1 /* 2 * Generic address resolution entity 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Fixes: 14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 15 * Harald Welte Add neighbour cache statistics like rtstat 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/socket.h> 22 #include <linux/netdevice.h> 23 #include <linux/proc_fs.h> 24 #ifdef CONFIG_SYSCTL 25 #include <linux/sysctl.h> 26 #endif 27 #include <linux/times.h> 28 #include <net/net_namespace.h> 29 #include <net/neighbour.h> 30 #include <net/dst.h> 31 #include <net/sock.h> 32 #include <net/netevent.h> 33 #include <net/netlink.h> 34 #include <linux/rtnetlink.h> 35 #include <linux/random.h> 36 #include <linux/string.h> 37 #include <linux/log2.h> 38 39 #define NEIGH_DEBUG 1 40 41 #define NEIGH_PRINTK(x...) printk(x) 42 #define NEIGH_NOPRINTK(x...) do { ; } while(0) 43 #define NEIGH_PRINTK0 NEIGH_PRINTK 44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK 45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK 46 47 #if NEIGH_DEBUG >= 1 48 #undef NEIGH_PRINTK1 49 #define NEIGH_PRINTK1 NEIGH_PRINTK 50 #endif 51 #if NEIGH_DEBUG >= 2 52 #undef NEIGH_PRINTK2 53 #define NEIGH_PRINTK2 NEIGH_PRINTK 54 #endif 55 56 #define PNEIGH_HASHMASK 0xF 57 58 static void neigh_timer_handler(unsigned long arg); 59 static void __neigh_notify(struct neighbour *n, int type, int flags); 60 static void neigh_update_notify(struct neighbour *neigh); 61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev); 62 63 static struct neigh_table *neigh_tables; 64 #ifdef CONFIG_PROC_FS 65 static const struct file_operations neigh_stat_seq_fops; 66 #endif 67 68 /* 69 Neighbour hash table buckets are protected with rwlock tbl->lock. 70 71 - All the scans/updates to hash buckets MUST be made under this lock. 72 - NOTHING clever should be made under this lock: no callbacks 73 to protocol backends, no attempts to send something to network. 74 It will result in deadlocks, if backend/driver wants to use neighbour 75 cache. 76 - If the entry requires some non-trivial actions, increase 77 its reference count and release table lock. 78 79 Neighbour entries are protected: 80 - with reference count. 81 - with rwlock neigh->lock 82 83 Reference count prevents destruction. 84 85 neigh->lock mainly serializes ll address data and its validity state. 86 However, the same lock is used to protect another entry fields: 87 - timer 88 - resolution queue 89 90 Again, nothing clever shall be made under neigh->lock, 91 the most complicated procedure, which we allow is dev->hard_header. 92 It is supposed, that dev->hard_header is simplistic and does 93 not make callbacks to neighbour tables. 94 95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting 96 list of neighbour tables. This list is used only in process context, 97 */ 98 99 static DEFINE_RWLOCK(neigh_tbl_lock); 100 101 static int neigh_blackhole(struct sk_buff *skb) 102 { 103 kfree_skb(skb); 104 return -ENETDOWN; 105 } 106 107 static void neigh_cleanup_and_release(struct neighbour *neigh) 108 { 109 if (neigh->parms->neigh_cleanup) 110 neigh->parms->neigh_cleanup(neigh); 111 112 __neigh_notify(neigh, RTM_DELNEIGH, 0); 113 neigh_release(neigh); 114 } 115 116 /* 117 * It is random distribution in the interval (1/2)*base...(3/2)*base. 118 * It corresponds to default IPv6 settings and is not overridable, 119 * because it is really reasonable choice. 120 */ 121 122 unsigned long neigh_rand_reach_time(unsigned long base) 123 { 124 return (base ? (net_random() % base) + (base >> 1) : 0); 125 } 126 EXPORT_SYMBOL(neigh_rand_reach_time); 127 128 129 static int neigh_forced_gc(struct neigh_table *tbl) 130 { 131 int shrunk = 0; 132 int i; 133 134 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 135 136 write_lock_bh(&tbl->lock); 137 for (i = 0; i <= tbl->hash_mask; i++) { 138 struct neighbour *n, **np; 139 140 np = &tbl->hash_buckets[i]; 141 while ((n = *np) != NULL) { 142 /* Neighbour record may be discarded if: 143 * - nobody refers to it. 144 * - it is not permanent 145 */ 146 write_lock(&n->lock); 147 if (atomic_read(&n->refcnt) == 1 && 148 !(n->nud_state & NUD_PERMANENT)) { 149 *np = n->next; 150 n->dead = 1; 151 shrunk = 1; 152 write_unlock(&n->lock); 153 neigh_cleanup_and_release(n); 154 continue; 155 } 156 write_unlock(&n->lock); 157 np = &n->next; 158 } 159 } 160 161 tbl->last_flush = jiffies; 162 163 write_unlock_bh(&tbl->lock); 164 165 return shrunk; 166 } 167 168 static void neigh_add_timer(struct neighbour *n, unsigned long when) 169 { 170 neigh_hold(n); 171 if (unlikely(mod_timer(&n->timer, when))) { 172 printk("NEIGH: BUG, double timer add, state is %x\n", 173 n->nud_state); 174 dump_stack(); 175 } 176 } 177 178 static int neigh_del_timer(struct neighbour *n) 179 { 180 if ((n->nud_state & NUD_IN_TIMER) && 181 del_timer(&n->timer)) { 182 neigh_release(n); 183 return 1; 184 } 185 return 0; 186 } 187 188 static void pneigh_queue_purge(struct sk_buff_head *list) 189 { 190 struct sk_buff *skb; 191 192 while ((skb = skb_dequeue(list)) != NULL) { 193 dev_put(skb->dev); 194 kfree_skb(skb); 195 } 196 } 197 198 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev) 199 { 200 int i; 201 202 for (i = 0; i <= tbl->hash_mask; i++) { 203 struct neighbour *n, **np = &tbl->hash_buckets[i]; 204 205 while ((n = *np) != NULL) { 206 if (dev && n->dev != dev) { 207 np = &n->next; 208 continue; 209 } 210 *np = n->next; 211 write_lock(&n->lock); 212 neigh_del_timer(n); 213 n->dead = 1; 214 215 if (atomic_read(&n->refcnt) != 1) { 216 /* The most unpleasant situation. 217 We must destroy neighbour entry, 218 but someone still uses it. 219 220 The destroy will be delayed until 221 the last user releases us, but 222 we must kill timers etc. and move 223 it to safe state. 224 */ 225 skb_queue_purge(&n->arp_queue); 226 n->output = neigh_blackhole; 227 if (n->nud_state & NUD_VALID) 228 n->nud_state = NUD_NOARP; 229 else 230 n->nud_state = NUD_NONE; 231 NEIGH_PRINTK2("neigh %p is stray.\n", n); 232 } 233 write_unlock(&n->lock); 234 neigh_cleanup_and_release(n); 235 } 236 } 237 } 238 239 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 240 { 241 write_lock_bh(&tbl->lock); 242 neigh_flush_dev(tbl, dev); 243 write_unlock_bh(&tbl->lock); 244 } 245 EXPORT_SYMBOL(neigh_changeaddr); 246 247 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 248 { 249 write_lock_bh(&tbl->lock); 250 neigh_flush_dev(tbl, dev); 251 pneigh_ifdown(tbl, dev); 252 write_unlock_bh(&tbl->lock); 253 254 del_timer_sync(&tbl->proxy_timer); 255 pneigh_queue_purge(&tbl->proxy_queue); 256 return 0; 257 } 258 EXPORT_SYMBOL(neigh_ifdown); 259 260 static struct neighbour *neigh_alloc(struct neigh_table *tbl) 261 { 262 struct neighbour *n = NULL; 263 unsigned long now = jiffies; 264 int entries; 265 266 entries = atomic_inc_return(&tbl->entries) - 1; 267 if (entries >= tbl->gc_thresh3 || 268 (entries >= tbl->gc_thresh2 && 269 time_after(now, tbl->last_flush + 5 * HZ))) { 270 if (!neigh_forced_gc(tbl) && 271 entries >= tbl->gc_thresh3) 272 goto out_entries; 273 } 274 275 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC); 276 if (!n) 277 goto out_entries; 278 279 skb_queue_head_init(&n->arp_queue); 280 rwlock_init(&n->lock); 281 n->updated = n->used = now; 282 n->nud_state = NUD_NONE; 283 n->output = neigh_blackhole; 284 n->parms = neigh_parms_clone(&tbl->parms); 285 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n); 286 287 NEIGH_CACHE_STAT_INC(tbl, allocs); 288 n->tbl = tbl; 289 atomic_set(&n->refcnt, 1); 290 n->dead = 1; 291 out: 292 return n; 293 294 out_entries: 295 atomic_dec(&tbl->entries); 296 goto out; 297 } 298 299 static struct neighbour **neigh_hash_alloc(unsigned int entries) 300 { 301 unsigned long size = entries * sizeof(struct neighbour *); 302 struct neighbour **ret; 303 304 if (size <= PAGE_SIZE) { 305 ret = kzalloc(size, GFP_ATOMIC); 306 } else { 307 ret = (struct neighbour **) 308 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size)); 309 } 310 return ret; 311 } 312 313 static void neigh_hash_free(struct neighbour **hash, unsigned int entries) 314 { 315 unsigned long size = entries * sizeof(struct neighbour *); 316 317 if (size <= PAGE_SIZE) 318 kfree(hash); 319 else 320 free_pages((unsigned long)hash, get_order(size)); 321 } 322 323 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries) 324 { 325 struct neighbour **new_hash, **old_hash; 326 unsigned int i, new_hash_mask, old_entries; 327 328 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 329 330 BUG_ON(!is_power_of_2(new_entries)); 331 new_hash = neigh_hash_alloc(new_entries); 332 if (!new_hash) 333 return; 334 335 old_entries = tbl->hash_mask + 1; 336 new_hash_mask = new_entries - 1; 337 old_hash = tbl->hash_buckets; 338 339 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 340 for (i = 0; i < old_entries; i++) { 341 struct neighbour *n, *next; 342 343 for (n = old_hash[i]; n; n = next) { 344 unsigned int hash_val = tbl->hash(n->primary_key, n->dev); 345 346 hash_val &= new_hash_mask; 347 next = n->next; 348 349 n->next = new_hash[hash_val]; 350 new_hash[hash_val] = n; 351 } 352 } 353 tbl->hash_buckets = new_hash; 354 tbl->hash_mask = new_hash_mask; 355 356 neigh_hash_free(old_hash, old_entries); 357 } 358 359 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 360 struct net_device *dev) 361 { 362 struct neighbour *n; 363 int key_len = tbl->key_len; 364 u32 hash_val; 365 366 NEIGH_CACHE_STAT_INC(tbl, lookups); 367 368 read_lock_bh(&tbl->lock); 369 hash_val = tbl->hash(pkey, dev); 370 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) { 371 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) { 372 neigh_hold(n); 373 NEIGH_CACHE_STAT_INC(tbl, hits); 374 break; 375 } 376 } 377 read_unlock_bh(&tbl->lock); 378 return n; 379 } 380 EXPORT_SYMBOL(neigh_lookup); 381 382 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 383 const void *pkey) 384 { 385 struct neighbour *n; 386 int key_len = tbl->key_len; 387 u32 hash_val; 388 389 NEIGH_CACHE_STAT_INC(tbl, lookups); 390 391 read_lock_bh(&tbl->lock); 392 hash_val = tbl->hash(pkey, NULL); 393 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) { 394 if (!memcmp(n->primary_key, pkey, key_len) && 395 net_eq(dev_net(n->dev), net)) { 396 neigh_hold(n); 397 NEIGH_CACHE_STAT_INC(tbl, hits); 398 break; 399 } 400 } 401 read_unlock_bh(&tbl->lock); 402 return n; 403 } 404 EXPORT_SYMBOL(neigh_lookup_nodev); 405 406 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, 407 struct net_device *dev) 408 { 409 u32 hash_val; 410 int key_len = tbl->key_len; 411 int error; 412 struct neighbour *n1, *rc, *n = neigh_alloc(tbl); 413 414 if (!n) { 415 rc = ERR_PTR(-ENOBUFS); 416 goto out; 417 } 418 419 memcpy(n->primary_key, pkey, key_len); 420 n->dev = dev; 421 dev_hold(dev); 422 423 /* Protocol specific setup. */ 424 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 425 rc = ERR_PTR(error); 426 goto out_neigh_release; 427 } 428 429 /* Device specific setup. */ 430 if (n->parms->neigh_setup && 431 (error = n->parms->neigh_setup(n)) < 0) { 432 rc = ERR_PTR(error); 433 goto out_neigh_release; 434 } 435 436 n->confirmed = jiffies - (n->parms->base_reachable_time << 1); 437 438 write_lock_bh(&tbl->lock); 439 440 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1)) 441 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1); 442 443 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask; 444 445 if (n->parms->dead) { 446 rc = ERR_PTR(-EINVAL); 447 goto out_tbl_unlock; 448 } 449 450 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) { 451 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) { 452 neigh_hold(n1); 453 rc = n1; 454 goto out_tbl_unlock; 455 } 456 } 457 458 n->next = tbl->hash_buckets[hash_val]; 459 tbl->hash_buckets[hash_val] = n; 460 n->dead = 0; 461 neigh_hold(n); 462 write_unlock_bh(&tbl->lock); 463 NEIGH_PRINTK2("neigh %p is created.\n", n); 464 rc = n; 465 out: 466 return rc; 467 out_tbl_unlock: 468 write_unlock_bh(&tbl->lock); 469 out_neigh_release: 470 neigh_release(n); 471 goto out; 472 } 473 EXPORT_SYMBOL(neigh_create); 474 475 static u32 pneigh_hash(const void *pkey, int key_len) 476 { 477 u32 hash_val = *(u32 *)(pkey + key_len - 4); 478 hash_val ^= (hash_val >> 16); 479 hash_val ^= hash_val >> 8; 480 hash_val ^= hash_val >> 4; 481 hash_val &= PNEIGH_HASHMASK; 482 return hash_val; 483 } 484 485 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 486 struct net *net, 487 const void *pkey, 488 int key_len, 489 struct net_device *dev) 490 { 491 while (n) { 492 if (!memcmp(n->key, pkey, key_len) && 493 net_eq(pneigh_net(n), net) && 494 (n->dev == dev || !n->dev)) 495 return n; 496 n = n->next; 497 } 498 return NULL; 499 } 500 501 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 502 struct net *net, const void *pkey, struct net_device *dev) 503 { 504 int key_len = tbl->key_len; 505 u32 hash_val = pneigh_hash(pkey, key_len); 506 507 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 508 net, pkey, key_len, dev); 509 } 510 EXPORT_SYMBOL_GPL(__pneigh_lookup); 511 512 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 513 struct net *net, const void *pkey, 514 struct net_device *dev, int creat) 515 { 516 struct pneigh_entry *n; 517 int key_len = tbl->key_len; 518 u32 hash_val = pneigh_hash(pkey, key_len); 519 520 read_lock_bh(&tbl->lock); 521 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 522 net, pkey, key_len, dev); 523 read_unlock_bh(&tbl->lock); 524 525 if (n || !creat) 526 goto out; 527 528 ASSERT_RTNL(); 529 530 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 531 if (!n) 532 goto out; 533 534 #ifdef CONFIG_NET_NS 535 n->net = hold_net(net); 536 #endif 537 memcpy(n->key, pkey, key_len); 538 n->dev = dev; 539 if (dev) 540 dev_hold(dev); 541 542 if (tbl->pconstructor && tbl->pconstructor(n)) { 543 if (dev) 544 dev_put(dev); 545 release_net(net); 546 kfree(n); 547 n = NULL; 548 goto out; 549 } 550 551 write_lock_bh(&tbl->lock); 552 n->next = tbl->phash_buckets[hash_val]; 553 tbl->phash_buckets[hash_val] = n; 554 write_unlock_bh(&tbl->lock); 555 out: 556 return n; 557 } 558 EXPORT_SYMBOL(pneigh_lookup); 559 560 561 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 562 struct net_device *dev) 563 { 564 struct pneigh_entry *n, **np; 565 int key_len = tbl->key_len; 566 u32 hash_val = pneigh_hash(pkey, key_len); 567 568 write_lock_bh(&tbl->lock); 569 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 570 np = &n->next) { 571 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 572 net_eq(pneigh_net(n), net)) { 573 *np = n->next; 574 write_unlock_bh(&tbl->lock); 575 if (tbl->pdestructor) 576 tbl->pdestructor(n); 577 if (n->dev) 578 dev_put(n->dev); 579 release_net(pneigh_net(n)); 580 kfree(n); 581 return 0; 582 } 583 } 584 write_unlock_bh(&tbl->lock); 585 return -ENOENT; 586 } 587 588 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 589 { 590 struct pneigh_entry *n, **np; 591 u32 h; 592 593 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 594 np = &tbl->phash_buckets[h]; 595 while ((n = *np) != NULL) { 596 if (!dev || n->dev == dev) { 597 *np = n->next; 598 if (tbl->pdestructor) 599 tbl->pdestructor(n); 600 if (n->dev) 601 dev_put(n->dev); 602 release_net(pneigh_net(n)); 603 kfree(n); 604 continue; 605 } 606 np = &n->next; 607 } 608 } 609 return -ENOENT; 610 } 611 612 static void neigh_parms_destroy(struct neigh_parms *parms); 613 614 static inline void neigh_parms_put(struct neigh_parms *parms) 615 { 616 if (atomic_dec_and_test(&parms->refcnt)) 617 neigh_parms_destroy(parms); 618 } 619 620 /* 621 * neighbour must already be out of the table; 622 * 623 */ 624 void neigh_destroy(struct neighbour *neigh) 625 { 626 struct hh_cache *hh; 627 628 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 629 630 if (!neigh->dead) { 631 printk(KERN_WARNING 632 "Destroying alive neighbour %p\n", neigh); 633 dump_stack(); 634 return; 635 } 636 637 if (neigh_del_timer(neigh)) 638 printk(KERN_WARNING "Impossible event.\n"); 639 640 while ((hh = neigh->hh) != NULL) { 641 neigh->hh = hh->hh_next; 642 hh->hh_next = NULL; 643 644 write_seqlock_bh(&hh->hh_lock); 645 hh->hh_output = neigh_blackhole; 646 write_sequnlock_bh(&hh->hh_lock); 647 if (atomic_dec_and_test(&hh->hh_refcnt)) 648 kfree(hh); 649 } 650 651 skb_queue_purge(&neigh->arp_queue); 652 653 dev_put(neigh->dev); 654 neigh_parms_put(neigh->parms); 655 656 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh); 657 658 atomic_dec(&neigh->tbl->entries); 659 kmem_cache_free(neigh->tbl->kmem_cachep, neigh); 660 } 661 EXPORT_SYMBOL(neigh_destroy); 662 663 /* Neighbour state is suspicious; 664 disable fast path. 665 666 Called with write_locked neigh. 667 */ 668 static void neigh_suspect(struct neighbour *neigh) 669 { 670 struct hh_cache *hh; 671 672 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 673 674 neigh->output = neigh->ops->output; 675 676 for (hh = neigh->hh; hh; hh = hh->hh_next) 677 hh->hh_output = neigh->ops->output; 678 } 679 680 /* Neighbour state is OK; 681 enable fast path. 682 683 Called with write_locked neigh. 684 */ 685 static void neigh_connect(struct neighbour *neigh) 686 { 687 struct hh_cache *hh; 688 689 NEIGH_PRINTK2("neigh %p is connected.\n", neigh); 690 691 neigh->output = neigh->ops->connected_output; 692 693 for (hh = neigh->hh; hh; hh = hh->hh_next) 694 hh->hh_output = neigh->ops->hh_output; 695 } 696 697 static void neigh_periodic_timer(unsigned long arg) 698 { 699 struct neigh_table *tbl = (struct neigh_table *)arg; 700 struct neighbour *n, **np; 701 unsigned long expire, now = jiffies; 702 703 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 704 705 write_lock(&tbl->lock); 706 707 /* 708 * periodically recompute ReachableTime from random function 709 */ 710 711 if (time_after(now, tbl->last_rand + 300 * HZ)) { 712 struct neigh_parms *p; 713 tbl->last_rand = now; 714 for (p = &tbl->parms; p; p = p->next) 715 p->reachable_time = 716 neigh_rand_reach_time(p->base_reachable_time); 717 } 718 719 np = &tbl->hash_buckets[tbl->hash_chain_gc]; 720 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask); 721 722 while ((n = *np) != NULL) { 723 unsigned int state; 724 725 write_lock(&n->lock); 726 727 state = n->nud_state; 728 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) { 729 write_unlock(&n->lock); 730 goto next_elt; 731 } 732 733 if (time_before(n->used, n->confirmed)) 734 n->used = n->confirmed; 735 736 if (atomic_read(&n->refcnt) == 1 && 737 (state == NUD_FAILED || 738 time_after(now, n->used + n->parms->gc_staletime))) { 739 *np = n->next; 740 n->dead = 1; 741 write_unlock(&n->lock); 742 neigh_cleanup_and_release(n); 743 continue; 744 } 745 write_unlock(&n->lock); 746 747 next_elt: 748 np = &n->next; 749 } 750 751 /* Cycle through all hash buckets every base_reachable_time/2 ticks. 752 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2 753 * base_reachable_time. 754 */ 755 expire = tbl->parms.base_reachable_time >> 1; 756 expire /= (tbl->hash_mask + 1); 757 if (!expire) 758 expire = 1; 759 760 if (expire>HZ) 761 mod_timer(&tbl->gc_timer, round_jiffies(now + expire)); 762 else 763 mod_timer(&tbl->gc_timer, now + expire); 764 765 write_unlock(&tbl->lock); 766 } 767 768 static __inline__ int neigh_max_probes(struct neighbour *n) 769 { 770 struct neigh_parms *p = n->parms; 771 return (n->nud_state & NUD_PROBE ? 772 p->ucast_probes : 773 p->ucast_probes + p->app_probes + p->mcast_probes); 774 } 775 776 /* Called when a timer expires for a neighbour entry. */ 777 778 static void neigh_timer_handler(unsigned long arg) 779 { 780 unsigned long now, next; 781 struct neighbour *neigh = (struct neighbour *)arg; 782 unsigned state; 783 int notify = 0; 784 785 write_lock(&neigh->lock); 786 787 state = neigh->nud_state; 788 now = jiffies; 789 next = now + HZ; 790 791 if (!(state & NUD_IN_TIMER)) { 792 #ifndef CONFIG_SMP 793 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n"); 794 #endif 795 goto out; 796 } 797 798 if (state & NUD_REACHABLE) { 799 if (time_before_eq(now, 800 neigh->confirmed + neigh->parms->reachable_time)) { 801 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh); 802 next = neigh->confirmed + neigh->parms->reachable_time; 803 } else if (time_before_eq(now, 804 neigh->used + neigh->parms->delay_probe_time)) { 805 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 806 neigh->nud_state = NUD_DELAY; 807 neigh->updated = jiffies; 808 neigh_suspect(neigh); 809 next = now + neigh->parms->delay_probe_time; 810 } else { 811 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 812 neigh->nud_state = NUD_STALE; 813 neigh->updated = jiffies; 814 neigh_suspect(neigh); 815 notify = 1; 816 } 817 } else if (state & NUD_DELAY) { 818 if (time_before_eq(now, 819 neigh->confirmed + neigh->parms->delay_probe_time)) { 820 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh); 821 neigh->nud_state = NUD_REACHABLE; 822 neigh->updated = jiffies; 823 neigh_connect(neigh); 824 notify = 1; 825 next = neigh->confirmed + neigh->parms->reachable_time; 826 } else { 827 NEIGH_PRINTK2("neigh %p is probed.\n", neigh); 828 neigh->nud_state = NUD_PROBE; 829 neigh->updated = jiffies; 830 atomic_set(&neigh->probes, 0); 831 next = now + neigh->parms->retrans_time; 832 } 833 } else { 834 /* NUD_PROBE|NUD_INCOMPLETE */ 835 next = now + neigh->parms->retrans_time; 836 } 837 838 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 839 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 840 struct sk_buff *skb; 841 842 neigh->nud_state = NUD_FAILED; 843 neigh->updated = jiffies; 844 notify = 1; 845 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 846 NEIGH_PRINTK2("neigh %p is failed.\n", neigh); 847 848 /* It is very thin place. report_unreachable is very complicated 849 routine. Particularly, it can hit the same neighbour entry! 850 851 So that, we try to be accurate and avoid dead loop. --ANK 852 */ 853 while (neigh->nud_state == NUD_FAILED && 854 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 855 write_unlock(&neigh->lock); 856 neigh->ops->error_report(neigh, skb); 857 write_lock(&neigh->lock); 858 } 859 skb_queue_purge(&neigh->arp_queue); 860 } 861 862 if (neigh->nud_state & NUD_IN_TIMER) { 863 if (time_before(next, jiffies + HZ/2)) 864 next = jiffies + HZ/2; 865 if (!mod_timer(&neigh->timer, next)) 866 neigh_hold(neigh); 867 } 868 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 869 struct sk_buff *skb = skb_peek(&neigh->arp_queue); 870 /* keep skb alive even if arp_queue overflows */ 871 if (skb) 872 skb = skb_copy(skb, GFP_ATOMIC); 873 write_unlock(&neigh->lock); 874 neigh->ops->solicit(neigh, skb); 875 atomic_inc(&neigh->probes); 876 if (skb) 877 kfree_skb(skb); 878 } else { 879 out: 880 write_unlock(&neigh->lock); 881 } 882 883 if (notify) 884 neigh_update_notify(neigh); 885 886 neigh_release(neigh); 887 } 888 889 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 890 { 891 int rc; 892 unsigned long now; 893 894 write_lock_bh(&neigh->lock); 895 896 rc = 0; 897 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 898 goto out_unlock_bh; 899 900 now = jiffies; 901 902 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 903 if (neigh->parms->mcast_probes + neigh->parms->app_probes) { 904 atomic_set(&neigh->probes, neigh->parms->ucast_probes); 905 neigh->nud_state = NUD_INCOMPLETE; 906 neigh->updated = jiffies; 907 neigh_add_timer(neigh, now + 1); 908 } else { 909 neigh->nud_state = NUD_FAILED; 910 neigh->updated = jiffies; 911 write_unlock_bh(&neigh->lock); 912 913 if (skb) 914 kfree_skb(skb); 915 return 1; 916 } 917 } else if (neigh->nud_state & NUD_STALE) { 918 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 919 neigh->nud_state = NUD_DELAY; 920 neigh->updated = jiffies; 921 neigh_add_timer(neigh, 922 jiffies + neigh->parms->delay_probe_time); 923 } 924 925 if (neigh->nud_state == NUD_INCOMPLETE) { 926 if (skb) { 927 if (skb_queue_len(&neigh->arp_queue) >= 928 neigh->parms->queue_len) { 929 struct sk_buff *buff; 930 buff = __skb_dequeue(&neigh->arp_queue); 931 kfree_skb(buff); 932 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 933 } 934 __skb_queue_tail(&neigh->arp_queue, skb); 935 } 936 rc = 1; 937 } 938 out_unlock_bh: 939 write_unlock_bh(&neigh->lock); 940 return rc; 941 } 942 EXPORT_SYMBOL(__neigh_event_send); 943 944 static void neigh_update_hhs(struct neighbour *neigh) 945 { 946 struct hh_cache *hh; 947 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 948 = neigh->dev->header_ops->cache_update; 949 950 if (update) { 951 for (hh = neigh->hh; hh; hh = hh->hh_next) { 952 write_seqlock_bh(&hh->hh_lock); 953 update(hh, neigh->dev, neigh->ha); 954 write_sequnlock_bh(&hh->hh_lock); 955 } 956 } 957 } 958 959 960 961 /* Generic update routine. 962 -- lladdr is new lladdr or NULL, if it is not supplied. 963 -- new is new state. 964 -- flags 965 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 966 if it is different. 967 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 968 lladdr instead of overriding it 969 if it is different. 970 It also allows to retain current state 971 if lladdr is unchanged. 972 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 973 974 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 975 NTF_ROUTER flag. 976 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 977 a router. 978 979 Caller MUST hold reference count on the entry. 980 */ 981 982 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 983 u32 flags) 984 { 985 u8 old; 986 int err; 987 int notify = 0; 988 struct net_device *dev; 989 int update_isrouter = 0; 990 991 write_lock_bh(&neigh->lock); 992 993 dev = neigh->dev; 994 old = neigh->nud_state; 995 err = -EPERM; 996 997 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 998 (old & (NUD_NOARP | NUD_PERMANENT))) 999 goto out; 1000 1001 if (!(new & NUD_VALID)) { 1002 neigh_del_timer(neigh); 1003 if (old & NUD_CONNECTED) 1004 neigh_suspect(neigh); 1005 neigh->nud_state = new; 1006 err = 0; 1007 notify = old & NUD_VALID; 1008 goto out; 1009 } 1010 1011 /* Compare new lladdr with cached one */ 1012 if (!dev->addr_len) { 1013 /* First case: device needs no address. */ 1014 lladdr = neigh->ha; 1015 } else if (lladdr) { 1016 /* The second case: if something is already cached 1017 and a new address is proposed: 1018 - compare new & old 1019 - if they are different, check override flag 1020 */ 1021 if ((old & NUD_VALID) && 1022 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1023 lladdr = neigh->ha; 1024 } else { 1025 /* No address is supplied; if we know something, 1026 use it, otherwise discard the request. 1027 */ 1028 err = -EINVAL; 1029 if (!(old & NUD_VALID)) 1030 goto out; 1031 lladdr = neigh->ha; 1032 } 1033 1034 if (new & NUD_CONNECTED) 1035 neigh->confirmed = jiffies; 1036 neigh->updated = jiffies; 1037 1038 /* If entry was valid and address is not changed, 1039 do not change entry state, if new one is STALE. 1040 */ 1041 err = 0; 1042 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1043 if (old & NUD_VALID) { 1044 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1045 update_isrouter = 0; 1046 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1047 (old & NUD_CONNECTED)) { 1048 lladdr = neigh->ha; 1049 new = NUD_STALE; 1050 } else 1051 goto out; 1052 } else { 1053 if (lladdr == neigh->ha && new == NUD_STALE && 1054 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) || 1055 (old & NUD_CONNECTED)) 1056 ) 1057 new = old; 1058 } 1059 } 1060 1061 if (new != old) { 1062 neigh_del_timer(neigh); 1063 if (new & NUD_IN_TIMER) 1064 neigh_add_timer(neigh, (jiffies + 1065 ((new & NUD_REACHABLE) ? 1066 neigh->parms->reachable_time : 1067 0))); 1068 neigh->nud_state = new; 1069 } 1070 1071 if (lladdr != neigh->ha) { 1072 memcpy(&neigh->ha, lladdr, dev->addr_len); 1073 neigh_update_hhs(neigh); 1074 if (!(new & NUD_CONNECTED)) 1075 neigh->confirmed = jiffies - 1076 (neigh->parms->base_reachable_time << 1); 1077 notify = 1; 1078 } 1079 if (new == old) 1080 goto out; 1081 if (new & NUD_CONNECTED) 1082 neigh_connect(neigh); 1083 else 1084 neigh_suspect(neigh); 1085 if (!(old & NUD_VALID)) { 1086 struct sk_buff *skb; 1087 1088 /* Again: avoid dead loop if something went wrong */ 1089 1090 while (neigh->nud_state & NUD_VALID && 1091 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1092 struct neighbour *n1 = neigh; 1093 write_unlock_bh(&neigh->lock); 1094 /* On shaper/eql skb->dst->neighbour != neigh :( */ 1095 if (skb->dst && skb->dst->neighbour) 1096 n1 = skb->dst->neighbour; 1097 n1->output(skb); 1098 write_lock_bh(&neigh->lock); 1099 } 1100 skb_queue_purge(&neigh->arp_queue); 1101 } 1102 out: 1103 if (update_isrouter) { 1104 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ? 1105 (neigh->flags | NTF_ROUTER) : 1106 (neigh->flags & ~NTF_ROUTER); 1107 } 1108 write_unlock_bh(&neigh->lock); 1109 1110 if (notify) 1111 neigh_update_notify(neigh); 1112 1113 return err; 1114 } 1115 EXPORT_SYMBOL(neigh_update); 1116 1117 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1118 u8 *lladdr, void *saddr, 1119 struct net_device *dev) 1120 { 1121 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1122 lladdr || !dev->addr_len); 1123 if (neigh) 1124 neigh_update(neigh, lladdr, NUD_STALE, 1125 NEIGH_UPDATE_F_OVERRIDE); 1126 return neigh; 1127 } 1128 EXPORT_SYMBOL(neigh_event_ns); 1129 1130 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst, 1131 __be16 protocol) 1132 { 1133 struct hh_cache *hh; 1134 struct net_device *dev = dst->dev; 1135 1136 for (hh = n->hh; hh; hh = hh->hh_next) 1137 if (hh->hh_type == protocol) 1138 break; 1139 1140 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) { 1141 seqlock_init(&hh->hh_lock); 1142 hh->hh_type = protocol; 1143 atomic_set(&hh->hh_refcnt, 0); 1144 hh->hh_next = NULL; 1145 1146 if (dev->header_ops->cache(n, hh)) { 1147 kfree(hh); 1148 hh = NULL; 1149 } else { 1150 atomic_inc(&hh->hh_refcnt); 1151 hh->hh_next = n->hh; 1152 n->hh = hh; 1153 if (n->nud_state & NUD_CONNECTED) 1154 hh->hh_output = n->ops->hh_output; 1155 else 1156 hh->hh_output = n->ops->output; 1157 } 1158 } 1159 if (hh) { 1160 atomic_inc(&hh->hh_refcnt); 1161 dst->hh = hh; 1162 } 1163 } 1164 1165 /* This function can be used in contexts, where only old dev_queue_xmit 1166 worked, f.e. if you want to override normal output path (eql, shaper), 1167 but resolution is not made yet. 1168 */ 1169 1170 int neigh_compat_output(struct sk_buff *skb) 1171 { 1172 struct net_device *dev = skb->dev; 1173 1174 __skb_pull(skb, skb_network_offset(skb)); 1175 1176 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL, 1177 skb->len) < 0 && 1178 dev->header_ops->rebuild(skb)) 1179 return 0; 1180 1181 return dev_queue_xmit(skb); 1182 } 1183 EXPORT_SYMBOL(neigh_compat_output); 1184 1185 /* Slow and careful. */ 1186 1187 int neigh_resolve_output(struct sk_buff *skb) 1188 { 1189 struct dst_entry *dst = skb->dst; 1190 struct neighbour *neigh; 1191 int rc = 0; 1192 1193 if (!dst || !(neigh = dst->neighbour)) 1194 goto discard; 1195 1196 __skb_pull(skb, skb_network_offset(skb)); 1197 1198 if (!neigh_event_send(neigh, skb)) { 1199 int err; 1200 struct net_device *dev = neigh->dev; 1201 if (dev->header_ops->cache && !dst->hh) { 1202 write_lock_bh(&neigh->lock); 1203 if (!dst->hh) 1204 neigh_hh_init(neigh, dst, dst->ops->protocol); 1205 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1206 neigh->ha, NULL, skb->len); 1207 write_unlock_bh(&neigh->lock); 1208 } else { 1209 read_lock_bh(&neigh->lock); 1210 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1211 neigh->ha, NULL, skb->len); 1212 read_unlock_bh(&neigh->lock); 1213 } 1214 if (err >= 0) 1215 rc = neigh->ops->queue_xmit(skb); 1216 else 1217 goto out_kfree_skb; 1218 } 1219 out: 1220 return rc; 1221 discard: 1222 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n", 1223 dst, dst ? dst->neighbour : NULL); 1224 out_kfree_skb: 1225 rc = -EINVAL; 1226 kfree_skb(skb); 1227 goto out; 1228 } 1229 EXPORT_SYMBOL(neigh_resolve_output); 1230 1231 /* As fast as possible without hh cache */ 1232 1233 int neigh_connected_output(struct sk_buff *skb) 1234 { 1235 int err; 1236 struct dst_entry *dst = skb->dst; 1237 struct neighbour *neigh = dst->neighbour; 1238 struct net_device *dev = neigh->dev; 1239 1240 __skb_pull(skb, skb_network_offset(skb)); 1241 1242 read_lock_bh(&neigh->lock); 1243 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1244 neigh->ha, NULL, skb->len); 1245 read_unlock_bh(&neigh->lock); 1246 if (err >= 0) 1247 err = neigh->ops->queue_xmit(skb); 1248 else { 1249 err = -EINVAL; 1250 kfree_skb(skb); 1251 } 1252 return err; 1253 } 1254 EXPORT_SYMBOL(neigh_connected_output); 1255 1256 static void neigh_proxy_process(unsigned long arg) 1257 { 1258 struct neigh_table *tbl = (struct neigh_table *)arg; 1259 long sched_next = 0; 1260 unsigned long now = jiffies; 1261 struct sk_buff *skb, *n; 1262 1263 spin_lock(&tbl->proxy_queue.lock); 1264 1265 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1266 long tdif = NEIGH_CB(skb)->sched_next - now; 1267 1268 if (tdif <= 0) { 1269 struct net_device *dev = skb->dev; 1270 __skb_unlink(skb, &tbl->proxy_queue); 1271 if (tbl->proxy_redo && netif_running(dev)) 1272 tbl->proxy_redo(skb); 1273 else 1274 kfree_skb(skb); 1275 1276 dev_put(dev); 1277 } else if (!sched_next || tdif < sched_next) 1278 sched_next = tdif; 1279 } 1280 del_timer(&tbl->proxy_timer); 1281 if (sched_next) 1282 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1283 spin_unlock(&tbl->proxy_queue.lock); 1284 } 1285 1286 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1287 struct sk_buff *skb) 1288 { 1289 unsigned long now = jiffies; 1290 unsigned long sched_next = now + (net_random() % p->proxy_delay); 1291 1292 if (tbl->proxy_queue.qlen > p->proxy_qlen) { 1293 kfree_skb(skb); 1294 return; 1295 } 1296 1297 NEIGH_CB(skb)->sched_next = sched_next; 1298 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1299 1300 spin_lock(&tbl->proxy_queue.lock); 1301 if (del_timer(&tbl->proxy_timer)) { 1302 if (time_before(tbl->proxy_timer.expires, sched_next)) 1303 sched_next = tbl->proxy_timer.expires; 1304 } 1305 dst_release(skb->dst); 1306 skb->dst = NULL; 1307 dev_hold(skb->dev); 1308 __skb_queue_tail(&tbl->proxy_queue, skb); 1309 mod_timer(&tbl->proxy_timer, sched_next); 1310 spin_unlock(&tbl->proxy_queue.lock); 1311 } 1312 EXPORT_SYMBOL(pneigh_enqueue); 1313 1314 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl, 1315 struct net *net, int ifindex) 1316 { 1317 struct neigh_parms *p; 1318 1319 for (p = &tbl->parms; p; p = p->next) { 1320 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1321 (!p->dev && !ifindex)) 1322 return p; 1323 } 1324 1325 return NULL; 1326 } 1327 1328 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1329 struct neigh_table *tbl) 1330 { 1331 struct neigh_parms *p, *ref; 1332 struct net *net; 1333 1334 net = dev_net(dev); 1335 ref = lookup_neigh_params(tbl, net, 0); 1336 if (!ref) 1337 return NULL; 1338 1339 p = kmemdup(ref, sizeof(*p), GFP_KERNEL); 1340 if (p) { 1341 p->tbl = tbl; 1342 atomic_set(&p->refcnt, 1); 1343 INIT_RCU_HEAD(&p->rcu_head); 1344 p->reachable_time = 1345 neigh_rand_reach_time(p->base_reachable_time); 1346 1347 if (dev->neigh_setup && dev->neigh_setup(dev, p)) { 1348 kfree(p); 1349 return NULL; 1350 } 1351 1352 dev_hold(dev); 1353 p->dev = dev; 1354 #ifdef CONFIG_NET_NS 1355 p->net = hold_net(net); 1356 #endif 1357 p->sysctl_table = NULL; 1358 write_lock_bh(&tbl->lock); 1359 p->next = tbl->parms.next; 1360 tbl->parms.next = p; 1361 write_unlock_bh(&tbl->lock); 1362 } 1363 return p; 1364 } 1365 EXPORT_SYMBOL(neigh_parms_alloc); 1366 1367 static void neigh_rcu_free_parms(struct rcu_head *head) 1368 { 1369 struct neigh_parms *parms = 1370 container_of(head, struct neigh_parms, rcu_head); 1371 1372 neigh_parms_put(parms); 1373 } 1374 1375 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1376 { 1377 struct neigh_parms **p; 1378 1379 if (!parms || parms == &tbl->parms) 1380 return; 1381 write_lock_bh(&tbl->lock); 1382 for (p = &tbl->parms.next; *p; p = &(*p)->next) { 1383 if (*p == parms) { 1384 *p = parms->next; 1385 parms->dead = 1; 1386 write_unlock_bh(&tbl->lock); 1387 if (parms->dev) 1388 dev_put(parms->dev); 1389 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1390 return; 1391 } 1392 } 1393 write_unlock_bh(&tbl->lock); 1394 NEIGH_PRINTK1("neigh_parms_release: not found\n"); 1395 } 1396 EXPORT_SYMBOL(neigh_parms_release); 1397 1398 static void neigh_parms_destroy(struct neigh_parms *parms) 1399 { 1400 release_net(neigh_parms_net(parms)); 1401 kfree(parms); 1402 } 1403 1404 static struct lock_class_key neigh_table_proxy_queue_class; 1405 1406 void neigh_table_init_no_netlink(struct neigh_table *tbl) 1407 { 1408 unsigned long now = jiffies; 1409 unsigned long phsize; 1410 1411 #ifdef CONFIG_NET_NS 1412 tbl->parms.net = &init_net; 1413 #endif 1414 atomic_set(&tbl->parms.refcnt, 1); 1415 INIT_RCU_HEAD(&tbl->parms.rcu_head); 1416 tbl->parms.reachable_time = 1417 neigh_rand_reach_time(tbl->parms.base_reachable_time); 1418 1419 if (!tbl->kmem_cachep) 1420 tbl->kmem_cachep = 1421 kmem_cache_create(tbl->id, tbl->entry_size, 0, 1422 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1423 NULL); 1424 tbl->stats = alloc_percpu(struct neigh_statistics); 1425 if (!tbl->stats) 1426 panic("cannot create neighbour cache statistics"); 1427 1428 #ifdef CONFIG_PROC_FS 1429 tbl->pde = proc_create_data(tbl->id, 0, init_net.proc_net_stat, 1430 &neigh_stat_seq_fops, tbl); 1431 if (!tbl->pde) 1432 panic("cannot create neighbour proc dir entry"); 1433 #endif 1434 1435 tbl->hash_mask = 1; 1436 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1); 1437 1438 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1439 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1440 1441 if (!tbl->hash_buckets || !tbl->phash_buckets) 1442 panic("cannot allocate neighbour cache hashes"); 1443 1444 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 1445 1446 rwlock_init(&tbl->lock); 1447 setup_timer(&tbl->gc_timer, neigh_periodic_timer, (unsigned long)tbl); 1448 tbl->gc_timer.expires = now + 1; 1449 add_timer(&tbl->gc_timer); 1450 1451 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl); 1452 skb_queue_head_init_class(&tbl->proxy_queue, 1453 &neigh_table_proxy_queue_class); 1454 1455 tbl->last_flush = now; 1456 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1457 } 1458 EXPORT_SYMBOL(neigh_table_init_no_netlink); 1459 1460 void neigh_table_init(struct neigh_table *tbl) 1461 { 1462 struct neigh_table *tmp; 1463 1464 neigh_table_init_no_netlink(tbl); 1465 write_lock(&neigh_tbl_lock); 1466 for (tmp = neigh_tables; tmp; tmp = tmp->next) { 1467 if (tmp->family == tbl->family) 1468 break; 1469 } 1470 tbl->next = neigh_tables; 1471 neigh_tables = tbl; 1472 write_unlock(&neigh_tbl_lock); 1473 1474 if (unlikely(tmp)) { 1475 printk(KERN_ERR "NEIGH: Registering multiple tables for " 1476 "family %d\n", tbl->family); 1477 dump_stack(); 1478 } 1479 } 1480 EXPORT_SYMBOL(neigh_table_init); 1481 1482 int neigh_table_clear(struct neigh_table *tbl) 1483 { 1484 struct neigh_table **tp; 1485 1486 /* It is not clean... Fix it to unload IPv6 module safely */ 1487 del_timer_sync(&tbl->gc_timer); 1488 del_timer_sync(&tbl->proxy_timer); 1489 pneigh_queue_purge(&tbl->proxy_queue); 1490 neigh_ifdown(tbl, NULL); 1491 if (atomic_read(&tbl->entries)) 1492 printk(KERN_CRIT "neighbour leakage\n"); 1493 write_lock(&neigh_tbl_lock); 1494 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) { 1495 if (*tp == tbl) { 1496 *tp = tbl->next; 1497 break; 1498 } 1499 } 1500 write_unlock(&neigh_tbl_lock); 1501 1502 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1); 1503 tbl->hash_buckets = NULL; 1504 1505 kfree(tbl->phash_buckets); 1506 tbl->phash_buckets = NULL; 1507 1508 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1509 1510 free_percpu(tbl->stats); 1511 tbl->stats = NULL; 1512 1513 kmem_cache_destroy(tbl->kmem_cachep); 1514 tbl->kmem_cachep = NULL; 1515 1516 return 0; 1517 } 1518 EXPORT_SYMBOL(neigh_table_clear); 1519 1520 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1521 { 1522 struct net *net = sock_net(skb->sk); 1523 struct ndmsg *ndm; 1524 struct nlattr *dst_attr; 1525 struct neigh_table *tbl; 1526 struct net_device *dev = NULL; 1527 int err = -EINVAL; 1528 1529 if (nlmsg_len(nlh) < sizeof(*ndm)) 1530 goto out; 1531 1532 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1533 if (dst_attr == NULL) 1534 goto out; 1535 1536 ndm = nlmsg_data(nlh); 1537 if (ndm->ndm_ifindex) { 1538 dev = dev_get_by_index(net, ndm->ndm_ifindex); 1539 if (dev == NULL) { 1540 err = -ENODEV; 1541 goto out; 1542 } 1543 } 1544 1545 read_lock(&neigh_tbl_lock); 1546 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1547 struct neighbour *neigh; 1548 1549 if (tbl->family != ndm->ndm_family) 1550 continue; 1551 read_unlock(&neigh_tbl_lock); 1552 1553 if (nla_len(dst_attr) < tbl->key_len) 1554 goto out_dev_put; 1555 1556 if (ndm->ndm_flags & NTF_PROXY) { 1557 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1558 goto out_dev_put; 1559 } 1560 1561 if (dev == NULL) 1562 goto out_dev_put; 1563 1564 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1565 if (neigh == NULL) { 1566 err = -ENOENT; 1567 goto out_dev_put; 1568 } 1569 1570 err = neigh_update(neigh, NULL, NUD_FAILED, 1571 NEIGH_UPDATE_F_OVERRIDE | 1572 NEIGH_UPDATE_F_ADMIN); 1573 neigh_release(neigh); 1574 goto out_dev_put; 1575 } 1576 read_unlock(&neigh_tbl_lock); 1577 err = -EAFNOSUPPORT; 1578 1579 out_dev_put: 1580 if (dev) 1581 dev_put(dev); 1582 out: 1583 return err; 1584 } 1585 1586 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1587 { 1588 struct net *net = sock_net(skb->sk); 1589 struct ndmsg *ndm; 1590 struct nlattr *tb[NDA_MAX+1]; 1591 struct neigh_table *tbl; 1592 struct net_device *dev = NULL; 1593 int err; 1594 1595 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL); 1596 if (err < 0) 1597 goto out; 1598 1599 err = -EINVAL; 1600 if (tb[NDA_DST] == NULL) 1601 goto out; 1602 1603 ndm = nlmsg_data(nlh); 1604 if (ndm->ndm_ifindex) { 1605 dev = dev_get_by_index(net, ndm->ndm_ifindex); 1606 if (dev == NULL) { 1607 err = -ENODEV; 1608 goto out; 1609 } 1610 1611 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) 1612 goto out_dev_put; 1613 } 1614 1615 read_lock(&neigh_tbl_lock); 1616 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1617 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE; 1618 struct neighbour *neigh; 1619 void *dst, *lladdr; 1620 1621 if (tbl->family != ndm->ndm_family) 1622 continue; 1623 read_unlock(&neigh_tbl_lock); 1624 1625 if (nla_len(tb[NDA_DST]) < tbl->key_len) 1626 goto out_dev_put; 1627 dst = nla_data(tb[NDA_DST]); 1628 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1629 1630 if (ndm->ndm_flags & NTF_PROXY) { 1631 struct pneigh_entry *pn; 1632 1633 err = -ENOBUFS; 1634 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1635 if (pn) { 1636 pn->flags = ndm->ndm_flags; 1637 err = 0; 1638 } 1639 goto out_dev_put; 1640 } 1641 1642 if (dev == NULL) 1643 goto out_dev_put; 1644 1645 neigh = neigh_lookup(tbl, dst, dev); 1646 if (neigh == NULL) { 1647 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1648 err = -ENOENT; 1649 goto out_dev_put; 1650 } 1651 1652 neigh = __neigh_lookup_errno(tbl, dst, dev); 1653 if (IS_ERR(neigh)) { 1654 err = PTR_ERR(neigh); 1655 goto out_dev_put; 1656 } 1657 } else { 1658 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1659 err = -EEXIST; 1660 neigh_release(neigh); 1661 goto out_dev_put; 1662 } 1663 1664 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1665 flags &= ~NEIGH_UPDATE_F_OVERRIDE; 1666 } 1667 1668 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags); 1669 neigh_release(neigh); 1670 goto out_dev_put; 1671 } 1672 1673 read_unlock(&neigh_tbl_lock); 1674 err = -EAFNOSUPPORT; 1675 1676 out_dev_put: 1677 if (dev) 1678 dev_put(dev); 1679 out: 1680 return err; 1681 } 1682 1683 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1684 { 1685 struct nlattr *nest; 1686 1687 nest = nla_nest_start(skb, NDTA_PARMS); 1688 if (nest == NULL) 1689 return -ENOBUFS; 1690 1691 if (parms->dev) 1692 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex); 1693 1694 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)); 1695 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len); 1696 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen); 1697 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes); 1698 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes); 1699 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes); 1700 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time); 1701 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME, 1702 parms->base_reachable_time); 1703 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime); 1704 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time); 1705 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time); 1706 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay); 1707 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay); 1708 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime); 1709 1710 return nla_nest_end(skb, nest); 1711 1712 nla_put_failure: 1713 nla_nest_cancel(skb, nest); 1714 return -EMSGSIZE; 1715 } 1716 1717 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 1718 u32 pid, u32 seq, int type, int flags) 1719 { 1720 struct nlmsghdr *nlh; 1721 struct ndtmsg *ndtmsg; 1722 1723 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1724 if (nlh == NULL) 1725 return -EMSGSIZE; 1726 1727 ndtmsg = nlmsg_data(nlh); 1728 1729 read_lock_bh(&tbl->lock); 1730 ndtmsg->ndtm_family = tbl->family; 1731 ndtmsg->ndtm_pad1 = 0; 1732 ndtmsg->ndtm_pad2 = 0; 1733 1734 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id); 1735 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval); 1736 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1); 1737 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2); 1738 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3); 1739 1740 { 1741 unsigned long now = jiffies; 1742 unsigned int flush_delta = now - tbl->last_flush; 1743 unsigned int rand_delta = now - tbl->last_rand; 1744 1745 struct ndt_config ndc = { 1746 .ndtc_key_len = tbl->key_len, 1747 .ndtc_entry_size = tbl->entry_size, 1748 .ndtc_entries = atomic_read(&tbl->entries), 1749 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 1750 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 1751 .ndtc_hash_rnd = tbl->hash_rnd, 1752 .ndtc_hash_mask = tbl->hash_mask, 1753 .ndtc_hash_chain_gc = tbl->hash_chain_gc, 1754 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 1755 }; 1756 1757 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc); 1758 } 1759 1760 { 1761 int cpu; 1762 struct ndt_stats ndst; 1763 1764 memset(&ndst, 0, sizeof(ndst)); 1765 1766 for_each_possible_cpu(cpu) { 1767 struct neigh_statistics *st; 1768 1769 st = per_cpu_ptr(tbl->stats, cpu); 1770 ndst.ndts_allocs += st->allocs; 1771 ndst.ndts_destroys += st->destroys; 1772 ndst.ndts_hash_grows += st->hash_grows; 1773 ndst.ndts_res_failed += st->res_failed; 1774 ndst.ndts_lookups += st->lookups; 1775 ndst.ndts_hits += st->hits; 1776 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 1777 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 1778 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 1779 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 1780 } 1781 1782 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst); 1783 } 1784 1785 BUG_ON(tbl->parms.dev); 1786 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 1787 goto nla_put_failure; 1788 1789 read_unlock_bh(&tbl->lock); 1790 return nlmsg_end(skb, nlh); 1791 1792 nla_put_failure: 1793 read_unlock_bh(&tbl->lock); 1794 nlmsg_cancel(skb, nlh); 1795 return -EMSGSIZE; 1796 } 1797 1798 static int neightbl_fill_param_info(struct sk_buff *skb, 1799 struct neigh_table *tbl, 1800 struct neigh_parms *parms, 1801 u32 pid, u32 seq, int type, 1802 unsigned int flags) 1803 { 1804 struct ndtmsg *ndtmsg; 1805 struct nlmsghdr *nlh; 1806 1807 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1808 if (nlh == NULL) 1809 return -EMSGSIZE; 1810 1811 ndtmsg = nlmsg_data(nlh); 1812 1813 read_lock_bh(&tbl->lock); 1814 ndtmsg->ndtm_family = tbl->family; 1815 ndtmsg->ndtm_pad1 = 0; 1816 ndtmsg->ndtm_pad2 = 0; 1817 1818 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 1819 neightbl_fill_parms(skb, parms) < 0) 1820 goto errout; 1821 1822 read_unlock_bh(&tbl->lock); 1823 return nlmsg_end(skb, nlh); 1824 errout: 1825 read_unlock_bh(&tbl->lock); 1826 nlmsg_cancel(skb, nlh); 1827 return -EMSGSIZE; 1828 } 1829 1830 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 1831 [NDTA_NAME] = { .type = NLA_STRING }, 1832 [NDTA_THRESH1] = { .type = NLA_U32 }, 1833 [NDTA_THRESH2] = { .type = NLA_U32 }, 1834 [NDTA_THRESH3] = { .type = NLA_U32 }, 1835 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 1836 [NDTA_PARMS] = { .type = NLA_NESTED }, 1837 }; 1838 1839 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 1840 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 1841 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 1842 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 1843 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 1844 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 1845 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 1846 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 1847 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 1848 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 1849 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 1850 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 1851 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 1852 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 1853 }; 1854 1855 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1856 { 1857 struct net *net = sock_net(skb->sk); 1858 struct neigh_table *tbl; 1859 struct ndtmsg *ndtmsg; 1860 struct nlattr *tb[NDTA_MAX+1]; 1861 int err; 1862 1863 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 1864 nl_neightbl_policy); 1865 if (err < 0) 1866 goto errout; 1867 1868 if (tb[NDTA_NAME] == NULL) { 1869 err = -EINVAL; 1870 goto errout; 1871 } 1872 1873 ndtmsg = nlmsg_data(nlh); 1874 read_lock(&neigh_tbl_lock); 1875 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1876 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 1877 continue; 1878 1879 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) 1880 break; 1881 } 1882 1883 if (tbl == NULL) { 1884 err = -ENOENT; 1885 goto errout_locked; 1886 } 1887 1888 /* 1889 * We acquire tbl->lock to be nice to the periodic timers and 1890 * make sure they always see a consistent set of values. 1891 */ 1892 write_lock_bh(&tbl->lock); 1893 1894 if (tb[NDTA_PARMS]) { 1895 struct nlattr *tbp[NDTPA_MAX+1]; 1896 struct neigh_parms *p; 1897 int i, ifindex = 0; 1898 1899 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS], 1900 nl_ntbl_parm_policy); 1901 if (err < 0) 1902 goto errout_tbl_lock; 1903 1904 if (tbp[NDTPA_IFINDEX]) 1905 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 1906 1907 p = lookup_neigh_params(tbl, net, ifindex); 1908 if (p == NULL) { 1909 err = -ENOENT; 1910 goto errout_tbl_lock; 1911 } 1912 1913 for (i = 1; i <= NDTPA_MAX; i++) { 1914 if (tbp[i] == NULL) 1915 continue; 1916 1917 switch (i) { 1918 case NDTPA_QUEUE_LEN: 1919 p->queue_len = nla_get_u32(tbp[i]); 1920 break; 1921 case NDTPA_PROXY_QLEN: 1922 p->proxy_qlen = nla_get_u32(tbp[i]); 1923 break; 1924 case NDTPA_APP_PROBES: 1925 p->app_probes = nla_get_u32(tbp[i]); 1926 break; 1927 case NDTPA_UCAST_PROBES: 1928 p->ucast_probes = nla_get_u32(tbp[i]); 1929 break; 1930 case NDTPA_MCAST_PROBES: 1931 p->mcast_probes = nla_get_u32(tbp[i]); 1932 break; 1933 case NDTPA_BASE_REACHABLE_TIME: 1934 p->base_reachable_time = nla_get_msecs(tbp[i]); 1935 break; 1936 case NDTPA_GC_STALETIME: 1937 p->gc_staletime = nla_get_msecs(tbp[i]); 1938 break; 1939 case NDTPA_DELAY_PROBE_TIME: 1940 p->delay_probe_time = nla_get_msecs(tbp[i]); 1941 break; 1942 case NDTPA_RETRANS_TIME: 1943 p->retrans_time = nla_get_msecs(tbp[i]); 1944 break; 1945 case NDTPA_ANYCAST_DELAY: 1946 p->anycast_delay = nla_get_msecs(tbp[i]); 1947 break; 1948 case NDTPA_PROXY_DELAY: 1949 p->proxy_delay = nla_get_msecs(tbp[i]); 1950 break; 1951 case NDTPA_LOCKTIME: 1952 p->locktime = nla_get_msecs(tbp[i]); 1953 break; 1954 } 1955 } 1956 } 1957 1958 if (tb[NDTA_THRESH1]) 1959 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 1960 1961 if (tb[NDTA_THRESH2]) 1962 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 1963 1964 if (tb[NDTA_THRESH3]) 1965 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 1966 1967 if (tb[NDTA_GC_INTERVAL]) 1968 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 1969 1970 err = 0; 1971 1972 errout_tbl_lock: 1973 write_unlock_bh(&tbl->lock); 1974 errout_locked: 1975 read_unlock(&neigh_tbl_lock); 1976 errout: 1977 return err; 1978 } 1979 1980 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 1981 { 1982 struct net *net = sock_net(skb->sk); 1983 int family, tidx, nidx = 0; 1984 int tbl_skip = cb->args[0]; 1985 int neigh_skip = cb->args[1]; 1986 struct neigh_table *tbl; 1987 1988 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 1989 1990 read_lock(&neigh_tbl_lock); 1991 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) { 1992 struct neigh_parms *p; 1993 1994 if (tidx < tbl_skip || (family && tbl->family != family)) 1995 continue; 1996 1997 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid, 1998 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 1999 NLM_F_MULTI) <= 0) 2000 break; 2001 2002 for (nidx = 0, p = tbl->parms.next; p; p = p->next) { 2003 if (!net_eq(neigh_parms_net(p), net)) 2004 continue; 2005 2006 if (nidx++ < neigh_skip) 2007 continue; 2008 2009 if (neightbl_fill_param_info(skb, tbl, p, 2010 NETLINK_CB(cb->skb).pid, 2011 cb->nlh->nlmsg_seq, 2012 RTM_NEWNEIGHTBL, 2013 NLM_F_MULTI) <= 0) 2014 goto out; 2015 } 2016 2017 neigh_skip = 0; 2018 } 2019 out: 2020 read_unlock(&neigh_tbl_lock); 2021 cb->args[0] = tidx; 2022 cb->args[1] = nidx; 2023 2024 return skb->len; 2025 } 2026 2027 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2028 u32 pid, u32 seq, int type, unsigned int flags) 2029 { 2030 unsigned long now = jiffies; 2031 struct nda_cacheinfo ci; 2032 struct nlmsghdr *nlh; 2033 struct ndmsg *ndm; 2034 2035 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2036 if (nlh == NULL) 2037 return -EMSGSIZE; 2038 2039 ndm = nlmsg_data(nlh); 2040 ndm->ndm_family = neigh->ops->family; 2041 ndm->ndm_pad1 = 0; 2042 ndm->ndm_pad2 = 0; 2043 ndm->ndm_flags = neigh->flags; 2044 ndm->ndm_type = neigh->type; 2045 ndm->ndm_ifindex = neigh->dev->ifindex; 2046 2047 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key); 2048 2049 read_lock_bh(&neigh->lock); 2050 ndm->ndm_state = neigh->nud_state; 2051 if ((neigh->nud_state & NUD_VALID) && 2052 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) { 2053 read_unlock_bh(&neigh->lock); 2054 goto nla_put_failure; 2055 } 2056 2057 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2058 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2059 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2060 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1; 2061 read_unlock_bh(&neigh->lock); 2062 2063 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes)); 2064 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci); 2065 2066 return nlmsg_end(skb, nlh); 2067 2068 nla_put_failure: 2069 nlmsg_cancel(skb, nlh); 2070 return -EMSGSIZE; 2071 } 2072 2073 static void neigh_update_notify(struct neighbour *neigh) 2074 { 2075 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2076 __neigh_notify(neigh, RTM_NEWNEIGH, 0); 2077 } 2078 2079 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2080 struct netlink_callback *cb) 2081 { 2082 struct net * net = sock_net(skb->sk); 2083 struct neighbour *n; 2084 int rc, h, s_h = cb->args[1]; 2085 int idx, s_idx = idx = cb->args[2]; 2086 2087 read_lock_bh(&tbl->lock); 2088 for (h = 0; h <= tbl->hash_mask; h++) { 2089 if (h < s_h) 2090 continue; 2091 if (h > s_h) 2092 s_idx = 0; 2093 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next) { 2094 int lidx; 2095 if (dev_net(n->dev) != net) 2096 continue; 2097 lidx = idx++; 2098 if (lidx < s_idx) 2099 continue; 2100 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, 2101 cb->nlh->nlmsg_seq, 2102 RTM_NEWNEIGH, 2103 NLM_F_MULTI) <= 0) { 2104 read_unlock_bh(&tbl->lock); 2105 rc = -1; 2106 goto out; 2107 } 2108 } 2109 } 2110 read_unlock_bh(&tbl->lock); 2111 rc = skb->len; 2112 out: 2113 cb->args[1] = h; 2114 cb->args[2] = idx; 2115 return rc; 2116 } 2117 2118 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2119 { 2120 struct neigh_table *tbl; 2121 int t, family, s_t; 2122 2123 read_lock(&neigh_tbl_lock); 2124 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2125 s_t = cb->args[0]; 2126 2127 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) { 2128 if (t < s_t || (family && tbl->family != family)) 2129 continue; 2130 if (t > s_t) 2131 memset(&cb->args[1], 0, sizeof(cb->args) - 2132 sizeof(cb->args[0])); 2133 if (neigh_dump_table(tbl, skb, cb) < 0) 2134 break; 2135 } 2136 read_unlock(&neigh_tbl_lock); 2137 2138 cb->args[0] = t; 2139 return skb->len; 2140 } 2141 2142 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2143 { 2144 int chain; 2145 2146 read_lock_bh(&tbl->lock); 2147 for (chain = 0; chain <= tbl->hash_mask; chain++) { 2148 struct neighbour *n; 2149 2150 for (n = tbl->hash_buckets[chain]; n; n = n->next) 2151 cb(n, cookie); 2152 } 2153 read_unlock_bh(&tbl->lock); 2154 } 2155 EXPORT_SYMBOL(neigh_for_each); 2156 2157 /* The tbl->lock must be held as a writer and BH disabled. */ 2158 void __neigh_for_each_release(struct neigh_table *tbl, 2159 int (*cb)(struct neighbour *)) 2160 { 2161 int chain; 2162 2163 for (chain = 0; chain <= tbl->hash_mask; chain++) { 2164 struct neighbour *n, **np; 2165 2166 np = &tbl->hash_buckets[chain]; 2167 while ((n = *np) != NULL) { 2168 int release; 2169 2170 write_lock(&n->lock); 2171 release = cb(n); 2172 if (release) { 2173 *np = n->next; 2174 n->dead = 1; 2175 } else 2176 np = &n->next; 2177 write_unlock(&n->lock); 2178 if (release) 2179 neigh_cleanup_and_release(n); 2180 } 2181 } 2182 } 2183 EXPORT_SYMBOL(__neigh_for_each_release); 2184 2185 #ifdef CONFIG_PROC_FS 2186 2187 static struct neighbour *neigh_get_first(struct seq_file *seq) 2188 { 2189 struct neigh_seq_state *state = seq->private; 2190 struct net *net = seq_file_net(seq); 2191 struct neigh_table *tbl = state->tbl; 2192 struct neighbour *n = NULL; 2193 int bucket = state->bucket; 2194 2195 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 2196 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) { 2197 n = tbl->hash_buckets[bucket]; 2198 2199 while (n) { 2200 if (!net_eq(dev_net(n->dev), net)) 2201 goto next; 2202 if (state->neigh_sub_iter) { 2203 loff_t fakep = 0; 2204 void *v; 2205 2206 v = state->neigh_sub_iter(state, n, &fakep); 2207 if (!v) 2208 goto next; 2209 } 2210 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2211 break; 2212 if (n->nud_state & ~NUD_NOARP) 2213 break; 2214 next: 2215 n = n->next; 2216 } 2217 2218 if (n) 2219 break; 2220 } 2221 state->bucket = bucket; 2222 2223 return n; 2224 } 2225 2226 static struct neighbour *neigh_get_next(struct seq_file *seq, 2227 struct neighbour *n, 2228 loff_t *pos) 2229 { 2230 struct neigh_seq_state *state = seq->private; 2231 struct net *net = seq_file_net(seq); 2232 struct neigh_table *tbl = state->tbl; 2233 2234 if (state->neigh_sub_iter) { 2235 void *v = state->neigh_sub_iter(state, n, pos); 2236 if (v) 2237 return n; 2238 } 2239 n = n->next; 2240 2241 while (1) { 2242 while (n) { 2243 if (!net_eq(dev_net(n->dev), net)) 2244 goto next; 2245 if (state->neigh_sub_iter) { 2246 void *v = state->neigh_sub_iter(state, n, pos); 2247 if (v) 2248 return n; 2249 goto next; 2250 } 2251 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2252 break; 2253 2254 if (n->nud_state & ~NUD_NOARP) 2255 break; 2256 next: 2257 n = n->next; 2258 } 2259 2260 if (n) 2261 break; 2262 2263 if (++state->bucket > tbl->hash_mask) 2264 break; 2265 2266 n = tbl->hash_buckets[state->bucket]; 2267 } 2268 2269 if (n && pos) 2270 --(*pos); 2271 return n; 2272 } 2273 2274 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 2275 { 2276 struct neighbour *n = neigh_get_first(seq); 2277 2278 if (n) { 2279 --(*pos); 2280 while (*pos) { 2281 n = neigh_get_next(seq, n, pos); 2282 if (!n) 2283 break; 2284 } 2285 } 2286 return *pos ? NULL : n; 2287 } 2288 2289 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 2290 { 2291 struct neigh_seq_state *state = seq->private; 2292 struct net *net = seq_file_net(seq); 2293 struct neigh_table *tbl = state->tbl; 2294 struct pneigh_entry *pn = NULL; 2295 int bucket = state->bucket; 2296 2297 state->flags |= NEIGH_SEQ_IS_PNEIGH; 2298 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 2299 pn = tbl->phash_buckets[bucket]; 2300 while (pn && !net_eq(pneigh_net(pn), net)) 2301 pn = pn->next; 2302 if (pn) 2303 break; 2304 } 2305 state->bucket = bucket; 2306 2307 return pn; 2308 } 2309 2310 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 2311 struct pneigh_entry *pn, 2312 loff_t *pos) 2313 { 2314 struct neigh_seq_state *state = seq->private; 2315 struct net *net = seq_file_net(seq); 2316 struct neigh_table *tbl = state->tbl; 2317 2318 pn = pn->next; 2319 while (!pn) { 2320 if (++state->bucket > PNEIGH_HASHMASK) 2321 break; 2322 pn = tbl->phash_buckets[state->bucket]; 2323 while (pn && !net_eq(pneigh_net(pn), net)) 2324 pn = pn->next; 2325 if (pn) 2326 break; 2327 } 2328 2329 if (pn && pos) 2330 --(*pos); 2331 2332 return pn; 2333 } 2334 2335 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 2336 { 2337 struct pneigh_entry *pn = pneigh_get_first(seq); 2338 2339 if (pn) { 2340 --(*pos); 2341 while (*pos) { 2342 pn = pneigh_get_next(seq, pn, pos); 2343 if (!pn) 2344 break; 2345 } 2346 } 2347 return *pos ? NULL : pn; 2348 } 2349 2350 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 2351 { 2352 struct neigh_seq_state *state = seq->private; 2353 void *rc; 2354 loff_t idxpos = *pos; 2355 2356 rc = neigh_get_idx(seq, &idxpos); 2357 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2358 rc = pneigh_get_idx(seq, &idxpos); 2359 2360 return rc; 2361 } 2362 2363 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 2364 __acquires(tbl->lock) 2365 { 2366 struct neigh_seq_state *state = seq->private; 2367 2368 state->tbl = tbl; 2369 state->bucket = 0; 2370 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 2371 2372 read_lock_bh(&tbl->lock); 2373 2374 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 2375 } 2376 EXPORT_SYMBOL(neigh_seq_start); 2377 2378 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2379 { 2380 struct neigh_seq_state *state; 2381 void *rc; 2382 2383 if (v == SEQ_START_TOKEN) { 2384 rc = neigh_get_first(seq); 2385 goto out; 2386 } 2387 2388 state = seq->private; 2389 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 2390 rc = neigh_get_next(seq, v, NULL); 2391 if (rc) 2392 goto out; 2393 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2394 rc = pneigh_get_first(seq); 2395 } else { 2396 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 2397 rc = pneigh_get_next(seq, v, NULL); 2398 } 2399 out: 2400 ++(*pos); 2401 return rc; 2402 } 2403 EXPORT_SYMBOL(neigh_seq_next); 2404 2405 void neigh_seq_stop(struct seq_file *seq, void *v) 2406 __releases(tbl->lock) 2407 { 2408 struct neigh_seq_state *state = seq->private; 2409 struct neigh_table *tbl = state->tbl; 2410 2411 read_unlock_bh(&tbl->lock); 2412 } 2413 EXPORT_SYMBOL(neigh_seq_stop); 2414 2415 /* statistics via seq_file */ 2416 2417 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 2418 { 2419 struct proc_dir_entry *pde = seq->private; 2420 struct neigh_table *tbl = pde->data; 2421 int cpu; 2422 2423 if (*pos == 0) 2424 return SEQ_START_TOKEN; 2425 2426 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) { 2427 if (!cpu_possible(cpu)) 2428 continue; 2429 *pos = cpu+1; 2430 return per_cpu_ptr(tbl->stats, cpu); 2431 } 2432 return NULL; 2433 } 2434 2435 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2436 { 2437 struct proc_dir_entry *pde = seq->private; 2438 struct neigh_table *tbl = pde->data; 2439 int cpu; 2440 2441 for (cpu = *pos; cpu < NR_CPUS; ++cpu) { 2442 if (!cpu_possible(cpu)) 2443 continue; 2444 *pos = cpu+1; 2445 return per_cpu_ptr(tbl->stats, cpu); 2446 } 2447 return NULL; 2448 } 2449 2450 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 2451 { 2452 2453 } 2454 2455 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 2456 { 2457 struct proc_dir_entry *pde = seq->private; 2458 struct neigh_table *tbl = pde->data; 2459 struct neigh_statistics *st = v; 2460 2461 if (v == SEQ_START_TOKEN) { 2462 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n"); 2463 return 0; 2464 } 2465 2466 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 2467 "%08lx %08lx %08lx %08lx %08lx\n", 2468 atomic_read(&tbl->entries), 2469 2470 st->allocs, 2471 st->destroys, 2472 st->hash_grows, 2473 2474 st->lookups, 2475 st->hits, 2476 2477 st->res_failed, 2478 2479 st->rcv_probes_mcast, 2480 st->rcv_probes_ucast, 2481 2482 st->periodic_gc_runs, 2483 st->forced_gc_runs, 2484 st->unres_discards 2485 ); 2486 2487 return 0; 2488 } 2489 2490 static const struct seq_operations neigh_stat_seq_ops = { 2491 .start = neigh_stat_seq_start, 2492 .next = neigh_stat_seq_next, 2493 .stop = neigh_stat_seq_stop, 2494 .show = neigh_stat_seq_show, 2495 }; 2496 2497 static int neigh_stat_seq_open(struct inode *inode, struct file *file) 2498 { 2499 int ret = seq_open(file, &neigh_stat_seq_ops); 2500 2501 if (!ret) { 2502 struct seq_file *sf = file->private_data; 2503 sf->private = PDE(inode); 2504 } 2505 return ret; 2506 }; 2507 2508 static const struct file_operations neigh_stat_seq_fops = { 2509 .owner = THIS_MODULE, 2510 .open = neigh_stat_seq_open, 2511 .read = seq_read, 2512 .llseek = seq_lseek, 2513 .release = seq_release, 2514 }; 2515 2516 #endif /* CONFIG_PROC_FS */ 2517 2518 static inline size_t neigh_nlmsg_size(void) 2519 { 2520 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2521 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2522 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2523 + nla_total_size(sizeof(struct nda_cacheinfo)) 2524 + nla_total_size(4); /* NDA_PROBES */ 2525 } 2526 2527 static void __neigh_notify(struct neighbour *n, int type, int flags) 2528 { 2529 struct net *net = dev_net(n->dev); 2530 struct sk_buff *skb; 2531 int err = -ENOBUFS; 2532 2533 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 2534 if (skb == NULL) 2535 goto errout; 2536 2537 err = neigh_fill_info(skb, n, 0, 0, type, flags); 2538 if (err < 0) { 2539 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 2540 WARN_ON(err == -EMSGSIZE); 2541 kfree_skb(skb); 2542 goto errout; 2543 } 2544 err = rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 2545 errout: 2546 if (err < 0) 2547 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 2548 } 2549 2550 #ifdef CONFIG_ARPD 2551 void neigh_app_ns(struct neighbour *n) 2552 { 2553 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST); 2554 } 2555 EXPORT_SYMBOL(neigh_app_ns); 2556 #endif /* CONFIG_ARPD */ 2557 2558 #ifdef CONFIG_SYSCTL 2559 2560 static struct neigh_sysctl_table { 2561 struct ctl_table_header *sysctl_header; 2562 struct ctl_table neigh_vars[__NET_NEIGH_MAX]; 2563 char *dev_name; 2564 } neigh_sysctl_template __read_mostly = { 2565 .neigh_vars = { 2566 { 2567 .ctl_name = NET_NEIGH_MCAST_SOLICIT, 2568 .procname = "mcast_solicit", 2569 .maxlen = sizeof(int), 2570 .mode = 0644, 2571 .proc_handler = &proc_dointvec, 2572 }, 2573 { 2574 .ctl_name = NET_NEIGH_UCAST_SOLICIT, 2575 .procname = "ucast_solicit", 2576 .maxlen = sizeof(int), 2577 .mode = 0644, 2578 .proc_handler = &proc_dointvec, 2579 }, 2580 { 2581 .ctl_name = NET_NEIGH_APP_SOLICIT, 2582 .procname = "app_solicit", 2583 .maxlen = sizeof(int), 2584 .mode = 0644, 2585 .proc_handler = &proc_dointvec, 2586 }, 2587 { 2588 .procname = "retrans_time", 2589 .maxlen = sizeof(int), 2590 .mode = 0644, 2591 .proc_handler = &proc_dointvec_userhz_jiffies, 2592 }, 2593 { 2594 .ctl_name = NET_NEIGH_REACHABLE_TIME, 2595 .procname = "base_reachable_time", 2596 .maxlen = sizeof(int), 2597 .mode = 0644, 2598 .proc_handler = &proc_dointvec_jiffies, 2599 .strategy = &sysctl_jiffies, 2600 }, 2601 { 2602 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME, 2603 .procname = "delay_first_probe_time", 2604 .maxlen = sizeof(int), 2605 .mode = 0644, 2606 .proc_handler = &proc_dointvec_jiffies, 2607 .strategy = &sysctl_jiffies, 2608 }, 2609 { 2610 .ctl_name = NET_NEIGH_GC_STALE_TIME, 2611 .procname = "gc_stale_time", 2612 .maxlen = sizeof(int), 2613 .mode = 0644, 2614 .proc_handler = &proc_dointvec_jiffies, 2615 .strategy = &sysctl_jiffies, 2616 }, 2617 { 2618 .ctl_name = NET_NEIGH_UNRES_QLEN, 2619 .procname = "unres_qlen", 2620 .maxlen = sizeof(int), 2621 .mode = 0644, 2622 .proc_handler = &proc_dointvec, 2623 }, 2624 { 2625 .ctl_name = NET_NEIGH_PROXY_QLEN, 2626 .procname = "proxy_qlen", 2627 .maxlen = sizeof(int), 2628 .mode = 0644, 2629 .proc_handler = &proc_dointvec, 2630 }, 2631 { 2632 .procname = "anycast_delay", 2633 .maxlen = sizeof(int), 2634 .mode = 0644, 2635 .proc_handler = &proc_dointvec_userhz_jiffies, 2636 }, 2637 { 2638 .procname = "proxy_delay", 2639 .maxlen = sizeof(int), 2640 .mode = 0644, 2641 .proc_handler = &proc_dointvec_userhz_jiffies, 2642 }, 2643 { 2644 .procname = "locktime", 2645 .maxlen = sizeof(int), 2646 .mode = 0644, 2647 .proc_handler = &proc_dointvec_userhz_jiffies, 2648 }, 2649 { 2650 .ctl_name = NET_NEIGH_RETRANS_TIME_MS, 2651 .procname = "retrans_time_ms", 2652 .maxlen = sizeof(int), 2653 .mode = 0644, 2654 .proc_handler = &proc_dointvec_ms_jiffies, 2655 .strategy = &sysctl_ms_jiffies, 2656 }, 2657 { 2658 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS, 2659 .procname = "base_reachable_time_ms", 2660 .maxlen = sizeof(int), 2661 .mode = 0644, 2662 .proc_handler = &proc_dointvec_ms_jiffies, 2663 .strategy = &sysctl_ms_jiffies, 2664 }, 2665 { 2666 .ctl_name = NET_NEIGH_GC_INTERVAL, 2667 .procname = "gc_interval", 2668 .maxlen = sizeof(int), 2669 .mode = 0644, 2670 .proc_handler = &proc_dointvec_jiffies, 2671 .strategy = &sysctl_jiffies, 2672 }, 2673 { 2674 .ctl_name = NET_NEIGH_GC_THRESH1, 2675 .procname = "gc_thresh1", 2676 .maxlen = sizeof(int), 2677 .mode = 0644, 2678 .proc_handler = &proc_dointvec, 2679 }, 2680 { 2681 .ctl_name = NET_NEIGH_GC_THRESH2, 2682 .procname = "gc_thresh2", 2683 .maxlen = sizeof(int), 2684 .mode = 0644, 2685 .proc_handler = &proc_dointvec, 2686 }, 2687 { 2688 .ctl_name = NET_NEIGH_GC_THRESH3, 2689 .procname = "gc_thresh3", 2690 .maxlen = sizeof(int), 2691 .mode = 0644, 2692 .proc_handler = &proc_dointvec, 2693 }, 2694 {}, 2695 }, 2696 }; 2697 2698 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 2699 int p_id, int pdev_id, char *p_name, 2700 proc_handler *handler, ctl_handler *strategy) 2701 { 2702 struct neigh_sysctl_table *t; 2703 const char *dev_name_source = NULL; 2704 2705 #define NEIGH_CTL_PATH_ROOT 0 2706 #define NEIGH_CTL_PATH_PROTO 1 2707 #define NEIGH_CTL_PATH_NEIGH 2 2708 #define NEIGH_CTL_PATH_DEV 3 2709 2710 struct ctl_path neigh_path[] = { 2711 { .procname = "net", .ctl_name = CTL_NET, }, 2712 { .procname = "proto", .ctl_name = 0, }, 2713 { .procname = "neigh", .ctl_name = 0, }, 2714 { .procname = "default", .ctl_name = NET_PROTO_CONF_DEFAULT, }, 2715 { }, 2716 }; 2717 2718 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 2719 if (!t) 2720 goto err; 2721 2722 t->neigh_vars[0].data = &p->mcast_probes; 2723 t->neigh_vars[1].data = &p->ucast_probes; 2724 t->neigh_vars[2].data = &p->app_probes; 2725 t->neigh_vars[3].data = &p->retrans_time; 2726 t->neigh_vars[4].data = &p->base_reachable_time; 2727 t->neigh_vars[5].data = &p->delay_probe_time; 2728 t->neigh_vars[6].data = &p->gc_staletime; 2729 t->neigh_vars[7].data = &p->queue_len; 2730 t->neigh_vars[8].data = &p->proxy_qlen; 2731 t->neigh_vars[9].data = &p->anycast_delay; 2732 t->neigh_vars[10].data = &p->proxy_delay; 2733 t->neigh_vars[11].data = &p->locktime; 2734 t->neigh_vars[12].data = &p->retrans_time; 2735 t->neigh_vars[13].data = &p->base_reachable_time; 2736 2737 if (dev) { 2738 dev_name_source = dev->name; 2739 neigh_path[NEIGH_CTL_PATH_DEV].ctl_name = dev->ifindex; 2740 /* Terminate the table early */ 2741 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14])); 2742 } else { 2743 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname; 2744 t->neigh_vars[14].data = (int *)(p + 1); 2745 t->neigh_vars[15].data = (int *)(p + 1) + 1; 2746 t->neigh_vars[16].data = (int *)(p + 1) + 2; 2747 t->neigh_vars[17].data = (int *)(p + 1) + 3; 2748 } 2749 2750 2751 if (handler || strategy) { 2752 /* RetransTime */ 2753 t->neigh_vars[3].proc_handler = handler; 2754 t->neigh_vars[3].strategy = strategy; 2755 t->neigh_vars[3].extra1 = dev; 2756 if (!strategy) 2757 t->neigh_vars[3].ctl_name = CTL_UNNUMBERED; 2758 /* ReachableTime */ 2759 t->neigh_vars[4].proc_handler = handler; 2760 t->neigh_vars[4].strategy = strategy; 2761 t->neigh_vars[4].extra1 = dev; 2762 if (!strategy) 2763 t->neigh_vars[4].ctl_name = CTL_UNNUMBERED; 2764 /* RetransTime (in milliseconds)*/ 2765 t->neigh_vars[12].proc_handler = handler; 2766 t->neigh_vars[12].strategy = strategy; 2767 t->neigh_vars[12].extra1 = dev; 2768 if (!strategy) 2769 t->neigh_vars[12].ctl_name = CTL_UNNUMBERED; 2770 /* ReachableTime (in milliseconds) */ 2771 t->neigh_vars[13].proc_handler = handler; 2772 t->neigh_vars[13].strategy = strategy; 2773 t->neigh_vars[13].extra1 = dev; 2774 if (!strategy) 2775 t->neigh_vars[13].ctl_name = CTL_UNNUMBERED; 2776 } 2777 2778 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL); 2779 if (!t->dev_name) 2780 goto free; 2781 2782 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name; 2783 neigh_path[NEIGH_CTL_PATH_NEIGH].ctl_name = pdev_id; 2784 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name; 2785 neigh_path[NEIGH_CTL_PATH_PROTO].ctl_name = p_id; 2786 2787 t->sysctl_header = 2788 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars); 2789 if (!t->sysctl_header) 2790 goto free_procname; 2791 2792 p->sysctl_table = t; 2793 return 0; 2794 2795 free_procname: 2796 kfree(t->dev_name); 2797 free: 2798 kfree(t); 2799 err: 2800 return -ENOBUFS; 2801 } 2802 EXPORT_SYMBOL(neigh_sysctl_register); 2803 2804 void neigh_sysctl_unregister(struct neigh_parms *p) 2805 { 2806 if (p->sysctl_table) { 2807 struct neigh_sysctl_table *t = p->sysctl_table; 2808 p->sysctl_table = NULL; 2809 unregister_sysctl_table(t->sysctl_header); 2810 kfree(t->dev_name); 2811 kfree(t); 2812 } 2813 } 2814 EXPORT_SYMBOL(neigh_sysctl_unregister); 2815 2816 #endif /* CONFIG_SYSCTL */ 2817 2818 static int __init neigh_init(void) 2819 { 2820 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL); 2821 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL); 2822 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info); 2823 2824 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info); 2825 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL); 2826 2827 return 0; 2828 } 2829 2830 subsys_initcall(neigh_init); 2831 2832