1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic address resolution entity 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 8 * 9 * Fixes: 10 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 11 * Harald Welte Add neighbour cache statistics like rtstat 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/slab.h> 17 #include <linux/kmemleak.h> 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/socket.h> 22 #include <linux/netdevice.h> 23 #include <linux/proc_fs.h> 24 #ifdef CONFIG_SYSCTL 25 #include <linux/sysctl.h> 26 #endif 27 #include <linux/times.h> 28 #include <net/net_namespace.h> 29 #include <net/neighbour.h> 30 #include <net/arp.h> 31 #include <net/dst.h> 32 #include <net/sock.h> 33 #include <net/netevent.h> 34 #include <net/netlink.h> 35 #include <linux/rtnetlink.h> 36 #include <linux/random.h> 37 #include <linux/string.h> 38 #include <linux/log2.h> 39 #include <linux/inetdevice.h> 40 #include <net/addrconf.h> 41 42 #include <trace/events/neigh.h> 43 44 #define NEIGH_DEBUG 1 45 #define neigh_dbg(level, fmt, ...) \ 46 do { \ 47 if (level <= NEIGH_DEBUG) \ 48 pr_debug(fmt, ##__VA_ARGS__); \ 49 } while (0) 50 51 #define PNEIGH_HASHMASK 0xF 52 53 static void neigh_timer_handler(struct timer_list *t); 54 static void __neigh_notify(struct neighbour *n, int type, int flags, 55 u32 pid); 56 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid); 57 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 58 struct net_device *dev); 59 60 #ifdef CONFIG_PROC_FS 61 static const struct seq_operations neigh_stat_seq_ops; 62 #endif 63 64 /* 65 Neighbour hash table buckets are protected with rwlock tbl->lock. 66 67 - All the scans/updates to hash buckets MUST be made under this lock. 68 - NOTHING clever should be made under this lock: no callbacks 69 to protocol backends, no attempts to send something to network. 70 It will result in deadlocks, if backend/driver wants to use neighbour 71 cache. 72 - If the entry requires some non-trivial actions, increase 73 its reference count and release table lock. 74 75 Neighbour entries are protected: 76 - with reference count. 77 - with rwlock neigh->lock 78 79 Reference count prevents destruction. 80 81 neigh->lock mainly serializes ll address data and its validity state. 82 However, the same lock is used to protect another entry fields: 83 - timer 84 - resolution queue 85 86 Again, nothing clever shall be made under neigh->lock, 87 the most complicated procedure, which we allow is dev->hard_header. 88 It is supposed, that dev->hard_header is simplistic and does 89 not make callbacks to neighbour tables. 90 */ 91 92 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) 93 { 94 kfree_skb(skb); 95 return -ENETDOWN; 96 } 97 98 static void neigh_cleanup_and_release(struct neighbour *neigh) 99 { 100 trace_neigh_cleanup_and_release(neigh, 0); 101 __neigh_notify(neigh, RTM_DELNEIGH, 0, 0); 102 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 103 neigh_release(neigh); 104 } 105 106 /* 107 * It is random distribution in the interval (1/2)*base...(3/2)*base. 108 * It corresponds to default IPv6 settings and is not overridable, 109 * because it is really reasonable choice. 110 */ 111 112 unsigned long neigh_rand_reach_time(unsigned long base) 113 { 114 return base ? (prandom_u32() % base) + (base >> 1) : 0; 115 } 116 EXPORT_SYMBOL(neigh_rand_reach_time); 117 118 static void neigh_mark_dead(struct neighbour *n) 119 { 120 n->dead = 1; 121 if (!list_empty(&n->gc_list)) { 122 list_del_init(&n->gc_list); 123 atomic_dec(&n->tbl->gc_entries); 124 } 125 } 126 127 static void neigh_update_gc_list(struct neighbour *n) 128 { 129 bool on_gc_list, exempt_from_gc; 130 131 write_lock_bh(&n->tbl->lock); 132 write_lock(&n->lock); 133 134 /* remove from the gc list if new state is permanent or if neighbor 135 * is externally learned; otherwise entry should be on the gc list 136 */ 137 exempt_from_gc = n->nud_state & NUD_PERMANENT || 138 n->flags & NTF_EXT_LEARNED; 139 on_gc_list = !list_empty(&n->gc_list); 140 141 if (exempt_from_gc && on_gc_list) { 142 list_del_init(&n->gc_list); 143 atomic_dec(&n->tbl->gc_entries); 144 } else if (!exempt_from_gc && !on_gc_list) { 145 /* add entries to the tail; cleaning removes from the front */ 146 list_add_tail(&n->gc_list, &n->tbl->gc_list); 147 atomic_inc(&n->tbl->gc_entries); 148 } 149 150 write_unlock(&n->lock); 151 write_unlock_bh(&n->tbl->lock); 152 } 153 154 static bool neigh_update_ext_learned(struct neighbour *neigh, u32 flags, 155 int *notify) 156 { 157 bool rc = false; 158 u8 ndm_flags; 159 160 if (!(flags & NEIGH_UPDATE_F_ADMIN)) 161 return rc; 162 163 ndm_flags = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0; 164 if ((neigh->flags ^ ndm_flags) & NTF_EXT_LEARNED) { 165 if (ndm_flags & NTF_EXT_LEARNED) 166 neigh->flags |= NTF_EXT_LEARNED; 167 else 168 neigh->flags &= ~NTF_EXT_LEARNED; 169 rc = true; 170 *notify = 1; 171 } 172 173 return rc; 174 } 175 176 static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np, 177 struct neigh_table *tbl) 178 { 179 bool retval = false; 180 181 write_lock(&n->lock); 182 if (refcount_read(&n->refcnt) == 1) { 183 struct neighbour *neigh; 184 185 neigh = rcu_dereference_protected(n->next, 186 lockdep_is_held(&tbl->lock)); 187 rcu_assign_pointer(*np, neigh); 188 neigh_mark_dead(n); 189 retval = true; 190 } 191 write_unlock(&n->lock); 192 if (retval) 193 neigh_cleanup_and_release(n); 194 return retval; 195 } 196 197 bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl) 198 { 199 struct neigh_hash_table *nht; 200 void *pkey = ndel->primary_key; 201 u32 hash_val; 202 struct neighbour *n; 203 struct neighbour __rcu **np; 204 205 nht = rcu_dereference_protected(tbl->nht, 206 lockdep_is_held(&tbl->lock)); 207 hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd); 208 hash_val = hash_val >> (32 - nht->hash_shift); 209 210 np = &nht->hash_buckets[hash_val]; 211 while ((n = rcu_dereference_protected(*np, 212 lockdep_is_held(&tbl->lock)))) { 213 if (n == ndel) 214 return neigh_del(n, np, tbl); 215 np = &n->next; 216 } 217 return false; 218 } 219 220 static int neigh_forced_gc(struct neigh_table *tbl) 221 { 222 int max_clean = atomic_read(&tbl->gc_entries) - tbl->gc_thresh2; 223 unsigned long tref = jiffies - 5 * HZ; 224 struct neighbour *n, *tmp; 225 int shrunk = 0; 226 227 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 228 229 write_lock_bh(&tbl->lock); 230 231 list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) { 232 if (refcount_read(&n->refcnt) == 1) { 233 bool remove = false; 234 235 write_lock(&n->lock); 236 if ((n->nud_state == NUD_FAILED) || 237 (tbl->is_multicast && 238 tbl->is_multicast(n->primary_key)) || 239 time_after(tref, n->updated)) 240 remove = true; 241 write_unlock(&n->lock); 242 243 if (remove && neigh_remove_one(n, tbl)) 244 shrunk++; 245 if (shrunk >= max_clean) 246 break; 247 } 248 } 249 250 tbl->last_flush = jiffies; 251 252 write_unlock_bh(&tbl->lock); 253 254 return shrunk; 255 } 256 257 static void neigh_add_timer(struct neighbour *n, unsigned long when) 258 { 259 neigh_hold(n); 260 if (unlikely(mod_timer(&n->timer, when))) { 261 printk("NEIGH: BUG, double timer add, state is %x\n", 262 n->nud_state); 263 dump_stack(); 264 } 265 } 266 267 static int neigh_del_timer(struct neighbour *n) 268 { 269 if ((n->nud_state & NUD_IN_TIMER) && 270 del_timer(&n->timer)) { 271 neigh_release(n); 272 return 1; 273 } 274 return 0; 275 } 276 277 static void pneigh_queue_purge(struct sk_buff_head *list) 278 { 279 struct sk_buff *skb; 280 281 while ((skb = skb_dequeue(list)) != NULL) { 282 dev_put(skb->dev); 283 kfree_skb(skb); 284 } 285 } 286 287 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev, 288 bool skip_perm) 289 { 290 int i; 291 struct neigh_hash_table *nht; 292 293 nht = rcu_dereference_protected(tbl->nht, 294 lockdep_is_held(&tbl->lock)); 295 296 for (i = 0; i < (1 << nht->hash_shift); i++) { 297 struct neighbour *n; 298 struct neighbour __rcu **np = &nht->hash_buckets[i]; 299 300 while ((n = rcu_dereference_protected(*np, 301 lockdep_is_held(&tbl->lock))) != NULL) { 302 if (dev && n->dev != dev) { 303 np = &n->next; 304 continue; 305 } 306 if (skip_perm && n->nud_state & NUD_PERMANENT) { 307 np = &n->next; 308 continue; 309 } 310 rcu_assign_pointer(*np, 311 rcu_dereference_protected(n->next, 312 lockdep_is_held(&tbl->lock))); 313 write_lock(&n->lock); 314 neigh_del_timer(n); 315 neigh_mark_dead(n); 316 if (refcount_read(&n->refcnt) != 1) { 317 /* The most unpleasant situation. 318 We must destroy neighbour entry, 319 but someone still uses it. 320 321 The destroy will be delayed until 322 the last user releases us, but 323 we must kill timers etc. and move 324 it to safe state. 325 */ 326 __skb_queue_purge(&n->arp_queue); 327 n->arp_queue_len_bytes = 0; 328 n->output = neigh_blackhole; 329 if (n->nud_state & NUD_VALID) 330 n->nud_state = NUD_NOARP; 331 else 332 n->nud_state = NUD_NONE; 333 neigh_dbg(2, "neigh %p is stray\n", n); 334 } 335 write_unlock(&n->lock); 336 neigh_cleanup_and_release(n); 337 } 338 } 339 } 340 341 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 342 { 343 write_lock_bh(&tbl->lock); 344 neigh_flush_dev(tbl, dev, false); 345 write_unlock_bh(&tbl->lock); 346 } 347 EXPORT_SYMBOL(neigh_changeaddr); 348 349 static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev, 350 bool skip_perm) 351 { 352 write_lock_bh(&tbl->lock); 353 neigh_flush_dev(tbl, dev, skip_perm); 354 pneigh_ifdown_and_unlock(tbl, dev); 355 356 del_timer_sync(&tbl->proxy_timer); 357 pneigh_queue_purge(&tbl->proxy_queue); 358 return 0; 359 } 360 361 int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev) 362 { 363 __neigh_ifdown(tbl, dev, true); 364 return 0; 365 } 366 EXPORT_SYMBOL(neigh_carrier_down); 367 368 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 369 { 370 __neigh_ifdown(tbl, dev, false); 371 return 0; 372 } 373 EXPORT_SYMBOL(neigh_ifdown); 374 375 static struct neighbour *neigh_alloc(struct neigh_table *tbl, 376 struct net_device *dev, 377 bool exempt_from_gc) 378 { 379 struct neighbour *n = NULL; 380 unsigned long now = jiffies; 381 int entries; 382 383 if (exempt_from_gc) 384 goto do_alloc; 385 386 entries = atomic_inc_return(&tbl->gc_entries) - 1; 387 if (entries >= tbl->gc_thresh3 || 388 (entries >= tbl->gc_thresh2 && 389 time_after(now, tbl->last_flush + 5 * HZ))) { 390 if (!neigh_forced_gc(tbl) && 391 entries >= tbl->gc_thresh3) { 392 net_info_ratelimited("%s: neighbor table overflow!\n", 393 tbl->id); 394 NEIGH_CACHE_STAT_INC(tbl, table_fulls); 395 goto out_entries; 396 } 397 } 398 399 do_alloc: 400 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC); 401 if (!n) 402 goto out_entries; 403 404 __skb_queue_head_init(&n->arp_queue); 405 rwlock_init(&n->lock); 406 seqlock_init(&n->ha_lock); 407 n->updated = n->used = now; 408 n->nud_state = NUD_NONE; 409 n->output = neigh_blackhole; 410 seqlock_init(&n->hh.hh_lock); 411 n->parms = neigh_parms_clone(&tbl->parms); 412 timer_setup(&n->timer, neigh_timer_handler, 0); 413 414 NEIGH_CACHE_STAT_INC(tbl, allocs); 415 n->tbl = tbl; 416 refcount_set(&n->refcnt, 1); 417 n->dead = 1; 418 INIT_LIST_HEAD(&n->gc_list); 419 420 atomic_inc(&tbl->entries); 421 out: 422 return n; 423 424 out_entries: 425 if (!exempt_from_gc) 426 atomic_dec(&tbl->gc_entries); 427 goto out; 428 } 429 430 static void neigh_get_hash_rnd(u32 *x) 431 { 432 *x = get_random_u32() | 1; 433 } 434 435 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) 436 { 437 size_t size = (1 << shift) * sizeof(struct neighbour *); 438 struct neigh_hash_table *ret; 439 struct neighbour __rcu **buckets; 440 int i; 441 442 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 443 if (!ret) 444 return NULL; 445 if (size <= PAGE_SIZE) { 446 buckets = kzalloc(size, GFP_ATOMIC); 447 } else { 448 buckets = (struct neighbour __rcu **) 449 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 450 get_order(size)); 451 kmemleak_alloc(buckets, size, 1, GFP_ATOMIC); 452 } 453 if (!buckets) { 454 kfree(ret); 455 return NULL; 456 } 457 ret->hash_buckets = buckets; 458 ret->hash_shift = shift; 459 for (i = 0; i < NEIGH_NUM_HASH_RND; i++) 460 neigh_get_hash_rnd(&ret->hash_rnd[i]); 461 return ret; 462 } 463 464 static void neigh_hash_free_rcu(struct rcu_head *head) 465 { 466 struct neigh_hash_table *nht = container_of(head, 467 struct neigh_hash_table, 468 rcu); 469 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); 470 struct neighbour __rcu **buckets = nht->hash_buckets; 471 472 if (size <= PAGE_SIZE) { 473 kfree(buckets); 474 } else { 475 kmemleak_free(buckets); 476 free_pages((unsigned long)buckets, get_order(size)); 477 } 478 kfree(nht); 479 } 480 481 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, 482 unsigned long new_shift) 483 { 484 unsigned int i, hash; 485 struct neigh_hash_table *new_nht, *old_nht; 486 487 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 488 489 old_nht = rcu_dereference_protected(tbl->nht, 490 lockdep_is_held(&tbl->lock)); 491 new_nht = neigh_hash_alloc(new_shift); 492 if (!new_nht) 493 return old_nht; 494 495 for (i = 0; i < (1 << old_nht->hash_shift); i++) { 496 struct neighbour *n, *next; 497 498 for (n = rcu_dereference_protected(old_nht->hash_buckets[i], 499 lockdep_is_held(&tbl->lock)); 500 n != NULL; 501 n = next) { 502 hash = tbl->hash(n->primary_key, n->dev, 503 new_nht->hash_rnd); 504 505 hash >>= (32 - new_nht->hash_shift); 506 next = rcu_dereference_protected(n->next, 507 lockdep_is_held(&tbl->lock)); 508 509 rcu_assign_pointer(n->next, 510 rcu_dereference_protected( 511 new_nht->hash_buckets[hash], 512 lockdep_is_held(&tbl->lock))); 513 rcu_assign_pointer(new_nht->hash_buckets[hash], n); 514 } 515 } 516 517 rcu_assign_pointer(tbl->nht, new_nht); 518 call_rcu(&old_nht->rcu, neigh_hash_free_rcu); 519 return new_nht; 520 } 521 522 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 523 struct net_device *dev) 524 { 525 struct neighbour *n; 526 527 NEIGH_CACHE_STAT_INC(tbl, lookups); 528 529 rcu_read_lock_bh(); 530 n = __neigh_lookup_noref(tbl, pkey, dev); 531 if (n) { 532 if (!refcount_inc_not_zero(&n->refcnt)) 533 n = NULL; 534 NEIGH_CACHE_STAT_INC(tbl, hits); 535 } 536 537 rcu_read_unlock_bh(); 538 return n; 539 } 540 EXPORT_SYMBOL(neigh_lookup); 541 542 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 543 const void *pkey) 544 { 545 struct neighbour *n; 546 unsigned int key_len = tbl->key_len; 547 u32 hash_val; 548 struct neigh_hash_table *nht; 549 550 NEIGH_CACHE_STAT_INC(tbl, lookups); 551 552 rcu_read_lock_bh(); 553 nht = rcu_dereference_bh(tbl->nht); 554 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift); 555 556 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 557 n != NULL; 558 n = rcu_dereference_bh(n->next)) { 559 if (!memcmp(n->primary_key, pkey, key_len) && 560 net_eq(dev_net(n->dev), net)) { 561 if (!refcount_inc_not_zero(&n->refcnt)) 562 n = NULL; 563 NEIGH_CACHE_STAT_INC(tbl, hits); 564 break; 565 } 566 } 567 568 rcu_read_unlock_bh(); 569 return n; 570 } 571 EXPORT_SYMBOL(neigh_lookup_nodev); 572 573 static struct neighbour *___neigh_create(struct neigh_table *tbl, 574 const void *pkey, 575 struct net_device *dev, 576 bool exempt_from_gc, bool want_ref) 577 { 578 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev, exempt_from_gc); 579 u32 hash_val; 580 unsigned int key_len = tbl->key_len; 581 int error; 582 struct neigh_hash_table *nht; 583 584 trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc); 585 586 if (!n) { 587 rc = ERR_PTR(-ENOBUFS); 588 goto out; 589 } 590 591 memcpy(n->primary_key, pkey, key_len); 592 n->dev = dev; 593 dev_hold(dev); 594 595 /* Protocol specific setup. */ 596 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 597 rc = ERR_PTR(error); 598 goto out_neigh_release; 599 } 600 601 if (dev->netdev_ops->ndo_neigh_construct) { 602 error = dev->netdev_ops->ndo_neigh_construct(dev, n); 603 if (error < 0) { 604 rc = ERR_PTR(error); 605 goto out_neigh_release; 606 } 607 } 608 609 /* Device specific setup. */ 610 if (n->parms->neigh_setup && 611 (error = n->parms->neigh_setup(n)) < 0) { 612 rc = ERR_PTR(error); 613 goto out_neigh_release; 614 } 615 616 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1); 617 618 write_lock_bh(&tbl->lock); 619 nht = rcu_dereference_protected(tbl->nht, 620 lockdep_is_held(&tbl->lock)); 621 622 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) 623 nht = neigh_hash_grow(tbl, nht->hash_shift + 1); 624 625 hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 626 627 if (n->parms->dead) { 628 rc = ERR_PTR(-EINVAL); 629 goto out_tbl_unlock; 630 } 631 632 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], 633 lockdep_is_held(&tbl->lock)); 634 n1 != NULL; 635 n1 = rcu_dereference_protected(n1->next, 636 lockdep_is_held(&tbl->lock))) { 637 if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) { 638 if (want_ref) 639 neigh_hold(n1); 640 rc = n1; 641 goto out_tbl_unlock; 642 } 643 } 644 645 n->dead = 0; 646 if (!exempt_from_gc) 647 list_add_tail(&n->gc_list, &n->tbl->gc_list); 648 649 if (want_ref) 650 neigh_hold(n); 651 rcu_assign_pointer(n->next, 652 rcu_dereference_protected(nht->hash_buckets[hash_val], 653 lockdep_is_held(&tbl->lock))); 654 rcu_assign_pointer(nht->hash_buckets[hash_val], n); 655 write_unlock_bh(&tbl->lock); 656 neigh_dbg(2, "neigh %p is created\n", n); 657 rc = n; 658 out: 659 return rc; 660 out_tbl_unlock: 661 write_unlock_bh(&tbl->lock); 662 out_neigh_release: 663 if (!exempt_from_gc) 664 atomic_dec(&tbl->gc_entries); 665 neigh_release(n); 666 goto out; 667 } 668 669 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, 670 struct net_device *dev, bool want_ref) 671 { 672 return ___neigh_create(tbl, pkey, dev, false, want_ref); 673 } 674 EXPORT_SYMBOL(__neigh_create); 675 676 static u32 pneigh_hash(const void *pkey, unsigned int key_len) 677 { 678 u32 hash_val = *(u32 *)(pkey + key_len - 4); 679 hash_val ^= (hash_val >> 16); 680 hash_val ^= hash_val >> 8; 681 hash_val ^= hash_val >> 4; 682 hash_val &= PNEIGH_HASHMASK; 683 return hash_val; 684 } 685 686 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 687 struct net *net, 688 const void *pkey, 689 unsigned int key_len, 690 struct net_device *dev) 691 { 692 while (n) { 693 if (!memcmp(n->key, pkey, key_len) && 694 net_eq(pneigh_net(n), net) && 695 (n->dev == dev || !n->dev)) 696 return n; 697 n = n->next; 698 } 699 return NULL; 700 } 701 702 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 703 struct net *net, const void *pkey, struct net_device *dev) 704 { 705 unsigned int key_len = tbl->key_len; 706 u32 hash_val = pneigh_hash(pkey, key_len); 707 708 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 709 net, pkey, key_len, dev); 710 } 711 EXPORT_SYMBOL_GPL(__pneigh_lookup); 712 713 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 714 struct net *net, const void *pkey, 715 struct net_device *dev, int creat) 716 { 717 struct pneigh_entry *n; 718 unsigned int key_len = tbl->key_len; 719 u32 hash_val = pneigh_hash(pkey, key_len); 720 721 read_lock_bh(&tbl->lock); 722 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 723 net, pkey, key_len, dev); 724 read_unlock_bh(&tbl->lock); 725 726 if (n || !creat) 727 goto out; 728 729 ASSERT_RTNL(); 730 731 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 732 if (!n) 733 goto out; 734 735 n->protocol = 0; 736 write_pnet(&n->net, net); 737 memcpy(n->key, pkey, key_len); 738 n->dev = dev; 739 if (dev) 740 dev_hold(dev); 741 742 if (tbl->pconstructor && tbl->pconstructor(n)) { 743 if (dev) 744 dev_put(dev); 745 kfree(n); 746 n = NULL; 747 goto out; 748 } 749 750 write_lock_bh(&tbl->lock); 751 n->next = tbl->phash_buckets[hash_val]; 752 tbl->phash_buckets[hash_val] = n; 753 write_unlock_bh(&tbl->lock); 754 out: 755 return n; 756 } 757 EXPORT_SYMBOL(pneigh_lookup); 758 759 760 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 761 struct net_device *dev) 762 { 763 struct pneigh_entry *n, **np; 764 unsigned int key_len = tbl->key_len; 765 u32 hash_val = pneigh_hash(pkey, key_len); 766 767 write_lock_bh(&tbl->lock); 768 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 769 np = &n->next) { 770 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 771 net_eq(pneigh_net(n), net)) { 772 *np = n->next; 773 write_unlock_bh(&tbl->lock); 774 if (tbl->pdestructor) 775 tbl->pdestructor(n); 776 if (n->dev) 777 dev_put(n->dev); 778 kfree(n); 779 return 0; 780 } 781 } 782 write_unlock_bh(&tbl->lock); 783 return -ENOENT; 784 } 785 786 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 787 struct net_device *dev) 788 { 789 struct pneigh_entry *n, **np, *freelist = NULL; 790 u32 h; 791 792 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 793 np = &tbl->phash_buckets[h]; 794 while ((n = *np) != NULL) { 795 if (!dev || n->dev == dev) { 796 *np = n->next; 797 n->next = freelist; 798 freelist = n; 799 continue; 800 } 801 np = &n->next; 802 } 803 } 804 write_unlock_bh(&tbl->lock); 805 while ((n = freelist)) { 806 freelist = n->next; 807 n->next = NULL; 808 if (tbl->pdestructor) 809 tbl->pdestructor(n); 810 if (n->dev) 811 dev_put(n->dev); 812 kfree(n); 813 } 814 return -ENOENT; 815 } 816 817 static void neigh_parms_destroy(struct neigh_parms *parms); 818 819 static inline void neigh_parms_put(struct neigh_parms *parms) 820 { 821 if (refcount_dec_and_test(&parms->refcnt)) 822 neigh_parms_destroy(parms); 823 } 824 825 /* 826 * neighbour must already be out of the table; 827 * 828 */ 829 void neigh_destroy(struct neighbour *neigh) 830 { 831 struct net_device *dev = neigh->dev; 832 833 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 834 835 if (!neigh->dead) { 836 pr_warn("Destroying alive neighbour %p\n", neigh); 837 dump_stack(); 838 return; 839 } 840 841 if (neigh_del_timer(neigh)) 842 pr_warn("Impossible event\n"); 843 844 write_lock_bh(&neigh->lock); 845 __skb_queue_purge(&neigh->arp_queue); 846 write_unlock_bh(&neigh->lock); 847 neigh->arp_queue_len_bytes = 0; 848 849 if (dev->netdev_ops->ndo_neigh_destroy) 850 dev->netdev_ops->ndo_neigh_destroy(dev, neigh); 851 852 dev_put(dev); 853 neigh_parms_put(neigh->parms); 854 855 neigh_dbg(2, "neigh %p is destroyed\n", neigh); 856 857 atomic_dec(&neigh->tbl->entries); 858 kfree_rcu(neigh, rcu); 859 } 860 EXPORT_SYMBOL(neigh_destroy); 861 862 /* Neighbour state is suspicious; 863 disable fast path. 864 865 Called with write_locked neigh. 866 */ 867 static void neigh_suspect(struct neighbour *neigh) 868 { 869 neigh_dbg(2, "neigh %p is suspected\n", neigh); 870 871 neigh->output = neigh->ops->output; 872 } 873 874 /* Neighbour state is OK; 875 enable fast path. 876 877 Called with write_locked neigh. 878 */ 879 static void neigh_connect(struct neighbour *neigh) 880 { 881 neigh_dbg(2, "neigh %p is connected\n", neigh); 882 883 neigh->output = neigh->ops->connected_output; 884 } 885 886 static void neigh_periodic_work(struct work_struct *work) 887 { 888 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 889 struct neighbour *n; 890 struct neighbour __rcu **np; 891 unsigned int i; 892 struct neigh_hash_table *nht; 893 894 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 895 896 write_lock_bh(&tbl->lock); 897 nht = rcu_dereference_protected(tbl->nht, 898 lockdep_is_held(&tbl->lock)); 899 900 /* 901 * periodically recompute ReachableTime from random function 902 */ 903 904 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 905 struct neigh_parms *p; 906 tbl->last_rand = jiffies; 907 list_for_each_entry(p, &tbl->parms_list, list) 908 p->reachable_time = 909 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 910 } 911 912 if (atomic_read(&tbl->entries) < tbl->gc_thresh1) 913 goto out; 914 915 for (i = 0 ; i < (1 << nht->hash_shift); i++) { 916 np = &nht->hash_buckets[i]; 917 918 while ((n = rcu_dereference_protected(*np, 919 lockdep_is_held(&tbl->lock))) != NULL) { 920 unsigned int state; 921 922 write_lock(&n->lock); 923 924 state = n->nud_state; 925 if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) || 926 (n->flags & NTF_EXT_LEARNED)) { 927 write_unlock(&n->lock); 928 goto next_elt; 929 } 930 931 if (time_before(n->used, n->confirmed)) 932 n->used = n->confirmed; 933 934 if (refcount_read(&n->refcnt) == 1 && 935 (state == NUD_FAILED || 936 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) { 937 *np = n->next; 938 neigh_mark_dead(n); 939 write_unlock(&n->lock); 940 neigh_cleanup_and_release(n); 941 continue; 942 } 943 write_unlock(&n->lock); 944 945 next_elt: 946 np = &n->next; 947 } 948 /* 949 * It's fine to release lock here, even if hash table 950 * grows while we are preempted. 951 */ 952 write_unlock_bh(&tbl->lock); 953 cond_resched(); 954 write_lock_bh(&tbl->lock); 955 nht = rcu_dereference_protected(tbl->nht, 956 lockdep_is_held(&tbl->lock)); 957 } 958 out: 959 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks. 960 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2 961 * BASE_REACHABLE_TIME. 962 */ 963 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 964 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1); 965 write_unlock_bh(&tbl->lock); 966 } 967 968 static __inline__ int neigh_max_probes(struct neighbour *n) 969 { 970 struct neigh_parms *p = n->parms; 971 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) + 972 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) : 973 NEIGH_VAR(p, MCAST_PROBES)); 974 } 975 976 static void neigh_invalidate(struct neighbour *neigh) 977 __releases(neigh->lock) 978 __acquires(neigh->lock) 979 { 980 struct sk_buff *skb; 981 982 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 983 neigh_dbg(2, "neigh %p is failed\n", neigh); 984 neigh->updated = jiffies; 985 986 /* It is very thin place. report_unreachable is very complicated 987 routine. Particularly, it can hit the same neighbour entry! 988 989 So that, we try to be accurate and avoid dead loop. --ANK 990 */ 991 while (neigh->nud_state == NUD_FAILED && 992 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 993 write_unlock(&neigh->lock); 994 neigh->ops->error_report(neigh, skb); 995 write_lock(&neigh->lock); 996 } 997 __skb_queue_purge(&neigh->arp_queue); 998 neigh->arp_queue_len_bytes = 0; 999 } 1000 1001 static void neigh_probe(struct neighbour *neigh) 1002 __releases(neigh->lock) 1003 { 1004 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue); 1005 /* keep skb alive even if arp_queue overflows */ 1006 if (skb) 1007 skb = skb_clone(skb, GFP_ATOMIC); 1008 write_unlock(&neigh->lock); 1009 if (neigh->ops->solicit) 1010 neigh->ops->solicit(neigh, skb); 1011 atomic_inc(&neigh->probes); 1012 consume_skb(skb); 1013 } 1014 1015 /* Called when a timer expires for a neighbour entry. */ 1016 1017 static void neigh_timer_handler(struct timer_list *t) 1018 { 1019 unsigned long now, next; 1020 struct neighbour *neigh = from_timer(neigh, t, timer); 1021 unsigned int state; 1022 int notify = 0; 1023 1024 write_lock(&neigh->lock); 1025 1026 state = neigh->nud_state; 1027 now = jiffies; 1028 next = now + HZ; 1029 1030 if (!(state & NUD_IN_TIMER)) 1031 goto out; 1032 1033 if (state & NUD_REACHABLE) { 1034 if (time_before_eq(now, 1035 neigh->confirmed + neigh->parms->reachable_time)) { 1036 neigh_dbg(2, "neigh %p is still alive\n", neigh); 1037 next = neigh->confirmed + neigh->parms->reachable_time; 1038 } else if (time_before_eq(now, 1039 neigh->used + 1040 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1041 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1042 neigh->nud_state = NUD_DELAY; 1043 neigh->updated = jiffies; 1044 neigh_suspect(neigh); 1045 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME); 1046 } else { 1047 neigh_dbg(2, "neigh %p is suspected\n", neigh); 1048 neigh->nud_state = NUD_STALE; 1049 neigh->updated = jiffies; 1050 neigh_suspect(neigh); 1051 notify = 1; 1052 } 1053 } else if (state & NUD_DELAY) { 1054 if (time_before_eq(now, 1055 neigh->confirmed + 1056 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1057 neigh_dbg(2, "neigh %p is now reachable\n", neigh); 1058 neigh->nud_state = NUD_REACHABLE; 1059 neigh->updated = jiffies; 1060 neigh_connect(neigh); 1061 notify = 1; 1062 next = neigh->confirmed + neigh->parms->reachable_time; 1063 } else { 1064 neigh_dbg(2, "neigh %p is probed\n", neigh); 1065 neigh->nud_state = NUD_PROBE; 1066 neigh->updated = jiffies; 1067 atomic_set(&neigh->probes, 0); 1068 notify = 1; 1069 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1070 HZ/100); 1071 } 1072 } else { 1073 /* NUD_PROBE|NUD_INCOMPLETE */ 1074 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100); 1075 } 1076 1077 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 1078 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 1079 neigh->nud_state = NUD_FAILED; 1080 notify = 1; 1081 neigh_invalidate(neigh); 1082 goto out; 1083 } 1084 1085 if (neigh->nud_state & NUD_IN_TIMER) { 1086 if (time_before(next, jiffies + HZ/100)) 1087 next = jiffies + HZ/100; 1088 if (!mod_timer(&neigh->timer, next)) 1089 neigh_hold(neigh); 1090 } 1091 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 1092 neigh_probe(neigh); 1093 } else { 1094 out: 1095 write_unlock(&neigh->lock); 1096 } 1097 1098 if (notify) 1099 neigh_update_notify(neigh, 0); 1100 1101 trace_neigh_timer_handler(neigh, 0); 1102 1103 neigh_release(neigh); 1104 } 1105 1106 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 1107 { 1108 int rc; 1109 bool immediate_probe = false; 1110 1111 write_lock_bh(&neigh->lock); 1112 1113 rc = 0; 1114 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 1115 goto out_unlock_bh; 1116 if (neigh->dead) 1117 goto out_dead; 1118 1119 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 1120 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) + 1121 NEIGH_VAR(neigh->parms, APP_PROBES)) { 1122 unsigned long next, now = jiffies; 1123 1124 atomic_set(&neigh->probes, 1125 NEIGH_VAR(neigh->parms, UCAST_PROBES)); 1126 neigh_del_timer(neigh); 1127 neigh->nud_state = NUD_INCOMPLETE; 1128 neigh->updated = now; 1129 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1130 HZ/100); 1131 neigh_add_timer(neigh, next); 1132 immediate_probe = true; 1133 } else { 1134 neigh->nud_state = NUD_FAILED; 1135 neigh->updated = jiffies; 1136 write_unlock_bh(&neigh->lock); 1137 1138 kfree_skb(skb); 1139 return 1; 1140 } 1141 } else if (neigh->nud_state & NUD_STALE) { 1142 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1143 neigh_del_timer(neigh); 1144 neigh->nud_state = NUD_DELAY; 1145 neigh->updated = jiffies; 1146 neigh_add_timer(neigh, jiffies + 1147 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME)); 1148 } 1149 1150 if (neigh->nud_state == NUD_INCOMPLETE) { 1151 if (skb) { 1152 while (neigh->arp_queue_len_bytes + skb->truesize > 1153 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) { 1154 struct sk_buff *buff; 1155 1156 buff = __skb_dequeue(&neigh->arp_queue); 1157 if (!buff) 1158 break; 1159 neigh->arp_queue_len_bytes -= buff->truesize; 1160 kfree_skb(buff); 1161 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 1162 } 1163 skb_dst_force(skb); 1164 __skb_queue_tail(&neigh->arp_queue, skb); 1165 neigh->arp_queue_len_bytes += skb->truesize; 1166 } 1167 rc = 1; 1168 } 1169 out_unlock_bh: 1170 if (immediate_probe) 1171 neigh_probe(neigh); 1172 else 1173 write_unlock(&neigh->lock); 1174 local_bh_enable(); 1175 trace_neigh_event_send_done(neigh, rc); 1176 return rc; 1177 1178 out_dead: 1179 if (neigh->nud_state & NUD_STALE) 1180 goto out_unlock_bh; 1181 write_unlock_bh(&neigh->lock); 1182 kfree_skb(skb); 1183 trace_neigh_event_send_dead(neigh, 1); 1184 return 1; 1185 } 1186 EXPORT_SYMBOL(__neigh_event_send); 1187 1188 static void neigh_update_hhs(struct neighbour *neigh) 1189 { 1190 struct hh_cache *hh; 1191 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 1192 = NULL; 1193 1194 if (neigh->dev->header_ops) 1195 update = neigh->dev->header_ops->cache_update; 1196 1197 if (update) { 1198 hh = &neigh->hh; 1199 if (READ_ONCE(hh->hh_len)) { 1200 write_seqlock_bh(&hh->hh_lock); 1201 update(hh, neigh->dev, neigh->ha); 1202 write_sequnlock_bh(&hh->hh_lock); 1203 } 1204 } 1205 } 1206 1207 1208 1209 /* Generic update routine. 1210 -- lladdr is new lladdr or NULL, if it is not supplied. 1211 -- new is new state. 1212 -- flags 1213 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 1214 if it is different. 1215 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 1216 lladdr instead of overriding it 1217 if it is different. 1218 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 1219 1220 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 1221 NTF_ROUTER flag. 1222 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 1223 a router. 1224 1225 Caller MUST hold reference count on the entry. 1226 */ 1227 1228 static int __neigh_update(struct neighbour *neigh, const u8 *lladdr, 1229 u8 new, u32 flags, u32 nlmsg_pid, 1230 struct netlink_ext_ack *extack) 1231 { 1232 bool ext_learn_change = false; 1233 u8 old; 1234 int err; 1235 int notify = 0; 1236 struct net_device *dev; 1237 int update_isrouter = 0; 1238 1239 trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid); 1240 1241 write_lock_bh(&neigh->lock); 1242 1243 dev = neigh->dev; 1244 old = neigh->nud_state; 1245 err = -EPERM; 1246 1247 if (neigh->dead) { 1248 NL_SET_ERR_MSG(extack, "Neighbor entry is now dead"); 1249 new = old; 1250 goto out; 1251 } 1252 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 1253 (old & (NUD_NOARP | NUD_PERMANENT))) 1254 goto out; 1255 1256 ext_learn_change = neigh_update_ext_learned(neigh, flags, ¬ify); 1257 1258 if (!(new & NUD_VALID)) { 1259 neigh_del_timer(neigh); 1260 if (old & NUD_CONNECTED) 1261 neigh_suspect(neigh); 1262 neigh->nud_state = new; 1263 err = 0; 1264 notify = old & NUD_VALID; 1265 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1266 (new & NUD_FAILED)) { 1267 neigh_invalidate(neigh); 1268 notify = 1; 1269 } 1270 goto out; 1271 } 1272 1273 /* Compare new lladdr with cached one */ 1274 if (!dev->addr_len) { 1275 /* First case: device needs no address. */ 1276 lladdr = neigh->ha; 1277 } else if (lladdr) { 1278 /* The second case: if something is already cached 1279 and a new address is proposed: 1280 - compare new & old 1281 - if they are different, check override flag 1282 */ 1283 if ((old & NUD_VALID) && 1284 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1285 lladdr = neigh->ha; 1286 } else { 1287 /* No address is supplied; if we know something, 1288 use it, otherwise discard the request. 1289 */ 1290 err = -EINVAL; 1291 if (!(old & NUD_VALID)) { 1292 NL_SET_ERR_MSG(extack, "No link layer address given"); 1293 goto out; 1294 } 1295 lladdr = neigh->ha; 1296 } 1297 1298 /* Update confirmed timestamp for neighbour entry after we 1299 * received ARP packet even if it doesn't change IP to MAC binding. 1300 */ 1301 if (new & NUD_CONNECTED) 1302 neigh->confirmed = jiffies; 1303 1304 /* If entry was valid and address is not changed, 1305 do not change entry state, if new one is STALE. 1306 */ 1307 err = 0; 1308 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1309 if (old & NUD_VALID) { 1310 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1311 update_isrouter = 0; 1312 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1313 (old & NUD_CONNECTED)) { 1314 lladdr = neigh->ha; 1315 new = NUD_STALE; 1316 } else 1317 goto out; 1318 } else { 1319 if (lladdr == neigh->ha && new == NUD_STALE && 1320 !(flags & NEIGH_UPDATE_F_ADMIN)) 1321 new = old; 1322 } 1323 } 1324 1325 /* Update timestamp only once we know we will make a change to the 1326 * neighbour entry. Otherwise we risk to move the locktime window with 1327 * noop updates and ignore relevant ARP updates. 1328 */ 1329 if (new != old || lladdr != neigh->ha) 1330 neigh->updated = jiffies; 1331 1332 if (new != old) { 1333 neigh_del_timer(neigh); 1334 if (new & NUD_PROBE) 1335 atomic_set(&neigh->probes, 0); 1336 if (new & NUD_IN_TIMER) 1337 neigh_add_timer(neigh, (jiffies + 1338 ((new & NUD_REACHABLE) ? 1339 neigh->parms->reachable_time : 1340 0))); 1341 neigh->nud_state = new; 1342 notify = 1; 1343 } 1344 1345 if (lladdr != neigh->ha) { 1346 write_seqlock(&neigh->ha_lock); 1347 memcpy(&neigh->ha, lladdr, dev->addr_len); 1348 write_sequnlock(&neigh->ha_lock); 1349 neigh_update_hhs(neigh); 1350 if (!(new & NUD_CONNECTED)) 1351 neigh->confirmed = jiffies - 1352 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1); 1353 notify = 1; 1354 } 1355 if (new == old) 1356 goto out; 1357 if (new & NUD_CONNECTED) 1358 neigh_connect(neigh); 1359 else 1360 neigh_suspect(neigh); 1361 if (!(old & NUD_VALID)) { 1362 struct sk_buff *skb; 1363 1364 /* Again: avoid dead loop if something went wrong */ 1365 1366 while (neigh->nud_state & NUD_VALID && 1367 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1368 struct dst_entry *dst = skb_dst(skb); 1369 struct neighbour *n2, *n1 = neigh; 1370 write_unlock_bh(&neigh->lock); 1371 1372 rcu_read_lock(); 1373 1374 /* Why not just use 'neigh' as-is? The problem is that 1375 * things such as shaper, eql, and sch_teql can end up 1376 * using alternative, different, neigh objects to output 1377 * the packet in the output path. So what we need to do 1378 * here is re-lookup the top-level neigh in the path so 1379 * we can reinject the packet there. 1380 */ 1381 n2 = NULL; 1382 if (dst && dst->obsolete != DST_OBSOLETE_DEAD) { 1383 n2 = dst_neigh_lookup_skb(dst, skb); 1384 if (n2) 1385 n1 = n2; 1386 } 1387 n1->output(n1, skb); 1388 if (n2) 1389 neigh_release(n2); 1390 rcu_read_unlock(); 1391 1392 write_lock_bh(&neigh->lock); 1393 } 1394 __skb_queue_purge(&neigh->arp_queue); 1395 neigh->arp_queue_len_bytes = 0; 1396 } 1397 out: 1398 if (update_isrouter) 1399 neigh_update_is_router(neigh, flags, ¬ify); 1400 write_unlock_bh(&neigh->lock); 1401 1402 if (((new ^ old) & NUD_PERMANENT) || ext_learn_change) 1403 neigh_update_gc_list(neigh); 1404 1405 if (notify) 1406 neigh_update_notify(neigh, nlmsg_pid); 1407 1408 trace_neigh_update_done(neigh, err); 1409 1410 return err; 1411 } 1412 1413 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 1414 u32 flags, u32 nlmsg_pid) 1415 { 1416 return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL); 1417 } 1418 EXPORT_SYMBOL(neigh_update); 1419 1420 /* Update the neigh to listen temporarily for probe responses, even if it is 1421 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing. 1422 */ 1423 void __neigh_set_probe_once(struct neighbour *neigh) 1424 { 1425 if (neigh->dead) 1426 return; 1427 neigh->updated = jiffies; 1428 if (!(neigh->nud_state & NUD_FAILED)) 1429 return; 1430 neigh->nud_state = NUD_INCOMPLETE; 1431 atomic_set(&neigh->probes, neigh_max_probes(neigh)); 1432 neigh_add_timer(neigh, 1433 jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1434 HZ/100)); 1435 } 1436 EXPORT_SYMBOL(__neigh_set_probe_once); 1437 1438 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1439 u8 *lladdr, void *saddr, 1440 struct net_device *dev) 1441 { 1442 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1443 lladdr || !dev->addr_len); 1444 if (neigh) 1445 neigh_update(neigh, lladdr, NUD_STALE, 1446 NEIGH_UPDATE_F_OVERRIDE, 0); 1447 return neigh; 1448 } 1449 EXPORT_SYMBOL(neigh_event_ns); 1450 1451 /* called with read_lock_bh(&n->lock); */ 1452 static void neigh_hh_init(struct neighbour *n) 1453 { 1454 struct net_device *dev = n->dev; 1455 __be16 prot = n->tbl->protocol; 1456 struct hh_cache *hh = &n->hh; 1457 1458 write_lock_bh(&n->lock); 1459 1460 /* Only one thread can come in here and initialize the 1461 * hh_cache entry. 1462 */ 1463 if (!hh->hh_len) 1464 dev->header_ops->cache(n, hh, prot); 1465 1466 write_unlock_bh(&n->lock); 1467 } 1468 1469 /* Slow and careful. */ 1470 1471 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) 1472 { 1473 int rc = 0; 1474 1475 if (!neigh_event_send(neigh, skb)) { 1476 int err; 1477 struct net_device *dev = neigh->dev; 1478 unsigned int seq; 1479 1480 if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len)) 1481 neigh_hh_init(neigh); 1482 1483 do { 1484 __skb_pull(skb, skb_network_offset(skb)); 1485 seq = read_seqbegin(&neigh->ha_lock); 1486 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1487 neigh->ha, NULL, skb->len); 1488 } while (read_seqretry(&neigh->ha_lock, seq)); 1489 1490 if (err >= 0) 1491 rc = dev_queue_xmit(skb); 1492 else 1493 goto out_kfree_skb; 1494 } 1495 out: 1496 return rc; 1497 out_kfree_skb: 1498 rc = -EINVAL; 1499 kfree_skb(skb); 1500 goto out; 1501 } 1502 EXPORT_SYMBOL(neigh_resolve_output); 1503 1504 /* As fast as possible without hh cache */ 1505 1506 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) 1507 { 1508 struct net_device *dev = neigh->dev; 1509 unsigned int seq; 1510 int err; 1511 1512 do { 1513 __skb_pull(skb, skb_network_offset(skb)); 1514 seq = read_seqbegin(&neigh->ha_lock); 1515 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1516 neigh->ha, NULL, skb->len); 1517 } while (read_seqretry(&neigh->ha_lock, seq)); 1518 1519 if (err >= 0) 1520 err = dev_queue_xmit(skb); 1521 else { 1522 err = -EINVAL; 1523 kfree_skb(skb); 1524 } 1525 return err; 1526 } 1527 EXPORT_SYMBOL(neigh_connected_output); 1528 1529 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) 1530 { 1531 return dev_queue_xmit(skb); 1532 } 1533 EXPORT_SYMBOL(neigh_direct_output); 1534 1535 static void neigh_proxy_process(struct timer_list *t) 1536 { 1537 struct neigh_table *tbl = from_timer(tbl, t, proxy_timer); 1538 long sched_next = 0; 1539 unsigned long now = jiffies; 1540 struct sk_buff *skb, *n; 1541 1542 spin_lock(&tbl->proxy_queue.lock); 1543 1544 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1545 long tdif = NEIGH_CB(skb)->sched_next - now; 1546 1547 if (tdif <= 0) { 1548 struct net_device *dev = skb->dev; 1549 1550 __skb_unlink(skb, &tbl->proxy_queue); 1551 if (tbl->proxy_redo && netif_running(dev)) { 1552 rcu_read_lock(); 1553 tbl->proxy_redo(skb); 1554 rcu_read_unlock(); 1555 } else { 1556 kfree_skb(skb); 1557 } 1558 1559 dev_put(dev); 1560 } else if (!sched_next || tdif < sched_next) 1561 sched_next = tdif; 1562 } 1563 del_timer(&tbl->proxy_timer); 1564 if (sched_next) 1565 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1566 spin_unlock(&tbl->proxy_queue.lock); 1567 } 1568 1569 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1570 struct sk_buff *skb) 1571 { 1572 unsigned long sched_next = jiffies + 1573 prandom_u32_max(NEIGH_VAR(p, PROXY_DELAY)); 1574 1575 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) { 1576 kfree_skb(skb); 1577 return; 1578 } 1579 1580 NEIGH_CB(skb)->sched_next = sched_next; 1581 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1582 1583 spin_lock(&tbl->proxy_queue.lock); 1584 if (del_timer(&tbl->proxy_timer)) { 1585 if (time_before(tbl->proxy_timer.expires, sched_next)) 1586 sched_next = tbl->proxy_timer.expires; 1587 } 1588 skb_dst_drop(skb); 1589 dev_hold(skb->dev); 1590 __skb_queue_tail(&tbl->proxy_queue, skb); 1591 mod_timer(&tbl->proxy_timer, sched_next); 1592 spin_unlock(&tbl->proxy_queue.lock); 1593 } 1594 EXPORT_SYMBOL(pneigh_enqueue); 1595 1596 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1597 struct net *net, int ifindex) 1598 { 1599 struct neigh_parms *p; 1600 1601 list_for_each_entry(p, &tbl->parms_list, list) { 1602 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1603 (!p->dev && !ifindex && net_eq(net, &init_net))) 1604 return p; 1605 } 1606 1607 return NULL; 1608 } 1609 1610 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1611 struct neigh_table *tbl) 1612 { 1613 struct neigh_parms *p; 1614 struct net *net = dev_net(dev); 1615 const struct net_device_ops *ops = dev->netdev_ops; 1616 1617 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL); 1618 if (p) { 1619 p->tbl = tbl; 1620 refcount_set(&p->refcnt, 1); 1621 p->reachable_time = 1622 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 1623 dev_hold(dev); 1624 p->dev = dev; 1625 write_pnet(&p->net, net); 1626 p->sysctl_table = NULL; 1627 1628 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1629 dev_put(dev); 1630 kfree(p); 1631 return NULL; 1632 } 1633 1634 write_lock_bh(&tbl->lock); 1635 list_add(&p->list, &tbl->parms.list); 1636 write_unlock_bh(&tbl->lock); 1637 1638 neigh_parms_data_state_cleanall(p); 1639 } 1640 return p; 1641 } 1642 EXPORT_SYMBOL(neigh_parms_alloc); 1643 1644 static void neigh_rcu_free_parms(struct rcu_head *head) 1645 { 1646 struct neigh_parms *parms = 1647 container_of(head, struct neigh_parms, rcu_head); 1648 1649 neigh_parms_put(parms); 1650 } 1651 1652 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1653 { 1654 if (!parms || parms == &tbl->parms) 1655 return; 1656 write_lock_bh(&tbl->lock); 1657 list_del(&parms->list); 1658 parms->dead = 1; 1659 write_unlock_bh(&tbl->lock); 1660 if (parms->dev) 1661 dev_put(parms->dev); 1662 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1663 } 1664 EXPORT_SYMBOL(neigh_parms_release); 1665 1666 static void neigh_parms_destroy(struct neigh_parms *parms) 1667 { 1668 kfree(parms); 1669 } 1670 1671 static struct lock_class_key neigh_table_proxy_queue_class; 1672 1673 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly; 1674 1675 void neigh_table_init(int index, struct neigh_table *tbl) 1676 { 1677 unsigned long now = jiffies; 1678 unsigned long phsize; 1679 1680 INIT_LIST_HEAD(&tbl->parms_list); 1681 INIT_LIST_HEAD(&tbl->gc_list); 1682 list_add(&tbl->parms.list, &tbl->parms_list); 1683 write_pnet(&tbl->parms.net, &init_net); 1684 refcount_set(&tbl->parms.refcnt, 1); 1685 tbl->parms.reachable_time = 1686 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME)); 1687 1688 tbl->stats = alloc_percpu(struct neigh_statistics); 1689 if (!tbl->stats) 1690 panic("cannot create neighbour cache statistics"); 1691 1692 #ifdef CONFIG_PROC_FS 1693 if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat, 1694 &neigh_stat_seq_ops, tbl)) 1695 panic("cannot create neighbour proc dir entry"); 1696 #endif 1697 1698 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); 1699 1700 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1701 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1702 1703 if (!tbl->nht || !tbl->phash_buckets) 1704 panic("cannot allocate neighbour cache hashes"); 1705 1706 if (!tbl->entry_size) 1707 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) + 1708 tbl->key_len, NEIGH_PRIV_ALIGN); 1709 else 1710 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN); 1711 1712 rwlock_init(&tbl->lock); 1713 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work); 1714 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 1715 tbl->parms.reachable_time); 1716 timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0); 1717 skb_queue_head_init_class(&tbl->proxy_queue, 1718 &neigh_table_proxy_queue_class); 1719 1720 tbl->last_flush = now; 1721 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1722 1723 neigh_tables[index] = tbl; 1724 } 1725 EXPORT_SYMBOL(neigh_table_init); 1726 1727 int neigh_table_clear(int index, struct neigh_table *tbl) 1728 { 1729 neigh_tables[index] = NULL; 1730 /* It is not clean... Fix it to unload IPv6 module safely */ 1731 cancel_delayed_work_sync(&tbl->gc_work); 1732 del_timer_sync(&tbl->proxy_timer); 1733 pneigh_queue_purge(&tbl->proxy_queue); 1734 neigh_ifdown(tbl, NULL); 1735 if (atomic_read(&tbl->entries)) 1736 pr_crit("neighbour leakage\n"); 1737 1738 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, 1739 neigh_hash_free_rcu); 1740 tbl->nht = NULL; 1741 1742 kfree(tbl->phash_buckets); 1743 tbl->phash_buckets = NULL; 1744 1745 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1746 1747 free_percpu(tbl->stats); 1748 tbl->stats = NULL; 1749 1750 return 0; 1751 } 1752 EXPORT_SYMBOL(neigh_table_clear); 1753 1754 static struct neigh_table *neigh_find_table(int family) 1755 { 1756 struct neigh_table *tbl = NULL; 1757 1758 switch (family) { 1759 case AF_INET: 1760 tbl = neigh_tables[NEIGH_ARP_TABLE]; 1761 break; 1762 case AF_INET6: 1763 tbl = neigh_tables[NEIGH_ND_TABLE]; 1764 break; 1765 case AF_DECnet: 1766 tbl = neigh_tables[NEIGH_DN_TABLE]; 1767 break; 1768 } 1769 1770 return tbl; 1771 } 1772 1773 const struct nla_policy nda_policy[NDA_MAX+1] = { 1774 [NDA_UNSPEC] = { .strict_start_type = NDA_NH_ID }, 1775 [NDA_DST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1776 [NDA_LLADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1777 [NDA_CACHEINFO] = { .len = sizeof(struct nda_cacheinfo) }, 1778 [NDA_PROBES] = { .type = NLA_U32 }, 1779 [NDA_VLAN] = { .type = NLA_U16 }, 1780 [NDA_PORT] = { .type = NLA_U16 }, 1781 [NDA_VNI] = { .type = NLA_U32 }, 1782 [NDA_IFINDEX] = { .type = NLA_U32 }, 1783 [NDA_MASTER] = { .type = NLA_U32 }, 1784 [NDA_PROTOCOL] = { .type = NLA_U8 }, 1785 [NDA_NH_ID] = { .type = NLA_U32 }, 1786 [NDA_FDB_EXT_ATTRS] = { .type = NLA_NESTED }, 1787 }; 1788 1789 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, 1790 struct netlink_ext_ack *extack) 1791 { 1792 struct net *net = sock_net(skb->sk); 1793 struct ndmsg *ndm; 1794 struct nlattr *dst_attr; 1795 struct neigh_table *tbl; 1796 struct neighbour *neigh; 1797 struct net_device *dev = NULL; 1798 int err = -EINVAL; 1799 1800 ASSERT_RTNL(); 1801 if (nlmsg_len(nlh) < sizeof(*ndm)) 1802 goto out; 1803 1804 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1805 if (!dst_attr) { 1806 NL_SET_ERR_MSG(extack, "Network address not specified"); 1807 goto out; 1808 } 1809 1810 ndm = nlmsg_data(nlh); 1811 if (ndm->ndm_ifindex) { 1812 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1813 if (dev == NULL) { 1814 err = -ENODEV; 1815 goto out; 1816 } 1817 } 1818 1819 tbl = neigh_find_table(ndm->ndm_family); 1820 if (tbl == NULL) 1821 return -EAFNOSUPPORT; 1822 1823 if (nla_len(dst_attr) < (int)tbl->key_len) { 1824 NL_SET_ERR_MSG(extack, "Invalid network address"); 1825 goto out; 1826 } 1827 1828 if (ndm->ndm_flags & NTF_PROXY) { 1829 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1830 goto out; 1831 } 1832 1833 if (dev == NULL) 1834 goto out; 1835 1836 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1837 if (neigh == NULL) { 1838 err = -ENOENT; 1839 goto out; 1840 } 1841 1842 err = __neigh_update(neigh, NULL, NUD_FAILED, 1843 NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN, 1844 NETLINK_CB(skb).portid, extack); 1845 write_lock_bh(&tbl->lock); 1846 neigh_release(neigh); 1847 neigh_remove_one(neigh, tbl); 1848 write_unlock_bh(&tbl->lock); 1849 1850 out: 1851 return err; 1852 } 1853 1854 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, 1855 struct netlink_ext_ack *extack) 1856 { 1857 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE | 1858 NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1859 struct net *net = sock_net(skb->sk); 1860 struct ndmsg *ndm; 1861 struct nlattr *tb[NDA_MAX+1]; 1862 struct neigh_table *tbl; 1863 struct net_device *dev = NULL; 1864 struct neighbour *neigh; 1865 void *dst, *lladdr; 1866 u8 protocol = 0; 1867 int err; 1868 1869 ASSERT_RTNL(); 1870 err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX, 1871 nda_policy, extack); 1872 if (err < 0) 1873 goto out; 1874 1875 err = -EINVAL; 1876 if (!tb[NDA_DST]) { 1877 NL_SET_ERR_MSG(extack, "Network address not specified"); 1878 goto out; 1879 } 1880 1881 ndm = nlmsg_data(nlh); 1882 if (ndm->ndm_ifindex) { 1883 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1884 if (dev == NULL) { 1885 err = -ENODEV; 1886 goto out; 1887 } 1888 1889 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) { 1890 NL_SET_ERR_MSG(extack, "Invalid link address"); 1891 goto out; 1892 } 1893 } 1894 1895 tbl = neigh_find_table(ndm->ndm_family); 1896 if (tbl == NULL) 1897 return -EAFNOSUPPORT; 1898 1899 if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) { 1900 NL_SET_ERR_MSG(extack, "Invalid network address"); 1901 goto out; 1902 } 1903 1904 dst = nla_data(tb[NDA_DST]); 1905 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1906 1907 if (tb[NDA_PROTOCOL]) 1908 protocol = nla_get_u8(tb[NDA_PROTOCOL]); 1909 1910 if (ndm->ndm_flags & NTF_PROXY) { 1911 struct pneigh_entry *pn; 1912 1913 err = -ENOBUFS; 1914 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1915 if (pn) { 1916 pn->flags = ndm->ndm_flags; 1917 if (protocol) 1918 pn->protocol = protocol; 1919 err = 0; 1920 } 1921 goto out; 1922 } 1923 1924 if (!dev) { 1925 NL_SET_ERR_MSG(extack, "Device not specified"); 1926 goto out; 1927 } 1928 1929 if (tbl->allow_add && !tbl->allow_add(dev, extack)) { 1930 err = -EINVAL; 1931 goto out; 1932 } 1933 1934 neigh = neigh_lookup(tbl, dst, dev); 1935 if (neigh == NULL) { 1936 bool exempt_from_gc; 1937 1938 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1939 err = -ENOENT; 1940 goto out; 1941 } 1942 1943 exempt_from_gc = ndm->ndm_state & NUD_PERMANENT || 1944 ndm->ndm_flags & NTF_EXT_LEARNED; 1945 neigh = ___neigh_create(tbl, dst, dev, exempt_from_gc, true); 1946 if (IS_ERR(neigh)) { 1947 err = PTR_ERR(neigh); 1948 goto out; 1949 } 1950 } else { 1951 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1952 err = -EEXIST; 1953 neigh_release(neigh); 1954 goto out; 1955 } 1956 1957 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1958 flags &= ~(NEIGH_UPDATE_F_OVERRIDE | 1959 NEIGH_UPDATE_F_OVERRIDE_ISROUTER); 1960 } 1961 1962 if (protocol) 1963 neigh->protocol = protocol; 1964 1965 if (ndm->ndm_flags & NTF_EXT_LEARNED) 1966 flags |= NEIGH_UPDATE_F_EXT_LEARNED; 1967 1968 if (ndm->ndm_flags & NTF_ROUTER) 1969 flags |= NEIGH_UPDATE_F_ISROUTER; 1970 1971 if (ndm->ndm_flags & NTF_USE) { 1972 neigh_event_send(neigh, NULL); 1973 err = 0; 1974 } else 1975 err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags, 1976 NETLINK_CB(skb).portid, extack); 1977 1978 neigh_release(neigh); 1979 1980 out: 1981 return err; 1982 } 1983 1984 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1985 { 1986 struct nlattr *nest; 1987 1988 nest = nla_nest_start_noflag(skb, NDTA_PARMS); 1989 if (nest == NULL) 1990 return -ENOBUFS; 1991 1992 if ((parms->dev && 1993 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) || 1994 nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) || 1995 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, 1996 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) || 1997 /* approximative value for deprecated QUEUE_LEN (in packets) */ 1998 nla_put_u32(skb, NDTPA_QUEUE_LEN, 1999 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) || 2000 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) || 2001 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) || 2002 nla_put_u32(skb, NDTPA_UCAST_PROBES, 2003 NEIGH_VAR(parms, UCAST_PROBES)) || 2004 nla_put_u32(skb, NDTPA_MCAST_PROBES, 2005 NEIGH_VAR(parms, MCAST_PROBES)) || 2006 nla_put_u32(skb, NDTPA_MCAST_REPROBES, 2007 NEIGH_VAR(parms, MCAST_REPROBES)) || 2008 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time, 2009 NDTPA_PAD) || 2010 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME, 2011 NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) || 2012 nla_put_msecs(skb, NDTPA_GC_STALETIME, 2013 NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) || 2014 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME, 2015 NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) || 2016 nla_put_msecs(skb, NDTPA_RETRANS_TIME, 2017 NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) || 2018 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, 2019 NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) || 2020 nla_put_msecs(skb, NDTPA_PROXY_DELAY, 2021 NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) || 2022 nla_put_msecs(skb, NDTPA_LOCKTIME, 2023 NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD)) 2024 goto nla_put_failure; 2025 return nla_nest_end(skb, nest); 2026 2027 nla_put_failure: 2028 nla_nest_cancel(skb, nest); 2029 return -EMSGSIZE; 2030 } 2031 2032 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 2033 u32 pid, u32 seq, int type, int flags) 2034 { 2035 struct nlmsghdr *nlh; 2036 struct ndtmsg *ndtmsg; 2037 2038 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2039 if (nlh == NULL) 2040 return -EMSGSIZE; 2041 2042 ndtmsg = nlmsg_data(nlh); 2043 2044 read_lock_bh(&tbl->lock); 2045 ndtmsg->ndtm_family = tbl->family; 2046 ndtmsg->ndtm_pad1 = 0; 2047 ndtmsg->ndtm_pad2 = 0; 2048 2049 if (nla_put_string(skb, NDTA_NAME, tbl->id) || 2050 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval, NDTA_PAD) || 2051 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) || 2052 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) || 2053 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3)) 2054 goto nla_put_failure; 2055 { 2056 unsigned long now = jiffies; 2057 long flush_delta = now - tbl->last_flush; 2058 long rand_delta = now - tbl->last_rand; 2059 struct neigh_hash_table *nht; 2060 struct ndt_config ndc = { 2061 .ndtc_key_len = tbl->key_len, 2062 .ndtc_entry_size = tbl->entry_size, 2063 .ndtc_entries = atomic_read(&tbl->entries), 2064 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 2065 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 2066 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 2067 }; 2068 2069 rcu_read_lock_bh(); 2070 nht = rcu_dereference_bh(tbl->nht); 2071 ndc.ndtc_hash_rnd = nht->hash_rnd[0]; 2072 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); 2073 rcu_read_unlock_bh(); 2074 2075 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc)) 2076 goto nla_put_failure; 2077 } 2078 2079 { 2080 int cpu; 2081 struct ndt_stats ndst; 2082 2083 memset(&ndst, 0, sizeof(ndst)); 2084 2085 for_each_possible_cpu(cpu) { 2086 struct neigh_statistics *st; 2087 2088 st = per_cpu_ptr(tbl->stats, cpu); 2089 ndst.ndts_allocs += st->allocs; 2090 ndst.ndts_destroys += st->destroys; 2091 ndst.ndts_hash_grows += st->hash_grows; 2092 ndst.ndts_res_failed += st->res_failed; 2093 ndst.ndts_lookups += st->lookups; 2094 ndst.ndts_hits += st->hits; 2095 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 2096 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 2097 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 2098 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 2099 ndst.ndts_table_fulls += st->table_fulls; 2100 } 2101 2102 if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst, 2103 NDTA_PAD)) 2104 goto nla_put_failure; 2105 } 2106 2107 BUG_ON(tbl->parms.dev); 2108 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 2109 goto nla_put_failure; 2110 2111 read_unlock_bh(&tbl->lock); 2112 nlmsg_end(skb, nlh); 2113 return 0; 2114 2115 nla_put_failure: 2116 read_unlock_bh(&tbl->lock); 2117 nlmsg_cancel(skb, nlh); 2118 return -EMSGSIZE; 2119 } 2120 2121 static int neightbl_fill_param_info(struct sk_buff *skb, 2122 struct neigh_table *tbl, 2123 struct neigh_parms *parms, 2124 u32 pid, u32 seq, int type, 2125 unsigned int flags) 2126 { 2127 struct ndtmsg *ndtmsg; 2128 struct nlmsghdr *nlh; 2129 2130 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2131 if (nlh == NULL) 2132 return -EMSGSIZE; 2133 2134 ndtmsg = nlmsg_data(nlh); 2135 2136 read_lock_bh(&tbl->lock); 2137 ndtmsg->ndtm_family = tbl->family; 2138 ndtmsg->ndtm_pad1 = 0; 2139 ndtmsg->ndtm_pad2 = 0; 2140 2141 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 2142 neightbl_fill_parms(skb, parms) < 0) 2143 goto errout; 2144 2145 read_unlock_bh(&tbl->lock); 2146 nlmsg_end(skb, nlh); 2147 return 0; 2148 errout: 2149 read_unlock_bh(&tbl->lock); 2150 nlmsg_cancel(skb, nlh); 2151 return -EMSGSIZE; 2152 } 2153 2154 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 2155 [NDTA_NAME] = { .type = NLA_STRING }, 2156 [NDTA_THRESH1] = { .type = NLA_U32 }, 2157 [NDTA_THRESH2] = { .type = NLA_U32 }, 2158 [NDTA_THRESH3] = { .type = NLA_U32 }, 2159 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 2160 [NDTA_PARMS] = { .type = NLA_NESTED }, 2161 }; 2162 2163 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 2164 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 2165 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 2166 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 2167 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 2168 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 2169 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 2170 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 }, 2171 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 2172 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 2173 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 2174 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 2175 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 2176 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 2177 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 2178 }; 2179 2180 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, 2181 struct netlink_ext_ack *extack) 2182 { 2183 struct net *net = sock_net(skb->sk); 2184 struct neigh_table *tbl; 2185 struct ndtmsg *ndtmsg; 2186 struct nlattr *tb[NDTA_MAX+1]; 2187 bool found = false; 2188 int err, tidx; 2189 2190 err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 2191 nl_neightbl_policy, extack); 2192 if (err < 0) 2193 goto errout; 2194 2195 if (tb[NDTA_NAME] == NULL) { 2196 err = -EINVAL; 2197 goto errout; 2198 } 2199 2200 ndtmsg = nlmsg_data(nlh); 2201 2202 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2203 tbl = neigh_tables[tidx]; 2204 if (!tbl) 2205 continue; 2206 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 2207 continue; 2208 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) { 2209 found = true; 2210 break; 2211 } 2212 } 2213 2214 if (!found) 2215 return -ENOENT; 2216 2217 /* 2218 * We acquire tbl->lock to be nice to the periodic timers and 2219 * make sure they always see a consistent set of values. 2220 */ 2221 write_lock_bh(&tbl->lock); 2222 2223 if (tb[NDTA_PARMS]) { 2224 struct nlattr *tbp[NDTPA_MAX+1]; 2225 struct neigh_parms *p; 2226 int i, ifindex = 0; 2227 2228 err = nla_parse_nested_deprecated(tbp, NDTPA_MAX, 2229 tb[NDTA_PARMS], 2230 nl_ntbl_parm_policy, extack); 2231 if (err < 0) 2232 goto errout_tbl_lock; 2233 2234 if (tbp[NDTPA_IFINDEX]) 2235 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 2236 2237 p = lookup_neigh_parms(tbl, net, ifindex); 2238 if (p == NULL) { 2239 err = -ENOENT; 2240 goto errout_tbl_lock; 2241 } 2242 2243 for (i = 1; i <= NDTPA_MAX; i++) { 2244 if (tbp[i] == NULL) 2245 continue; 2246 2247 switch (i) { 2248 case NDTPA_QUEUE_LEN: 2249 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2250 nla_get_u32(tbp[i]) * 2251 SKB_TRUESIZE(ETH_FRAME_LEN)); 2252 break; 2253 case NDTPA_QUEUE_LENBYTES: 2254 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2255 nla_get_u32(tbp[i])); 2256 break; 2257 case NDTPA_PROXY_QLEN: 2258 NEIGH_VAR_SET(p, PROXY_QLEN, 2259 nla_get_u32(tbp[i])); 2260 break; 2261 case NDTPA_APP_PROBES: 2262 NEIGH_VAR_SET(p, APP_PROBES, 2263 nla_get_u32(tbp[i])); 2264 break; 2265 case NDTPA_UCAST_PROBES: 2266 NEIGH_VAR_SET(p, UCAST_PROBES, 2267 nla_get_u32(tbp[i])); 2268 break; 2269 case NDTPA_MCAST_PROBES: 2270 NEIGH_VAR_SET(p, MCAST_PROBES, 2271 nla_get_u32(tbp[i])); 2272 break; 2273 case NDTPA_MCAST_REPROBES: 2274 NEIGH_VAR_SET(p, MCAST_REPROBES, 2275 nla_get_u32(tbp[i])); 2276 break; 2277 case NDTPA_BASE_REACHABLE_TIME: 2278 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME, 2279 nla_get_msecs(tbp[i])); 2280 /* update reachable_time as well, otherwise, the change will 2281 * only be effective after the next time neigh_periodic_work 2282 * decides to recompute it (can be multiple minutes) 2283 */ 2284 p->reachable_time = 2285 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 2286 break; 2287 case NDTPA_GC_STALETIME: 2288 NEIGH_VAR_SET(p, GC_STALETIME, 2289 nla_get_msecs(tbp[i])); 2290 break; 2291 case NDTPA_DELAY_PROBE_TIME: 2292 NEIGH_VAR_SET(p, DELAY_PROBE_TIME, 2293 nla_get_msecs(tbp[i])); 2294 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 2295 break; 2296 case NDTPA_RETRANS_TIME: 2297 NEIGH_VAR_SET(p, RETRANS_TIME, 2298 nla_get_msecs(tbp[i])); 2299 break; 2300 case NDTPA_ANYCAST_DELAY: 2301 NEIGH_VAR_SET(p, ANYCAST_DELAY, 2302 nla_get_msecs(tbp[i])); 2303 break; 2304 case NDTPA_PROXY_DELAY: 2305 NEIGH_VAR_SET(p, PROXY_DELAY, 2306 nla_get_msecs(tbp[i])); 2307 break; 2308 case NDTPA_LOCKTIME: 2309 NEIGH_VAR_SET(p, LOCKTIME, 2310 nla_get_msecs(tbp[i])); 2311 break; 2312 } 2313 } 2314 } 2315 2316 err = -ENOENT; 2317 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] || 2318 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) && 2319 !net_eq(net, &init_net)) 2320 goto errout_tbl_lock; 2321 2322 if (tb[NDTA_THRESH1]) 2323 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 2324 2325 if (tb[NDTA_THRESH2]) 2326 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 2327 2328 if (tb[NDTA_THRESH3]) 2329 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 2330 2331 if (tb[NDTA_GC_INTERVAL]) 2332 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 2333 2334 err = 0; 2335 2336 errout_tbl_lock: 2337 write_unlock_bh(&tbl->lock); 2338 errout: 2339 return err; 2340 } 2341 2342 static int neightbl_valid_dump_info(const struct nlmsghdr *nlh, 2343 struct netlink_ext_ack *extack) 2344 { 2345 struct ndtmsg *ndtm; 2346 2347 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) { 2348 NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request"); 2349 return -EINVAL; 2350 } 2351 2352 ndtm = nlmsg_data(nlh); 2353 if (ndtm->ndtm_pad1 || ndtm->ndtm_pad2) { 2354 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request"); 2355 return -EINVAL; 2356 } 2357 2358 if (nlmsg_attrlen(nlh, sizeof(*ndtm))) { 2359 NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request"); 2360 return -EINVAL; 2361 } 2362 2363 return 0; 2364 } 2365 2366 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2367 { 2368 const struct nlmsghdr *nlh = cb->nlh; 2369 struct net *net = sock_net(skb->sk); 2370 int family, tidx, nidx = 0; 2371 int tbl_skip = cb->args[0]; 2372 int neigh_skip = cb->args[1]; 2373 struct neigh_table *tbl; 2374 2375 if (cb->strict_check) { 2376 int err = neightbl_valid_dump_info(nlh, cb->extack); 2377 2378 if (err < 0) 2379 return err; 2380 } 2381 2382 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2383 2384 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2385 struct neigh_parms *p; 2386 2387 tbl = neigh_tables[tidx]; 2388 if (!tbl) 2389 continue; 2390 2391 if (tidx < tbl_skip || (family && tbl->family != family)) 2392 continue; 2393 2394 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid, 2395 nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2396 NLM_F_MULTI) < 0) 2397 break; 2398 2399 nidx = 0; 2400 p = list_next_entry(&tbl->parms, list); 2401 list_for_each_entry_from(p, &tbl->parms_list, list) { 2402 if (!net_eq(neigh_parms_net(p), net)) 2403 continue; 2404 2405 if (nidx < neigh_skip) 2406 goto next; 2407 2408 if (neightbl_fill_param_info(skb, tbl, p, 2409 NETLINK_CB(cb->skb).portid, 2410 nlh->nlmsg_seq, 2411 RTM_NEWNEIGHTBL, 2412 NLM_F_MULTI) < 0) 2413 goto out; 2414 next: 2415 nidx++; 2416 } 2417 2418 neigh_skip = 0; 2419 } 2420 out: 2421 cb->args[0] = tidx; 2422 cb->args[1] = nidx; 2423 2424 return skb->len; 2425 } 2426 2427 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2428 u32 pid, u32 seq, int type, unsigned int flags) 2429 { 2430 unsigned long now = jiffies; 2431 struct nda_cacheinfo ci; 2432 struct nlmsghdr *nlh; 2433 struct ndmsg *ndm; 2434 2435 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2436 if (nlh == NULL) 2437 return -EMSGSIZE; 2438 2439 ndm = nlmsg_data(nlh); 2440 ndm->ndm_family = neigh->ops->family; 2441 ndm->ndm_pad1 = 0; 2442 ndm->ndm_pad2 = 0; 2443 ndm->ndm_flags = neigh->flags; 2444 ndm->ndm_type = neigh->type; 2445 ndm->ndm_ifindex = neigh->dev->ifindex; 2446 2447 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key)) 2448 goto nla_put_failure; 2449 2450 read_lock_bh(&neigh->lock); 2451 ndm->ndm_state = neigh->nud_state; 2452 if (neigh->nud_state & NUD_VALID) { 2453 char haddr[MAX_ADDR_LEN]; 2454 2455 neigh_ha_snapshot(haddr, neigh, neigh->dev); 2456 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { 2457 read_unlock_bh(&neigh->lock); 2458 goto nla_put_failure; 2459 } 2460 } 2461 2462 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2463 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2464 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2465 ci.ndm_refcnt = refcount_read(&neigh->refcnt) - 1; 2466 read_unlock_bh(&neigh->lock); 2467 2468 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) || 2469 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci)) 2470 goto nla_put_failure; 2471 2472 if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol)) 2473 goto nla_put_failure; 2474 2475 nlmsg_end(skb, nlh); 2476 return 0; 2477 2478 nla_put_failure: 2479 nlmsg_cancel(skb, nlh); 2480 return -EMSGSIZE; 2481 } 2482 2483 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, 2484 u32 pid, u32 seq, int type, unsigned int flags, 2485 struct neigh_table *tbl) 2486 { 2487 struct nlmsghdr *nlh; 2488 struct ndmsg *ndm; 2489 2490 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2491 if (nlh == NULL) 2492 return -EMSGSIZE; 2493 2494 ndm = nlmsg_data(nlh); 2495 ndm->ndm_family = tbl->family; 2496 ndm->ndm_pad1 = 0; 2497 ndm->ndm_pad2 = 0; 2498 ndm->ndm_flags = pn->flags | NTF_PROXY; 2499 ndm->ndm_type = RTN_UNICAST; 2500 ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0; 2501 ndm->ndm_state = NUD_NONE; 2502 2503 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key)) 2504 goto nla_put_failure; 2505 2506 if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol)) 2507 goto nla_put_failure; 2508 2509 nlmsg_end(skb, nlh); 2510 return 0; 2511 2512 nla_put_failure: 2513 nlmsg_cancel(skb, nlh); 2514 return -EMSGSIZE; 2515 } 2516 2517 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid) 2518 { 2519 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2520 __neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid); 2521 } 2522 2523 static bool neigh_master_filtered(struct net_device *dev, int master_idx) 2524 { 2525 struct net_device *master; 2526 2527 if (!master_idx) 2528 return false; 2529 2530 master = dev ? netdev_master_upper_dev_get(dev) : NULL; 2531 if (!master || master->ifindex != master_idx) 2532 return true; 2533 2534 return false; 2535 } 2536 2537 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx) 2538 { 2539 if (filter_idx && (!dev || dev->ifindex != filter_idx)) 2540 return true; 2541 2542 return false; 2543 } 2544 2545 struct neigh_dump_filter { 2546 int master_idx; 2547 int dev_idx; 2548 }; 2549 2550 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2551 struct netlink_callback *cb, 2552 struct neigh_dump_filter *filter) 2553 { 2554 struct net *net = sock_net(skb->sk); 2555 struct neighbour *n; 2556 int rc, h, s_h = cb->args[1]; 2557 int idx, s_idx = idx = cb->args[2]; 2558 struct neigh_hash_table *nht; 2559 unsigned int flags = NLM_F_MULTI; 2560 2561 if (filter->dev_idx || filter->master_idx) 2562 flags |= NLM_F_DUMP_FILTERED; 2563 2564 rcu_read_lock_bh(); 2565 nht = rcu_dereference_bh(tbl->nht); 2566 2567 for (h = s_h; h < (1 << nht->hash_shift); h++) { 2568 if (h > s_h) 2569 s_idx = 0; 2570 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; 2571 n != NULL; 2572 n = rcu_dereference_bh(n->next)) { 2573 if (idx < s_idx || !net_eq(dev_net(n->dev), net)) 2574 goto next; 2575 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2576 neigh_master_filtered(n->dev, filter->master_idx)) 2577 goto next; 2578 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2579 cb->nlh->nlmsg_seq, 2580 RTM_NEWNEIGH, 2581 flags) < 0) { 2582 rc = -1; 2583 goto out; 2584 } 2585 next: 2586 idx++; 2587 } 2588 } 2589 rc = skb->len; 2590 out: 2591 rcu_read_unlock_bh(); 2592 cb->args[1] = h; 2593 cb->args[2] = idx; 2594 return rc; 2595 } 2596 2597 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2598 struct netlink_callback *cb, 2599 struct neigh_dump_filter *filter) 2600 { 2601 struct pneigh_entry *n; 2602 struct net *net = sock_net(skb->sk); 2603 int rc, h, s_h = cb->args[3]; 2604 int idx, s_idx = idx = cb->args[4]; 2605 unsigned int flags = NLM_F_MULTI; 2606 2607 if (filter->dev_idx || filter->master_idx) 2608 flags |= NLM_F_DUMP_FILTERED; 2609 2610 read_lock_bh(&tbl->lock); 2611 2612 for (h = s_h; h <= PNEIGH_HASHMASK; h++) { 2613 if (h > s_h) 2614 s_idx = 0; 2615 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { 2616 if (idx < s_idx || pneigh_net(n) != net) 2617 goto next; 2618 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2619 neigh_master_filtered(n->dev, filter->master_idx)) 2620 goto next; 2621 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2622 cb->nlh->nlmsg_seq, 2623 RTM_NEWNEIGH, flags, tbl) < 0) { 2624 read_unlock_bh(&tbl->lock); 2625 rc = -1; 2626 goto out; 2627 } 2628 next: 2629 idx++; 2630 } 2631 } 2632 2633 read_unlock_bh(&tbl->lock); 2634 rc = skb->len; 2635 out: 2636 cb->args[3] = h; 2637 cb->args[4] = idx; 2638 return rc; 2639 2640 } 2641 2642 static int neigh_valid_dump_req(const struct nlmsghdr *nlh, 2643 bool strict_check, 2644 struct neigh_dump_filter *filter, 2645 struct netlink_ext_ack *extack) 2646 { 2647 struct nlattr *tb[NDA_MAX + 1]; 2648 int err, i; 2649 2650 if (strict_check) { 2651 struct ndmsg *ndm; 2652 2653 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2654 NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request"); 2655 return -EINVAL; 2656 } 2657 2658 ndm = nlmsg_data(nlh); 2659 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_ifindex || 2660 ndm->ndm_state || ndm->ndm_type) { 2661 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request"); 2662 return -EINVAL; 2663 } 2664 2665 if (ndm->ndm_flags & ~NTF_PROXY) { 2666 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request"); 2667 return -EINVAL; 2668 } 2669 2670 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), 2671 tb, NDA_MAX, nda_policy, 2672 extack); 2673 } else { 2674 err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb, 2675 NDA_MAX, nda_policy, extack); 2676 } 2677 if (err < 0) 2678 return err; 2679 2680 for (i = 0; i <= NDA_MAX; ++i) { 2681 if (!tb[i]) 2682 continue; 2683 2684 /* all new attributes should require strict_check */ 2685 switch (i) { 2686 case NDA_IFINDEX: 2687 filter->dev_idx = nla_get_u32(tb[i]); 2688 break; 2689 case NDA_MASTER: 2690 filter->master_idx = nla_get_u32(tb[i]); 2691 break; 2692 default: 2693 if (strict_check) { 2694 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request"); 2695 return -EINVAL; 2696 } 2697 } 2698 } 2699 2700 return 0; 2701 } 2702 2703 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2704 { 2705 const struct nlmsghdr *nlh = cb->nlh; 2706 struct neigh_dump_filter filter = {}; 2707 struct neigh_table *tbl; 2708 int t, family, s_t; 2709 int proxy = 0; 2710 int err; 2711 2712 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2713 2714 /* check for full ndmsg structure presence, family member is 2715 * the same for both structures 2716 */ 2717 if (nlmsg_len(nlh) >= sizeof(struct ndmsg) && 2718 ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY) 2719 proxy = 1; 2720 2721 err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack); 2722 if (err < 0 && cb->strict_check) 2723 return err; 2724 2725 s_t = cb->args[0]; 2726 2727 for (t = 0; t < NEIGH_NR_TABLES; t++) { 2728 tbl = neigh_tables[t]; 2729 2730 if (!tbl) 2731 continue; 2732 if (t < s_t || (family && tbl->family != family)) 2733 continue; 2734 if (t > s_t) 2735 memset(&cb->args[1], 0, sizeof(cb->args) - 2736 sizeof(cb->args[0])); 2737 if (proxy) 2738 err = pneigh_dump_table(tbl, skb, cb, &filter); 2739 else 2740 err = neigh_dump_table(tbl, skb, cb, &filter); 2741 if (err < 0) 2742 break; 2743 } 2744 2745 cb->args[0] = t; 2746 return skb->len; 2747 } 2748 2749 static int neigh_valid_get_req(const struct nlmsghdr *nlh, 2750 struct neigh_table **tbl, 2751 void **dst, int *dev_idx, u8 *ndm_flags, 2752 struct netlink_ext_ack *extack) 2753 { 2754 struct nlattr *tb[NDA_MAX + 1]; 2755 struct ndmsg *ndm; 2756 int err, i; 2757 2758 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2759 NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request"); 2760 return -EINVAL; 2761 } 2762 2763 ndm = nlmsg_data(nlh); 2764 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_state || 2765 ndm->ndm_type) { 2766 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request"); 2767 return -EINVAL; 2768 } 2769 2770 if (ndm->ndm_flags & ~NTF_PROXY) { 2771 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request"); 2772 return -EINVAL; 2773 } 2774 2775 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb, 2776 NDA_MAX, nda_policy, extack); 2777 if (err < 0) 2778 return err; 2779 2780 *ndm_flags = ndm->ndm_flags; 2781 *dev_idx = ndm->ndm_ifindex; 2782 *tbl = neigh_find_table(ndm->ndm_family); 2783 if (*tbl == NULL) { 2784 NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request"); 2785 return -EAFNOSUPPORT; 2786 } 2787 2788 for (i = 0; i <= NDA_MAX; ++i) { 2789 if (!tb[i]) 2790 continue; 2791 2792 switch (i) { 2793 case NDA_DST: 2794 if (nla_len(tb[i]) != (int)(*tbl)->key_len) { 2795 NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request"); 2796 return -EINVAL; 2797 } 2798 *dst = nla_data(tb[i]); 2799 break; 2800 default: 2801 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request"); 2802 return -EINVAL; 2803 } 2804 } 2805 2806 return 0; 2807 } 2808 2809 static inline size_t neigh_nlmsg_size(void) 2810 { 2811 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2812 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2813 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2814 + nla_total_size(sizeof(struct nda_cacheinfo)) 2815 + nla_total_size(4) /* NDA_PROBES */ 2816 + nla_total_size(1); /* NDA_PROTOCOL */ 2817 } 2818 2819 static int neigh_get_reply(struct net *net, struct neighbour *neigh, 2820 u32 pid, u32 seq) 2821 { 2822 struct sk_buff *skb; 2823 int err = 0; 2824 2825 skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL); 2826 if (!skb) 2827 return -ENOBUFS; 2828 2829 err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0); 2830 if (err) { 2831 kfree_skb(skb); 2832 goto errout; 2833 } 2834 2835 err = rtnl_unicast(skb, net, pid); 2836 errout: 2837 return err; 2838 } 2839 2840 static inline size_t pneigh_nlmsg_size(void) 2841 { 2842 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2843 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2844 + nla_total_size(1); /* NDA_PROTOCOL */ 2845 } 2846 2847 static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh, 2848 u32 pid, u32 seq, struct neigh_table *tbl) 2849 { 2850 struct sk_buff *skb; 2851 int err = 0; 2852 2853 skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL); 2854 if (!skb) 2855 return -ENOBUFS; 2856 2857 err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl); 2858 if (err) { 2859 kfree_skb(skb); 2860 goto errout; 2861 } 2862 2863 err = rtnl_unicast(skb, net, pid); 2864 errout: 2865 return err; 2866 } 2867 2868 static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2869 struct netlink_ext_ack *extack) 2870 { 2871 struct net *net = sock_net(in_skb->sk); 2872 struct net_device *dev = NULL; 2873 struct neigh_table *tbl = NULL; 2874 struct neighbour *neigh; 2875 void *dst = NULL; 2876 u8 ndm_flags = 0; 2877 int dev_idx = 0; 2878 int err; 2879 2880 err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags, 2881 extack); 2882 if (err < 0) 2883 return err; 2884 2885 if (dev_idx) { 2886 dev = __dev_get_by_index(net, dev_idx); 2887 if (!dev) { 2888 NL_SET_ERR_MSG(extack, "Unknown device ifindex"); 2889 return -ENODEV; 2890 } 2891 } 2892 2893 if (!dst) { 2894 NL_SET_ERR_MSG(extack, "Network address not specified"); 2895 return -EINVAL; 2896 } 2897 2898 if (ndm_flags & NTF_PROXY) { 2899 struct pneigh_entry *pn; 2900 2901 pn = pneigh_lookup(tbl, net, dst, dev, 0); 2902 if (!pn) { 2903 NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found"); 2904 return -ENOENT; 2905 } 2906 return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid, 2907 nlh->nlmsg_seq, tbl); 2908 } 2909 2910 if (!dev) { 2911 NL_SET_ERR_MSG(extack, "No device specified"); 2912 return -EINVAL; 2913 } 2914 2915 neigh = neigh_lookup(tbl, dst, dev); 2916 if (!neigh) { 2917 NL_SET_ERR_MSG(extack, "Neighbour entry not found"); 2918 return -ENOENT; 2919 } 2920 2921 err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid, 2922 nlh->nlmsg_seq); 2923 2924 neigh_release(neigh); 2925 2926 return err; 2927 } 2928 2929 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2930 { 2931 int chain; 2932 struct neigh_hash_table *nht; 2933 2934 rcu_read_lock_bh(); 2935 nht = rcu_dereference_bh(tbl->nht); 2936 2937 read_lock(&tbl->lock); /* avoid resizes */ 2938 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2939 struct neighbour *n; 2940 2941 for (n = rcu_dereference_bh(nht->hash_buckets[chain]); 2942 n != NULL; 2943 n = rcu_dereference_bh(n->next)) 2944 cb(n, cookie); 2945 } 2946 read_unlock(&tbl->lock); 2947 rcu_read_unlock_bh(); 2948 } 2949 EXPORT_SYMBOL(neigh_for_each); 2950 2951 /* The tbl->lock must be held as a writer and BH disabled. */ 2952 void __neigh_for_each_release(struct neigh_table *tbl, 2953 int (*cb)(struct neighbour *)) 2954 { 2955 int chain; 2956 struct neigh_hash_table *nht; 2957 2958 nht = rcu_dereference_protected(tbl->nht, 2959 lockdep_is_held(&tbl->lock)); 2960 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2961 struct neighbour *n; 2962 struct neighbour __rcu **np; 2963 2964 np = &nht->hash_buckets[chain]; 2965 while ((n = rcu_dereference_protected(*np, 2966 lockdep_is_held(&tbl->lock))) != NULL) { 2967 int release; 2968 2969 write_lock(&n->lock); 2970 release = cb(n); 2971 if (release) { 2972 rcu_assign_pointer(*np, 2973 rcu_dereference_protected(n->next, 2974 lockdep_is_held(&tbl->lock))); 2975 neigh_mark_dead(n); 2976 } else 2977 np = &n->next; 2978 write_unlock(&n->lock); 2979 if (release) 2980 neigh_cleanup_and_release(n); 2981 } 2982 } 2983 } 2984 EXPORT_SYMBOL(__neigh_for_each_release); 2985 2986 int neigh_xmit(int index, struct net_device *dev, 2987 const void *addr, struct sk_buff *skb) 2988 { 2989 int err = -EAFNOSUPPORT; 2990 if (likely(index < NEIGH_NR_TABLES)) { 2991 struct neigh_table *tbl; 2992 struct neighbour *neigh; 2993 2994 tbl = neigh_tables[index]; 2995 if (!tbl) 2996 goto out; 2997 rcu_read_lock_bh(); 2998 if (index == NEIGH_ARP_TABLE) { 2999 u32 key = *((u32 *)addr); 3000 3001 neigh = __ipv4_neigh_lookup_noref(dev, key); 3002 } else { 3003 neigh = __neigh_lookup_noref(tbl, addr, dev); 3004 } 3005 if (!neigh) 3006 neigh = __neigh_create(tbl, addr, dev, false); 3007 err = PTR_ERR(neigh); 3008 if (IS_ERR(neigh)) { 3009 rcu_read_unlock_bh(); 3010 goto out_kfree_skb; 3011 } 3012 err = neigh->output(neigh, skb); 3013 rcu_read_unlock_bh(); 3014 } 3015 else if (index == NEIGH_LINK_TABLE) { 3016 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 3017 addr, NULL, skb->len); 3018 if (err < 0) 3019 goto out_kfree_skb; 3020 err = dev_queue_xmit(skb); 3021 } 3022 out: 3023 return err; 3024 out_kfree_skb: 3025 kfree_skb(skb); 3026 goto out; 3027 } 3028 EXPORT_SYMBOL(neigh_xmit); 3029 3030 #ifdef CONFIG_PROC_FS 3031 3032 static struct neighbour *neigh_get_first(struct seq_file *seq) 3033 { 3034 struct neigh_seq_state *state = seq->private; 3035 struct net *net = seq_file_net(seq); 3036 struct neigh_hash_table *nht = state->nht; 3037 struct neighbour *n = NULL; 3038 int bucket; 3039 3040 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 3041 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { 3042 n = rcu_dereference_bh(nht->hash_buckets[bucket]); 3043 3044 while (n) { 3045 if (!net_eq(dev_net(n->dev), net)) 3046 goto next; 3047 if (state->neigh_sub_iter) { 3048 loff_t fakep = 0; 3049 void *v; 3050 3051 v = state->neigh_sub_iter(state, n, &fakep); 3052 if (!v) 3053 goto next; 3054 } 3055 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3056 break; 3057 if (n->nud_state & ~NUD_NOARP) 3058 break; 3059 next: 3060 n = rcu_dereference_bh(n->next); 3061 } 3062 3063 if (n) 3064 break; 3065 } 3066 state->bucket = bucket; 3067 3068 return n; 3069 } 3070 3071 static struct neighbour *neigh_get_next(struct seq_file *seq, 3072 struct neighbour *n, 3073 loff_t *pos) 3074 { 3075 struct neigh_seq_state *state = seq->private; 3076 struct net *net = seq_file_net(seq); 3077 struct neigh_hash_table *nht = state->nht; 3078 3079 if (state->neigh_sub_iter) { 3080 void *v = state->neigh_sub_iter(state, n, pos); 3081 if (v) 3082 return n; 3083 } 3084 n = rcu_dereference_bh(n->next); 3085 3086 while (1) { 3087 while (n) { 3088 if (!net_eq(dev_net(n->dev), net)) 3089 goto next; 3090 if (state->neigh_sub_iter) { 3091 void *v = state->neigh_sub_iter(state, n, pos); 3092 if (v) 3093 return n; 3094 goto next; 3095 } 3096 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3097 break; 3098 3099 if (n->nud_state & ~NUD_NOARP) 3100 break; 3101 next: 3102 n = rcu_dereference_bh(n->next); 3103 } 3104 3105 if (n) 3106 break; 3107 3108 if (++state->bucket >= (1 << nht->hash_shift)) 3109 break; 3110 3111 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); 3112 } 3113 3114 if (n && pos) 3115 --(*pos); 3116 return n; 3117 } 3118 3119 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 3120 { 3121 struct neighbour *n = neigh_get_first(seq); 3122 3123 if (n) { 3124 --(*pos); 3125 while (*pos) { 3126 n = neigh_get_next(seq, n, pos); 3127 if (!n) 3128 break; 3129 } 3130 } 3131 return *pos ? NULL : n; 3132 } 3133 3134 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 3135 { 3136 struct neigh_seq_state *state = seq->private; 3137 struct net *net = seq_file_net(seq); 3138 struct neigh_table *tbl = state->tbl; 3139 struct pneigh_entry *pn = NULL; 3140 int bucket = state->bucket; 3141 3142 state->flags |= NEIGH_SEQ_IS_PNEIGH; 3143 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 3144 pn = tbl->phash_buckets[bucket]; 3145 while (pn && !net_eq(pneigh_net(pn), net)) 3146 pn = pn->next; 3147 if (pn) 3148 break; 3149 } 3150 state->bucket = bucket; 3151 3152 return pn; 3153 } 3154 3155 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 3156 struct pneigh_entry *pn, 3157 loff_t *pos) 3158 { 3159 struct neigh_seq_state *state = seq->private; 3160 struct net *net = seq_file_net(seq); 3161 struct neigh_table *tbl = state->tbl; 3162 3163 do { 3164 pn = pn->next; 3165 } while (pn && !net_eq(pneigh_net(pn), net)); 3166 3167 while (!pn) { 3168 if (++state->bucket > PNEIGH_HASHMASK) 3169 break; 3170 pn = tbl->phash_buckets[state->bucket]; 3171 while (pn && !net_eq(pneigh_net(pn), net)) 3172 pn = pn->next; 3173 if (pn) 3174 break; 3175 } 3176 3177 if (pn && pos) 3178 --(*pos); 3179 3180 return pn; 3181 } 3182 3183 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 3184 { 3185 struct pneigh_entry *pn = pneigh_get_first(seq); 3186 3187 if (pn) { 3188 --(*pos); 3189 while (*pos) { 3190 pn = pneigh_get_next(seq, pn, pos); 3191 if (!pn) 3192 break; 3193 } 3194 } 3195 return *pos ? NULL : pn; 3196 } 3197 3198 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 3199 { 3200 struct neigh_seq_state *state = seq->private; 3201 void *rc; 3202 loff_t idxpos = *pos; 3203 3204 rc = neigh_get_idx(seq, &idxpos); 3205 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3206 rc = pneigh_get_idx(seq, &idxpos); 3207 3208 return rc; 3209 } 3210 3211 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 3212 __acquires(tbl->lock) 3213 __acquires(rcu_bh) 3214 { 3215 struct neigh_seq_state *state = seq->private; 3216 3217 state->tbl = tbl; 3218 state->bucket = 0; 3219 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 3220 3221 rcu_read_lock_bh(); 3222 state->nht = rcu_dereference_bh(tbl->nht); 3223 read_lock(&tbl->lock); 3224 3225 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 3226 } 3227 EXPORT_SYMBOL(neigh_seq_start); 3228 3229 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3230 { 3231 struct neigh_seq_state *state; 3232 void *rc; 3233 3234 if (v == SEQ_START_TOKEN) { 3235 rc = neigh_get_first(seq); 3236 goto out; 3237 } 3238 3239 state = seq->private; 3240 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 3241 rc = neigh_get_next(seq, v, NULL); 3242 if (rc) 3243 goto out; 3244 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3245 rc = pneigh_get_first(seq); 3246 } else { 3247 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 3248 rc = pneigh_get_next(seq, v, NULL); 3249 } 3250 out: 3251 ++(*pos); 3252 return rc; 3253 } 3254 EXPORT_SYMBOL(neigh_seq_next); 3255 3256 void neigh_seq_stop(struct seq_file *seq, void *v) 3257 __releases(tbl->lock) 3258 __releases(rcu_bh) 3259 { 3260 struct neigh_seq_state *state = seq->private; 3261 struct neigh_table *tbl = state->tbl; 3262 3263 read_unlock(&tbl->lock); 3264 rcu_read_unlock_bh(); 3265 } 3266 EXPORT_SYMBOL(neigh_seq_stop); 3267 3268 /* statistics via seq_file */ 3269 3270 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 3271 { 3272 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3273 int cpu; 3274 3275 if (*pos == 0) 3276 return SEQ_START_TOKEN; 3277 3278 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 3279 if (!cpu_possible(cpu)) 3280 continue; 3281 *pos = cpu+1; 3282 return per_cpu_ptr(tbl->stats, cpu); 3283 } 3284 return NULL; 3285 } 3286 3287 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3288 { 3289 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3290 int cpu; 3291 3292 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 3293 if (!cpu_possible(cpu)) 3294 continue; 3295 *pos = cpu+1; 3296 return per_cpu_ptr(tbl->stats, cpu); 3297 } 3298 (*pos)++; 3299 return NULL; 3300 } 3301 3302 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 3303 { 3304 3305 } 3306 3307 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 3308 { 3309 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3310 struct neigh_statistics *st = v; 3311 3312 if (v == SEQ_START_TOKEN) { 3313 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n"); 3314 return 0; 3315 } 3316 3317 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 3318 "%08lx %08lx %08lx %08lx %08lx %08lx\n", 3319 atomic_read(&tbl->entries), 3320 3321 st->allocs, 3322 st->destroys, 3323 st->hash_grows, 3324 3325 st->lookups, 3326 st->hits, 3327 3328 st->res_failed, 3329 3330 st->rcv_probes_mcast, 3331 st->rcv_probes_ucast, 3332 3333 st->periodic_gc_runs, 3334 st->forced_gc_runs, 3335 st->unres_discards, 3336 st->table_fulls 3337 ); 3338 3339 return 0; 3340 } 3341 3342 static const struct seq_operations neigh_stat_seq_ops = { 3343 .start = neigh_stat_seq_start, 3344 .next = neigh_stat_seq_next, 3345 .stop = neigh_stat_seq_stop, 3346 .show = neigh_stat_seq_show, 3347 }; 3348 #endif /* CONFIG_PROC_FS */ 3349 3350 static void __neigh_notify(struct neighbour *n, int type, int flags, 3351 u32 pid) 3352 { 3353 struct net *net = dev_net(n->dev); 3354 struct sk_buff *skb; 3355 int err = -ENOBUFS; 3356 3357 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 3358 if (skb == NULL) 3359 goto errout; 3360 3361 err = neigh_fill_info(skb, n, pid, 0, type, flags); 3362 if (err < 0) { 3363 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 3364 WARN_ON(err == -EMSGSIZE); 3365 kfree_skb(skb); 3366 goto errout; 3367 } 3368 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 3369 return; 3370 errout: 3371 if (err < 0) 3372 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 3373 } 3374 3375 void neigh_app_ns(struct neighbour *n) 3376 { 3377 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0); 3378 } 3379 EXPORT_SYMBOL(neigh_app_ns); 3380 3381 #ifdef CONFIG_SYSCTL 3382 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN); 3383 3384 static int proc_unres_qlen(struct ctl_table *ctl, int write, 3385 void *buffer, size_t *lenp, loff_t *ppos) 3386 { 3387 int size, ret; 3388 struct ctl_table tmp = *ctl; 3389 3390 tmp.extra1 = SYSCTL_ZERO; 3391 tmp.extra2 = &unres_qlen_max; 3392 tmp.data = &size; 3393 3394 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN); 3395 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3396 3397 if (write && !ret) 3398 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); 3399 return ret; 3400 } 3401 3402 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev, 3403 int family) 3404 { 3405 switch (family) { 3406 case AF_INET: 3407 return __in_dev_arp_parms_get_rcu(dev); 3408 case AF_INET6: 3409 return __in6_dev_nd_parms_get_rcu(dev); 3410 } 3411 return NULL; 3412 } 3413 3414 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p, 3415 int index) 3416 { 3417 struct net_device *dev; 3418 int family = neigh_parms_family(p); 3419 3420 rcu_read_lock(); 3421 for_each_netdev_rcu(net, dev) { 3422 struct neigh_parms *dst_p = 3423 neigh_get_dev_parms_rcu(dev, family); 3424 3425 if (dst_p && !test_bit(index, dst_p->data_state)) 3426 dst_p->data[index] = p->data[index]; 3427 } 3428 rcu_read_unlock(); 3429 } 3430 3431 static void neigh_proc_update(struct ctl_table *ctl, int write) 3432 { 3433 struct net_device *dev = ctl->extra1; 3434 struct neigh_parms *p = ctl->extra2; 3435 struct net *net = neigh_parms_net(p); 3436 int index = (int *) ctl->data - p->data; 3437 3438 if (!write) 3439 return; 3440 3441 set_bit(index, p->data_state); 3442 if (index == NEIGH_VAR_DELAY_PROBE_TIME) 3443 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 3444 if (!dev) /* NULL dev means this is default value */ 3445 neigh_copy_dflt_parms(net, p, index); 3446 } 3447 3448 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write, 3449 void *buffer, size_t *lenp, 3450 loff_t *ppos) 3451 { 3452 struct ctl_table tmp = *ctl; 3453 int ret; 3454 3455 tmp.extra1 = SYSCTL_ZERO; 3456 tmp.extra2 = SYSCTL_INT_MAX; 3457 3458 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3459 neigh_proc_update(ctl, write); 3460 return ret; 3461 } 3462 3463 int neigh_proc_dointvec(struct ctl_table *ctl, int write, void *buffer, 3464 size_t *lenp, loff_t *ppos) 3465 { 3466 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 3467 3468 neigh_proc_update(ctl, write); 3469 return ret; 3470 } 3471 EXPORT_SYMBOL(neigh_proc_dointvec); 3472 3473 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, void *buffer, 3474 size_t *lenp, loff_t *ppos) 3475 { 3476 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3477 3478 neigh_proc_update(ctl, write); 3479 return ret; 3480 } 3481 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies); 3482 3483 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write, 3484 void *buffer, size_t *lenp, 3485 loff_t *ppos) 3486 { 3487 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos); 3488 3489 neigh_proc_update(ctl, write); 3490 return ret; 3491 } 3492 3493 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write, 3494 void *buffer, size_t *lenp, loff_t *ppos) 3495 { 3496 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3497 3498 neigh_proc_update(ctl, write); 3499 return ret; 3500 } 3501 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies); 3502 3503 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write, 3504 void *buffer, size_t *lenp, 3505 loff_t *ppos) 3506 { 3507 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos); 3508 3509 neigh_proc_update(ctl, write); 3510 return ret; 3511 } 3512 3513 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write, 3514 void *buffer, size_t *lenp, 3515 loff_t *ppos) 3516 { 3517 struct neigh_parms *p = ctl->extra2; 3518 int ret; 3519 3520 if (strcmp(ctl->procname, "base_reachable_time") == 0) 3521 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3522 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0) 3523 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3524 else 3525 ret = -1; 3526 3527 if (write && ret == 0) { 3528 /* update reachable_time as well, otherwise, the change will 3529 * only be effective after the next time neigh_periodic_work 3530 * decides to recompute it 3531 */ 3532 p->reachable_time = 3533 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 3534 } 3535 return ret; 3536 } 3537 3538 #define NEIGH_PARMS_DATA_OFFSET(index) \ 3539 (&((struct neigh_parms *) 0)->data[index]) 3540 3541 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \ 3542 [NEIGH_VAR_ ## attr] = { \ 3543 .procname = name, \ 3544 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \ 3545 .maxlen = sizeof(int), \ 3546 .mode = mval, \ 3547 .proc_handler = proc, \ 3548 } 3549 3550 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \ 3551 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax) 3552 3553 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \ 3554 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies) 3555 3556 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \ 3557 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies) 3558 3559 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \ 3560 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies) 3561 3562 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \ 3563 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen) 3564 3565 static struct neigh_sysctl_table { 3566 struct ctl_table_header *sysctl_header; 3567 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1]; 3568 } neigh_sysctl_template __read_mostly = { 3569 .neigh_vars = { 3570 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"), 3571 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"), 3572 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"), 3573 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"), 3574 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"), 3575 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"), 3576 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"), 3577 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"), 3578 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"), 3579 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"), 3580 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"), 3581 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"), 3582 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"), 3583 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"), 3584 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"), 3585 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"), 3586 [NEIGH_VAR_GC_INTERVAL] = { 3587 .procname = "gc_interval", 3588 .maxlen = sizeof(int), 3589 .mode = 0644, 3590 .proc_handler = proc_dointvec_jiffies, 3591 }, 3592 [NEIGH_VAR_GC_THRESH1] = { 3593 .procname = "gc_thresh1", 3594 .maxlen = sizeof(int), 3595 .mode = 0644, 3596 .extra1 = SYSCTL_ZERO, 3597 .extra2 = SYSCTL_INT_MAX, 3598 .proc_handler = proc_dointvec_minmax, 3599 }, 3600 [NEIGH_VAR_GC_THRESH2] = { 3601 .procname = "gc_thresh2", 3602 .maxlen = sizeof(int), 3603 .mode = 0644, 3604 .extra1 = SYSCTL_ZERO, 3605 .extra2 = SYSCTL_INT_MAX, 3606 .proc_handler = proc_dointvec_minmax, 3607 }, 3608 [NEIGH_VAR_GC_THRESH3] = { 3609 .procname = "gc_thresh3", 3610 .maxlen = sizeof(int), 3611 .mode = 0644, 3612 .extra1 = SYSCTL_ZERO, 3613 .extra2 = SYSCTL_INT_MAX, 3614 .proc_handler = proc_dointvec_minmax, 3615 }, 3616 {}, 3617 }, 3618 }; 3619 3620 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 3621 proc_handler *handler) 3622 { 3623 int i; 3624 struct neigh_sysctl_table *t; 3625 const char *dev_name_source; 3626 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ]; 3627 char *p_name; 3628 3629 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 3630 if (!t) 3631 goto err; 3632 3633 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) { 3634 t->neigh_vars[i].data += (long) p; 3635 t->neigh_vars[i].extra1 = dev; 3636 t->neigh_vars[i].extra2 = p; 3637 } 3638 3639 if (dev) { 3640 dev_name_source = dev->name; 3641 /* Terminate the table early */ 3642 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0, 3643 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL])); 3644 } else { 3645 struct neigh_table *tbl = p->tbl; 3646 dev_name_source = "default"; 3647 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval; 3648 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1; 3649 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2; 3650 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3; 3651 } 3652 3653 if (handler) { 3654 /* RetransTime */ 3655 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; 3656 /* ReachableTime */ 3657 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; 3658 /* RetransTime (in milliseconds)*/ 3659 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; 3660 /* ReachableTime (in milliseconds) */ 3661 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; 3662 } else { 3663 /* Those handlers will update p->reachable_time after 3664 * base_reachable_time(_ms) is set to ensure the new timer starts being 3665 * applied after the next neighbour update instead of waiting for 3666 * neigh_periodic_work to update its value (can be multiple minutes) 3667 * So any handler that replaces them should do this as well 3668 */ 3669 /* ReachableTime */ 3670 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = 3671 neigh_proc_base_reachable_time; 3672 /* ReachableTime (in milliseconds) */ 3673 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = 3674 neigh_proc_base_reachable_time; 3675 } 3676 3677 /* Don't export sysctls to unprivileged users */ 3678 if (neigh_parms_net(p)->user_ns != &init_user_ns) 3679 t->neigh_vars[0].procname = NULL; 3680 3681 switch (neigh_parms_family(p)) { 3682 case AF_INET: 3683 p_name = "ipv4"; 3684 break; 3685 case AF_INET6: 3686 p_name = "ipv6"; 3687 break; 3688 default: 3689 BUG(); 3690 } 3691 3692 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s", 3693 p_name, dev_name_source); 3694 t->sysctl_header = 3695 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars); 3696 if (!t->sysctl_header) 3697 goto free; 3698 3699 p->sysctl_table = t; 3700 return 0; 3701 3702 free: 3703 kfree(t); 3704 err: 3705 return -ENOBUFS; 3706 } 3707 EXPORT_SYMBOL(neigh_sysctl_register); 3708 3709 void neigh_sysctl_unregister(struct neigh_parms *p) 3710 { 3711 if (p->sysctl_table) { 3712 struct neigh_sysctl_table *t = p->sysctl_table; 3713 p->sysctl_table = NULL; 3714 unregister_net_sysctl_table(t->sysctl_header); 3715 kfree(t); 3716 } 3717 } 3718 EXPORT_SYMBOL(neigh_sysctl_unregister); 3719 3720 #endif /* CONFIG_SYSCTL */ 3721 3722 static int __init neigh_init(void) 3723 { 3724 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0); 3725 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0); 3726 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info, 0); 3727 3728 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, 3729 0); 3730 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0); 3731 3732 return 0; 3733 } 3734 3735 subsys_initcall(neigh_init); 3736