1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic address resolution entity 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 8 * 9 * Fixes: 10 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 11 * Harald Welte Add neighbour cache statistics like rtstat 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/slab.h> 17 #include <linux/kmemleak.h> 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/socket.h> 22 #include <linux/netdevice.h> 23 #include <linux/proc_fs.h> 24 #ifdef CONFIG_SYSCTL 25 #include <linux/sysctl.h> 26 #endif 27 #include <linux/times.h> 28 #include <net/net_namespace.h> 29 #include <net/neighbour.h> 30 #include <net/arp.h> 31 #include <net/dst.h> 32 #include <net/sock.h> 33 #include <net/netevent.h> 34 #include <net/netlink.h> 35 #include <linux/rtnetlink.h> 36 #include <linux/random.h> 37 #include <linux/string.h> 38 #include <linux/log2.h> 39 #include <linux/inetdevice.h> 40 #include <net/addrconf.h> 41 42 #include <trace/events/neigh.h> 43 44 #define NEIGH_DEBUG 1 45 #define neigh_dbg(level, fmt, ...) \ 46 do { \ 47 if (level <= NEIGH_DEBUG) \ 48 pr_debug(fmt, ##__VA_ARGS__); \ 49 } while (0) 50 51 #define PNEIGH_HASHMASK 0xF 52 53 static void neigh_timer_handler(struct timer_list *t); 54 static void __neigh_notify(struct neighbour *n, int type, int flags, 55 u32 pid); 56 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid); 57 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 58 struct net_device *dev); 59 60 #ifdef CONFIG_PROC_FS 61 static const struct seq_operations neigh_stat_seq_ops; 62 #endif 63 64 /* 65 Neighbour hash table buckets are protected with rwlock tbl->lock. 66 67 - All the scans/updates to hash buckets MUST be made under this lock. 68 - NOTHING clever should be made under this lock: no callbacks 69 to protocol backends, no attempts to send something to network. 70 It will result in deadlocks, if backend/driver wants to use neighbour 71 cache. 72 - If the entry requires some non-trivial actions, increase 73 its reference count and release table lock. 74 75 Neighbour entries are protected: 76 - with reference count. 77 - with rwlock neigh->lock 78 79 Reference count prevents destruction. 80 81 neigh->lock mainly serializes ll address data and its validity state. 82 However, the same lock is used to protect another entry fields: 83 - timer 84 - resolution queue 85 86 Again, nothing clever shall be made under neigh->lock, 87 the most complicated procedure, which we allow is dev->hard_header. 88 It is supposed, that dev->hard_header is simplistic and does 89 not make callbacks to neighbour tables. 90 */ 91 92 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) 93 { 94 kfree_skb(skb); 95 return -ENETDOWN; 96 } 97 98 static void neigh_cleanup_and_release(struct neighbour *neigh) 99 { 100 trace_neigh_cleanup_and_release(neigh, 0); 101 __neigh_notify(neigh, RTM_DELNEIGH, 0, 0); 102 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 103 neigh_release(neigh); 104 } 105 106 /* 107 * It is random distribution in the interval (1/2)*base...(3/2)*base. 108 * It corresponds to default IPv6 settings and is not overridable, 109 * because it is really reasonable choice. 110 */ 111 112 unsigned long neigh_rand_reach_time(unsigned long base) 113 { 114 return base ? (prandom_u32() % base) + (base >> 1) : 0; 115 } 116 EXPORT_SYMBOL(neigh_rand_reach_time); 117 118 static void neigh_mark_dead(struct neighbour *n) 119 { 120 n->dead = 1; 121 if (!list_empty(&n->gc_list)) { 122 list_del_init(&n->gc_list); 123 atomic_dec(&n->tbl->gc_entries); 124 } 125 } 126 127 static void neigh_update_gc_list(struct neighbour *n) 128 { 129 bool on_gc_list, exempt_from_gc; 130 131 write_lock_bh(&n->tbl->lock); 132 write_lock(&n->lock); 133 134 if (n->dead) 135 goto out; 136 137 /* remove from the gc list if new state is permanent or if neighbor 138 * is externally learned; otherwise entry should be on the gc list 139 */ 140 exempt_from_gc = n->nud_state & NUD_PERMANENT || 141 n->flags & NTF_EXT_LEARNED; 142 on_gc_list = !list_empty(&n->gc_list); 143 144 if (exempt_from_gc && on_gc_list) { 145 list_del_init(&n->gc_list); 146 atomic_dec(&n->tbl->gc_entries); 147 } else if (!exempt_from_gc && !on_gc_list) { 148 /* add entries to the tail; cleaning removes from the front */ 149 list_add_tail(&n->gc_list, &n->tbl->gc_list); 150 atomic_inc(&n->tbl->gc_entries); 151 } 152 153 out: 154 write_unlock(&n->lock); 155 write_unlock_bh(&n->tbl->lock); 156 } 157 158 static bool neigh_update_ext_learned(struct neighbour *neigh, u32 flags, 159 int *notify) 160 { 161 bool rc = false; 162 u8 ndm_flags; 163 164 if (!(flags & NEIGH_UPDATE_F_ADMIN)) 165 return rc; 166 167 ndm_flags = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0; 168 if ((neigh->flags ^ ndm_flags) & NTF_EXT_LEARNED) { 169 if (ndm_flags & NTF_EXT_LEARNED) 170 neigh->flags |= NTF_EXT_LEARNED; 171 else 172 neigh->flags &= ~NTF_EXT_LEARNED; 173 rc = true; 174 *notify = 1; 175 } 176 177 return rc; 178 } 179 180 static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np, 181 struct neigh_table *tbl) 182 { 183 bool retval = false; 184 185 write_lock(&n->lock); 186 if (refcount_read(&n->refcnt) == 1) { 187 struct neighbour *neigh; 188 189 neigh = rcu_dereference_protected(n->next, 190 lockdep_is_held(&tbl->lock)); 191 rcu_assign_pointer(*np, neigh); 192 neigh_mark_dead(n); 193 retval = true; 194 } 195 write_unlock(&n->lock); 196 if (retval) 197 neigh_cleanup_and_release(n); 198 return retval; 199 } 200 201 bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl) 202 { 203 struct neigh_hash_table *nht; 204 void *pkey = ndel->primary_key; 205 u32 hash_val; 206 struct neighbour *n; 207 struct neighbour __rcu **np; 208 209 nht = rcu_dereference_protected(tbl->nht, 210 lockdep_is_held(&tbl->lock)); 211 hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd); 212 hash_val = hash_val >> (32 - nht->hash_shift); 213 214 np = &nht->hash_buckets[hash_val]; 215 while ((n = rcu_dereference_protected(*np, 216 lockdep_is_held(&tbl->lock)))) { 217 if (n == ndel) 218 return neigh_del(n, np, tbl); 219 np = &n->next; 220 } 221 return false; 222 } 223 224 static int neigh_forced_gc(struct neigh_table *tbl) 225 { 226 int max_clean = atomic_read(&tbl->gc_entries) - tbl->gc_thresh2; 227 unsigned long tref = jiffies - 5 * HZ; 228 struct neighbour *n, *tmp; 229 int shrunk = 0; 230 231 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 232 233 write_lock_bh(&tbl->lock); 234 235 list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) { 236 if (refcount_read(&n->refcnt) == 1) { 237 bool remove = false; 238 239 write_lock(&n->lock); 240 if ((n->nud_state == NUD_FAILED) || 241 (n->nud_state == NUD_NOARP) || 242 (tbl->is_multicast && 243 tbl->is_multicast(n->primary_key)) || 244 time_after(tref, n->updated)) 245 remove = true; 246 write_unlock(&n->lock); 247 248 if (remove && neigh_remove_one(n, tbl)) 249 shrunk++; 250 if (shrunk >= max_clean) 251 break; 252 } 253 } 254 255 tbl->last_flush = jiffies; 256 257 write_unlock_bh(&tbl->lock); 258 259 return shrunk; 260 } 261 262 static void neigh_add_timer(struct neighbour *n, unsigned long when) 263 { 264 neigh_hold(n); 265 if (unlikely(mod_timer(&n->timer, when))) { 266 printk("NEIGH: BUG, double timer add, state is %x\n", 267 n->nud_state); 268 dump_stack(); 269 } 270 } 271 272 static int neigh_del_timer(struct neighbour *n) 273 { 274 if ((n->nud_state & NUD_IN_TIMER) && 275 del_timer(&n->timer)) { 276 neigh_release(n); 277 return 1; 278 } 279 return 0; 280 } 281 282 static void pneigh_queue_purge(struct sk_buff_head *list) 283 { 284 struct sk_buff *skb; 285 286 while ((skb = skb_dequeue(list)) != NULL) { 287 dev_put(skb->dev); 288 kfree_skb(skb); 289 } 290 } 291 292 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev, 293 bool skip_perm) 294 { 295 int i; 296 struct neigh_hash_table *nht; 297 298 nht = rcu_dereference_protected(tbl->nht, 299 lockdep_is_held(&tbl->lock)); 300 301 for (i = 0; i < (1 << nht->hash_shift); i++) { 302 struct neighbour *n; 303 struct neighbour __rcu **np = &nht->hash_buckets[i]; 304 305 while ((n = rcu_dereference_protected(*np, 306 lockdep_is_held(&tbl->lock))) != NULL) { 307 if (dev && n->dev != dev) { 308 np = &n->next; 309 continue; 310 } 311 if (skip_perm && n->nud_state & NUD_PERMANENT) { 312 np = &n->next; 313 continue; 314 } 315 rcu_assign_pointer(*np, 316 rcu_dereference_protected(n->next, 317 lockdep_is_held(&tbl->lock))); 318 write_lock(&n->lock); 319 neigh_del_timer(n); 320 neigh_mark_dead(n); 321 if (refcount_read(&n->refcnt) != 1) { 322 /* The most unpleasant situation. 323 We must destroy neighbour entry, 324 but someone still uses it. 325 326 The destroy will be delayed until 327 the last user releases us, but 328 we must kill timers etc. and move 329 it to safe state. 330 */ 331 __skb_queue_purge(&n->arp_queue); 332 n->arp_queue_len_bytes = 0; 333 n->output = neigh_blackhole; 334 if (n->nud_state & NUD_VALID) 335 n->nud_state = NUD_NOARP; 336 else 337 n->nud_state = NUD_NONE; 338 neigh_dbg(2, "neigh %p is stray\n", n); 339 } 340 write_unlock(&n->lock); 341 neigh_cleanup_and_release(n); 342 } 343 } 344 } 345 346 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 347 { 348 write_lock_bh(&tbl->lock); 349 neigh_flush_dev(tbl, dev, false); 350 write_unlock_bh(&tbl->lock); 351 } 352 EXPORT_SYMBOL(neigh_changeaddr); 353 354 static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev, 355 bool skip_perm) 356 { 357 write_lock_bh(&tbl->lock); 358 neigh_flush_dev(tbl, dev, skip_perm); 359 pneigh_ifdown_and_unlock(tbl, dev); 360 361 del_timer_sync(&tbl->proxy_timer); 362 pneigh_queue_purge(&tbl->proxy_queue); 363 return 0; 364 } 365 366 int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev) 367 { 368 __neigh_ifdown(tbl, dev, true); 369 return 0; 370 } 371 EXPORT_SYMBOL(neigh_carrier_down); 372 373 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 374 { 375 __neigh_ifdown(tbl, dev, false); 376 return 0; 377 } 378 EXPORT_SYMBOL(neigh_ifdown); 379 380 static struct neighbour *neigh_alloc(struct neigh_table *tbl, 381 struct net_device *dev, 382 bool exempt_from_gc) 383 { 384 struct neighbour *n = NULL; 385 unsigned long now = jiffies; 386 int entries; 387 388 if (exempt_from_gc) 389 goto do_alloc; 390 391 entries = atomic_inc_return(&tbl->gc_entries) - 1; 392 if (entries >= tbl->gc_thresh3 || 393 (entries >= tbl->gc_thresh2 && 394 time_after(now, tbl->last_flush + 5 * HZ))) { 395 if (!neigh_forced_gc(tbl) && 396 entries >= tbl->gc_thresh3) { 397 net_info_ratelimited("%s: neighbor table overflow!\n", 398 tbl->id); 399 NEIGH_CACHE_STAT_INC(tbl, table_fulls); 400 goto out_entries; 401 } 402 } 403 404 do_alloc: 405 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC); 406 if (!n) 407 goto out_entries; 408 409 __skb_queue_head_init(&n->arp_queue); 410 rwlock_init(&n->lock); 411 seqlock_init(&n->ha_lock); 412 n->updated = n->used = now; 413 n->nud_state = NUD_NONE; 414 n->output = neigh_blackhole; 415 seqlock_init(&n->hh.hh_lock); 416 n->parms = neigh_parms_clone(&tbl->parms); 417 timer_setup(&n->timer, neigh_timer_handler, 0); 418 419 NEIGH_CACHE_STAT_INC(tbl, allocs); 420 n->tbl = tbl; 421 refcount_set(&n->refcnt, 1); 422 n->dead = 1; 423 INIT_LIST_HEAD(&n->gc_list); 424 425 atomic_inc(&tbl->entries); 426 out: 427 return n; 428 429 out_entries: 430 if (!exempt_from_gc) 431 atomic_dec(&tbl->gc_entries); 432 goto out; 433 } 434 435 static void neigh_get_hash_rnd(u32 *x) 436 { 437 *x = get_random_u32() | 1; 438 } 439 440 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) 441 { 442 size_t size = (1 << shift) * sizeof(struct neighbour *); 443 struct neigh_hash_table *ret; 444 struct neighbour __rcu **buckets; 445 int i; 446 447 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 448 if (!ret) 449 return NULL; 450 if (size <= PAGE_SIZE) { 451 buckets = kzalloc(size, GFP_ATOMIC); 452 } else { 453 buckets = (struct neighbour __rcu **) 454 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 455 get_order(size)); 456 kmemleak_alloc(buckets, size, 1, GFP_ATOMIC); 457 } 458 if (!buckets) { 459 kfree(ret); 460 return NULL; 461 } 462 ret->hash_buckets = buckets; 463 ret->hash_shift = shift; 464 for (i = 0; i < NEIGH_NUM_HASH_RND; i++) 465 neigh_get_hash_rnd(&ret->hash_rnd[i]); 466 return ret; 467 } 468 469 static void neigh_hash_free_rcu(struct rcu_head *head) 470 { 471 struct neigh_hash_table *nht = container_of(head, 472 struct neigh_hash_table, 473 rcu); 474 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); 475 struct neighbour __rcu **buckets = nht->hash_buckets; 476 477 if (size <= PAGE_SIZE) { 478 kfree(buckets); 479 } else { 480 kmemleak_free(buckets); 481 free_pages((unsigned long)buckets, get_order(size)); 482 } 483 kfree(nht); 484 } 485 486 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, 487 unsigned long new_shift) 488 { 489 unsigned int i, hash; 490 struct neigh_hash_table *new_nht, *old_nht; 491 492 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 493 494 old_nht = rcu_dereference_protected(tbl->nht, 495 lockdep_is_held(&tbl->lock)); 496 new_nht = neigh_hash_alloc(new_shift); 497 if (!new_nht) 498 return old_nht; 499 500 for (i = 0; i < (1 << old_nht->hash_shift); i++) { 501 struct neighbour *n, *next; 502 503 for (n = rcu_dereference_protected(old_nht->hash_buckets[i], 504 lockdep_is_held(&tbl->lock)); 505 n != NULL; 506 n = next) { 507 hash = tbl->hash(n->primary_key, n->dev, 508 new_nht->hash_rnd); 509 510 hash >>= (32 - new_nht->hash_shift); 511 next = rcu_dereference_protected(n->next, 512 lockdep_is_held(&tbl->lock)); 513 514 rcu_assign_pointer(n->next, 515 rcu_dereference_protected( 516 new_nht->hash_buckets[hash], 517 lockdep_is_held(&tbl->lock))); 518 rcu_assign_pointer(new_nht->hash_buckets[hash], n); 519 } 520 } 521 522 rcu_assign_pointer(tbl->nht, new_nht); 523 call_rcu(&old_nht->rcu, neigh_hash_free_rcu); 524 return new_nht; 525 } 526 527 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 528 struct net_device *dev) 529 { 530 struct neighbour *n; 531 532 NEIGH_CACHE_STAT_INC(tbl, lookups); 533 534 rcu_read_lock_bh(); 535 n = __neigh_lookup_noref(tbl, pkey, dev); 536 if (n) { 537 if (!refcount_inc_not_zero(&n->refcnt)) 538 n = NULL; 539 NEIGH_CACHE_STAT_INC(tbl, hits); 540 } 541 542 rcu_read_unlock_bh(); 543 return n; 544 } 545 EXPORT_SYMBOL(neigh_lookup); 546 547 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 548 const void *pkey) 549 { 550 struct neighbour *n; 551 unsigned int key_len = tbl->key_len; 552 u32 hash_val; 553 struct neigh_hash_table *nht; 554 555 NEIGH_CACHE_STAT_INC(tbl, lookups); 556 557 rcu_read_lock_bh(); 558 nht = rcu_dereference_bh(tbl->nht); 559 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift); 560 561 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 562 n != NULL; 563 n = rcu_dereference_bh(n->next)) { 564 if (!memcmp(n->primary_key, pkey, key_len) && 565 net_eq(dev_net(n->dev), net)) { 566 if (!refcount_inc_not_zero(&n->refcnt)) 567 n = NULL; 568 NEIGH_CACHE_STAT_INC(tbl, hits); 569 break; 570 } 571 } 572 573 rcu_read_unlock_bh(); 574 return n; 575 } 576 EXPORT_SYMBOL(neigh_lookup_nodev); 577 578 static struct neighbour *___neigh_create(struct neigh_table *tbl, 579 const void *pkey, 580 struct net_device *dev, 581 bool exempt_from_gc, bool want_ref) 582 { 583 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev, exempt_from_gc); 584 u32 hash_val; 585 unsigned int key_len = tbl->key_len; 586 int error; 587 struct neigh_hash_table *nht; 588 589 trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc); 590 591 if (!n) { 592 rc = ERR_PTR(-ENOBUFS); 593 goto out; 594 } 595 596 memcpy(n->primary_key, pkey, key_len); 597 n->dev = dev; 598 dev_hold(dev); 599 600 /* Protocol specific setup. */ 601 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 602 rc = ERR_PTR(error); 603 goto out_neigh_release; 604 } 605 606 if (dev->netdev_ops->ndo_neigh_construct) { 607 error = dev->netdev_ops->ndo_neigh_construct(dev, n); 608 if (error < 0) { 609 rc = ERR_PTR(error); 610 goto out_neigh_release; 611 } 612 } 613 614 /* Device specific setup. */ 615 if (n->parms->neigh_setup && 616 (error = n->parms->neigh_setup(n)) < 0) { 617 rc = ERR_PTR(error); 618 goto out_neigh_release; 619 } 620 621 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1); 622 623 write_lock_bh(&tbl->lock); 624 nht = rcu_dereference_protected(tbl->nht, 625 lockdep_is_held(&tbl->lock)); 626 627 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) 628 nht = neigh_hash_grow(tbl, nht->hash_shift + 1); 629 630 hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 631 632 if (n->parms->dead) { 633 rc = ERR_PTR(-EINVAL); 634 goto out_tbl_unlock; 635 } 636 637 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], 638 lockdep_is_held(&tbl->lock)); 639 n1 != NULL; 640 n1 = rcu_dereference_protected(n1->next, 641 lockdep_is_held(&tbl->lock))) { 642 if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) { 643 if (want_ref) 644 neigh_hold(n1); 645 rc = n1; 646 goto out_tbl_unlock; 647 } 648 } 649 650 n->dead = 0; 651 if (!exempt_from_gc) 652 list_add_tail(&n->gc_list, &n->tbl->gc_list); 653 654 if (want_ref) 655 neigh_hold(n); 656 rcu_assign_pointer(n->next, 657 rcu_dereference_protected(nht->hash_buckets[hash_val], 658 lockdep_is_held(&tbl->lock))); 659 rcu_assign_pointer(nht->hash_buckets[hash_val], n); 660 write_unlock_bh(&tbl->lock); 661 neigh_dbg(2, "neigh %p is created\n", n); 662 rc = n; 663 out: 664 return rc; 665 out_tbl_unlock: 666 write_unlock_bh(&tbl->lock); 667 out_neigh_release: 668 if (!exempt_from_gc) 669 atomic_dec(&tbl->gc_entries); 670 neigh_release(n); 671 goto out; 672 } 673 674 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, 675 struct net_device *dev, bool want_ref) 676 { 677 return ___neigh_create(tbl, pkey, dev, false, want_ref); 678 } 679 EXPORT_SYMBOL(__neigh_create); 680 681 static u32 pneigh_hash(const void *pkey, unsigned int key_len) 682 { 683 u32 hash_val = *(u32 *)(pkey + key_len - 4); 684 hash_val ^= (hash_val >> 16); 685 hash_val ^= hash_val >> 8; 686 hash_val ^= hash_val >> 4; 687 hash_val &= PNEIGH_HASHMASK; 688 return hash_val; 689 } 690 691 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 692 struct net *net, 693 const void *pkey, 694 unsigned int key_len, 695 struct net_device *dev) 696 { 697 while (n) { 698 if (!memcmp(n->key, pkey, key_len) && 699 net_eq(pneigh_net(n), net) && 700 (n->dev == dev || !n->dev)) 701 return n; 702 n = n->next; 703 } 704 return NULL; 705 } 706 707 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 708 struct net *net, const void *pkey, struct net_device *dev) 709 { 710 unsigned int key_len = tbl->key_len; 711 u32 hash_val = pneigh_hash(pkey, key_len); 712 713 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 714 net, pkey, key_len, dev); 715 } 716 EXPORT_SYMBOL_GPL(__pneigh_lookup); 717 718 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 719 struct net *net, const void *pkey, 720 struct net_device *dev, int creat) 721 { 722 struct pneigh_entry *n; 723 unsigned int key_len = tbl->key_len; 724 u32 hash_val = pneigh_hash(pkey, key_len); 725 726 read_lock_bh(&tbl->lock); 727 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 728 net, pkey, key_len, dev); 729 read_unlock_bh(&tbl->lock); 730 731 if (n || !creat) 732 goto out; 733 734 ASSERT_RTNL(); 735 736 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 737 if (!n) 738 goto out; 739 740 n->protocol = 0; 741 write_pnet(&n->net, net); 742 memcpy(n->key, pkey, key_len); 743 n->dev = dev; 744 if (dev) 745 dev_hold(dev); 746 747 if (tbl->pconstructor && tbl->pconstructor(n)) { 748 if (dev) 749 dev_put(dev); 750 kfree(n); 751 n = NULL; 752 goto out; 753 } 754 755 write_lock_bh(&tbl->lock); 756 n->next = tbl->phash_buckets[hash_val]; 757 tbl->phash_buckets[hash_val] = n; 758 write_unlock_bh(&tbl->lock); 759 out: 760 return n; 761 } 762 EXPORT_SYMBOL(pneigh_lookup); 763 764 765 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 766 struct net_device *dev) 767 { 768 struct pneigh_entry *n, **np; 769 unsigned int key_len = tbl->key_len; 770 u32 hash_val = pneigh_hash(pkey, key_len); 771 772 write_lock_bh(&tbl->lock); 773 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 774 np = &n->next) { 775 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 776 net_eq(pneigh_net(n), net)) { 777 *np = n->next; 778 write_unlock_bh(&tbl->lock); 779 if (tbl->pdestructor) 780 tbl->pdestructor(n); 781 if (n->dev) 782 dev_put(n->dev); 783 kfree(n); 784 return 0; 785 } 786 } 787 write_unlock_bh(&tbl->lock); 788 return -ENOENT; 789 } 790 791 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 792 struct net_device *dev) 793 { 794 struct pneigh_entry *n, **np, *freelist = NULL; 795 u32 h; 796 797 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 798 np = &tbl->phash_buckets[h]; 799 while ((n = *np) != NULL) { 800 if (!dev || n->dev == dev) { 801 *np = n->next; 802 n->next = freelist; 803 freelist = n; 804 continue; 805 } 806 np = &n->next; 807 } 808 } 809 write_unlock_bh(&tbl->lock); 810 while ((n = freelist)) { 811 freelist = n->next; 812 n->next = NULL; 813 if (tbl->pdestructor) 814 tbl->pdestructor(n); 815 if (n->dev) 816 dev_put(n->dev); 817 kfree(n); 818 } 819 return -ENOENT; 820 } 821 822 static void neigh_parms_destroy(struct neigh_parms *parms); 823 824 static inline void neigh_parms_put(struct neigh_parms *parms) 825 { 826 if (refcount_dec_and_test(&parms->refcnt)) 827 neigh_parms_destroy(parms); 828 } 829 830 /* 831 * neighbour must already be out of the table; 832 * 833 */ 834 void neigh_destroy(struct neighbour *neigh) 835 { 836 struct net_device *dev = neigh->dev; 837 838 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 839 840 if (!neigh->dead) { 841 pr_warn("Destroying alive neighbour %p\n", neigh); 842 dump_stack(); 843 return; 844 } 845 846 if (neigh_del_timer(neigh)) 847 pr_warn("Impossible event\n"); 848 849 write_lock_bh(&neigh->lock); 850 __skb_queue_purge(&neigh->arp_queue); 851 write_unlock_bh(&neigh->lock); 852 neigh->arp_queue_len_bytes = 0; 853 854 if (dev->netdev_ops->ndo_neigh_destroy) 855 dev->netdev_ops->ndo_neigh_destroy(dev, neigh); 856 857 dev_put(dev); 858 neigh_parms_put(neigh->parms); 859 860 neigh_dbg(2, "neigh %p is destroyed\n", neigh); 861 862 atomic_dec(&neigh->tbl->entries); 863 kfree_rcu(neigh, rcu); 864 } 865 EXPORT_SYMBOL(neigh_destroy); 866 867 /* Neighbour state is suspicious; 868 disable fast path. 869 870 Called with write_locked neigh. 871 */ 872 static void neigh_suspect(struct neighbour *neigh) 873 { 874 neigh_dbg(2, "neigh %p is suspected\n", neigh); 875 876 neigh->output = neigh->ops->output; 877 } 878 879 /* Neighbour state is OK; 880 enable fast path. 881 882 Called with write_locked neigh. 883 */ 884 static void neigh_connect(struct neighbour *neigh) 885 { 886 neigh_dbg(2, "neigh %p is connected\n", neigh); 887 888 neigh->output = neigh->ops->connected_output; 889 } 890 891 static void neigh_periodic_work(struct work_struct *work) 892 { 893 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 894 struct neighbour *n; 895 struct neighbour __rcu **np; 896 unsigned int i; 897 struct neigh_hash_table *nht; 898 899 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 900 901 write_lock_bh(&tbl->lock); 902 nht = rcu_dereference_protected(tbl->nht, 903 lockdep_is_held(&tbl->lock)); 904 905 /* 906 * periodically recompute ReachableTime from random function 907 */ 908 909 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 910 struct neigh_parms *p; 911 tbl->last_rand = jiffies; 912 list_for_each_entry(p, &tbl->parms_list, list) 913 p->reachable_time = 914 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 915 } 916 917 if (atomic_read(&tbl->entries) < tbl->gc_thresh1) 918 goto out; 919 920 for (i = 0 ; i < (1 << nht->hash_shift); i++) { 921 np = &nht->hash_buckets[i]; 922 923 while ((n = rcu_dereference_protected(*np, 924 lockdep_is_held(&tbl->lock))) != NULL) { 925 unsigned int state; 926 927 write_lock(&n->lock); 928 929 state = n->nud_state; 930 if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) || 931 (n->flags & NTF_EXT_LEARNED)) { 932 write_unlock(&n->lock); 933 goto next_elt; 934 } 935 936 if (time_before(n->used, n->confirmed)) 937 n->used = n->confirmed; 938 939 if (refcount_read(&n->refcnt) == 1 && 940 (state == NUD_FAILED || 941 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) { 942 *np = n->next; 943 neigh_mark_dead(n); 944 write_unlock(&n->lock); 945 neigh_cleanup_and_release(n); 946 continue; 947 } 948 write_unlock(&n->lock); 949 950 next_elt: 951 np = &n->next; 952 } 953 /* 954 * It's fine to release lock here, even if hash table 955 * grows while we are preempted. 956 */ 957 write_unlock_bh(&tbl->lock); 958 cond_resched(); 959 write_lock_bh(&tbl->lock); 960 nht = rcu_dereference_protected(tbl->nht, 961 lockdep_is_held(&tbl->lock)); 962 } 963 out: 964 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks. 965 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2 966 * BASE_REACHABLE_TIME. 967 */ 968 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 969 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1); 970 write_unlock_bh(&tbl->lock); 971 } 972 973 static __inline__ int neigh_max_probes(struct neighbour *n) 974 { 975 struct neigh_parms *p = n->parms; 976 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) + 977 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) : 978 NEIGH_VAR(p, MCAST_PROBES)); 979 } 980 981 static void neigh_invalidate(struct neighbour *neigh) 982 __releases(neigh->lock) 983 __acquires(neigh->lock) 984 { 985 struct sk_buff *skb; 986 987 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 988 neigh_dbg(2, "neigh %p is failed\n", neigh); 989 neigh->updated = jiffies; 990 991 /* It is very thin place. report_unreachable is very complicated 992 routine. Particularly, it can hit the same neighbour entry! 993 994 So that, we try to be accurate and avoid dead loop. --ANK 995 */ 996 while (neigh->nud_state == NUD_FAILED && 997 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 998 write_unlock(&neigh->lock); 999 neigh->ops->error_report(neigh, skb); 1000 write_lock(&neigh->lock); 1001 } 1002 __skb_queue_purge(&neigh->arp_queue); 1003 neigh->arp_queue_len_bytes = 0; 1004 } 1005 1006 static void neigh_probe(struct neighbour *neigh) 1007 __releases(neigh->lock) 1008 { 1009 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue); 1010 /* keep skb alive even if arp_queue overflows */ 1011 if (skb) 1012 skb = skb_clone(skb, GFP_ATOMIC); 1013 write_unlock(&neigh->lock); 1014 if (neigh->ops->solicit) 1015 neigh->ops->solicit(neigh, skb); 1016 atomic_inc(&neigh->probes); 1017 consume_skb(skb); 1018 } 1019 1020 /* Called when a timer expires for a neighbour entry. */ 1021 1022 static void neigh_timer_handler(struct timer_list *t) 1023 { 1024 unsigned long now, next; 1025 struct neighbour *neigh = from_timer(neigh, t, timer); 1026 unsigned int state; 1027 int notify = 0; 1028 1029 write_lock(&neigh->lock); 1030 1031 state = neigh->nud_state; 1032 now = jiffies; 1033 next = now + HZ; 1034 1035 if (!(state & NUD_IN_TIMER)) 1036 goto out; 1037 1038 if (state & NUD_REACHABLE) { 1039 if (time_before_eq(now, 1040 neigh->confirmed + neigh->parms->reachable_time)) { 1041 neigh_dbg(2, "neigh %p is still alive\n", neigh); 1042 next = neigh->confirmed + neigh->parms->reachable_time; 1043 } else if (time_before_eq(now, 1044 neigh->used + 1045 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1046 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1047 neigh->nud_state = NUD_DELAY; 1048 neigh->updated = jiffies; 1049 neigh_suspect(neigh); 1050 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME); 1051 } else { 1052 neigh_dbg(2, "neigh %p is suspected\n", neigh); 1053 neigh->nud_state = NUD_STALE; 1054 neigh->updated = jiffies; 1055 neigh_suspect(neigh); 1056 notify = 1; 1057 } 1058 } else if (state & NUD_DELAY) { 1059 if (time_before_eq(now, 1060 neigh->confirmed + 1061 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1062 neigh_dbg(2, "neigh %p is now reachable\n", neigh); 1063 neigh->nud_state = NUD_REACHABLE; 1064 neigh->updated = jiffies; 1065 neigh_connect(neigh); 1066 notify = 1; 1067 next = neigh->confirmed + neigh->parms->reachable_time; 1068 } else { 1069 neigh_dbg(2, "neigh %p is probed\n", neigh); 1070 neigh->nud_state = NUD_PROBE; 1071 neigh->updated = jiffies; 1072 atomic_set(&neigh->probes, 0); 1073 notify = 1; 1074 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1075 HZ/100); 1076 } 1077 } else { 1078 /* NUD_PROBE|NUD_INCOMPLETE */ 1079 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100); 1080 } 1081 1082 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 1083 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 1084 neigh->nud_state = NUD_FAILED; 1085 notify = 1; 1086 neigh_invalidate(neigh); 1087 goto out; 1088 } 1089 1090 if (neigh->nud_state & NUD_IN_TIMER) { 1091 if (time_before(next, jiffies + HZ/100)) 1092 next = jiffies + HZ/100; 1093 if (!mod_timer(&neigh->timer, next)) 1094 neigh_hold(neigh); 1095 } 1096 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 1097 neigh_probe(neigh); 1098 } else { 1099 out: 1100 write_unlock(&neigh->lock); 1101 } 1102 1103 if (notify) 1104 neigh_update_notify(neigh, 0); 1105 1106 trace_neigh_timer_handler(neigh, 0); 1107 1108 neigh_release(neigh); 1109 } 1110 1111 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 1112 { 1113 int rc; 1114 bool immediate_probe = false; 1115 1116 write_lock_bh(&neigh->lock); 1117 1118 rc = 0; 1119 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 1120 goto out_unlock_bh; 1121 if (neigh->dead) 1122 goto out_dead; 1123 1124 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 1125 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) + 1126 NEIGH_VAR(neigh->parms, APP_PROBES)) { 1127 unsigned long next, now = jiffies; 1128 1129 atomic_set(&neigh->probes, 1130 NEIGH_VAR(neigh->parms, UCAST_PROBES)); 1131 neigh_del_timer(neigh); 1132 neigh->nud_state = NUD_INCOMPLETE; 1133 neigh->updated = now; 1134 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1135 HZ/100); 1136 neigh_add_timer(neigh, next); 1137 immediate_probe = true; 1138 } else { 1139 neigh->nud_state = NUD_FAILED; 1140 neigh->updated = jiffies; 1141 write_unlock_bh(&neigh->lock); 1142 1143 kfree_skb(skb); 1144 return 1; 1145 } 1146 } else if (neigh->nud_state & NUD_STALE) { 1147 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1148 neigh_del_timer(neigh); 1149 neigh->nud_state = NUD_DELAY; 1150 neigh->updated = jiffies; 1151 neigh_add_timer(neigh, jiffies + 1152 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME)); 1153 } 1154 1155 if (neigh->nud_state == NUD_INCOMPLETE) { 1156 if (skb) { 1157 while (neigh->arp_queue_len_bytes + skb->truesize > 1158 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) { 1159 struct sk_buff *buff; 1160 1161 buff = __skb_dequeue(&neigh->arp_queue); 1162 if (!buff) 1163 break; 1164 neigh->arp_queue_len_bytes -= buff->truesize; 1165 kfree_skb(buff); 1166 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 1167 } 1168 skb_dst_force(skb); 1169 __skb_queue_tail(&neigh->arp_queue, skb); 1170 neigh->arp_queue_len_bytes += skb->truesize; 1171 } 1172 rc = 1; 1173 } 1174 out_unlock_bh: 1175 if (immediate_probe) 1176 neigh_probe(neigh); 1177 else 1178 write_unlock(&neigh->lock); 1179 local_bh_enable(); 1180 trace_neigh_event_send_done(neigh, rc); 1181 return rc; 1182 1183 out_dead: 1184 if (neigh->nud_state & NUD_STALE) 1185 goto out_unlock_bh; 1186 write_unlock_bh(&neigh->lock); 1187 kfree_skb(skb); 1188 trace_neigh_event_send_dead(neigh, 1); 1189 return 1; 1190 } 1191 EXPORT_SYMBOL(__neigh_event_send); 1192 1193 static void neigh_update_hhs(struct neighbour *neigh) 1194 { 1195 struct hh_cache *hh; 1196 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 1197 = NULL; 1198 1199 if (neigh->dev->header_ops) 1200 update = neigh->dev->header_ops->cache_update; 1201 1202 if (update) { 1203 hh = &neigh->hh; 1204 if (READ_ONCE(hh->hh_len)) { 1205 write_seqlock_bh(&hh->hh_lock); 1206 update(hh, neigh->dev, neigh->ha); 1207 write_sequnlock_bh(&hh->hh_lock); 1208 } 1209 } 1210 } 1211 1212 1213 1214 /* Generic update routine. 1215 -- lladdr is new lladdr or NULL, if it is not supplied. 1216 -- new is new state. 1217 -- flags 1218 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 1219 if it is different. 1220 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 1221 lladdr instead of overriding it 1222 if it is different. 1223 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 1224 1225 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 1226 NTF_ROUTER flag. 1227 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 1228 a router. 1229 1230 Caller MUST hold reference count on the entry. 1231 */ 1232 1233 static int __neigh_update(struct neighbour *neigh, const u8 *lladdr, 1234 u8 new, u32 flags, u32 nlmsg_pid, 1235 struct netlink_ext_ack *extack) 1236 { 1237 bool ext_learn_change = false; 1238 u8 old; 1239 int err; 1240 int notify = 0; 1241 struct net_device *dev; 1242 int update_isrouter = 0; 1243 1244 trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid); 1245 1246 write_lock_bh(&neigh->lock); 1247 1248 dev = neigh->dev; 1249 old = neigh->nud_state; 1250 err = -EPERM; 1251 1252 if (neigh->dead) { 1253 NL_SET_ERR_MSG(extack, "Neighbor entry is now dead"); 1254 new = old; 1255 goto out; 1256 } 1257 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 1258 (old & (NUD_NOARP | NUD_PERMANENT))) 1259 goto out; 1260 1261 ext_learn_change = neigh_update_ext_learned(neigh, flags, ¬ify); 1262 1263 if (!(new & NUD_VALID)) { 1264 neigh_del_timer(neigh); 1265 if (old & NUD_CONNECTED) 1266 neigh_suspect(neigh); 1267 neigh->nud_state = new; 1268 err = 0; 1269 notify = old & NUD_VALID; 1270 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1271 (new & NUD_FAILED)) { 1272 neigh_invalidate(neigh); 1273 notify = 1; 1274 } 1275 goto out; 1276 } 1277 1278 /* Compare new lladdr with cached one */ 1279 if (!dev->addr_len) { 1280 /* First case: device needs no address. */ 1281 lladdr = neigh->ha; 1282 } else if (lladdr) { 1283 /* The second case: if something is already cached 1284 and a new address is proposed: 1285 - compare new & old 1286 - if they are different, check override flag 1287 */ 1288 if ((old & NUD_VALID) && 1289 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1290 lladdr = neigh->ha; 1291 } else { 1292 /* No address is supplied; if we know something, 1293 use it, otherwise discard the request. 1294 */ 1295 err = -EINVAL; 1296 if (!(old & NUD_VALID)) { 1297 NL_SET_ERR_MSG(extack, "No link layer address given"); 1298 goto out; 1299 } 1300 lladdr = neigh->ha; 1301 } 1302 1303 /* Update confirmed timestamp for neighbour entry after we 1304 * received ARP packet even if it doesn't change IP to MAC binding. 1305 */ 1306 if (new & NUD_CONNECTED) 1307 neigh->confirmed = jiffies; 1308 1309 /* If entry was valid and address is not changed, 1310 do not change entry state, if new one is STALE. 1311 */ 1312 err = 0; 1313 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1314 if (old & NUD_VALID) { 1315 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1316 update_isrouter = 0; 1317 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1318 (old & NUD_CONNECTED)) { 1319 lladdr = neigh->ha; 1320 new = NUD_STALE; 1321 } else 1322 goto out; 1323 } else { 1324 if (lladdr == neigh->ha && new == NUD_STALE && 1325 !(flags & NEIGH_UPDATE_F_ADMIN)) 1326 new = old; 1327 } 1328 } 1329 1330 /* Update timestamp only once we know we will make a change to the 1331 * neighbour entry. Otherwise we risk to move the locktime window with 1332 * noop updates and ignore relevant ARP updates. 1333 */ 1334 if (new != old || lladdr != neigh->ha) 1335 neigh->updated = jiffies; 1336 1337 if (new != old) { 1338 neigh_del_timer(neigh); 1339 if (new & NUD_PROBE) 1340 atomic_set(&neigh->probes, 0); 1341 if (new & NUD_IN_TIMER) 1342 neigh_add_timer(neigh, (jiffies + 1343 ((new & NUD_REACHABLE) ? 1344 neigh->parms->reachable_time : 1345 0))); 1346 neigh->nud_state = new; 1347 notify = 1; 1348 } 1349 1350 if (lladdr != neigh->ha) { 1351 write_seqlock(&neigh->ha_lock); 1352 memcpy(&neigh->ha, lladdr, dev->addr_len); 1353 write_sequnlock(&neigh->ha_lock); 1354 neigh_update_hhs(neigh); 1355 if (!(new & NUD_CONNECTED)) 1356 neigh->confirmed = jiffies - 1357 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1); 1358 notify = 1; 1359 } 1360 if (new == old) 1361 goto out; 1362 if (new & NUD_CONNECTED) 1363 neigh_connect(neigh); 1364 else 1365 neigh_suspect(neigh); 1366 if (!(old & NUD_VALID)) { 1367 struct sk_buff *skb; 1368 1369 /* Again: avoid dead loop if something went wrong */ 1370 1371 while (neigh->nud_state & NUD_VALID && 1372 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1373 struct dst_entry *dst = skb_dst(skb); 1374 struct neighbour *n2, *n1 = neigh; 1375 write_unlock_bh(&neigh->lock); 1376 1377 rcu_read_lock(); 1378 1379 /* Why not just use 'neigh' as-is? The problem is that 1380 * things such as shaper, eql, and sch_teql can end up 1381 * using alternative, different, neigh objects to output 1382 * the packet in the output path. So what we need to do 1383 * here is re-lookup the top-level neigh in the path so 1384 * we can reinject the packet there. 1385 */ 1386 n2 = NULL; 1387 if (dst && dst->obsolete != DST_OBSOLETE_DEAD) { 1388 n2 = dst_neigh_lookup_skb(dst, skb); 1389 if (n2) 1390 n1 = n2; 1391 } 1392 n1->output(n1, skb); 1393 if (n2) 1394 neigh_release(n2); 1395 rcu_read_unlock(); 1396 1397 write_lock_bh(&neigh->lock); 1398 } 1399 __skb_queue_purge(&neigh->arp_queue); 1400 neigh->arp_queue_len_bytes = 0; 1401 } 1402 out: 1403 if (update_isrouter) 1404 neigh_update_is_router(neigh, flags, ¬ify); 1405 write_unlock_bh(&neigh->lock); 1406 1407 if (((new ^ old) & NUD_PERMANENT) || ext_learn_change) 1408 neigh_update_gc_list(neigh); 1409 1410 if (notify) 1411 neigh_update_notify(neigh, nlmsg_pid); 1412 1413 trace_neigh_update_done(neigh, err); 1414 1415 return err; 1416 } 1417 1418 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 1419 u32 flags, u32 nlmsg_pid) 1420 { 1421 return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL); 1422 } 1423 EXPORT_SYMBOL(neigh_update); 1424 1425 /* Update the neigh to listen temporarily for probe responses, even if it is 1426 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing. 1427 */ 1428 void __neigh_set_probe_once(struct neighbour *neigh) 1429 { 1430 if (neigh->dead) 1431 return; 1432 neigh->updated = jiffies; 1433 if (!(neigh->nud_state & NUD_FAILED)) 1434 return; 1435 neigh->nud_state = NUD_INCOMPLETE; 1436 atomic_set(&neigh->probes, neigh_max_probes(neigh)); 1437 neigh_add_timer(neigh, 1438 jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1439 HZ/100)); 1440 } 1441 EXPORT_SYMBOL(__neigh_set_probe_once); 1442 1443 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1444 u8 *lladdr, void *saddr, 1445 struct net_device *dev) 1446 { 1447 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1448 lladdr || !dev->addr_len); 1449 if (neigh) 1450 neigh_update(neigh, lladdr, NUD_STALE, 1451 NEIGH_UPDATE_F_OVERRIDE, 0); 1452 return neigh; 1453 } 1454 EXPORT_SYMBOL(neigh_event_ns); 1455 1456 /* called with read_lock_bh(&n->lock); */ 1457 static void neigh_hh_init(struct neighbour *n) 1458 { 1459 struct net_device *dev = n->dev; 1460 __be16 prot = n->tbl->protocol; 1461 struct hh_cache *hh = &n->hh; 1462 1463 write_lock_bh(&n->lock); 1464 1465 /* Only one thread can come in here and initialize the 1466 * hh_cache entry. 1467 */ 1468 if (!hh->hh_len) 1469 dev->header_ops->cache(n, hh, prot); 1470 1471 write_unlock_bh(&n->lock); 1472 } 1473 1474 /* Slow and careful. */ 1475 1476 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) 1477 { 1478 int rc = 0; 1479 1480 if (!neigh_event_send(neigh, skb)) { 1481 int err; 1482 struct net_device *dev = neigh->dev; 1483 unsigned int seq; 1484 1485 if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len)) 1486 neigh_hh_init(neigh); 1487 1488 do { 1489 __skb_pull(skb, skb_network_offset(skb)); 1490 seq = read_seqbegin(&neigh->ha_lock); 1491 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1492 neigh->ha, NULL, skb->len); 1493 } while (read_seqretry(&neigh->ha_lock, seq)); 1494 1495 if (err >= 0) 1496 rc = dev_queue_xmit(skb); 1497 else 1498 goto out_kfree_skb; 1499 } 1500 out: 1501 return rc; 1502 out_kfree_skb: 1503 rc = -EINVAL; 1504 kfree_skb(skb); 1505 goto out; 1506 } 1507 EXPORT_SYMBOL(neigh_resolve_output); 1508 1509 /* As fast as possible without hh cache */ 1510 1511 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) 1512 { 1513 struct net_device *dev = neigh->dev; 1514 unsigned int seq; 1515 int err; 1516 1517 do { 1518 __skb_pull(skb, skb_network_offset(skb)); 1519 seq = read_seqbegin(&neigh->ha_lock); 1520 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1521 neigh->ha, NULL, skb->len); 1522 } while (read_seqretry(&neigh->ha_lock, seq)); 1523 1524 if (err >= 0) 1525 err = dev_queue_xmit(skb); 1526 else { 1527 err = -EINVAL; 1528 kfree_skb(skb); 1529 } 1530 return err; 1531 } 1532 EXPORT_SYMBOL(neigh_connected_output); 1533 1534 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) 1535 { 1536 return dev_queue_xmit(skb); 1537 } 1538 EXPORT_SYMBOL(neigh_direct_output); 1539 1540 static void neigh_proxy_process(struct timer_list *t) 1541 { 1542 struct neigh_table *tbl = from_timer(tbl, t, proxy_timer); 1543 long sched_next = 0; 1544 unsigned long now = jiffies; 1545 struct sk_buff *skb, *n; 1546 1547 spin_lock(&tbl->proxy_queue.lock); 1548 1549 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1550 long tdif = NEIGH_CB(skb)->sched_next - now; 1551 1552 if (tdif <= 0) { 1553 struct net_device *dev = skb->dev; 1554 1555 __skb_unlink(skb, &tbl->proxy_queue); 1556 if (tbl->proxy_redo && netif_running(dev)) { 1557 rcu_read_lock(); 1558 tbl->proxy_redo(skb); 1559 rcu_read_unlock(); 1560 } else { 1561 kfree_skb(skb); 1562 } 1563 1564 dev_put(dev); 1565 } else if (!sched_next || tdif < sched_next) 1566 sched_next = tdif; 1567 } 1568 del_timer(&tbl->proxy_timer); 1569 if (sched_next) 1570 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1571 spin_unlock(&tbl->proxy_queue.lock); 1572 } 1573 1574 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1575 struct sk_buff *skb) 1576 { 1577 unsigned long sched_next = jiffies + 1578 prandom_u32_max(NEIGH_VAR(p, PROXY_DELAY)); 1579 1580 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) { 1581 kfree_skb(skb); 1582 return; 1583 } 1584 1585 NEIGH_CB(skb)->sched_next = sched_next; 1586 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1587 1588 spin_lock(&tbl->proxy_queue.lock); 1589 if (del_timer(&tbl->proxy_timer)) { 1590 if (time_before(tbl->proxy_timer.expires, sched_next)) 1591 sched_next = tbl->proxy_timer.expires; 1592 } 1593 skb_dst_drop(skb); 1594 dev_hold(skb->dev); 1595 __skb_queue_tail(&tbl->proxy_queue, skb); 1596 mod_timer(&tbl->proxy_timer, sched_next); 1597 spin_unlock(&tbl->proxy_queue.lock); 1598 } 1599 EXPORT_SYMBOL(pneigh_enqueue); 1600 1601 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1602 struct net *net, int ifindex) 1603 { 1604 struct neigh_parms *p; 1605 1606 list_for_each_entry(p, &tbl->parms_list, list) { 1607 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1608 (!p->dev && !ifindex && net_eq(net, &init_net))) 1609 return p; 1610 } 1611 1612 return NULL; 1613 } 1614 1615 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1616 struct neigh_table *tbl) 1617 { 1618 struct neigh_parms *p; 1619 struct net *net = dev_net(dev); 1620 const struct net_device_ops *ops = dev->netdev_ops; 1621 1622 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL); 1623 if (p) { 1624 p->tbl = tbl; 1625 refcount_set(&p->refcnt, 1); 1626 p->reachable_time = 1627 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 1628 dev_hold(dev); 1629 p->dev = dev; 1630 write_pnet(&p->net, net); 1631 p->sysctl_table = NULL; 1632 1633 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1634 dev_put(dev); 1635 kfree(p); 1636 return NULL; 1637 } 1638 1639 write_lock_bh(&tbl->lock); 1640 list_add(&p->list, &tbl->parms.list); 1641 write_unlock_bh(&tbl->lock); 1642 1643 neigh_parms_data_state_cleanall(p); 1644 } 1645 return p; 1646 } 1647 EXPORT_SYMBOL(neigh_parms_alloc); 1648 1649 static void neigh_rcu_free_parms(struct rcu_head *head) 1650 { 1651 struct neigh_parms *parms = 1652 container_of(head, struct neigh_parms, rcu_head); 1653 1654 neigh_parms_put(parms); 1655 } 1656 1657 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1658 { 1659 if (!parms || parms == &tbl->parms) 1660 return; 1661 write_lock_bh(&tbl->lock); 1662 list_del(&parms->list); 1663 parms->dead = 1; 1664 write_unlock_bh(&tbl->lock); 1665 if (parms->dev) 1666 dev_put(parms->dev); 1667 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1668 } 1669 EXPORT_SYMBOL(neigh_parms_release); 1670 1671 static void neigh_parms_destroy(struct neigh_parms *parms) 1672 { 1673 kfree(parms); 1674 } 1675 1676 static struct lock_class_key neigh_table_proxy_queue_class; 1677 1678 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly; 1679 1680 void neigh_table_init(int index, struct neigh_table *tbl) 1681 { 1682 unsigned long now = jiffies; 1683 unsigned long phsize; 1684 1685 INIT_LIST_HEAD(&tbl->parms_list); 1686 INIT_LIST_HEAD(&tbl->gc_list); 1687 list_add(&tbl->parms.list, &tbl->parms_list); 1688 write_pnet(&tbl->parms.net, &init_net); 1689 refcount_set(&tbl->parms.refcnt, 1); 1690 tbl->parms.reachable_time = 1691 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME)); 1692 1693 tbl->stats = alloc_percpu(struct neigh_statistics); 1694 if (!tbl->stats) 1695 panic("cannot create neighbour cache statistics"); 1696 1697 #ifdef CONFIG_PROC_FS 1698 if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat, 1699 &neigh_stat_seq_ops, tbl)) 1700 panic("cannot create neighbour proc dir entry"); 1701 #endif 1702 1703 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); 1704 1705 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1706 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1707 1708 if (!tbl->nht || !tbl->phash_buckets) 1709 panic("cannot allocate neighbour cache hashes"); 1710 1711 if (!tbl->entry_size) 1712 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) + 1713 tbl->key_len, NEIGH_PRIV_ALIGN); 1714 else 1715 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN); 1716 1717 rwlock_init(&tbl->lock); 1718 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work); 1719 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 1720 tbl->parms.reachable_time); 1721 timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0); 1722 skb_queue_head_init_class(&tbl->proxy_queue, 1723 &neigh_table_proxy_queue_class); 1724 1725 tbl->last_flush = now; 1726 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1727 1728 neigh_tables[index] = tbl; 1729 } 1730 EXPORT_SYMBOL(neigh_table_init); 1731 1732 int neigh_table_clear(int index, struct neigh_table *tbl) 1733 { 1734 neigh_tables[index] = NULL; 1735 /* It is not clean... Fix it to unload IPv6 module safely */ 1736 cancel_delayed_work_sync(&tbl->gc_work); 1737 del_timer_sync(&tbl->proxy_timer); 1738 pneigh_queue_purge(&tbl->proxy_queue); 1739 neigh_ifdown(tbl, NULL); 1740 if (atomic_read(&tbl->entries)) 1741 pr_crit("neighbour leakage\n"); 1742 1743 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, 1744 neigh_hash_free_rcu); 1745 tbl->nht = NULL; 1746 1747 kfree(tbl->phash_buckets); 1748 tbl->phash_buckets = NULL; 1749 1750 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1751 1752 free_percpu(tbl->stats); 1753 tbl->stats = NULL; 1754 1755 return 0; 1756 } 1757 EXPORT_SYMBOL(neigh_table_clear); 1758 1759 static struct neigh_table *neigh_find_table(int family) 1760 { 1761 struct neigh_table *tbl = NULL; 1762 1763 switch (family) { 1764 case AF_INET: 1765 tbl = neigh_tables[NEIGH_ARP_TABLE]; 1766 break; 1767 case AF_INET6: 1768 tbl = neigh_tables[NEIGH_ND_TABLE]; 1769 break; 1770 case AF_DECnet: 1771 tbl = neigh_tables[NEIGH_DN_TABLE]; 1772 break; 1773 } 1774 1775 return tbl; 1776 } 1777 1778 const struct nla_policy nda_policy[NDA_MAX+1] = { 1779 [NDA_UNSPEC] = { .strict_start_type = NDA_NH_ID }, 1780 [NDA_DST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1781 [NDA_LLADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1782 [NDA_CACHEINFO] = { .len = sizeof(struct nda_cacheinfo) }, 1783 [NDA_PROBES] = { .type = NLA_U32 }, 1784 [NDA_VLAN] = { .type = NLA_U16 }, 1785 [NDA_PORT] = { .type = NLA_U16 }, 1786 [NDA_VNI] = { .type = NLA_U32 }, 1787 [NDA_IFINDEX] = { .type = NLA_U32 }, 1788 [NDA_MASTER] = { .type = NLA_U32 }, 1789 [NDA_PROTOCOL] = { .type = NLA_U8 }, 1790 [NDA_NH_ID] = { .type = NLA_U32 }, 1791 [NDA_FDB_EXT_ATTRS] = { .type = NLA_NESTED }, 1792 }; 1793 1794 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, 1795 struct netlink_ext_ack *extack) 1796 { 1797 struct net *net = sock_net(skb->sk); 1798 struct ndmsg *ndm; 1799 struct nlattr *dst_attr; 1800 struct neigh_table *tbl; 1801 struct neighbour *neigh; 1802 struct net_device *dev = NULL; 1803 int err = -EINVAL; 1804 1805 ASSERT_RTNL(); 1806 if (nlmsg_len(nlh) < sizeof(*ndm)) 1807 goto out; 1808 1809 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1810 if (!dst_attr) { 1811 NL_SET_ERR_MSG(extack, "Network address not specified"); 1812 goto out; 1813 } 1814 1815 ndm = nlmsg_data(nlh); 1816 if (ndm->ndm_ifindex) { 1817 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1818 if (dev == NULL) { 1819 err = -ENODEV; 1820 goto out; 1821 } 1822 } 1823 1824 tbl = neigh_find_table(ndm->ndm_family); 1825 if (tbl == NULL) 1826 return -EAFNOSUPPORT; 1827 1828 if (nla_len(dst_attr) < (int)tbl->key_len) { 1829 NL_SET_ERR_MSG(extack, "Invalid network address"); 1830 goto out; 1831 } 1832 1833 if (ndm->ndm_flags & NTF_PROXY) { 1834 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1835 goto out; 1836 } 1837 1838 if (dev == NULL) 1839 goto out; 1840 1841 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1842 if (neigh == NULL) { 1843 err = -ENOENT; 1844 goto out; 1845 } 1846 1847 err = __neigh_update(neigh, NULL, NUD_FAILED, 1848 NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN, 1849 NETLINK_CB(skb).portid, extack); 1850 write_lock_bh(&tbl->lock); 1851 neigh_release(neigh); 1852 neigh_remove_one(neigh, tbl); 1853 write_unlock_bh(&tbl->lock); 1854 1855 out: 1856 return err; 1857 } 1858 1859 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, 1860 struct netlink_ext_ack *extack) 1861 { 1862 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE | 1863 NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1864 struct net *net = sock_net(skb->sk); 1865 struct ndmsg *ndm; 1866 struct nlattr *tb[NDA_MAX+1]; 1867 struct neigh_table *tbl; 1868 struct net_device *dev = NULL; 1869 struct neighbour *neigh; 1870 void *dst, *lladdr; 1871 u8 protocol = 0; 1872 int err; 1873 1874 ASSERT_RTNL(); 1875 err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX, 1876 nda_policy, extack); 1877 if (err < 0) 1878 goto out; 1879 1880 err = -EINVAL; 1881 if (!tb[NDA_DST]) { 1882 NL_SET_ERR_MSG(extack, "Network address not specified"); 1883 goto out; 1884 } 1885 1886 ndm = nlmsg_data(nlh); 1887 if (ndm->ndm_ifindex) { 1888 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1889 if (dev == NULL) { 1890 err = -ENODEV; 1891 goto out; 1892 } 1893 1894 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) { 1895 NL_SET_ERR_MSG(extack, "Invalid link address"); 1896 goto out; 1897 } 1898 } 1899 1900 tbl = neigh_find_table(ndm->ndm_family); 1901 if (tbl == NULL) 1902 return -EAFNOSUPPORT; 1903 1904 if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) { 1905 NL_SET_ERR_MSG(extack, "Invalid network address"); 1906 goto out; 1907 } 1908 1909 dst = nla_data(tb[NDA_DST]); 1910 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1911 1912 if (tb[NDA_PROTOCOL]) 1913 protocol = nla_get_u8(tb[NDA_PROTOCOL]); 1914 1915 if (ndm->ndm_flags & NTF_PROXY) { 1916 struct pneigh_entry *pn; 1917 1918 err = -ENOBUFS; 1919 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1920 if (pn) { 1921 pn->flags = ndm->ndm_flags; 1922 if (protocol) 1923 pn->protocol = protocol; 1924 err = 0; 1925 } 1926 goto out; 1927 } 1928 1929 if (!dev) { 1930 NL_SET_ERR_MSG(extack, "Device not specified"); 1931 goto out; 1932 } 1933 1934 if (tbl->allow_add && !tbl->allow_add(dev, extack)) { 1935 err = -EINVAL; 1936 goto out; 1937 } 1938 1939 neigh = neigh_lookup(tbl, dst, dev); 1940 if (neigh == NULL) { 1941 bool exempt_from_gc; 1942 1943 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1944 err = -ENOENT; 1945 goto out; 1946 } 1947 1948 exempt_from_gc = ndm->ndm_state & NUD_PERMANENT || 1949 ndm->ndm_flags & NTF_EXT_LEARNED; 1950 neigh = ___neigh_create(tbl, dst, dev, exempt_from_gc, true); 1951 if (IS_ERR(neigh)) { 1952 err = PTR_ERR(neigh); 1953 goto out; 1954 } 1955 } else { 1956 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1957 err = -EEXIST; 1958 neigh_release(neigh); 1959 goto out; 1960 } 1961 1962 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1963 flags &= ~(NEIGH_UPDATE_F_OVERRIDE | 1964 NEIGH_UPDATE_F_OVERRIDE_ISROUTER); 1965 } 1966 1967 if (protocol) 1968 neigh->protocol = protocol; 1969 1970 if (ndm->ndm_flags & NTF_EXT_LEARNED) 1971 flags |= NEIGH_UPDATE_F_EXT_LEARNED; 1972 1973 if (ndm->ndm_flags & NTF_ROUTER) 1974 flags |= NEIGH_UPDATE_F_ISROUTER; 1975 1976 if (ndm->ndm_flags & NTF_USE) { 1977 neigh_event_send(neigh, NULL); 1978 err = 0; 1979 } else 1980 err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags, 1981 NETLINK_CB(skb).portid, extack); 1982 1983 neigh_release(neigh); 1984 1985 out: 1986 return err; 1987 } 1988 1989 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1990 { 1991 struct nlattr *nest; 1992 1993 nest = nla_nest_start_noflag(skb, NDTA_PARMS); 1994 if (nest == NULL) 1995 return -ENOBUFS; 1996 1997 if ((parms->dev && 1998 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) || 1999 nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) || 2000 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, 2001 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) || 2002 /* approximative value for deprecated QUEUE_LEN (in packets) */ 2003 nla_put_u32(skb, NDTPA_QUEUE_LEN, 2004 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) || 2005 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) || 2006 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) || 2007 nla_put_u32(skb, NDTPA_UCAST_PROBES, 2008 NEIGH_VAR(parms, UCAST_PROBES)) || 2009 nla_put_u32(skb, NDTPA_MCAST_PROBES, 2010 NEIGH_VAR(parms, MCAST_PROBES)) || 2011 nla_put_u32(skb, NDTPA_MCAST_REPROBES, 2012 NEIGH_VAR(parms, MCAST_REPROBES)) || 2013 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time, 2014 NDTPA_PAD) || 2015 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME, 2016 NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) || 2017 nla_put_msecs(skb, NDTPA_GC_STALETIME, 2018 NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) || 2019 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME, 2020 NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) || 2021 nla_put_msecs(skb, NDTPA_RETRANS_TIME, 2022 NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) || 2023 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, 2024 NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) || 2025 nla_put_msecs(skb, NDTPA_PROXY_DELAY, 2026 NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) || 2027 nla_put_msecs(skb, NDTPA_LOCKTIME, 2028 NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD)) 2029 goto nla_put_failure; 2030 return nla_nest_end(skb, nest); 2031 2032 nla_put_failure: 2033 nla_nest_cancel(skb, nest); 2034 return -EMSGSIZE; 2035 } 2036 2037 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 2038 u32 pid, u32 seq, int type, int flags) 2039 { 2040 struct nlmsghdr *nlh; 2041 struct ndtmsg *ndtmsg; 2042 2043 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2044 if (nlh == NULL) 2045 return -EMSGSIZE; 2046 2047 ndtmsg = nlmsg_data(nlh); 2048 2049 read_lock_bh(&tbl->lock); 2050 ndtmsg->ndtm_family = tbl->family; 2051 ndtmsg->ndtm_pad1 = 0; 2052 ndtmsg->ndtm_pad2 = 0; 2053 2054 if (nla_put_string(skb, NDTA_NAME, tbl->id) || 2055 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval, NDTA_PAD) || 2056 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) || 2057 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) || 2058 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3)) 2059 goto nla_put_failure; 2060 { 2061 unsigned long now = jiffies; 2062 long flush_delta = now - tbl->last_flush; 2063 long rand_delta = now - tbl->last_rand; 2064 struct neigh_hash_table *nht; 2065 struct ndt_config ndc = { 2066 .ndtc_key_len = tbl->key_len, 2067 .ndtc_entry_size = tbl->entry_size, 2068 .ndtc_entries = atomic_read(&tbl->entries), 2069 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 2070 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 2071 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 2072 }; 2073 2074 rcu_read_lock_bh(); 2075 nht = rcu_dereference_bh(tbl->nht); 2076 ndc.ndtc_hash_rnd = nht->hash_rnd[0]; 2077 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); 2078 rcu_read_unlock_bh(); 2079 2080 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc)) 2081 goto nla_put_failure; 2082 } 2083 2084 { 2085 int cpu; 2086 struct ndt_stats ndst; 2087 2088 memset(&ndst, 0, sizeof(ndst)); 2089 2090 for_each_possible_cpu(cpu) { 2091 struct neigh_statistics *st; 2092 2093 st = per_cpu_ptr(tbl->stats, cpu); 2094 ndst.ndts_allocs += st->allocs; 2095 ndst.ndts_destroys += st->destroys; 2096 ndst.ndts_hash_grows += st->hash_grows; 2097 ndst.ndts_res_failed += st->res_failed; 2098 ndst.ndts_lookups += st->lookups; 2099 ndst.ndts_hits += st->hits; 2100 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 2101 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 2102 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 2103 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 2104 ndst.ndts_table_fulls += st->table_fulls; 2105 } 2106 2107 if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst, 2108 NDTA_PAD)) 2109 goto nla_put_failure; 2110 } 2111 2112 BUG_ON(tbl->parms.dev); 2113 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 2114 goto nla_put_failure; 2115 2116 read_unlock_bh(&tbl->lock); 2117 nlmsg_end(skb, nlh); 2118 return 0; 2119 2120 nla_put_failure: 2121 read_unlock_bh(&tbl->lock); 2122 nlmsg_cancel(skb, nlh); 2123 return -EMSGSIZE; 2124 } 2125 2126 static int neightbl_fill_param_info(struct sk_buff *skb, 2127 struct neigh_table *tbl, 2128 struct neigh_parms *parms, 2129 u32 pid, u32 seq, int type, 2130 unsigned int flags) 2131 { 2132 struct ndtmsg *ndtmsg; 2133 struct nlmsghdr *nlh; 2134 2135 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2136 if (nlh == NULL) 2137 return -EMSGSIZE; 2138 2139 ndtmsg = nlmsg_data(nlh); 2140 2141 read_lock_bh(&tbl->lock); 2142 ndtmsg->ndtm_family = tbl->family; 2143 ndtmsg->ndtm_pad1 = 0; 2144 ndtmsg->ndtm_pad2 = 0; 2145 2146 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 2147 neightbl_fill_parms(skb, parms) < 0) 2148 goto errout; 2149 2150 read_unlock_bh(&tbl->lock); 2151 nlmsg_end(skb, nlh); 2152 return 0; 2153 errout: 2154 read_unlock_bh(&tbl->lock); 2155 nlmsg_cancel(skb, nlh); 2156 return -EMSGSIZE; 2157 } 2158 2159 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 2160 [NDTA_NAME] = { .type = NLA_STRING }, 2161 [NDTA_THRESH1] = { .type = NLA_U32 }, 2162 [NDTA_THRESH2] = { .type = NLA_U32 }, 2163 [NDTA_THRESH3] = { .type = NLA_U32 }, 2164 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 2165 [NDTA_PARMS] = { .type = NLA_NESTED }, 2166 }; 2167 2168 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 2169 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 2170 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 2171 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 2172 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 2173 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 2174 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 2175 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 }, 2176 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 2177 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 2178 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 2179 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 2180 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 2181 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 2182 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 2183 }; 2184 2185 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, 2186 struct netlink_ext_ack *extack) 2187 { 2188 struct net *net = sock_net(skb->sk); 2189 struct neigh_table *tbl; 2190 struct ndtmsg *ndtmsg; 2191 struct nlattr *tb[NDTA_MAX+1]; 2192 bool found = false; 2193 int err, tidx; 2194 2195 err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 2196 nl_neightbl_policy, extack); 2197 if (err < 0) 2198 goto errout; 2199 2200 if (tb[NDTA_NAME] == NULL) { 2201 err = -EINVAL; 2202 goto errout; 2203 } 2204 2205 ndtmsg = nlmsg_data(nlh); 2206 2207 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2208 tbl = neigh_tables[tidx]; 2209 if (!tbl) 2210 continue; 2211 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 2212 continue; 2213 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) { 2214 found = true; 2215 break; 2216 } 2217 } 2218 2219 if (!found) 2220 return -ENOENT; 2221 2222 /* 2223 * We acquire tbl->lock to be nice to the periodic timers and 2224 * make sure they always see a consistent set of values. 2225 */ 2226 write_lock_bh(&tbl->lock); 2227 2228 if (tb[NDTA_PARMS]) { 2229 struct nlattr *tbp[NDTPA_MAX+1]; 2230 struct neigh_parms *p; 2231 int i, ifindex = 0; 2232 2233 err = nla_parse_nested_deprecated(tbp, NDTPA_MAX, 2234 tb[NDTA_PARMS], 2235 nl_ntbl_parm_policy, extack); 2236 if (err < 0) 2237 goto errout_tbl_lock; 2238 2239 if (tbp[NDTPA_IFINDEX]) 2240 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 2241 2242 p = lookup_neigh_parms(tbl, net, ifindex); 2243 if (p == NULL) { 2244 err = -ENOENT; 2245 goto errout_tbl_lock; 2246 } 2247 2248 for (i = 1; i <= NDTPA_MAX; i++) { 2249 if (tbp[i] == NULL) 2250 continue; 2251 2252 switch (i) { 2253 case NDTPA_QUEUE_LEN: 2254 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2255 nla_get_u32(tbp[i]) * 2256 SKB_TRUESIZE(ETH_FRAME_LEN)); 2257 break; 2258 case NDTPA_QUEUE_LENBYTES: 2259 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2260 nla_get_u32(tbp[i])); 2261 break; 2262 case NDTPA_PROXY_QLEN: 2263 NEIGH_VAR_SET(p, PROXY_QLEN, 2264 nla_get_u32(tbp[i])); 2265 break; 2266 case NDTPA_APP_PROBES: 2267 NEIGH_VAR_SET(p, APP_PROBES, 2268 nla_get_u32(tbp[i])); 2269 break; 2270 case NDTPA_UCAST_PROBES: 2271 NEIGH_VAR_SET(p, UCAST_PROBES, 2272 nla_get_u32(tbp[i])); 2273 break; 2274 case NDTPA_MCAST_PROBES: 2275 NEIGH_VAR_SET(p, MCAST_PROBES, 2276 nla_get_u32(tbp[i])); 2277 break; 2278 case NDTPA_MCAST_REPROBES: 2279 NEIGH_VAR_SET(p, MCAST_REPROBES, 2280 nla_get_u32(tbp[i])); 2281 break; 2282 case NDTPA_BASE_REACHABLE_TIME: 2283 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME, 2284 nla_get_msecs(tbp[i])); 2285 /* update reachable_time as well, otherwise, the change will 2286 * only be effective after the next time neigh_periodic_work 2287 * decides to recompute it (can be multiple minutes) 2288 */ 2289 p->reachable_time = 2290 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 2291 break; 2292 case NDTPA_GC_STALETIME: 2293 NEIGH_VAR_SET(p, GC_STALETIME, 2294 nla_get_msecs(tbp[i])); 2295 break; 2296 case NDTPA_DELAY_PROBE_TIME: 2297 NEIGH_VAR_SET(p, DELAY_PROBE_TIME, 2298 nla_get_msecs(tbp[i])); 2299 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 2300 break; 2301 case NDTPA_RETRANS_TIME: 2302 NEIGH_VAR_SET(p, RETRANS_TIME, 2303 nla_get_msecs(tbp[i])); 2304 break; 2305 case NDTPA_ANYCAST_DELAY: 2306 NEIGH_VAR_SET(p, ANYCAST_DELAY, 2307 nla_get_msecs(tbp[i])); 2308 break; 2309 case NDTPA_PROXY_DELAY: 2310 NEIGH_VAR_SET(p, PROXY_DELAY, 2311 nla_get_msecs(tbp[i])); 2312 break; 2313 case NDTPA_LOCKTIME: 2314 NEIGH_VAR_SET(p, LOCKTIME, 2315 nla_get_msecs(tbp[i])); 2316 break; 2317 } 2318 } 2319 } 2320 2321 err = -ENOENT; 2322 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] || 2323 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) && 2324 !net_eq(net, &init_net)) 2325 goto errout_tbl_lock; 2326 2327 if (tb[NDTA_THRESH1]) 2328 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 2329 2330 if (tb[NDTA_THRESH2]) 2331 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 2332 2333 if (tb[NDTA_THRESH3]) 2334 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 2335 2336 if (tb[NDTA_GC_INTERVAL]) 2337 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 2338 2339 err = 0; 2340 2341 errout_tbl_lock: 2342 write_unlock_bh(&tbl->lock); 2343 errout: 2344 return err; 2345 } 2346 2347 static int neightbl_valid_dump_info(const struct nlmsghdr *nlh, 2348 struct netlink_ext_ack *extack) 2349 { 2350 struct ndtmsg *ndtm; 2351 2352 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) { 2353 NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request"); 2354 return -EINVAL; 2355 } 2356 2357 ndtm = nlmsg_data(nlh); 2358 if (ndtm->ndtm_pad1 || ndtm->ndtm_pad2) { 2359 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request"); 2360 return -EINVAL; 2361 } 2362 2363 if (nlmsg_attrlen(nlh, sizeof(*ndtm))) { 2364 NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request"); 2365 return -EINVAL; 2366 } 2367 2368 return 0; 2369 } 2370 2371 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2372 { 2373 const struct nlmsghdr *nlh = cb->nlh; 2374 struct net *net = sock_net(skb->sk); 2375 int family, tidx, nidx = 0; 2376 int tbl_skip = cb->args[0]; 2377 int neigh_skip = cb->args[1]; 2378 struct neigh_table *tbl; 2379 2380 if (cb->strict_check) { 2381 int err = neightbl_valid_dump_info(nlh, cb->extack); 2382 2383 if (err < 0) 2384 return err; 2385 } 2386 2387 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2388 2389 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2390 struct neigh_parms *p; 2391 2392 tbl = neigh_tables[tidx]; 2393 if (!tbl) 2394 continue; 2395 2396 if (tidx < tbl_skip || (family && tbl->family != family)) 2397 continue; 2398 2399 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid, 2400 nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2401 NLM_F_MULTI) < 0) 2402 break; 2403 2404 nidx = 0; 2405 p = list_next_entry(&tbl->parms, list); 2406 list_for_each_entry_from(p, &tbl->parms_list, list) { 2407 if (!net_eq(neigh_parms_net(p), net)) 2408 continue; 2409 2410 if (nidx < neigh_skip) 2411 goto next; 2412 2413 if (neightbl_fill_param_info(skb, tbl, p, 2414 NETLINK_CB(cb->skb).portid, 2415 nlh->nlmsg_seq, 2416 RTM_NEWNEIGHTBL, 2417 NLM_F_MULTI) < 0) 2418 goto out; 2419 next: 2420 nidx++; 2421 } 2422 2423 neigh_skip = 0; 2424 } 2425 out: 2426 cb->args[0] = tidx; 2427 cb->args[1] = nidx; 2428 2429 return skb->len; 2430 } 2431 2432 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2433 u32 pid, u32 seq, int type, unsigned int flags) 2434 { 2435 unsigned long now = jiffies; 2436 struct nda_cacheinfo ci; 2437 struct nlmsghdr *nlh; 2438 struct ndmsg *ndm; 2439 2440 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2441 if (nlh == NULL) 2442 return -EMSGSIZE; 2443 2444 ndm = nlmsg_data(nlh); 2445 ndm->ndm_family = neigh->ops->family; 2446 ndm->ndm_pad1 = 0; 2447 ndm->ndm_pad2 = 0; 2448 ndm->ndm_flags = neigh->flags; 2449 ndm->ndm_type = neigh->type; 2450 ndm->ndm_ifindex = neigh->dev->ifindex; 2451 2452 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key)) 2453 goto nla_put_failure; 2454 2455 read_lock_bh(&neigh->lock); 2456 ndm->ndm_state = neigh->nud_state; 2457 if (neigh->nud_state & NUD_VALID) { 2458 char haddr[MAX_ADDR_LEN]; 2459 2460 neigh_ha_snapshot(haddr, neigh, neigh->dev); 2461 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { 2462 read_unlock_bh(&neigh->lock); 2463 goto nla_put_failure; 2464 } 2465 } 2466 2467 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2468 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2469 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2470 ci.ndm_refcnt = refcount_read(&neigh->refcnt) - 1; 2471 read_unlock_bh(&neigh->lock); 2472 2473 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) || 2474 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci)) 2475 goto nla_put_failure; 2476 2477 if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol)) 2478 goto nla_put_failure; 2479 2480 nlmsg_end(skb, nlh); 2481 return 0; 2482 2483 nla_put_failure: 2484 nlmsg_cancel(skb, nlh); 2485 return -EMSGSIZE; 2486 } 2487 2488 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, 2489 u32 pid, u32 seq, int type, unsigned int flags, 2490 struct neigh_table *tbl) 2491 { 2492 struct nlmsghdr *nlh; 2493 struct ndmsg *ndm; 2494 2495 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2496 if (nlh == NULL) 2497 return -EMSGSIZE; 2498 2499 ndm = nlmsg_data(nlh); 2500 ndm->ndm_family = tbl->family; 2501 ndm->ndm_pad1 = 0; 2502 ndm->ndm_pad2 = 0; 2503 ndm->ndm_flags = pn->flags | NTF_PROXY; 2504 ndm->ndm_type = RTN_UNICAST; 2505 ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0; 2506 ndm->ndm_state = NUD_NONE; 2507 2508 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key)) 2509 goto nla_put_failure; 2510 2511 if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol)) 2512 goto nla_put_failure; 2513 2514 nlmsg_end(skb, nlh); 2515 return 0; 2516 2517 nla_put_failure: 2518 nlmsg_cancel(skb, nlh); 2519 return -EMSGSIZE; 2520 } 2521 2522 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid) 2523 { 2524 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2525 __neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid); 2526 } 2527 2528 static bool neigh_master_filtered(struct net_device *dev, int master_idx) 2529 { 2530 struct net_device *master; 2531 2532 if (!master_idx) 2533 return false; 2534 2535 master = dev ? netdev_master_upper_dev_get(dev) : NULL; 2536 if (!master || master->ifindex != master_idx) 2537 return true; 2538 2539 return false; 2540 } 2541 2542 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx) 2543 { 2544 if (filter_idx && (!dev || dev->ifindex != filter_idx)) 2545 return true; 2546 2547 return false; 2548 } 2549 2550 struct neigh_dump_filter { 2551 int master_idx; 2552 int dev_idx; 2553 }; 2554 2555 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2556 struct netlink_callback *cb, 2557 struct neigh_dump_filter *filter) 2558 { 2559 struct net *net = sock_net(skb->sk); 2560 struct neighbour *n; 2561 int rc, h, s_h = cb->args[1]; 2562 int idx, s_idx = idx = cb->args[2]; 2563 struct neigh_hash_table *nht; 2564 unsigned int flags = NLM_F_MULTI; 2565 2566 if (filter->dev_idx || filter->master_idx) 2567 flags |= NLM_F_DUMP_FILTERED; 2568 2569 rcu_read_lock_bh(); 2570 nht = rcu_dereference_bh(tbl->nht); 2571 2572 for (h = s_h; h < (1 << nht->hash_shift); h++) { 2573 if (h > s_h) 2574 s_idx = 0; 2575 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; 2576 n != NULL; 2577 n = rcu_dereference_bh(n->next)) { 2578 if (idx < s_idx || !net_eq(dev_net(n->dev), net)) 2579 goto next; 2580 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2581 neigh_master_filtered(n->dev, filter->master_idx)) 2582 goto next; 2583 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2584 cb->nlh->nlmsg_seq, 2585 RTM_NEWNEIGH, 2586 flags) < 0) { 2587 rc = -1; 2588 goto out; 2589 } 2590 next: 2591 idx++; 2592 } 2593 } 2594 rc = skb->len; 2595 out: 2596 rcu_read_unlock_bh(); 2597 cb->args[1] = h; 2598 cb->args[2] = idx; 2599 return rc; 2600 } 2601 2602 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2603 struct netlink_callback *cb, 2604 struct neigh_dump_filter *filter) 2605 { 2606 struct pneigh_entry *n; 2607 struct net *net = sock_net(skb->sk); 2608 int rc, h, s_h = cb->args[3]; 2609 int idx, s_idx = idx = cb->args[4]; 2610 unsigned int flags = NLM_F_MULTI; 2611 2612 if (filter->dev_idx || filter->master_idx) 2613 flags |= NLM_F_DUMP_FILTERED; 2614 2615 read_lock_bh(&tbl->lock); 2616 2617 for (h = s_h; h <= PNEIGH_HASHMASK; h++) { 2618 if (h > s_h) 2619 s_idx = 0; 2620 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { 2621 if (idx < s_idx || pneigh_net(n) != net) 2622 goto next; 2623 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2624 neigh_master_filtered(n->dev, filter->master_idx)) 2625 goto next; 2626 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2627 cb->nlh->nlmsg_seq, 2628 RTM_NEWNEIGH, flags, tbl) < 0) { 2629 read_unlock_bh(&tbl->lock); 2630 rc = -1; 2631 goto out; 2632 } 2633 next: 2634 idx++; 2635 } 2636 } 2637 2638 read_unlock_bh(&tbl->lock); 2639 rc = skb->len; 2640 out: 2641 cb->args[3] = h; 2642 cb->args[4] = idx; 2643 return rc; 2644 2645 } 2646 2647 static int neigh_valid_dump_req(const struct nlmsghdr *nlh, 2648 bool strict_check, 2649 struct neigh_dump_filter *filter, 2650 struct netlink_ext_ack *extack) 2651 { 2652 struct nlattr *tb[NDA_MAX + 1]; 2653 int err, i; 2654 2655 if (strict_check) { 2656 struct ndmsg *ndm; 2657 2658 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2659 NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request"); 2660 return -EINVAL; 2661 } 2662 2663 ndm = nlmsg_data(nlh); 2664 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_ifindex || 2665 ndm->ndm_state || ndm->ndm_type) { 2666 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request"); 2667 return -EINVAL; 2668 } 2669 2670 if (ndm->ndm_flags & ~NTF_PROXY) { 2671 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request"); 2672 return -EINVAL; 2673 } 2674 2675 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), 2676 tb, NDA_MAX, nda_policy, 2677 extack); 2678 } else { 2679 err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb, 2680 NDA_MAX, nda_policy, extack); 2681 } 2682 if (err < 0) 2683 return err; 2684 2685 for (i = 0; i <= NDA_MAX; ++i) { 2686 if (!tb[i]) 2687 continue; 2688 2689 /* all new attributes should require strict_check */ 2690 switch (i) { 2691 case NDA_IFINDEX: 2692 filter->dev_idx = nla_get_u32(tb[i]); 2693 break; 2694 case NDA_MASTER: 2695 filter->master_idx = nla_get_u32(tb[i]); 2696 break; 2697 default: 2698 if (strict_check) { 2699 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request"); 2700 return -EINVAL; 2701 } 2702 } 2703 } 2704 2705 return 0; 2706 } 2707 2708 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2709 { 2710 const struct nlmsghdr *nlh = cb->nlh; 2711 struct neigh_dump_filter filter = {}; 2712 struct neigh_table *tbl; 2713 int t, family, s_t; 2714 int proxy = 0; 2715 int err; 2716 2717 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2718 2719 /* check for full ndmsg structure presence, family member is 2720 * the same for both structures 2721 */ 2722 if (nlmsg_len(nlh) >= sizeof(struct ndmsg) && 2723 ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY) 2724 proxy = 1; 2725 2726 err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack); 2727 if (err < 0 && cb->strict_check) 2728 return err; 2729 2730 s_t = cb->args[0]; 2731 2732 for (t = 0; t < NEIGH_NR_TABLES; t++) { 2733 tbl = neigh_tables[t]; 2734 2735 if (!tbl) 2736 continue; 2737 if (t < s_t || (family && tbl->family != family)) 2738 continue; 2739 if (t > s_t) 2740 memset(&cb->args[1], 0, sizeof(cb->args) - 2741 sizeof(cb->args[0])); 2742 if (proxy) 2743 err = pneigh_dump_table(tbl, skb, cb, &filter); 2744 else 2745 err = neigh_dump_table(tbl, skb, cb, &filter); 2746 if (err < 0) 2747 break; 2748 } 2749 2750 cb->args[0] = t; 2751 return skb->len; 2752 } 2753 2754 static int neigh_valid_get_req(const struct nlmsghdr *nlh, 2755 struct neigh_table **tbl, 2756 void **dst, int *dev_idx, u8 *ndm_flags, 2757 struct netlink_ext_ack *extack) 2758 { 2759 struct nlattr *tb[NDA_MAX + 1]; 2760 struct ndmsg *ndm; 2761 int err, i; 2762 2763 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2764 NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request"); 2765 return -EINVAL; 2766 } 2767 2768 ndm = nlmsg_data(nlh); 2769 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_state || 2770 ndm->ndm_type) { 2771 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request"); 2772 return -EINVAL; 2773 } 2774 2775 if (ndm->ndm_flags & ~NTF_PROXY) { 2776 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request"); 2777 return -EINVAL; 2778 } 2779 2780 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb, 2781 NDA_MAX, nda_policy, extack); 2782 if (err < 0) 2783 return err; 2784 2785 *ndm_flags = ndm->ndm_flags; 2786 *dev_idx = ndm->ndm_ifindex; 2787 *tbl = neigh_find_table(ndm->ndm_family); 2788 if (*tbl == NULL) { 2789 NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request"); 2790 return -EAFNOSUPPORT; 2791 } 2792 2793 for (i = 0; i <= NDA_MAX; ++i) { 2794 if (!tb[i]) 2795 continue; 2796 2797 switch (i) { 2798 case NDA_DST: 2799 if (nla_len(tb[i]) != (int)(*tbl)->key_len) { 2800 NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request"); 2801 return -EINVAL; 2802 } 2803 *dst = nla_data(tb[i]); 2804 break; 2805 default: 2806 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request"); 2807 return -EINVAL; 2808 } 2809 } 2810 2811 return 0; 2812 } 2813 2814 static inline size_t neigh_nlmsg_size(void) 2815 { 2816 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2817 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2818 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2819 + nla_total_size(sizeof(struct nda_cacheinfo)) 2820 + nla_total_size(4) /* NDA_PROBES */ 2821 + nla_total_size(1); /* NDA_PROTOCOL */ 2822 } 2823 2824 static int neigh_get_reply(struct net *net, struct neighbour *neigh, 2825 u32 pid, u32 seq) 2826 { 2827 struct sk_buff *skb; 2828 int err = 0; 2829 2830 skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL); 2831 if (!skb) 2832 return -ENOBUFS; 2833 2834 err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0); 2835 if (err) { 2836 kfree_skb(skb); 2837 goto errout; 2838 } 2839 2840 err = rtnl_unicast(skb, net, pid); 2841 errout: 2842 return err; 2843 } 2844 2845 static inline size_t pneigh_nlmsg_size(void) 2846 { 2847 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2848 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2849 + nla_total_size(1); /* NDA_PROTOCOL */ 2850 } 2851 2852 static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh, 2853 u32 pid, u32 seq, struct neigh_table *tbl) 2854 { 2855 struct sk_buff *skb; 2856 int err = 0; 2857 2858 skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL); 2859 if (!skb) 2860 return -ENOBUFS; 2861 2862 err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl); 2863 if (err) { 2864 kfree_skb(skb); 2865 goto errout; 2866 } 2867 2868 err = rtnl_unicast(skb, net, pid); 2869 errout: 2870 return err; 2871 } 2872 2873 static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2874 struct netlink_ext_ack *extack) 2875 { 2876 struct net *net = sock_net(in_skb->sk); 2877 struct net_device *dev = NULL; 2878 struct neigh_table *tbl = NULL; 2879 struct neighbour *neigh; 2880 void *dst = NULL; 2881 u8 ndm_flags = 0; 2882 int dev_idx = 0; 2883 int err; 2884 2885 err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags, 2886 extack); 2887 if (err < 0) 2888 return err; 2889 2890 if (dev_idx) { 2891 dev = __dev_get_by_index(net, dev_idx); 2892 if (!dev) { 2893 NL_SET_ERR_MSG(extack, "Unknown device ifindex"); 2894 return -ENODEV; 2895 } 2896 } 2897 2898 if (!dst) { 2899 NL_SET_ERR_MSG(extack, "Network address not specified"); 2900 return -EINVAL; 2901 } 2902 2903 if (ndm_flags & NTF_PROXY) { 2904 struct pneigh_entry *pn; 2905 2906 pn = pneigh_lookup(tbl, net, dst, dev, 0); 2907 if (!pn) { 2908 NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found"); 2909 return -ENOENT; 2910 } 2911 return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid, 2912 nlh->nlmsg_seq, tbl); 2913 } 2914 2915 if (!dev) { 2916 NL_SET_ERR_MSG(extack, "No device specified"); 2917 return -EINVAL; 2918 } 2919 2920 neigh = neigh_lookup(tbl, dst, dev); 2921 if (!neigh) { 2922 NL_SET_ERR_MSG(extack, "Neighbour entry not found"); 2923 return -ENOENT; 2924 } 2925 2926 err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid, 2927 nlh->nlmsg_seq); 2928 2929 neigh_release(neigh); 2930 2931 return err; 2932 } 2933 2934 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2935 { 2936 int chain; 2937 struct neigh_hash_table *nht; 2938 2939 rcu_read_lock_bh(); 2940 nht = rcu_dereference_bh(tbl->nht); 2941 2942 read_lock(&tbl->lock); /* avoid resizes */ 2943 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2944 struct neighbour *n; 2945 2946 for (n = rcu_dereference_bh(nht->hash_buckets[chain]); 2947 n != NULL; 2948 n = rcu_dereference_bh(n->next)) 2949 cb(n, cookie); 2950 } 2951 read_unlock(&tbl->lock); 2952 rcu_read_unlock_bh(); 2953 } 2954 EXPORT_SYMBOL(neigh_for_each); 2955 2956 /* The tbl->lock must be held as a writer and BH disabled. */ 2957 void __neigh_for_each_release(struct neigh_table *tbl, 2958 int (*cb)(struct neighbour *)) 2959 { 2960 int chain; 2961 struct neigh_hash_table *nht; 2962 2963 nht = rcu_dereference_protected(tbl->nht, 2964 lockdep_is_held(&tbl->lock)); 2965 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2966 struct neighbour *n; 2967 struct neighbour __rcu **np; 2968 2969 np = &nht->hash_buckets[chain]; 2970 while ((n = rcu_dereference_protected(*np, 2971 lockdep_is_held(&tbl->lock))) != NULL) { 2972 int release; 2973 2974 write_lock(&n->lock); 2975 release = cb(n); 2976 if (release) { 2977 rcu_assign_pointer(*np, 2978 rcu_dereference_protected(n->next, 2979 lockdep_is_held(&tbl->lock))); 2980 neigh_mark_dead(n); 2981 } else 2982 np = &n->next; 2983 write_unlock(&n->lock); 2984 if (release) 2985 neigh_cleanup_and_release(n); 2986 } 2987 } 2988 } 2989 EXPORT_SYMBOL(__neigh_for_each_release); 2990 2991 int neigh_xmit(int index, struct net_device *dev, 2992 const void *addr, struct sk_buff *skb) 2993 { 2994 int err = -EAFNOSUPPORT; 2995 if (likely(index < NEIGH_NR_TABLES)) { 2996 struct neigh_table *tbl; 2997 struct neighbour *neigh; 2998 2999 tbl = neigh_tables[index]; 3000 if (!tbl) 3001 goto out; 3002 rcu_read_lock_bh(); 3003 if (index == NEIGH_ARP_TABLE) { 3004 u32 key = *((u32 *)addr); 3005 3006 neigh = __ipv4_neigh_lookup_noref(dev, key); 3007 } else { 3008 neigh = __neigh_lookup_noref(tbl, addr, dev); 3009 } 3010 if (!neigh) 3011 neigh = __neigh_create(tbl, addr, dev, false); 3012 err = PTR_ERR(neigh); 3013 if (IS_ERR(neigh)) { 3014 rcu_read_unlock_bh(); 3015 goto out_kfree_skb; 3016 } 3017 err = neigh->output(neigh, skb); 3018 rcu_read_unlock_bh(); 3019 } 3020 else if (index == NEIGH_LINK_TABLE) { 3021 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 3022 addr, NULL, skb->len); 3023 if (err < 0) 3024 goto out_kfree_skb; 3025 err = dev_queue_xmit(skb); 3026 } 3027 out: 3028 return err; 3029 out_kfree_skb: 3030 kfree_skb(skb); 3031 goto out; 3032 } 3033 EXPORT_SYMBOL(neigh_xmit); 3034 3035 #ifdef CONFIG_PROC_FS 3036 3037 static struct neighbour *neigh_get_first(struct seq_file *seq) 3038 { 3039 struct neigh_seq_state *state = seq->private; 3040 struct net *net = seq_file_net(seq); 3041 struct neigh_hash_table *nht = state->nht; 3042 struct neighbour *n = NULL; 3043 int bucket; 3044 3045 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 3046 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { 3047 n = rcu_dereference_bh(nht->hash_buckets[bucket]); 3048 3049 while (n) { 3050 if (!net_eq(dev_net(n->dev), net)) 3051 goto next; 3052 if (state->neigh_sub_iter) { 3053 loff_t fakep = 0; 3054 void *v; 3055 3056 v = state->neigh_sub_iter(state, n, &fakep); 3057 if (!v) 3058 goto next; 3059 } 3060 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3061 break; 3062 if (n->nud_state & ~NUD_NOARP) 3063 break; 3064 next: 3065 n = rcu_dereference_bh(n->next); 3066 } 3067 3068 if (n) 3069 break; 3070 } 3071 state->bucket = bucket; 3072 3073 return n; 3074 } 3075 3076 static struct neighbour *neigh_get_next(struct seq_file *seq, 3077 struct neighbour *n, 3078 loff_t *pos) 3079 { 3080 struct neigh_seq_state *state = seq->private; 3081 struct net *net = seq_file_net(seq); 3082 struct neigh_hash_table *nht = state->nht; 3083 3084 if (state->neigh_sub_iter) { 3085 void *v = state->neigh_sub_iter(state, n, pos); 3086 if (v) 3087 return n; 3088 } 3089 n = rcu_dereference_bh(n->next); 3090 3091 while (1) { 3092 while (n) { 3093 if (!net_eq(dev_net(n->dev), net)) 3094 goto next; 3095 if (state->neigh_sub_iter) { 3096 void *v = state->neigh_sub_iter(state, n, pos); 3097 if (v) 3098 return n; 3099 goto next; 3100 } 3101 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3102 break; 3103 3104 if (n->nud_state & ~NUD_NOARP) 3105 break; 3106 next: 3107 n = rcu_dereference_bh(n->next); 3108 } 3109 3110 if (n) 3111 break; 3112 3113 if (++state->bucket >= (1 << nht->hash_shift)) 3114 break; 3115 3116 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); 3117 } 3118 3119 if (n && pos) 3120 --(*pos); 3121 return n; 3122 } 3123 3124 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 3125 { 3126 struct neighbour *n = neigh_get_first(seq); 3127 3128 if (n) { 3129 --(*pos); 3130 while (*pos) { 3131 n = neigh_get_next(seq, n, pos); 3132 if (!n) 3133 break; 3134 } 3135 } 3136 return *pos ? NULL : n; 3137 } 3138 3139 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 3140 { 3141 struct neigh_seq_state *state = seq->private; 3142 struct net *net = seq_file_net(seq); 3143 struct neigh_table *tbl = state->tbl; 3144 struct pneigh_entry *pn = NULL; 3145 int bucket; 3146 3147 state->flags |= NEIGH_SEQ_IS_PNEIGH; 3148 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 3149 pn = tbl->phash_buckets[bucket]; 3150 while (pn && !net_eq(pneigh_net(pn), net)) 3151 pn = pn->next; 3152 if (pn) 3153 break; 3154 } 3155 state->bucket = bucket; 3156 3157 return pn; 3158 } 3159 3160 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 3161 struct pneigh_entry *pn, 3162 loff_t *pos) 3163 { 3164 struct neigh_seq_state *state = seq->private; 3165 struct net *net = seq_file_net(seq); 3166 struct neigh_table *tbl = state->tbl; 3167 3168 do { 3169 pn = pn->next; 3170 } while (pn && !net_eq(pneigh_net(pn), net)); 3171 3172 while (!pn) { 3173 if (++state->bucket > PNEIGH_HASHMASK) 3174 break; 3175 pn = tbl->phash_buckets[state->bucket]; 3176 while (pn && !net_eq(pneigh_net(pn), net)) 3177 pn = pn->next; 3178 if (pn) 3179 break; 3180 } 3181 3182 if (pn && pos) 3183 --(*pos); 3184 3185 return pn; 3186 } 3187 3188 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 3189 { 3190 struct pneigh_entry *pn = pneigh_get_first(seq); 3191 3192 if (pn) { 3193 --(*pos); 3194 while (*pos) { 3195 pn = pneigh_get_next(seq, pn, pos); 3196 if (!pn) 3197 break; 3198 } 3199 } 3200 return *pos ? NULL : pn; 3201 } 3202 3203 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 3204 { 3205 struct neigh_seq_state *state = seq->private; 3206 void *rc; 3207 loff_t idxpos = *pos; 3208 3209 rc = neigh_get_idx(seq, &idxpos); 3210 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3211 rc = pneigh_get_idx(seq, &idxpos); 3212 3213 return rc; 3214 } 3215 3216 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 3217 __acquires(tbl->lock) 3218 __acquires(rcu_bh) 3219 { 3220 struct neigh_seq_state *state = seq->private; 3221 3222 state->tbl = tbl; 3223 state->bucket = 0; 3224 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 3225 3226 rcu_read_lock_bh(); 3227 state->nht = rcu_dereference_bh(tbl->nht); 3228 read_lock(&tbl->lock); 3229 3230 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 3231 } 3232 EXPORT_SYMBOL(neigh_seq_start); 3233 3234 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3235 { 3236 struct neigh_seq_state *state; 3237 void *rc; 3238 3239 if (v == SEQ_START_TOKEN) { 3240 rc = neigh_get_first(seq); 3241 goto out; 3242 } 3243 3244 state = seq->private; 3245 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 3246 rc = neigh_get_next(seq, v, NULL); 3247 if (rc) 3248 goto out; 3249 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3250 rc = pneigh_get_first(seq); 3251 } else { 3252 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 3253 rc = pneigh_get_next(seq, v, NULL); 3254 } 3255 out: 3256 ++(*pos); 3257 return rc; 3258 } 3259 EXPORT_SYMBOL(neigh_seq_next); 3260 3261 void neigh_seq_stop(struct seq_file *seq, void *v) 3262 __releases(tbl->lock) 3263 __releases(rcu_bh) 3264 { 3265 struct neigh_seq_state *state = seq->private; 3266 struct neigh_table *tbl = state->tbl; 3267 3268 read_unlock(&tbl->lock); 3269 rcu_read_unlock_bh(); 3270 } 3271 EXPORT_SYMBOL(neigh_seq_stop); 3272 3273 /* statistics via seq_file */ 3274 3275 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 3276 { 3277 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3278 int cpu; 3279 3280 if (*pos == 0) 3281 return SEQ_START_TOKEN; 3282 3283 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 3284 if (!cpu_possible(cpu)) 3285 continue; 3286 *pos = cpu+1; 3287 return per_cpu_ptr(tbl->stats, cpu); 3288 } 3289 return NULL; 3290 } 3291 3292 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3293 { 3294 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3295 int cpu; 3296 3297 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 3298 if (!cpu_possible(cpu)) 3299 continue; 3300 *pos = cpu+1; 3301 return per_cpu_ptr(tbl->stats, cpu); 3302 } 3303 (*pos)++; 3304 return NULL; 3305 } 3306 3307 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 3308 { 3309 3310 } 3311 3312 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 3313 { 3314 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3315 struct neigh_statistics *st = v; 3316 3317 if (v == SEQ_START_TOKEN) { 3318 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n"); 3319 return 0; 3320 } 3321 3322 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 3323 "%08lx %08lx %08lx %08lx %08lx %08lx\n", 3324 atomic_read(&tbl->entries), 3325 3326 st->allocs, 3327 st->destroys, 3328 st->hash_grows, 3329 3330 st->lookups, 3331 st->hits, 3332 3333 st->res_failed, 3334 3335 st->rcv_probes_mcast, 3336 st->rcv_probes_ucast, 3337 3338 st->periodic_gc_runs, 3339 st->forced_gc_runs, 3340 st->unres_discards, 3341 st->table_fulls 3342 ); 3343 3344 return 0; 3345 } 3346 3347 static const struct seq_operations neigh_stat_seq_ops = { 3348 .start = neigh_stat_seq_start, 3349 .next = neigh_stat_seq_next, 3350 .stop = neigh_stat_seq_stop, 3351 .show = neigh_stat_seq_show, 3352 }; 3353 #endif /* CONFIG_PROC_FS */ 3354 3355 static void __neigh_notify(struct neighbour *n, int type, int flags, 3356 u32 pid) 3357 { 3358 struct net *net = dev_net(n->dev); 3359 struct sk_buff *skb; 3360 int err = -ENOBUFS; 3361 3362 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 3363 if (skb == NULL) 3364 goto errout; 3365 3366 err = neigh_fill_info(skb, n, pid, 0, type, flags); 3367 if (err < 0) { 3368 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 3369 WARN_ON(err == -EMSGSIZE); 3370 kfree_skb(skb); 3371 goto errout; 3372 } 3373 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 3374 return; 3375 errout: 3376 if (err < 0) 3377 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 3378 } 3379 3380 void neigh_app_ns(struct neighbour *n) 3381 { 3382 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0); 3383 } 3384 EXPORT_SYMBOL(neigh_app_ns); 3385 3386 #ifdef CONFIG_SYSCTL 3387 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN); 3388 3389 static int proc_unres_qlen(struct ctl_table *ctl, int write, 3390 void *buffer, size_t *lenp, loff_t *ppos) 3391 { 3392 int size, ret; 3393 struct ctl_table tmp = *ctl; 3394 3395 tmp.extra1 = SYSCTL_ZERO; 3396 tmp.extra2 = &unres_qlen_max; 3397 tmp.data = &size; 3398 3399 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN); 3400 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3401 3402 if (write && !ret) 3403 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); 3404 return ret; 3405 } 3406 3407 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev, 3408 int family) 3409 { 3410 switch (family) { 3411 case AF_INET: 3412 return __in_dev_arp_parms_get_rcu(dev); 3413 case AF_INET6: 3414 return __in6_dev_nd_parms_get_rcu(dev); 3415 } 3416 return NULL; 3417 } 3418 3419 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p, 3420 int index) 3421 { 3422 struct net_device *dev; 3423 int family = neigh_parms_family(p); 3424 3425 rcu_read_lock(); 3426 for_each_netdev_rcu(net, dev) { 3427 struct neigh_parms *dst_p = 3428 neigh_get_dev_parms_rcu(dev, family); 3429 3430 if (dst_p && !test_bit(index, dst_p->data_state)) 3431 dst_p->data[index] = p->data[index]; 3432 } 3433 rcu_read_unlock(); 3434 } 3435 3436 static void neigh_proc_update(struct ctl_table *ctl, int write) 3437 { 3438 struct net_device *dev = ctl->extra1; 3439 struct neigh_parms *p = ctl->extra2; 3440 struct net *net = neigh_parms_net(p); 3441 int index = (int *) ctl->data - p->data; 3442 3443 if (!write) 3444 return; 3445 3446 set_bit(index, p->data_state); 3447 if (index == NEIGH_VAR_DELAY_PROBE_TIME) 3448 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 3449 if (!dev) /* NULL dev means this is default value */ 3450 neigh_copy_dflt_parms(net, p, index); 3451 } 3452 3453 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write, 3454 void *buffer, size_t *lenp, 3455 loff_t *ppos) 3456 { 3457 struct ctl_table tmp = *ctl; 3458 int ret; 3459 3460 tmp.extra1 = SYSCTL_ZERO; 3461 tmp.extra2 = SYSCTL_INT_MAX; 3462 3463 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3464 neigh_proc_update(ctl, write); 3465 return ret; 3466 } 3467 3468 int neigh_proc_dointvec(struct ctl_table *ctl, int write, void *buffer, 3469 size_t *lenp, loff_t *ppos) 3470 { 3471 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 3472 3473 neigh_proc_update(ctl, write); 3474 return ret; 3475 } 3476 EXPORT_SYMBOL(neigh_proc_dointvec); 3477 3478 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, void *buffer, 3479 size_t *lenp, loff_t *ppos) 3480 { 3481 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3482 3483 neigh_proc_update(ctl, write); 3484 return ret; 3485 } 3486 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies); 3487 3488 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write, 3489 void *buffer, size_t *lenp, 3490 loff_t *ppos) 3491 { 3492 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos); 3493 3494 neigh_proc_update(ctl, write); 3495 return ret; 3496 } 3497 3498 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write, 3499 void *buffer, size_t *lenp, loff_t *ppos) 3500 { 3501 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3502 3503 neigh_proc_update(ctl, write); 3504 return ret; 3505 } 3506 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies); 3507 3508 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write, 3509 void *buffer, size_t *lenp, 3510 loff_t *ppos) 3511 { 3512 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos); 3513 3514 neigh_proc_update(ctl, write); 3515 return ret; 3516 } 3517 3518 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write, 3519 void *buffer, size_t *lenp, 3520 loff_t *ppos) 3521 { 3522 struct neigh_parms *p = ctl->extra2; 3523 int ret; 3524 3525 if (strcmp(ctl->procname, "base_reachable_time") == 0) 3526 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3527 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0) 3528 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3529 else 3530 ret = -1; 3531 3532 if (write && ret == 0) { 3533 /* update reachable_time as well, otherwise, the change will 3534 * only be effective after the next time neigh_periodic_work 3535 * decides to recompute it 3536 */ 3537 p->reachable_time = 3538 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 3539 } 3540 return ret; 3541 } 3542 3543 #define NEIGH_PARMS_DATA_OFFSET(index) \ 3544 (&((struct neigh_parms *) 0)->data[index]) 3545 3546 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \ 3547 [NEIGH_VAR_ ## attr] = { \ 3548 .procname = name, \ 3549 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \ 3550 .maxlen = sizeof(int), \ 3551 .mode = mval, \ 3552 .proc_handler = proc, \ 3553 } 3554 3555 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \ 3556 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax) 3557 3558 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \ 3559 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies) 3560 3561 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \ 3562 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies) 3563 3564 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \ 3565 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies) 3566 3567 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \ 3568 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen) 3569 3570 static struct neigh_sysctl_table { 3571 struct ctl_table_header *sysctl_header; 3572 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1]; 3573 } neigh_sysctl_template __read_mostly = { 3574 .neigh_vars = { 3575 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"), 3576 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"), 3577 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"), 3578 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"), 3579 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"), 3580 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"), 3581 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"), 3582 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"), 3583 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"), 3584 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"), 3585 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"), 3586 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"), 3587 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"), 3588 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"), 3589 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"), 3590 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"), 3591 [NEIGH_VAR_GC_INTERVAL] = { 3592 .procname = "gc_interval", 3593 .maxlen = sizeof(int), 3594 .mode = 0644, 3595 .proc_handler = proc_dointvec_jiffies, 3596 }, 3597 [NEIGH_VAR_GC_THRESH1] = { 3598 .procname = "gc_thresh1", 3599 .maxlen = sizeof(int), 3600 .mode = 0644, 3601 .extra1 = SYSCTL_ZERO, 3602 .extra2 = SYSCTL_INT_MAX, 3603 .proc_handler = proc_dointvec_minmax, 3604 }, 3605 [NEIGH_VAR_GC_THRESH2] = { 3606 .procname = "gc_thresh2", 3607 .maxlen = sizeof(int), 3608 .mode = 0644, 3609 .extra1 = SYSCTL_ZERO, 3610 .extra2 = SYSCTL_INT_MAX, 3611 .proc_handler = proc_dointvec_minmax, 3612 }, 3613 [NEIGH_VAR_GC_THRESH3] = { 3614 .procname = "gc_thresh3", 3615 .maxlen = sizeof(int), 3616 .mode = 0644, 3617 .extra1 = SYSCTL_ZERO, 3618 .extra2 = SYSCTL_INT_MAX, 3619 .proc_handler = proc_dointvec_minmax, 3620 }, 3621 {}, 3622 }, 3623 }; 3624 3625 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 3626 proc_handler *handler) 3627 { 3628 int i; 3629 struct neigh_sysctl_table *t; 3630 const char *dev_name_source; 3631 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ]; 3632 char *p_name; 3633 3634 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 3635 if (!t) 3636 goto err; 3637 3638 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) { 3639 t->neigh_vars[i].data += (long) p; 3640 t->neigh_vars[i].extra1 = dev; 3641 t->neigh_vars[i].extra2 = p; 3642 } 3643 3644 if (dev) { 3645 dev_name_source = dev->name; 3646 /* Terminate the table early */ 3647 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0, 3648 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL])); 3649 } else { 3650 struct neigh_table *tbl = p->tbl; 3651 dev_name_source = "default"; 3652 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval; 3653 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1; 3654 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2; 3655 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3; 3656 } 3657 3658 if (handler) { 3659 /* RetransTime */ 3660 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; 3661 /* ReachableTime */ 3662 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; 3663 /* RetransTime (in milliseconds)*/ 3664 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; 3665 /* ReachableTime (in milliseconds) */ 3666 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; 3667 } else { 3668 /* Those handlers will update p->reachable_time after 3669 * base_reachable_time(_ms) is set to ensure the new timer starts being 3670 * applied after the next neighbour update instead of waiting for 3671 * neigh_periodic_work to update its value (can be multiple minutes) 3672 * So any handler that replaces them should do this as well 3673 */ 3674 /* ReachableTime */ 3675 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = 3676 neigh_proc_base_reachable_time; 3677 /* ReachableTime (in milliseconds) */ 3678 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = 3679 neigh_proc_base_reachable_time; 3680 } 3681 3682 /* Don't export sysctls to unprivileged users */ 3683 if (neigh_parms_net(p)->user_ns != &init_user_ns) 3684 t->neigh_vars[0].procname = NULL; 3685 3686 switch (neigh_parms_family(p)) { 3687 case AF_INET: 3688 p_name = "ipv4"; 3689 break; 3690 case AF_INET6: 3691 p_name = "ipv6"; 3692 break; 3693 default: 3694 BUG(); 3695 } 3696 3697 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s", 3698 p_name, dev_name_source); 3699 t->sysctl_header = 3700 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars); 3701 if (!t->sysctl_header) 3702 goto free; 3703 3704 p->sysctl_table = t; 3705 return 0; 3706 3707 free: 3708 kfree(t); 3709 err: 3710 return -ENOBUFS; 3711 } 3712 EXPORT_SYMBOL(neigh_sysctl_register); 3713 3714 void neigh_sysctl_unregister(struct neigh_parms *p) 3715 { 3716 if (p->sysctl_table) { 3717 struct neigh_sysctl_table *t = p->sysctl_table; 3718 p->sysctl_table = NULL; 3719 unregister_net_sysctl_table(t->sysctl_header); 3720 kfree(t); 3721 } 3722 } 3723 EXPORT_SYMBOL(neigh_sysctl_unregister); 3724 3725 #endif /* CONFIG_SYSCTL */ 3726 3727 static int __init neigh_init(void) 3728 { 3729 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0); 3730 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0); 3731 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info, 0); 3732 3733 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, 3734 0); 3735 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0); 3736 3737 return 0; 3738 } 3739 3740 subsys_initcall(neigh_init); 3741