is stray\n", n); 335 } 336 write_unlock(&n->lock); 337 neigh_cleanup_and_release(n); 338 } 339 } 340 } 341 342 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 343 { 344 write_lock_bh(&tbl->lock); 345 neigh_flush_dev(tbl, dev, false); 346 write_unlock_bh(&tbl->lock); 347 } 348 EXPORT_SYMBOL(neigh_changeaddr); 349 350 static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev, 351 bool skip_perm) 352 { 353 write_lock_bh(&tbl->lock); 354 neigh_flush_dev(tbl, dev, skip_perm); 355 pneigh_ifdown_and_unlock(tbl, dev); 356 357 del_timer_sync(&tbl->proxy_timer); 358 pneigh_queue_purge(&tbl->proxy_queue); 359 return 0; 360 } 361 362 int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev) 363 { 364 __neigh_ifdown(tbl, dev, true); 365 return 0; 366 } 367 EXPORT_SYMBOL(neigh_carrier_down); 368 369 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 370 { 371 __neigh_ifdown(tbl, dev, false); 372 return 0; 373 } 374 EXPORT_SYMBOL(neigh_ifdown); 375 376 static struct neighbour *neigh_alloc(struct neigh_table *tbl, 377 struct net_device *dev, 378 bool exempt_from_gc) 379 { 380 struct neighbour *n = NULL; 381 unsigned long now = jiffies; 382 int entries; 383 384 if (exempt_from_gc) 385 goto do_alloc; 386 387 entries = atomic_inc_return(&tbl->gc_entries) - 1; 388 if (entries >= tbl->gc_thresh3 || 389 (entries >= tbl->gc_thresh2 && 390 time_after(now, tbl->last_flush + 5 * HZ))) { 391 if (!neigh_forced_gc(tbl) && 392 entries >= tbl->gc_thresh3) { 393 net_info_ratelimited("%s: neighbor table overflow!\n", 394 tbl->id); 395 NEIGH_CACHE_STAT_INC(tbl, table_fulls); 396 goto out_entries; 397 } 398 } 399 400 do_alloc: 401 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC); 402 if (!n) 403 goto out_entries; 404 405 __skb_queue_head_init(&n->arp_queue); 406 rwlock_init(&n->lock); 407 seqlock_init(&n->ha_lock); 408 n->updated = n->used = now; 409 n->nud_state = NUD_NONE; 410 n->output = neigh_blackhole; 411 seqlock_init(&n->hh.hh_lock); 412 n->parms = neigh_parms_clone(&tbl->parms); 413 timer_setup(&n->timer, neigh_timer_handler, 0); 414 415 NEIGH_CACHE_STAT_INC(tbl, allocs); 416 n->tbl = tbl; 417 refcount_set(&n->refcnt, 1); 418 n->dead = 1; 419 INIT_LIST_HEAD(&n->gc_list); 420 421 atomic_inc(&tbl->entries); 422 out: 423 return n; 424 425 out_entries: 426 if (!exempt_from_gc) 427 atomic_dec(&tbl->gc_entries); 428 goto out; 429 } 430 431 static void neigh_get_hash_rnd(u32 *x) 432 { 433 *x = get_random_u32() | 1; 434 } 435 436 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) 437 { 438 size_t size = (1 << shift) * sizeof(struct neighbour *); 439 struct neigh_hash_table *ret; 440 struct neighbour __rcu **buckets; 441 int i; 442 443 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 444 if (!ret) 445 return NULL; 446 if (size <= PAGE_SIZE) { 447 buckets = kzalloc(size, GFP_ATOMIC); 448 } else { 449 buckets = (struct neighbour __rcu **) 450 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 451 get_order(size)); 452 kmemleak_alloc(buckets, size, 1, GFP_ATOMIC); 453 } 454 if (!buckets) { 455 kfree(ret); 456 return NULL; 457 } 458 ret->hash_buckets = buckets; 459 ret->hash_shift = shift; 460 for (i = 0; i < NEIGH_NUM_HASH_RND; i++) 461 neigh_get_hash_rnd(&ret->hash_rnd[i]); 462 return ret; 463 } 464 465 static void neigh_hash_free_rcu(struct rcu_head *head) 466 { 467 struct neigh_hash_table *nht = container_of(head, 468 struct neigh_hash_table, 469 rcu); 470 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); 471 struct neighbour __rcu **buckets = nht->hash_buckets; 472 473 if (size <= PAGE_SIZE) { 474 kfree(buckets); 475 } else { 476 kmemleak_free(buckets); 477 free_pages((unsigned long)buckets, get_order(size)); 478 } 479 kfree(nht); 480 } 481 482 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, 483 unsigned long new_shift) 484 { 485 unsigned int i, hash; 486 struct neigh_hash_table *new_nht, *old_nht; 487 488 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 489 490 old_nht = rcu_dereference_protected(tbl->nht, 491 lockdep_is_held(&tbl->lock)); 492 new_nht = neigh_hash_alloc(new_shift); 493 if (!new_nht) 494 return old_nht; 495 496 for (i = 0; i < (1 << old_nht->hash_shift); i++) { 497 struct neighbour *n, *next; 498 499 for (n = rcu_dereference_protected(old_nht->hash_buckets[i], 500 lockdep_is_held(&tbl->lock)); 501 n != NULL; 502 n = next) { 503 hash = tbl->hash(n->primary_key, n->dev, 504 new_nht->hash_rnd); 505 506 hash >>= (32 - new_nht->hash_shift); 507 next = rcu_dereference_protected(n->next, 508 lockdep_is_held(&tbl->lock)); 509 510 rcu_assign_pointer(n->next, 511 rcu_dereference_protected( 512 new_nht->hash_buckets[hash], 513 lockdep_is_held(&tbl->lock))); 514 rcu_assign_pointer(new_nht->hash_buckets[hash], n); 515 } 516 } 517 518 rcu_assign_pointer(tbl->nht, new_nht); 519 call_rcu(&old_nht->rcu, neigh_hash_free_rcu); 520 return new_nht; 521 } 522 523 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 524 struct net_device *dev) 525 { 526 struct neighbour *n; 527 528 NEIGH_CACHE_STAT_INC(tbl, lookups); 529 530 rcu_read_lock_bh(); 531 n = __neigh_lookup_noref(tbl, pkey, dev); 532 if (n) { 533 if (!refcount_inc_not_zero(&n->refcnt)) 534 n = NULL; 535 NEIGH_CACHE_STAT_INC(tbl, hits); 536 } 537 538 rcu_read_unlock_bh(); 539 return n; 540 } 541 EXPORT_SYMBOL(neigh_lookup); 542 543 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 544 const void *pkey) 545 { 546 struct neighbour *n; 547 unsigned int key_len = tbl->key_len; 548 u32 hash_val; 549 struct neigh_hash_table *nht; 550 551 NEIGH_CACHE_STAT_INC(tbl, lookups); 552 553 rcu_read_lock_bh(); 554 nht = rcu_dereference_bh(tbl->nht); 555 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift); 556 557 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 558 n != NULL; 559 n = rcu_dereference_bh(n->next)) { 560 if (!memcmp(n->primary_key, pkey, key_len) && 561 net_eq(dev_net(n->dev), net)) { 562 if (!refcount_inc_not_zero(&n->refcnt)) 563 n = NULL; 564 NEIGH_CACHE_STAT_INC(tbl, hits); 565 break; 566 } 567 } 568 569 rcu_read_unlock_bh(); 570 return n; 571 } 572 EXPORT_SYMBOL(neigh_lookup_nodev); 573 574 static struct neighbour *___neigh_create(struct neigh_table *tbl, 575 const void *pkey, 576 struct net_device *dev, 577 bool exempt_from_gc, bool want_ref) 578 { 579 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev, exempt_from_gc); 580 u32 hash_val; 581 unsigned int key_len = tbl->key_len; 582 int error; 583 struct neigh_hash_table *nht; 584 585 trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc); 586 587 if (!n) { 588 rc = ERR_PTR(-ENOBUFS); 589 goto out; 590 } 591 592 memcpy(n->primary_key, pkey, key_len); 593 n->dev = dev; 594 dev_hold(dev); 595 596 /* Protocol specific setup. */ 597 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 598 rc = ERR_PTR(error); 599 goto out_neigh_release; 600 } 601 602 if (dev->netdev_ops->ndo_neigh_construct) { 603 error = dev->netdev_ops->ndo_neigh_construct(dev, n); 604 if (error < 0) { 605 rc = ERR_PTR(error); 606 goto out_neigh_release; 607 } 608 } 609 610 /* Device specific setup. */ 611 if (n->parms->neigh_setup && 612 (error = n->parms->neigh_setup(n)) < 0) { 613 rc = ERR_PTR(error); 614 goto out_neigh_release; 615 } 616 617 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1); 618 619 write_lock_bh(&tbl->lock); 620 nht = rcu_dereference_protected(tbl->nht, 621 lockdep_is_held(&tbl->lock)); 622 623 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) 624 nht = neigh_hash_grow(tbl, nht->hash_shift + 1); 625 626 hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 627 628 if (n->parms->dead) { 629 rc = ERR_PTR(-EINVAL); 630 goto out_tbl_unlock; 631 } 632 633 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], 634 lockdep_is_held(&tbl->lock)); 635 n1 != NULL; 636 n1 = rcu_dereference_protected(n1->next, 637 lockdep_is_held(&tbl->lock))) { 638 if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) { 639 if (want_ref) 640 neigh_hold(n1); 641 rc = n1; 642 goto out_tbl_unlock; 643 } 644 } 645 646 n->dead = 0; 647 if (!exempt_from_gc) 648 list_add_tail(&n->gc_list, &n->tbl->gc_list); 649 650 if (want_ref) 651 neigh_hold(n); 652 rcu_assign_pointer(n->next, 653 rcu_dereference_protected(nht->hash_buckets[hash_val], 654 lockdep_is_held(&tbl->lock))); 655 rcu_assign_pointer(nht->hash_buckets[hash_val], n); 656 write_unlock_bh(&tbl->lock); 657 neigh_dbg(2, "neigh %p is created\n", n); 658 rc = n; 659 out: 660 return rc; 661 out_tbl_unlock: 662 write_unlock_bh(&tbl->lock); 663 out_neigh_release: 664 if (!exempt_from_gc) 665 atomic_dec(&tbl->gc_entries); 666 neigh_release(n); 667 goto out; 668 } 669 670 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, 671 struct net_device *dev, bool want_ref) 672 { 673 return ___neigh_create(tbl, pkey, dev, false, want_ref); 674 } 675 EXPORT_SYMBOL(__neigh_create); 676 677 static u32 pneigh_hash(const void *pkey, unsigned int key_len) 678 { 679 u32 hash_val = *(u32 *)(pkey + key_len - 4); 680 hash_val ^= (hash_val >> 16); 681 hash_val ^= hash_val >> 8; 682 hash_val ^= hash_val >> 4; 683 hash_val &= PNEIGH_HASHMASK; 684 return hash_val; 685 } 686 687 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 688 struct net *net, 689 const void *pkey, 690 unsigned int key_len, 691 struct net_device *dev) 692 { 693 while (n) { 694 if (!memcmp(n->key, pkey, key_len) && 695 net_eq(pneigh_net(n), net) && 696 (n->dev == dev || !n->dev)) 697 return n; 698 n = n->next; 699 } 700 return NULL; 701 } 702 703 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 704 struct net *net, const void *pkey, struct net_device *dev) 705 { 706 unsigned int key_len = tbl->key_len; 707 u32 hash_val = pneigh_hash(pkey, key_len); 708 709 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 710 net, pkey, key_len, dev); 711 } 712 EXPORT_SYMBOL_GPL(__pneigh_lookup); 713 714 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 715 struct net *net, const void *pkey, 716 struct net_device *dev, int creat) 717 { 718 struct pneigh_entry *n; 719 unsigned int key_len = tbl->key_len; 720 u32 hash_val = pneigh_hash(pkey, key_len); 721 722 read_lock_bh(&tbl->lock); 723 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 724 net, pkey, key_len, dev); 725 read_unlock_bh(&tbl->lock); 726 727 if (n || !creat) 728 goto out; 729 730 ASSERT_RTNL(); 731 732 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 733 if (!n) 734 goto out; 735 736 n->protocol = 0; 737 write_pnet(&n->net, net); 738 memcpy(n->key, pkey, key_len); 739 n->dev = dev; 740 if (dev) 741 dev_hold(dev); 742 743 if (tbl->pconstructor && tbl->pconstructor(n)) { 744 if (dev) 745 dev_put(dev); 746 kfree(n); 747 n = NULL; 748 goto out; 749 } 750 751 write_lock_bh(&tbl->lock); 752 n->next = tbl->phash_buckets[hash_val]; 753 tbl->phash_buckets[hash_val] = n; 754 write_unlock_bh(&tbl->lock); 755 out: 756 return n; 757 } 758 EXPORT_SYMBOL(pneigh_lookup); 759 760 761 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 762 struct net_device *dev) 763 { 764 struct pneigh_entry *n, **np; 765 unsigned int key_len = tbl->key_len; 766 u32 hash_val = pneigh_hash(pkey, key_len); 767 768 write_lock_bh(&tbl->lock); 769 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 770 np = &n->next) { 771 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 772 net_eq(pneigh_net(n), net)) { 773 *np = n->next; 774 write_unlock_bh(&tbl->lock); 775 if (tbl->pdestructor) 776 tbl->pdestructor(n); 777 if (n->dev) 778 dev_put(n->dev); 779 kfree(n); 780 return 0; 781 } 782 } 783 write_unlock_bh(&tbl->lock); 784 return -ENOENT; 785 } 786 787 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 788 struct net_device *dev) 789 { 790 struct pneigh_entry *n, **np, *freelist = NULL; 791 u32 h; 792 793 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 794 np = &tbl->phash_buckets[h]; 795 while ((n = *np) != NULL) { 796 if (!dev || n->dev == dev) { 797 *np = n->next; 798 n->next = freelist; 799 freelist = n; 800 continue; 801 } 802 np = &n->next; 803 } 804 } 805 write_unlock_bh(&tbl->lock); 806 while ((n = freelist)) { 807 freelist = n->next; 808 n->next = NULL; 809 if (tbl->pdestructor) 810 tbl->pdestructor(n); 811 if (n->dev) 812 dev_put(n->dev); 813 kfree(n); 814 } 815 return -ENOENT; 816 } 817 818 static void neigh_parms_destroy(struct neigh_parms *parms); 819 820 static inline void neigh_parms_put(struct neigh_parms *parms) 821 { 822 if (refcount_dec_and_test(&parms->refcnt)) 823 neigh_parms_destroy(parms); 824 } 825 826 /* 827 * neighbour must already be out of the table; 828 * 829 */ 830 void neigh_destroy(struct neighbour *neigh) 831 { 832 struct net_device *dev = neigh->dev; 833 834 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 835 836 if (!neigh->dead) { 837 pr_warn("Destroying alive neighbour %p\n", neigh); 838 dump_stack(); 839 return; 840 } 841 842 if (neigh_del_timer(neigh)) 843 pr_warn("Impossible event\n"); 844 845 write_lock_bh(&neigh->lock); 846 __skb_queue_purge(&neigh->arp_queue); 847 write_unlock_bh(&neigh->lock); 848 neigh->arp_queue_len_bytes = 0; 849 850 if (dev->netdev_ops->ndo_neigh_destroy) 851 dev->netdev_ops->ndo_neigh_destroy(dev, neigh); 852 853 dev_put(dev); 854 neigh_parms_put(neigh->parms); 855 856 neigh_dbg(2, "neigh %p is destroyed\n", neigh); 857 858 atomic_dec(&neigh->tbl->entries); 859 kfree_rcu(neigh, rcu); 860 } 861 EXPORT_SYMBOL(neigh_destroy); 862 863 /* Neighbour state is suspicious; 864 disable fast path. 865 866 Called with write_locked neigh. 867 */ 868 static void neigh_suspect(struct neighbour *neigh) 869 { 870 neigh_dbg(2, "neigh %p is suspected\n", neigh); 871 872 neigh->output = neigh->ops->output; 873 } 874 875 /* Neighbour state is OK; 876 enable fast path. 877 878 Called with write_locked neigh. 879 */ 880 static void neigh_connect(struct neighbour *neigh) 881 { 882 neigh_dbg(2, "neigh %p is connected\n", neigh); 883 884 neigh->output = neigh->ops->connected_output; 885 } 886 887 static void neigh_periodic_work(struct work_struct *work) 888 { 889 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 890 struct neighbour *n; 891 struct neighbour __rcu **np; 892 unsigned int i; 893 struct neigh_hash_table *nht; 894 895 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 896 897 write_lock_bh(&tbl->lock); 898 nht = rcu_dereference_protected(tbl->nht, 899 lockdep_is_held(&tbl->lock)); 900 901 /* 902 * periodically recompute ReachableTime from random function 903 */ 904 905 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 906 struct neigh_parms *p; 907 tbl->last_rand = jiffies; 908 list_for_each_entry(p, &tbl->parms_list, list) 909 p->reachable_time = 910 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 911 } 912 913 if (atomic_read(&tbl->entries) < tbl->gc_thresh1) 914 goto out; 915 916 for (i = 0 ; i < (1 << nht->hash_shift); i++) { 917 np = &nht->hash_buckets[i]; 918 919 while ((n = rcu_dereference_protected(*np, 920 lockdep_is_held(&tbl->lock))) != NULL) { 921 unsigned int state; 922 923 write_lock(&n->lock); 924 925 state = n->nud_state; 926 if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) || 927 (n->flags & NTF_EXT_LEARNED)) { 928 write_unlock(&n->lock); 929 goto next_elt; 930 } 931 932 if (time_before(n->used, n->confirmed)) 933 n->used = n->confirmed; 934 935 if (refcount_read(&n->refcnt) == 1 && 936 (state == NUD_FAILED || 937 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) { 938 *np = n->next; 939 neigh_mark_dead(n); 940 write_unlock(&n->lock); 941 neigh_cleanup_and_release(n); 942 continue; 943 } 944 write_unlock(&n->lock); 945 946 next_elt: 947 np = &n->next; 948 } 949 /* 950 * It's fine to release lock here, even if hash table 951 * grows while we are preempted. 952 */ 953 write_unlock_bh(&tbl->lock); 954 cond_resched(); 955 write_lock_bh(&tbl->lock); 956 nht = rcu_dereference_protected(tbl->nht, 957 lockdep_is_held(&tbl->lock)); 958 } 959 out: 960 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks. 961 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2 962 * BASE_REACHABLE_TIME. 963 */ 964 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 965 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1); 966 write_unlock_bh(&tbl->lock); 967 } 968 969 static __inline__ int neigh_max_probes(struct neighbour *n) 970 { 971 struct neigh_parms *p = n->parms; 972 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) + 973 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) : 974 NEIGH_VAR(p, MCAST_PROBES)); 975 } 976 977 static void neigh_invalidate(struct neighbour *neigh) 978 __releases(neigh->lock) 979 __acquires(neigh->lock) 980 { 981 struct sk_buff *skb; 982 983 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 984 neigh_dbg(2, "neigh %p is failed\n", neigh); 985 neigh->updated = jiffies; 986 987 /* It is very thin place. report_unreachable is very complicated 988 routine. Particularly, it can hit the same neighbour entry! 989 990 So that, we try to be accurate and avoid dead loop. --ANK 991 */ 992 while (neigh->nud_state == NUD_FAILED && 993 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 994 write_unlock(&neigh->lock); 995 neigh->ops->error_report(neigh, skb); 996 write_lock(&neigh->lock); 997 } 998 __skb_queue_purge(&neigh->arp_queue); 999 neigh->arp_queue_len_bytes = 0; 1000 } 1001 1002 static void neigh_probe(struct neighbour *neigh) 1003 __releases(neigh->lock) 1004 { 1005 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue); 1006 /* keep skb alive even if arp_queue overflows */ 1007 if (skb) 1008 skb = skb_clone(skb, GFP_ATOMIC); 1009 write_unlock(&neigh->lock); 1010 if (neigh->ops->solicit) 1011 neigh->ops->solicit(neigh, skb); 1012 atomic_inc(&neigh->probes); 1013 consume_skb(skb); 1014 } 1015 1016 /* Called when a timer expires for a neighbour entry. */ 1017 1018 static void neigh_timer_handler(struct timer_list *t) 1019 { 1020 unsigned long now, next; 1021 struct neighbour *neigh = from_timer(neigh, t, timer); 1022 unsigned int state; 1023 int notify = 0; 1024 1025 write_lock(&neigh->lock); 1026 1027 state = neigh->nud_state; 1028 now = jiffies; 1029 next = now + HZ; 1030 1031 if (!(state & NUD_IN_TIMER)) 1032 goto out; 1033 1034 if (state & NUD_REACHABLE) { 1035 if (time_before_eq(now, 1036 neigh->confirmed + neigh->parms->reachable_time)) { 1037 neigh_dbg(2, "neigh %p is still alive\n", neigh); 1038 next = neigh->confirmed + neigh->parms->reachable_time; 1039 } else if (time_before_eq(now, 1040 neigh->used + 1041 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1042 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1043 neigh->nud_state = NUD_DELAY; 1044 neigh->updated = jiffies; 1045 neigh_suspect(neigh); 1046 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME); 1047 } else { 1048 neigh_dbg(2, "neigh %p is suspected\n", neigh); 1049 neigh->nud_state = NUD_STALE; 1050 neigh->updated = jiffies; 1051 neigh_suspect(neigh); 1052 notify = 1; 1053 } 1054 } else if (state & NUD_DELAY) { 1055 if (time_before_eq(now, 1056 neigh->confirmed + 1057 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1058 neigh_dbg(2, "neigh %p is now reachable\n", neigh); 1059 neigh->nud_state = NUD_REACHABLE; 1060 neigh->updated = jiffies; 1061 neigh_connect(neigh); 1062 notify = 1; 1063 next = neigh->confirmed + neigh->parms->reachable_time; 1064 } else { 1065 neigh_dbg(2, "neigh %p is probed\n", neigh); 1066 neigh->nud_state = NUD_PROBE; 1067 neigh->updated = jiffies; 1068 atomic_set(&neigh->probes, 0); 1069 notify = 1; 1070 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1071 HZ/100); 1072 } 1073 } else { 1074 /* NUD_PROBE|NUD_INCOMPLETE */ 1075 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100); 1076 } 1077 1078 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 1079 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 1080 neigh->nud_state = NUD_FAILED; 1081 notify = 1; 1082 neigh_invalidate(neigh); 1083 goto out; 1084 } 1085 1086 if (neigh->nud_state & NUD_IN_TIMER) { 1087 if (time_before(next, jiffies + HZ/100)) 1088 next = jiffies + HZ/100; 1089 if (!mod_timer(&neigh->timer, next)) 1090 neigh_hold(neigh); 1091 } 1092 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 1093 neigh_probe(neigh); 1094 } else { 1095 out: 1096 write_unlock(&neigh->lock); 1097 } 1098 1099 if (notify) 1100 neigh_update_notify(neigh, 0); 1101 1102 trace_neigh_timer_handler(neigh, 0); 1103 1104 neigh_release(neigh); 1105 } 1106 1107 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 1108 { 1109 int rc; 1110 bool immediate_probe = false; 1111 1112 write_lock_bh(&neigh->lock); 1113 1114 rc = 0; 1115 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 1116 goto out_unlock_bh; 1117 if (neigh->dead) 1118 goto out_dead; 1119 1120 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 1121 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) + 1122 NEIGH_VAR(neigh->parms, APP_PROBES)) { 1123 unsigned long next, now = jiffies; 1124 1125 atomic_set(&neigh->probes, 1126 NEIGH_VAR(neigh->parms, UCAST_PROBES)); 1127 neigh_del_timer(neigh); 1128 neigh->nud_state = NUD_INCOMPLETE; 1129 neigh->updated = now; 1130 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1131 HZ/100); 1132 neigh_add_timer(neigh, next); 1133 immediate_probe = true; 1134 } else { 1135 neigh->nud_state = NUD_FAILED; 1136 neigh->updated = jiffies; 1137 write_unlock_bh(&neigh->lock); 1138 1139 kfree_skb(skb); 1140 return 1; 1141 } 1142 } else if (neigh->nud_state & NUD_STALE) { 1143 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1144 neigh_del_timer(neigh); 1145 neigh->nud_state = NUD_DELAY; 1146 neigh->updated = jiffies; 1147 neigh_add_timer(neigh, jiffies + 1148 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME)); 1149 } 1150 1151 if (neigh->nud_state == NUD_INCOMPLETE) { 1152 if (skb) { 1153 while (neigh->arp_queue_len_bytes + skb->truesize > 1154 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) { 1155 struct sk_buff *buff; 1156 1157 buff = __skb_dequeue(&neigh->arp_queue); 1158 if (!buff) 1159 break; 1160 neigh->arp_queue_len_bytes -= buff->truesize; 1161 kfree_skb(buff); 1162 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 1163 } 1164 skb_dst_force(skb); 1165 __skb_queue_tail(&neigh->arp_queue, skb); 1166 neigh->arp_queue_len_bytes += skb->truesize; 1167 } 1168 rc = 1; 1169 } 1170 out_unlock_bh: 1171 if (immediate_probe) 1172 neigh_probe(neigh); 1173 else 1174 write_unlock(&neigh->lock); 1175 local_bh_enable(); 1176 trace_neigh_event_send_done(neigh, rc); 1177 return rc; 1178 1179 out_dead: 1180 if (neigh->nud_state & NUD_STALE) 1181 goto out_unlock_bh; 1182 write_unlock_bh(&neigh->lock); 1183 kfree_skb(skb); 1184 trace_neigh_event_send_dead(neigh, 1); 1185 return 1; 1186 } 1187 EXPORT_SYMBOL(__neigh_event_send); 1188 1189 static void neigh_update_hhs(struct neighbour *neigh) 1190 { 1191 struct hh_cache *hh; 1192 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 1193 = NULL; 1194 1195 if (neigh->dev->header_ops) 1196 update = neigh->dev->header_ops->cache_update; 1197 1198 if (update) { 1199 hh = &neigh->hh; 1200 if (READ_ONCE(hh->hh_len)) { 1201 write_seqlock_bh(&hh->hh_lock); 1202 update(hh, neigh->dev, neigh->ha); 1203 write_sequnlock_bh(&hh->hh_lock); 1204 } 1205 } 1206 } 1207 1208 1209 1210 /* Generic update routine. 1211 -- lladdr is new lladdr or NULL, if it is not supplied. 1212 -- new is new state. 1213 -- flags 1214 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 1215 if it is different. 1216 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 1217 lladdr instead of overriding it 1218 if it is different. 1219 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 1220 1221 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 1222 NTF_ROUTER flag. 1223 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 1224 a router. 1225 1226 Caller MUST hold reference count on the entry. 1227 */ 1228 1229 static int __neigh_update(struct neighbour *neigh, const u8 *lladdr, 1230 u8 new, u32 flags, u32 nlmsg_pid, 1231 struct netlink_ext_ack *extack) 1232 { 1233 bool ext_learn_change = false; 1234 u8 old; 1235 int err; 1236 int notify = 0; 1237 struct net_device *dev; 1238 int update_isrouter = 0; 1239 1240 trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid); 1241 1242 write_lock_bh(&neigh->lock); 1243 1244 dev = neigh->dev; 1245 old = neigh->nud_state; 1246 err = -EPERM; 1247 1248 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 1249 (old & (NUD_NOARP | NUD_PERMANENT))) 1250 goto out; 1251 if (neigh->dead) { 1252 NL_SET_ERR_MSG(extack, "Neighbor entry is now dead"); 1253 goto out; 1254 } 1255 1256 ext_learn_change = neigh_update_ext_learned(neigh, flags, ¬ify); 1257 1258 if (!(new & NUD_VALID)) { 1259 neigh_del_timer(neigh); 1260 if (old & NUD_CONNECTED) 1261 neigh_suspect(neigh); 1262 neigh->nud_state = new; 1263 err = 0; 1264 notify = old & NUD_VALID; 1265 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1266 (new & NUD_FAILED)) { 1267 neigh_invalidate(neigh); 1268 notify = 1; 1269 } 1270 goto out; 1271 } 1272 1273 /* Compare new lladdr with cached one */ 1274 if (!dev->addr_len) { 1275 /* First case: device needs no address. */ 1276 lladdr = neigh->ha; 1277 } else if (lladdr) { 1278 /* The second case: if something is already cached 1279 and a new address is proposed: 1280 - compare new & old 1281 - if they are different, check override flag 1282 */ 1283 if ((old & NUD_VALID) && 1284 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1285 lladdr = neigh->ha; 1286 } else { 1287 /* No address is supplied; if we know something, 1288 use it, otherwise discard the request. 1289 */ 1290 err = -EINVAL; 1291 if (!(old & NUD_VALID)) { 1292 NL_SET_ERR_MSG(extack, "No link layer address given"); 1293 goto out; 1294 } 1295 lladdr = neigh->ha; 1296 } 1297 1298 /* Update confirmed timestamp for neighbour entry after we 1299 * received ARP packet even if it doesn't change IP to MAC binding. 1300 */ 1301 if (new & NUD_CONNECTED) 1302 neigh->confirmed = jiffies; 1303 1304 /* If entry was valid and address is not changed, 1305 do not change entry state, if new one is STALE. 1306 */ 1307 err = 0; 1308 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1309 if (old & NUD_VALID) { 1310 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1311 update_isrouter = 0; 1312 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1313 (old & NUD_CONNECTED)) { 1314 lladdr = neigh->ha; 1315 new = NUD_STALE; 1316 } else 1317 goto out; 1318 } else { 1319 if (lladdr == neigh->ha && new == NUD_STALE && 1320 !(flags & NEIGH_UPDATE_F_ADMIN)) 1321 new = old; 1322 } 1323 } 1324 1325 /* Update timestamp only once we know we will make a change to the 1326 * neighbour entry. Otherwise we risk to move the locktime window with 1327 * noop updates and ignore relevant ARP updates. 1328 */ 1329 if (new != old || lladdr != neigh->ha) 1330 neigh->updated = jiffies; 1331 1332 if (new != old) { 1333 neigh_del_timer(neigh); 1334 if (new & NUD_PROBE) 1335 atomic_set(&neigh->probes, 0); 1336 if (new & NUD_IN_TIMER) 1337 neigh_add_timer(neigh, (jiffies + 1338 ((new & NUD_REACHABLE) ? 1339 neigh->parms->reachable_time : 1340 0))); 1341 neigh->nud_state = new; 1342 notify = 1; 1343 } 1344 1345 if (lladdr != neigh->ha) { 1346 write_seqlock(&neigh->ha_lock); 1347 memcpy(&neigh->ha, lladdr, dev->addr_len); 1348 write_sequnlock(&neigh->ha_lock); 1349 neigh_update_hhs(neigh); 1350 if (!(new & NUD_CONNECTED)) 1351 neigh->confirmed = jiffies - 1352 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1); 1353 notify = 1; 1354 } 1355 if (new == old) 1356 goto out; 1357 if (new & NUD_CONNECTED) 1358 neigh_connect(neigh); 1359 else 1360 neigh_suspect(neigh); 1361 if (!(old & NUD_VALID)) { 1362 struct sk_buff *skb; 1363 1364 /* Again: avoid dead loop if something went wrong */ 1365 1366 while (neigh->nud_state & NUD_VALID && 1367 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1368 struct dst_entry *dst = skb_dst(skb); 1369 struct neighbour *n2, *n1 = neigh; 1370 write_unlock_bh(&neigh->lock); 1371 1372 rcu_read_lock(); 1373 1374 /* Why not just use 'neigh' as-is? The problem is that 1375 * things such as shaper, eql, and sch_teql can end up 1376 * using alternative, different, neigh objects to output 1377 * the packet in the output path. So what we need to do 1378 * here is re-lookup the top-level neigh in the path so 1379 * we can reinject the packet there. 1380 */ 1381 n2 = NULL; 1382 if (dst) { 1383 n2 = dst_neigh_lookup_skb(dst, skb); 1384 if (n2) 1385 n1 = n2; 1386 } 1387 n1->output(n1, skb); 1388 if (n2) 1389 neigh_release(n2); 1390 rcu_read_unlock(); 1391 1392 write_lock_bh(&neigh->lock); 1393 } 1394 __skb_queue_purge(&neigh->arp_queue); 1395 neigh->arp_queue_len_bytes = 0; 1396 } 1397 out: 1398 if (update_isrouter) 1399 neigh_update_is_router(neigh, flags, ¬ify); 1400 write_unlock_bh(&neigh->lock); 1401 1402 if (((new ^ old) & NUD_PERMANENT) || ext_learn_change) 1403 neigh_update_gc_list(neigh); 1404 1405 if (notify) 1406 neigh_update_notify(neigh, nlmsg_pid); 1407 1408 trace_neigh_update_done(neigh, err); 1409 1410 return err; 1411 } 1412 1413 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 1414 u32 flags, u32 nlmsg_pid) 1415 { 1416 return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL); 1417 } 1418 EXPORT_SYMBOL(neigh_update); 1419 1420 /* Update the neigh to listen temporarily for probe responses, even if it is 1421 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing. 1422 */ 1423 void __neigh_set_probe_once(struct neighbour *neigh) 1424 { 1425 if (neigh->dead) 1426 return; 1427 neigh->updated = jiffies; 1428 if (!(neigh->nud_state & NUD_FAILED)) 1429 return; 1430 neigh->nud_state = NUD_INCOMPLETE; 1431 atomic_set(&neigh->probes, neigh_max_probes(neigh)); 1432 neigh_add_timer(neigh, 1433 jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1434 HZ/100)); 1435 } 1436 EXPORT_SYMBOL(__neigh_set_probe_once); 1437 1438 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1439 u8 *lladdr, void *saddr, 1440 struct net_device *dev) 1441 { 1442 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1443 lladdr || !dev->addr_len); 1444 if (neigh) 1445 neigh_update(neigh, lladdr, NUD_STALE, 1446 NEIGH_UPDATE_F_OVERRIDE, 0); 1447 return neigh; 1448 } 1449 EXPORT_SYMBOL(neigh_event_ns); 1450 1451 /* called with read_lock_bh(&n->lock); */ 1452 static void neigh_hh_init(struct neighbour *n) 1453 { 1454 struct net_device *dev = n->dev; 1455 __be16 prot = n->tbl->protocol; 1456 struct hh_cache *hh = &n->hh; 1457 1458 write_lock_bh(&n->lock); 1459 1460 /* Only one thread can come in here and initialize the 1461 * hh_cache entry. 1462 */ 1463 if (!hh->hh_len) 1464 dev->header_ops->cache(n, hh, prot); 1465 1466 write_unlock_bh(&n->lock); 1467 } 1468 1469 /* Slow and careful. */ 1470 1471 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) 1472 { 1473 int rc = 0; 1474 1475 if (!neigh_event_send(neigh, skb)) { 1476 int err; 1477 struct net_device *dev = neigh->dev; 1478 unsigned int seq; 1479 1480 if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len)) 1481 neigh_hh_init(neigh); 1482 1483 do { 1484 __skb_pull(skb, skb_network_offset(skb)); 1485 seq = read_seqbegin(&neigh->ha_lock); 1486 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1487 neigh->ha, NULL, skb->len); 1488 } while (read_seqretry(&neigh->ha_lock, seq)); 1489 1490 if (err >= 0) 1491 rc = dev_queue_xmit(skb); 1492 else 1493 goto out_kfree_skb; 1494 } 1495 out: 1496 return rc; 1497 out_kfree_skb: 1498 rc = -EINVAL; 1499 kfree_skb(skb); 1500 goto out; 1501 } 1502 EXPORT_SYMBOL(neigh_resolve_output); 1503 1504 /* As fast as possible without hh cache */ 1505 1506 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) 1507 { 1508 struct net_device *dev = neigh->dev; 1509 unsigned int seq; 1510 int err; 1511 1512 do { 1513 __skb_pull(skb, skb_network_offset(skb)); 1514 seq = read_seqbegin(&neigh->ha_lock); 1515 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1516 neigh->ha, NULL, skb->len); 1517 } while (read_seqretry(&neigh->ha_lock, seq)); 1518 1519 if (err >= 0) 1520 err = dev_queue_xmit(skb); 1521 else { 1522 err = -EINVAL; 1523 kfree_skb(skb); 1524 } 1525 return err; 1526 } 1527 EXPORT_SYMBOL(neigh_connected_output); 1528 1529 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) 1530 { 1531 return dev_queue_xmit(skb); 1532 } 1533 EXPORT_SYMBOL(neigh_direct_output); 1534 1535 static void neigh_proxy_process(struct timer_list *t) 1536 { 1537 struct neigh_table *tbl = from_timer(tbl, t, proxy_timer); 1538 long sched_next = 0; 1539 unsigned long now = jiffies; 1540 struct sk_buff *skb, *n; 1541 1542 spin_lock(&tbl->proxy_queue.lock); 1543 1544 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1545 long tdif = NEIGH_CB(skb)->sched_next - now; 1546 1547 if (tdif <= 0) { 1548 struct net_device *dev = skb->dev; 1549 1550 __skb_unlink(skb, &tbl->proxy_queue); 1551 if (tbl->proxy_redo && netif_running(dev)) { 1552 rcu_read_lock(); 1553 tbl->proxy_redo(skb); 1554 rcu_read_unlock(); 1555 } else { 1556 kfree_skb(skb); 1557 } 1558 1559 dev_put(dev); 1560 } else if (!sched_next || tdif < sched_next) 1561 sched_next = tdif; 1562 } 1563 del_timer(&tbl->proxy_timer); 1564 if (sched_next) 1565 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1566 spin_unlock(&tbl->proxy_queue.lock); 1567 } 1568 1569 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1570 struct sk_buff *skb) 1571 { 1572 unsigned long now = jiffies; 1573 1574 unsigned long sched_next = now + (prandom_u32() % 1575 NEIGH_VAR(p, PROXY_DELAY)); 1576 1577 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) { 1578 kfree_skb(skb); 1579 return; 1580 } 1581 1582 NEIGH_CB(skb)->sched_next = sched_next; 1583 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1584 1585 spin_lock(&tbl->proxy_queue.lock); 1586 if (del_timer(&tbl->proxy_timer)) { 1587 if (time_before(tbl->proxy_timer.expires, sched_next)) 1588 sched_next = tbl->proxy_timer.expires; 1589 } 1590 skb_dst_drop(skb); 1591 dev_hold(skb->dev); 1592 __skb_queue_tail(&tbl->proxy_queue, skb); 1593 mod_timer(&tbl->proxy_timer, sched_next); 1594 spin_unlock(&tbl->proxy_queue.lock); 1595 } 1596 EXPORT_SYMBOL(pneigh_enqueue); 1597 1598 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1599 struct net *net, int ifindex) 1600 { 1601 struct neigh_parms *p; 1602 1603 list_for_each_entry(p, &tbl->parms_list, list) { 1604 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1605 (!p->dev && !ifindex && net_eq(net, &init_net))) 1606 return p; 1607 } 1608 1609 return NULL; 1610 } 1611 1612 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1613 struct neigh_table *tbl) 1614 { 1615 struct neigh_parms *p; 1616 struct net *net = dev_net(dev); 1617 const struct net_device_ops *ops = dev->netdev_ops; 1618 1619 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL); 1620 if (p) { 1621 p->tbl = tbl; 1622 refcount_set(&p->refcnt, 1); 1623 p->reachable_time = 1624 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 1625 dev_hold(dev); 1626 p->dev = dev; 1627 write_pnet(&p->net, net); 1628 p->sysctl_table = NULL; 1629 1630 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1631 dev_put(dev); 1632 kfree(p); 1633 return NULL; 1634 } 1635 1636 write_lock_bh(&tbl->lock); 1637 list_add(&p->list, &tbl->parms.list); 1638 write_unlock_bh(&tbl->lock); 1639 1640 neigh_parms_data_state_cleanall(p); 1641 } 1642 return p; 1643 } 1644 EXPORT_SYMBOL(neigh_parms_alloc); 1645 1646 static void neigh_rcu_free_parms(struct rcu_head *head) 1647 { 1648 struct neigh_parms *parms = 1649 container_of(head, struct neigh_parms, rcu_head); 1650 1651 neigh_parms_put(parms); 1652 } 1653 1654 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1655 { 1656 if (!parms || parms == &tbl->parms) 1657 return; 1658 write_lock_bh(&tbl->lock); 1659 list_del(&parms->list); 1660 parms->dead = 1; 1661 write_unlock_bh(&tbl->lock); 1662 if (parms->dev) 1663 dev_put(parms->dev); 1664 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1665 } 1666 EXPORT_SYMBOL(neigh_parms_release); 1667 1668 static void neigh_parms_destroy(struct neigh_parms *parms) 1669 { 1670 kfree(parms); 1671 } 1672 1673 static struct lock_class_key neigh_table_proxy_queue_class; 1674 1675 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly; 1676 1677 void neigh_table_init(int index, struct neigh_table *tbl) 1678 { 1679 unsigned long now = jiffies; 1680 unsigned long phsize; 1681 1682 INIT_LIST_HEAD(&tbl->parms_list); 1683 INIT_LIST_HEAD(&tbl->gc_list); 1684 list_add(&tbl->parms.list, &tbl->parms_list); 1685 write_pnet(&tbl->parms.net, &init_net); 1686 refcount_set(&tbl->parms.refcnt, 1); 1687 tbl->parms.reachable_time = 1688 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME)); 1689 1690 tbl->stats = alloc_percpu(struct neigh_statistics); 1691 if (!tbl->stats) 1692 panic("cannot create neighbour cache statistics"); 1693 1694 #ifdef CONFIG_PROC_FS 1695 if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat, 1696 &neigh_stat_seq_ops, tbl)) 1697 panic("cannot create neighbour proc dir entry"); 1698 #endif 1699 1700 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); 1701 1702 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1703 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1704 1705 if (!tbl->nht || !tbl->phash_buckets) 1706 panic("cannot allocate neighbour cache hashes"); 1707 1708 if (!tbl->entry_size) 1709 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) + 1710 tbl->key_len, NEIGH_PRIV_ALIGN); 1711 else 1712 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN); 1713 1714 rwlock_init(&tbl->lock); 1715 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work); 1716 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 1717 tbl->parms.reachable_time); 1718 timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0); 1719 skb_queue_head_init_class(&tbl->proxy_queue, 1720 &neigh_table_proxy_queue_class); 1721 1722 tbl->last_flush = now; 1723 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1724 1725 neigh_tables[index] = tbl; 1726 } 1727 EXPORT_SYMBOL(neigh_table_init); 1728 1729 int neigh_table_clear(int index, struct neigh_table *tbl) 1730 { 1731 neigh_tables[index] = NULL; 1732 /* It is not clean... Fix it to unload IPv6 module safely */ 1733 cancel_delayed_work_sync(&tbl->gc_work); 1734 del_timer_sync(&tbl->proxy_timer); 1735 pneigh_queue_purge(&tbl->proxy_queue); 1736 neigh_ifdown(tbl, NULL); 1737 if (atomic_read(&tbl->entries)) 1738 pr_crit("neighbour leakage\n"); 1739 1740 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, 1741 neigh_hash_free_rcu); 1742 tbl->nht = NULL; 1743 1744 kfree(tbl->phash_buckets); 1745 tbl->phash_buckets = NULL; 1746 1747 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1748 1749 free_percpu(tbl->stats); 1750 tbl->stats = NULL; 1751 1752 return 0; 1753 } 1754 EXPORT_SYMBOL(neigh_table_clear); 1755 1756 static struct neigh_table *neigh_find_table(int family) 1757 { 1758 struct neigh_table *tbl = NULL; 1759 1760 switch (family) { 1761 case AF_INET: 1762 tbl = neigh_tables[NEIGH_ARP_TABLE]; 1763 break; 1764 case AF_INET6: 1765 tbl = neigh_tables[NEIGH_ND_TABLE]; 1766 break; 1767 case AF_DECnet: 1768 tbl = neigh_tables[NEIGH_DN_TABLE]; 1769 break; 1770 } 1771 1772 return tbl; 1773 } 1774 1775 const struct nla_policy nda_policy[NDA_MAX+1] = { 1776 [NDA_UNSPEC] = { .strict_start_type = NDA_NH_ID }, 1777 [NDA_DST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1778 [NDA_LLADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1779 [NDA_CACHEINFO] = { .len = sizeof(struct nda_cacheinfo) }, 1780 [NDA_PROBES] = { .type = NLA_U32 }, 1781 [NDA_VLAN] = { .type = NLA_U16 }, 1782 [NDA_PORT] = { .type = NLA_U16 }, 1783 [NDA_VNI] = { .type = NLA_U32 }, 1784 [NDA_IFINDEX] = { .type = NLA_U32 }, 1785 [NDA_MASTER] = { .type = NLA_U32 }, 1786 [NDA_PROTOCOL] = { .type = NLA_U8 }, 1787 [NDA_NH_ID] = { .type = NLA_U32 }, 1788 [NDA_FDB_EXT_ATTRS] = { .type = NLA_NESTED }, 1789 }; 1790 1791 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, 1792 struct netlink_ext_ack *extack) 1793 { 1794 struct net *net = sock_net(skb->sk); 1795 struct ndmsg *ndm; 1796 struct nlattr *dst_attr; 1797 struct neigh_table *tbl; 1798 struct neighbour *neigh; 1799 struct net_device *dev = NULL; 1800 int err = -EINVAL; 1801 1802 ASSERT_RTNL(); 1803 if (nlmsg_len(nlh) < sizeof(*ndm)) 1804 goto out; 1805 1806 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1807 if (!dst_attr) { 1808 NL_SET_ERR_MSG(extack, "Network address not specified"); 1809 goto out; 1810 } 1811 1812 ndm = nlmsg_data(nlh); 1813 if (ndm->ndm_ifindex) { 1814 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1815 if (dev == NULL) { 1816 err = -ENODEV; 1817 goto out; 1818 } 1819 } 1820 1821 tbl = neigh_find_table(ndm->ndm_family); 1822 if (tbl == NULL) 1823 return -EAFNOSUPPORT; 1824 1825 if (nla_len(dst_attr) < (int)tbl->key_len) { 1826 NL_SET_ERR_MSG(extack, "Invalid network address"); 1827 goto out; 1828 } 1829 1830 if (ndm->ndm_flags & NTF_PROXY) { 1831 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1832 goto out; 1833 } 1834 1835 if (dev == NULL) 1836 goto out; 1837 1838 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1839 if (neigh == NULL) { 1840 err = -ENOENT; 1841 goto out; 1842 } 1843 1844 err = __neigh_update(neigh, NULL, NUD_FAILED, 1845 NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN, 1846 NETLINK_CB(skb).portid, extack); 1847 write_lock_bh(&tbl->lock); 1848 neigh_release(neigh); 1849 neigh_remove_one(neigh, tbl); 1850 write_unlock_bh(&tbl->lock); 1851 1852 out: 1853 return err; 1854 } 1855 1856 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, 1857 struct netlink_ext_ack *extack) 1858 { 1859 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE | 1860 NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1861 struct net *net = sock_net(skb->sk); 1862 struct ndmsg *ndm; 1863 struct nlattr *tb[NDA_MAX+1]; 1864 struct neigh_table *tbl; 1865 struct net_device *dev = NULL; 1866 struct neighbour *neigh; 1867 void *dst, *lladdr; 1868 u8 protocol = 0; 1869 int err; 1870 1871 ASSERT_RTNL(); 1872 err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX, 1873 nda_policy, extack); 1874 if (err < 0) 1875 goto out; 1876 1877 err = -EINVAL; 1878 if (!tb[NDA_DST]) { 1879 NL_SET_ERR_MSG(extack, "Network address not specified"); 1880 goto out; 1881 } 1882 1883 ndm = nlmsg_data(nlh); 1884 if (ndm->ndm_ifindex) { 1885 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1886 if (dev == NULL) { 1887 err = -ENODEV; 1888 goto out; 1889 } 1890 1891 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) { 1892 NL_SET_ERR_MSG(extack, "Invalid link address"); 1893 goto out; 1894 } 1895 } 1896 1897 tbl = neigh_find_table(ndm->ndm_family); 1898 if (tbl == NULL) 1899 return -EAFNOSUPPORT; 1900 1901 if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) { 1902 NL_SET_ERR_MSG(extack, "Invalid network address"); 1903 goto out; 1904 } 1905 1906 dst = nla_data(tb[NDA_DST]); 1907 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1908 1909 if (tb[NDA_PROTOCOL]) 1910 protocol = nla_get_u8(tb[NDA_PROTOCOL]); 1911 1912 if (ndm->ndm_flags & NTF_PROXY) { 1913 struct pneigh_entry *pn; 1914 1915 err = -ENOBUFS; 1916 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1917 if (pn) { 1918 pn->flags = ndm->ndm_flags; 1919 if (protocol) 1920 pn->protocol = protocol; 1921 err = 0; 1922 } 1923 goto out; 1924 } 1925 1926 if (!dev) { 1927 NL_SET_ERR_MSG(extack, "Device not specified"); 1928 goto out; 1929 } 1930 1931 if (tbl->allow_add && !tbl->allow_add(dev, extack)) { 1932 err = -EINVAL; 1933 goto out; 1934 } 1935 1936 neigh = neigh_lookup(tbl, dst, dev); 1937 if (neigh == NULL) { 1938 bool exempt_from_gc; 1939 1940 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1941 err = -ENOENT; 1942 goto out; 1943 } 1944 1945 exempt_from_gc = ndm->ndm_state & NUD_PERMANENT || 1946 ndm->ndm_flags & NTF_EXT_LEARNED; 1947 neigh = ___neigh_create(tbl, dst, dev, exempt_from_gc, true); 1948 if (IS_ERR(neigh)) { 1949 err = PTR_ERR(neigh); 1950 goto out; 1951 } 1952 } else { 1953 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1954 err = -EEXIST; 1955 neigh_release(neigh); 1956 goto out; 1957 } 1958 1959 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1960 flags &= ~(NEIGH_UPDATE_F_OVERRIDE | 1961 NEIGH_UPDATE_F_OVERRIDE_ISROUTER); 1962 } 1963 1964 if (protocol) 1965 neigh->protocol = protocol; 1966 1967 if (ndm->ndm_flags & NTF_EXT_LEARNED) 1968 flags |= NEIGH_UPDATE_F_EXT_LEARNED; 1969 1970 if (ndm->ndm_flags & NTF_ROUTER) 1971 flags |= NEIGH_UPDATE_F_ISROUTER; 1972 1973 if (ndm->ndm_flags & NTF_USE) { 1974 neigh_event_send(neigh, NULL); 1975 err = 0; 1976 } else 1977 err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags, 1978 NETLINK_CB(skb).portid, extack); 1979 1980 neigh_release(neigh); 1981 1982 out: 1983 return err; 1984 } 1985 1986 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1987 { 1988 struct nlattr *nest; 1989 1990 nest = nla_nest_start_noflag(skb, NDTA_PARMS); 1991 if (nest == NULL) 1992 return -ENOBUFS; 1993 1994 if ((parms->dev && 1995 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) || 1996 nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) || 1997 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, 1998 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) || 1999 /* approximative value for deprecated QUEUE_LEN (in packets) */ 2000 nla_put_u32(skb, NDTPA_QUEUE_LEN, 2001 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) || 2002 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) || 2003 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) || 2004 nla_put_u32(skb, NDTPA_UCAST_PROBES, 2005 NEIGH_VAR(parms, UCAST_PROBES)) || 2006 nla_put_u32(skb, NDTPA_MCAST_PROBES, 2007 NEIGH_VAR(parms, MCAST_PROBES)) || 2008 nla_put_u32(skb, NDTPA_MCAST_REPROBES, 2009 NEIGH_VAR(parms, MCAST_REPROBES)) || 2010 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time, 2011 NDTPA_PAD) || 2012 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME, 2013 NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) || 2014 nla_put_msecs(skb, NDTPA_GC_STALETIME, 2015 NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) || 2016 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME, 2017 NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) || 2018 nla_put_msecs(skb, NDTPA_RETRANS_TIME, 2019 NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) || 2020 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, 2021 NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) || 2022 nla_put_msecs(skb, NDTPA_PROXY_DELAY, 2023 NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) || 2024 nla_put_msecs(skb, NDTPA_LOCKTIME, 2025 NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD)) 2026 goto nla_put_failure; 2027 return nla_nest_end(skb, nest); 2028 2029 nla_put_failure: 2030 nla_nest_cancel(skb, nest); 2031 return -EMSGSIZE; 2032 } 2033 2034 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 2035 u32 pid, u32 seq, int type, int flags) 2036 { 2037 struct nlmsghdr *nlh; 2038 struct ndtmsg *ndtmsg; 2039 2040 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2041 if (nlh == NULL) 2042 return -EMSGSIZE; 2043 2044 ndtmsg = nlmsg_data(nlh); 2045 2046 read_lock_bh(&tbl->lock); 2047 ndtmsg->ndtm_family = tbl->family; 2048 ndtmsg->ndtm_pad1 = 0; 2049 ndtmsg->ndtm_pad2 = 0; 2050 2051 if (nla_put_string(skb, NDTA_NAME, tbl->id) || 2052 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval, NDTA_PAD) || 2053 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) || 2054 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) || 2055 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3)) 2056 goto nla_put_failure; 2057 { 2058 unsigned long now = jiffies; 2059 long flush_delta = now - tbl->last_flush; 2060 long rand_delta = now - tbl->last_rand; 2061 struct neigh_hash_table *nht; 2062 struct ndt_config ndc = { 2063 .ndtc_key_len = tbl->key_len, 2064 .ndtc_entry_size = tbl->entry_size, 2065 .ndtc_entries = atomic_read(&tbl->entries), 2066 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 2067 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 2068 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 2069 }; 2070 2071 rcu_read_lock_bh(); 2072 nht = rcu_dereference_bh(tbl->nht); 2073 ndc.ndtc_hash_rnd = nht->hash_rnd[0]; 2074 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); 2075 rcu_read_unlock_bh(); 2076 2077 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc)) 2078 goto nla_put_failure; 2079 } 2080 2081 { 2082 int cpu; 2083 struct ndt_stats ndst; 2084 2085 memset(&ndst, 0, sizeof(ndst)); 2086 2087 for_each_possible_cpu(cpu) { 2088 struct neigh_statistics *st; 2089 2090 st = per_cpu_ptr(tbl->stats, cpu); 2091 ndst.ndts_allocs += st->allocs; 2092 ndst.ndts_destroys += st->destroys; 2093 ndst.ndts_hash_grows += st->hash_grows; 2094 ndst.ndts_res_failed += st->res_failed; 2095 ndst.ndts_lookups += st->lookups; 2096 ndst.ndts_hits += st->hits; 2097 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 2098 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 2099 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 2100 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 2101 ndst.ndts_table_fulls += st->table_fulls; 2102 } 2103 2104 if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst, 2105 NDTA_PAD)) 2106 goto nla_put_failure; 2107 } 2108 2109 BUG_ON(tbl->parms.dev); 2110 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 2111 goto nla_put_failure; 2112 2113 read_unlock_bh(&tbl->lock); 2114 nlmsg_end(skb, nlh); 2115 return 0; 2116 2117 nla_put_failure: 2118 read_unlock_bh(&tbl->lock); 2119 nlmsg_cancel(skb, nlh); 2120 return -EMSGSIZE; 2121 } 2122 2123 static int neightbl_fill_param_info(struct sk_buff *skb, 2124 struct neigh_table *tbl, 2125 struct neigh_parms *parms, 2126 u32 pid, u32 seq, int type, 2127 unsigned int flags) 2128 { 2129 struct ndtmsg *ndtmsg; 2130 struct nlmsghdr *nlh; 2131 2132 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2133 if (nlh == NULL) 2134 return -EMSGSIZE; 2135 2136 ndtmsg = nlmsg_data(nlh); 2137 2138 read_lock_bh(&tbl->lock); 2139 ndtmsg->ndtm_family = tbl->family; 2140 ndtmsg->ndtm_pad1 = 0; 2141 ndtmsg->ndtm_pad2 = 0; 2142 2143 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 2144 neightbl_fill_parms(skb, parms) < 0) 2145 goto errout; 2146 2147 read_unlock_bh(&tbl->lock); 2148 nlmsg_end(skb, nlh); 2149 return 0; 2150 errout: 2151 read_unlock_bh(&tbl->lock); 2152 nlmsg_cancel(skb, nlh); 2153 return -EMSGSIZE; 2154 } 2155 2156 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 2157 [NDTA_NAME] = { .type = NLA_STRING }, 2158 [NDTA_THRESH1] = { .type = NLA_U32 }, 2159 [NDTA_THRESH2] = { .type = NLA_U32 }, 2160 [NDTA_THRESH3] = { .type = NLA_U32 }, 2161 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 2162 [NDTA_PARMS] = { .type = NLA_NESTED }, 2163 }; 2164 2165 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 2166 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 2167 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 2168 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 2169 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 2170 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 2171 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 2172 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 }, 2173 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 2174 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 2175 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 2176 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 2177 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 2178 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 2179 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 2180 }; 2181 2182 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, 2183 struct netlink_ext_ack *extack) 2184 { 2185 struct net *net = sock_net(skb->sk); 2186 struct neigh_table *tbl; 2187 struct ndtmsg *ndtmsg; 2188 struct nlattr *tb[NDTA_MAX+1]; 2189 bool found = false; 2190 int err, tidx; 2191 2192 err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 2193 nl_neightbl_policy, extack); 2194 if (err < 0) 2195 goto errout; 2196 2197 if (tb[NDTA_NAME] == NULL) { 2198 err = -EINVAL; 2199 goto errout; 2200 } 2201 2202 ndtmsg = nlmsg_data(nlh); 2203 2204 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2205 tbl = neigh_tables[tidx]; 2206 if (!tbl) 2207 continue; 2208 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 2209 continue; 2210 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) { 2211 found = true; 2212 break; 2213 } 2214 } 2215 2216 if (!found) 2217 return -ENOENT; 2218 2219 /* 2220 * We acquire tbl->lock to be nice to the periodic timers and 2221 * make sure they always see a consistent set of values. 2222 */ 2223 write_lock_bh(&tbl->lock); 2224 2225 if (tb[NDTA_PARMS]) { 2226 struct nlattr *tbp[NDTPA_MAX+1]; 2227 struct neigh_parms *p; 2228 int i, ifindex = 0; 2229 2230 err = nla_parse_nested_deprecated(tbp, NDTPA_MAX, 2231 tb[NDTA_PARMS], 2232 nl_ntbl_parm_policy, extack); 2233 if (err < 0) 2234 goto errout_tbl_lock; 2235 2236 if (tbp[NDTPA_IFINDEX]) 2237 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 2238 2239 p = lookup_neigh_parms(tbl, net, ifindex); 2240 if (p == NULL) { 2241 err = -ENOENT; 2242 goto errout_tbl_lock; 2243 } 2244 2245 for (i = 1; i <= NDTPA_MAX; i++) { 2246 if (tbp[i] == NULL) 2247 continue; 2248 2249 switch (i) { 2250 case NDTPA_QUEUE_LEN: 2251 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2252 nla_get_u32(tbp[i]) * 2253 SKB_TRUESIZE(ETH_FRAME_LEN)); 2254 break; 2255 case NDTPA_QUEUE_LENBYTES: 2256 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2257 nla_get_u32(tbp[i])); 2258 break; 2259 case NDTPA_PROXY_QLEN: 2260 NEIGH_VAR_SET(p, PROXY_QLEN, 2261 nla_get_u32(tbp[i])); 2262 break; 2263 case NDTPA_APP_PROBES: 2264 NEIGH_VAR_SET(p, APP_PROBES, 2265 nla_get_u32(tbp[i])); 2266 break; 2267 case NDTPA_UCAST_PROBES: 2268 NEIGH_VAR_SET(p, UCAST_PROBES, 2269 nla_get_u32(tbp[i])); 2270 break; 2271 case NDTPA_MCAST_PROBES: 2272 NEIGH_VAR_SET(p, MCAST_PROBES, 2273 nla_get_u32(tbp[i])); 2274 break; 2275 case NDTPA_MCAST_REPROBES: 2276 NEIGH_VAR_SET(p, MCAST_REPROBES, 2277 nla_get_u32(tbp[i])); 2278 break; 2279 case NDTPA_BASE_REACHABLE_TIME: 2280 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME, 2281 nla_get_msecs(tbp[i])); 2282 /* update reachable_time as well, otherwise, the change will 2283 * only be effective after the next time neigh_periodic_work 2284 * decides to recompute it (can be multiple minutes) 2285 */ 2286 p->reachable_time = 2287 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 2288 break; 2289 case NDTPA_GC_STALETIME: 2290 NEIGH_VAR_SET(p, GC_STALETIME, 2291 nla_get_msecs(tbp[i])); 2292 break; 2293 case NDTPA_DELAY_PROBE_TIME: 2294 NEIGH_VAR_SET(p, DELAY_PROBE_TIME, 2295 nla_get_msecs(tbp[i])); 2296 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 2297 break; 2298 case NDTPA_RETRANS_TIME: 2299 NEIGH_VAR_SET(p, RETRANS_TIME, 2300 nla_get_msecs(tbp[i])); 2301 break; 2302 case NDTPA_ANYCAST_DELAY: 2303 NEIGH_VAR_SET(p, ANYCAST_DELAY, 2304 nla_get_msecs(tbp[i])); 2305 break; 2306 case NDTPA_PROXY_DELAY: 2307 NEIGH_VAR_SET(p, PROXY_DELAY, 2308 nla_get_msecs(tbp[i])); 2309 break; 2310 case NDTPA_LOCKTIME: 2311 NEIGH_VAR_SET(p, LOCKTIME, 2312 nla_get_msecs(tbp[i])); 2313 break; 2314 } 2315 } 2316 } 2317 2318 err = -ENOENT; 2319 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] || 2320 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) && 2321 !net_eq(net, &init_net)) 2322 goto errout_tbl_lock; 2323 2324 if (tb[NDTA_THRESH1]) 2325 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 2326 2327 if (tb[NDTA_THRESH2]) 2328 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 2329 2330 if (tb[NDTA_THRESH3]) 2331 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 2332 2333 if (tb[NDTA_GC_INTERVAL]) 2334 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 2335 2336 err = 0; 2337 2338 errout_tbl_lock: 2339 write_unlock_bh(&tbl->lock); 2340 errout: 2341 return err; 2342 } 2343 2344 static int neightbl_valid_dump_info(const struct nlmsghdr *nlh, 2345 struct netlink_ext_ack *extack) 2346 { 2347 struct ndtmsg *ndtm; 2348 2349 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) { 2350 NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request"); 2351 return -EINVAL; 2352 } 2353 2354 ndtm = nlmsg_data(nlh); 2355 if (ndtm->ndtm_pad1 || ndtm->ndtm_pad2) { 2356 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request"); 2357 return -EINVAL; 2358 } 2359 2360 if (nlmsg_attrlen(nlh, sizeof(*ndtm))) { 2361 NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request"); 2362 return -EINVAL; 2363 } 2364 2365 return 0; 2366 } 2367 2368 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2369 { 2370 const struct nlmsghdr *nlh = cb->nlh; 2371 struct net *net = sock_net(skb->sk); 2372 int family, tidx, nidx = 0; 2373 int tbl_skip = cb->args[0]; 2374 int neigh_skip = cb->args[1]; 2375 struct neigh_table *tbl; 2376 2377 if (cb->strict_check) { 2378 int err = neightbl_valid_dump_info(nlh, cb->extack); 2379 2380 if (err < 0) 2381 return err; 2382 } 2383 2384 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2385 2386 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2387 struct neigh_parms *p; 2388 2389 tbl = neigh_tables[tidx]; 2390 if (!tbl) 2391 continue; 2392 2393 if (tidx < tbl_skip || (family && tbl->family != family)) 2394 continue; 2395 2396 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid, 2397 nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2398 NLM_F_MULTI) < 0) 2399 break; 2400 2401 nidx = 0; 2402 p = list_next_entry(&tbl->parms, list); 2403 list_for_each_entry_from(p, &tbl->parms_list, list) { 2404 if (!net_eq(neigh_parms_net(p), net)) 2405 continue; 2406 2407 if (nidx < neigh_skip) 2408 goto next; 2409 2410 if (neightbl_fill_param_info(skb, tbl, p, 2411 NETLINK_CB(cb->skb).portid, 2412 nlh->nlmsg_seq, 2413 RTM_NEWNEIGHTBL, 2414 NLM_F_MULTI) < 0) 2415 goto out; 2416 next: 2417 nidx++; 2418 } 2419 2420 neigh_skip = 0; 2421 } 2422 out: 2423 cb->args[0] = tidx; 2424 cb->args[1] = nidx; 2425 2426 return skb->len; 2427 } 2428 2429 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2430 u32 pid, u32 seq, int type, unsigned int flags) 2431 { 2432 unsigned long now = jiffies; 2433 struct nda_cacheinfo ci; 2434 struct nlmsghdr *nlh; 2435 struct ndmsg *ndm; 2436 2437 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2438 if (nlh == NULL) 2439 return -EMSGSIZE; 2440 2441 ndm = nlmsg_data(nlh); 2442 ndm->ndm_family = neigh->ops->family; 2443 ndm->ndm_pad1 = 0; 2444 ndm->ndm_pad2 = 0; 2445 ndm->ndm_flags = neigh->flags; 2446 ndm->ndm_type = neigh->type; 2447 ndm->ndm_ifindex = neigh->dev->ifindex; 2448 2449 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key)) 2450 goto nla_put_failure; 2451 2452 read_lock_bh(&neigh->lock); 2453 ndm->ndm_state = neigh->nud_state; 2454 if (neigh->nud_state & NUD_VALID) { 2455 char haddr[MAX_ADDR_LEN]; 2456 2457 neigh_ha_snapshot(haddr, neigh, neigh->dev); 2458 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { 2459 read_unlock_bh(&neigh->lock); 2460 goto nla_put_failure; 2461 } 2462 } 2463 2464 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2465 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2466 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2467 ci.ndm_refcnt = refcount_read(&neigh->refcnt) - 1; 2468 read_unlock_bh(&neigh->lock); 2469 2470 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) || 2471 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci)) 2472 goto nla_put_failure; 2473 2474 if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol)) 2475 goto nla_put_failure; 2476 2477 nlmsg_end(skb, nlh); 2478 return 0; 2479 2480 nla_put_failure: 2481 nlmsg_cancel(skb, nlh); 2482 return -EMSGSIZE; 2483 } 2484 2485 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, 2486 u32 pid, u32 seq, int type, unsigned int flags, 2487 struct neigh_table *tbl) 2488 { 2489 struct nlmsghdr *nlh; 2490 struct ndmsg *ndm; 2491 2492 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2493 if (nlh == NULL) 2494 return -EMSGSIZE; 2495 2496 ndm = nlmsg_data(nlh); 2497 ndm->ndm_family = tbl->family; 2498 ndm->ndm_pad1 = 0; 2499 ndm->ndm_pad2 = 0; 2500 ndm->ndm_flags = pn->flags | NTF_PROXY; 2501 ndm->ndm_type = RTN_UNICAST; 2502 ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0; 2503 ndm->ndm_state = NUD_NONE; 2504 2505 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key)) 2506 goto nla_put_failure; 2507 2508 if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol)) 2509 goto nla_put_failure; 2510 2511 nlmsg_end(skb, nlh); 2512 return 0; 2513 2514 nla_put_failure: 2515 nlmsg_cancel(skb, nlh); 2516 return -EMSGSIZE; 2517 } 2518 2519 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid) 2520 { 2521 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2522 __neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid); 2523 } 2524 2525 static bool neigh_master_filtered(struct net_device *dev, int master_idx) 2526 { 2527 struct net_device *master; 2528 2529 if (!master_idx) 2530 return false; 2531 2532 master = dev ? netdev_master_upper_dev_get(dev) : NULL; 2533 if (!master || master->ifindex != master_idx) 2534 return true; 2535 2536 return false; 2537 } 2538 2539 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx) 2540 { 2541 if (filter_idx && (!dev || dev->ifindex != filter_idx)) 2542 return true; 2543 2544 return false; 2545 } 2546 2547 struct neigh_dump_filter { 2548 int master_idx; 2549 int dev_idx; 2550 }; 2551 2552 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2553 struct netlink_callback *cb, 2554 struct neigh_dump_filter *filter) 2555 { 2556 struct net *net = sock_net(skb->sk); 2557 struct neighbour *n; 2558 int rc, h, s_h = cb->args[1]; 2559 int idx, s_idx = idx = cb->args[2]; 2560 struct neigh_hash_table *nht; 2561 unsigned int flags = NLM_F_MULTI; 2562 2563 if (filter->dev_idx || filter->master_idx) 2564 flags |= NLM_F_DUMP_FILTERED; 2565 2566 rcu_read_lock_bh(); 2567 nht = rcu_dereference_bh(tbl->nht); 2568 2569 for (h = s_h; h < (1 << nht->hash_shift); h++) { 2570 if (h > s_h) 2571 s_idx = 0; 2572 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; 2573 n != NULL; 2574 n = rcu_dereference_bh(n->next)) { 2575 if (idx < s_idx || !net_eq(dev_net(n->dev), net)) 2576 goto next; 2577 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2578 neigh_master_filtered(n->dev, filter->master_idx)) 2579 goto next; 2580 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2581 cb->nlh->nlmsg_seq, 2582 RTM_NEWNEIGH, 2583 flags) < 0) { 2584 rc = -1; 2585 goto out; 2586 } 2587 next: 2588 idx++; 2589 } 2590 } 2591 rc = skb->len; 2592 out: 2593 rcu_read_unlock_bh(); 2594 cb->args[1] = h; 2595 cb->args[2] = idx; 2596 return rc; 2597 } 2598 2599 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2600 struct netlink_callback *cb, 2601 struct neigh_dump_filter *filter) 2602 { 2603 struct pneigh_entry *n; 2604 struct net *net = sock_net(skb->sk); 2605 int rc, h, s_h = cb->args[3]; 2606 int idx, s_idx = idx = cb->args[4]; 2607 unsigned int flags = NLM_F_MULTI; 2608 2609 if (filter->dev_idx || filter->master_idx) 2610 flags |= NLM_F_DUMP_FILTERED; 2611 2612 read_lock_bh(&tbl->lock); 2613 2614 for (h = s_h; h <= PNEIGH_HASHMASK; h++) { 2615 if (h > s_h) 2616 s_idx = 0; 2617 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { 2618 if (idx < s_idx || pneigh_net(n) != net) 2619 goto next; 2620 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2621 neigh_master_filtered(n->dev, filter->master_idx)) 2622 goto next; 2623 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2624 cb->nlh->nlmsg_seq, 2625 RTM_NEWNEIGH, flags, tbl) < 0) { 2626 read_unlock_bh(&tbl->lock); 2627 rc = -1; 2628 goto out; 2629 } 2630 next: 2631 idx++; 2632 } 2633 } 2634 2635 read_unlock_bh(&tbl->lock); 2636 rc = skb->len; 2637 out: 2638 cb->args[3] = h; 2639 cb->args[4] = idx; 2640 return rc; 2641 2642 } 2643 2644 static int neigh_valid_dump_req(const struct nlmsghdr *nlh, 2645 bool strict_check, 2646 struct neigh_dump_filter *filter, 2647 struct netlink_ext_ack *extack) 2648 { 2649 struct nlattr *tb[NDA_MAX + 1]; 2650 int err, i; 2651 2652 if (strict_check) { 2653 struct ndmsg *ndm; 2654 2655 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2656 NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request"); 2657 return -EINVAL; 2658 } 2659 2660 ndm = nlmsg_data(nlh); 2661 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_ifindex || 2662 ndm->ndm_state || ndm->ndm_type) { 2663 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request"); 2664 return -EINVAL; 2665 } 2666 2667 if (ndm->ndm_flags & ~NTF_PROXY) { 2668 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request"); 2669 return -EINVAL; 2670 } 2671 2672 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), 2673 tb, NDA_MAX, nda_policy, 2674 extack); 2675 } else { 2676 err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb, 2677 NDA_MAX, nda_policy, extack); 2678 } 2679 if (err < 0) 2680 return err; 2681 2682 for (i = 0; i <= NDA_MAX; ++i) { 2683 if (!tb[i]) 2684 continue; 2685 2686 /* all new attributes should require strict_check */ 2687 switch (i) { 2688 case NDA_IFINDEX: 2689 filter->dev_idx = nla_get_u32(tb[i]); 2690 break; 2691 case NDA_MASTER: 2692 filter->master_idx = nla_get_u32(tb[i]); 2693 break; 2694 default: 2695 if (strict_check) { 2696 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request"); 2697 return -EINVAL; 2698 } 2699 } 2700 } 2701 2702 return 0; 2703 } 2704 2705 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2706 { 2707 const struct nlmsghdr *nlh = cb->nlh; 2708 struct neigh_dump_filter filter = {}; 2709 struct neigh_table *tbl; 2710 int t, family, s_t; 2711 int proxy = 0; 2712 int err; 2713 2714 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2715 2716 /* check for full ndmsg structure presence, family member is 2717 * the same for both structures 2718 */ 2719 if (nlmsg_len(nlh) >= sizeof(struct ndmsg) && 2720 ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY) 2721 proxy = 1; 2722 2723 err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack); 2724 if (err < 0 && cb->strict_check) 2725 return err; 2726 2727 s_t = cb->args[0]; 2728 2729 for (t = 0; t < NEIGH_NR_TABLES; t++) { 2730 tbl = neigh_tables[t]; 2731 2732 if (!tbl) 2733 continue; 2734 if (t < s_t || (family && tbl->family != family)) 2735 continue; 2736 if (t > s_t) 2737 memset(&cb->args[1], 0, sizeof(cb->args) - 2738 sizeof(cb->args[0])); 2739 if (proxy) 2740 err = pneigh_dump_table(tbl, skb, cb, &filter); 2741 else 2742 err = neigh_dump_table(tbl, skb, cb, &filter); 2743 if (err < 0) 2744 break; 2745 } 2746 2747 cb->args[0] = t; 2748 return skb->len; 2749 } 2750 2751 static int neigh_valid_get_req(const struct nlmsghdr *nlh, 2752 struct neigh_table **tbl, 2753 void **dst, int *dev_idx, u8 *ndm_flags, 2754 struct netlink_ext_ack *extack) 2755 { 2756 struct nlattr *tb[NDA_MAX + 1]; 2757 struct ndmsg *ndm; 2758 int err, i; 2759 2760 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2761 NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request"); 2762 return -EINVAL; 2763 } 2764 2765 ndm = nlmsg_data(nlh); 2766 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_state || 2767 ndm->ndm_type) { 2768 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request"); 2769 return -EINVAL; 2770 } 2771 2772 if (ndm->ndm_flags & ~NTF_PROXY) { 2773 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request"); 2774 return -EINVAL; 2775 } 2776 2777 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb, 2778 NDA_MAX, nda_policy, extack); 2779 if (err < 0) 2780 return err; 2781 2782 *ndm_flags = ndm->ndm_flags; 2783 *dev_idx = ndm->ndm_ifindex; 2784 *tbl = neigh_find_table(ndm->ndm_family); 2785 if (*tbl == NULL) { 2786 NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request"); 2787 return -EAFNOSUPPORT; 2788 } 2789 2790 for (i = 0; i <= NDA_MAX; ++i) { 2791 if (!tb[i]) 2792 continue; 2793 2794 switch (i) { 2795 case NDA_DST: 2796 if (nla_len(tb[i]) != (int)(*tbl)->key_len) { 2797 NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request"); 2798 return -EINVAL; 2799 } 2800 *dst = nla_data(tb[i]); 2801 break; 2802 default: 2803 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request"); 2804 return -EINVAL; 2805 } 2806 } 2807 2808 return 0; 2809 } 2810 2811 static inline size_t neigh_nlmsg_size(void) 2812 { 2813 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2814 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2815 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2816 + nla_total_size(sizeof(struct nda_cacheinfo)) 2817 + nla_total_size(4) /* NDA_PROBES */ 2818 + nla_total_size(1); /* NDA_PROTOCOL */ 2819 } 2820 2821 static int neigh_get_reply(struct net *net, struct neighbour *neigh, 2822 u32 pid, u32 seq) 2823 { 2824 struct sk_buff *skb; 2825 int err = 0; 2826 2827 skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL); 2828 if (!skb) 2829 return -ENOBUFS; 2830 2831 err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0); 2832 if (err) { 2833 kfree_skb(skb); 2834 goto errout; 2835 } 2836 2837 err = rtnl_unicast(skb, net, pid); 2838 errout: 2839 return err; 2840 } 2841 2842 static inline size_t pneigh_nlmsg_size(void) 2843 { 2844 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2845 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2846 + nla_total_size(1); /* NDA_PROTOCOL */ 2847 } 2848 2849 static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh, 2850 u32 pid, u32 seq, struct neigh_table *tbl) 2851 { 2852 struct sk_buff *skb; 2853 int err = 0; 2854 2855 skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL); 2856 if (!skb) 2857 return -ENOBUFS; 2858 2859 err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl); 2860 if (err) { 2861 kfree_skb(skb); 2862 goto errout; 2863 } 2864 2865 err = rtnl_unicast(skb, net, pid); 2866 errout: 2867 return err; 2868 } 2869 2870 static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2871 struct netlink_ext_ack *extack) 2872 { 2873 struct net *net = sock_net(in_skb->sk); 2874 struct net_device *dev = NULL; 2875 struct neigh_table *tbl = NULL; 2876 struct neighbour *neigh; 2877 void *dst = NULL; 2878 u8 ndm_flags = 0; 2879 int dev_idx = 0; 2880 int err; 2881 2882 err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags, 2883 extack); 2884 if (err < 0) 2885 return err; 2886 2887 if (dev_idx) { 2888 dev = __dev_get_by_index(net, dev_idx); 2889 if (!dev) { 2890 NL_SET_ERR_MSG(extack, "Unknown device ifindex"); 2891 return -ENODEV; 2892 } 2893 } 2894 2895 if (!dst) { 2896 NL_SET_ERR_MSG(extack, "Network address not specified"); 2897 return -EINVAL; 2898 } 2899 2900 if (ndm_flags & NTF_PROXY) { 2901 struct pneigh_entry *pn; 2902 2903 pn = pneigh_lookup(tbl, net, dst, dev, 0); 2904 if (!pn) { 2905 NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found"); 2906 return -ENOENT; 2907 } 2908 return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid, 2909 nlh->nlmsg_seq, tbl); 2910 } 2911 2912 if (!dev) { 2913 NL_SET_ERR_MSG(extack, "No device specified"); 2914 return -EINVAL; 2915 } 2916 2917 neigh = neigh_lookup(tbl, dst, dev); 2918 if (!neigh) { 2919 NL_SET_ERR_MSG(extack, "Neighbour entry not found"); 2920 return -ENOENT; 2921 } 2922 2923 err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid, 2924 nlh->nlmsg_seq); 2925 2926 neigh_release(neigh); 2927 2928 return err; 2929 } 2930 2931 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2932 { 2933 int chain; 2934 struct neigh_hash_table *nht; 2935 2936 rcu_read_lock_bh(); 2937 nht = rcu_dereference_bh(tbl->nht); 2938 2939 read_lock(&tbl->lock); /* avoid resizes */ 2940 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2941 struct neighbour *n; 2942 2943 for (n = rcu_dereference_bh(nht->hash_buckets[chain]); 2944 n != NULL; 2945 n = rcu_dereference_bh(n->next)) 2946 cb(n, cookie); 2947 } 2948 read_unlock(&tbl->lock); 2949 rcu_read_unlock_bh(); 2950 } 2951 EXPORT_SYMBOL(neigh_for_each); 2952 2953 /* The tbl->lock must be held as a writer and BH disabled. */ 2954 void __neigh_for_each_release(struct neigh_table *tbl, 2955 int (*cb)(struct neighbour *)) 2956 { 2957 int chain; 2958 struct neigh_hash_table *nht; 2959 2960 nht = rcu_dereference_protected(tbl->nht, 2961 lockdep_is_held(&tbl->lock)); 2962 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2963 struct neighbour *n; 2964 struct neighbour __rcu **np; 2965 2966 np = &nht->hash_buckets[chain]; 2967 while ((n = rcu_dereference_protected(*np, 2968 lockdep_is_held(&tbl->lock))) != NULL) { 2969 int release; 2970 2971 write_lock(&n->lock); 2972 release = cb(n); 2973 if (release) { 2974 rcu_assign_pointer(*np, 2975 rcu_dereference_protected(n->next, 2976 lockdep_is_held(&tbl->lock))); 2977 neigh_mark_dead(n); 2978 } else 2979 np = &n->next; 2980 write_unlock(&n->lock); 2981 if (release) 2982 neigh_cleanup_and_release(n); 2983 } 2984 } 2985 } 2986 EXPORT_SYMBOL(__neigh_for_each_release); 2987 2988 int neigh_xmit(int index, struct net_device *dev, 2989 const void *addr, struct sk_buff *skb) 2990 { 2991 int err = -EAFNOSUPPORT; 2992 if (likely(index < NEIGH_NR_TABLES)) { 2993 struct neigh_table *tbl; 2994 struct neighbour *neigh; 2995 2996 tbl = neigh_tables[index]; 2997 if (!tbl) 2998 goto out; 2999 rcu_read_lock_bh(); 3000 if (index == NEIGH_ARP_TABLE) { 3001 u32 key = *((u32 *)addr); 3002 3003 neigh = __ipv4_neigh_lookup_noref(dev, key); 3004 } else { 3005 neigh = __neigh_lookup_noref(tbl, addr, dev); 3006 } 3007 if (!neigh) 3008 neigh = __neigh_create(tbl, addr, dev, false); 3009 err = PTR_ERR(neigh); 3010 if (IS_ERR(neigh)) { 3011 rcu_read_unlock_bh(); 3012 goto out_kfree_skb; 3013 } 3014 err = neigh->output(neigh, skb); 3015 rcu_read_unlock_bh(); 3016 } 3017 else if (index == NEIGH_LINK_TABLE) { 3018 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 3019 addr, NULL, skb->len); 3020 if (err < 0) 3021 goto out_kfree_skb; 3022 err = dev_queue_xmit(skb); 3023 } 3024 out: 3025 return err; 3026 out_kfree_skb: 3027 kfree_skb(skb); 3028 goto out; 3029 } 3030 EXPORT_SYMBOL(neigh_xmit); 3031 3032 #ifdef CONFIG_PROC_FS 3033 3034 static struct neighbour *neigh_get_first(struct seq_file *seq) 3035 { 3036 struct neigh_seq_state *state = seq->private; 3037 struct net *net = seq_file_net(seq); 3038 struct neigh_hash_table *nht = state->nht; 3039 struct neighbour *n = NULL; 3040 int bucket; 3041 3042 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 3043 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { 3044 n = rcu_dereference_bh(nht->hash_buckets[bucket]); 3045 3046 while (n) { 3047 if (!net_eq(dev_net(n->dev), net)) 3048 goto next; 3049 if (state->neigh_sub_iter) { 3050 loff_t fakep = 0; 3051 void *v; 3052 3053 v = state->neigh_sub_iter(state, n, &fakep); 3054 if (!v) 3055 goto next; 3056 } 3057 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3058 break; 3059 if (n->nud_state & ~NUD_NOARP) 3060 break; 3061 next: 3062 n = rcu_dereference_bh(n->next); 3063 } 3064 3065 if (n) 3066 break; 3067 } 3068 state->bucket = bucket; 3069 3070 return n; 3071 } 3072 3073 static struct neighbour *neigh_get_next(struct seq_file *seq, 3074 struct neighbour *n, 3075 loff_t *pos) 3076 { 3077 struct neigh_seq_state *state = seq->private; 3078 struct net *net = seq_file_net(seq); 3079 struct neigh_hash_table *nht = state->nht; 3080 3081 if (state->neigh_sub_iter) { 3082 void *v = state->neigh_sub_iter(state, n, pos); 3083 if (v) 3084 return n; 3085 } 3086 n = rcu_dereference_bh(n->next); 3087 3088 while (1) { 3089 while (n) { 3090 if (!net_eq(dev_net(n->dev), net)) 3091 goto next; 3092 if (state->neigh_sub_iter) { 3093 void *v = state->neigh_sub_iter(state, n, pos); 3094 if (v) 3095 return n; 3096 goto next; 3097 } 3098 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3099 break; 3100 3101 if (n->nud_state & ~NUD_NOARP) 3102 break; 3103 next: 3104 n = rcu_dereference_bh(n->next); 3105 } 3106 3107 if (n) 3108 break; 3109 3110 if (++state->bucket >= (1 << nht->hash_shift)) 3111 break; 3112 3113 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); 3114 } 3115 3116 if (n && pos) 3117 --(*pos); 3118 return n; 3119 } 3120 3121 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 3122 { 3123 struct neighbour *n = neigh_get_first(seq); 3124 3125 if (n) { 3126 --(*pos); 3127 while (*pos) { 3128 n = neigh_get_next(seq, n, pos); 3129 if (!n) 3130 break; 3131 } 3132 } 3133 return *pos ? NULL : n; 3134 } 3135 3136 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 3137 { 3138 struct neigh_seq_state *state = seq->private; 3139 struct net *net = seq_file_net(seq); 3140 struct neigh_table *tbl = state->tbl; 3141 struct pneigh_entry *pn = NULL; 3142 int bucket = state->bucket; 3143 3144 state->flags |= NEIGH_SEQ_IS_PNEIGH; 3145 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 3146 pn = tbl->phash_buckets[bucket]; 3147 while (pn && !net_eq(pneigh_net(pn), net)) 3148 pn = pn->next; 3149 if (pn) 3150 break; 3151 } 3152 state->bucket = bucket; 3153 3154 return pn; 3155 } 3156 3157 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 3158 struct pneigh_entry *pn, 3159 loff_t *pos) 3160 { 3161 struct neigh_seq_state *state = seq->private; 3162 struct net *net = seq_file_net(seq); 3163 struct neigh_table *tbl = state->tbl; 3164 3165 do { 3166 pn = pn->next; 3167 } while (pn && !net_eq(pneigh_net(pn), net)); 3168 3169 while (!pn) { 3170 if (++state->bucket > PNEIGH_HASHMASK) 3171 break; 3172 pn = tbl->phash_buckets[state->bucket]; 3173 while (pn && !net_eq(pneigh_net(pn), net)) 3174 pn = pn->next; 3175 if (pn) 3176 break; 3177 } 3178 3179 if (pn && pos) 3180 --(*pos); 3181 3182 return pn; 3183 } 3184 3185 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 3186 { 3187 struct pneigh_entry *pn = pneigh_get_first(seq); 3188 3189 if (pn) { 3190 --(*pos); 3191 while (*pos) { 3192 pn = pneigh_get_next(seq, pn, pos); 3193 if (!pn) 3194 break; 3195 } 3196 } 3197 return *pos ? NULL : pn; 3198 } 3199 3200 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 3201 { 3202 struct neigh_seq_state *state = seq->private; 3203 void *rc; 3204 loff_t idxpos = *pos; 3205 3206 rc = neigh_get_idx(seq, &idxpos); 3207 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3208 rc = pneigh_get_idx(seq, &idxpos); 3209 3210 return rc; 3211 } 3212 3213 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 3214 __acquires(tbl->lock) 3215 __acquires(rcu_bh) 3216 { 3217 struct neigh_seq_state *state = seq->private; 3218 3219 state->tbl = tbl; 3220 state->bucket = 0; 3221 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 3222 3223 rcu_read_lock_bh(); 3224 state->nht = rcu_dereference_bh(tbl->nht); 3225 read_lock(&tbl->lock); 3226 3227 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 3228 } 3229 EXPORT_SYMBOL(neigh_seq_start); 3230 3231 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3232 { 3233 struct neigh_seq_state *state; 3234 void *rc; 3235 3236 if (v == SEQ_START_TOKEN) { 3237 rc = neigh_get_first(seq); 3238 goto out; 3239 } 3240 3241 state = seq->private; 3242 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 3243 rc = neigh_get_next(seq, v, NULL); 3244 if (rc) 3245 goto out; 3246 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3247 rc = pneigh_get_first(seq); 3248 } else { 3249 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 3250 rc = pneigh_get_next(seq, v, NULL); 3251 } 3252 out: 3253 ++(*pos); 3254 return rc; 3255 } 3256 EXPORT_SYMBOL(neigh_seq_next); 3257 3258 void neigh_seq_stop(struct seq_file *seq, void *v) 3259 __releases(tbl->lock) 3260 __releases(rcu_bh) 3261 { 3262 struct neigh_seq_state *state = seq->private; 3263 struct neigh_table *tbl = state->tbl; 3264 3265 read_unlock(&tbl->lock); 3266 rcu_read_unlock_bh(); 3267 } 3268 EXPORT_SYMBOL(neigh_seq_stop); 3269 3270 /* statistics via seq_file */ 3271 3272 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 3273 { 3274 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3275 int cpu; 3276 3277 if (*pos == 0) 3278 return SEQ_START_TOKEN; 3279 3280 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 3281 if (!cpu_possible(cpu)) 3282 continue; 3283 *pos = cpu+1; 3284 return per_cpu_ptr(tbl->stats, cpu); 3285 } 3286 return NULL; 3287 } 3288 3289 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3290 { 3291 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3292 int cpu; 3293 3294 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 3295 if (!cpu_possible(cpu)) 3296 continue; 3297 *pos = cpu+1; 3298 return per_cpu_ptr(tbl->stats, cpu); 3299 } 3300 (*pos)++; 3301 return NULL; 3302 } 3303 3304 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 3305 { 3306 3307 } 3308 3309 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 3310 { 3311 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3312 struct neigh_statistics *st = v; 3313 3314 if (v == SEQ_START_TOKEN) { 3315 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n"); 3316 return 0; 3317 } 3318 3319 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 3320 "%08lx %08lx %08lx %08lx %08lx %08lx\n", 3321 atomic_read(&tbl->entries), 3322 3323 st->allocs, 3324 st->destroys, 3325 st->hash_grows, 3326 3327 st->lookups, 3328 st->hits, 3329 3330 st->res_failed, 3331 3332 st->rcv_probes_mcast, 3333 st->rcv_probes_ucast, 3334 3335 st->periodic_gc_runs, 3336 st->forced_gc_runs, 3337 st->unres_discards, 3338 st->table_fulls 3339 ); 3340 3341 return 0; 3342 } 3343 3344 static const struct seq_operations neigh_stat_seq_ops = { 3345 .start = neigh_stat_seq_start, 3346 .next = neigh_stat_seq_next, 3347 .stop = neigh_stat_seq_stop, 3348 .show = neigh_stat_seq_show, 3349 }; 3350 #endif /* CONFIG_PROC_FS */ 3351 3352 static void __neigh_notify(struct neighbour *n, int type, int flags, 3353 u32 pid) 3354 { 3355 struct net *net = dev_net(n->dev); 3356 struct sk_buff *skb; 3357 int err = -ENOBUFS; 3358 3359 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 3360 if (skb == NULL) 3361 goto errout; 3362 3363 err = neigh_fill_info(skb, n, pid, 0, type, flags); 3364 if (err < 0) { 3365 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 3366 WARN_ON(err == -EMSGSIZE); 3367 kfree_skb(skb); 3368 goto errout; 3369 } 3370 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 3371 return; 3372 errout: 3373 if (err < 0) 3374 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 3375 } 3376 3377 void neigh_app_ns(struct neighbour *n) 3378 { 3379 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0); 3380 } 3381 EXPORT_SYMBOL(neigh_app_ns); 3382 3383 #ifdef CONFIG_SYSCTL 3384 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN); 3385 3386 static int proc_unres_qlen(struct ctl_table *ctl, int write, 3387 void *buffer, size_t *lenp, loff_t *ppos) 3388 { 3389 int size, ret; 3390 struct ctl_table tmp = *ctl; 3391 3392 tmp.extra1 = SYSCTL_ZERO; 3393 tmp.extra2 = &unres_qlen_max; 3394 tmp.data = &size; 3395 3396 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN); 3397 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3398 3399 if (write && !ret) 3400 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); 3401 return ret; 3402 } 3403 3404 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev, 3405 int family) 3406 { 3407 switch (family) { 3408 case AF_INET: 3409 return __in_dev_arp_parms_get_rcu(dev); 3410 case AF_INET6: 3411 return __in6_dev_nd_parms_get_rcu(dev); 3412 } 3413 return NULL; 3414 } 3415 3416 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p, 3417 int index) 3418 { 3419 struct net_device *dev; 3420 int family = neigh_parms_family(p); 3421 3422 rcu_read_lock(); 3423 for_each_netdev_rcu(net, dev) { 3424 struct neigh_parms *dst_p = 3425 neigh_get_dev_parms_rcu(dev, family); 3426 3427 if (dst_p && !test_bit(index, dst_p->data_state)) 3428 dst_p->data[index] = p->data[index]; 3429 } 3430 rcu_read_unlock(); 3431 } 3432 3433 static void neigh_proc_update(struct ctl_table *ctl, int write) 3434 { 3435 struct net_device *dev = ctl->extra1; 3436 struct neigh_parms *p = ctl->extra2; 3437 struct net *net = neigh_parms_net(p); 3438 int index = (int *) ctl->data - p->data; 3439 3440 if (!write) 3441 return; 3442 3443 set_bit(index, p->data_state); 3444 if (index == NEIGH_VAR_DELAY_PROBE_TIME) 3445 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 3446 if (!dev) /* NULL dev means this is default value */ 3447 neigh_copy_dflt_parms(net, p, index); 3448 } 3449 3450 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write, 3451 void *buffer, size_t *lenp, 3452 loff_t *ppos) 3453 { 3454 struct ctl_table tmp = *ctl; 3455 int ret; 3456 3457 tmp.extra1 = SYSCTL_ZERO; 3458 tmp.extra2 = SYSCTL_INT_MAX; 3459 3460 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3461 neigh_proc_update(ctl, write); 3462 return ret; 3463 } 3464 3465 int neigh_proc_dointvec(struct ctl_table *ctl, int write, void *buffer, 3466 size_t *lenp, loff_t *ppos) 3467 { 3468 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 3469 3470 neigh_proc_update(ctl, write); 3471 return ret; 3472 } 3473 EXPORT_SYMBOL(neigh_proc_dointvec); 3474 3475 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, void *buffer, 3476 size_t *lenp, loff_t *ppos) 3477 { 3478 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3479 3480 neigh_proc_update(ctl, write); 3481 return ret; 3482 } 3483 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies); 3484 3485 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write, 3486 void *buffer, size_t *lenp, 3487 loff_t *ppos) 3488 { 3489 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos); 3490 3491 neigh_proc_update(ctl, write); 3492 return ret; 3493 } 3494 3495 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write, 3496 void *buffer, size_t *lenp, loff_t *ppos) 3497 { 3498 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3499 3500 neigh_proc_update(ctl, write); 3501 return ret; 3502 } 3503 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies); 3504 3505 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write, 3506 void *buffer, size_t *lenp, 3507 loff_t *ppos) 3508 { 3509 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos); 3510 3511 neigh_proc_update(ctl, write); 3512 return ret; 3513 } 3514 3515 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write, 3516 void *buffer, size_t *lenp, 3517 loff_t *ppos) 3518 { 3519 struct neigh_parms *p = ctl->extra2; 3520 int ret; 3521 3522 if (strcmp(ctl->procname, "base_reachable_time") == 0) 3523 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3524 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0) 3525 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3526 else 3527 ret = -1; 3528 3529 if (write && ret == 0) { 3530 /* update reachable_time as well, otherwise, the change will 3531 * only be effective after the next time neigh_periodic_work 3532 * decides to recompute it 3533 */ 3534 p->reachable_time = 3535 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 3536 } 3537 return ret; 3538 } 3539 3540 #define NEIGH_PARMS_DATA_OFFSET(index) \ 3541 (&((struct neigh_parms *) 0)->data[index]) 3542 3543 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \ 3544 [NEIGH_VAR_ ## attr] = { \ 3545 .procname = name, \ 3546 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \ 3547 .maxlen = sizeof(int), \ 3548 .mode = mval, \ 3549 .proc_handler = proc, \ 3550 } 3551 3552 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \ 3553 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax) 3554 3555 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \ 3556 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies) 3557 3558 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \ 3559 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies) 3560 3561 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \ 3562 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies) 3563 3564 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \ 3565 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen) 3566 3567 static struct neigh_sysctl_table { 3568 struct ctl_table_header *sysctl_header; 3569 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1]; 3570 } neigh_sysctl_template __read_mostly = { 3571 .neigh_vars = { 3572 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"), 3573 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"), 3574 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"), 3575 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"), 3576 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"), 3577 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"), 3578 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"), 3579 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"), 3580 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"), 3581 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"), 3582 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"), 3583 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"), 3584 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"), 3585 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"), 3586 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"), 3587 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"), 3588 [NEIGH_VAR_GC_INTERVAL] = { 3589 .procname = "gc_interval", 3590 .maxlen = sizeof(int), 3591 .mode = 0644, 3592 .proc_handler = proc_dointvec_jiffies, 3593 }, 3594 [NEIGH_VAR_GC_THRESH1] = { 3595 .procname = "gc_thresh1", 3596 .maxlen = sizeof(int), 3597 .mode = 0644, 3598 .extra1 = SYSCTL_ZERO, 3599 .extra2 = SYSCTL_INT_MAX, 3600 .proc_handler = proc_dointvec_minmax, 3601 }, 3602 [NEIGH_VAR_GC_THRESH2] = { 3603 .procname = "gc_thresh2", 3604 .maxlen = sizeof(int), 3605 .mode = 0644, 3606 .extra1 = SYSCTL_ZERO, 3607 .extra2 = SYSCTL_INT_MAX, 3608 .proc_handler = proc_dointvec_minmax, 3609 }, 3610 [NEIGH_VAR_GC_THRESH3] = { 3611 .procname = "gc_thresh3", 3612 .maxlen = sizeof(int), 3613 .mode = 0644, 3614 .extra1 = SYSCTL_ZERO, 3615 .extra2 = SYSCTL_INT_MAX, 3616 .proc_handler = proc_dointvec_minmax, 3617 }, 3618 {}, 3619 }, 3620 }; 3621 3622 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 3623 proc_handler *handler) 3624 { 3625 int i; 3626 struct neigh_sysctl_table *t; 3627 const char *dev_name_source; 3628 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ]; 3629 char *p_name; 3630 3631 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 3632 if (!t) 3633 goto err; 3634 3635 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) { 3636 t->neigh_vars[i].data += (long) p; 3637 t->neigh_vars[i].extra1 = dev; 3638 t->neigh_vars[i].extra2 = p; 3639 } 3640 3641 if (dev) { 3642 dev_name_source = dev->name; 3643 /* Terminate the table early */ 3644 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0, 3645 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL])); 3646 } else { 3647 struct neigh_table *tbl = p->tbl; 3648 dev_name_source = "default"; 3649 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval; 3650 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1; 3651 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2; 3652 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3; 3653 } 3654 3655 if (handler) { 3656 /* RetransTime */ 3657 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; 3658 /* ReachableTime */ 3659 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; 3660 /* RetransTime (in milliseconds)*/ 3661 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; 3662 /* ReachableTime (in milliseconds) */ 3663 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; 3664 } else { 3665 /* Those handlers will update p->reachable_time after 3666 * base_reachable_time(_ms) is set to ensure the new timer starts being 3667 * applied after the next neighbour update instead of waiting for 3668 * neigh_periodic_work to update its value (can be multiple minutes) 3669 * So any handler that replaces them should do this as well 3670 */ 3671 /* ReachableTime */ 3672 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = 3673 neigh_proc_base_reachable_time; 3674 /* ReachableTime (in milliseconds) */ 3675 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = 3676 neigh_proc_base_reachable_time; 3677 } 3678 3679 /* Don't export sysctls to unprivileged users */ 3680 if (neigh_parms_net(p)->user_ns != &init_user_ns) 3681 t->neigh_vars[0].procname = NULL; 3682 3683 switch (neigh_parms_family(p)) { 3684 case AF_INET: 3685 p_name = "ipv4"; 3686 break; 3687 case AF_INET6: 3688 p_name = "ipv6"; 3689 break; 3690 default: 3691 BUG(); 3692 } 3693 3694 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s", 3695 p_name, dev_name_source); 3696 t->sysctl_header = 3697 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars); 3698 if (!t->sysctl_header) 3699 goto free; 3700 3701 p->sysctl_table = t; 3702 return 0; 3703 3704 free: 3705 kfree(t); 3706 err: 3707 return -ENOBUFS; 3708 } 3709 EXPORT_SYMBOL(neigh_sysctl_register); 3710 3711 void neigh_sysctl_unregister(struct neigh_parms *p) 3712 { 3713 if (p->sysctl_table) { 3714 struct neigh_sysctl_table *t = p->sysctl_table; 3715 p->sysctl_table = NULL; 3716 unregister_net_sysctl_table(t->sysctl_header); 3717 kfree(t); 3718 } 3719 } 3720 EXPORT_SYMBOL(neigh_sysctl_unregister); 3721 3722 #endif /* CONFIG_SYSCTL */ 3723 3724 static int __init neigh_init(void) 3725 { 3726 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0); 3727 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0); 3728 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info, 0); 3729 3730 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, 3731 0); 3732 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0); 3733 3734 return 0; 3735 } 3736 3737 subsys_initcall(neigh_init); 3738