1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic address resolution entity 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 8 * 9 * Fixes: 10 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 11 * Harald Welte Add neighbour cache statistics like rtstat 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/slab.h> 17 #include <linux/kmemleak.h> 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/socket.h> 22 #include <linux/netdevice.h> 23 #include <linux/proc_fs.h> 24 #ifdef CONFIG_SYSCTL 25 #include <linux/sysctl.h> 26 #endif 27 #include <linux/times.h> 28 #include <net/net_namespace.h> 29 #include <net/neighbour.h> 30 #include <net/arp.h> 31 #include <net/dst.h> 32 #include <net/sock.h> 33 #include <net/netevent.h> 34 #include <net/netlink.h> 35 #include <linux/rtnetlink.h> 36 #include <linux/random.h> 37 #include <linux/string.h> 38 #include <linux/log2.h> 39 #include <linux/inetdevice.h> 40 #include <net/addrconf.h> 41 42 #include <trace/events/neigh.h> 43 44 #define NEIGH_DEBUG 1 45 #define neigh_dbg(level, fmt, ...) \ 46 do { \ 47 if (level <= NEIGH_DEBUG) \ 48 pr_debug(fmt, ##__VA_ARGS__); \ 49 } while (0) 50 51 #define PNEIGH_HASHMASK 0xF 52 53 static void neigh_timer_handler(struct timer_list *t); 54 static void __neigh_notify(struct neighbour *n, int type, int flags, 55 u32 pid); 56 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid); 57 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 58 struct net_device *dev); 59 60 #ifdef CONFIG_PROC_FS 61 static const struct seq_operations neigh_stat_seq_ops; 62 #endif 63 64 /* 65 Neighbour hash table buckets are protected with rwlock tbl->lock. 66 67 - All the scans/updates to hash buckets MUST be made under this lock. 68 - NOTHING clever should be made under this lock: no callbacks 69 to protocol backends, no attempts to send something to network. 70 It will result in deadlocks, if backend/driver wants to use neighbour 71 cache. 72 - If the entry requires some non-trivial actions, increase 73 its reference count and release table lock. 74 75 Neighbour entries are protected: 76 - with reference count. 77 - with rwlock neigh->lock 78 79 Reference count prevents destruction. 80 81 neigh->lock mainly serializes ll address data and its validity state. 82 However, the same lock is used to protect another entry fields: 83 - timer 84 - resolution queue 85 86 Again, nothing clever shall be made under neigh->lock, 87 the most complicated procedure, which we allow is dev->hard_header. 88 It is supposed, that dev->hard_header is simplistic and does 89 not make callbacks to neighbour tables. 90 */ 91 92 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) 93 { 94 kfree_skb(skb); 95 return -ENETDOWN; 96 } 97 98 static void neigh_cleanup_and_release(struct neighbour *neigh) 99 { 100 trace_neigh_cleanup_and_release(neigh, 0); 101 __neigh_notify(neigh, RTM_DELNEIGH, 0, 0); 102 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 103 neigh_release(neigh); 104 } 105 106 /* 107 * It is random distribution in the interval (1/2)*base...(3/2)*base. 108 * It corresponds to default IPv6 settings and is not overridable, 109 * because it is really reasonable choice. 110 */ 111 112 unsigned long neigh_rand_reach_time(unsigned long base) 113 { 114 return base ? (prandom_u32() % base) + (base >> 1) : 0; 115 } 116 EXPORT_SYMBOL(neigh_rand_reach_time); 117 118 static void neigh_mark_dead(struct neighbour *n) 119 { 120 n->dead = 1; 121 if (!list_empty(&n->gc_list)) { 122 list_del_init(&n->gc_list); 123 atomic_dec(&n->tbl->gc_entries); 124 } 125 if (!list_empty(&n->managed_list)) 126 list_del_init(&n->managed_list); 127 } 128 129 static void neigh_update_gc_list(struct neighbour *n) 130 { 131 bool on_gc_list, exempt_from_gc; 132 133 write_lock_bh(&n->tbl->lock); 134 write_lock(&n->lock); 135 if (n->dead) 136 goto out; 137 138 /* remove from the gc list if new state is permanent or if neighbor 139 * is externally learned; otherwise entry should be on the gc list 140 */ 141 exempt_from_gc = n->nud_state & NUD_PERMANENT || 142 n->flags & NTF_EXT_LEARNED; 143 on_gc_list = !list_empty(&n->gc_list); 144 145 if (exempt_from_gc && on_gc_list) { 146 list_del_init(&n->gc_list); 147 atomic_dec(&n->tbl->gc_entries); 148 } else if (!exempt_from_gc && !on_gc_list) { 149 /* add entries to the tail; cleaning removes from the front */ 150 list_add_tail(&n->gc_list, &n->tbl->gc_list); 151 atomic_inc(&n->tbl->gc_entries); 152 } 153 out: 154 write_unlock(&n->lock); 155 write_unlock_bh(&n->tbl->lock); 156 } 157 158 static void neigh_update_managed_list(struct neighbour *n) 159 { 160 bool on_managed_list, add_to_managed; 161 162 write_lock_bh(&n->tbl->lock); 163 write_lock(&n->lock); 164 if (n->dead) 165 goto out; 166 167 add_to_managed = n->flags & NTF_MANAGED; 168 on_managed_list = !list_empty(&n->managed_list); 169 170 if (!add_to_managed && on_managed_list) 171 list_del_init(&n->managed_list); 172 else if (add_to_managed && !on_managed_list) 173 list_add_tail(&n->managed_list, &n->tbl->managed_list); 174 out: 175 write_unlock(&n->lock); 176 write_unlock_bh(&n->tbl->lock); 177 } 178 179 static void neigh_update_flags(struct neighbour *neigh, u32 flags, int *notify, 180 bool *gc_update, bool *managed_update) 181 { 182 u32 ndm_flags, old_flags = neigh->flags; 183 184 if (!(flags & NEIGH_UPDATE_F_ADMIN)) 185 return; 186 187 ndm_flags = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0; 188 ndm_flags |= (flags & NEIGH_UPDATE_F_MANAGED) ? NTF_MANAGED : 0; 189 190 if ((old_flags ^ ndm_flags) & NTF_EXT_LEARNED) { 191 if (ndm_flags & NTF_EXT_LEARNED) 192 neigh->flags |= NTF_EXT_LEARNED; 193 else 194 neigh->flags &= ~NTF_EXT_LEARNED; 195 *notify = 1; 196 *gc_update = true; 197 } 198 if ((old_flags ^ ndm_flags) & NTF_MANAGED) { 199 if (ndm_flags & NTF_MANAGED) 200 neigh->flags |= NTF_MANAGED; 201 else 202 neigh->flags &= ~NTF_MANAGED; 203 *notify = 1; 204 *managed_update = true; 205 } 206 } 207 208 static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np, 209 struct neigh_table *tbl) 210 { 211 bool retval = false; 212 213 write_lock(&n->lock); 214 if (refcount_read(&n->refcnt) == 1) { 215 struct neighbour *neigh; 216 217 neigh = rcu_dereference_protected(n->next, 218 lockdep_is_held(&tbl->lock)); 219 rcu_assign_pointer(*np, neigh); 220 neigh_mark_dead(n); 221 retval = true; 222 } 223 write_unlock(&n->lock); 224 if (retval) 225 neigh_cleanup_and_release(n); 226 return retval; 227 } 228 229 bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl) 230 { 231 struct neigh_hash_table *nht; 232 void *pkey = ndel->primary_key; 233 u32 hash_val; 234 struct neighbour *n; 235 struct neighbour __rcu **np; 236 237 nht = rcu_dereference_protected(tbl->nht, 238 lockdep_is_held(&tbl->lock)); 239 hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd); 240 hash_val = hash_val >> (32 - nht->hash_shift); 241 242 np = &nht->hash_buckets[hash_val]; 243 while ((n = rcu_dereference_protected(*np, 244 lockdep_is_held(&tbl->lock)))) { 245 if (n == ndel) 246 return neigh_del(n, np, tbl); 247 np = &n->next; 248 } 249 return false; 250 } 251 252 static int neigh_forced_gc(struct neigh_table *tbl) 253 { 254 int max_clean = atomic_read(&tbl->gc_entries) - tbl->gc_thresh2; 255 unsigned long tref = jiffies - 5 * HZ; 256 struct neighbour *n, *tmp; 257 int shrunk = 0; 258 259 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 260 261 write_lock_bh(&tbl->lock); 262 263 list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) { 264 if (refcount_read(&n->refcnt) == 1) { 265 bool remove = false; 266 267 write_lock(&n->lock); 268 if ((n->nud_state == NUD_FAILED) || 269 (n->nud_state == NUD_NOARP) || 270 (tbl->is_multicast && 271 tbl->is_multicast(n->primary_key)) || 272 time_after(tref, n->updated)) 273 remove = true; 274 write_unlock(&n->lock); 275 276 if (remove && neigh_remove_one(n, tbl)) 277 shrunk++; 278 if (shrunk >= max_clean) 279 break; 280 } 281 } 282 283 tbl->last_flush = jiffies; 284 285 write_unlock_bh(&tbl->lock); 286 287 return shrunk; 288 } 289 290 static void neigh_add_timer(struct neighbour *n, unsigned long when) 291 { 292 neigh_hold(n); 293 if (unlikely(mod_timer(&n->timer, when))) { 294 printk("NEIGH: BUG, double timer add, state is %x\n", 295 n->nud_state); 296 dump_stack(); 297 } 298 } 299 300 static int neigh_del_timer(struct neighbour *n) 301 { 302 if ((n->nud_state & NUD_IN_TIMER) && 303 del_timer(&n->timer)) { 304 neigh_release(n); 305 return 1; 306 } 307 return 0; 308 } 309 310 static void pneigh_queue_purge(struct sk_buff_head *list) 311 { 312 struct sk_buff *skb; 313 314 while ((skb = skb_dequeue(list)) != NULL) { 315 dev_put(skb->dev); 316 kfree_skb(skb); 317 } 318 } 319 320 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev, 321 bool skip_perm) 322 { 323 int i; 324 struct neigh_hash_table *nht; 325 326 nht = rcu_dereference_protected(tbl->nht, 327 lockdep_is_held(&tbl->lock)); 328 329 for (i = 0; i < (1 << nht->hash_shift); i++) { 330 struct neighbour *n; 331 struct neighbour __rcu **np = &nht->hash_buckets[i]; 332 333 while ((n = rcu_dereference_protected(*np, 334 lockdep_is_held(&tbl->lock))) != NULL) { 335 if (dev && n->dev != dev) { 336 np = &n->next; 337 continue; 338 } 339 if (skip_perm && n->nud_state & NUD_PERMANENT) { 340 np = &n->next; 341 continue; 342 } 343 rcu_assign_pointer(*np, 344 rcu_dereference_protected(n->next, 345 lockdep_is_held(&tbl->lock))); 346 write_lock(&n->lock); 347 neigh_del_timer(n); 348 neigh_mark_dead(n); 349 if (refcount_read(&n->refcnt) != 1) { 350 /* The most unpleasant situation. 351 We must destroy neighbour entry, 352 but someone still uses it. 353 354 The destroy will be delayed until 355 the last user releases us, but 356 we must kill timers etc. and move 357 it to safe state. 358 */ 359 __skb_queue_purge(&n->arp_queue); 360 n->arp_queue_len_bytes = 0; 361 n->output = neigh_blackhole; 362 if (n->nud_state & NUD_VALID) 363 n->nud_state = NUD_NOARP; 364 else 365 n->nud_state = NUD_NONE; 366 neigh_dbg(2, "neigh %p is stray\n", n); 367 } 368 write_unlock(&n->lock); 369 neigh_cleanup_and_release(n); 370 } 371 } 372 } 373 374 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 375 { 376 write_lock_bh(&tbl->lock); 377 neigh_flush_dev(tbl, dev, false); 378 write_unlock_bh(&tbl->lock); 379 } 380 EXPORT_SYMBOL(neigh_changeaddr); 381 382 static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev, 383 bool skip_perm) 384 { 385 write_lock_bh(&tbl->lock); 386 neigh_flush_dev(tbl, dev, skip_perm); 387 pneigh_ifdown_and_unlock(tbl, dev); 388 389 del_timer_sync(&tbl->proxy_timer); 390 pneigh_queue_purge(&tbl->proxy_queue); 391 return 0; 392 } 393 394 int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev) 395 { 396 __neigh_ifdown(tbl, dev, true); 397 return 0; 398 } 399 EXPORT_SYMBOL(neigh_carrier_down); 400 401 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 402 { 403 __neigh_ifdown(tbl, dev, false); 404 return 0; 405 } 406 EXPORT_SYMBOL(neigh_ifdown); 407 408 static struct neighbour *neigh_alloc(struct neigh_table *tbl, 409 struct net_device *dev, 410 u32 flags, bool exempt_from_gc) 411 { 412 struct neighbour *n = NULL; 413 unsigned long now = jiffies; 414 int entries; 415 416 if (exempt_from_gc) 417 goto do_alloc; 418 419 entries = atomic_inc_return(&tbl->gc_entries) - 1; 420 if (entries >= tbl->gc_thresh3 || 421 (entries >= tbl->gc_thresh2 && 422 time_after(now, tbl->last_flush + 5 * HZ))) { 423 if (!neigh_forced_gc(tbl) && 424 entries >= tbl->gc_thresh3) { 425 net_info_ratelimited("%s: neighbor table overflow!\n", 426 tbl->id); 427 NEIGH_CACHE_STAT_INC(tbl, table_fulls); 428 goto out_entries; 429 } 430 } 431 432 do_alloc: 433 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC); 434 if (!n) 435 goto out_entries; 436 437 __skb_queue_head_init(&n->arp_queue); 438 rwlock_init(&n->lock); 439 seqlock_init(&n->ha_lock); 440 n->updated = n->used = now; 441 n->nud_state = NUD_NONE; 442 n->output = neigh_blackhole; 443 n->flags = flags; 444 seqlock_init(&n->hh.hh_lock); 445 n->parms = neigh_parms_clone(&tbl->parms); 446 timer_setup(&n->timer, neigh_timer_handler, 0); 447 448 NEIGH_CACHE_STAT_INC(tbl, allocs); 449 n->tbl = tbl; 450 refcount_set(&n->refcnt, 1); 451 n->dead = 1; 452 INIT_LIST_HEAD(&n->gc_list); 453 INIT_LIST_HEAD(&n->managed_list); 454 455 atomic_inc(&tbl->entries); 456 out: 457 return n; 458 459 out_entries: 460 if (!exempt_from_gc) 461 atomic_dec(&tbl->gc_entries); 462 goto out; 463 } 464 465 static void neigh_get_hash_rnd(u32 *x) 466 { 467 *x = get_random_u32() | 1; 468 } 469 470 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) 471 { 472 size_t size = (1 << shift) * sizeof(struct neighbour *); 473 struct neigh_hash_table *ret; 474 struct neighbour __rcu **buckets; 475 int i; 476 477 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 478 if (!ret) 479 return NULL; 480 if (size <= PAGE_SIZE) { 481 buckets = kzalloc(size, GFP_ATOMIC); 482 } else { 483 buckets = (struct neighbour __rcu **) 484 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 485 get_order(size)); 486 kmemleak_alloc(buckets, size, 1, GFP_ATOMIC); 487 } 488 if (!buckets) { 489 kfree(ret); 490 return NULL; 491 } 492 ret->hash_buckets = buckets; 493 ret->hash_shift = shift; 494 for (i = 0; i < NEIGH_NUM_HASH_RND; i++) 495 neigh_get_hash_rnd(&ret->hash_rnd[i]); 496 return ret; 497 } 498 499 static void neigh_hash_free_rcu(struct rcu_head *head) 500 { 501 struct neigh_hash_table *nht = container_of(head, 502 struct neigh_hash_table, 503 rcu); 504 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); 505 struct neighbour __rcu **buckets = nht->hash_buckets; 506 507 if (size <= PAGE_SIZE) { 508 kfree(buckets); 509 } else { 510 kmemleak_free(buckets); 511 free_pages((unsigned long)buckets, get_order(size)); 512 } 513 kfree(nht); 514 } 515 516 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, 517 unsigned long new_shift) 518 { 519 unsigned int i, hash; 520 struct neigh_hash_table *new_nht, *old_nht; 521 522 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 523 524 old_nht = rcu_dereference_protected(tbl->nht, 525 lockdep_is_held(&tbl->lock)); 526 new_nht = neigh_hash_alloc(new_shift); 527 if (!new_nht) 528 return old_nht; 529 530 for (i = 0; i < (1 << old_nht->hash_shift); i++) { 531 struct neighbour *n, *next; 532 533 for (n = rcu_dereference_protected(old_nht->hash_buckets[i], 534 lockdep_is_held(&tbl->lock)); 535 n != NULL; 536 n = next) { 537 hash = tbl->hash(n->primary_key, n->dev, 538 new_nht->hash_rnd); 539 540 hash >>= (32 - new_nht->hash_shift); 541 next = rcu_dereference_protected(n->next, 542 lockdep_is_held(&tbl->lock)); 543 544 rcu_assign_pointer(n->next, 545 rcu_dereference_protected( 546 new_nht->hash_buckets[hash], 547 lockdep_is_held(&tbl->lock))); 548 rcu_assign_pointer(new_nht->hash_buckets[hash], n); 549 } 550 } 551 552 rcu_assign_pointer(tbl->nht, new_nht); 553 call_rcu(&old_nht->rcu, neigh_hash_free_rcu); 554 return new_nht; 555 } 556 557 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 558 struct net_device *dev) 559 { 560 struct neighbour *n; 561 562 NEIGH_CACHE_STAT_INC(tbl, lookups); 563 564 rcu_read_lock_bh(); 565 n = __neigh_lookup_noref(tbl, pkey, dev); 566 if (n) { 567 if (!refcount_inc_not_zero(&n->refcnt)) 568 n = NULL; 569 NEIGH_CACHE_STAT_INC(tbl, hits); 570 } 571 572 rcu_read_unlock_bh(); 573 return n; 574 } 575 EXPORT_SYMBOL(neigh_lookup); 576 577 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 578 const void *pkey) 579 { 580 struct neighbour *n; 581 unsigned int key_len = tbl->key_len; 582 u32 hash_val; 583 struct neigh_hash_table *nht; 584 585 NEIGH_CACHE_STAT_INC(tbl, lookups); 586 587 rcu_read_lock_bh(); 588 nht = rcu_dereference_bh(tbl->nht); 589 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift); 590 591 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 592 n != NULL; 593 n = rcu_dereference_bh(n->next)) { 594 if (!memcmp(n->primary_key, pkey, key_len) && 595 net_eq(dev_net(n->dev), net)) { 596 if (!refcount_inc_not_zero(&n->refcnt)) 597 n = NULL; 598 NEIGH_CACHE_STAT_INC(tbl, hits); 599 break; 600 } 601 } 602 603 rcu_read_unlock_bh(); 604 return n; 605 } 606 EXPORT_SYMBOL(neigh_lookup_nodev); 607 608 static struct neighbour * 609 ___neigh_create(struct neigh_table *tbl, const void *pkey, 610 struct net_device *dev, u32 flags, 611 bool exempt_from_gc, bool want_ref) 612 { 613 u32 hash_val, key_len = tbl->key_len; 614 struct neighbour *n1, *rc, *n; 615 struct neigh_hash_table *nht; 616 int error; 617 618 n = neigh_alloc(tbl, dev, flags, exempt_from_gc); 619 trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc); 620 if (!n) { 621 rc = ERR_PTR(-ENOBUFS); 622 goto out; 623 } 624 625 memcpy(n->primary_key, pkey, key_len); 626 n->dev = dev; 627 dev_hold(dev); 628 629 /* Protocol specific setup. */ 630 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 631 rc = ERR_PTR(error); 632 goto out_neigh_release; 633 } 634 635 if (dev->netdev_ops->ndo_neigh_construct) { 636 error = dev->netdev_ops->ndo_neigh_construct(dev, n); 637 if (error < 0) { 638 rc = ERR_PTR(error); 639 goto out_neigh_release; 640 } 641 } 642 643 /* Device specific setup. */ 644 if (n->parms->neigh_setup && 645 (error = n->parms->neigh_setup(n)) < 0) { 646 rc = ERR_PTR(error); 647 goto out_neigh_release; 648 } 649 650 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1); 651 652 write_lock_bh(&tbl->lock); 653 nht = rcu_dereference_protected(tbl->nht, 654 lockdep_is_held(&tbl->lock)); 655 656 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) 657 nht = neigh_hash_grow(tbl, nht->hash_shift + 1); 658 659 hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 660 661 if (n->parms->dead) { 662 rc = ERR_PTR(-EINVAL); 663 goto out_tbl_unlock; 664 } 665 666 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], 667 lockdep_is_held(&tbl->lock)); 668 n1 != NULL; 669 n1 = rcu_dereference_protected(n1->next, 670 lockdep_is_held(&tbl->lock))) { 671 if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) { 672 if (want_ref) 673 neigh_hold(n1); 674 rc = n1; 675 goto out_tbl_unlock; 676 } 677 } 678 679 n->dead = 0; 680 if (!exempt_from_gc) 681 list_add_tail(&n->gc_list, &n->tbl->gc_list); 682 if (n->flags & NTF_MANAGED) 683 list_add_tail(&n->managed_list, &n->tbl->managed_list); 684 if (want_ref) 685 neigh_hold(n); 686 rcu_assign_pointer(n->next, 687 rcu_dereference_protected(nht->hash_buckets[hash_val], 688 lockdep_is_held(&tbl->lock))); 689 rcu_assign_pointer(nht->hash_buckets[hash_val], n); 690 write_unlock_bh(&tbl->lock); 691 neigh_dbg(2, "neigh %p is created\n", n); 692 rc = n; 693 out: 694 return rc; 695 out_tbl_unlock: 696 write_unlock_bh(&tbl->lock); 697 out_neigh_release: 698 if (!exempt_from_gc) 699 atomic_dec(&tbl->gc_entries); 700 neigh_release(n); 701 goto out; 702 } 703 704 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, 705 struct net_device *dev, bool want_ref) 706 { 707 return ___neigh_create(tbl, pkey, dev, 0, false, want_ref); 708 } 709 EXPORT_SYMBOL(__neigh_create); 710 711 static u32 pneigh_hash(const void *pkey, unsigned int key_len) 712 { 713 u32 hash_val = *(u32 *)(pkey + key_len - 4); 714 hash_val ^= (hash_val >> 16); 715 hash_val ^= hash_val >> 8; 716 hash_val ^= hash_val >> 4; 717 hash_val &= PNEIGH_HASHMASK; 718 return hash_val; 719 } 720 721 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 722 struct net *net, 723 const void *pkey, 724 unsigned int key_len, 725 struct net_device *dev) 726 { 727 while (n) { 728 if (!memcmp(n->key, pkey, key_len) && 729 net_eq(pneigh_net(n), net) && 730 (n->dev == dev || !n->dev)) 731 return n; 732 n = n->next; 733 } 734 return NULL; 735 } 736 737 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 738 struct net *net, const void *pkey, struct net_device *dev) 739 { 740 unsigned int key_len = tbl->key_len; 741 u32 hash_val = pneigh_hash(pkey, key_len); 742 743 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 744 net, pkey, key_len, dev); 745 } 746 EXPORT_SYMBOL_GPL(__pneigh_lookup); 747 748 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 749 struct net *net, const void *pkey, 750 struct net_device *dev, int creat) 751 { 752 struct pneigh_entry *n; 753 unsigned int key_len = tbl->key_len; 754 u32 hash_val = pneigh_hash(pkey, key_len); 755 756 read_lock_bh(&tbl->lock); 757 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 758 net, pkey, key_len, dev); 759 read_unlock_bh(&tbl->lock); 760 761 if (n || !creat) 762 goto out; 763 764 ASSERT_RTNL(); 765 766 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 767 if (!n) 768 goto out; 769 770 n->protocol = 0; 771 write_pnet(&n->net, net); 772 memcpy(n->key, pkey, key_len); 773 n->dev = dev; 774 dev_hold(dev); 775 776 if (tbl->pconstructor && tbl->pconstructor(n)) { 777 dev_put(dev); 778 kfree(n); 779 n = NULL; 780 goto out; 781 } 782 783 write_lock_bh(&tbl->lock); 784 n->next = tbl->phash_buckets[hash_val]; 785 tbl->phash_buckets[hash_val] = n; 786 write_unlock_bh(&tbl->lock); 787 out: 788 return n; 789 } 790 EXPORT_SYMBOL(pneigh_lookup); 791 792 793 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 794 struct net_device *dev) 795 { 796 struct pneigh_entry *n, **np; 797 unsigned int key_len = tbl->key_len; 798 u32 hash_val = pneigh_hash(pkey, key_len); 799 800 write_lock_bh(&tbl->lock); 801 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 802 np = &n->next) { 803 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 804 net_eq(pneigh_net(n), net)) { 805 *np = n->next; 806 write_unlock_bh(&tbl->lock); 807 if (tbl->pdestructor) 808 tbl->pdestructor(n); 809 dev_put(n->dev); 810 kfree(n); 811 return 0; 812 } 813 } 814 write_unlock_bh(&tbl->lock); 815 return -ENOENT; 816 } 817 818 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 819 struct net_device *dev) 820 { 821 struct pneigh_entry *n, **np, *freelist = NULL; 822 u32 h; 823 824 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 825 np = &tbl->phash_buckets[h]; 826 while ((n = *np) != NULL) { 827 if (!dev || n->dev == dev) { 828 *np = n->next; 829 n->next = freelist; 830 freelist = n; 831 continue; 832 } 833 np = &n->next; 834 } 835 } 836 write_unlock_bh(&tbl->lock); 837 while ((n = freelist)) { 838 freelist = n->next; 839 n->next = NULL; 840 if (tbl->pdestructor) 841 tbl->pdestructor(n); 842 dev_put(n->dev); 843 kfree(n); 844 } 845 return -ENOENT; 846 } 847 848 static void neigh_parms_destroy(struct neigh_parms *parms); 849 850 static inline void neigh_parms_put(struct neigh_parms *parms) 851 { 852 if (refcount_dec_and_test(&parms->refcnt)) 853 neigh_parms_destroy(parms); 854 } 855 856 /* 857 * neighbour must already be out of the table; 858 * 859 */ 860 void neigh_destroy(struct neighbour *neigh) 861 { 862 struct net_device *dev = neigh->dev; 863 864 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 865 866 if (!neigh->dead) { 867 pr_warn("Destroying alive neighbour %p\n", neigh); 868 dump_stack(); 869 return; 870 } 871 872 if (neigh_del_timer(neigh)) 873 pr_warn("Impossible event\n"); 874 875 write_lock_bh(&neigh->lock); 876 __skb_queue_purge(&neigh->arp_queue); 877 write_unlock_bh(&neigh->lock); 878 neigh->arp_queue_len_bytes = 0; 879 880 if (dev->netdev_ops->ndo_neigh_destroy) 881 dev->netdev_ops->ndo_neigh_destroy(dev, neigh); 882 883 dev_put(dev); 884 neigh_parms_put(neigh->parms); 885 886 neigh_dbg(2, "neigh %p is destroyed\n", neigh); 887 888 atomic_dec(&neigh->tbl->entries); 889 kfree_rcu(neigh, rcu); 890 } 891 EXPORT_SYMBOL(neigh_destroy); 892 893 /* Neighbour state is suspicious; 894 disable fast path. 895 896 Called with write_locked neigh. 897 */ 898 static void neigh_suspect(struct neighbour *neigh) 899 { 900 neigh_dbg(2, "neigh %p is suspected\n", neigh); 901 902 neigh->output = neigh->ops->output; 903 } 904 905 /* Neighbour state is OK; 906 enable fast path. 907 908 Called with write_locked neigh. 909 */ 910 static void neigh_connect(struct neighbour *neigh) 911 { 912 neigh_dbg(2, "neigh %p is connected\n", neigh); 913 914 neigh->output = neigh->ops->connected_output; 915 } 916 917 static void neigh_periodic_work(struct work_struct *work) 918 { 919 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 920 struct neighbour *n; 921 struct neighbour __rcu **np; 922 unsigned int i; 923 struct neigh_hash_table *nht; 924 925 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 926 927 write_lock_bh(&tbl->lock); 928 nht = rcu_dereference_protected(tbl->nht, 929 lockdep_is_held(&tbl->lock)); 930 931 /* 932 * periodically recompute ReachableTime from random function 933 */ 934 935 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 936 struct neigh_parms *p; 937 tbl->last_rand = jiffies; 938 list_for_each_entry(p, &tbl->parms_list, list) 939 p->reachable_time = 940 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 941 } 942 943 if (atomic_read(&tbl->entries) < tbl->gc_thresh1) 944 goto out; 945 946 for (i = 0 ; i < (1 << nht->hash_shift); i++) { 947 np = &nht->hash_buckets[i]; 948 949 while ((n = rcu_dereference_protected(*np, 950 lockdep_is_held(&tbl->lock))) != NULL) { 951 unsigned int state; 952 953 write_lock(&n->lock); 954 955 state = n->nud_state; 956 if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) || 957 (n->flags & NTF_EXT_LEARNED)) { 958 write_unlock(&n->lock); 959 goto next_elt; 960 } 961 962 if (time_before(n->used, n->confirmed)) 963 n->used = n->confirmed; 964 965 if (refcount_read(&n->refcnt) == 1 && 966 (state == NUD_FAILED || 967 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) { 968 *np = n->next; 969 neigh_mark_dead(n); 970 write_unlock(&n->lock); 971 neigh_cleanup_and_release(n); 972 continue; 973 } 974 write_unlock(&n->lock); 975 976 next_elt: 977 np = &n->next; 978 } 979 /* 980 * It's fine to release lock here, even if hash table 981 * grows while we are preempted. 982 */ 983 write_unlock_bh(&tbl->lock); 984 cond_resched(); 985 write_lock_bh(&tbl->lock); 986 nht = rcu_dereference_protected(tbl->nht, 987 lockdep_is_held(&tbl->lock)); 988 } 989 out: 990 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks. 991 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2 992 * BASE_REACHABLE_TIME. 993 */ 994 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 995 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1); 996 write_unlock_bh(&tbl->lock); 997 } 998 999 static __inline__ int neigh_max_probes(struct neighbour *n) 1000 { 1001 struct neigh_parms *p = n->parms; 1002 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) + 1003 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) : 1004 NEIGH_VAR(p, MCAST_PROBES)); 1005 } 1006 1007 static void neigh_invalidate(struct neighbour *neigh) 1008 __releases(neigh->lock) 1009 __acquires(neigh->lock) 1010 { 1011 struct sk_buff *skb; 1012 1013 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 1014 neigh_dbg(2, "neigh %p is failed\n", neigh); 1015 neigh->updated = jiffies; 1016 1017 /* It is very thin place. report_unreachable is very complicated 1018 routine. Particularly, it can hit the same neighbour entry! 1019 1020 So that, we try to be accurate and avoid dead loop. --ANK 1021 */ 1022 while (neigh->nud_state == NUD_FAILED && 1023 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1024 write_unlock(&neigh->lock); 1025 neigh->ops->error_report(neigh, skb); 1026 write_lock(&neigh->lock); 1027 } 1028 __skb_queue_purge(&neigh->arp_queue); 1029 neigh->arp_queue_len_bytes = 0; 1030 } 1031 1032 static void neigh_probe(struct neighbour *neigh) 1033 __releases(neigh->lock) 1034 { 1035 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue); 1036 /* keep skb alive even if arp_queue overflows */ 1037 if (skb) 1038 skb = skb_clone(skb, GFP_ATOMIC); 1039 write_unlock(&neigh->lock); 1040 if (neigh->ops->solicit) 1041 neigh->ops->solicit(neigh, skb); 1042 atomic_inc(&neigh->probes); 1043 consume_skb(skb); 1044 } 1045 1046 /* Called when a timer expires for a neighbour entry. */ 1047 1048 static void neigh_timer_handler(struct timer_list *t) 1049 { 1050 unsigned long now, next; 1051 struct neighbour *neigh = from_timer(neigh, t, timer); 1052 unsigned int state; 1053 int notify = 0; 1054 1055 write_lock(&neigh->lock); 1056 1057 state = neigh->nud_state; 1058 now = jiffies; 1059 next = now + HZ; 1060 1061 if (!(state & NUD_IN_TIMER)) 1062 goto out; 1063 1064 if (state & NUD_REACHABLE) { 1065 if (time_before_eq(now, 1066 neigh->confirmed + neigh->parms->reachable_time)) { 1067 neigh_dbg(2, "neigh %p is still alive\n", neigh); 1068 next = neigh->confirmed + neigh->parms->reachable_time; 1069 } else if (time_before_eq(now, 1070 neigh->used + 1071 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1072 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1073 neigh->nud_state = NUD_DELAY; 1074 neigh->updated = jiffies; 1075 neigh_suspect(neigh); 1076 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME); 1077 } else { 1078 neigh_dbg(2, "neigh %p is suspected\n", neigh); 1079 neigh->nud_state = NUD_STALE; 1080 neigh->updated = jiffies; 1081 neigh_suspect(neigh); 1082 notify = 1; 1083 } 1084 } else if (state & NUD_DELAY) { 1085 if (time_before_eq(now, 1086 neigh->confirmed + 1087 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1088 neigh_dbg(2, "neigh %p is now reachable\n", neigh); 1089 neigh->nud_state = NUD_REACHABLE; 1090 neigh->updated = jiffies; 1091 neigh_connect(neigh); 1092 notify = 1; 1093 next = neigh->confirmed + neigh->parms->reachable_time; 1094 } else { 1095 neigh_dbg(2, "neigh %p is probed\n", neigh); 1096 neigh->nud_state = NUD_PROBE; 1097 neigh->updated = jiffies; 1098 atomic_set(&neigh->probes, 0); 1099 notify = 1; 1100 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1101 HZ/100); 1102 } 1103 } else { 1104 /* NUD_PROBE|NUD_INCOMPLETE */ 1105 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100); 1106 } 1107 1108 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 1109 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 1110 neigh->nud_state = NUD_FAILED; 1111 notify = 1; 1112 neigh_invalidate(neigh); 1113 goto out; 1114 } 1115 1116 if (neigh->nud_state & NUD_IN_TIMER) { 1117 if (time_before(next, jiffies + HZ/100)) 1118 next = jiffies + HZ/100; 1119 if (!mod_timer(&neigh->timer, next)) 1120 neigh_hold(neigh); 1121 } 1122 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 1123 neigh_probe(neigh); 1124 } else { 1125 out: 1126 write_unlock(&neigh->lock); 1127 } 1128 1129 if (notify) 1130 neigh_update_notify(neigh, 0); 1131 1132 trace_neigh_timer_handler(neigh, 0); 1133 1134 neigh_release(neigh); 1135 } 1136 1137 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 1138 { 1139 int rc; 1140 bool immediate_probe = false; 1141 1142 write_lock_bh(&neigh->lock); 1143 1144 rc = 0; 1145 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 1146 goto out_unlock_bh; 1147 if (neigh->dead) 1148 goto out_dead; 1149 1150 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 1151 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) + 1152 NEIGH_VAR(neigh->parms, APP_PROBES)) { 1153 unsigned long next, now = jiffies; 1154 1155 atomic_set(&neigh->probes, 1156 NEIGH_VAR(neigh->parms, UCAST_PROBES)); 1157 neigh_del_timer(neigh); 1158 neigh->nud_state = NUD_INCOMPLETE; 1159 neigh->updated = now; 1160 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1161 HZ/100); 1162 neigh_add_timer(neigh, next); 1163 immediate_probe = true; 1164 } else { 1165 neigh->nud_state = NUD_FAILED; 1166 neigh->updated = jiffies; 1167 write_unlock_bh(&neigh->lock); 1168 1169 kfree_skb(skb); 1170 return 1; 1171 } 1172 } else if (neigh->nud_state & NUD_STALE) { 1173 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1174 neigh_del_timer(neigh); 1175 neigh->nud_state = NUD_DELAY; 1176 neigh->updated = jiffies; 1177 neigh_add_timer(neigh, jiffies + 1178 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME)); 1179 } 1180 1181 if (neigh->nud_state == NUD_INCOMPLETE) { 1182 if (skb) { 1183 while (neigh->arp_queue_len_bytes + skb->truesize > 1184 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) { 1185 struct sk_buff *buff; 1186 1187 buff = __skb_dequeue(&neigh->arp_queue); 1188 if (!buff) 1189 break; 1190 neigh->arp_queue_len_bytes -= buff->truesize; 1191 kfree_skb(buff); 1192 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 1193 } 1194 skb_dst_force(skb); 1195 __skb_queue_tail(&neigh->arp_queue, skb); 1196 neigh->arp_queue_len_bytes += skb->truesize; 1197 } 1198 rc = 1; 1199 } 1200 out_unlock_bh: 1201 if (immediate_probe) 1202 neigh_probe(neigh); 1203 else 1204 write_unlock(&neigh->lock); 1205 local_bh_enable(); 1206 trace_neigh_event_send_done(neigh, rc); 1207 return rc; 1208 1209 out_dead: 1210 if (neigh->nud_state & NUD_STALE) 1211 goto out_unlock_bh; 1212 write_unlock_bh(&neigh->lock); 1213 kfree_skb(skb); 1214 trace_neigh_event_send_dead(neigh, 1); 1215 return 1; 1216 } 1217 EXPORT_SYMBOL(__neigh_event_send); 1218 1219 static void neigh_update_hhs(struct neighbour *neigh) 1220 { 1221 struct hh_cache *hh; 1222 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 1223 = NULL; 1224 1225 if (neigh->dev->header_ops) 1226 update = neigh->dev->header_ops->cache_update; 1227 1228 if (update) { 1229 hh = &neigh->hh; 1230 if (READ_ONCE(hh->hh_len)) { 1231 write_seqlock_bh(&hh->hh_lock); 1232 update(hh, neigh->dev, neigh->ha); 1233 write_sequnlock_bh(&hh->hh_lock); 1234 } 1235 } 1236 } 1237 1238 /* Generic update routine. 1239 -- lladdr is new lladdr or NULL, if it is not supplied. 1240 -- new is new state. 1241 -- flags 1242 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 1243 if it is different. 1244 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 1245 lladdr instead of overriding it 1246 if it is different. 1247 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 1248 NEIGH_UPDATE_F_USE means that the entry is user triggered. 1249 NEIGH_UPDATE_F_MANAGED means that the entry will be auto-refreshed. 1250 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 1251 NTF_ROUTER flag. 1252 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 1253 a router. 1254 1255 Caller MUST hold reference count on the entry. 1256 */ 1257 static int __neigh_update(struct neighbour *neigh, const u8 *lladdr, 1258 u8 new, u32 flags, u32 nlmsg_pid, 1259 struct netlink_ext_ack *extack) 1260 { 1261 bool gc_update = false, managed_update = false; 1262 int update_isrouter = 0; 1263 struct net_device *dev; 1264 int err, notify = 0; 1265 u8 old; 1266 1267 trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid); 1268 1269 write_lock_bh(&neigh->lock); 1270 1271 dev = neigh->dev; 1272 old = neigh->nud_state; 1273 err = -EPERM; 1274 1275 if (neigh->dead) { 1276 NL_SET_ERR_MSG(extack, "Neighbor entry is now dead"); 1277 new = old; 1278 goto out; 1279 } 1280 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 1281 (old & (NUD_NOARP | NUD_PERMANENT))) 1282 goto out; 1283 1284 neigh_update_flags(neigh, flags, ¬ify, &gc_update, &managed_update); 1285 if (flags & (NEIGH_UPDATE_F_USE | NEIGH_UPDATE_F_MANAGED)) { 1286 new = old & ~NUD_PERMANENT; 1287 neigh->nud_state = new; 1288 err = 0; 1289 goto out; 1290 } 1291 1292 if (!(new & NUD_VALID)) { 1293 neigh_del_timer(neigh); 1294 if (old & NUD_CONNECTED) 1295 neigh_suspect(neigh); 1296 neigh->nud_state = new; 1297 err = 0; 1298 notify = old & NUD_VALID; 1299 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1300 (new & NUD_FAILED)) { 1301 neigh_invalidate(neigh); 1302 notify = 1; 1303 } 1304 goto out; 1305 } 1306 1307 /* Compare new lladdr with cached one */ 1308 if (!dev->addr_len) { 1309 /* First case: device needs no address. */ 1310 lladdr = neigh->ha; 1311 } else if (lladdr) { 1312 /* The second case: if something is already cached 1313 and a new address is proposed: 1314 - compare new & old 1315 - if they are different, check override flag 1316 */ 1317 if ((old & NUD_VALID) && 1318 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1319 lladdr = neigh->ha; 1320 } else { 1321 /* No address is supplied; if we know something, 1322 use it, otherwise discard the request. 1323 */ 1324 err = -EINVAL; 1325 if (!(old & NUD_VALID)) { 1326 NL_SET_ERR_MSG(extack, "No link layer address given"); 1327 goto out; 1328 } 1329 lladdr = neigh->ha; 1330 } 1331 1332 /* Update confirmed timestamp for neighbour entry after we 1333 * received ARP packet even if it doesn't change IP to MAC binding. 1334 */ 1335 if (new & NUD_CONNECTED) 1336 neigh->confirmed = jiffies; 1337 1338 /* If entry was valid and address is not changed, 1339 do not change entry state, if new one is STALE. 1340 */ 1341 err = 0; 1342 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1343 if (old & NUD_VALID) { 1344 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1345 update_isrouter = 0; 1346 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1347 (old & NUD_CONNECTED)) { 1348 lladdr = neigh->ha; 1349 new = NUD_STALE; 1350 } else 1351 goto out; 1352 } else { 1353 if (lladdr == neigh->ha && new == NUD_STALE && 1354 !(flags & NEIGH_UPDATE_F_ADMIN)) 1355 new = old; 1356 } 1357 } 1358 1359 /* Update timestamp only once we know we will make a change to the 1360 * neighbour entry. Otherwise we risk to move the locktime window with 1361 * noop updates and ignore relevant ARP updates. 1362 */ 1363 if (new != old || lladdr != neigh->ha) 1364 neigh->updated = jiffies; 1365 1366 if (new != old) { 1367 neigh_del_timer(neigh); 1368 if (new & NUD_PROBE) 1369 atomic_set(&neigh->probes, 0); 1370 if (new & NUD_IN_TIMER) 1371 neigh_add_timer(neigh, (jiffies + 1372 ((new & NUD_REACHABLE) ? 1373 neigh->parms->reachable_time : 1374 0))); 1375 neigh->nud_state = new; 1376 notify = 1; 1377 } 1378 1379 if (lladdr != neigh->ha) { 1380 write_seqlock(&neigh->ha_lock); 1381 memcpy(&neigh->ha, lladdr, dev->addr_len); 1382 write_sequnlock(&neigh->ha_lock); 1383 neigh_update_hhs(neigh); 1384 if (!(new & NUD_CONNECTED)) 1385 neigh->confirmed = jiffies - 1386 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1); 1387 notify = 1; 1388 } 1389 if (new == old) 1390 goto out; 1391 if (new & NUD_CONNECTED) 1392 neigh_connect(neigh); 1393 else 1394 neigh_suspect(neigh); 1395 if (!(old & NUD_VALID)) { 1396 struct sk_buff *skb; 1397 1398 /* Again: avoid dead loop if something went wrong */ 1399 1400 while (neigh->nud_state & NUD_VALID && 1401 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1402 struct dst_entry *dst = skb_dst(skb); 1403 struct neighbour *n2, *n1 = neigh; 1404 write_unlock_bh(&neigh->lock); 1405 1406 rcu_read_lock(); 1407 1408 /* Why not just use 'neigh' as-is? The problem is that 1409 * things such as shaper, eql, and sch_teql can end up 1410 * using alternative, different, neigh objects to output 1411 * the packet in the output path. So what we need to do 1412 * here is re-lookup the top-level neigh in the path so 1413 * we can reinject the packet there. 1414 */ 1415 n2 = NULL; 1416 if (dst && dst->obsolete != DST_OBSOLETE_DEAD) { 1417 n2 = dst_neigh_lookup_skb(dst, skb); 1418 if (n2) 1419 n1 = n2; 1420 } 1421 n1->output(n1, skb); 1422 if (n2) 1423 neigh_release(n2); 1424 rcu_read_unlock(); 1425 1426 write_lock_bh(&neigh->lock); 1427 } 1428 __skb_queue_purge(&neigh->arp_queue); 1429 neigh->arp_queue_len_bytes = 0; 1430 } 1431 out: 1432 if (update_isrouter) 1433 neigh_update_is_router(neigh, flags, ¬ify); 1434 write_unlock_bh(&neigh->lock); 1435 if (((new ^ old) & NUD_PERMANENT) || gc_update) 1436 neigh_update_gc_list(neigh); 1437 if (managed_update) 1438 neigh_update_managed_list(neigh); 1439 if (notify) 1440 neigh_update_notify(neigh, nlmsg_pid); 1441 trace_neigh_update_done(neigh, err); 1442 return err; 1443 } 1444 1445 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 1446 u32 flags, u32 nlmsg_pid) 1447 { 1448 return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL); 1449 } 1450 EXPORT_SYMBOL(neigh_update); 1451 1452 /* Update the neigh to listen temporarily for probe responses, even if it is 1453 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing. 1454 */ 1455 void __neigh_set_probe_once(struct neighbour *neigh) 1456 { 1457 if (neigh->dead) 1458 return; 1459 neigh->updated = jiffies; 1460 if (!(neigh->nud_state & NUD_FAILED)) 1461 return; 1462 neigh->nud_state = NUD_INCOMPLETE; 1463 atomic_set(&neigh->probes, neigh_max_probes(neigh)); 1464 neigh_add_timer(neigh, 1465 jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1466 HZ/100)); 1467 } 1468 EXPORT_SYMBOL(__neigh_set_probe_once); 1469 1470 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1471 u8 *lladdr, void *saddr, 1472 struct net_device *dev) 1473 { 1474 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1475 lladdr || !dev->addr_len); 1476 if (neigh) 1477 neigh_update(neigh, lladdr, NUD_STALE, 1478 NEIGH_UPDATE_F_OVERRIDE, 0); 1479 return neigh; 1480 } 1481 EXPORT_SYMBOL(neigh_event_ns); 1482 1483 /* called with read_lock_bh(&n->lock); */ 1484 static void neigh_hh_init(struct neighbour *n) 1485 { 1486 struct net_device *dev = n->dev; 1487 __be16 prot = n->tbl->protocol; 1488 struct hh_cache *hh = &n->hh; 1489 1490 write_lock_bh(&n->lock); 1491 1492 /* Only one thread can come in here and initialize the 1493 * hh_cache entry. 1494 */ 1495 if (!hh->hh_len) 1496 dev->header_ops->cache(n, hh, prot); 1497 1498 write_unlock_bh(&n->lock); 1499 } 1500 1501 /* Slow and careful. */ 1502 1503 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) 1504 { 1505 int rc = 0; 1506 1507 if (!neigh_event_send(neigh, skb)) { 1508 int err; 1509 struct net_device *dev = neigh->dev; 1510 unsigned int seq; 1511 1512 if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len)) 1513 neigh_hh_init(neigh); 1514 1515 do { 1516 __skb_pull(skb, skb_network_offset(skb)); 1517 seq = read_seqbegin(&neigh->ha_lock); 1518 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1519 neigh->ha, NULL, skb->len); 1520 } while (read_seqretry(&neigh->ha_lock, seq)); 1521 1522 if (err >= 0) 1523 rc = dev_queue_xmit(skb); 1524 else 1525 goto out_kfree_skb; 1526 } 1527 out: 1528 return rc; 1529 out_kfree_skb: 1530 rc = -EINVAL; 1531 kfree_skb(skb); 1532 goto out; 1533 } 1534 EXPORT_SYMBOL(neigh_resolve_output); 1535 1536 /* As fast as possible without hh cache */ 1537 1538 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) 1539 { 1540 struct net_device *dev = neigh->dev; 1541 unsigned int seq; 1542 int err; 1543 1544 do { 1545 __skb_pull(skb, skb_network_offset(skb)); 1546 seq = read_seqbegin(&neigh->ha_lock); 1547 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1548 neigh->ha, NULL, skb->len); 1549 } while (read_seqretry(&neigh->ha_lock, seq)); 1550 1551 if (err >= 0) 1552 err = dev_queue_xmit(skb); 1553 else { 1554 err = -EINVAL; 1555 kfree_skb(skb); 1556 } 1557 return err; 1558 } 1559 EXPORT_SYMBOL(neigh_connected_output); 1560 1561 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) 1562 { 1563 return dev_queue_xmit(skb); 1564 } 1565 EXPORT_SYMBOL(neigh_direct_output); 1566 1567 static void neigh_managed_work(struct work_struct *work) 1568 { 1569 struct neigh_table *tbl = container_of(work, struct neigh_table, 1570 managed_work.work); 1571 struct neighbour *neigh; 1572 1573 write_lock_bh(&tbl->lock); 1574 list_for_each_entry(neigh, &tbl->managed_list, managed_list) 1575 neigh_event_send(neigh, NULL); 1576 queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 1577 NEIGH_VAR(&tbl->parms, DELAY_PROBE_TIME)); 1578 write_unlock_bh(&tbl->lock); 1579 } 1580 1581 static void neigh_proxy_process(struct timer_list *t) 1582 { 1583 struct neigh_table *tbl = from_timer(tbl, t, proxy_timer); 1584 long sched_next = 0; 1585 unsigned long now = jiffies; 1586 struct sk_buff *skb, *n; 1587 1588 spin_lock(&tbl->proxy_queue.lock); 1589 1590 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1591 long tdif = NEIGH_CB(skb)->sched_next - now; 1592 1593 if (tdif <= 0) { 1594 struct net_device *dev = skb->dev; 1595 1596 __skb_unlink(skb, &tbl->proxy_queue); 1597 if (tbl->proxy_redo && netif_running(dev)) { 1598 rcu_read_lock(); 1599 tbl->proxy_redo(skb); 1600 rcu_read_unlock(); 1601 } else { 1602 kfree_skb(skb); 1603 } 1604 1605 dev_put(dev); 1606 } else if (!sched_next || tdif < sched_next) 1607 sched_next = tdif; 1608 } 1609 del_timer(&tbl->proxy_timer); 1610 if (sched_next) 1611 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1612 spin_unlock(&tbl->proxy_queue.lock); 1613 } 1614 1615 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1616 struct sk_buff *skb) 1617 { 1618 unsigned long sched_next = jiffies + 1619 prandom_u32_max(NEIGH_VAR(p, PROXY_DELAY)); 1620 1621 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) { 1622 kfree_skb(skb); 1623 return; 1624 } 1625 1626 NEIGH_CB(skb)->sched_next = sched_next; 1627 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1628 1629 spin_lock(&tbl->proxy_queue.lock); 1630 if (del_timer(&tbl->proxy_timer)) { 1631 if (time_before(tbl->proxy_timer.expires, sched_next)) 1632 sched_next = tbl->proxy_timer.expires; 1633 } 1634 skb_dst_drop(skb); 1635 dev_hold(skb->dev); 1636 __skb_queue_tail(&tbl->proxy_queue, skb); 1637 mod_timer(&tbl->proxy_timer, sched_next); 1638 spin_unlock(&tbl->proxy_queue.lock); 1639 } 1640 EXPORT_SYMBOL(pneigh_enqueue); 1641 1642 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1643 struct net *net, int ifindex) 1644 { 1645 struct neigh_parms *p; 1646 1647 list_for_each_entry(p, &tbl->parms_list, list) { 1648 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1649 (!p->dev && !ifindex && net_eq(net, &init_net))) 1650 return p; 1651 } 1652 1653 return NULL; 1654 } 1655 1656 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1657 struct neigh_table *tbl) 1658 { 1659 struct neigh_parms *p; 1660 struct net *net = dev_net(dev); 1661 const struct net_device_ops *ops = dev->netdev_ops; 1662 1663 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL); 1664 if (p) { 1665 p->tbl = tbl; 1666 refcount_set(&p->refcnt, 1); 1667 p->reachable_time = 1668 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 1669 dev_hold(dev); 1670 p->dev = dev; 1671 write_pnet(&p->net, net); 1672 p->sysctl_table = NULL; 1673 1674 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1675 dev_put(dev); 1676 kfree(p); 1677 return NULL; 1678 } 1679 1680 write_lock_bh(&tbl->lock); 1681 list_add(&p->list, &tbl->parms.list); 1682 write_unlock_bh(&tbl->lock); 1683 1684 neigh_parms_data_state_cleanall(p); 1685 } 1686 return p; 1687 } 1688 EXPORT_SYMBOL(neigh_parms_alloc); 1689 1690 static void neigh_rcu_free_parms(struct rcu_head *head) 1691 { 1692 struct neigh_parms *parms = 1693 container_of(head, struct neigh_parms, rcu_head); 1694 1695 neigh_parms_put(parms); 1696 } 1697 1698 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1699 { 1700 if (!parms || parms == &tbl->parms) 1701 return; 1702 write_lock_bh(&tbl->lock); 1703 list_del(&parms->list); 1704 parms->dead = 1; 1705 write_unlock_bh(&tbl->lock); 1706 dev_put(parms->dev); 1707 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1708 } 1709 EXPORT_SYMBOL(neigh_parms_release); 1710 1711 static void neigh_parms_destroy(struct neigh_parms *parms) 1712 { 1713 kfree(parms); 1714 } 1715 1716 static struct lock_class_key neigh_table_proxy_queue_class; 1717 1718 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly; 1719 1720 void neigh_table_init(int index, struct neigh_table *tbl) 1721 { 1722 unsigned long now = jiffies; 1723 unsigned long phsize; 1724 1725 INIT_LIST_HEAD(&tbl->parms_list); 1726 INIT_LIST_HEAD(&tbl->gc_list); 1727 INIT_LIST_HEAD(&tbl->managed_list); 1728 1729 list_add(&tbl->parms.list, &tbl->parms_list); 1730 write_pnet(&tbl->parms.net, &init_net); 1731 refcount_set(&tbl->parms.refcnt, 1); 1732 tbl->parms.reachable_time = 1733 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME)); 1734 1735 tbl->stats = alloc_percpu(struct neigh_statistics); 1736 if (!tbl->stats) 1737 panic("cannot create neighbour cache statistics"); 1738 1739 #ifdef CONFIG_PROC_FS 1740 if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat, 1741 &neigh_stat_seq_ops, tbl)) 1742 panic("cannot create neighbour proc dir entry"); 1743 #endif 1744 1745 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); 1746 1747 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1748 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1749 1750 if (!tbl->nht || !tbl->phash_buckets) 1751 panic("cannot allocate neighbour cache hashes"); 1752 1753 if (!tbl->entry_size) 1754 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) + 1755 tbl->key_len, NEIGH_PRIV_ALIGN); 1756 else 1757 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN); 1758 1759 rwlock_init(&tbl->lock); 1760 1761 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work); 1762 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 1763 tbl->parms.reachable_time); 1764 INIT_DEFERRABLE_WORK(&tbl->managed_work, neigh_managed_work); 1765 queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 0); 1766 1767 timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0); 1768 skb_queue_head_init_class(&tbl->proxy_queue, 1769 &neigh_table_proxy_queue_class); 1770 1771 tbl->last_flush = now; 1772 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1773 1774 neigh_tables[index] = tbl; 1775 } 1776 EXPORT_SYMBOL(neigh_table_init); 1777 1778 int neigh_table_clear(int index, struct neigh_table *tbl) 1779 { 1780 neigh_tables[index] = NULL; 1781 /* It is not clean... Fix it to unload IPv6 module safely */ 1782 cancel_delayed_work_sync(&tbl->managed_work); 1783 cancel_delayed_work_sync(&tbl->gc_work); 1784 del_timer_sync(&tbl->proxy_timer); 1785 pneigh_queue_purge(&tbl->proxy_queue); 1786 neigh_ifdown(tbl, NULL); 1787 if (atomic_read(&tbl->entries)) 1788 pr_crit("neighbour leakage\n"); 1789 1790 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, 1791 neigh_hash_free_rcu); 1792 tbl->nht = NULL; 1793 1794 kfree(tbl->phash_buckets); 1795 tbl->phash_buckets = NULL; 1796 1797 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1798 1799 free_percpu(tbl->stats); 1800 tbl->stats = NULL; 1801 1802 return 0; 1803 } 1804 EXPORT_SYMBOL(neigh_table_clear); 1805 1806 static struct neigh_table *neigh_find_table(int family) 1807 { 1808 struct neigh_table *tbl = NULL; 1809 1810 switch (family) { 1811 case AF_INET: 1812 tbl = neigh_tables[NEIGH_ARP_TABLE]; 1813 break; 1814 case AF_INET6: 1815 tbl = neigh_tables[NEIGH_ND_TABLE]; 1816 break; 1817 case AF_DECnet: 1818 tbl = neigh_tables[NEIGH_DN_TABLE]; 1819 break; 1820 } 1821 1822 return tbl; 1823 } 1824 1825 const struct nla_policy nda_policy[NDA_MAX+1] = { 1826 [NDA_UNSPEC] = { .strict_start_type = NDA_NH_ID }, 1827 [NDA_DST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1828 [NDA_LLADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1829 [NDA_CACHEINFO] = { .len = sizeof(struct nda_cacheinfo) }, 1830 [NDA_PROBES] = { .type = NLA_U32 }, 1831 [NDA_VLAN] = { .type = NLA_U16 }, 1832 [NDA_PORT] = { .type = NLA_U16 }, 1833 [NDA_VNI] = { .type = NLA_U32 }, 1834 [NDA_IFINDEX] = { .type = NLA_U32 }, 1835 [NDA_MASTER] = { .type = NLA_U32 }, 1836 [NDA_PROTOCOL] = { .type = NLA_U8 }, 1837 [NDA_NH_ID] = { .type = NLA_U32 }, 1838 [NDA_FLAGS_EXT] = NLA_POLICY_MASK(NLA_U32, NTF_EXT_MASK), 1839 [NDA_FDB_EXT_ATTRS] = { .type = NLA_NESTED }, 1840 }; 1841 1842 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, 1843 struct netlink_ext_ack *extack) 1844 { 1845 struct net *net = sock_net(skb->sk); 1846 struct ndmsg *ndm; 1847 struct nlattr *dst_attr; 1848 struct neigh_table *tbl; 1849 struct neighbour *neigh; 1850 struct net_device *dev = NULL; 1851 int err = -EINVAL; 1852 1853 ASSERT_RTNL(); 1854 if (nlmsg_len(nlh) < sizeof(*ndm)) 1855 goto out; 1856 1857 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1858 if (!dst_attr) { 1859 NL_SET_ERR_MSG(extack, "Network address not specified"); 1860 goto out; 1861 } 1862 1863 ndm = nlmsg_data(nlh); 1864 if (ndm->ndm_ifindex) { 1865 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1866 if (dev == NULL) { 1867 err = -ENODEV; 1868 goto out; 1869 } 1870 } 1871 1872 tbl = neigh_find_table(ndm->ndm_family); 1873 if (tbl == NULL) 1874 return -EAFNOSUPPORT; 1875 1876 if (nla_len(dst_attr) < (int)tbl->key_len) { 1877 NL_SET_ERR_MSG(extack, "Invalid network address"); 1878 goto out; 1879 } 1880 1881 if (ndm->ndm_flags & NTF_PROXY) { 1882 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1883 goto out; 1884 } 1885 1886 if (dev == NULL) 1887 goto out; 1888 1889 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1890 if (neigh == NULL) { 1891 err = -ENOENT; 1892 goto out; 1893 } 1894 1895 err = __neigh_update(neigh, NULL, NUD_FAILED, 1896 NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN, 1897 NETLINK_CB(skb).portid, extack); 1898 write_lock_bh(&tbl->lock); 1899 neigh_release(neigh); 1900 neigh_remove_one(neigh, tbl); 1901 write_unlock_bh(&tbl->lock); 1902 1903 out: 1904 return err; 1905 } 1906 1907 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, 1908 struct netlink_ext_ack *extack) 1909 { 1910 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE | 1911 NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1912 struct net *net = sock_net(skb->sk); 1913 struct ndmsg *ndm; 1914 struct nlattr *tb[NDA_MAX+1]; 1915 struct neigh_table *tbl; 1916 struct net_device *dev = NULL; 1917 struct neighbour *neigh; 1918 void *dst, *lladdr; 1919 u8 protocol = 0; 1920 u32 ndm_flags; 1921 int err; 1922 1923 ASSERT_RTNL(); 1924 err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX, 1925 nda_policy, extack); 1926 if (err < 0) 1927 goto out; 1928 1929 err = -EINVAL; 1930 if (!tb[NDA_DST]) { 1931 NL_SET_ERR_MSG(extack, "Network address not specified"); 1932 goto out; 1933 } 1934 1935 ndm = nlmsg_data(nlh); 1936 ndm_flags = ndm->ndm_flags; 1937 if (tb[NDA_FLAGS_EXT]) { 1938 u32 ext = nla_get_u32(tb[NDA_FLAGS_EXT]); 1939 1940 BUILD_BUG_ON(sizeof(neigh->flags) * BITS_PER_BYTE < 1941 (sizeof(ndm->ndm_flags) * BITS_PER_BYTE + 1942 hweight32(NTF_EXT_MASK))); 1943 ndm_flags |= (ext << NTF_EXT_SHIFT); 1944 } 1945 if (ndm->ndm_ifindex) { 1946 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1947 if (dev == NULL) { 1948 err = -ENODEV; 1949 goto out; 1950 } 1951 1952 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) { 1953 NL_SET_ERR_MSG(extack, "Invalid link address"); 1954 goto out; 1955 } 1956 } 1957 1958 tbl = neigh_find_table(ndm->ndm_family); 1959 if (tbl == NULL) 1960 return -EAFNOSUPPORT; 1961 1962 if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) { 1963 NL_SET_ERR_MSG(extack, "Invalid network address"); 1964 goto out; 1965 } 1966 1967 dst = nla_data(tb[NDA_DST]); 1968 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1969 1970 if (tb[NDA_PROTOCOL]) 1971 protocol = nla_get_u8(tb[NDA_PROTOCOL]); 1972 if (ndm_flags & NTF_PROXY) { 1973 struct pneigh_entry *pn; 1974 1975 if (ndm_flags & NTF_MANAGED) { 1976 NL_SET_ERR_MSG(extack, "Invalid NTF_* flag combination"); 1977 goto out; 1978 } 1979 1980 err = -ENOBUFS; 1981 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1982 if (pn) { 1983 pn->flags = ndm_flags; 1984 if (protocol) 1985 pn->protocol = protocol; 1986 err = 0; 1987 } 1988 goto out; 1989 } 1990 1991 if (!dev) { 1992 NL_SET_ERR_MSG(extack, "Device not specified"); 1993 goto out; 1994 } 1995 1996 if (tbl->allow_add && !tbl->allow_add(dev, extack)) { 1997 err = -EINVAL; 1998 goto out; 1999 } 2000 2001 neigh = neigh_lookup(tbl, dst, dev); 2002 if (neigh == NULL) { 2003 bool ndm_permanent = ndm->ndm_state & NUD_PERMANENT; 2004 bool exempt_from_gc = ndm_permanent || 2005 ndm_flags & NTF_EXT_LEARNED; 2006 2007 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 2008 err = -ENOENT; 2009 goto out; 2010 } 2011 if (ndm_permanent && (ndm_flags & NTF_MANAGED)) { 2012 NL_SET_ERR_MSG(extack, "Invalid NTF_* flag for permanent entry"); 2013 err = -EINVAL; 2014 goto out; 2015 } 2016 2017 neigh = ___neigh_create(tbl, dst, dev, 2018 ndm_flags & 2019 (NTF_EXT_LEARNED | NTF_MANAGED), 2020 exempt_from_gc, true); 2021 if (IS_ERR(neigh)) { 2022 err = PTR_ERR(neigh); 2023 goto out; 2024 } 2025 } else { 2026 if (nlh->nlmsg_flags & NLM_F_EXCL) { 2027 err = -EEXIST; 2028 neigh_release(neigh); 2029 goto out; 2030 } 2031 2032 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 2033 flags &= ~(NEIGH_UPDATE_F_OVERRIDE | 2034 NEIGH_UPDATE_F_OVERRIDE_ISROUTER); 2035 } 2036 2037 if (protocol) 2038 neigh->protocol = protocol; 2039 if (ndm_flags & NTF_EXT_LEARNED) 2040 flags |= NEIGH_UPDATE_F_EXT_LEARNED; 2041 if (ndm_flags & NTF_ROUTER) 2042 flags |= NEIGH_UPDATE_F_ISROUTER; 2043 if (ndm_flags & NTF_MANAGED) 2044 flags |= NEIGH_UPDATE_F_MANAGED; 2045 if (ndm_flags & NTF_USE) 2046 flags |= NEIGH_UPDATE_F_USE; 2047 2048 err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags, 2049 NETLINK_CB(skb).portid, extack); 2050 if (!err && ndm_flags & (NTF_USE | NTF_MANAGED)) { 2051 neigh_event_send(neigh, NULL); 2052 err = 0; 2053 } 2054 neigh_release(neigh); 2055 out: 2056 return err; 2057 } 2058 2059 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 2060 { 2061 struct nlattr *nest; 2062 2063 nest = nla_nest_start_noflag(skb, NDTA_PARMS); 2064 if (nest == NULL) 2065 return -ENOBUFS; 2066 2067 if ((parms->dev && 2068 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) || 2069 nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) || 2070 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, 2071 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) || 2072 /* approximative value for deprecated QUEUE_LEN (in packets) */ 2073 nla_put_u32(skb, NDTPA_QUEUE_LEN, 2074 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) || 2075 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) || 2076 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) || 2077 nla_put_u32(skb, NDTPA_UCAST_PROBES, 2078 NEIGH_VAR(parms, UCAST_PROBES)) || 2079 nla_put_u32(skb, NDTPA_MCAST_PROBES, 2080 NEIGH_VAR(parms, MCAST_PROBES)) || 2081 nla_put_u32(skb, NDTPA_MCAST_REPROBES, 2082 NEIGH_VAR(parms, MCAST_REPROBES)) || 2083 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time, 2084 NDTPA_PAD) || 2085 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME, 2086 NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) || 2087 nla_put_msecs(skb, NDTPA_GC_STALETIME, 2088 NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) || 2089 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME, 2090 NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) || 2091 nla_put_msecs(skb, NDTPA_RETRANS_TIME, 2092 NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) || 2093 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, 2094 NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) || 2095 nla_put_msecs(skb, NDTPA_PROXY_DELAY, 2096 NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) || 2097 nla_put_msecs(skb, NDTPA_LOCKTIME, 2098 NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD)) 2099 goto nla_put_failure; 2100 return nla_nest_end(skb, nest); 2101 2102 nla_put_failure: 2103 nla_nest_cancel(skb, nest); 2104 return -EMSGSIZE; 2105 } 2106 2107 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 2108 u32 pid, u32 seq, int type, int flags) 2109 { 2110 struct nlmsghdr *nlh; 2111 struct ndtmsg *ndtmsg; 2112 2113 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2114 if (nlh == NULL) 2115 return -EMSGSIZE; 2116 2117 ndtmsg = nlmsg_data(nlh); 2118 2119 read_lock_bh(&tbl->lock); 2120 ndtmsg->ndtm_family = tbl->family; 2121 ndtmsg->ndtm_pad1 = 0; 2122 ndtmsg->ndtm_pad2 = 0; 2123 2124 if (nla_put_string(skb, NDTA_NAME, tbl->id) || 2125 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval, NDTA_PAD) || 2126 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) || 2127 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) || 2128 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3)) 2129 goto nla_put_failure; 2130 { 2131 unsigned long now = jiffies; 2132 long flush_delta = now - tbl->last_flush; 2133 long rand_delta = now - tbl->last_rand; 2134 struct neigh_hash_table *nht; 2135 struct ndt_config ndc = { 2136 .ndtc_key_len = tbl->key_len, 2137 .ndtc_entry_size = tbl->entry_size, 2138 .ndtc_entries = atomic_read(&tbl->entries), 2139 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 2140 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 2141 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 2142 }; 2143 2144 rcu_read_lock_bh(); 2145 nht = rcu_dereference_bh(tbl->nht); 2146 ndc.ndtc_hash_rnd = nht->hash_rnd[0]; 2147 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); 2148 rcu_read_unlock_bh(); 2149 2150 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc)) 2151 goto nla_put_failure; 2152 } 2153 2154 { 2155 int cpu; 2156 struct ndt_stats ndst; 2157 2158 memset(&ndst, 0, sizeof(ndst)); 2159 2160 for_each_possible_cpu(cpu) { 2161 struct neigh_statistics *st; 2162 2163 st = per_cpu_ptr(tbl->stats, cpu); 2164 ndst.ndts_allocs += st->allocs; 2165 ndst.ndts_destroys += st->destroys; 2166 ndst.ndts_hash_grows += st->hash_grows; 2167 ndst.ndts_res_failed += st->res_failed; 2168 ndst.ndts_lookups += st->lookups; 2169 ndst.ndts_hits += st->hits; 2170 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 2171 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 2172 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 2173 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 2174 ndst.ndts_table_fulls += st->table_fulls; 2175 } 2176 2177 if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst, 2178 NDTA_PAD)) 2179 goto nla_put_failure; 2180 } 2181 2182 BUG_ON(tbl->parms.dev); 2183 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 2184 goto nla_put_failure; 2185 2186 read_unlock_bh(&tbl->lock); 2187 nlmsg_end(skb, nlh); 2188 return 0; 2189 2190 nla_put_failure: 2191 read_unlock_bh(&tbl->lock); 2192 nlmsg_cancel(skb, nlh); 2193 return -EMSGSIZE; 2194 } 2195 2196 static int neightbl_fill_param_info(struct sk_buff *skb, 2197 struct neigh_table *tbl, 2198 struct neigh_parms *parms, 2199 u32 pid, u32 seq, int type, 2200 unsigned int flags) 2201 { 2202 struct ndtmsg *ndtmsg; 2203 struct nlmsghdr *nlh; 2204 2205 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2206 if (nlh == NULL) 2207 return -EMSGSIZE; 2208 2209 ndtmsg = nlmsg_data(nlh); 2210 2211 read_lock_bh(&tbl->lock); 2212 ndtmsg->ndtm_family = tbl->family; 2213 ndtmsg->ndtm_pad1 = 0; 2214 ndtmsg->ndtm_pad2 = 0; 2215 2216 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 2217 neightbl_fill_parms(skb, parms) < 0) 2218 goto errout; 2219 2220 read_unlock_bh(&tbl->lock); 2221 nlmsg_end(skb, nlh); 2222 return 0; 2223 errout: 2224 read_unlock_bh(&tbl->lock); 2225 nlmsg_cancel(skb, nlh); 2226 return -EMSGSIZE; 2227 } 2228 2229 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 2230 [NDTA_NAME] = { .type = NLA_STRING }, 2231 [NDTA_THRESH1] = { .type = NLA_U32 }, 2232 [NDTA_THRESH2] = { .type = NLA_U32 }, 2233 [NDTA_THRESH3] = { .type = NLA_U32 }, 2234 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 2235 [NDTA_PARMS] = { .type = NLA_NESTED }, 2236 }; 2237 2238 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 2239 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 2240 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 2241 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 2242 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 2243 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 2244 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 2245 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 }, 2246 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 2247 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 2248 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 2249 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 2250 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 2251 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 2252 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 2253 }; 2254 2255 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, 2256 struct netlink_ext_ack *extack) 2257 { 2258 struct net *net = sock_net(skb->sk); 2259 struct neigh_table *tbl; 2260 struct ndtmsg *ndtmsg; 2261 struct nlattr *tb[NDTA_MAX+1]; 2262 bool found = false; 2263 int err, tidx; 2264 2265 err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 2266 nl_neightbl_policy, extack); 2267 if (err < 0) 2268 goto errout; 2269 2270 if (tb[NDTA_NAME] == NULL) { 2271 err = -EINVAL; 2272 goto errout; 2273 } 2274 2275 ndtmsg = nlmsg_data(nlh); 2276 2277 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2278 tbl = neigh_tables[tidx]; 2279 if (!tbl) 2280 continue; 2281 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 2282 continue; 2283 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) { 2284 found = true; 2285 break; 2286 } 2287 } 2288 2289 if (!found) 2290 return -ENOENT; 2291 2292 /* 2293 * We acquire tbl->lock to be nice to the periodic timers and 2294 * make sure they always see a consistent set of values. 2295 */ 2296 write_lock_bh(&tbl->lock); 2297 2298 if (tb[NDTA_PARMS]) { 2299 struct nlattr *tbp[NDTPA_MAX+1]; 2300 struct neigh_parms *p; 2301 int i, ifindex = 0; 2302 2303 err = nla_parse_nested_deprecated(tbp, NDTPA_MAX, 2304 tb[NDTA_PARMS], 2305 nl_ntbl_parm_policy, extack); 2306 if (err < 0) 2307 goto errout_tbl_lock; 2308 2309 if (tbp[NDTPA_IFINDEX]) 2310 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 2311 2312 p = lookup_neigh_parms(tbl, net, ifindex); 2313 if (p == NULL) { 2314 err = -ENOENT; 2315 goto errout_tbl_lock; 2316 } 2317 2318 for (i = 1; i <= NDTPA_MAX; i++) { 2319 if (tbp[i] == NULL) 2320 continue; 2321 2322 switch (i) { 2323 case NDTPA_QUEUE_LEN: 2324 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2325 nla_get_u32(tbp[i]) * 2326 SKB_TRUESIZE(ETH_FRAME_LEN)); 2327 break; 2328 case NDTPA_QUEUE_LENBYTES: 2329 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2330 nla_get_u32(tbp[i])); 2331 break; 2332 case NDTPA_PROXY_QLEN: 2333 NEIGH_VAR_SET(p, PROXY_QLEN, 2334 nla_get_u32(tbp[i])); 2335 break; 2336 case NDTPA_APP_PROBES: 2337 NEIGH_VAR_SET(p, APP_PROBES, 2338 nla_get_u32(tbp[i])); 2339 break; 2340 case NDTPA_UCAST_PROBES: 2341 NEIGH_VAR_SET(p, UCAST_PROBES, 2342 nla_get_u32(tbp[i])); 2343 break; 2344 case NDTPA_MCAST_PROBES: 2345 NEIGH_VAR_SET(p, MCAST_PROBES, 2346 nla_get_u32(tbp[i])); 2347 break; 2348 case NDTPA_MCAST_REPROBES: 2349 NEIGH_VAR_SET(p, MCAST_REPROBES, 2350 nla_get_u32(tbp[i])); 2351 break; 2352 case NDTPA_BASE_REACHABLE_TIME: 2353 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME, 2354 nla_get_msecs(tbp[i])); 2355 /* update reachable_time as well, otherwise, the change will 2356 * only be effective after the next time neigh_periodic_work 2357 * decides to recompute it (can be multiple minutes) 2358 */ 2359 p->reachable_time = 2360 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 2361 break; 2362 case NDTPA_GC_STALETIME: 2363 NEIGH_VAR_SET(p, GC_STALETIME, 2364 nla_get_msecs(tbp[i])); 2365 break; 2366 case NDTPA_DELAY_PROBE_TIME: 2367 NEIGH_VAR_SET(p, DELAY_PROBE_TIME, 2368 nla_get_msecs(tbp[i])); 2369 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 2370 break; 2371 case NDTPA_RETRANS_TIME: 2372 NEIGH_VAR_SET(p, RETRANS_TIME, 2373 nla_get_msecs(tbp[i])); 2374 break; 2375 case NDTPA_ANYCAST_DELAY: 2376 NEIGH_VAR_SET(p, ANYCAST_DELAY, 2377 nla_get_msecs(tbp[i])); 2378 break; 2379 case NDTPA_PROXY_DELAY: 2380 NEIGH_VAR_SET(p, PROXY_DELAY, 2381 nla_get_msecs(tbp[i])); 2382 break; 2383 case NDTPA_LOCKTIME: 2384 NEIGH_VAR_SET(p, LOCKTIME, 2385 nla_get_msecs(tbp[i])); 2386 break; 2387 } 2388 } 2389 } 2390 2391 err = -ENOENT; 2392 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] || 2393 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) && 2394 !net_eq(net, &init_net)) 2395 goto errout_tbl_lock; 2396 2397 if (tb[NDTA_THRESH1]) 2398 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 2399 2400 if (tb[NDTA_THRESH2]) 2401 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 2402 2403 if (tb[NDTA_THRESH3]) 2404 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 2405 2406 if (tb[NDTA_GC_INTERVAL]) 2407 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 2408 2409 err = 0; 2410 2411 errout_tbl_lock: 2412 write_unlock_bh(&tbl->lock); 2413 errout: 2414 return err; 2415 } 2416 2417 static int neightbl_valid_dump_info(const struct nlmsghdr *nlh, 2418 struct netlink_ext_ack *extack) 2419 { 2420 struct ndtmsg *ndtm; 2421 2422 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) { 2423 NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request"); 2424 return -EINVAL; 2425 } 2426 2427 ndtm = nlmsg_data(nlh); 2428 if (ndtm->ndtm_pad1 || ndtm->ndtm_pad2) { 2429 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request"); 2430 return -EINVAL; 2431 } 2432 2433 if (nlmsg_attrlen(nlh, sizeof(*ndtm))) { 2434 NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request"); 2435 return -EINVAL; 2436 } 2437 2438 return 0; 2439 } 2440 2441 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2442 { 2443 const struct nlmsghdr *nlh = cb->nlh; 2444 struct net *net = sock_net(skb->sk); 2445 int family, tidx, nidx = 0; 2446 int tbl_skip = cb->args[0]; 2447 int neigh_skip = cb->args[1]; 2448 struct neigh_table *tbl; 2449 2450 if (cb->strict_check) { 2451 int err = neightbl_valid_dump_info(nlh, cb->extack); 2452 2453 if (err < 0) 2454 return err; 2455 } 2456 2457 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2458 2459 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2460 struct neigh_parms *p; 2461 2462 tbl = neigh_tables[tidx]; 2463 if (!tbl) 2464 continue; 2465 2466 if (tidx < tbl_skip || (family && tbl->family != family)) 2467 continue; 2468 2469 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid, 2470 nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2471 NLM_F_MULTI) < 0) 2472 break; 2473 2474 nidx = 0; 2475 p = list_next_entry(&tbl->parms, list); 2476 list_for_each_entry_from(p, &tbl->parms_list, list) { 2477 if (!net_eq(neigh_parms_net(p), net)) 2478 continue; 2479 2480 if (nidx < neigh_skip) 2481 goto next; 2482 2483 if (neightbl_fill_param_info(skb, tbl, p, 2484 NETLINK_CB(cb->skb).portid, 2485 nlh->nlmsg_seq, 2486 RTM_NEWNEIGHTBL, 2487 NLM_F_MULTI) < 0) 2488 goto out; 2489 next: 2490 nidx++; 2491 } 2492 2493 neigh_skip = 0; 2494 } 2495 out: 2496 cb->args[0] = tidx; 2497 cb->args[1] = nidx; 2498 2499 return skb->len; 2500 } 2501 2502 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2503 u32 pid, u32 seq, int type, unsigned int flags) 2504 { 2505 u32 neigh_flags, neigh_flags_ext; 2506 unsigned long now = jiffies; 2507 struct nda_cacheinfo ci; 2508 struct nlmsghdr *nlh; 2509 struct ndmsg *ndm; 2510 2511 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2512 if (nlh == NULL) 2513 return -EMSGSIZE; 2514 2515 neigh_flags_ext = neigh->flags >> NTF_EXT_SHIFT; 2516 neigh_flags = neigh->flags & NTF_OLD_MASK; 2517 2518 ndm = nlmsg_data(nlh); 2519 ndm->ndm_family = neigh->ops->family; 2520 ndm->ndm_pad1 = 0; 2521 ndm->ndm_pad2 = 0; 2522 ndm->ndm_flags = neigh_flags; 2523 ndm->ndm_type = neigh->type; 2524 ndm->ndm_ifindex = neigh->dev->ifindex; 2525 2526 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key)) 2527 goto nla_put_failure; 2528 2529 read_lock_bh(&neigh->lock); 2530 ndm->ndm_state = neigh->nud_state; 2531 if (neigh->nud_state & NUD_VALID) { 2532 char haddr[MAX_ADDR_LEN]; 2533 2534 neigh_ha_snapshot(haddr, neigh, neigh->dev); 2535 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { 2536 read_unlock_bh(&neigh->lock); 2537 goto nla_put_failure; 2538 } 2539 } 2540 2541 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2542 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2543 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2544 ci.ndm_refcnt = refcount_read(&neigh->refcnt) - 1; 2545 read_unlock_bh(&neigh->lock); 2546 2547 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) || 2548 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci)) 2549 goto nla_put_failure; 2550 2551 if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol)) 2552 goto nla_put_failure; 2553 if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext)) 2554 goto nla_put_failure; 2555 2556 nlmsg_end(skb, nlh); 2557 return 0; 2558 2559 nla_put_failure: 2560 nlmsg_cancel(skb, nlh); 2561 return -EMSGSIZE; 2562 } 2563 2564 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, 2565 u32 pid, u32 seq, int type, unsigned int flags, 2566 struct neigh_table *tbl) 2567 { 2568 u32 neigh_flags, neigh_flags_ext; 2569 struct nlmsghdr *nlh; 2570 struct ndmsg *ndm; 2571 2572 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2573 if (nlh == NULL) 2574 return -EMSGSIZE; 2575 2576 neigh_flags_ext = pn->flags >> NTF_EXT_SHIFT; 2577 neigh_flags = pn->flags & NTF_OLD_MASK; 2578 2579 ndm = nlmsg_data(nlh); 2580 ndm->ndm_family = tbl->family; 2581 ndm->ndm_pad1 = 0; 2582 ndm->ndm_pad2 = 0; 2583 ndm->ndm_flags = neigh_flags | NTF_PROXY; 2584 ndm->ndm_type = RTN_UNICAST; 2585 ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0; 2586 ndm->ndm_state = NUD_NONE; 2587 2588 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key)) 2589 goto nla_put_failure; 2590 2591 if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol)) 2592 goto nla_put_failure; 2593 if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext)) 2594 goto nla_put_failure; 2595 2596 nlmsg_end(skb, nlh); 2597 return 0; 2598 2599 nla_put_failure: 2600 nlmsg_cancel(skb, nlh); 2601 return -EMSGSIZE; 2602 } 2603 2604 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid) 2605 { 2606 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2607 __neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid); 2608 } 2609 2610 static bool neigh_master_filtered(struct net_device *dev, int master_idx) 2611 { 2612 struct net_device *master; 2613 2614 if (!master_idx) 2615 return false; 2616 2617 master = dev ? netdev_master_upper_dev_get(dev) : NULL; 2618 2619 /* 0 is already used to denote NDA_MASTER wasn't passed, therefore need another 2620 * invalid value for ifindex to denote "no master". 2621 */ 2622 if (master_idx == -1) 2623 return !!master; 2624 2625 if (!master || master->ifindex != master_idx) 2626 return true; 2627 2628 return false; 2629 } 2630 2631 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx) 2632 { 2633 if (filter_idx && (!dev || dev->ifindex != filter_idx)) 2634 return true; 2635 2636 return false; 2637 } 2638 2639 struct neigh_dump_filter { 2640 int master_idx; 2641 int dev_idx; 2642 }; 2643 2644 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2645 struct netlink_callback *cb, 2646 struct neigh_dump_filter *filter) 2647 { 2648 struct net *net = sock_net(skb->sk); 2649 struct neighbour *n; 2650 int rc, h, s_h = cb->args[1]; 2651 int idx, s_idx = idx = cb->args[2]; 2652 struct neigh_hash_table *nht; 2653 unsigned int flags = NLM_F_MULTI; 2654 2655 if (filter->dev_idx || filter->master_idx) 2656 flags |= NLM_F_DUMP_FILTERED; 2657 2658 rcu_read_lock_bh(); 2659 nht = rcu_dereference_bh(tbl->nht); 2660 2661 for (h = s_h; h < (1 << nht->hash_shift); h++) { 2662 if (h > s_h) 2663 s_idx = 0; 2664 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; 2665 n != NULL; 2666 n = rcu_dereference_bh(n->next)) { 2667 if (idx < s_idx || !net_eq(dev_net(n->dev), net)) 2668 goto next; 2669 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2670 neigh_master_filtered(n->dev, filter->master_idx)) 2671 goto next; 2672 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2673 cb->nlh->nlmsg_seq, 2674 RTM_NEWNEIGH, 2675 flags) < 0) { 2676 rc = -1; 2677 goto out; 2678 } 2679 next: 2680 idx++; 2681 } 2682 } 2683 rc = skb->len; 2684 out: 2685 rcu_read_unlock_bh(); 2686 cb->args[1] = h; 2687 cb->args[2] = idx; 2688 return rc; 2689 } 2690 2691 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2692 struct netlink_callback *cb, 2693 struct neigh_dump_filter *filter) 2694 { 2695 struct pneigh_entry *n; 2696 struct net *net = sock_net(skb->sk); 2697 int rc, h, s_h = cb->args[3]; 2698 int idx, s_idx = idx = cb->args[4]; 2699 unsigned int flags = NLM_F_MULTI; 2700 2701 if (filter->dev_idx || filter->master_idx) 2702 flags |= NLM_F_DUMP_FILTERED; 2703 2704 read_lock_bh(&tbl->lock); 2705 2706 for (h = s_h; h <= PNEIGH_HASHMASK; h++) { 2707 if (h > s_h) 2708 s_idx = 0; 2709 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { 2710 if (idx < s_idx || pneigh_net(n) != net) 2711 goto next; 2712 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2713 neigh_master_filtered(n->dev, filter->master_idx)) 2714 goto next; 2715 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2716 cb->nlh->nlmsg_seq, 2717 RTM_NEWNEIGH, flags, tbl) < 0) { 2718 read_unlock_bh(&tbl->lock); 2719 rc = -1; 2720 goto out; 2721 } 2722 next: 2723 idx++; 2724 } 2725 } 2726 2727 read_unlock_bh(&tbl->lock); 2728 rc = skb->len; 2729 out: 2730 cb->args[3] = h; 2731 cb->args[4] = idx; 2732 return rc; 2733 2734 } 2735 2736 static int neigh_valid_dump_req(const struct nlmsghdr *nlh, 2737 bool strict_check, 2738 struct neigh_dump_filter *filter, 2739 struct netlink_ext_ack *extack) 2740 { 2741 struct nlattr *tb[NDA_MAX + 1]; 2742 int err, i; 2743 2744 if (strict_check) { 2745 struct ndmsg *ndm; 2746 2747 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2748 NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request"); 2749 return -EINVAL; 2750 } 2751 2752 ndm = nlmsg_data(nlh); 2753 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_ifindex || 2754 ndm->ndm_state || ndm->ndm_type) { 2755 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request"); 2756 return -EINVAL; 2757 } 2758 2759 if (ndm->ndm_flags & ~NTF_PROXY) { 2760 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request"); 2761 return -EINVAL; 2762 } 2763 2764 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), 2765 tb, NDA_MAX, nda_policy, 2766 extack); 2767 } else { 2768 err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb, 2769 NDA_MAX, nda_policy, extack); 2770 } 2771 if (err < 0) 2772 return err; 2773 2774 for (i = 0; i <= NDA_MAX; ++i) { 2775 if (!tb[i]) 2776 continue; 2777 2778 /* all new attributes should require strict_check */ 2779 switch (i) { 2780 case NDA_IFINDEX: 2781 filter->dev_idx = nla_get_u32(tb[i]); 2782 break; 2783 case NDA_MASTER: 2784 filter->master_idx = nla_get_u32(tb[i]); 2785 break; 2786 default: 2787 if (strict_check) { 2788 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request"); 2789 return -EINVAL; 2790 } 2791 } 2792 } 2793 2794 return 0; 2795 } 2796 2797 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2798 { 2799 const struct nlmsghdr *nlh = cb->nlh; 2800 struct neigh_dump_filter filter = {}; 2801 struct neigh_table *tbl; 2802 int t, family, s_t; 2803 int proxy = 0; 2804 int err; 2805 2806 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2807 2808 /* check for full ndmsg structure presence, family member is 2809 * the same for both structures 2810 */ 2811 if (nlmsg_len(nlh) >= sizeof(struct ndmsg) && 2812 ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY) 2813 proxy = 1; 2814 2815 err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack); 2816 if (err < 0 && cb->strict_check) 2817 return err; 2818 2819 s_t = cb->args[0]; 2820 2821 for (t = 0; t < NEIGH_NR_TABLES; t++) { 2822 tbl = neigh_tables[t]; 2823 2824 if (!tbl) 2825 continue; 2826 if (t < s_t || (family && tbl->family != family)) 2827 continue; 2828 if (t > s_t) 2829 memset(&cb->args[1], 0, sizeof(cb->args) - 2830 sizeof(cb->args[0])); 2831 if (proxy) 2832 err = pneigh_dump_table(tbl, skb, cb, &filter); 2833 else 2834 err = neigh_dump_table(tbl, skb, cb, &filter); 2835 if (err < 0) 2836 break; 2837 } 2838 2839 cb->args[0] = t; 2840 return skb->len; 2841 } 2842 2843 static int neigh_valid_get_req(const struct nlmsghdr *nlh, 2844 struct neigh_table **tbl, 2845 void **dst, int *dev_idx, u8 *ndm_flags, 2846 struct netlink_ext_ack *extack) 2847 { 2848 struct nlattr *tb[NDA_MAX + 1]; 2849 struct ndmsg *ndm; 2850 int err, i; 2851 2852 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2853 NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request"); 2854 return -EINVAL; 2855 } 2856 2857 ndm = nlmsg_data(nlh); 2858 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_state || 2859 ndm->ndm_type) { 2860 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request"); 2861 return -EINVAL; 2862 } 2863 2864 if (ndm->ndm_flags & ~NTF_PROXY) { 2865 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request"); 2866 return -EINVAL; 2867 } 2868 2869 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb, 2870 NDA_MAX, nda_policy, extack); 2871 if (err < 0) 2872 return err; 2873 2874 *ndm_flags = ndm->ndm_flags; 2875 *dev_idx = ndm->ndm_ifindex; 2876 *tbl = neigh_find_table(ndm->ndm_family); 2877 if (*tbl == NULL) { 2878 NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request"); 2879 return -EAFNOSUPPORT; 2880 } 2881 2882 for (i = 0; i <= NDA_MAX; ++i) { 2883 if (!tb[i]) 2884 continue; 2885 2886 switch (i) { 2887 case NDA_DST: 2888 if (nla_len(tb[i]) != (int)(*tbl)->key_len) { 2889 NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request"); 2890 return -EINVAL; 2891 } 2892 *dst = nla_data(tb[i]); 2893 break; 2894 default: 2895 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request"); 2896 return -EINVAL; 2897 } 2898 } 2899 2900 return 0; 2901 } 2902 2903 static inline size_t neigh_nlmsg_size(void) 2904 { 2905 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2906 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2907 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2908 + nla_total_size(sizeof(struct nda_cacheinfo)) 2909 + nla_total_size(4) /* NDA_PROBES */ 2910 + nla_total_size(4) /* NDA_FLAGS_EXT */ 2911 + nla_total_size(1); /* NDA_PROTOCOL */ 2912 } 2913 2914 static int neigh_get_reply(struct net *net, struct neighbour *neigh, 2915 u32 pid, u32 seq) 2916 { 2917 struct sk_buff *skb; 2918 int err = 0; 2919 2920 skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL); 2921 if (!skb) 2922 return -ENOBUFS; 2923 2924 err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0); 2925 if (err) { 2926 kfree_skb(skb); 2927 goto errout; 2928 } 2929 2930 err = rtnl_unicast(skb, net, pid); 2931 errout: 2932 return err; 2933 } 2934 2935 static inline size_t pneigh_nlmsg_size(void) 2936 { 2937 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2938 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2939 + nla_total_size(4) /* NDA_FLAGS_EXT */ 2940 + nla_total_size(1); /* NDA_PROTOCOL */ 2941 } 2942 2943 static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh, 2944 u32 pid, u32 seq, struct neigh_table *tbl) 2945 { 2946 struct sk_buff *skb; 2947 int err = 0; 2948 2949 skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL); 2950 if (!skb) 2951 return -ENOBUFS; 2952 2953 err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl); 2954 if (err) { 2955 kfree_skb(skb); 2956 goto errout; 2957 } 2958 2959 err = rtnl_unicast(skb, net, pid); 2960 errout: 2961 return err; 2962 } 2963 2964 static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2965 struct netlink_ext_ack *extack) 2966 { 2967 struct net *net = sock_net(in_skb->sk); 2968 struct net_device *dev = NULL; 2969 struct neigh_table *tbl = NULL; 2970 struct neighbour *neigh; 2971 void *dst = NULL; 2972 u8 ndm_flags = 0; 2973 int dev_idx = 0; 2974 int err; 2975 2976 err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags, 2977 extack); 2978 if (err < 0) 2979 return err; 2980 2981 if (dev_idx) { 2982 dev = __dev_get_by_index(net, dev_idx); 2983 if (!dev) { 2984 NL_SET_ERR_MSG(extack, "Unknown device ifindex"); 2985 return -ENODEV; 2986 } 2987 } 2988 2989 if (!dst) { 2990 NL_SET_ERR_MSG(extack, "Network address not specified"); 2991 return -EINVAL; 2992 } 2993 2994 if (ndm_flags & NTF_PROXY) { 2995 struct pneigh_entry *pn; 2996 2997 pn = pneigh_lookup(tbl, net, dst, dev, 0); 2998 if (!pn) { 2999 NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found"); 3000 return -ENOENT; 3001 } 3002 return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid, 3003 nlh->nlmsg_seq, tbl); 3004 } 3005 3006 if (!dev) { 3007 NL_SET_ERR_MSG(extack, "No device specified"); 3008 return -EINVAL; 3009 } 3010 3011 neigh = neigh_lookup(tbl, dst, dev); 3012 if (!neigh) { 3013 NL_SET_ERR_MSG(extack, "Neighbour entry not found"); 3014 return -ENOENT; 3015 } 3016 3017 err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid, 3018 nlh->nlmsg_seq); 3019 3020 neigh_release(neigh); 3021 3022 return err; 3023 } 3024 3025 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 3026 { 3027 int chain; 3028 struct neigh_hash_table *nht; 3029 3030 rcu_read_lock_bh(); 3031 nht = rcu_dereference_bh(tbl->nht); 3032 3033 read_lock(&tbl->lock); /* avoid resizes */ 3034 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 3035 struct neighbour *n; 3036 3037 for (n = rcu_dereference_bh(nht->hash_buckets[chain]); 3038 n != NULL; 3039 n = rcu_dereference_bh(n->next)) 3040 cb(n, cookie); 3041 } 3042 read_unlock(&tbl->lock); 3043 rcu_read_unlock_bh(); 3044 } 3045 EXPORT_SYMBOL(neigh_for_each); 3046 3047 /* The tbl->lock must be held as a writer and BH disabled. */ 3048 void __neigh_for_each_release(struct neigh_table *tbl, 3049 int (*cb)(struct neighbour *)) 3050 { 3051 int chain; 3052 struct neigh_hash_table *nht; 3053 3054 nht = rcu_dereference_protected(tbl->nht, 3055 lockdep_is_held(&tbl->lock)); 3056 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 3057 struct neighbour *n; 3058 struct neighbour __rcu **np; 3059 3060 np = &nht->hash_buckets[chain]; 3061 while ((n = rcu_dereference_protected(*np, 3062 lockdep_is_held(&tbl->lock))) != NULL) { 3063 int release; 3064 3065 write_lock(&n->lock); 3066 release = cb(n); 3067 if (release) { 3068 rcu_assign_pointer(*np, 3069 rcu_dereference_protected(n->next, 3070 lockdep_is_held(&tbl->lock))); 3071 neigh_mark_dead(n); 3072 } else 3073 np = &n->next; 3074 write_unlock(&n->lock); 3075 if (release) 3076 neigh_cleanup_and_release(n); 3077 } 3078 } 3079 } 3080 EXPORT_SYMBOL(__neigh_for_each_release); 3081 3082 int neigh_xmit(int index, struct net_device *dev, 3083 const void *addr, struct sk_buff *skb) 3084 { 3085 int err = -EAFNOSUPPORT; 3086 if (likely(index < NEIGH_NR_TABLES)) { 3087 struct neigh_table *tbl; 3088 struct neighbour *neigh; 3089 3090 tbl = neigh_tables[index]; 3091 if (!tbl) 3092 goto out; 3093 rcu_read_lock_bh(); 3094 if (index == NEIGH_ARP_TABLE) { 3095 u32 key = *((u32 *)addr); 3096 3097 neigh = __ipv4_neigh_lookup_noref(dev, key); 3098 } else { 3099 neigh = __neigh_lookup_noref(tbl, addr, dev); 3100 } 3101 if (!neigh) 3102 neigh = __neigh_create(tbl, addr, dev, false); 3103 err = PTR_ERR(neigh); 3104 if (IS_ERR(neigh)) { 3105 rcu_read_unlock_bh(); 3106 goto out_kfree_skb; 3107 } 3108 err = neigh->output(neigh, skb); 3109 rcu_read_unlock_bh(); 3110 } 3111 else if (index == NEIGH_LINK_TABLE) { 3112 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 3113 addr, NULL, skb->len); 3114 if (err < 0) 3115 goto out_kfree_skb; 3116 err = dev_queue_xmit(skb); 3117 } 3118 out: 3119 return err; 3120 out_kfree_skb: 3121 kfree_skb(skb); 3122 goto out; 3123 } 3124 EXPORT_SYMBOL(neigh_xmit); 3125 3126 #ifdef CONFIG_PROC_FS 3127 3128 static struct neighbour *neigh_get_first(struct seq_file *seq) 3129 { 3130 struct neigh_seq_state *state = seq->private; 3131 struct net *net = seq_file_net(seq); 3132 struct neigh_hash_table *nht = state->nht; 3133 struct neighbour *n = NULL; 3134 int bucket; 3135 3136 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 3137 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { 3138 n = rcu_dereference_bh(nht->hash_buckets[bucket]); 3139 3140 while (n) { 3141 if (!net_eq(dev_net(n->dev), net)) 3142 goto next; 3143 if (state->neigh_sub_iter) { 3144 loff_t fakep = 0; 3145 void *v; 3146 3147 v = state->neigh_sub_iter(state, n, &fakep); 3148 if (!v) 3149 goto next; 3150 } 3151 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3152 break; 3153 if (n->nud_state & ~NUD_NOARP) 3154 break; 3155 next: 3156 n = rcu_dereference_bh(n->next); 3157 } 3158 3159 if (n) 3160 break; 3161 } 3162 state->bucket = bucket; 3163 3164 return n; 3165 } 3166 3167 static struct neighbour *neigh_get_next(struct seq_file *seq, 3168 struct neighbour *n, 3169 loff_t *pos) 3170 { 3171 struct neigh_seq_state *state = seq->private; 3172 struct net *net = seq_file_net(seq); 3173 struct neigh_hash_table *nht = state->nht; 3174 3175 if (state->neigh_sub_iter) { 3176 void *v = state->neigh_sub_iter(state, n, pos); 3177 if (v) 3178 return n; 3179 } 3180 n = rcu_dereference_bh(n->next); 3181 3182 while (1) { 3183 while (n) { 3184 if (!net_eq(dev_net(n->dev), net)) 3185 goto next; 3186 if (state->neigh_sub_iter) { 3187 void *v = state->neigh_sub_iter(state, n, pos); 3188 if (v) 3189 return n; 3190 goto next; 3191 } 3192 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3193 break; 3194 3195 if (n->nud_state & ~NUD_NOARP) 3196 break; 3197 next: 3198 n = rcu_dereference_bh(n->next); 3199 } 3200 3201 if (n) 3202 break; 3203 3204 if (++state->bucket >= (1 << nht->hash_shift)) 3205 break; 3206 3207 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); 3208 } 3209 3210 if (n && pos) 3211 --(*pos); 3212 return n; 3213 } 3214 3215 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 3216 { 3217 struct neighbour *n = neigh_get_first(seq); 3218 3219 if (n) { 3220 --(*pos); 3221 while (*pos) { 3222 n = neigh_get_next(seq, n, pos); 3223 if (!n) 3224 break; 3225 } 3226 } 3227 return *pos ? NULL : n; 3228 } 3229 3230 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 3231 { 3232 struct neigh_seq_state *state = seq->private; 3233 struct net *net = seq_file_net(seq); 3234 struct neigh_table *tbl = state->tbl; 3235 struct pneigh_entry *pn = NULL; 3236 int bucket; 3237 3238 state->flags |= NEIGH_SEQ_IS_PNEIGH; 3239 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 3240 pn = tbl->phash_buckets[bucket]; 3241 while (pn && !net_eq(pneigh_net(pn), net)) 3242 pn = pn->next; 3243 if (pn) 3244 break; 3245 } 3246 state->bucket = bucket; 3247 3248 return pn; 3249 } 3250 3251 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 3252 struct pneigh_entry *pn, 3253 loff_t *pos) 3254 { 3255 struct neigh_seq_state *state = seq->private; 3256 struct net *net = seq_file_net(seq); 3257 struct neigh_table *tbl = state->tbl; 3258 3259 do { 3260 pn = pn->next; 3261 } while (pn && !net_eq(pneigh_net(pn), net)); 3262 3263 while (!pn) { 3264 if (++state->bucket > PNEIGH_HASHMASK) 3265 break; 3266 pn = tbl->phash_buckets[state->bucket]; 3267 while (pn && !net_eq(pneigh_net(pn), net)) 3268 pn = pn->next; 3269 if (pn) 3270 break; 3271 } 3272 3273 if (pn && pos) 3274 --(*pos); 3275 3276 return pn; 3277 } 3278 3279 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 3280 { 3281 struct pneigh_entry *pn = pneigh_get_first(seq); 3282 3283 if (pn) { 3284 --(*pos); 3285 while (*pos) { 3286 pn = pneigh_get_next(seq, pn, pos); 3287 if (!pn) 3288 break; 3289 } 3290 } 3291 return *pos ? NULL : pn; 3292 } 3293 3294 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 3295 { 3296 struct neigh_seq_state *state = seq->private; 3297 void *rc; 3298 loff_t idxpos = *pos; 3299 3300 rc = neigh_get_idx(seq, &idxpos); 3301 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3302 rc = pneigh_get_idx(seq, &idxpos); 3303 3304 return rc; 3305 } 3306 3307 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 3308 __acquires(tbl->lock) 3309 __acquires(rcu_bh) 3310 { 3311 struct neigh_seq_state *state = seq->private; 3312 3313 state->tbl = tbl; 3314 state->bucket = 0; 3315 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 3316 3317 rcu_read_lock_bh(); 3318 state->nht = rcu_dereference_bh(tbl->nht); 3319 read_lock(&tbl->lock); 3320 3321 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 3322 } 3323 EXPORT_SYMBOL(neigh_seq_start); 3324 3325 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3326 { 3327 struct neigh_seq_state *state; 3328 void *rc; 3329 3330 if (v == SEQ_START_TOKEN) { 3331 rc = neigh_get_first(seq); 3332 goto out; 3333 } 3334 3335 state = seq->private; 3336 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 3337 rc = neigh_get_next(seq, v, NULL); 3338 if (rc) 3339 goto out; 3340 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3341 rc = pneigh_get_first(seq); 3342 } else { 3343 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 3344 rc = pneigh_get_next(seq, v, NULL); 3345 } 3346 out: 3347 ++(*pos); 3348 return rc; 3349 } 3350 EXPORT_SYMBOL(neigh_seq_next); 3351 3352 void neigh_seq_stop(struct seq_file *seq, void *v) 3353 __releases(tbl->lock) 3354 __releases(rcu_bh) 3355 { 3356 struct neigh_seq_state *state = seq->private; 3357 struct neigh_table *tbl = state->tbl; 3358 3359 read_unlock(&tbl->lock); 3360 rcu_read_unlock_bh(); 3361 } 3362 EXPORT_SYMBOL(neigh_seq_stop); 3363 3364 /* statistics via seq_file */ 3365 3366 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 3367 { 3368 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3369 int cpu; 3370 3371 if (*pos == 0) 3372 return SEQ_START_TOKEN; 3373 3374 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 3375 if (!cpu_possible(cpu)) 3376 continue; 3377 *pos = cpu+1; 3378 return per_cpu_ptr(tbl->stats, cpu); 3379 } 3380 return NULL; 3381 } 3382 3383 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3384 { 3385 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3386 int cpu; 3387 3388 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 3389 if (!cpu_possible(cpu)) 3390 continue; 3391 *pos = cpu+1; 3392 return per_cpu_ptr(tbl->stats, cpu); 3393 } 3394 (*pos)++; 3395 return NULL; 3396 } 3397 3398 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 3399 { 3400 3401 } 3402 3403 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 3404 { 3405 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3406 struct neigh_statistics *st = v; 3407 3408 if (v == SEQ_START_TOKEN) { 3409 seq_puts(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n"); 3410 return 0; 3411 } 3412 3413 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 3414 "%08lx %08lx %08lx " 3415 "%08lx %08lx %08lx\n", 3416 atomic_read(&tbl->entries), 3417 3418 st->allocs, 3419 st->destroys, 3420 st->hash_grows, 3421 3422 st->lookups, 3423 st->hits, 3424 3425 st->res_failed, 3426 3427 st->rcv_probes_mcast, 3428 st->rcv_probes_ucast, 3429 3430 st->periodic_gc_runs, 3431 st->forced_gc_runs, 3432 st->unres_discards, 3433 st->table_fulls 3434 ); 3435 3436 return 0; 3437 } 3438 3439 static const struct seq_operations neigh_stat_seq_ops = { 3440 .start = neigh_stat_seq_start, 3441 .next = neigh_stat_seq_next, 3442 .stop = neigh_stat_seq_stop, 3443 .show = neigh_stat_seq_show, 3444 }; 3445 #endif /* CONFIG_PROC_FS */ 3446 3447 static void __neigh_notify(struct neighbour *n, int type, int flags, 3448 u32 pid) 3449 { 3450 struct net *net = dev_net(n->dev); 3451 struct sk_buff *skb; 3452 int err = -ENOBUFS; 3453 3454 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 3455 if (skb == NULL) 3456 goto errout; 3457 3458 err = neigh_fill_info(skb, n, pid, 0, type, flags); 3459 if (err < 0) { 3460 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 3461 WARN_ON(err == -EMSGSIZE); 3462 kfree_skb(skb); 3463 goto errout; 3464 } 3465 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 3466 return; 3467 errout: 3468 if (err < 0) 3469 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 3470 } 3471 3472 void neigh_app_ns(struct neighbour *n) 3473 { 3474 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0); 3475 } 3476 EXPORT_SYMBOL(neigh_app_ns); 3477 3478 #ifdef CONFIG_SYSCTL 3479 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN); 3480 3481 static int proc_unres_qlen(struct ctl_table *ctl, int write, 3482 void *buffer, size_t *lenp, loff_t *ppos) 3483 { 3484 int size, ret; 3485 struct ctl_table tmp = *ctl; 3486 3487 tmp.extra1 = SYSCTL_ZERO; 3488 tmp.extra2 = &unres_qlen_max; 3489 tmp.data = &size; 3490 3491 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN); 3492 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3493 3494 if (write && !ret) 3495 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); 3496 return ret; 3497 } 3498 3499 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev, 3500 int family) 3501 { 3502 switch (family) { 3503 case AF_INET: 3504 return __in_dev_arp_parms_get_rcu(dev); 3505 case AF_INET6: 3506 return __in6_dev_nd_parms_get_rcu(dev); 3507 } 3508 return NULL; 3509 } 3510 3511 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p, 3512 int index) 3513 { 3514 struct net_device *dev; 3515 int family = neigh_parms_family(p); 3516 3517 rcu_read_lock(); 3518 for_each_netdev_rcu(net, dev) { 3519 struct neigh_parms *dst_p = 3520 neigh_get_dev_parms_rcu(dev, family); 3521 3522 if (dst_p && !test_bit(index, dst_p->data_state)) 3523 dst_p->data[index] = p->data[index]; 3524 } 3525 rcu_read_unlock(); 3526 } 3527 3528 static void neigh_proc_update(struct ctl_table *ctl, int write) 3529 { 3530 struct net_device *dev = ctl->extra1; 3531 struct neigh_parms *p = ctl->extra2; 3532 struct net *net = neigh_parms_net(p); 3533 int index = (int *) ctl->data - p->data; 3534 3535 if (!write) 3536 return; 3537 3538 set_bit(index, p->data_state); 3539 if (index == NEIGH_VAR_DELAY_PROBE_TIME) 3540 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 3541 if (!dev) /* NULL dev means this is default value */ 3542 neigh_copy_dflt_parms(net, p, index); 3543 } 3544 3545 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write, 3546 void *buffer, size_t *lenp, 3547 loff_t *ppos) 3548 { 3549 struct ctl_table tmp = *ctl; 3550 int ret; 3551 3552 tmp.extra1 = SYSCTL_ZERO; 3553 tmp.extra2 = SYSCTL_INT_MAX; 3554 3555 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3556 neigh_proc_update(ctl, write); 3557 return ret; 3558 } 3559 3560 int neigh_proc_dointvec(struct ctl_table *ctl, int write, void *buffer, 3561 size_t *lenp, loff_t *ppos) 3562 { 3563 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 3564 3565 neigh_proc_update(ctl, write); 3566 return ret; 3567 } 3568 EXPORT_SYMBOL(neigh_proc_dointvec); 3569 3570 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, void *buffer, 3571 size_t *lenp, loff_t *ppos) 3572 { 3573 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3574 3575 neigh_proc_update(ctl, write); 3576 return ret; 3577 } 3578 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies); 3579 3580 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write, 3581 void *buffer, size_t *lenp, 3582 loff_t *ppos) 3583 { 3584 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos); 3585 3586 neigh_proc_update(ctl, write); 3587 return ret; 3588 } 3589 3590 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write, 3591 void *buffer, size_t *lenp, loff_t *ppos) 3592 { 3593 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3594 3595 neigh_proc_update(ctl, write); 3596 return ret; 3597 } 3598 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies); 3599 3600 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write, 3601 void *buffer, size_t *lenp, 3602 loff_t *ppos) 3603 { 3604 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos); 3605 3606 neigh_proc_update(ctl, write); 3607 return ret; 3608 } 3609 3610 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write, 3611 void *buffer, size_t *lenp, 3612 loff_t *ppos) 3613 { 3614 struct neigh_parms *p = ctl->extra2; 3615 int ret; 3616 3617 if (strcmp(ctl->procname, "base_reachable_time") == 0) 3618 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3619 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0) 3620 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3621 else 3622 ret = -1; 3623 3624 if (write && ret == 0) { 3625 /* update reachable_time as well, otherwise, the change will 3626 * only be effective after the next time neigh_periodic_work 3627 * decides to recompute it 3628 */ 3629 p->reachable_time = 3630 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 3631 } 3632 return ret; 3633 } 3634 3635 #define NEIGH_PARMS_DATA_OFFSET(index) \ 3636 (&((struct neigh_parms *) 0)->data[index]) 3637 3638 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \ 3639 [NEIGH_VAR_ ## attr] = { \ 3640 .procname = name, \ 3641 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \ 3642 .maxlen = sizeof(int), \ 3643 .mode = mval, \ 3644 .proc_handler = proc, \ 3645 } 3646 3647 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \ 3648 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax) 3649 3650 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \ 3651 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies) 3652 3653 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \ 3654 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies) 3655 3656 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \ 3657 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies) 3658 3659 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \ 3660 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen) 3661 3662 static struct neigh_sysctl_table { 3663 struct ctl_table_header *sysctl_header; 3664 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1]; 3665 } neigh_sysctl_template __read_mostly = { 3666 .neigh_vars = { 3667 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"), 3668 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"), 3669 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"), 3670 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"), 3671 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"), 3672 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"), 3673 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"), 3674 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"), 3675 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"), 3676 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"), 3677 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"), 3678 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"), 3679 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"), 3680 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"), 3681 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"), 3682 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"), 3683 [NEIGH_VAR_GC_INTERVAL] = { 3684 .procname = "gc_interval", 3685 .maxlen = sizeof(int), 3686 .mode = 0644, 3687 .proc_handler = proc_dointvec_jiffies, 3688 }, 3689 [NEIGH_VAR_GC_THRESH1] = { 3690 .procname = "gc_thresh1", 3691 .maxlen = sizeof(int), 3692 .mode = 0644, 3693 .extra1 = SYSCTL_ZERO, 3694 .extra2 = SYSCTL_INT_MAX, 3695 .proc_handler = proc_dointvec_minmax, 3696 }, 3697 [NEIGH_VAR_GC_THRESH2] = { 3698 .procname = "gc_thresh2", 3699 .maxlen = sizeof(int), 3700 .mode = 0644, 3701 .extra1 = SYSCTL_ZERO, 3702 .extra2 = SYSCTL_INT_MAX, 3703 .proc_handler = proc_dointvec_minmax, 3704 }, 3705 [NEIGH_VAR_GC_THRESH3] = { 3706 .procname = "gc_thresh3", 3707 .maxlen = sizeof(int), 3708 .mode = 0644, 3709 .extra1 = SYSCTL_ZERO, 3710 .extra2 = SYSCTL_INT_MAX, 3711 .proc_handler = proc_dointvec_minmax, 3712 }, 3713 {}, 3714 }, 3715 }; 3716 3717 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 3718 proc_handler *handler) 3719 { 3720 int i; 3721 struct neigh_sysctl_table *t; 3722 const char *dev_name_source; 3723 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ]; 3724 char *p_name; 3725 3726 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 3727 if (!t) 3728 goto err; 3729 3730 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) { 3731 t->neigh_vars[i].data += (long) p; 3732 t->neigh_vars[i].extra1 = dev; 3733 t->neigh_vars[i].extra2 = p; 3734 } 3735 3736 if (dev) { 3737 dev_name_source = dev->name; 3738 /* Terminate the table early */ 3739 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0, 3740 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL])); 3741 } else { 3742 struct neigh_table *tbl = p->tbl; 3743 dev_name_source = "default"; 3744 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval; 3745 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1; 3746 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2; 3747 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3; 3748 } 3749 3750 if (handler) { 3751 /* RetransTime */ 3752 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; 3753 /* ReachableTime */ 3754 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; 3755 /* RetransTime (in milliseconds)*/ 3756 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; 3757 /* ReachableTime (in milliseconds) */ 3758 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; 3759 } else { 3760 /* Those handlers will update p->reachable_time after 3761 * base_reachable_time(_ms) is set to ensure the new timer starts being 3762 * applied after the next neighbour update instead of waiting for 3763 * neigh_periodic_work to update its value (can be multiple minutes) 3764 * So any handler that replaces them should do this as well 3765 */ 3766 /* ReachableTime */ 3767 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = 3768 neigh_proc_base_reachable_time; 3769 /* ReachableTime (in milliseconds) */ 3770 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = 3771 neigh_proc_base_reachable_time; 3772 } 3773 3774 /* Don't export sysctls to unprivileged users */ 3775 if (neigh_parms_net(p)->user_ns != &init_user_ns) 3776 t->neigh_vars[0].procname = NULL; 3777 3778 switch (neigh_parms_family(p)) { 3779 case AF_INET: 3780 p_name = "ipv4"; 3781 break; 3782 case AF_INET6: 3783 p_name = "ipv6"; 3784 break; 3785 default: 3786 BUG(); 3787 } 3788 3789 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s", 3790 p_name, dev_name_source); 3791 t->sysctl_header = 3792 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars); 3793 if (!t->sysctl_header) 3794 goto free; 3795 3796 p->sysctl_table = t; 3797 return 0; 3798 3799 free: 3800 kfree(t); 3801 err: 3802 return -ENOBUFS; 3803 } 3804 EXPORT_SYMBOL(neigh_sysctl_register); 3805 3806 void neigh_sysctl_unregister(struct neigh_parms *p) 3807 { 3808 if (p->sysctl_table) { 3809 struct neigh_sysctl_table *t = p->sysctl_table; 3810 p->sysctl_table = NULL; 3811 unregister_net_sysctl_table(t->sysctl_header); 3812 kfree(t); 3813 } 3814 } 3815 EXPORT_SYMBOL(neigh_sysctl_unregister); 3816 3817 #endif /* CONFIG_SYSCTL */ 3818 3819 static int __init neigh_init(void) 3820 { 3821 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0); 3822 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0); 3823 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info, 0); 3824 3825 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, 3826 0); 3827 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0); 3828 3829 return 0; 3830 } 3831 3832 subsys_initcall(neigh_init); 3833