xref: /openbmc/linux/net/core/neighbour.c (revision d78c317f)
1 /*
2  *	Generic address resolution entity
3  *
4  *	Authors:
5  *	Pedro Roque		<roque@di.fc.ul.pt>
6  *	Alexey Kuznetsov	<kuznet@ms2.inr.ac.ru>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Fixes:
14  *	Vitaly E. Lavrov	releasing NULL neighbor in neigh_add.
15  *	Harald Welte		Add neighbour cache statistics like rtstat
16  */
17 
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/netdevice.h>
24 #include <linux/proc_fs.h>
25 #ifdef CONFIG_SYSCTL
26 #include <linux/sysctl.h>
27 #endif
28 #include <linux/times.h>
29 #include <net/net_namespace.h>
30 #include <net/neighbour.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
39 
40 #define NEIGH_DEBUG 1
41 
42 #define NEIGH_PRINTK(x...) printk(x)
43 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
46 
47 #if NEIGH_DEBUG >= 1
48 #undef NEIGH_PRINTK1
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
50 #endif
51 #if NEIGH_DEBUG >= 2
52 #undef NEIGH_PRINTK2
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #endif
55 
56 #define PNEIGH_HASHMASK		0xF
57 
58 static void neigh_timer_handler(unsigned long arg);
59 static void __neigh_notify(struct neighbour *n, int type, int flags);
60 static void neigh_update_notify(struct neighbour *neigh);
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62 
63 static struct neigh_table *neigh_tables;
64 #ifdef CONFIG_PROC_FS
65 static const struct file_operations neigh_stat_seq_fops;
66 #endif
67 
68 /*
69    Neighbour hash table buckets are protected with rwlock tbl->lock.
70 
71    - All the scans/updates to hash buckets MUST be made under this lock.
72    - NOTHING clever should be made under this lock: no callbacks
73      to protocol backends, no attempts to send something to network.
74      It will result in deadlocks, if backend/driver wants to use neighbour
75      cache.
76    - If the entry requires some non-trivial actions, increase
77      its reference count and release table lock.
78 
79    Neighbour entries are protected:
80    - with reference count.
81    - with rwlock neigh->lock
82 
83    Reference count prevents destruction.
84 
85    neigh->lock mainly serializes ll address data and its validity state.
86    However, the same lock is used to protect another entry fields:
87     - timer
88     - resolution queue
89 
90    Again, nothing clever shall be made under neigh->lock,
91    the most complicated procedure, which we allow is dev->hard_header.
92    It is supposed, that dev->hard_header is simplistic and does
93    not make callbacks to neighbour tables.
94 
95    The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96    list of neighbour tables. This list is used only in process context,
97  */
98 
99 static DEFINE_RWLOCK(neigh_tbl_lock);
100 
101 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
102 {
103 	kfree_skb(skb);
104 	return -ENETDOWN;
105 }
106 
107 static void neigh_cleanup_and_release(struct neighbour *neigh)
108 {
109 	if (neigh->parms->neigh_cleanup)
110 		neigh->parms->neigh_cleanup(neigh);
111 
112 	__neigh_notify(neigh, RTM_DELNEIGH, 0);
113 	neigh_release(neigh);
114 }
115 
116 /*
117  * It is random distribution in the interval (1/2)*base...(3/2)*base.
118  * It corresponds to default IPv6 settings and is not overridable,
119  * because it is really reasonable choice.
120  */
121 
122 unsigned long neigh_rand_reach_time(unsigned long base)
123 {
124 	return base ? (net_random() % base) + (base >> 1) : 0;
125 }
126 EXPORT_SYMBOL(neigh_rand_reach_time);
127 
128 
129 static int neigh_forced_gc(struct neigh_table *tbl)
130 {
131 	int shrunk = 0;
132 	int i;
133 	struct neigh_hash_table *nht;
134 
135 	NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
136 
137 	write_lock_bh(&tbl->lock);
138 	nht = rcu_dereference_protected(tbl->nht,
139 					lockdep_is_held(&tbl->lock));
140 	for (i = 0; i < (1 << nht->hash_shift); i++) {
141 		struct neighbour *n;
142 		struct neighbour __rcu **np;
143 
144 		np = &nht->hash_buckets[i];
145 		while ((n = rcu_dereference_protected(*np,
146 					lockdep_is_held(&tbl->lock))) != NULL) {
147 			/* Neighbour record may be discarded if:
148 			 * - nobody refers to it.
149 			 * - it is not permanent
150 			 */
151 			write_lock(&n->lock);
152 			if (atomic_read(&n->refcnt) == 1 &&
153 			    !(n->nud_state & NUD_PERMANENT)) {
154 				rcu_assign_pointer(*np,
155 					rcu_dereference_protected(n->next,
156 						  lockdep_is_held(&tbl->lock)));
157 				n->dead = 1;
158 				shrunk	= 1;
159 				write_unlock(&n->lock);
160 				neigh_cleanup_and_release(n);
161 				continue;
162 			}
163 			write_unlock(&n->lock);
164 			np = &n->next;
165 		}
166 	}
167 
168 	tbl->last_flush = jiffies;
169 
170 	write_unlock_bh(&tbl->lock);
171 
172 	return shrunk;
173 }
174 
175 static void neigh_add_timer(struct neighbour *n, unsigned long when)
176 {
177 	neigh_hold(n);
178 	if (unlikely(mod_timer(&n->timer, when))) {
179 		printk("NEIGH: BUG, double timer add, state is %x\n",
180 		       n->nud_state);
181 		dump_stack();
182 	}
183 }
184 
185 static int neigh_del_timer(struct neighbour *n)
186 {
187 	if ((n->nud_state & NUD_IN_TIMER) &&
188 	    del_timer(&n->timer)) {
189 		neigh_release(n);
190 		return 1;
191 	}
192 	return 0;
193 }
194 
195 static void pneigh_queue_purge(struct sk_buff_head *list)
196 {
197 	struct sk_buff *skb;
198 
199 	while ((skb = skb_dequeue(list)) != NULL) {
200 		dev_put(skb->dev);
201 		kfree_skb(skb);
202 	}
203 }
204 
205 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
206 {
207 	int i;
208 	struct neigh_hash_table *nht;
209 
210 	nht = rcu_dereference_protected(tbl->nht,
211 					lockdep_is_held(&tbl->lock));
212 
213 	for (i = 0; i < (1 << nht->hash_shift); i++) {
214 		struct neighbour *n;
215 		struct neighbour __rcu **np = &nht->hash_buckets[i];
216 
217 		while ((n = rcu_dereference_protected(*np,
218 					lockdep_is_held(&tbl->lock))) != NULL) {
219 			if (dev && n->dev != dev) {
220 				np = &n->next;
221 				continue;
222 			}
223 			rcu_assign_pointer(*np,
224 				   rcu_dereference_protected(n->next,
225 						lockdep_is_held(&tbl->lock)));
226 			write_lock(&n->lock);
227 			neigh_del_timer(n);
228 			n->dead = 1;
229 
230 			if (atomic_read(&n->refcnt) != 1) {
231 				/* The most unpleasant situation.
232 				   We must destroy neighbour entry,
233 				   but someone still uses it.
234 
235 				   The destroy will be delayed until
236 				   the last user releases us, but
237 				   we must kill timers etc. and move
238 				   it to safe state.
239 				 */
240 				skb_queue_purge(&n->arp_queue);
241 				n->arp_queue_len_bytes = 0;
242 				n->output = neigh_blackhole;
243 				if (n->nud_state & NUD_VALID)
244 					n->nud_state = NUD_NOARP;
245 				else
246 					n->nud_state = NUD_NONE;
247 				NEIGH_PRINTK2("neigh %p is stray.\n", n);
248 			}
249 			write_unlock(&n->lock);
250 			neigh_cleanup_and_release(n);
251 		}
252 	}
253 }
254 
255 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
256 {
257 	write_lock_bh(&tbl->lock);
258 	neigh_flush_dev(tbl, dev);
259 	write_unlock_bh(&tbl->lock);
260 }
261 EXPORT_SYMBOL(neigh_changeaddr);
262 
263 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
264 {
265 	write_lock_bh(&tbl->lock);
266 	neigh_flush_dev(tbl, dev);
267 	pneigh_ifdown(tbl, dev);
268 	write_unlock_bh(&tbl->lock);
269 
270 	del_timer_sync(&tbl->proxy_timer);
271 	pneigh_queue_purge(&tbl->proxy_queue);
272 	return 0;
273 }
274 EXPORT_SYMBOL(neigh_ifdown);
275 
276 static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
277 {
278 	struct neighbour *n = NULL;
279 	unsigned long now = jiffies;
280 	int entries;
281 
282 	entries = atomic_inc_return(&tbl->entries) - 1;
283 	if (entries >= tbl->gc_thresh3 ||
284 	    (entries >= tbl->gc_thresh2 &&
285 	     time_after(now, tbl->last_flush + 5 * HZ))) {
286 		if (!neigh_forced_gc(tbl) &&
287 		    entries >= tbl->gc_thresh3)
288 			goto out_entries;
289 	}
290 
291 	if (tbl->entry_size)
292 		n = kzalloc(tbl->entry_size, GFP_ATOMIC);
293 	else {
294 		int sz = sizeof(*n) + tbl->key_len;
295 
296 		sz = ALIGN(sz, NEIGH_PRIV_ALIGN);
297 		sz += dev->neigh_priv_len;
298 		n = kzalloc(sz, GFP_ATOMIC);
299 	}
300 	if (!n)
301 		goto out_entries;
302 
303 	skb_queue_head_init(&n->arp_queue);
304 	rwlock_init(&n->lock);
305 	seqlock_init(&n->ha_lock);
306 	n->updated	  = n->used = now;
307 	n->nud_state	  = NUD_NONE;
308 	n->output	  = neigh_blackhole;
309 	seqlock_init(&n->hh.hh_lock);
310 	n->parms	  = neigh_parms_clone(&tbl->parms);
311 	setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
312 
313 	NEIGH_CACHE_STAT_INC(tbl, allocs);
314 	n->tbl		  = tbl;
315 	atomic_set(&n->refcnt, 1);
316 	n->dead		  = 1;
317 out:
318 	return n;
319 
320 out_entries:
321 	atomic_dec(&tbl->entries);
322 	goto out;
323 }
324 
325 static void neigh_get_hash_rnd(u32 *x)
326 {
327 	get_random_bytes(x, sizeof(*x));
328 	*x |= 1;
329 }
330 
331 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
332 {
333 	size_t size = (1 << shift) * sizeof(struct neighbour *);
334 	struct neigh_hash_table *ret;
335 	struct neighbour __rcu **buckets;
336 	int i;
337 
338 	ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
339 	if (!ret)
340 		return NULL;
341 	if (size <= PAGE_SIZE)
342 		buckets = kzalloc(size, GFP_ATOMIC);
343 	else
344 		buckets = (struct neighbour __rcu **)
345 			  __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
346 					   get_order(size));
347 	if (!buckets) {
348 		kfree(ret);
349 		return NULL;
350 	}
351 	ret->hash_buckets = buckets;
352 	ret->hash_shift = shift;
353 	for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
354 		neigh_get_hash_rnd(&ret->hash_rnd[i]);
355 	return ret;
356 }
357 
358 static void neigh_hash_free_rcu(struct rcu_head *head)
359 {
360 	struct neigh_hash_table *nht = container_of(head,
361 						    struct neigh_hash_table,
362 						    rcu);
363 	size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
364 	struct neighbour __rcu **buckets = nht->hash_buckets;
365 
366 	if (size <= PAGE_SIZE)
367 		kfree(buckets);
368 	else
369 		free_pages((unsigned long)buckets, get_order(size));
370 	kfree(nht);
371 }
372 
373 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
374 						unsigned long new_shift)
375 {
376 	unsigned int i, hash;
377 	struct neigh_hash_table *new_nht, *old_nht;
378 
379 	NEIGH_CACHE_STAT_INC(tbl, hash_grows);
380 
381 	old_nht = rcu_dereference_protected(tbl->nht,
382 					    lockdep_is_held(&tbl->lock));
383 	new_nht = neigh_hash_alloc(new_shift);
384 	if (!new_nht)
385 		return old_nht;
386 
387 	for (i = 0; i < (1 << old_nht->hash_shift); i++) {
388 		struct neighbour *n, *next;
389 
390 		for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
391 						   lockdep_is_held(&tbl->lock));
392 		     n != NULL;
393 		     n = next) {
394 			hash = tbl->hash(n->primary_key, n->dev,
395 					 new_nht->hash_rnd);
396 
397 			hash >>= (32 - new_nht->hash_shift);
398 			next = rcu_dereference_protected(n->next,
399 						lockdep_is_held(&tbl->lock));
400 
401 			rcu_assign_pointer(n->next,
402 					   rcu_dereference_protected(
403 						new_nht->hash_buckets[hash],
404 						lockdep_is_held(&tbl->lock)));
405 			rcu_assign_pointer(new_nht->hash_buckets[hash], n);
406 		}
407 	}
408 
409 	rcu_assign_pointer(tbl->nht, new_nht);
410 	call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
411 	return new_nht;
412 }
413 
414 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
415 			       struct net_device *dev)
416 {
417 	struct neighbour *n;
418 	int key_len = tbl->key_len;
419 	u32 hash_val;
420 	struct neigh_hash_table *nht;
421 
422 	NEIGH_CACHE_STAT_INC(tbl, lookups);
423 
424 	rcu_read_lock_bh();
425 	nht = rcu_dereference_bh(tbl->nht);
426 	hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
427 
428 	for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
429 	     n != NULL;
430 	     n = rcu_dereference_bh(n->next)) {
431 		if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
432 			if (!atomic_inc_not_zero(&n->refcnt))
433 				n = NULL;
434 			NEIGH_CACHE_STAT_INC(tbl, hits);
435 			break;
436 		}
437 	}
438 
439 	rcu_read_unlock_bh();
440 	return n;
441 }
442 EXPORT_SYMBOL(neigh_lookup);
443 
444 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
445 				     const void *pkey)
446 {
447 	struct neighbour *n;
448 	int key_len = tbl->key_len;
449 	u32 hash_val;
450 	struct neigh_hash_table *nht;
451 
452 	NEIGH_CACHE_STAT_INC(tbl, lookups);
453 
454 	rcu_read_lock_bh();
455 	nht = rcu_dereference_bh(tbl->nht);
456 	hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
457 
458 	for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
459 	     n != NULL;
460 	     n = rcu_dereference_bh(n->next)) {
461 		if (!memcmp(n->primary_key, pkey, key_len) &&
462 		    net_eq(dev_net(n->dev), net)) {
463 			if (!atomic_inc_not_zero(&n->refcnt))
464 				n = NULL;
465 			NEIGH_CACHE_STAT_INC(tbl, hits);
466 			break;
467 		}
468 	}
469 
470 	rcu_read_unlock_bh();
471 	return n;
472 }
473 EXPORT_SYMBOL(neigh_lookup_nodev);
474 
475 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
476 			       struct net_device *dev)
477 {
478 	u32 hash_val;
479 	int key_len = tbl->key_len;
480 	int error;
481 	struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);
482 	struct neigh_hash_table *nht;
483 
484 	if (!n) {
485 		rc = ERR_PTR(-ENOBUFS);
486 		goto out;
487 	}
488 
489 	memcpy(n->primary_key, pkey, key_len);
490 	n->dev = dev;
491 	dev_hold(dev);
492 
493 	/* Protocol specific setup. */
494 	if (tbl->constructor &&	(error = tbl->constructor(n)) < 0) {
495 		rc = ERR_PTR(error);
496 		goto out_neigh_release;
497 	}
498 
499 	if (dev->netdev_ops->ndo_neigh_construct) {
500 		error = dev->netdev_ops->ndo_neigh_construct(n);
501 		if (error < 0) {
502 			rc = ERR_PTR(error);
503 			goto out_neigh_release;
504 		}
505 	}
506 
507 	/* Device specific setup. */
508 	if (n->parms->neigh_setup &&
509 	    (error = n->parms->neigh_setup(n)) < 0) {
510 		rc = ERR_PTR(error);
511 		goto out_neigh_release;
512 	}
513 
514 	n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
515 
516 	write_lock_bh(&tbl->lock);
517 	nht = rcu_dereference_protected(tbl->nht,
518 					lockdep_is_held(&tbl->lock));
519 
520 	if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
521 		nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
522 
523 	hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
524 
525 	if (n->parms->dead) {
526 		rc = ERR_PTR(-EINVAL);
527 		goto out_tbl_unlock;
528 	}
529 
530 	for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
531 					    lockdep_is_held(&tbl->lock));
532 	     n1 != NULL;
533 	     n1 = rcu_dereference_protected(n1->next,
534 			lockdep_is_held(&tbl->lock))) {
535 		if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
536 			neigh_hold(n1);
537 			rc = n1;
538 			goto out_tbl_unlock;
539 		}
540 	}
541 
542 	n->dead = 0;
543 	neigh_hold(n);
544 	rcu_assign_pointer(n->next,
545 			   rcu_dereference_protected(nht->hash_buckets[hash_val],
546 						     lockdep_is_held(&tbl->lock)));
547 	rcu_assign_pointer(nht->hash_buckets[hash_val], n);
548 	write_unlock_bh(&tbl->lock);
549 	NEIGH_PRINTK2("neigh %p is created.\n", n);
550 	rc = n;
551 out:
552 	return rc;
553 out_tbl_unlock:
554 	write_unlock_bh(&tbl->lock);
555 out_neigh_release:
556 	neigh_release(n);
557 	goto out;
558 }
559 EXPORT_SYMBOL(neigh_create);
560 
561 static u32 pneigh_hash(const void *pkey, int key_len)
562 {
563 	u32 hash_val = *(u32 *)(pkey + key_len - 4);
564 	hash_val ^= (hash_val >> 16);
565 	hash_val ^= hash_val >> 8;
566 	hash_val ^= hash_val >> 4;
567 	hash_val &= PNEIGH_HASHMASK;
568 	return hash_val;
569 }
570 
571 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
572 					      struct net *net,
573 					      const void *pkey,
574 					      int key_len,
575 					      struct net_device *dev)
576 {
577 	while (n) {
578 		if (!memcmp(n->key, pkey, key_len) &&
579 		    net_eq(pneigh_net(n), net) &&
580 		    (n->dev == dev || !n->dev))
581 			return n;
582 		n = n->next;
583 	}
584 	return NULL;
585 }
586 
587 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
588 		struct net *net, const void *pkey, struct net_device *dev)
589 {
590 	int key_len = tbl->key_len;
591 	u32 hash_val = pneigh_hash(pkey, key_len);
592 
593 	return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
594 				 net, pkey, key_len, dev);
595 }
596 EXPORT_SYMBOL_GPL(__pneigh_lookup);
597 
598 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
599 				    struct net *net, const void *pkey,
600 				    struct net_device *dev, int creat)
601 {
602 	struct pneigh_entry *n;
603 	int key_len = tbl->key_len;
604 	u32 hash_val = pneigh_hash(pkey, key_len);
605 
606 	read_lock_bh(&tbl->lock);
607 	n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
608 			      net, pkey, key_len, dev);
609 	read_unlock_bh(&tbl->lock);
610 
611 	if (n || !creat)
612 		goto out;
613 
614 	ASSERT_RTNL();
615 
616 	n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
617 	if (!n)
618 		goto out;
619 
620 	write_pnet(&n->net, hold_net(net));
621 	memcpy(n->key, pkey, key_len);
622 	n->dev = dev;
623 	if (dev)
624 		dev_hold(dev);
625 
626 	if (tbl->pconstructor && tbl->pconstructor(n)) {
627 		if (dev)
628 			dev_put(dev);
629 		release_net(net);
630 		kfree(n);
631 		n = NULL;
632 		goto out;
633 	}
634 
635 	write_lock_bh(&tbl->lock);
636 	n->next = tbl->phash_buckets[hash_val];
637 	tbl->phash_buckets[hash_val] = n;
638 	write_unlock_bh(&tbl->lock);
639 out:
640 	return n;
641 }
642 EXPORT_SYMBOL(pneigh_lookup);
643 
644 
645 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
646 		  struct net_device *dev)
647 {
648 	struct pneigh_entry *n, **np;
649 	int key_len = tbl->key_len;
650 	u32 hash_val = pneigh_hash(pkey, key_len);
651 
652 	write_lock_bh(&tbl->lock);
653 	for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
654 	     np = &n->next) {
655 		if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
656 		    net_eq(pneigh_net(n), net)) {
657 			*np = n->next;
658 			write_unlock_bh(&tbl->lock);
659 			if (tbl->pdestructor)
660 				tbl->pdestructor(n);
661 			if (n->dev)
662 				dev_put(n->dev);
663 			release_net(pneigh_net(n));
664 			kfree(n);
665 			return 0;
666 		}
667 	}
668 	write_unlock_bh(&tbl->lock);
669 	return -ENOENT;
670 }
671 
672 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
673 {
674 	struct pneigh_entry *n, **np;
675 	u32 h;
676 
677 	for (h = 0; h <= PNEIGH_HASHMASK; h++) {
678 		np = &tbl->phash_buckets[h];
679 		while ((n = *np) != NULL) {
680 			if (!dev || n->dev == dev) {
681 				*np = n->next;
682 				if (tbl->pdestructor)
683 					tbl->pdestructor(n);
684 				if (n->dev)
685 					dev_put(n->dev);
686 				release_net(pneigh_net(n));
687 				kfree(n);
688 				continue;
689 			}
690 			np = &n->next;
691 		}
692 	}
693 	return -ENOENT;
694 }
695 
696 static void neigh_parms_destroy(struct neigh_parms *parms);
697 
698 static inline void neigh_parms_put(struct neigh_parms *parms)
699 {
700 	if (atomic_dec_and_test(&parms->refcnt))
701 		neigh_parms_destroy(parms);
702 }
703 
704 /*
705  *	neighbour must already be out of the table;
706  *
707  */
708 void neigh_destroy(struct neighbour *neigh)
709 {
710 	struct net_device *dev = neigh->dev;
711 
712 	NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
713 
714 	if (!neigh->dead) {
715 		printk(KERN_WARNING
716 		       "Destroying alive neighbour %p\n", neigh);
717 		dump_stack();
718 		return;
719 	}
720 
721 	if (neigh_del_timer(neigh))
722 		printk(KERN_WARNING "Impossible event.\n");
723 
724 	skb_queue_purge(&neigh->arp_queue);
725 	neigh->arp_queue_len_bytes = 0;
726 
727 	if (dev->netdev_ops->ndo_neigh_destroy)
728 		dev->netdev_ops->ndo_neigh_destroy(neigh);
729 
730 	dev_put(dev);
731 	neigh_parms_put(neigh->parms);
732 
733 	NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
734 
735 	atomic_dec(&neigh->tbl->entries);
736 	kfree_rcu(neigh, rcu);
737 }
738 EXPORT_SYMBOL(neigh_destroy);
739 
740 /* Neighbour state is suspicious;
741    disable fast path.
742 
743    Called with write_locked neigh.
744  */
745 static void neigh_suspect(struct neighbour *neigh)
746 {
747 	NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
748 
749 	neigh->output = neigh->ops->output;
750 }
751 
752 /* Neighbour state is OK;
753    enable fast path.
754 
755    Called with write_locked neigh.
756  */
757 static void neigh_connect(struct neighbour *neigh)
758 {
759 	NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
760 
761 	neigh->output = neigh->ops->connected_output;
762 }
763 
764 static void neigh_periodic_work(struct work_struct *work)
765 {
766 	struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
767 	struct neighbour *n;
768 	struct neighbour __rcu **np;
769 	unsigned int i;
770 	struct neigh_hash_table *nht;
771 
772 	NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
773 
774 	write_lock_bh(&tbl->lock);
775 	nht = rcu_dereference_protected(tbl->nht,
776 					lockdep_is_held(&tbl->lock));
777 
778 	/*
779 	 *	periodically recompute ReachableTime from random function
780 	 */
781 
782 	if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
783 		struct neigh_parms *p;
784 		tbl->last_rand = jiffies;
785 		for (p = &tbl->parms; p; p = p->next)
786 			p->reachable_time =
787 				neigh_rand_reach_time(p->base_reachable_time);
788 	}
789 
790 	for (i = 0 ; i < (1 << nht->hash_shift); i++) {
791 		np = &nht->hash_buckets[i];
792 
793 		while ((n = rcu_dereference_protected(*np,
794 				lockdep_is_held(&tbl->lock))) != NULL) {
795 			unsigned int state;
796 
797 			write_lock(&n->lock);
798 
799 			state = n->nud_state;
800 			if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
801 				write_unlock(&n->lock);
802 				goto next_elt;
803 			}
804 
805 			if (time_before(n->used, n->confirmed))
806 				n->used = n->confirmed;
807 
808 			if (atomic_read(&n->refcnt) == 1 &&
809 			    (state == NUD_FAILED ||
810 			     time_after(jiffies, n->used + n->parms->gc_staletime))) {
811 				*np = n->next;
812 				n->dead = 1;
813 				write_unlock(&n->lock);
814 				neigh_cleanup_and_release(n);
815 				continue;
816 			}
817 			write_unlock(&n->lock);
818 
819 next_elt:
820 			np = &n->next;
821 		}
822 		/*
823 		 * It's fine to release lock here, even if hash table
824 		 * grows while we are preempted.
825 		 */
826 		write_unlock_bh(&tbl->lock);
827 		cond_resched();
828 		write_lock_bh(&tbl->lock);
829 	}
830 	/* Cycle through all hash buckets every base_reachable_time/2 ticks.
831 	 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
832 	 * base_reachable_time.
833 	 */
834 	schedule_delayed_work(&tbl->gc_work,
835 			      tbl->parms.base_reachable_time >> 1);
836 	write_unlock_bh(&tbl->lock);
837 }
838 
839 static __inline__ int neigh_max_probes(struct neighbour *n)
840 {
841 	struct neigh_parms *p = n->parms;
842 	return (n->nud_state & NUD_PROBE) ?
843 		p->ucast_probes :
844 		p->ucast_probes + p->app_probes + p->mcast_probes;
845 }
846 
847 static void neigh_invalidate(struct neighbour *neigh)
848 	__releases(neigh->lock)
849 	__acquires(neigh->lock)
850 {
851 	struct sk_buff *skb;
852 
853 	NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
854 	NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
855 	neigh->updated = jiffies;
856 
857 	/* It is very thin place. report_unreachable is very complicated
858 	   routine. Particularly, it can hit the same neighbour entry!
859 
860 	   So that, we try to be accurate and avoid dead loop. --ANK
861 	 */
862 	while (neigh->nud_state == NUD_FAILED &&
863 	       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
864 		write_unlock(&neigh->lock);
865 		neigh->ops->error_report(neigh, skb);
866 		write_lock(&neigh->lock);
867 	}
868 	skb_queue_purge(&neigh->arp_queue);
869 	neigh->arp_queue_len_bytes = 0;
870 }
871 
872 static void neigh_probe(struct neighbour *neigh)
873 	__releases(neigh->lock)
874 {
875 	struct sk_buff *skb = skb_peek(&neigh->arp_queue);
876 	/* keep skb alive even if arp_queue overflows */
877 	if (skb)
878 		skb = skb_copy(skb, GFP_ATOMIC);
879 	write_unlock(&neigh->lock);
880 	neigh->ops->solicit(neigh, skb);
881 	atomic_inc(&neigh->probes);
882 	kfree_skb(skb);
883 }
884 
885 /* Called when a timer expires for a neighbour entry. */
886 
887 static void neigh_timer_handler(unsigned long arg)
888 {
889 	unsigned long now, next;
890 	struct neighbour *neigh = (struct neighbour *)arg;
891 	unsigned state;
892 	int notify = 0;
893 
894 	write_lock(&neigh->lock);
895 
896 	state = neigh->nud_state;
897 	now = jiffies;
898 	next = now + HZ;
899 
900 	if (!(state & NUD_IN_TIMER))
901 		goto out;
902 
903 	if (state & NUD_REACHABLE) {
904 		if (time_before_eq(now,
905 				   neigh->confirmed + neigh->parms->reachable_time)) {
906 			NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
907 			next = neigh->confirmed + neigh->parms->reachable_time;
908 		} else if (time_before_eq(now,
909 					  neigh->used + neigh->parms->delay_probe_time)) {
910 			NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
911 			neigh->nud_state = NUD_DELAY;
912 			neigh->updated = jiffies;
913 			neigh_suspect(neigh);
914 			next = now + neigh->parms->delay_probe_time;
915 		} else {
916 			NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
917 			neigh->nud_state = NUD_STALE;
918 			neigh->updated = jiffies;
919 			neigh_suspect(neigh);
920 			notify = 1;
921 		}
922 	} else if (state & NUD_DELAY) {
923 		if (time_before_eq(now,
924 				   neigh->confirmed + neigh->parms->delay_probe_time)) {
925 			NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
926 			neigh->nud_state = NUD_REACHABLE;
927 			neigh->updated = jiffies;
928 			neigh_connect(neigh);
929 			notify = 1;
930 			next = neigh->confirmed + neigh->parms->reachable_time;
931 		} else {
932 			NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
933 			neigh->nud_state = NUD_PROBE;
934 			neigh->updated = jiffies;
935 			atomic_set(&neigh->probes, 0);
936 			next = now + neigh->parms->retrans_time;
937 		}
938 	} else {
939 		/* NUD_PROBE|NUD_INCOMPLETE */
940 		next = now + neigh->parms->retrans_time;
941 	}
942 
943 	if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
944 	    atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
945 		neigh->nud_state = NUD_FAILED;
946 		notify = 1;
947 		neigh_invalidate(neigh);
948 	}
949 
950 	if (neigh->nud_state & NUD_IN_TIMER) {
951 		if (time_before(next, jiffies + HZ/2))
952 			next = jiffies + HZ/2;
953 		if (!mod_timer(&neigh->timer, next))
954 			neigh_hold(neigh);
955 	}
956 	if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
957 		neigh_probe(neigh);
958 	} else {
959 out:
960 		write_unlock(&neigh->lock);
961 	}
962 
963 	if (notify)
964 		neigh_update_notify(neigh);
965 
966 	neigh_release(neigh);
967 }
968 
969 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
970 {
971 	int rc;
972 	bool immediate_probe = false;
973 
974 	write_lock_bh(&neigh->lock);
975 
976 	rc = 0;
977 	if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
978 		goto out_unlock_bh;
979 
980 	if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
981 		if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
982 			unsigned long next, now = jiffies;
983 
984 			atomic_set(&neigh->probes, neigh->parms->ucast_probes);
985 			neigh->nud_state     = NUD_INCOMPLETE;
986 			neigh->updated = now;
987 			next = now + max(neigh->parms->retrans_time, HZ/2);
988 			neigh_add_timer(neigh, next);
989 			immediate_probe = true;
990 		} else {
991 			neigh->nud_state = NUD_FAILED;
992 			neigh->updated = jiffies;
993 			write_unlock_bh(&neigh->lock);
994 
995 			kfree_skb(skb);
996 			return 1;
997 		}
998 	} else if (neigh->nud_state & NUD_STALE) {
999 		NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
1000 		neigh->nud_state = NUD_DELAY;
1001 		neigh->updated = jiffies;
1002 		neigh_add_timer(neigh,
1003 				jiffies + neigh->parms->delay_probe_time);
1004 	}
1005 
1006 	if (neigh->nud_state == NUD_INCOMPLETE) {
1007 		if (skb) {
1008 			while (neigh->arp_queue_len_bytes + skb->truesize >
1009 			       neigh->parms->queue_len_bytes) {
1010 				struct sk_buff *buff;
1011 
1012 				buff = __skb_dequeue(&neigh->arp_queue);
1013 				if (!buff)
1014 					break;
1015 				neigh->arp_queue_len_bytes -= buff->truesize;
1016 				kfree_skb(buff);
1017 				NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1018 			}
1019 			skb_dst_force(skb);
1020 			__skb_queue_tail(&neigh->arp_queue, skb);
1021 			neigh->arp_queue_len_bytes += skb->truesize;
1022 		}
1023 		rc = 1;
1024 	}
1025 out_unlock_bh:
1026 	if (immediate_probe)
1027 		neigh_probe(neigh);
1028 	else
1029 		write_unlock(&neigh->lock);
1030 	local_bh_enable();
1031 	return rc;
1032 }
1033 EXPORT_SYMBOL(__neigh_event_send);
1034 
1035 static void neigh_update_hhs(struct neighbour *neigh)
1036 {
1037 	struct hh_cache *hh;
1038 	void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1039 		= NULL;
1040 
1041 	if (neigh->dev->header_ops)
1042 		update = neigh->dev->header_ops->cache_update;
1043 
1044 	if (update) {
1045 		hh = &neigh->hh;
1046 		if (hh->hh_len) {
1047 			write_seqlock_bh(&hh->hh_lock);
1048 			update(hh, neigh->dev, neigh->ha);
1049 			write_sequnlock_bh(&hh->hh_lock);
1050 		}
1051 	}
1052 }
1053 
1054 
1055 
1056 /* Generic update routine.
1057    -- lladdr is new lladdr or NULL, if it is not supplied.
1058    -- new    is new state.
1059    -- flags
1060 	NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1061 				if it is different.
1062 	NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1063 				lladdr instead of overriding it
1064 				if it is different.
1065 				It also allows to retain current state
1066 				if lladdr is unchanged.
1067 	NEIGH_UPDATE_F_ADMIN	means that the change is administrative.
1068 
1069 	NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1070 				NTF_ROUTER flag.
1071 	NEIGH_UPDATE_F_ISROUTER	indicates if the neighbour is known as
1072 				a router.
1073 
1074    Caller MUST hold reference count on the entry.
1075  */
1076 
1077 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1078 		 u32 flags)
1079 {
1080 	u8 old;
1081 	int err;
1082 	int notify = 0;
1083 	struct net_device *dev;
1084 	int update_isrouter = 0;
1085 
1086 	write_lock_bh(&neigh->lock);
1087 
1088 	dev    = neigh->dev;
1089 	old    = neigh->nud_state;
1090 	err    = -EPERM;
1091 
1092 	if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1093 	    (old & (NUD_NOARP | NUD_PERMANENT)))
1094 		goto out;
1095 
1096 	if (!(new & NUD_VALID)) {
1097 		neigh_del_timer(neigh);
1098 		if (old & NUD_CONNECTED)
1099 			neigh_suspect(neigh);
1100 		neigh->nud_state = new;
1101 		err = 0;
1102 		notify = old & NUD_VALID;
1103 		if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1104 		    (new & NUD_FAILED)) {
1105 			neigh_invalidate(neigh);
1106 			notify = 1;
1107 		}
1108 		goto out;
1109 	}
1110 
1111 	/* Compare new lladdr with cached one */
1112 	if (!dev->addr_len) {
1113 		/* First case: device needs no address. */
1114 		lladdr = neigh->ha;
1115 	} else if (lladdr) {
1116 		/* The second case: if something is already cached
1117 		   and a new address is proposed:
1118 		   - compare new & old
1119 		   - if they are different, check override flag
1120 		 */
1121 		if ((old & NUD_VALID) &&
1122 		    !memcmp(lladdr, neigh->ha, dev->addr_len))
1123 			lladdr = neigh->ha;
1124 	} else {
1125 		/* No address is supplied; if we know something,
1126 		   use it, otherwise discard the request.
1127 		 */
1128 		err = -EINVAL;
1129 		if (!(old & NUD_VALID))
1130 			goto out;
1131 		lladdr = neigh->ha;
1132 	}
1133 
1134 	if (new & NUD_CONNECTED)
1135 		neigh->confirmed = jiffies;
1136 	neigh->updated = jiffies;
1137 
1138 	/* If entry was valid and address is not changed,
1139 	   do not change entry state, if new one is STALE.
1140 	 */
1141 	err = 0;
1142 	update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1143 	if (old & NUD_VALID) {
1144 		if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1145 			update_isrouter = 0;
1146 			if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1147 			    (old & NUD_CONNECTED)) {
1148 				lladdr = neigh->ha;
1149 				new = NUD_STALE;
1150 			} else
1151 				goto out;
1152 		} else {
1153 			if (lladdr == neigh->ha && new == NUD_STALE &&
1154 			    ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1155 			     (old & NUD_CONNECTED))
1156 			    )
1157 				new = old;
1158 		}
1159 	}
1160 
1161 	if (new != old) {
1162 		neigh_del_timer(neigh);
1163 		if (new & NUD_IN_TIMER)
1164 			neigh_add_timer(neigh, (jiffies +
1165 						((new & NUD_REACHABLE) ?
1166 						 neigh->parms->reachable_time :
1167 						 0)));
1168 		neigh->nud_state = new;
1169 	}
1170 
1171 	if (lladdr != neigh->ha) {
1172 		write_seqlock(&neigh->ha_lock);
1173 		memcpy(&neigh->ha, lladdr, dev->addr_len);
1174 		write_sequnlock(&neigh->ha_lock);
1175 		neigh_update_hhs(neigh);
1176 		if (!(new & NUD_CONNECTED))
1177 			neigh->confirmed = jiffies -
1178 				      (neigh->parms->base_reachable_time << 1);
1179 		notify = 1;
1180 	}
1181 	if (new == old)
1182 		goto out;
1183 	if (new & NUD_CONNECTED)
1184 		neigh_connect(neigh);
1185 	else
1186 		neigh_suspect(neigh);
1187 	if (!(old & NUD_VALID)) {
1188 		struct sk_buff *skb;
1189 
1190 		/* Again: avoid dead loop if something went wrong */
1191 
1192 		while (neigh->nud_state & NUD_VALID &&
1193 		       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1194 			struct dst_entry *dst = skb_dst(skb);
1195 			struct neighbour *n2, *n1 = neigh;
1196 			write_unlock_bh(&neigh->lock);
1197 
1198 			rcu_read_lock();
1199 			/* On shaper/eql skb->dst->neighbour != neigh :( */
1200 			if (dst && (n2 = dst_get_neighbour_noref(dst)) != NULL)
1201 				n1 = n2;
1202 			n1->output(n1, skb);
1203 			rcu_read_unlock();
1204 
1205 			write_lock_bh(&neigh->lock);
1206 		}
1207 		skb_queue_purge(&neigh->arp_queue);
1208 		neigh->arp_queue_len_bytes = 0;
1209 	}
1210 out:
1211 	if (update_isrouter) {
1212 		neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1213 			(neigh->flags | NTF_ROUTER) :
1214 			(neigh->flags & ~NTF_ROUTER);
1215 	}
1216 	write_unlock_bh(&neigh->lock);
1217 
1218 	if (notify)
1219 		neigh_update_notify(neigh);
1220 
1221 	return err;
1222 }
1223 EXPORT_SYMBOL(neigh_update);
1224 
1225 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1226 				 u8 *lladdr, void *saddr,
1227 				 struct net_device *dev)
1228 {
1229 	struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1230 						 lladdr || !dev->addr_len);
1231 	if (neigh)
1232 		neigh_update(neigh, lladdr, NUD_STALE,
1233 			     NEIGH_UPDATE_F_OVERRIDE);
1234 	return neigh;
1235 }
1236 EXPORT_SYMBOL(neigh_event_ns);
1237 
1238 /* called with read_lock_bh(&n->lock); */
1239 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1240 {
1241 	struct net_device *dev = dst->dev;
1242 	__be16 prot = dst->ops->protocol;
1243 	struct hh_cache	*hh = &n->hh;
1244 
1245 	write_lock_bh(&n->lock);
1246 
1247 	/* Only one thread can come in here and initialize the
1248 	 * hh_cache entry.
1249 	 */
1250 	if (!hh->hh_len)
1251 		dev->header_ops->cache(n, hh, prot);
1252 
1253 	write_unlock_bh(&n->lock);
1254 }
1255 
1256 /* This function can be used in contexts, where only old dev_queue_xmit
1257  * worked, f.e. if you want to override normal output path (eql, shaper),
1258  * but resolution is not made yet.
1259  */
1260 
1261 int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1262 {
1263 	struct net_device *dev = skb->dev;
1264 
1265 	__skb_pull(skb, skb_network_offset(skb));
1266 
1267 	if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1268 			    skb->len) < 0 &&
1269 	    dev->header_ops->rebuild(skb))
1270 		return 0;
1271 
1272 	return dev_queue_xmit(skb);
1273 }
1274 EXPORT_SYMBOL(neigh_compat_output);
1275 
1276 /* Slow and careful. */
1277 
1278 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1279 {
1280 	struct dst_entry *dst = skb_dst(skb);
1281 	int rc = 0;
1282 
1283 	if (!dst)
1284 		goto discard;
1285 
1286 	__skb_pull(skb, skb_network_offset(skb));
1287 
1288 	if (!neigh_event_send(neigh, skb)) {
1289 		int err;
1290 		struct net_device *dev = neigh->dev;
1291 		unsigned int seq;
1292 
1293 		if (dev->header_ops->cache && !neigh->hh.hh_len)
1294 			neigh_hh_init(neigh, dst);
1295 
1296 		do {
1297 			seq = read_seqbegin(&neigh->ha_lock);
1298 			err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1299 					      neigh->ha, NULL, skb->len);
1300 		} while (read_seqretry(&neigh->ha_lock, seq));
1301 
1302 		if (err >= 0)
1303 			rc = dev_queue_xmit(skb);
1304 		else
1305 			goto out_kfree_skb;
1306 	}
1307 out:
1308 	return rc;
1309 discard:
1310 	NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1311 		      dst, neigh);
1312 out_kfree_skb:
1313 	rc = -EINVAL;
1314 	kfree_skb(skb);
1315 	goto out;
1316 }
1317 EXPORT_SYMBOL(neigh_resolve_output);
1318 
1319 /* As fast as possible without hh cache */
1320 
1321 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1322 {
1323 	struct net_device *dev = neigh->dev;
1324 	unsigned int seq;
1325 	int err;
1326 
1327 	__skb_pull(skb, skb_network_offset(skb));
1328 
1329 	do {
1330 		seq = read_seqbegin(&neigh->ha_lock);
1331 		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1332 				      neigh->ha, NULL, skb->len);
1333 	} while (read_seqretry(&neigh->ha_lock, seq));
1334 
1335 	if (err >= 0)
1336 		err = dev_queue_xmit(skb);
1337 	else {
1338 		err = -EINVAL;
1339 		kfree_skb(skb);
1340 	}
1341 	return err;
1342 }
1343 EXPORT_SYMBOL(neigh_connected_output);
1344 
1345 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1346 {
1347 	return dev_queue_xmit(skb);
1348 }
1349 EXPORT_SYMBOL(neigh_direct_output);
1350 
1351 static void neigh_proxy_process(unsigned long arg)
1352 {
1353 	struct neigh_table *tbl = (struct neigh_table *)arg;
1354 	long sched_next = 0;
1355 	unsigned long now = jiffies;
1356 	struct sk_buff *skb, *n;
1357 
1358 	spin_lock(&tbl->proxy_queue.lock);
1359 
1360 	skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1361 		long tdif = NEIGH_CB(skb)->sched_next - now;
1362 
1363 		if (tdif <= 0) {
1364 			struct net_device *dev = skb->dev;
1365 
1366 			__skb_unlink(skb, &tbl->proxy_queue);
1367 			if (tbl->proxy_redo && netif_running(dev)) {
1368 				rcu_read_lock();
1369 				tbl->proxy_redo(skb);
1370 				rcu_read_unlock();
1371 			} else {
1372 				kfree_skb(skb);
1373 			}
1374 
1375 			dev_put(dev);
1376 		} else if (!sched_next || tdif < sched_next)
1377 			sched_next = tdif;
1378 	}
1379 	del_timer(&tbl->proxy_timer);
1380 	if (sched_next)
1381 		mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1382 	spin_unlock(&tbl->proxy_queue.lock);
1383 }
1384 
1385 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1386 		    struct sk_buff *skb)
1387 {
1388 	unsigned long now = jiffies;
1389 	unsigned long sched_next = now + (net_random() % p->proxy_delay);
1390 
1391 	if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1392 		kfree_skb(skb);
1393 		return;
1394 	}
1395 
1396 	NEIGH_CB(skb)->sched_next = sched_next;
1397 	NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1398 
1399 	spin_lock(&tbl->proxy_queue.lock);
1400 	if (del_timer(&tbl->proxy_timer)) {
1401 		if (time_before(tbl->proxy_timer.expires, sched_next))
1402 			sched_next = tbl->proxy_timer.expires;
1403 	}
1404 	skb_dst_drop(skb);
1405 	dev_hold(skb->dev);
1406 	__skb_queue_tail(&tbl->proxy_queue, skb);
1407 	mod_timer(&tbl->proxy_timer, sched_next);
1408 	spin_unlock(&tbl->proxy_queue.lock);
1409 }
1410 EXPORT_SYMBOL(pneigh_enqueue);
1411 
1412 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1413 						      struct net *net, int ifindex)
1414 {
1415 	struct neigh_parms *p;
1416 
1417 	for (p = &tbl->parms; p; p = p->next) {
1418 		if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1419 		    (!p->dev && !ifindex))
1420 			return p;
1421 	}
1422 
1423 	return NULL;
1424 }
1425 
1426 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1427 				      struct neigh_table *tbl)
1428 {
1429 	struct neigh_parms *p, *ref;
1430 	struct net *net = dev_net(dev);
1431 	const struct net_device_ops *ops = dev->netdev_ops;
1432 
1433 	ref = lookup_neigh_parms(tbl, net, 0);
1434 	if (!ref)
1435 		return NULL;
1436 
1437 	p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1438 	if (p) {
1439 		p->tbl		  = tbl;
1440 		atomic_set(&p->refcnt, 1);
1441 		p->reachable_time =
1442 				neigh_rand_reach_time(p->base_reachable_time);
1443 
1444 		if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1445 			kfree(p);
1446 			return NULL;
1447 		}
1448 
1449 		dev_hold(dev);
1450 		p->dev = dev;
1451 		write_pnet(&p->net, hold_net(net));
1452 		p->sysctl_table = NULL;
1453 		write_lock_bh(&tbl->lock);
1454 		p->next		= tbl->parms.next;
1455 		tbl->parms.next = p;
1456 		write_unlock_bh(&tbl->lock);
1457 	}
1458 	return p;
1459 }
1460 EXPORT_SYMBOL(neigh_parms_alloc);
1461 
1462 static void neigh_rcu_free_parms(struct rcu_head *head)
1463 {
1464 	struct neigh_parms *parms =
1465 		container_of(head, struct neigh_parms, rcu_head);
1466 
1467 	neigh_parms_put(parms);
1468 }
1469 
1470 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1471 {
1472 	struct neigh_parms **p;
1473 
1474 	if (!parms || parms == &tbl->parms)
1475 		return;
1476 	write_lock_bh(&tbl->lock);
1477 	for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1478 		if (*p == parms) {
1479 			*p = parms->next;
1480 			parms->dead = 1;
1481 			write_unlock_bh(&tbl->lock);
1482 			if (parms->dev)
1483 				dev_put(parms->dev);
1484 			call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1485 			return;
1486 		}
1487 	}
1488 	write_unlock_bh(&tbl->lock);
1489 	NEIGH_PRINTK1("neigh_parms_release: not found\n");
1490 }
1491 EXPORT_SYMBOL(neigh_parms_release);
1492 
1493 static void neigh_parms_destroy(struct neigh_parms *parms)
1494 {
1495 	release_net(neigh_parms_net(parms));
1496 	kfree(parms);
1497 }
1498 
1499 static struct lock_class_key neigh_table_proxy_queue_class;
1500 
1501 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1502 {
1503 	unsigned long now = jiffies;
1504 	unsigned long phsize;
1505 
1506 	write_pnet(&tbl->parms.net, &init_net);
1507 	atomic_set(&tbl->parms.refcnt, 1);
1508 	tbl->parms.reachable_time =
1509 			  neigh_rand_reach_time(tbl->parms.base_reachable_time);
1510 
1511 	tbl->stats = alloc_percpu(struct neigh_statistics);
1512 	if (!tbl->stats)
1513 		panic("cannot create neighbour cache statistics");
1514 
1515 #ifdef CONFIG_PROC_FS
1516 	if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1517 			      &neigh_stat_seq_fops, tbl))
1518 		panic("cannot create neighbour proc dir entry");
1519 #endif
1520 
1521 	RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1522 
1523 	phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1524 	tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1525 
1526 	if (!tbl->nht || !tbl->phash_buckets)
1527 		panic("cannot allocate neighbour cache hashes");
1528 
1529 	rwlock_init(&tbl->lock);
1530 	INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1531 	schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1532 	setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1533 	skb_queue_head_init_class(&tbl->proxy_queue,
1534 			&neigh_table_proxy_queue_class);
1535 
1536 	tbl->last_flush = now;
1537 	tbl->last_rand	= now + tbl->parms.reachable_time * 20;
1538 }
1539 EXPORT_SYMBOL(neigh_table_init_no_netlink);
1540 
1541 void neigh_table_init(struct neigh_table *tbl)
1542 {
1543 	struct neigh_table *tmp;
1544 
1545 	neigh_table_init_no_netlink(tbl);
1546 	write_lock(&neigh_tbl_lock);
1547 	for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1548 		if (tmp->family == tbl->family)
1549 			break;
1550 	}
1551 	tbl->next	= neigh_tables;
1552 	neigh_tables	= tbl;
1553 	write_unlock(&neigh_tbl_lock);
1554 
1555 	if (unlikely(tmp)) {
1556 		printk(KERN_ERR "NEIGH: Registering multiple tables for "
1557 		       "family %d\n", tbl->family);
1558 		dump_stack();
1559 	}
1560 }
1561 EXPORT_SYMBOL(neigh_table_init);
1562 
1563 int neigh_table_clear(struct neigh_table *tbl)
1564 {
1565 	struct neigh_table **tp;
1566 
1567 	/* It is not clean... Fix it to unload IPv6 module safely */
1568 	cancel_delayed_work_sync(&tbl->gc_work);
1569 	del_timer_sync(&tbl->proxy_timer);
1570 	pneigh_queue_purge(&tbl->proxy_queue);
1571 	neigh_ifdown(tbl, NULL);
1572 	if (atomic_read(&tbl->entries))
1573 		printk(KERN_CRIT "neighbour leakage\n");
1574 	write_lock(&neigh_tbl_lock);
1575 	for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1576 		if (*tp == tbl) {
1577 			*tp = tbl->next;
1578 			break;
1579 		}
1580 	}
1581 	write_unlock(&neigh_tbl_lock);
1582 
1583 	call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1584 		 neigh_hash_free_rcu);
1585 	tbl->nht = NULL;
1586 
1587 	kfree(tbl->phash_buckets);
1588 	tbl->phash_buckets = NULL;
1589 
1590 	remove_proc_entry(tbl->id, init_net.proc_net_stat);
1591 
1592 	free_percpu(tbl->stats);
1593 	tbl->stats = NULL;
1594 
1595 	return 0;
1596 }
1597 EXPORT_SYMBOL(neigh_table_clear);
1598 
1599 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1600 {
1601 	struct net *net = sock_net(skb->sk);
1602 	struct ndmsg *ndm;
1603 	struct nlattr *dst_attr;
1604 	struct neigh_table *tbl;
1605 	struct net_device *dev = NULL;
1606 	int err = -EINVAL;
1607 
1608 	ASSERT_RTNL();
1609 	if (nlmsg_len(nlh) < sizeof(*ndm))
1610 		goto out;
1611 
1612 	dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1613 	if (dst_attr == NULL)
1614 		goto out;
1615 
1616 	ndm = nlmsg_data(nlh);
1617 	if (ndm->ndm_ifindex) {
1618 		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1619 		if (dev == NULL) {
1620 			err = -ENODEV;
1621 			goto out;
1622 		}
1623 	}
1624 
1625 	read_lock(&neigh_tbl_lock);
1626 	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1627 		struct neighbour *neigh;
1628 
1629 		if (tbl->family != ndm->ndm_family)
1630 			continue;
1631 		read_unlock(&neigh_tbl_lock);
1632 
1633 		if (nla_len(dst_attr) < tbl->key_len)
1634 			goto out;
1635 
1636 		if (ndm->ndm_flags & NTF_PROXY) {
1637 			err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1638 			goto out;
1639 		}
1640 
1641 		if (dev == NULL)
1642 			goto out;
1643 
1644 		neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1645 		if (neigh == NULL) {
1646 			err = -ENOENT;
1647 			goto out;
1648 		}
1649 
1650 		err = neigh_update(neigh, NULL, NUD_FAILED,
1651 				   NEIGH_UPDATE_F_OVERRIDE |
1652 				   NEIGH_UPDATE_F_ADMIN);
1653 		neigh_release(neigh);
1654 		goto out;
1655 	}
1656 	read_unlock(&neigh_tbl_lock);
1657 	err = -EAFNOSUPPORT;
1658 
1659 out:
1660 	return err;
1661 }
1662 
1663 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1664 {
1665 	struct net *net = sock_net(skb->sk);
1666 	struct ndmsg *ndm;
1667 	struct nlattr *tb[NDA_MAX+1];
1668 	struct neigh_table *tbl;
1669 	struct net_device *dev = NULL;
1670 	int err;
1671 
1672 	ASSERT_RTNL();
1673 	err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1674 	if (err < 0)
1675 		goto out;
1676 
1677 	err = -EINVAL;
1678 	if (tb[NDA_DST] == NULL)
1679 		goto out;
1680 
1681 	ndm = nlmsg_data(nlh);
1682 	if (ndm->ndm_ifindex) {
1683 		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1684 		if (dev == NULL) {
1685 			err = -ENODEV;
1686 			goto out;
1687 		}
1688 
1689 		if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1690 			goto out;
1691 	}
1692 
1693 	read_lock(&neigh_tbl_lock);
1694 	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1695 		int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1696 		struct neighbour *neigh;
1697 		void *dst, *lladdr;
1698 
1699 		if (tbl->family != ndm->ndm_family)
1700 			continue;
1701 		read_unlock(&neigh_tbl_lock);
1702 
1703 		if (nla_len(tb[NDA_DST]) < tbl->key_len)
1704 			goto out;
1705 		dst = nla_data(tb[NDA_DST]);
1706 		lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1707 
1708 		if (ndm->ndm_flags & NTF_PROXY) {
1709 			struct pneigh_entry *pn;
1710 
1711 			err = -ENOBUFS;
1712 			pn = pneigh_lookup(tbl, net, dst, dev, 1);
1713 			if (pn) {
1714 				pn->flags = ndm->ndm_flags;
1715 				err = 0;
1716 			}
1717 			goto out;
1718 		}
1719 
1720 		if (dev == NULL)
1721 			goto out;
1722 
1723 		neigh = neigh_lookup(tbl, dst, dev);
1724 		if (neigh == NULL) {
1725 			if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1726 				err = -ENOENT;
1727 				goto out;
1728 			}
1729 
1730 			neigh = __neigh_lookup_errno(tbl, dst, dev);
1731 			if (IS_ERR(neigh)) {
1732 				err = PTR_ERR(neigh);
1733 				goto out;
1734 			}
1735 		} else {
1736 			if (nlh->nlmsg_flags & NLM_F_EXCL) {
1737 				err = -EEXIST;
1738 				neigh_release(neigh);
1739 				goto out;
1740 			}
1741 
1742 			if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1743 				flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1744 		}
1745 
1746 		if (ndm->ndm_flags & NTF_USE) {
1747 			neigh_event_send(neigh, NULL);
1748 			err = 0;
1749 		} else
1750 			err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1751 		neigh_release(neigh);
1752 		goto out;
1753 	}
1754 
1755 	read_unlock(&neigh_tbl_lock);
1756 	err = -EAFNOSUPPORT;
1757 out:
1758 	return err;
1759 }
1760 
1761 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1762 {
1763 	struct nlattr *nest;
1764 
1765 	nest = nla_nest_start(skb, NDTA_PARMS);
1766 	if (nest == NULL)
1767 		return -ENOBUFS;
1768 
1769 	if (parms->dev)
1770 		NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1771 
1772 	NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1773 	NLA_PUT_U32(skb, NDTPA_QUEUE_LENBYTES, parms->queue_len_bytes);
1774 	/* approximative value for deprecated QUEUE_LEN (in packets) */
1775 	NLA_PUT_U32(skb, NDTPA_QUEUE_LEN,
1776 		    DIV_ROUND_UP(parms->queue_len_bytes,
1777 				 SKB_TRUESIZE(ETH_FRAME_LEN)));
1778 	NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1779 	NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1780 	NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1781 	NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1782 	NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1783 	NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1784 		      parms->base_reachable_time);
1785 	NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1786 	NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1787 	NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1788 	NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1789 	NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1790 	NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1791 
1792 	return nla_nest_end(skb, nest);
1793 
1794 nla_put_failure:
1795 	nla_nest_cancel(skb, nest);
1796 	return -EMSGSIZE;
1797 }
1798 
1799 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1800 			      u32 pid, u32 seq, int type, int flags)
1801 {
1802 	struct nlmsghdr *nlh;
1803 	struct ndtmsg *ndtmsg;
1804 
1805 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1806 	if (nlh == NULL)
1807 		return -EMSGSIZE;
1808 
1809 	ndtmsg = nlmsg_data(nlh);
1810 
1811 	read_lock_bh(&tbl->lock);
1812 	ndtmsg->ndtm_family = tbl->family;
1813 	ndtmsg->ndtm_pad1   = 0;
1814 	ndtmsg->ndtm_pad2   = 0;
1815 
1816 	NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1817 	NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1818 	NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1819 	NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1820 	NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1821 
1822 	{
1823 		unsigned long now = jiffies;
1824 		unsigned int flush_delta = now - tbl->last_flush;
1825 		unsigned int rand_delta = now - tbl->last_rand;
1826 		struct neigh_hash_table *nht;
1827 		struct ndt_config ndc = {
1828 			.ndtc_key_len		= tbl->key_len,
1829 			.ndtc_entry_size	= tbl->entry_size,
1830 			.ndtc_entries		= atomic_read(&tbl->entries),
1831 			.ndtc_last_flush	= jiffies_to_msecs(flush_delta),
1832 			.ndtc_last_rand		= jiffies_to_msecs(rand_delta),
1833 			.ndtc_proxy_qlen	= tbl->proxy_queue.qlen,
1834 		};
1835 
1836 		rcu_read_lock_bh();
1837 		nht = rcu_dereference_bh(tbl->nht);
1838 		ndc.ndtc_hash_rnd = nht->hash_rnd[0];
1839 		ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1840 		rcu_read_unlock_bh();
1841 
1842 		NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1843 	}
1844 
1845 	{
1846 		int cpu;
1847 		struct ndt_stats ndst;
1848 
1849 		memset(&ndst, 0, sizeof(ndst));
1850 
1851 		for_each_possible_cpu(cpu) {
1852 			struct neigh_statistics	*st;
1853 
1854 			st = per_cpu_ptr(tbl->stats, cpu);
1855 			ndst.ndts_allocs		+= st->allocs;
1856 			ndst.ndts_destroys		+= st->destroys;
1857 			ndst.ndts_hash_grows		+= st->hash_grows;
1858 			ndst.ndts_res_failed		+= st->res_failed;
1859 			ndst.ndts_lookups		+= st->lookups;
1860 			ndst.ndts_hits			+= st->hits;
1861 			ndst.ndts_rcv_probes_mcast	+= st->rcv_probes_mcast;
1862 			ndst.ndts_rcv_probes_ucast	+= st->rcv_probes_ucast;
1863 			ndst.ndts_periodic_gc_runs	+= st->periodic_gc_runs;
1864 			ndst.ndts_forced_gc_runs	+= st->forced_gc_runs;
1865 		}
1866 
1867 		NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1868 	}
1869 
1870 	BUG_ON(tbl->parms.dev);
1871 	if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1872 		goto nla_put_failure;
1873 
1874 	read_unlock_bh(&tbl->lock);
1875 	return nlmsg_end(skb, nlh);
1876 
1877 nla_put_failure:
1878 	read_unlock_bh(&tbl->lock);
1879 	nlmsg_cancel(skb, nlh);
1880 	return -EMSGSIZE;
1881 }
1882 
1883 static int neightbl_fill_param_info(struct sk_buff *skb,
1884 				    struct neigh_table *tbl,
1885 				    struct neigh_parms *parms,
1886 				    u32 pid, u32 seq, int type,
1887 				    unsigned int flags)
1888 {
1889 	struct ndtmsg *ndtmsg;
1890 	struct nlmsghdr *nlh;
1891 
1892 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1893 	if (nlh == NULL)
1894 		return -EMSGSIZE;
1895 
1896 	ndtmsg = nlmsg_data(nlh);
1897 
1898 	read_lock_bh(&tbl->lock);
1899 	ndtmsg->ndtm_family = tbl->family;
1900 	ndtmsg->ndtm_pad1   = 0;
1901 	ndtmsg->ndtm_pad2   = 0;
1902 
1903 	if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1904 	    neightbl_fill_parms(skb, parms) < 0)
1905 		goto errout;
1906 
1907 	read_unlock_bh(&tbl->lock);
1908 	return nlmsg_end(skb, nlh);
1909 errout:
1910 	read_unlock_bh(&tbl->lock);
1911 	nlmsg_cancel(skb, nlh);
1912 	return -EMSGSIZE;
1913 }
1914 
1915 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1916 	[NDTA_NAME]		= { .type = NLA_STRING },
1917 	[NDTA_THRESH1]		= { .type = NLA_U32 },
1918 	[NDTA_THRESH2]		= { .type = NLA_U32 },
1919 	[NDTA_THRESH3]		= { .type = NLA_U32 },
1920 	[NDTA_GC_INTERVAL]	= { .type = NLA_U64 },
1921 	[NDTA_PARMS]		= { .type = NLA_NESTED },
1922 };
1923 
1924 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1925 	[NDTPA_IFINDEX]			= { .type = NLA_U32 },
1926 	[NDTPA_QUEUE_LEN]		= { .type = NLA_U32 },
1927 	[NDTPA_PROXY_QLEN]		= { .type = NLA_U32 },
1928 	[NDTPA_APP_PROBES]		= { .type = NLA_U32 },
1929 	[NDTPA_UCAST_PROBES]		= { .type = NLA_U32 },
1930 	[NDTPA_MCAST_PROBES]		= { .type = NLA_U32 },
1931 	[NDTPA_BASE_REACHABLE_TIME]	= { .type = NLA_U64 },
1932 	[NDTPA_GC_STALETIME]		= { .type = NLA_U64 },
1933 	[NDTPA_DELAY_PROBE_TIME]	= { .type = NLA_U64 },
1934 	[NDTPA_RETRANS_TIME]		= { .type = NLA_U64 },
1935 	[NDTPA_ANYCAST_DELAY]		= { .type = NLA_U64 },
1936 	[NDTPA_PROXY_DELAY]		= { .type = NLA_U64 },
1937 	[NDTPA_LOCKTIME]		= { .type = NLA_U64 },
1938 };
1939 
1940 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1941 {
1942 	struct net *net = sock_net(skb->sk);
1943 	struct neigh_table *tbl;
1944 	struct ndtmsg *ndtmsg;
1945 	struct nlattr *tb[NDTA_MAX+1];
1946 	int err;
1947 
1948 	err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1949 			  nl_neightbl_policy);
1950 	if (err < 0)
1951 		goto errout;
1952 
1953 	if (tb[NDTA_NAME] == NULL) {
1954 		err = -EINVAL;
1955 		goto errout;
1956 	}
1957 
1958 	ndtmsg = nlmsg_data(nlh);
1959 	read_lock(&neigh_tbl_lock);
1960 	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1961 		if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1962 			continue;
1963 
1964 		if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1965 			break;
1966 	}
1967 
1968 	if (tbl == NULL) {
1969 		err = -ENOENT;
1970 		goto errout_locked;
1971 	}
1972 
1973 	/*
1974 	 * We acquire tbl->lock to be nice to the periodic timers and
1975 	 * make sure they always see a consistent set of values.
1976 	 */
1977 	write_lock_bh(&tbl->lock);
1978 
1979 	if (tb[NDTA_PARMS]) {
1980 		struct nlattr *tbp[NDTPA_MAX+1];
1981 		struct neigh_parms *p;
1982 		int i, ifindex = 0;
1983 
1984 		err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1985 				       nl_ntbl_parm_policy);
1986 		if (err < 0)
1987 			goto errout_tbl_lock;
1988 
1989 		if (tbp[NDTPA_IFINDEX])
1990 			ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1991 
1992 		p = lookup_neigh_parms(tbl, net, ifindex);
1993 		if (p == NULL) {
1994 			err = -ENOENT;
1995 			goto errout_tbl_lock;
1996 		}
1997 
1998 		for (i = 1; i <= NDTPA_MAX; i++) {
1999 			if (tbp[i] == NULL)
2000 				continue;
2001 
2002 			switch (i) {
2003 			case NDTPA_QUEUE_LEN:
2004 				p->queue_len_bytes = nla_get_u32(tbp[i]) *
2005 						     SKB_TRUESIZE(ETH_FRAME_LEN);
2006 				break;
2007 			case NDTPA_QUEUE_LENBYTES:
2008 				p->queue_len_bytes = nla_get_u32(tbp[i]);
2009 				break;
2010 			case NDTPA_PROXY_QLEN:
2011 				p->proxy_qlen = nla_get_u32(tbp[i]);
2012 				break;
2013 			case NDTPA_APP_PROBES:
2014 				p->app_probes = nla_get_u32(tbp[i]);
2015 				break;
2016 			case NDTPA_UCAST_PROBES:
2017 				p->ucast_probes = nla_get_u32(tbp[i]);
2018 				break;
2019 			case NDTPA_MCAST_PROBES:
2020 				p->mcast_probes = nla_get_u32(tbp[i]);
2021 				break;
2022 			case NDTPA_BASE_REACHABLE_TIME:
2023 				p->base_reachable_time = nla_get_msecs(tbp[i]);
2024 				break;
2025 			case NDTPA_GC_STALETIME:
2026 				p->gc_staletime = nla_get_msecs(tbp[i]);
2027 				break;
2028 			case NDTPA_DELAY_PROBE_TIME:
2029 				p->delay_probe_time = nla_get_msecs(tbp[i]);
2030 				break;
2031 			case NDTPA_RETRANS_TIME:
2032 				p->retrans_time = nla_get_msecs(tbp[i]);
2033 				break;
2034 			case NDTPA_ANYCAST_DELAY:
2035 				p->anycast_delay = nla_get_msecs(tbp[i]);
2036 				break;
2037 			case NDTPA_PROXY_DELAY:
2038 				p->proxy_delay = nla_get_msecs(tbp[i]);
2039 				break;
2040 			case NDTPA_LOCKTIME:
2041 				p->locktime = nla_get_msecs(tbp[i]);
2042 				break;
2043 			}
2044 		}
2045 	}
2046 
2047 	if (tb[NDTA_THRESH1])
2048 		tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2049 
2050 	if (tb[NDTA_THRESH2])
2051 		tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2052 
2053 	if (tb[NDTA_THRESH3])
2054 		tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2055 
2056 	if (tb[NDTA_GC_INTERVAL])
2057 		tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2058 
2059 	err = 0;
2060 
2061 errout_tbl_lock:
2062 	write_unlock_bh(&tbl->lock);
2063 errout_locked:
2064 	read_unlock(&neigh_tbl_lock);
2065 errout:
2066 	return err;
2067 }
2068 
2069 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2070 {
2071 	struct net *net = sock_net(skb->sk);
2072 	int family, tidx, nidx = 0;
2073 	int tbl_skip = cb->args[0];
2074 	int neigh_skip = cb->args[1];
2075 	struct neigh_table *tbl;
2076 
2077 	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2078 
2079 	read_lock(&neigh_tbl_lock);
2080 	for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2081 		struct neigh_parms *p;
2082 
2083 		if (tidx < tbl_skip || (family && tbl->family != family))
2084 			continue;
2085 
2086 		if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2087 				       cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2088 				       NLM_F_MULTI) <= 0)
2089 			break;
2090 
2091 		for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2092 			if (!net_eq(neigh_parms_net(p), net))
2093 				continue;
2094 
2095 			if (nidx < neigh_skip)
2096 				goto next;
2097 
2098 			if (neightbl_fill_param_info(skb, tbl, p,
2099 						     NETLINK_CB(cb->skb).pid,
2100 						     cb->nlh->nlmsg_seq,
2101 						     RTM_NEWNEIGHTBL,
2102 						     NLM_F_MULTI) <= 0)
2103 				goto out;
2104 		next:
2105 			nidx++;
2106 		}
2107 
2108 		neigh_skip = 0;
2109 	}
2110 out:
2111 	read_unlock(&neigh_tbl_lock);
2112 	cb->args[0] = tidx;
2113 	cb->args[1] = nidx;
2114 
2115 	return skb->len;
2116 }
2117 
2118 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2119 			   u32 pid, u32 seq, int type, unsigned int flags)
2120 {
2121 	unsigned long now = jiffies;
2122 	struct nda_cacheinfo ci;
2123 	struct nlmsghdr *nlh;
2124 	struct ndmsg *ndm;
2125 
2126 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2127 	if (nlh == NULL)
2128 		return -EMSGSIZE;
2129 
2130 	ndm = nlmsg_data(nlh);
2131 	ndm->ndm_family	 = neigh->ops->family;
2132 	ndm->ndm_pad1    = 0;
2133 	ndm->ndm_pad2    = 0;
2134 	ndm->ndm_flags	 = neigh->flags;
2135 	ndm->ndm_type	 = neigh->type;
2136 	ndm->ndm_ifindex = neigh->dev->ifindex;
2137 
2138 	NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2139 
2140 	read_lock_bh(&neigh->lock);
2141 	ndm->ndm_state	 = neigh->nud_state;
2142 	if (neigh->nud_state & NUD_VALID) {
2143 		char haddr[MAX_ADDR_LEN];
2144 
2145 		neigh_ha_snapshot(haddr, neigh, neigh->dev);
2146 		if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2147 			read_unlock_bh(&neigh->lock);
2148 			goto nla_put_failure;
2149 		}
2150 	}
2151 
2152 	ci.ndm_used	 = jiffies_to_clock_t(now - neigh->used);
2153 	ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2154 	ci.ndm_updated	 = jiffies_to_clock_t(now - neigh->updated);
2155 	ci.ndm_refcnt	 = atomic_read(&neigh->refcnt) - 1;
2156 	read_unlock_bh(&neigh->lock);
2157 
2158 	NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2159 	NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2160 
2161 	return nlmsg_end(skb, nlh);
2162 
2163 nla_put_failure:
2164 	nlmsg_cancel(skb, nlh);
2165 	return -EMSGSIZE;
2166 }
2167 
2168 static void neigh_update_notify(struct neighbour *neigh)
2169 {
2170 	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2171 	__neigh_notify(neigh, RTM_NEWNEIGH, 0);
2172 }
2173 
2174 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2175 			    struct netlink_callback *cb)
2176 {
2177 	struct net *net = sock_net(skb->sk);
2178 	struct neighbour *n;
2179 	int rc, h, s_h = cb->args[1];
2180 	int idx, s_idx = idx = cb->args[2];
2181 	struct neigh_hash_table *nht;
2182 
2183 	rcu_read_lock_bh();
2184 	nht = rcu_dereference_bh(tbl->nht);
2185 
2186 	for (h = 0; h < (1 << nht->hash_shift); h++) {
2187 		if (h < s_h)
2188 			continue;
2189 		if (h > s_h)
2190 			s_idx = 0;
2191 		for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2192 		     n != NULL;
2193 		     n = rcu_dereference_bh(n->next)) {
2194 			if (!net_eq(dev_net(n->dev), net))
2195 				continue;
2196 			if (idx < s_idx)
2197 				goto next;
2198 			if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2199 					    cb->nlh->nlmsg_seq,
2200 					    RTM_NEWNEIGH,
2201 					    NLM_F_MULTI) <= 0) {
2202 				rc = -1;
2203 				goto out;
2204 			}
2205 next:
2206 			idx++;
2207 		}
2208 	}
2209 	rc = skb->len;
2210 out:
2211 	rcu_read_unlock_bh();
2212 	cb->args[1] = h;
2213 	cb->args[2] = idx;
2214 	return rc;
2215 }
2216 
2217 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2218 {
2219 	struct neigh_table *tbl;
2220 	int t, family, s_t;
2221 
2222 	read_lock(&neigh_tbl_lock);
2223 	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2224 	s_t = cb->args[0];
2225 
2226 	for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2227 		if (t < s_t || (family && tbl->family != family))
2228 			continue;
2229 		if (t > s_t)
2230 			memset(&cb->args[1], 0, sizeof(cb->args) -
2231 						sizeof(cb->args[0]));
2232 		if (neigh_dump_table(tbl, skb, cb) < 0)
2233 			break;
2234 	}
2235 	read_unlock(&neigh_tbl_lock);
2236 
2237 	cb->args[0] = t;
2238 	return skb->len;
2239 }
2240 
2241 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2242 {
2243 	int chain;
2244 	struct neigh_hash_table *nht;
2245 
2246 	rcu_read_lock_bh();
2247 	nht = rcu_dereference_bh(tbl->nht);
2248 
2249 	read_lock(&tbl->lock); /* avoid resizes */
2250 	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2251 		struct neighbour *n;
2252 
2253 		for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2254 		     n != NULL;
2255 		     n = rcu_dereference_bh(n->next))
2256 			cb(n, cookie);
2257 	}
2258 	read_unlock(&tbl->lock);
2259 	rcu_read_unlock_bh();
2260 }
2261 EXPORT_SYMBOL(neigh_for_each);
2262 
2263 /* The tbl->lock must be held as a writer and BH disabled. */
2264 void __neigh_for_each_release(struct neigh_table *tbl,
2265 			      int (*cb)(struct neighbour *))
2266 {
2267 	int chain;
2268 	struct neigh_hash_table *nht;
2269 
2270 	nht = rcu_dereference_protected(tbl->nht,
2271 					lockdep_is_held(&tbl->lock));
2272 	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2273 		struct neighbour *n;
2274 		struct neighbour __rcu **np;
2275 
2276 		np = &nht->hash_buckets[chain];
2277 		while ((n = rcu_dereference_protected(*np,
2278 					lockdep_is_held(&tbl->lock))) != NULL) {
2279 			int release;
2280 
2281 			write_lock(&n->lock);
2282 			release = cb(n);
2283 			if (release) {
2284 				rcu_assign_pointer(*np,
2285 					rcu_dereference_protected(n->next,
2286 						lockdep_is_held(&tbl->lock)));
2287 				n->dead = 1;
2288 			} else
2289 				np = &n->next;
2290 			write_unlock(&n->lock);
2291 			if (release)
2292 				neigh_cleanup_and_release(n);
2293 		}
2294 	}
2295 }
2296 EXPORT_SYMBOL(__neigh_for_each_release);
2297 
2298 #ifdef CONFIG_PROC_FS
2299 
2300 static struct neighbour *neigh_get_first(struct seq_file *seq)
2301 {
2302 	struct neigh_seq_state *state = seq->private;
2303 	struct net *net = seq_file_net(seq);
2304 	struct neigh_hash_table *nht = state->nht;
2305 	struct neighbour *n = NULL;
2306 	int bucket = state->bucket;
2307 
2308 	state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2309 	for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2310 		n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2311 
2312 		while (n) {
2313 			if (!net_eq(dev_net(n->dev), net))
2314 				goto next;
2315 			if (state->neigh_sub_iter) {
2316 				loff_t fakep = 0;
2317 				void *v;
2318 
2319 				v = state->neigh_sub_iter(state, n, &fakep);
2320 				if (!v)
2321 					goto next;
2322 			}
2323 			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2324 				break;
2325 			if (n->nud_state & ~NUD_NOARP)
2326 				break;
2327 next:
2328 			n = rcu_dereference_bh(n->next);
2329 		}
2330 
2331 		if (n)
2332 			break;
2333 	}
2334 	state->bucket = bucket;
2335 
2336 	return n;
2337 }
2338 
2339 static struct neighbour *neigh_get_next(struct seq_file *seq,
2340 					struct neighbour *n,
2341 					loff_t *pos)
2342 {
2343 	struct neigh_seq_state *state = seq->private;
2344 	struct net *net = seq_file_net(seq);
2345 	struct neigh_hash_table *nht = state->nht;
2346 
2347 	if (state->neigh_sub_iter) {
2348 		void *v = state->neigh_sub_iter(state, n, pos);
2349 		if (v)
2350 			return n;
2351 	}
2352 	n = rcu_dereference_bh(n->next);
2353 
2354 	while (1) {
2355 		while (n) {
2356 			if (!net_eq(dev_net(n->dev), net))
2357 				goto next;
2358 			if (state->neigh_sub_iter) {
2359 				void *v = state->neigh_sub_iter(state, n, pos);
2360 				if (v)
2361 					return n;
2362 				goto next;
2363 			}
2364 			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2365 				break;
2366 
2367 			if (n->nud_state & ~NUD_NOARP)
2368 				break;
2369 next:
2370 			n = rcu_dereference_bh(n->next);
2371 		}
2372 
2373 		if (n)
2374 			break;
2375 
2376 		if (++state->bucket >= (1 << nht->hash_shift))
2377 			break;
2378 
2379 		n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2380 	}
2381 
2382 	if (n && pos)
2383 		--(*pos);
2384 	return n;
2385 }
2386 
2387 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2388 {
2389 	struct neighbour *n = neigh_get_first(seq);
2390 
2391 	if (n) {
2392 		--(*pos);
2393 		while (*pos) {
2394 			n = neigh_get_next(seq, n, pos);
2395 			if (!n)
2396 				break;
2397 		}
2398 	}
2399 	return *pos ? NULL : n;
2400 }
2401 
2402 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2403 {
2404 	struct neigh_seq_state *state = seq->private;
2405 	struct net *net = seq_file_net(seq);
2406 	struct neigh_table *tbl = state->tbl;
2407 	struct pneigh_entry *pn = NULL;
2408 	int bucket = state->bucket;
2409 
2410 	state->flags |= NEIGH_SEQ_IS_PNEIGH;
2411 	for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2412 		pn = tbl->phash_buckets[bucket];
2413 		while (pn && !net_eq(pneigh_net(pn), net))
2414 			pn = pn->next;
2415 		if (pn)
2416 			break;
2417 	}
2418 	state->bucket = bucket;
2419 
2420 	return pn;
2421 }
2422 
2423 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2424 					    struct pneigh_entry *pn,
2425 					    loff_t *pos)
2426 {
2427 	struct neigh_seq_state *state = seq->private;
2428 	struct net *net = seq_file_net(seq);
2429 	struct neigh_table *tbl = state->tbl;
2430 
2431 	do {
2432 		pn = pn->next;
2433 	} while (pn && !net_eq(pneigh_net(pn), net));
2434 
2435 	while (!pn) {
2436 		if (++state->bucket > PNEIGH_HASHMASK)
2437 			break;
2438 		pn = tbl->phash_buckets[state->bucket];
2439 		while (pn && !net_eq(pneigh_net(pn), net))
2440 			pn = pn->next;
2441 		if (pn)
2442 			break;
2443 	}
2444 
2445 	if (pn && pos)
2446 		--(*pos);
2447 
2448 	return pn;
2449 }
2450 
2451 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2452 {
2453 	struct pneigh_entry *pn = pneigh_get_first(seq);
2454 
2455 	if (pn) {
2456 		--(*pos);
2457 		while (*pos) {
2458 			pn = pneigh_get_next(seq, pn, pos);
2459 			if (!pn)
2460 				break;
2461 		}
2462 	}
2463 	return *pos ? NULL : pn;
2464 }
2465 
2466 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2467 {
2468 	struct neigh_seq_state *state = seq->private;
2469 	void *rc;
2470 	loff_t idxpos = *pos;
2471 
2472 	rc = neigh_get_idx(seq, &idxpos);
2473 	if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2474 		rc = pneigh_get_idx(seq, &idxpos);
2475 
2476 	return rc;
2477 }
2478 
2479 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2480 	__acquires(rcu_bh)
2481 {
2482 	struct neigh_seq_state *state = seq->private;
2483 
2484 	state->tbl = tbl;
2485 	state->bucket = 0;
2486 	state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2487 
2488 	rcu_read_lock_bh();
2489 	state->nht = rcu_dereference_bh(tbl->nht);
2490 
2491 	return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2492 }
2493 EXPORT_SYMBOL(neigh_seq_start);
2494 
2495 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2496 {
2497 	struct neigh_seq_state *state;
2498 	void *rc;
2499 
2500 	if (v == SEQ_START_TOKEN) {
2501 		rc = neigh_get_first(seq);
2502 		goto out;
2503 	}
2504 
2505 	state = seq->private;
2506 	if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2507 		rc = neigh_get_next(seq, v, NULL);
2508 		if (rc)
2509 			goto out;
2510 		if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2511 			rc = pneigh_get_first(seq);
2512 	} else {
2513 		BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2514 		rc = pneigh_get_next(seq, v, NULL);
2515 	}
2516 out:
2517 	++(*pos);
2518 	return rc;
2519 }
2520 EXPORT_SYMBOL(neigh_seq_next);
2521 
2522 void neigh_seq_stop(struct seq_file *seq, void *v)
2523 	__releases(rcu_bh)
2524 {
2525 	rcu_read_unlock_bh();
2526 }
2527 EXPORT_SYMBOL(neigh_seq_stop);
2528 
2529 /* statistics via seq_file */
2530 
2531 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2532 {
2533 	struct neigh_table *tbl = seq->private;
2534 	int cpu;
2535 
2536 	if (*pos == 0)
2537 		return SEQ_START_TOKEN;
2538 
2539 	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2540 		if (!cpu_possible(cpu))
2541 			continue;
2542 		*pos = cpu+1;
2543 		return per_cpu_ptr(tbl->stats, cpu);
2544 	}
2545 	return NULL;
2546 }
2547 
2548 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2549 {
2550 	struct neigh_table *tbl = seq->private;
2551 	int cpu;
2552 
2553 	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2554 		if (!cpu_possible(cpu))
2555 			continue;
2556 		*pos = cpu+1;
2557 		return per_cpu_ptr(tbl->stats, cpu);
2558 	}
2559 	return NULL;
2560 }
2561 
2562 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2563 {
2564 
2565 }
2566 
2567 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2568 {
2569 	struct neigh_table *tbl = seq->private;
2570 	struct neigh_statistics *st = v;
2571 
2572 	if (v == SEQ_START_TOKEN) {
2573 		seq_printf(seq, "entries  allocs destroys hash_grows  lookups hits  res_failed  rcv_probes_mcast rcv_probes_ucast  periodic_gc_runs forced_gc_runs unresolved_discards\n");
2574 		return 0;
2575 	}
2576 
2577 	seq_printf(seq, "%08x  %08lx %08lx %08lx  %08lx %08lx  %08lx  "
2578 			"%08lx %08lx  %08lx %08lx %08lx\n",
2579 		   atomic_read(&tbl->entries),
2580 
2581 		   st->allocs,
2582 		   st->destroys,
2583 		   st->hash_grows,
2584 
2585 		   st->lookups,
2586 		   st->hits,
2587 
2588 		   st->res_failed,
2589 
2590 		   st->rcv_probes_mcast,
2591 		   st->rcv_probes_ucast,
2592 
2593 		   st->periodic_gc_runs,
2594 		   st->forced_gc_runs,
2595 		   st->unres_discards
2596 		   );
2597 
2598 	return 0;
2599 }
2600 
2601 static const struct seq_operations neigh_stat_seq_ops = {
2602 	.start	= neigh_stat_seq_start,
2603 	.next	= neigh_stat_seq_next,
2604 	.stop	= neigh_stat_seq_stop,
2605 	.show	= neigh_stat_seq_show,
2606 };
2607 
2608 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2609 {
2610 	int ret = seq_open(file, &neigh_stat_seq_ops);
2611 
2612 	if (!ret) {
2613 		struct seq_file *sf = file->private_data;
2614 		sf->private = PDE(inode)->data;
2615 	}
2616 	return ret;
2617 };
2618 
2619 static const struct file_operations neigh_stat_seq_fops = {
2620 	.owner	 = THIS_MODULE,
2621 	.open 	 = neigh_stat_seq_open,
2622 	.read	 = seq_read,
2623 	.llseek	 = seq_lseek,
2624 	.release = seq_release,
2625 };
2626 
2627 #endif /* CONFIG_PROC_FS */
2628 
2629 static inline size_t neigh_nlmsg_size(void)
2630 {
2631 	return NLMSG_ALIGN(sizeof(struct ndmsg))
2632 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2633 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2634 	       + nla_total_size(sizeof(struct nda_cacheinfo))
2635 	       + nla_total_size(4); /* NDA_PROBES */
2636 }
2637 
2638 static void __neigh_notify(struct neighbour *n, int type, int flags)
2639 {
2640 	struct net *net = dev_net(n->dev);
2641 	struct sk_buff *skb;
2642 	int err = -ENOBUFS;
2643 
2644 	skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2645 	if (skb == NULL)
2646 		goto errout;
2647 
2648 	err = neigh_fill_info(skb, n, 0, 0, type, flags);
2649 	if (err < 0) {
2650 		/* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2651 		WARN_ON(err == -EMSGSIZE);
2652 		kfree_skb(skb);
2653 		goto errout;
2654 	}
2655 	rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2656 	return;
2657 errout:
2658 	if (err < 0)
2659 		rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2660 }
2661 
2662 #ifdef CONFIG_ARPD
2663 void neigh_app_ns(struct neighbour *n)
2664 {
2665 	__neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2666 }
2667 EXPORT_SYMBOL(neigh_app_ns);
2668 #endif /* CONFIG_ARPD */
2669 
2670 #ifdef CONFIG_SYSCTL
2671 
2672 static int proc_unres_qlen(ctl_table *ctl, int write, void __user *buffer,
2673 			   size_t *lenp, loff_t *ppos)
2674 {
2675 	int size, ret;
2676 	ctl_table tmp = *ctl;
2677 
2678 	tmp.data = &size;
2679 	size = DIV_ROUND_UP(*(int *)ctl->data, SKB_TRUESIZE(ETH_FRAME_LEN));
2680 	ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
2681 	if (write && !ret)
2682 		*(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
2683 	return ret;
2684 }
2685 
2686 enum {
2687 	NEIGH_VAR_MCAST_PROBE,
2688 	NEIGH_VAR_UCAST_PROBE,
2689 	NEIGH_VAR_APP_PROBE,
2690 	NEIGH_VAR_RETRANS_TIME,
2691 	NEIGH_VAR_BASE_REACHABLE_TIME,
2692 	NEIGH_VAR_DELAY_PROBE_TIME,
2693 	NEIGH_VAR_GC_STALETIME,
2694 	NEIGH_VAR_QUEUE_LEN,
2695 	NEIGH_VAR_QUEUE_LEN_BYTES,
2696 	NEIGH_VAR_PROXY_QLEN,
2697 	NEIGH_VAR_ANYCAST_DELAY,
2698 	NEIGH_VAR_PROXY_DELAY,
2699 	NEIGH_VAR_LOCKTIME,
2700 	NEIGH_VAR_RETRANS_TIME_MS,
2701 	NEIGH_VAR_BASE_REACHABLE_TIME_MS,
2702 	NEIGH_VAR_GC_INTERVAL,
2703 	NEIGH_VAR_GC_THRESH1,
2704 	NEIGH_VAR_GC_THRESH2,
2705 	NEIGH_VAR_GC_THRESH3,
2706 	NEIGH_VAR_MAX
2707 };
2708 
2709 static struct neigh_sysctl_table {
2710 	struct ctl_table_header *sysctl_header;
2711 	struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
2712 	char *dev_name;
2713 } neigh_sysctl_template __read_mostly = {
2714 	.neigh_vars = {
2715 		[NEIGH_VAR_MCAST_PROBE] = {
2716 			.procname	= "mcast_solicit",
2717 			.maxlen		= sizeof(int),
2718 			.mode		= 0644,
2719 			.proc_handler	= proc_dointvec,
2720 		},
2721 		[NEIGH_VAR_UCAST_PROBE] = {
2722 			.procname	= "ucast_solicit",
2723 			.maxlen		= sizeof(int),
2724 			.mode		= 0644,
2725 			.proc_handler	= proc_dointvec,
2726 		},
2727 		[NEIGH_VAR_APP_PROBE] = {
2728 			.procname	= "app_solicit",
2729 			.maxlen		= sizeof(int),
2730 			.mode		= 0644,
2731 			.proc_handler	= proc_dointvec,
2732 		},
2733 		[NEIGH_VAR_RETRANS_TIME] = {
2734 			.procname	= "retrans_time",
2735 			.maxlen		= sizeof(int),
2736 			.mode		= 0644,
2737 			.proc_handler	= proc_dointvec_userhz_jiffies,
2738 		},
2739 		[NEIGH_VAR_BASE_REACHABLE_TIME] = {
2740 			.procname	= "base_reachable_time",
2741 			.maxlen		= sizeof(int),
2742 			.mode		= 0644,
2743 			.proc_handler	= proc_dointvec_jiffies,
2744 		},
2745 		[NEIGH_VAR_DELAY_PROBE_TIME] = {
2746 			.procname	= "delay_first_probe_time",
2747 			.maxlen		= sizeof(int),
2748 			.mode		= 0644,
2749 			.proc_handler	= proc_dointvec_jiffies,
2750 		},
2751 		[NEIGH_VAR_GC_STALETIME] = {
2752 			.procname	= "gc_stale_time",
2753 			.maxlen		= sizeof(int),
2754 			.mode		= 0644,
2755 			.proc_handler	= proc_dointvec_jiffies,
2756 		},
2757 		[NEIGH_VAR_QUEUE_LEN] = {
2758 			.procname	= "unres_qlen",
2759 			.maxlen		= sizeof(int),
2760 			.mode		= 0644,
2761 			.proc_handler	= proc_unres_qlen,
2762 		},
2763 		[NEIGH_VAR_QUEUE_LEN_BYTES] = {
2764 			.procname	= "unres_qlen_bytes",
2765 			.maxlen		= sizeof(int),
2766 			.mode		= 0644,
2767 			.proc_handler	= proc_dointvec,
2768 		},
2769 		[NEIGH_VAR_PROXY_QLEN] = {
2770 			.procname	= "proxy_qlen",
2771 			.maxlen		= sizeof(int),
2772 			.mode		= 0644,
2773 			.proc_handler	= proc_dointvec,
2774 		},
2775 		[NEIGH_VAR_ANYCAST_DELAY] = {
2776 			.procname	= "anycast_delay",
2777 			.maxlen		= sizeof(int),
2778 			.mode		= 0644,
2779 			.proc_handler	= proc_dointvec_userhz_jiffies,
2780 		},
2781 		[NEIGH_VAR_PROXY_DELAY] = {
2782 			.procname	= "proxy_delay",
2783 			.maxlen		= sizeof(int),
2784 			.mode		= 0644,
2785 			.proc_handler	= proc_dointvec_userhz_jiffies,
2786 		},
2787 		[NEIGH_VAR_LOCKTIME] = {
2788 			.procname	= "locktime",
2789 			.maxlen		= sizeof(int),
2790 			.mode		= 0644,
2791 			.proc_handler	= proc_dointvec_userhz_jiffies,
2792 		},
2793 		[NEIGH_VAR_RETRANS_TIME_MS] = {
2794 			.procname	= "retrans_time_ms",
2795 			.maxlen		= sizeof(int),
2796 			.mode		= 0644,
2797 			.proc_handler	= proc_dointvec_ms_jiffies,
2798 		},
2799 		[NEIGH_VAR_BASE_REACHABLE_TIME_MS] = {
2800 			.procname	= "base_reachable_time_ms",
2801 			.maxlen		= sizeof(int),
2802 			.mode		= 0644,
2803 			.proc_handler	= proc_dointvec_ms_jiffies,
2804 		},
2805 		[NEIGH_VAR_GC_INTERVAL] = {
2806 			.procname	= "gc_interval",
2807 			.maxlen		= sizeof(int),
2808 			.mode		= 0644,
2809 			.proc_handler	= proc_dointvec_jiffies,
2810 		},
2811 		[NEIGH_VAR_GC_THRESH1] = {
2812 			.procname	= "gc_thresh1",
2813 			.maxlen		= sizeof(int),
2814 			.mode		= 0644,
2815 			.proc_handler	= proc_dointvec,
2816 		},
2817 		[NEIGH_VAR_GC_THRESH2] = {
2818 			.procname	= "gc_thresh2",
2819 			.maxlen		= sizeof(int),
2820 			.mode		= 0644,
2821 			.proc_handler	= proc_dointvec,
2822 		},
2823 		[NEIGH_VAR_GC_THRESH3] = {
2824 			.procname	= "gc_thresh3",
2825 			.maxlen		= sizeof(int),
2826 			.mode		= 0644,
2827 			.proc_handler	= proc_dointvec,
2828 		},
2829 		{},
2830 	},
2831 };
2832 
2833 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2834 			  char *p_name, proc_handler *handler)
2835 {
2836 	struct neigh_sysctl_table *t;
2837 	const char *dev_name_source = NULL;
2838 
2839 #define NEIGH_CTL_PATH_ROOT	0
2840 #define NEIGH_CTL_PATH_PROTO	1
2841 #define NEIGH_CTL_PATH_NEIGH	2
2842 #define NEIGH_CTL_PATH_DEV	3
2843 
2844 	struct ctl_path neigh_path[] = {
2845 		{ .procname = "net",	 },
2846 		{ .procname = "proto",	 },
2847 		{ .procname = "neigh",	 },
2848 		{ .procname = "default", },
2849 		{ },
2850 	};
2851 
2852 	t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2853 	if (!t)
2854 		goto err;
2855 
2856 	t->neigh_vars[NEIGH_VAR_MCAST_PROBE].data  = &p->mcast_probes;
2857 	t->neigh_vars[NEIGH_VAR_UCAST_PROBE].data  = &p->ucast_probes;
2858 	t->neigh_vars[NEIGH_VAR_APP_PROBE].data  = &p->app_probes;
2859 	t->neigh_vars[NEIGH_VAR_RETRANS_TIME].data  = &p->retrans_time;
2860 	t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].data  = &p->base_reachable_time;
2861 	t->neigh_vars[NEIGH_VAR_DELAY_PROBE_TIME].data  = &p->delay_probe_time;
2862 	t->neigh_vars[NEIGH_VAR_GC_STALETIME].data  = &p->gc_staletime;
2863 	t->neigh_vars[NEIGH_VAR_QUEUE_LEN].data  = &p->queue_len_bytes;
2864 	t->neigh_vars[NEIGH_VAR_QUEUE_LEN_BYTES].data  = &p->queue_len_bytes;
2865 	t->neigh_vars[NEIGH_VAR_PROXY_QLEN].data  = &p->proxy_qlen;
2866 	t->neigh_vars[NEIGH_VAR_ANYCAST_DELAY].data  = &p->anycast_delay;
2867 	t->neigh_vars[NEIGH_VAR_PROXY_DELAY].data = &p->proxy_delay;
2868 	t->neigh_vars[NEIGH_VAR_LOCKTIME].data = &p->locktime;
2869 	t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].data  = &p->retrans_time;
2870 	t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].data  = &p->base_reachable_time;
2871 
2872 	if (dev) {
2873 		dev_name_source = dev->name;
2874 		/* Terminate the table early */
2875 		memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
2876 		       sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
2877 	} else {
2878 		dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2879 		t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = (int *)(p + 1);
2880 		t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = (int *)(p + 1) + 1;
2881 		t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = (int *)(p + 1) + 2;
2882 		t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = (int *)(p + 1) + 3;
2883 	}
2884 
2885 
2886 	if (handler) {
2887 		/* RetransTime */
2888 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
2889 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME].extra1 = dev;
2890 		/* ReachableTime */
2891 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
2892 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].extra1 = dev;
2893 		/* RetransTime (in milliseconds)*/
2894 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
2895 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].extra1 = dev;
2896 		/* ReachableTime (in milliseconds) */
2897 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
2898 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].extra1 = dev;
2899 	}
2900 
2901 	t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2902 	if (!t->dev_name)
2903 		goto free;
2904 
2905 	neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2906 	neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2907 
2908 	t->sysctl_header =
2909 		register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2910 	if (!t->sysctl_header)
2911 		goto free_procname;
2912 
2913 	p->sysctl_table = t;
2914 	return 0;
2915 
2916 free_procname:
2917 	kfree(t->dev_name);
2918 free:
2919 	kfree(t);
2920 err:
2921 	return -ENOBUFS;
2922 }
2923 EXPORT_SYMBOL(neigh_sysctl_register);
2924 
2925 void neigh_sysctl_unregister(struct neigh_parms *p)
2926 {
2927 	if (p->sysctl_table) {
2928 		struct neigh_sysctl_table *t = p->sysctl_table;
2929 		p->sysctl_table = NULL;
2930 		unregister_sysctl_table(t->sysctl_header);
2931 		kfree(t->dev_name);
2932 		kfree(t);
2933 	}
2934 }
2935 EXPORT_SYMBOL(neigh_sysctl_unregister);
2936 
2937 #endif	/* CONFIG_SYSCTL */
2938 
2939 static int __init neigh_init(void)
2940 {
2941 	rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
2942 	rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
2943 	rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
2944 
2945 	rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
2946 		      NULL);
2947 	rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
2948 
2949 	return 0;
2950 }
2951 
2952 subsys_initcall(neigh_init);
2953 
2954