1 /* 2 * Generic address resolution entity 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Fixes: 14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 15 * Harald Welte Add neighbour cache statistics like rtstat 16 */ 17 18 #include <linux/slab.h> 19 #include <linux/types.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/socket.h> 23 #include <linux/netdevice.h> 24 #include <linux/proc_fs.h> 25 #ifdef CONFIG_SYSCTL 26 #include <linux/sysctl.h> 27 #endif 28 #include <linux/times.h> 29 #include <net/net_namespace.h> 30 #include <net/neighbour.h> 31 #include <net/dst.h> 32 #include <net/sock.h> 33 #include <net/netevent.h> 34 #include <net/netlink.h> 35 #include <linux/rtnetlink.h> 36 #include <linux/random.h> 37 #include <linux/string.h> 38 #include <linux/log2.h> 39 40 #define NEIGH_DEBUG 1 41 42 #define NEIGH_PRINTK(x...) printk(x) 43 #define NEIGH_NOPRINTK(x...) do { ; } while(0) 44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK 45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK 46 47 #if NEIGH_DEBUG >= 1 48 #undef NEIGH_PRINTK1 49 #define NEIGH_PRINTK1 NEIGH_PRINTK 50 #endif 51 #if NEIGH_DEBUG >= 2 52 #undef NEIGH_PRINTK2 53 #define NEIGH_PRINTK2 NEIGH_PRINTK 54 #endif 55 56 #define PNEIGH_HASHMASK 0xF 57 58 static void neigh_timer_handler(unsigned long arg); 59 static void __neigh_notify(struct neighbour *n, int type, int flags); 60 static void neigh_update_notify(struct neighbour *neigh); 61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev); 62 63 static struct neigh_table *neigh_tables; 64 #ifdef CONFIG_PROC_FS 65 static const struct file_operations neigh_stat_seq_fops; 66 #endif 67 68 /* 69 Neighbour hash table buckets are protected with rwlock tbl->lock. 70 71 - All the scans/updates to hash buckets MUST be made under this lock. 72 - NOTHING clever should be made under this lock: no callbacks 73 to protocol backends, no attempts to send something to network. 74 It will result in deadlocks, if backend/driver wants to use neighbour 75 cache. 76 - If the entry requires some non-trivial actions, increase 77 its reference count and release table lock. 78 79 Neighbour entries are protected: 80 - with reference count. 81 - with rwlock neigh->lock 82 83 Reference count prevents destruction. 84 85 neigh->lock mainly serializes ll address data and its validity state. 86 However, the same lock is used to protect another entry fields: 87 - timer 88 - resolution queue 89 90 Again, nothing clever shall be made under neigh->lock, 91 the most complicated procedure, which we allow is dev->hard_header. 92 It is supposed, that dev->hard_header is simplistic and does 93 not make callbacks to neighbour tables. 94 95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting 96 list of neighbour tables. This list is used only in process context, 97 */ 98 99 static DEFINE_RWLOCK(neigh_tbl_lock); 100 101 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) 102 { 103 kfree_skb(skb); 104 return -ENETDOWN; 105 } 106 107 static void neigh_cleanup_and_release(struct neighbour *neigh) 108 { 109 if (neigh->parms->neigh_cleanup) 110 neigh->parms->neigh_cleanup(neigh); 111 112 __neigh_notify(neigh, RTM_DELNEIGH, 0); 113 neigh_release(neigh); 114 } 115 116 /* 117 * It is random distribution in the interval (1/2)*base...(3/2)*base. 118 * It corresponds to default IPv6 settings and is not overridable, 119 * because it is really reasonable choice. 120 */ 121 122 unsigned long neigh_rand_reach_time(unsigned long base) 123 { 124 return base ? (net_random() % base) + (base >> 1) : 0; 125 } 126 EXPORT_SYMBOL(neigh_rand_reach_time); 127 128 129 static int neigh_forced_gc(struct neigh_table *tbl) 130 { 131 int shrunk = 0; 132 int i; 133 struct neigh_hash_table *nht; 134 135 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 136 137 write_lock_bh(&tbl->lock); 138 nht = rcu_dereference_protected(tbl->nht, 139 lockdep_is_held(&tbl->lock)); 140 for (i = 0; i < (1 << nht->hash_shift); i++) { 141 struct neighbour *n; 142 struct neighbour __rcu **np; 143 144 np = &nht->hash_buckets[i]; 145 while ((n = rcu_dereference_protected(*np, 146 lockdep_is_held(&tbl->lock))) != NULL) { 147 /* Neighbour record may be discarded if: 148 * - nobody refers to it. 149 * - it is not permanent 150 */ 151 write_lock(&n->lock); 152 if (atomic_read(&n->refcnt) == 1 && 153 !(n->nud_state & NUD_PERMANENT)) { 154 rcu_assign_pointer(*np, 155 rcu_dereference_protected(n->next, 156 lockdep_is_held(&tbl->lock))); 157 n->dead = 1; 158 shrunk = 1; 159 write_unlock(&n->lock); 160 neigh_cleanup_and_release(n); 161 continue; 162 } 163 write_unlock(&n->lock); 164 np = &n->next; 165 } 166 } 167 168 tbl->last_flush = jiffies; 169 170 write_unlock_bh(&tbl->lock); 171 172 return shrunk; 173 } 174 175 static void neigh_add_timer(struct neighbour *n, unsigned long when) 176 { 177 neigh_hold(n); 178 if (unlikely(mod_timer(&n->timer, when))) { 179 printk("NEIGH: BUG, double timer add, state is %x\n", 180 n->nud_state); 181 dump_stack(); 182 } 183 } 184 185 static int neigh_del_timer(struct neighbour *n) 186 { 187 if ((n->nud_state & NUD_IN_TIMER) && 188 del_timer(&n->timer)) { 189 neigh_release(n); 190 return 1; 191 } 192 return 0; 193 } 194 195 static void pneigh_queue_purge(struct sk_buff_head *list) 196 { 197 struct sk_buff *skb; 198 199 while ((skb = skb_dequeue(list)) != NULL) { 200 dev_put(skb->dev); 201 kfree_skb(skb); 202 } 203 } 204 205 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev) 206 { 207 int i; 208 struct neigh_hash_table *nht; 209 210 nht = rcu_dereference_protected(tbl->nht, 211 lockdep_is_held(&tbl->lock)); 212 213 for (i = 0; i < (1 << nht->hash_shift); i++) { 214 struct neighbour *n; 215 struct neighbour __rcu **np = &nht->hash_buckets[i]; 216 217 while ((n = rcu_dereference_protected(*np, 218 lockdep_is_held(&tbl->lock))) != NULL) { 219 if (dev && n->dev != dev) { 220 np = &n->next; 221 continue; 222 } 223 rcu_assign_pointer(*np, 224 rcu_dereference_protected(n->next, 225 lockdep_is_held(&tbl->lock))); 226 write_lock(&n->lock); 227 neigh_del_timer(n); 228 n->dead = 1; 229 230 if (atomic_read(&n->refcnt) != 1) { 231 /* The most unpleasant situation. 232 We must destroy neighbour entry, 233 but someone still uses it. 234 235 The destroy will be delayed until 236 the last user releases us, but 237 we must kill timers etc. and move 238 it to safe state. 239 */ 240 skb_queue_purge(&n->arp_queue); 241 n->arp_queue_len_bytes = 0; 242 n->output = neigh_blackhole; 243 if (n->nud_state & NUD_VALID) 244 n->nud_state = NUD_NOARP; 245 else 246 n->nud_state = NUD_NONE; 247 NEIGH_PRINTK2("neigh %p is stray.\n", n); 248 } 249 write_unlock(&n->lock); 250 neigh_cleanup_and_release(n); 251 } 252 } 253 } 254 255 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 256 { 257 write_lock_bh(&tbl->lock); 258 neigh_flush_dev(tbl, dev); 259 write_unlock_bh(&tbl->lock); 260 } 261 EXPORT_SYMBOL(neigh_changeaddr); 262 263 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 264 { 265 write_lock_bh(&tbl->lock); 266 neigh_flush_dev(tbl, dev); 267 pneigh_ifdown(tbl, dev); 268 write_unlock_bh(&tbl->lock); 269 270 del_timer_sync(&tbl->proxy_timer); 271 pneigh_queue_purge(&tbl->proxy_queue); 272 return 0; 273 } 274 EXPORT_SYMBOL(neigh_ifdown); 275 276 static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev) 277 { 278 struct neighbour *n = NULL; 279 unsigned long now = jiffies; 280 int entries; 281 282 entries = atomic_inc_return(&tbl->entries) - 1; 283 if (entries >= tbl->gc_thresh3 || 284 (entries >= tbl->gc_thresh2 && 285 time_after(now, tbl->last_flush + 5 * HZ))) { 286 if (!neigh_forced_gc(tbl) && 287 entries >= tbl->gc_thresh3) 288 goto out_entries; 289 } 290 291 if (tbl->entry_size) 292 n = kzalloc(tbl->entry_size, GFP_ATOMIC); 293 else { 294 int sz = sizeof(*n) + tbl->key_len; 295 296 sz = ALIGN(sz, NEIGH_PRIV_ALIGN); 297 sz += dev->neigh_priv_len; 298 n = kzalloc(sz, GFP_ATOMIC); 299 } 300 if (!n) 301 goto out_entries; 302 303 skb_queue_head_init(&n->arp_queue); 304 rwlock_init(&n->lock); 305 seqlock_init(&n->ha_lock); 306 n->updated = n->used = now; 307 n->nud_state = NUD_NONE; 308 n->output = neigh_blackhole; 309 seqlock_init(&n->hh.hh_lock); 310 n->parms = neigh_parms_clone(&tbl->parms); 311 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n); 312 313 NEIGH_CACHE_STAT_INC(tbl, allocs); 314 n->tbl = tbl; 315 atomic_set(&n->refcnt, 1); 316 n->dead = 1; 317 out: 318 return n; 319 320 out_entries: 321 atomic_dec(&tbl->entries); 322 goto out; 323 } 324 325 static void neigh_get_hash_rnd(u32 *x) 326 { 327 get_random_bytes(x, sizeof(*x)); 328 *x |= 1; 329 } 330 331 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) 332 { 333 size_t size = (1 << shift) * sizeof(struct neighbour *); 334 struct neigh_hash_table *ret; 335 struct neighbour __rcu **buckets; 336 int i; 337 338 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 339 if (!ret) 340 return NULL; 341 if (size <= PAGE_SIZE) 342 buckets = kzalloc(size, GFP_ATOMIC); 343 else 344 buckets = (struct neighbour __rcu **) 345 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 346 get_order(size)); 347 if (!buckets) { 348 kfree(ret); 349 return NULL; 350 } 351 ret->hash_buckets = buckets; 352 ret->hash_shift = shift; 353 for (i = 0; i < NEIGH_NUM_HASH_RND; i++) 354 neigh_get_hash_rnd(&ret->hash_rnd[i]); 355 return ret; 356 } 357 358 static void neigh_hash_free_rcu(struct rcu_head *head) 359 { 360 struct neigh_hash_table *nht = container_of(head, 361 struct neigh_hash_table, 362 rcu); 363 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); 364 struct neighbour __rcu **buckets = nht->hash_buckets; 365 366 if (size <= PAGE_SIZE) 367 kfree(buckets); 368 else 369 free_pages((unsigned long)buckets, get_order(size)); 370 kfree(nht); 371 } 372 373 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, 374 unsigned long new_shift) 375 { 376 unsigned int i, hash; 377 struct neigh_hash_table *new_nht, *old_nht; 378 379 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 380 381 old_nht = rcu_dereference_protected(tbl->nht, 382 lockdep_is_held(&tbl->lock)); 383 new_nht = neigh_hash_alloc(new_shift); 384 if (!new_nht) 385 return old_nht; 386 387 for (i = 0; i < (1 << old_nht->hash_shift); i++) { 388 struct neighbour *n, *next; 389 390 for (n = rcu_dereference_protected(old_nht->hash_buckets[i], 391 lockdep_is_held(&tbl->lock)); 392 n != NULL; 393 n = next) { 394 hash = tbl->hash(n->primary_key, n->dev, 395 new_nht->hash_rnd); 396 397 hash >>= (32 - new_nht->hash_shift); 398 next = rcu_dereference_protected(n->next, 399 lockdep_is_held(&tbl->lock)); 400 401 rcu_assign_pointer(n->next, 402 rcu_dereference_protected( 403 new_nht->hash_buckets[hash], 404 lockdep_is_held(&tbl->lock))); 405 rcu_assign_pointer(new_nht->hash_buckets[hash], n); 406 } 407 } 408 409 rcu_assign_pointer(tbl->nht, new_nht); 410 call_rcu(&old_nht->rcu, neigh_hash_free_rcu); 411 return new_nht; 412 } 413 414 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 415 struct net_device *dev) 416 { 417 struct neighbour *n; 418 int key_len = tbl->key_len; 419 u32 hash_val; 420 struct neigh_hash_table *nht; 421 422 NEIGH_CACHE_STAT_INC(tbl, lookups); 423 424 rcu_read_lock_bh(); 425 nht = rcu_dereference_bh(tbl->nht); 426 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 427 428 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 429 n != NULL; 430 n = rcu_dereference_bh(n->next)) { 431 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) { 432 if (!atomic_inc_not_zero(&n->refcnt)) 433 n = NULL; 434 NEIGH_CACHE_STAT_INC(tbl, hits); 435 break; 436 } 437 } 438 439 rcu_read_unlock_bh(); 440 return n; 441 } 442 EXPORT_SYMBOL(neigh_lookup); 443 444 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 445 const void *pkey) 446 { 447 struct neighbour *n; 448 int key_len = tbl->key_len; 449 u32 hash_val; 450 struct neigh_hash_table *nht; 451 452 NEIGH_CACHE_STAT_INC(tbl, lookups); 453 454 rcu_read_lock_bh(); 455 nht = rcu_dereference_bh(tbl->nht); 456 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift); 457 458 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 459 n != NULL; 460 n = rcu_dereference_bh(n->next)) { 461 if (!memcmp(n->primary_key, pkey, key_len) && 462 net_eq(dev_net(n->dev), net)) { 463 if (!atomic_inc_not_zero(&n->refcnt)) 464 n = NULL; 465 NEIGH_CACHE_STAT_INC(tbl, hits); 466 break; 467 } 468 } 469 470 rcu_read_unlock_bh(); 471 return n; 472 } 473 EXPORT_SYMBOL(neigh_lookup_nodev); 474 475 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, 476 struct net_device *dev) 477 { 478 u32 hash_val; 479 int key_len = tbl->key_len; 480 int error; 481 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev); 482 struct neigh_hash_table *nht; 483 484 if (!n) { 485 rc = ERR_PTR(-ENOBUFS); 486 goto out; 487 } 488 489 memcpy(n->primary_key, pkey, key_len); 490 n->dev = dev; 491 dev_hold(dev); 492 493 /* Protocol specific setup. */ 494 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 495 rc = ERR_PTR(error); 496 goto out_neigh_release; 497 } 498 499 if (dev->netdev_ops->ndo_neigh_construct) { 500 error = dev->netdev_ops->ndo_neigh_construct(n); 501 if (error < 0) { 502 rc = ERR_PTR(error); 503 goto out_neigh_release; 504 } 505 } 506 507 /* Device specific setup. */ 508 if (n->parms->neigh_setup && 509 (error = n->parms->neigh_setup(n)) < 0) { 510 rc = ERR_PTR(error); 511 goto out_neigh_release; 512 } 513 514 n->confirmed = jiffies - (n->parms->base_reachable_time << 1); 515 516 write_lock_bh(&tbl->lock); 517 nht = rcu_dereference_protected(tbl->nht, 518 lockdep_is_held(&tbl->lock)); 519 520 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) 521 nht = neigh_hash_grow(tbl, nht->hash_shift + 1); 522 523 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 524 525 if (n->parms->dead) { 526 rc = ERR_PTR(-EINVAL); 527 goto out_tbl_unlock; 528 } 529 530 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], 531 lockdep_is_held(&tbl->lock)); 532 n1 != NULL; 533 n1 = rcu_dereference_protected(n1->next, 534 lockdep_is_held(&tbl->lock))) { 535 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) { 536 neigh_hold(n1); 537 rc = n1; 538 goto out_tbl_unlock; 539 } 540 } 541 542 n->dead = 0; 543 neigh_hold(n); 544 rcu_assign_pointer(n->next, 545 rcu_dereference_protected(nht->hash_buckets[hash_val], 546 lockdep_is_held(&tbl->lock))); 547 rcu_assign_pointer(nht->hash_buckets[hash_val], n); 548 write_unlock_bh(&tbl->lock); 549 NEIGH_PRINTK2("neigh %p is created.\n", n); 550 rc = n; 551 out: 552 return rc; 553 out_tbl_unlock: 554 write_unlock_bh(&tbl->lock); 555 out_neigh_release: 556 neigh_release(n); 557 goto out; 558 } 559 EXPORT_SYMBOL(neigh_create); 560 561 static u32 pneigh_hash(const void *pkey, int key_len) 562 { 563 u32 hash_val = *(u32 *)(pkey + key_len - 4); 564 hash_val ^= (hash_val >> 16); 565 hash_val ^= hash_val >> 8; 566 hash_val ^= hash_val >> 4; 567 hash_val &= PNEIGH_HASHMASK; 568 return hash_val; 569 } 570 571 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 572 struct net *net, 573 const void *pkey, 574 int key_len, 575 struct net_device *dev) 576 { 577 while (n) { 578 if (!memcmp(n->key, pkey, key_len) && 579 net_eq(pneigh_net(n), net) && 580 (n->dev == dev || !n->dev)) 581 return n; 582 n = n->next; 583 } 584 return NULL; 585 } 586 587 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 588 struct net *net, const void *pkey, struct net_device *dev) 589 { 590 int key_len = tbl->key_len; 591 u32 hash_val = pneigh_hash(pkey, key_len); 592 593 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 594 net, pkey, key_len, dev); 595 } 596 EXPORT_SYMBOL_GPL(__pneigh_lookup); 597 598 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 599 struct net *net, const void *pkey, 600 struct net_device *dev, int creat) 601 { 602 struct pneigh_entry *n; 603 int key_len = tbl->key_len; 604 u32 hash_val = pneigh_hash(pkey, key_len); 605 606 read_lock_bh(&tbl->lock); 607 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 608 net, pkey, key_len, dev); 609 read_unlock_bh(&tbl->lock); 610 611 if (n || !creat) 612 goto out; 613 614 ASSERT_RTNL(); 615 616 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 617 if (!n) 618 goto out; 619 620 write_pnet(&n->net, hold_net(net)); 621 memcpy(n->key, pkey, key_len); 622 n->dev = dev; 623 if (dev) 624 dev_hold(dev); 625 626 if (tbl->pconstructor && tbl->pconstructor(n)) { 627 if (dev) 628 dev_put(dev); 629 release_net(net); 630 kfree(n); 631 n = NULL; 632 goto out; 633 } 634 635 write_lock_bh(&tbl->lock); 636 n->next = tbl->phash_buckets[hash_val]; 637 tbl->phash_buckets[hash_val] = n; 638 write_unlock_bh(&tbl->lock); 639 out: 640 return n; 641 } 642 EXPORT_SYMBOL(pneigh_lookup); 643 644 645 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 646 struct net_device *dev) 647 { 648 struct pneigh_entry *n, **np; 649 int key_len = tbl->key_len; 650 u32 hash_val = pneigh_hash(pkey, key_len); 651 652 write_lock_bh(&tbl->lock); 653 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 654 np = &n->next) { 655 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 656 net_eq(pneigh_net(n), net)) { 657 *np = n->next; 658 write_unlock_bh(&tbl->lock); 659 if (tbl->pdestructor) 660 tbl->pdestructor(n); 661 if (n->dev) 662 dev_put(n->dev); 663 release_net(pneigh_net(n)); 664 kfree(n); 665 return 0; 666 } 667 } 668 write_unlock_bh(&tbl->lock); 669 return -ENOENT; 670 } 671 672 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 673 { 674 struct pneigh_entry *n, **np; 675 u32 h; 676 677 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 678 np = &tbl->phash_buckets[h]; 679 while ((n = *np) != NULL) { 680 if (!dev || n->dev == dev) { 681 *np = n->next; 682 if (tbl->pdestructor) 683 tbl->pdestructor(n); 684 if (n->dev) 685 dev_put(n->dev); 686 release_net(pneigh_net(n)); 687 kfree(n); 688 continue; 689 } 690 np = &n->next; 691 } 692 } 693 return -ENOENT; 694 } 695 696 static void neigh_parms_destroy(struct neigh_parms *parms); 697 698 static inline void neigh_parms_put(struct neigh_parms *parms) 699 { 700 if (atomic_dec_and_test(&parms->refcnt)) 701 neigh_parms_destroy(parms); 702 } 703 704 /* 705 * neighbour must already be out of the table; 706 * 707 */ 708 void neigh_destroy(struct neighbour *neigh) 709 { 710 struct net_device *dev = neigh->dev; 711 712 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 713 714 if (!neigh->dead) { 715 printk(KERN_WARNING 716 "Destroying alive neighbour %p\n", neigh); 717 dump_stack(); 718 return; 719 } 720 721 if (neigh_del_timer(neigh)) 722 printk(KERN_WARNING "Impossible event.\n"); 723 724 skb_queue_purge(&neigh->arp_queue); 725 neigh->arp_queue_len_bytes = 0; 726 727 if (dev->netdev_ops->ndo_neigh_destroy) 728 dev->netdev_ops->ndo_neigh_destroy(neigh); 729 730 dev_put(dev); 731 neigh_parms_put(neigh->parms); 732 733 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh); 734 735 atomic_dec(&neigh->tbl->entries); 736 kfree_rcu(neigh, rcu); 737 } 738 EXPORT_SYMBOL(neigh_destroy); 739 740 /* Neighbour state is suspicious; 741 disable fast path. 742 743 Called with write_locked neigh. 744 */ 745 static void neigh_suspect(struct neighbour *neigh) 746 { 747 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 748 749 neigh->output = neigh->ops->output; 750 } 751 752 /* Neighbour state is OK; 753 enable fast path. 754 755 Called with write_locked neigh. 756 */ 757 static void neigh_connect(struct neighbour *neigh) 758 { 759 NEIGH_PRINTK2("neigh %p is connected.\n", neigh); 760 761 neigh->output = neigh->ops->connected_output; 762 } 763 764 static void neigh_periodic_work(struct work_struct *work) 765 { 766 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 767 struct neighbour *n; 768 struct neighbour __rcu **np; 769 unsigned int i; 770 struct neigh_hash_table *nht; 771 772 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 773 774 write_lock_bh(&tbl->lock); 775 nht = rcu_dereference_protected(tbl->nht, 776 lockdep_is_held(&tbl->lock)); 777 778 /* 779 * periodically recompute ReachableTime from random function 780 */ 781 782 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 783 struct neigh_parms *p; 784 tbl->last_rand = jiffies; 785 for (p = &tbl->parms; p; p = p->next) 786 p->reachable_time = 787 neigh_rand_reach_time(p->base_reachable_time); 788 } 789 790 for (i = 0 ; i < (1 << nht->hash_shift); i++) { 791 np = &nht->hash_buckets[i]; 792 793 while ((n = rcu_dereference_protected(*np, 794 lockdep_is_held(&tbl->lock))) != NULL) { 795 unsigned int state; 796 797 write_lock(&n->lock); 798 799 state = n->nud_state; 800 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) { 801 write_unlock(&n->lock); 802 goto next_elt; 803 } 804 805 if (time_before(n->used, n->confirmed)) 806 n->used = n->confirmed; 807 808 if (atomic_read(&n->refcnt) == 1 && 809 (state == NUD_FAILED || 810 time_after(jiffies, n->used + n->parms->gc_staletime))) { 811 *np = n->next; 812 n->dead = 1; 813 write_unlock(&n->lock); 814 neigh_cleanup_and_release(n); 815 continue; 816 } 817 write_unlock(&n->lock); 818 819 next_elt: 820 np = &n->next; 821 } 822 /* 823 * It's fine to release lock here, even if hash table 824 * grows while we are preempted. 825 */ 826 write_unlock_bh(&tbl->lock); 827 cond_resched(); 828 write_lock_bh(&tbl->lock); 829 nht = rcu_dereference_protected(tbl->nht, 830 lockdep_is_held(&tbl->lock)); 831 } 832 /* Cycle through all hash buckets every base_reachable_time/2 ticks. 833 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2 834 * base_reachable_time. 835 */ 836 schedule_delayed_work(&tbl->gc_work, 837 tbl->parms.base_reachable_time >> 1); 838 write_unlock_bh(&tbl->lock); 839 } 840 841 static __inline__ int neigh_max_probes(struct neighbour *n) 842 { 843 struct neigh_parms *p = n->parms; 844 return (n->nud_state & NUD_PROBE) ? 845 p->ucast_probes : 846 p->ucast_probes + p->app_probes + p->mcast_probes; 847 } 848 849 static void neigh_invalidate(struct neighbour *neigh) 850 __releases(neigh->lock) 851 __acquires(neigh->lock) 852 { 853 struct sk_buff *skb; 854 855 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 856 NEIGH_PRINTK2("neigh %p is failed.\n", neigh); 857 neigh->updated = jiffies; 858 859 /* It is very thin place. report_unreachable is very complicated 860 routine. Particularly, it can hit the same neighbour entry! 861 862 So that, we try to be accurate and avoid dead loop. --ANK 863 */ 864 while (neigh->nud_state == NUD_FAILED && 865 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 866 write_unlock(&neigh->lock); 867 neigh->ops->error_report(neigh, skb); 868 write_lock(&neigh->lock); 869 } 870 skb_queue_purge(&neigh->arp_queue); 871 neigh->arp_queue_len_bytes = 0; 872 } 873 874 static void neigh_probe(struct neighbour *neigh) 875 __releases(neigh->lock) 876 { 877 struct sk_buff *skb = skb_peek(&neigh->arp_queue); 878 /* keep skb alive even if arp_queue overflows */ 879 if (skb) 880 skb = skb_copy(skb, GFP_ATOMIC); 881 write_unlock(&neigh->lock); 882 neigh->ops->solicit(neigh, skb); 883 atomic_inc(&neigh->probes); 884 kfree_skb(skb); 885 } 886 887 /* Called when a timer expires for a neighbour entry. */ 888 889 static void neigh_timer_handler(unsigned long arg) 890 { 891 unsigned long now, next; 892 struct neighbour *neigh = (struct neighbour *)arg; 893 unsigned state; 894 int notify = 0; 895 896 write_lock(&neigh->lock); 897 898 state = neigh->nud_state; 899 now = jiffies; 900 next = now + HZ; 901 902 if (!(state & NUD_IN_TIMER)) 903 goto out; 904 905 if (state & NUD_REACHABLE) { 906 if (time_before_eq(now, 907 neigh->confirmed + neigh->parms->reachable_time)) { 908 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh); 909 next = neigh->confirmed + neigh->parms->reachable_time; 910 } else if (time_before_eq(now, 911 neigh->used + neigh->parms->delay_probe_time)) { 912 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 913 neigh->nud_state = NUD_DELAY; 914 neigh->updated = jiffies; 915 neigh_suspect(neigh); 916 next = now + neigh->parms->delay_probe_time; 917 } else { 918 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 919 neigh->nud_state = NUD_STALE; 920 neigh->updated = jiffies; 921 neigh_suspect(neigh); 922 notify = 1; 923 } 924 } else if (state & NUD_DELAY) { 925 if (time_before_eq(now, 926 neigh->confirmed + neigh->parms->delay_probe_time)) { 927 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh); 928 neigh->nud_state = NUD_REACHABLE; 929 neigh->updated = jiffies; 930 neigh_connect(neigh); 931 notify = 1; 932 next = neigh->confirmed + neigh->parms->reachable_time; 933 } else { 934 NEIGH_PRINTK2("neigh %p is probed.\n", neigh); 935 neigh->nud_state = NUD_PROBE; 936 neigh->updated = jiffies; 937 atomic_set(&neigh->probes, 0); 938 next = now + neigh->parms->retrans_time; 939 } 940 } else { 941 /* NUD_PROBE|NUD_INCOMPLETE */ 942 next = now + neigh->parms->retrans_time; 943 } 944 945 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 946 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 947 neigh->nud_state = NUD_FAILED; 948 notify = 1; 949 neigh_invalidate(neigh); 950 } 951 952 if (neigh->nud_state & NUD_IN_TIMER) { 953 if (time_before(next, jiffies + HZ/2)) 954 next = jiffies + HZ/2; 955 if (!mod_timer(&neigh->timer, next)) 956 neigh_hold(neigh); 957 } 958 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 959 neigh_probe(neigh); 960 } else { 961 out: 962 write_unlock(&neigh->lock); 963 } 964 965 if (notify) 966 neigh_update_notify(neigh); 967 968 neigh_release(neigh); 969 } 970 971 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 972 { 973 int rc; 974 bool immediate_probe = false; 975 976 write_lock_bh(&neigh->lock); 977 978 rc = 0; 979 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 980 goto out_unlock_bh; 981 982 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 983 if (neigh->parms->mcast_probes + neigh->parms->app_probes) { 984 unsigned long next, now = jiffies; 985 986 atomic_set(&neigh->probes, neigh->parms->ucast_probes); 987 neigh->nud_state = NUD_INCOMPLETE; 988 neigh->updated = now; 989 next = now + max(neigh->parms->retrans_time, HZ/2); 990 neigh_add_timer(neigh, next); 991 immediate_probe = true; 992 } else { 993 neigh->nud_state = NUD_FAILED; 994 neigh->updated = jiffies; 995 write_unlock_bh(&neigh->lock); 996 997 kfree_skb(skb); 998 return 1; 999 } 1000 } else if (neigh->nud_state & NUD_STALE) { 1001 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 1002 neigh->nud_state = NUD_DELAY; 1003 neigh->updated = jiffies; 1004 neigh_add_timer(neigh, 1005 jiffies + neigh->parms->delay_probe_time); 1006 } 1007 1008 if (neigh->nud_state == NUD_INCOMPLETE) { 1009 if (skb) { 1010 while (neigh->arp_queue_len_bytes + skb->truesize > 1011 neigh->parms->queue_len_bytes) { 1012 struct sk_buff *buff; 1013 1014 buff = __skb_dequeue(&neigh->arp_queue); 1015 if (!buff) 1016 break; 1017 neigh->arp_queue_len_bytes -= buff->truesize; 1018 kfree_skb(buff); 1019 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 1020 } 1021 skb_dst_force(skb); 1022 __skb_queue_tail(&neigh->arp_queue, skb); 1023 neigh->arp_queue_len_bytes += skb->truesize; 1024 } 1025 rc = 1; 1026 } 1027 out_unlock_bh: 1028 if (immediate_probe) 1029 neigh_probe(neigh); 1030 else 1031 write_unlock(&neigh->lock); 1032 local_bh_enable(); 1033 return rc; 1034 } 1035 EXPORT_SYMBOL(__neigh_event_send); 1036 1037 static void neigh_update_hhs(struct neighbour *neigh) 1038 { 1039 struct hh_cache *hh; 1040 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 1041 = NULL; 1042 1043 if (neigh->dev->header_ops) 1044 update = neigh->dev->header_ops->cache_update; 1045 1046 if (update) { 1047 hh = &neigh->hh; 1048 if (hh->hh_len) { 1049 write_seqlock_bh(&hh->hh_lock); 1050 update(hh, neigh->dev, neigh->ha); 1051 write_sequnlock_bh(&hh->hh_lock); 1052 } 1053 } 1054 } 1055 1056 1057 1058 /* Generic update routine. 1059 -- lladdr is new lladdr or NULL, if it is not supplied. 1060 -- new is new state. 1061 -- flags 1062 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 1063 if it is different. 1064 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 1065 lladdr instead of overriding it 1066 if it is different. 1067 It also allows to retain current state 1068 if lladdr is unchanged. 1069 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 1070 1071 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 1072 NTF_ROUTER flag. 1073 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 1074 a router. 1075 1076 Caller MUST hold reference count on the entry. 1077 */ 1078 1079 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 1080 u32 flags) 1081 { 1082 u8 old; 1083 int err; 1084 int notify = 0; 1085 struct net_device *dev; 1086 int update_isrouter = 0; 1087 1088 write_lock_bh(&neigh->lock); 1089 1090 dev = neigh->dev; 1091 old = neigh->nud_state; 1092 err = -EPERM; 1093 1094 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 1095 (old & (NUD_NOARP | NUD_PERMANENT))) 1096 goto out; 1097 1098 if (!(new & NUD_VALID)) { 1099 neigh_del_timer(neigh); 1100 if (old & NUD_CONNECTED) 1101 neigh_suspect(neigh); 1102 neigh->nud_state = new; 1103 err = 0; 1104 notify = old & NUD_VALID; 1105 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1106 (new & NUD_FAILED)) { 1107 neigh_invalidate(neigh); 1108 notify = 1; 1109 } 1110 goto out; 1111 } 1112 1113 /* Compare new lladdr with cached one */ 1114 if (!dev->addr_len) { 1115 /* First case: device needs no address. */ 1116 lladdr = neigh->ha; 1117 } else if (lladdr) { 1118 /* The second case: if something is already cached 1119 and a new address is proposed: 1120 - compare new & old 1121 - if they are different, check override flag 1122 */ 1123 if ((old & NUD_VALID) && 1124 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1125 lladdr = neigh->ha; 1126 } else { 1127 /* No address is supplied; if we know something, 1128 use it, otherwise discard the request. 1129 */ 1130 err = -EINVAL; 1131 if (!(old & NUD_VALID)) 1132 goto out; 1133 lladdr = neigh->ha; 1134 } 1135 1136 if (new & NUD_CONNECTED) 1137 neigh->confirmed = jiffies; 1138 neigh->updated = jiffies; 1139 1140 /* If entry was valid and address is not changed, 1141 do not change entry state, if new one is STALE. 1142 */ 1143 err = 0; 1144 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1145 if (old & NUD_VALID) { 1146 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1147 update_isrouter = 0; 1148 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1149 (old & NUD_CONNECTED)) { 1150 lladdr = neigh->ha; 1151 new = NUD_STALE; 1152 } else 1153 goto out; 1154 } else { 1155 if (lladdr == neigh->ha && new == NUD_STALE && 1156 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) || 1157 (old & NUD_CONNECTED)) 1158 ) 1159 new = old; 1160 } 1161 } 1162 1163 if (new != old) { 1164 neigh_del_timer(neigh); 1165 if (new & NUD_IN_TIMER) 1166 neigh_add_timer(neigh, (jiffies + 1167 ((new & NUD_REACHABLE) ? 1168 neigh->parms->reachable_time : 1169 0))); 1170 neigh->nud_state = new; 1171 } 1172 1173 if (lladdr != neigh->ha) { 1174 write_seqlock(&neigh->ha_lock); 1175 memcpy(&neigh->ha, lladdr, dev->addr_len); 1176 write_sequnlock(&neigh->ha_lock); 1177 neigh_update_hhs(neigh); 1178 if (!(new & NUD_CONNECTED)) 1179 neigh->confirmed = jiffies - 1180 (neigh->parms->base_reachable_time << 1); 1181 notify = 1; 1182 } 1183 if (new == old) 1184 goto out; 1185 if (new & NUD_CONNECTED) 1186 neigh_connect(neigh); 1187 else 1188 neigh_suspect(neigh); 1189 if (!(old & NUD_VALID)) { 1190 struct sk_buff *skb; 1191 1192 /* Again: avoid dead loop if something went wrong */ 1193 1194 while (neigh->nud_state & NUD_VALID && 1195 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1196 struct dst_entry *dst = skb_dst(skb); 1197 struct neighbour *n2, *n1 = neigh; 1198 write_unlock_bh(&neigh->lock); 1199 1200 rcu_read_lock(); 1201 /* On shaper/eql skb->dst->neighbour != neigh :( */ 1202 if (dst && (n2 = dst_get_neighbour_noref(dst)) != NULL) 1203 n1 = n2; 1204 n1->output(n1, skb); 1205 rcu_read_unlock(); 1206 1207 write_lock_bh(&neigh->lock); 1208 } 1209 skb_queue_purge(&neigh->arp_queue); 1210 neigh->arp_queue_len_bytes = 0; 1211 } 1212 out: 1213 if (update_isrouter) { 1214 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ? 1215 (neigh->flags | NTF_ROUTER) : 1216 (neigh->flags & ~NTF_ROUTER); 1217 } 1218 write_unlock_bh(&neigh->lock); 1219 1220 if (notify) 1221 neigh_update_notify(neigh); 1222 1223 return err; 1224 } 1225 EXPORT_SYMBOL(neigh_update); 1226 1227 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1228 u8 *lladdr, void *saddr, 1229 struct net_device *dev) 1230 { 1231 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1232 lladdr || !dev->addr_len); 1233 if (neigh) 1234 neigh_update(neigh, lladdr, NUD_STALE, 1235 NEIGH_UPDATE_F_OVERRIDE); 1236 return neigh; 1237 } 1238 EXPORT_SYMBOL(neigh_event_ns); 1239 1240 /* called with read_lock_bh(&n->lock); */ 1241 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst) 1242 { 1243 struct net_device *dev = dst->dev; 1244 __be16 prot = dst->ops->protocol; 1245 struct hh_cache *hh = &n->hh; 1246 1247 write_lock_bh(&n->lock); 1248 1249 /* Only one thread can come in here and initialize the 1250 * hh_cache entry. 1251 */ 1252 if (!hh->hh_len) 1253 dev->header_ops->cache(n, hh, prot); 1254 1255 write_unlock_bh(&n->lock); 1256 } 1257 1258 /* This function can be used in contexts, where only old dev_queue_xmit 1259 * worked, f.e. if you want to override normal output path (eql, shaper), 1260 * but resolution is not made yet. 1261 */ 1262 1263 int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb) 1264 { 1265 struct net_device *dev = skb->dev; 1266 1267 __skb_pull(skb, skb_network_offset(skb)); 1268 1269 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL, 1270 skb->len) < 0 && 1271 dev->header_ops->rebuild(skb)) 1272 return 0; 1273 1274 return dev_queue_xmit(skb); 1275 } 1276 EXPORT_SYMBOL(neigh_compat_output); 1277 1278 /* Slow and careful. */ 1279 1280 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) 1281 { 1282 struct dst_entry *dst = skb_dst(skb); 1283 int rc = 0; 1284 1285 if (!dst) 1286 goto discard; 1287 1288 __skb_pull(skb, skb_network_offset(skb)); 1289 1290 if (!neigh_event_send(neigh, skb)) { 1291 int err; 1292 struct net_device *dev = neigh->dev; 1293 unsigned int seq; 1294 1295 if (dev->header_ops->cache && !neigh->hh.hh_len) 1296 neigh_hh_init(neigh, dst); 1297 1298 do { 1299 seq = read_seqbegin(&neigh->ha_lock); 1300 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1301 neigh->ha, NULL, skb->len); 1302 } while (read_seqretry(&neigh->ha_lock, seq)); 1303 1304 if (err >= 0) 1305 rc = dev_queue_xmit(skb); 1306 else 1307 goto out_kfree_skb; 1308 } 1309 out: 1310 return rc; 1311 discard: 1312 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n", 1313 dst, neigh); 1314 out_kfree_skb: 1315 rc = -EINVAL; 1316 kfree_skb(skb); 1317 goto out; 1318 } 1319 EXPORT_SYMBOL(neigh_resolve_output); 1320 1321 /* As fast as possible without hh cache */ 1322 1323 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) 1324 { 1325 struct net_device *dev = neigh->dev; 1326 unsigned int seq; 1327 int err; 1328 1329 __skb_pull(skb, skb_network_offset(skb)); 1330 1331 do { 1332 seq = read_seqbegin(&neigh->ha_lock); 1333 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1334 neigh->ha, NULL, skb->len); 1335 } while (read_seqretry(&neigh->ha_lock, seq)); 1336 1337 if (err >= 0) 1338 err = dev_queue_xmit(skb); 1339 else { 1340 err = -EINVAL; 1341 kfree_skb(skb); 1342 } 1343 return err; 1344 } 1345 EXPORT_SYMBOL(neigh_connected_output); 1346 1347 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) 1348 { 1349 return dev_queue_xmit(skb); 1350 } 1351 EXPORT_SYMBOL(neigh_direct_output); 1352 1353 static void neigh_proxy_process(unsigned long arg) 1354 { 1355 struct neigh_table *tbl = (struct neigh_table *)arg; 1356 long sched_next = 0; 1357 unsigned long now = jiffies; 1358 struct sk_buff *skb, *n; 1359 1360 spin_lock(&tbl->proxy_queue.lock); 1361 1362 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1363 long tdif = NEIGH_CB(skb)->sched_next - now; 1364 1365 if (tdif <= 0) { 1366 struct net_device *dev = skb->dev; 1367 1368 __skb_unlink(skb, &tbl->proxy_queue); 1369 if (tbl->proxy_redo && netif_running(dev)) { 1370 rcu_read_lock(); 1371 tbl->proxy_redo(skb); 1372 rcu_read_unlock(); 1373 } else { 1374 kfree_skb(skb); 1375 } 1376 1377 dev_put(dev); 1378 } else if (!sched_next || tdif < sched_next) 1379 sched_next = tdif; 1380 } 1381 del_timer(&tbl->proxy_timer); 1382 if (sched_next) 1383 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1384 spin_unlock(&tbl->proxy_queue.lock); 1385 } 1386 1387 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1388 struct sk_buff *skb) 1389 { 1390 unsigned long now = jiffies; 1391 unsigned long sched_next = now + (net_random() % p->proxy_delay); 1392 1393 if (tbl->proxy_queue.qlen > p->proxy_qlen) { 1394 kfree_skb(skb); 1395 return; 1396 } 1397 1398 NEIGH_CB(skb)->sched_next = sched_next; 1399 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1400 1401 spin_lock(&tbl->proxy_queue.lock); 1402 if (del_timer(&tbl->proxy_timer)) { 1403 if (time_before(tbl->proxy_timer.expires, sched_next)) 1404 sched_next = tbl->proxy_timer.expires; 1405 } 1406 skb_dst_drop(skb); 1407 dev_hold(skb->dev); 1408 __skb_queue_tail(&tbl->proxy_queue, skb); 1409 mod_timer(&tbl->proxy_timer, sched_next); 1410 spin_unlock(&tbl->proxy_queue.lock); 1411 } 1412 EXPORT_SYMBOL(pneigh_enqueue); 1413 1414 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1415 struct net *net, int ifindex) 1416 { 1417 struct neigh_parms *p; 1418 1419 for (p = &tbl->parms; p; p = p->next) { 1420 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1421 (!p->dev && !ifindex)) 1422 return p; 1423 } 1424 1425 return NULL; 1426 } 1427 1428 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1429 struct neigh_table *tbl) 1430 { 1431 struct neigh_parms *p, *ref; 1432 struct net *net = dev_net(dev); 1433 const struct net_device_ops *ops = dev->netdev_ops; 1434 1435 ref = lookup_neigh_parms(tbl, net, 0); 1436 if (!ref) 1437 return NULL; 1438 1439 p = kmemdup(ref, sizeof(*p), GFP_KERNEL); 1440 if (p) { 1441 p->tbl = tbl; 1442 atomic_set(&p->refcnt, 1); 1443 p->reachable_time = 1444 neigh_rand_reach_time(p->base_reachable_time); 1445 1446 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1447 kfree(p); 1448 return NULL; 1449 } 1450 1451 dev_hold(dev); 1452 p->dev = dev; 1453 write_pnet(&p->net, hold_net(net)); 1454 p->sysctl_table = NULL; 1455 write_lock_bh(&tbl->lock); 1456 p->next = tbl->parms.next; 1457 tbl->parms.next = p; 1458 write_unlock_bh(&tbl->lock); 1459 } 1460 return p; 1461 } 1462 EXPORT_SYMBOL(neigh_parms_alloc); 1463 1464 static void neigh_rcu_free_parms(struct rcu_head *head) 1465 { 1466 struct neigh_parms *parms = 1467 container_of(head, struct neigh_parms, rcu_head); 1468 1469 neigh_parms_put(parms); 1470 } 1471 1472 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1473 { 1474 struct neigh_parms **p; 1475 1476 if (!parms || parms == &tbl->parms) 1477 return; 1478 write_lock_bh(&tbl->lock); 1479 for (p = &tbl->parms.next; *p; p = &(*p)->next) { 1480 if (*p == parms) { 1481 *p = parms->next; 1482 parms->dead = 1; 1483 write_unlock_bh(&tbl->lock); 1484 if (parms->dev) 1485 dev_put(parms->dev); 1486 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1487 return; 1488 } 1489 } 1490 write_unlock_bh(&tbl->lock); 1491 NEIGH_PRINTK1("neigh_parms_release: not found\n"); 1492 } 1493 EXPORT_SYMBOL(neigh_parms_release); 1494 1495 static void neigh_parms_destroy(struct neigh_parms *parms) 1496 { 1497 release_net(neigh_parms_net(parms)); 1498 kfree(parms); 1499 } 1500 1501 static struct lock_class_key neigh_table_proxy_queue_class; 1502 1503 void neigh_table_init_no_netlink(struct neigh_table *tbl) 1504 { 1505 unsigned long now = jiffies; 1506 unsigned long phsize; 1507 1508 write_pnet(&tbl->parms.net, &init_net); 1509 atomic_set(&tbl->parms.refcnt, 1); 1510 tbl->parms.reachable_time = 1511 neigh_rand_reach_time(tbl->parms.base_reachable_time); 1512 1513 tbl->stats = alloc_percpu(struct neigh_statistics); 1514 if (!tbl->stats) 1515 panic("cannot create neighbour cache statistics"); 1516 1517 #ifdef CONFIG_PROC_FS 1518 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat, 1519 &neigh_stat_seq_fops, tbl)) 1520 panic("cannot create neighbour proc dir entry"); 1521 #endif 1522 1523 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); 1524 1525 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1526 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1527 1528 if (!tbl->nht || !tbl->phash_buckets) 1529 panic("cannot allocate neighbour cache hashes"); 1530 1531 rwlock_init(&tbl->lock); 1532 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work); 1533 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time); 1534 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl); 1535 skb_queue_head_init_class(&tbl->proxy_queue, 1536 &neigh_table_proxy_queue_class); 1537 1538 tbl->last_flush = now; 1539 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1540 } 1541 EXPORT_SYMBOL(neigh_table_init_no_netlink); 1542 1543 void neigh_table_init(struct neigh_table *tbl) 1544 { 1545 struct neigh_table *tmp; 1546 1547 neigh_table_init_no_netlink(tbl); 1548 write_lock(&neigh_tbl_lock); 1549 for (tmp = neigh_tables; tmp; tmp = tmp->next) { 1550 if (tmp->family == tbl->family) 1551 break; 1552 } 1553 tbl->next = neigh_tables; 1554 neigh_tables = tbl; 1555 write_unlock(&neigh_tbl_lock); 1556 1557 if (unlikely(tmp)) { 1558 printk(KERN_ERR "NEIGH: Registering multiple tables for " 1559 "family %d\n", tbl->family); 1560 dump_stack(); 1561 } 1562 } 1563 EXPORT_SYMBOL(neigh_table_init); 1564 1565 int neigh_table_clear(struct neigh_table *tbl) 1566 { 1567 struct neigh_table **tp; 1568 1569 /* It is not clean... Fix it to unload IPv6 module safely */ 1570 cancel_delayed_work_sync(&tbl->gc_work); 1571 del_timer_sync(&tbl->proxy_timer); 1572 pneigh_queue_purge(&tbl->proxy_queue); 1573 neigh_ifdown(tbl, NULL); 1574 if (atomic_read(&tbl->entries)) 1575 printk(KERN_CRIT "neighbour leakage\n"); 1576 write_lock(&neigh_tbl_lock); 1577 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) { 1578 if (*tp == tbl) { 1579 *tp = tbl->next; 1580 break; 1581 } 1582 } 1583 write_unlock(&neigh_tbl_lock); 1584 1585 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, 1586 neigh_hash_free_rcu); 1587 tbl->nht = NULL; 1588 1589 kfree(tbl->phash_buckets); 1590 tbl->phash_buckets = NULL; 1591 1592 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1593 1594 free_percpu(tbl->stats); 1595 tbl->stats = NULL; 1596 1597 return 0; 1598 } 1599 EXPORT_SYMBOL(neigh_table_clear); 1600 1601 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1602 { 1603 struct net *net = sock_net(skb->sk); 1604 struct ndmsg *ndm; 1605 struct nlattr *dst_attr; 1606 struct neigh_table *tbl; 1607 struct net_device *dev = NULL; 1608 int err = -EINVAL; 1609 1610 ASSERT_RTNL(); 1611 if (nlmsg_len(nlh) < sizeof(*ndm)) 1612 goto out; 1613 1614 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1615 if (dst_attr == NULL) 1616 goto out; 1617 1618 ndm = nlmsg_data(nlh); 1619 if (ndm->ndm_ifindex) { 1620 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1621 if (dev == NULL) { 1622 err = -ENODEV; 1623 goto out; 1624 } 1625 } 1626 1627 read_lock(&neigh_tbl_lock); 1628 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1629 struct neighbour *neigh; 1630 1631 if (tbl->family != ndm->ndm_family) 1632 continue; 1633 read_unlock(&neigh_tbl_lock); 1634 1635 if (nla_len(dst_attr) < tbl->key_len) 1636 goto out; 1637 1638 if (ndm->ndm_flags & NTF_PROXY) { 1639 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1640 goto out; 1641 } 1642 1643 if (dev == NULL) 1644 goto out; 1645 1646 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1647 if (neigh == NULL) { 1648 err = -ENOENT; 1649 goto out; 1650 } 1651 1652 err = neigh_update(neigh, NULL, NUD_FAILED, 1653 NEIGH_UPDATE_F_OVERRIDE | 1654 NEIGH_UPDATE_F_ADMIN); 1655 neigh_release(neigh); 1656 goto out; 1657 } 1658 read_unlock(&neigh_tbl_lock); 1659 err = -EAFNOSUPPORT; 1660 1661 out: 1662 return err; 1663 } 1664 1665 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1666 { 1667 struct net *net = sock_net(skb->sk); 1668 struct ndmsg *ndm; 1669 struct nlattr *tb[NDA_MAX+1]; 1670 struct neigh_table *tbl; 1671 struct net_device *dev = NULL; 1672 int err; 1673 1674 ASSERT_RTNL(); 1675 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL); 1676 if (err < 0) 1677 goto out; 1678 1679 err = -EINVAL; 1680 if (tb[NDA_DST] == NULL) 1681 goto out; 1682 1683 ndm = nlmsg_data(nlh); 1684 if (ndm->ndm_ifindex) { 1685 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1686 if (dev == NULL) { 1687 err = -ENODEV; 1688 goto out; 1689 } 1690 1691 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) 1692 goto out; 1693 } 1694 1695 read_lock(&neigh_tbl_lock); 1696 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1697 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE; 1698 struct neighbour *neigh; 1699 void *dst, *lladdr; 1700 1701 if (tbl->family != ndm->ndm_family) 1702 continue; 1703 read_unlock(&neigh_tbl_lock); 1704 1705 if (nla_len(tb[NDA_DST]) < tbl->key_len) 1706 goto out; 1707 dst = nla_data(tb[NDA_DST]); 1708 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1709 1710 if (ndm->ndm_flags & NTF_PROXY) { 1711 struct pneigh_entry *pn; 1712 1713 err = -ENOBUFS; 1714 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1715 if (pn) { 1716 pn->flags = ndm->ndm_flags; 1717 err = 0; 1718 } 1719 goto out; 1720 } 1721 1722 if (dev == NULL) 1723 goto out; 1724 1725 neigh = neigh_lookup(tbl, dst, dev); 1726 if (neigh == NULL) { 1727 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1728 err = -ENOENT; 1729 goto out; 1730 } 1731 1732 neigh = __neigh_lookup_errno(tbl, dst, dev); 1733 if (IS_ERR(neigh)) { 1734 err = PTR_ERR(neigh); 1735 goto out; 1736 } 1737 } else { 1738 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1739 err = -EEXIST; 1740 neigh_release(neigh); 1741 goto out; 1742 } 1743 1744 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1745 flags &= ~NEIGH_UPDATE_F_OVERRIDE; 1746 } 1747 1748 if (ndm->ndm_flags & NTF_USE) { 1749 neigh_event_send(neigh, NULL); 1750 err = 0; 1751 } else 1752 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags); 1753 neigh_release(neigh); 1754 goto out; 1755 } 1756 1757 read_unlock(&neigh_tbl_lock); 1758 err = -EAFNOSUPPORT; 1759 out: 1760 return err; 1761 } 1762 1763 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1764 { 1765 struct nlattr *nest; 1766 1767 nest = nla_nest_start(skb, NDTA_PARMS); 1768 if (nest == NULL) 1769 return -ENOBUFS; 1770 1771 if (parms->dev) 1772 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex); 1773 1774 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)); 1775 NLA_PUT_U32(skb, NDTPA_QUEUE_LENBYTES, parms->queue_len_bytes); 1776 /* approximative value for deprecated QUEUE_LEN (in packets) */ 1777 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, 1778 DIV_ROUND_UP(parms->queue_len_bytes, 1779 SKB_TRUESIZE(ETH_FRAME_LEN))); 1780 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen); 1781 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes); 1782 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes); 1783 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes); 1784 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time); 1785 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME, 1786 parms->base_reachable_time); 1787 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime); 1788 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time); 1789 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time); 1790 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay); 1791 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay); 1792 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime); 1793 1794 return nla_nest_end(skb, nest); 1795 1796 nla_put_failure: 1797 nla_nest_cancel(skb, nest); 1798 return -EMSGSIZE; 1799 } 1800 1801 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 1802 u32 pid, u32 seq, int type, int flags) 1803 { 1804 struct nlmsghdr *nlh; 1805 struct ndtmsg *ndtmsg; 1806 1807 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1808 if (nlh == NULL) 1809 return -EMSGSIZE; 1810 1811 ndtmsg = nlmsg_data(nlh); 1812 1813 read_lock_bh(&tbl->lock); 1814 ndtmsg->ndtm_family = tbl->family; 1815 ndtmsg->ndtm_pad1 = 0; 1816 ndtmsg->ndtm_pad2 = 0; 1817 1818 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id); 1819 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval); 1820 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1); 1821 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2); 1822 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3); 1823 1824 { 1825 unsigned long now = jiffies; 1826 unsigned int flush_delta = now - tbl->last_flush; 1827 unsigned int rand_delta = now - tbl->last_rand; 1828 struct neigh_hash_table *nht; 1829 struct ndt_config ndc = { 1830 .ndtc_key_len = tbl->key_len, 1831 .ndtc_entry_size = tbl->entry_size, 1832 .ndtc_entries = atomic_read(&tbl->entries), 1833 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 1834 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 1835 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 1836 }; 1837 1838 rcu_read_lock_bh(); 1839 nht = rcu_dereference_bh(tbl->nht); 1840 ndc.ndtc_hash_rnd = nht->hash_rnd[0]; 1841 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); 1842 rcu_read_unlock_bh(); 1843 1844 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc); 1845 } 1846 1847 { 1848 int cpu; 1849 struct ndt_stats ndst; 1850 1851 memset(&ndst, 0, sizeof(ndst)); 1852 1853 for_each_possible_cpu(cpu) { 1854 struct neigh_statistics *st; 1855 1856 st = per_cpu_ptr(tbl->stats, cpu); 1857 ndst.ndts_allocs += st->allocs; 1858 ndst.ndts_destroys += st->destroys; 1859 ndst.ndts_hash_grows += st->hash_grows; 1860 ndst.ndts_res_failed += st->res_failed; 1861 ndst.ndts_lookups += st->lookups; 1862 ndst.ndts_hits += st->hits; 1863 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 1864 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 1865 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 1866 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 1867 } 1868 1869 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst); 1870 } 1871 1872 BUG_ON(tbl->parms.dev); 1873 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 1874 goto nla_put_failure; 1875 1876 read_unlock_bh(&tbl->lock); 1877 return nlmsg_end(skb, nlh); 1878 1879 nla_put_failure: 1880 read_unlock_bh(&tbl->lock); 1881 nlmsg_cancel(skb, nlh); 1882 return -EMSGSIZE; 1883 } 1884 1885 static int neightbl_fill_param_info(struct sk_buff *skb, 1886 struct neigh_table *tbl, 1887 struct neigh_parms *parms, 1888 u32 pid, u32 seq, int type, 1889 unsigned int flags) 1890 { 1891 struct ndtmsg *ndtmsg; 1892 struct nlmsghdr *nlh; 1893 1894 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1895 if (nlh == NULL) 1896 return -EMSGSIZE; 1897 1898 ndtmsg = nlmsg_data(nlh); 1899 1900 read_lock_bh(&tbl->lock); 1901 ndtmsg->ndtm_family = tbl->family; 1902 ndtmsg->ndtm_pad1 = 0; 1903 ndtmsg->ndtm_pad2 = 0; 1904 1905 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 1906 neightbl_fill_parms(skb, parms) < 0) 1907 goto errout; 1908 1909 read_unlock_bh(&tbl->lock); 1910 return nlmsg_end(skb, nlh); 1911 errout: 1912 read_unlock_bh(&tbl->lock); 1913 nlmsg_cancel(skb, nlh); 1914 return -EMSGSIZE; 1915 } 1916 1917 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 1918 [NDTA_NAME] = { .type = NLA_STRING }, 1919 [NDTA_THRESH1] = { .type = NLA_U32 }, 1920 [NDTA_THRESH2] = { .type = NLA_U32 }, 1921 [NDTA_THRESH3] = { .type = NLA_U32 }, 1922 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 1923 [NDTA_PARMS] = { .type = NLA_NESTED }, 1924 }; 1925 1926 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 1927 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 1928 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 1929 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 1930 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 1931 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 1932 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 1933 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 1934 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 1935 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 1936 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 1937 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 1938 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 1939 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 1940 }; 1941 1942 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1943 { 1944 struct net *net = sock_net(skb->sk); 1945 struct neigh_table *tbl; 1946 struct ndtmsg *ndtmsg; 1947 struct nlattr *tb[NDTA_MAX+1]; 1948 int err; 1949 1950 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 1951 nl_neightbl_policy); 1952 if (err < 0) 1953 goto errout; 1954 1955 if (tb[NDTA_NAME] == NULL) { 1956 err = -EINVAL; 1957 goto errout; 1958 } 1959 1960 ndtmsg = nlmsg_data(nlh); 1961 read_lock(&neigh_tbl_lock); 1962 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1963 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 1964 continue; 1965 1966 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) 1967 break; 1968 } 1969 1970 if (tbl == NULL) { 1971 err = -ENOENT; 1972 goto errout_locked; 1973 } 1974 1975 /* 1976 * We acquire tbl->lock to be nice to the periodic timers and 1977 * make sure they always see a consistent set of values. 1978 */ 1979 write_lock_bh(&tbl->lock); 1980 1981 if (tb[NDTA_PARMS]) { 1982 struct nlattr *tbp[NDTPA_MAX+1]; 1983 struct neigh_parms *p; 1984 int i, ifindex = 0; 1985 1986 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS], 1987 nl_ntbl_parm_policy); 1988 if (err < 0) 1989 goto errout_tbl_lock; 1990 1991 if (tbp[NDTPA_IFINDEX]) 1992 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 1993 1994 p = lookup_neigh_parms(tbl, net, ifindex); 1995 if (p == NULL) { 1996 err = -ENOENT; 1997 goto errout_tbl_lock; 1998 } 1999 2000 for (i = 1; i <= NDTPA_MAX; i++) { 2001 if (tbp[i] == NULL) 2002 continue; 2003 2004 switch (i) { 2005 case NDTPA_QUEUE_LEN: 2006 p->queue_len_bytes = nla_get_u32(tbp[i]) * 2007 SKB_TRUESIZE(ETH_FRAME_LEN); 2008 break; 2009 case NDTPA_QUEUE_LENBYTES: 2010 p->queue_len_bytes = nla_get_u32(tbp[i]); 2011 break; 2012 case NDTPA_PROXY_QLEN: 2013 p->proxy_qlen = nla_get_u32(tbp[i]); 2014 break; 2015 case NDTPA_APP_PROBES: 2016 p->app_probes = nla_get_u32(tbp[i]); 2017 break; 2018 case NDTPA_UCAST_PROBES: 2019 p->ucast_probes = nla_get_u32(tbp[i]); 2020 break; 2021 case NDTPA_MCAST_PROBES: 2022 p->mcast_probes = nla_get_u32(tbp[i]); 2023 break; 2024 case NDTPA_BASE_REACHABLE_TIME: 2025 p->base_reachable_time = nla_get_msecs(tbp[i]); 2026 break; 2027 case NDTPA_GC_STALETIME: 2028 p->gc_staletime = nla_get_msecs(tbp[i]); 2029 break; 2030 case NDTPA_DELAY_PROBE_TIME: 2031 p->delay_probe_time = nla_get_msecs(tbp[i]); 2032 break; 2033 case NDTPA_RETRANS_TIME: 2034 p->retrans_time = nla_get_msecs(tbp[i]); 2035 break; 2036 case NDTPA_ANYCAST_DELAY: 2037 p->anycast_delay = nla_get_msecs(tbp[i]); 2038 break; 2039 case NDTPA_PROXY_DELAY: 2040 p->proxy_delay = nla_get_msecs(tbp[i]); 2041 break; 2042 case NDTPA_LOCKTIME: 2043 p->locktime = nla_get_msecs(tbp[i]); 2044 break; 2045 } 2046 } 2047 } 2048 2049 if (tb[NDTA_THRESH1]) 2050 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 2051 2052 if (tb[NDTA_THRESH2]) 2053 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 2054 2055 if (tb[NDTA_THRESH3]) 2056 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 2057 2058 if (tb[NDTA_GC_INTERVAL]) 2059 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 2060 2061 err = 0; 2062 2063 errout_tbl_lock: 2064 write_unlock_bh(&tbl->lock); 2065 errout_locked: 2066 read_unlock(&neigh_tbl_lock); 2067 errout: 2068 return err; 2069 } 2070 2071 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2072 { 2073 struct net *net = sock_net(skb->sk); 2074 int family, tidx, nidx = 0; 2075 int tbl_skip = cb->args[0]; 2076 int neigh_skip = cb->args[1]; 2077 struct neigh_table *tbl; 2078 2079 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2080 2081 read_lock(&neigh_tbl_lock); 2082 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) { 2083 struct neigh_parms *p; 2084 2085 if (tidx < tbl_skip || (family && tbl->family != family)) 2086 continue; 2087 2088 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid, 2089 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2090 NLM_F_MULTI) <= 0) 2091 break; 2092 2093 for (nidx = 0, p = tbl->parms.next; p; p = p->next) { 2094 if (!net_eq(neigh_parms_net(p), net)) 2095 continue; 2096 2097 if (nidx < neigh_skip) 2098 goto next; 2099 2100 if (neightbl_fill_param_info(skb, tbl, p, 2101 NETLINK_CB(cb->skb).pid, 2102 cb->nlh->nlmsg_seq, 2103 RTM_NEWNEIGHTBL, 2104 NLM_F_MULTI) <= 0) 2105 goto out; 2106 next: 2107 nidx++; 2108 } 2109 2110 neigh_skip = 0; 2111 } 2112 out: 2113 read_unlock(&neigh_tbl_lock); 2114 cb->args[0] = tidx; 2115 cb->args[1] = nidx; 2116 2117 return skb->len; 2118 } 2119 2120 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2121 u32 pid, u32 seq, int type, unsigned int flags) 2122 { 2123 unsigned long now = jiffies; 2124 struct nda_cacheinfo ci; 2125 struct nlmsghdr *nlh; 2126 struct ndmsg *ndm; 2127 2128 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2129 if (nlh == NULL) 2130 return -EMSGSIZE; 2131 2132 ndm = nlmsg_data(nlh); 2133 ndm->ndm_family = neigh->ops->family; 2134 ndm->ndm_pad1 = 0; 2135 ndm->ndm_pad2 = 0; 2136 ndm->ndm_flags = neigh->flags; 2137 ndm->ndm_type = neigh->type; 2138 ndm->ndm_ifindex = neigh->dev->ifindex; 2139 2140 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key); 2141 2142 read_lock_bh(&neigh->lock); 2143 ndm->ndm_state = neigh->nud_state; 2144 if (neigh->nud_state & NUD_VALID) { 2145 char haddr[MAX_ADDR_LEN]; 2146 2147 neigh_ha_snapshot(haddr, neigh, neigh->dev); 2148 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { 2149 read_unlock_bh(&neigh->lock); 2150 goto nla_put_failure; 2151 } 2152 } 2153 2154 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2155 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2156 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2157 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1; 2158 read_unlock_bh(&neigh->lock); 2159 2160 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes)); 2161 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci); 2162 2163 return nlmsg_end(skb, nlh); 2164 2165 nla_put_failure: 2166 nlmsg_cancel(skb, nlh); 2167 return -EMSGSIZE; 2168 } 2169 2170 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, 2171 u32 pid, u32 seq, int type, unsigned int flags, 2172 struct neigh_table *tbl) 2173 { 2174 struct nlmsghdr *nlh; 2175 struct ndmsg *ndm; 2176 2177 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2178 if (nlh == NULL) 2179 return -EMSGSIZE; 2180 2181 ndm = nlmsg_data(nlh); 2182 ndm->ndm_family = tbl->family; 2183 ndm->ndm_pad1 = 0; 2184 ndm->ndm_pad2 = 0; 2185 ndm->ndm_flags = pn->flags | NTF_PROXY; 2186 ndm->ndm_type = NDA_DST; 2187 ndm->ndm_ifindex = pn->dev->ifindex; 2188 ndm->ndm_state = NUD_NONE; 2189 2190 NLA_PUT(skb, NDA_DST, tbl->key_len, pn->key); 2191 2192 return nlmsg_end(skb, nlh); 2193 2194 nla_put_failure: 2195 nlmsg_cancel(skb, nlh); 2196 return -EMSGSIZE; 2197 } 2198 2199 static void neigh_update_notify(struct neighbour *neigh) 2200 { 2201 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2202 __neigh_notify(neigh, RTM_NEWNEIGH, 0); 2203 } 2204 2205 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2206 struct netlink_callback *cb) 2207 { 2208 struct net *net = sock_net(skb->sk); 2209 struct neighbour *n; 2210 int rc, h, s_h = cb->args[1]; 2211 int idx, s_idx = idx = cb->args[2]; 2212 struct neigh_hash_table *nht; 2213 2214 rcu_read_lock_bh(); 2215 nht = rcu_dereference_bh(tbl->nht); 2216 2217 for (h = 0; h < (1 << nht->hash_shift); h++) { 2218 if (h < s_h) 2219 continue; 2220 if (h > s_h) 2221 s_idx = 0; 2222 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; 2223 n != NULL; 2224 n = rcu_dereference_bh(n->next)) { 2225 if (!net_eq(dev_net(n->dev), net)) 2226 continue; 2227 if (idx < s_idx) 2228 goto next; 2229 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, 2230 cb->nlh->nlmsg_seq, 2231 RTM_NEWNEIGH, 2232 NLM_F_MULTI) <= 0) { 2233 rc = -1; 2234 goto out; 2235 } 2236 next: 2237 idx++; 2238 } 2239 } 2240 rc = skb->len; 2241 out: 2242 rcu_read_unlock_bh(); 2243 cb->args[1] = h; 2244 cb->args[2] = idx; 2245 return rc; 2246 } 2247 2248 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2249 struct netlink_callback *cb) 2250 { 2251 struct pneigh_entry *n; 2252 struct net *net = sock_net(skb->sk); 2253 int rc, h, s_h = cb->args[3]; 2254 int idx, s_idx = idx = cb->args[4]; 2255 2256 read_lock_bh(&tbl->lock); 2257 2258 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 2259 if (h < s_h) 2260 continue; 2261 if (h > s_h) 2262 s_idx = 0; 2263 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { 2264 if (dev_net(n->dev) != net) 2265 continue; 2266 if (idx < s_idx) 2267 goto next; 2268 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, 2269 cb->nlh->nlmsg_seq, 2270 RTM_NEWNEIGH, 2271 NLM_F_MULTI, tbl) <= 0) { 2272 read_unlock_bh(&tbl->lock); 2273 rc = -1; 2274 goto out; 2275 } 2276 next: 2277 idx++; 2278 } 2279 } 2280 2281 read_unlock_bh(&tbl->lock); 2282 rc = skb->len; 2283 out: 2284 cb->args[3] = h; 2285 cb->args[4] = idx; 2286 return rc; 2287 2288 } 2289 2290 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2291 { 2292 struct neigh_table *tbl; 2293 int t, family, s_t; 2294 int proxy = 0; 2295 int err = 0; 2296 2297 read_lock(&neigh_tbl_lock); 2298 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2299 2300 /* check for full ndmsg structure presence, family member is 2301 * the same for both structures 2302 */ 2303 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) && 2304 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY) 2305 proxy = 1; 2306 2307 s_t = cb->args[0]; 2308 2309 for (tbl = neigh_tables, t = 0; tbl && (err >= 0); 2310 tbl = tbl->next, t++) { 2311 if (t < s_t || (family && tbl->family != family)) 2312 continue; 2313 if (t > s_t) 2314 memset(&cb->args[1], 0, sizeof(cb->args) - 2315 sizeof(cb->args[0])); 2316 if (proxy) 2317 err = pneigh_dump_table(tbl, skb, cb); 2318 else 2319 err = neigh_dump_table(tbl, skb, cb); 2320 } 2321 read_unlock(&neigh_tbl_lock); 2322 2323 cb->args[0] = t; 2324 return skb->len; 2325 } 2326 2327 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2328 { 2329 int chain; 2330 struct neigh_hash_table *nht; 2331 2332 rcu_read_lock_bh(); 2333 nht = rcu_dereference_bh(tbl->nht); 2334 2335 read_lock(&tbl->lock); /* avoid resizes */ 2336 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2337 struct neighbour *n; 2338 2339 for (n = rcu_dereference_bh(nht->hash_buckets[chain]); 2340 n != NULL; 2341 n = rcu_dereference_bh(n->next)) 2342 cb(n, cookie); 2343 } 2344 read_unlock(&tbl->lock); 2345 rcu_read_unlock_bh(); 2346 } 2347 EXPORT_SYMBOL(neigh_for_each); 2348 2349 /* The tbl->lock must be held as a writer and BH disabled. */ 2350 void __neigh_for_each_release(struct neigh_table *tbl, 2351 int (*cb)(struct neighbour *)) 2352 { 2353 int chain; 2354 struct neigh_hash_table *nht; 2355 2356 nht = rcu_dereference_protected(tbl->nht, 2357 lockdep_is_held(&tbl->lock)); 2358 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2359 struct neighbour *n; 2360 struct neighbour __rcu **np; 2361 2362 np = &nht->hash_buckets[chain]; 2363 while ((n = rcu_dereference_protected(*np, 2364 lockdep_is_held(&tbl->lock))) != NULL) { 2365 int release; 2366 2367 write_lock(&n->lock); 2368 release = cb(n); 2369 if (release) { 2370 rcu_assign_pointer(*np, 2371 rcu_dereference_protected(n->next, 2372 lockdep_is_held(&tbl->lock))); 2373 n->dead = 1; 2374 } else 2375 np = &n->next; 2376 write_unlock(&n->lock); 2377 if (release) 2378 neigh_cleanup_and_release(n); 2379 } 2380 } 2381 } 2382 EXPORT_SYMBOL(__neigh_for_each_release); 2383 2384 #ifdef CONFIG_PROC_FS 2385 2386 static struct neighbour *neigh_get_first(struct seq_file *seq) 2387 { 2388 struct neigh_seq_state *state = seq->private; 2389 struct net *net = seq_file_net(seq); 2390 struct neigh_hash_table *nht = state->nht; 2391 struct neighbour *n = NULL; 2392 int bucket = state->bucket; 2393 2394 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 2395 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { 2396 n = rcu_dereference_bh(nht->hash_buckets[bucket]); 2397 2398 while (n) { 2399 if (!net_eq(dev_net(n->dev), net)) 2400 goto next; 2401 if (state->neigh_sub_iter) { 2402 loff_t fakep = 0; 2403 void *v; 2404 2405 v = state->neigh_sub_iter(state, n, &fakep); 2406 if (!v) 2407 goto next; 2408 } 2409 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2410 break; 2411 if (n->nud_state & ~NUD_NOARP) 2412 break; 2413 next: 2414 n = rcu_dereference_bh(n->next); 2415 } 2416 2417 if (n) 2418 break; 2419 } 2420 state->bucket = bucket; 2421 2422 return n; 2423 } 2424 2425 static struct neighbour *neigh_get_next(struct seq_file *seq, 2426 struct neighbour *n, 2427 loff_t *pos) 2428 { 2429 struct neigh_seq_state *state = seq->private; 2430 struct net *net = seq_file_net(seq); 2431 struct neigh_hash_table *nht = state->nht; 2432 2433 if (state->neigh_sub_iter) { 2434 void *v = state->neigh_sub_iter(state, n, pos); 2435 if (v) 2436 return n; 2437 } 2438 n = rcu_dereference_bh(n->next); 2439 2440 while (1) { 2441 while (n) { 2442 if (!net_eq(dev_net(n->dev), net)) 2443 goto next; 2444 if (state->neigh_sub_iter) { 2445 void *v = state->neigh_sub_iter(state, n, pos); 2446 if (v) 2447 return n; 2448 goto next; 2449 } 2450 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2451 break; 2452 2453 if (n->nud_state & ~NUD_NOARP) 2454 break; 2455 next: 2456 n = rcu_dereference_bh(n->next); 2457 } 2458 2459 if (n) 2460 break; 2461 2462 if (++state->bucket >= (1 << nht->hash_shift)) 2463 break; 2464 2465 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); 2466 } 2467 2468 if (n && pos) 2469 --(*pos); 2470 return n; 2471 } 2472 2473 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 2474 { 2475 struct neighbour *n = neigh_get_first(seq); 2476 2477 if (n) { 2478 --(*pos); 2479 while (*pos) { 2480 n = neigh_get_next(seq, n, pos); 2481 if (!n) 2482 break; 2483 } 2484 } 2485 return *pos ? NULL : n; 2486 } 2487 2488 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 2489 { 2490 struct neigh_seq_state *state = seq->private; 2491 struct net *net = seq_file_net(seq); 2492 struct neigh_table *tbl = state->tbl; 2493 struct pneigh_entry *pn = NULL; 2494 int bucket = state->bucket; 2495 2496 state->flags |= NEIGH_SEQ_IS_PNEIGH; 2497 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 2498 pn = tbl->phash_buckets[bucket]; 2499 while (pn && !net_eq(pneigh_net(pn), net)) 2500 pn = pn->next; 2501 if (pn) 2502 break; 2503 } 2504 state->bucket = bucket; 2505 2506 return pn; 2507 } 2508 2509 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 2510 struct pneigh_entry *pn, 2511 loff_t *pos) 2512 { 2513 struct neigh_seq_state *state = seq->private; 2514 struct net *net = seq_file_net(seq); 2515 struct neigh_table *tbl = state->tbl; 2516 2517 do { 2518 pn = pn->next; 2519 } while (pn && !net_eq(pneigh_net(pn), net)); 2520 2521 while (!pn) { 2522 if (++state->bucket > PNEIGH_HASHMASK) 2523 break; 2524 pn = tbl->phash_buckets[state->bucket]; 2525 while (pn && !net_eq(pneigh_net(pn), net)) 2526 pn = pn->next; 2527 if (pn) 2528 break; 2529 } 2530 2531 if (pn && pos) 2532 --(*pos); 2533 2534 return pn; 2535 } 2536 2537 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 2538 { 2539 struct pneigh_entry *pn = pneigh_get_first(seq); 2540 2541 if (pn) { 2542 --(*pos); 2543 while (*pos) { 2544 pn = pneigh_get_next(seq, pn, pos); 2545 if (!pn) 2546 break; 2547 } 2548 } 2549 return *pos ? NULL : pn; 2550 } 2551 2552 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 2553 { 2554 struct neigh_seq_state *state = seq->private; 2555 void *rc; 2556 loff_t idxpos = *pos; 2557 2558 rc = neigh_get_idx(seq, &idxpos); 2559 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2560 rc = pneigh_get_idx(seq, &idxpos); 2561 2562 return rc; 2563 } 2564 2565 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 2566 __acquires(rcu_bh) 2567 { 2568 struct neigh_seq_state *state = seq->private; 2569 2570 state->tbl = tbl; 2571 state->bucket = 0; 2572 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 2573 2574 rcu_read_lock_bh(); 2575 state->nht = rcu_dereference_bh(tbl->nht); 2576 2577 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 2578 } 2579 EXPORT_SYMBOL(neigh_seq_start); 2580 2581 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2582 { 2583 struct neigh_seq_state *state; 2584 void *rc; 2585 2586 if (v == SEQ_START_TOKEN) { 2587 rc = neigh_get_first(seq); 2588 goto out; 2589 } 2590 2591 state = seq->private; 2592 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 2593 rc = neigh_get_next(seq, v, NULL); 2594 if (rc) 2595 goto out; 2596 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2597 rc = pneigh_get_first(seq); 2598 } else { 2599 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 2600 rc = pneigh_get_next(seq, v, NULL); 2601 } 2602 out: 2603 ++(*pos); 2604 return rc; 2605 } 2606 EXPORT_SYMBOL(neigh_seq_next); 2607 2608 void neigh_seq_stop(struct seq_file *seq, void *v) 2609 __releases(rcu_bh) 2610 { 2611 rcu_read_unlock_bh(); 2612 } 2613 EXPORT_SYMBOL(neigh_seq_stop); 2614 2615 /* statistics via seq_file */ 2616 2617 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 2618 { 2619 struct neigh_table *tbl = seq->private; 2620 int cpu; 2621 2622 if (*pos == 0) 2623 return SEQ_START_TOKEN; 2624 2625 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 2626 if (!cpu_possible(cpu)) 2627 continue; 2628 *pos = cpu+1; 2629 return per_cpu_ptr(tbl->stats, cpu); 2630 } 2631 return NULL; 2632 } 2633 2634 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2635 { 2636 struct neigh_table *tbl = seq->private; 2637 int cpu; 2638 2639 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 2640 if (!cpu_possible(cpu)) 2641 continue; 2642 *pos = cpu+1; 2643 return per_cpu_ptr(tbl->stats, cpu); 2644 } 2645 return NULL; 2646 } 2647 2648 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 2649 { 2650 2651 } 2652 2653 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 2654 { 2655 struct neigh_table *tbl = seq->private; 2656 struct neigh_statistics *st = v; 2657 2658 if (v == SEQ_START_TOKEN) { 2659 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n"); 2660 return 0; 2661 } 2662 2663 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 2664 "%08lx %08lx %08lx %08lx %08lx\n", 2665 atomic_read(&tbl->entries), 2666 2667 st->allocs, 2668 st->destroys, 2669 st->hash_grows, 2670 2671 st->lookups, 2672 st->hits, 2673 2674 st->res_failed, 2675 2676 st->rcv_probes_mcast, 2677 st->rcv_probes_ucast, 2678 2679 st->periodic_gc_runs, 2680 st->forced_gc_runs, 2681 st->unres_discards 2682 ); 2683 2684 return 0; 2685 } 2686 2687 static const struct seq_operations neigh_stat_seq_ops = { 2688 .start = neigh_stat_seq_start, 2689 .next = neigh_stat_seq_next, 2690 .stop = neigh_stat_seq_stop, 2691 .show = neigh_stat_seq_show, 2692 }; 2693 2694 static int neigh_stat_seq_open(struct inode *inode, struct file *file) 2695 { 2696 int ret = seq_open(file, &neigh_stat_seq_ops); 2697 2698 if (!ret) { 2699 struct seq_file *sf = file->private_data; 2700 sf->private = PDE(inode)->data; 2701 } 2702 return ret; 2703 }; 2704 2705 static const struct file_operations neigh_stat_seq_fops = { 2706 .owner = THIS_MODULE, 2707 .open = neigh_stat_seq_open, 2708 .read = seq_read, 2709 .llseek = seq_lseek, 2710 .release = seq_release, 2711 }; 2712 2713 #endif /* CONFIG_PROC_FS */ 2714 2715 static inline size_t neigh_nlmsg_size(void) 2716 { 2717 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2718 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2719 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2720 + nla_total_size(sizeof(struct nda_cacheinfo)) 2721 + nla_total_size(4); /* NDA_PROBES */ 2722 } 2723 2724 static void __neigh_notify(struct neighbour *n, int type, int flags) 2725 { 2726 struct net *net = dev_net(n->dev); 2727 struct sk_buff *skb; 2728 int err = -ENOBUFS; 2729 2730 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 2731 if (skb == NULL) 2732 goto errout; 2733 2734 err = neigh_fill_info(skb, n, 0, 0, type, flags); 2735 if (err < 0) { 2736 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 2737 WARN_ON(err == -EMSGSIZE); 2738 kfree_skb(skb); 2739 goto errout; 2740 } 2741 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 2742 return; 2743 errout: 2744 if (err < 0) 2745 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 2746 } 2747 2748 #ifdef CONFIG_ARPD 2749 void neigh_app_ns(struct neighbour *n) 2750 { 2751 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST); 2752 } 2753 EXPORT_SYMBOL(neigh_app_ns); 2754 #endif /* CONFIG_ARPD */ 2755 2756 #ifdef CONFIG_SYSCTL 2757 2758 static int proc_unres_qlen(ctl_table *ctl, int write, void __user *buffer, 2759 size_t *lenp, loff_t *ppos) 2760 { 2761 int size, ret; 2762 ctl_table tmp = *ctl; 2763 2764 tmp.data = &size; 2765 size = DIV_ROUND_UP(*(int *)ctl->data, SKB_TRUESIZE(ETH_FRAME_LEN)); 2766 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos); 2767 if (write && !ret) 2768 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); 2769 return ret; 2770 } 2771 2772 enum { 2773 NEIGH_VAR_MCAST_PROBE, 2774 NEIGH_VAR_UCAST_PROBE, 2775 NEIGH_VAR_APP_PROBE, 2776 NEIGH_VAR_RETRANS_TIME, 2777 NEIGH_VAR_BASE_REACHABLE_TIME, 2778 NEIGH_VAR_DELAY_PROBE_TIME, 2779 NEIGH_VAR_GC_STALETIME, 2780 NEIGH_VAR_QUEUE_LEN, 2781 NEIGH_VAR_QUEUE_LEN_BYTES, 2782 NEIGH_VAR_PROXY_QLEN, 2783 NEIGH_VAR_ANYCAST_DELAY, 2784 NEIGH_VAR_PROXY_DELAY, 2785 NEIGH_VAR_LOCKTIME, 2786 NEIGH_VAR_RETRANS_TIME_MS, 2787 NEIGH_VAR_BASE_REACHABLE_TIME_MS, 2788 NEIGH_VAR_GC_INTERVAL, 2789 NEIGH_VAR_GC_THRESH1, 2790 NEIGH_VAR_GC_THRESH2, 2791 NEIGH_VAR_GC_THRESH3, 2792 NEIGH_VAR_MAX 2793 }; 2794 2795 static struct neigh_sysctl_table { 2796 struct ctl_table_header *sysctl_header; 2797 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1]; 2798 char *dev_name; 2799 } neigh_sysctl_template __read_mostly = { 2800 .neigh_vars = { 2801 [NEIGH_VAR_MCAST_PROBE] = { 2802 .procname = "mcast_solicit", 2803 .maxlen = sizeof(int), 2804 .mode = 0644, 2805 .proc_handler = proc_dointvec, 2806 }, 2807 [NEIGH_VAR_UCAST_PROBE] = { 2808 .procname = "ucast_solicit", 2809 .maxlen = sizeof(int), 2810 .mode = 0644, 2811 .proc_handler = proc_dointvec, 2812 }, 2813 [NEIGH_VAR_APP_PROBE] = { 2814 .procname = "app_solicit", 2815 .maxlen = sizeof(int), 2816 .mode = 0644, 2817 .proc_handler = proc_dointvec, 2818 }, 2819 [NEIGH_VAR_RETRANS_TIME] = { 2820 .procname = "retrans_time", 2821 .maxlen = sizeof(int), 2822 .mode = 0644, 2823 .proc_handler = proc_dointvec_userhz_jiffies, 2824 }, 2825 [NEIGH_VAR_BASE_REACHABLE_TIME] = { 2826 .procname = "base_reachable_time", 2827 .maxlen = sizeof(int), 2828 .mode = 0644, 2829 .proc_handler = proc_dointvec_jiffies, 2830 }, 2831 [NEIGH_VAR_DELAY_PROBE_TIME] = { 2832 .procname = "delay_first_probe_time", 2833 .maxlen = sizeof(int), 2834 .mode = 0644, 2835 .proc_handler = proc_dointvec_jiffies, 2836 }, 2837 [NEIGH_VAR_GC_STALETIME] = { 2838 .procname = "gc_stale_time", 2839 .maxlen = sizeof(int), 2840 .mode = 0644, 2841 .proc_handler = proc_dointvec_jiffies, 2842 }, 2843 [NEIGH_VAR_QUEUE_LEN] = { 2844 .procname = "unres_qlen", 2845 .maxlen = sizeof(int), 2846 .mode = 0644, 2847 .proc_handler = proc_unres_qlen, 2848 }, 2849 [NEIGH_VAR_QUEUE_LEN_BYTES] = { 2850 .procname = "unres_qlen_bytes", 2851 .maxlen = sizeof(int), 2852 .mode = 0644, 2853 .proc_handler = proc_dointvec, 2854 }, 2855 [NEIGH_VAR_PROXY_QLEN] = { 2856 .procname = "proxy_qlen", 2857 .maxlen = sizeof(int), 2858 .mode = 0644, 2859 .proc_handler = proc_dointvec, 2860 }, 2861 [NEIGH_VAR_ANYCAST_DELAY] = { 2862 .procname = "anycast_delay", 2863 .maxlen = sizeof(int), 2864 .mode = 0644, 2865 .proc_handler = proc_dointvec_userhz_jiffies, 2866 }, 2867 [NEIGH_VAR_PROXY_DELAY] = { 2868 .procname = "proxy_delay", 2869 .maxlen = sizeof(int), 2870 .mode = 0644, 2871 .proc_handler = proc_dointvec_userhz_jiffies, 2872 }, 2873 [NEIGH_VAR_LOCKTIME] = { 2874 .procname = "locktime", 2875 .maxlen = sizeof(int), 2876 .mode = 0644, 2877 .proc_handler = proc_dointvec_userhz_jiffies, 2878 }, 2879 [NEIGH_VAR_RETRANS_TIME_MS] = { 2880 .procname = "retrans_time_ms", 2881 .maxlen = sizeof(int), 2882 .mode = 0644, 2883 .proc_handler = proc_dointvec_ms_jiffies, 2884 }, 2885 [NEIGH_VAR_BASE_REACHABLE_TIME_MS] = { 2886 .procname = "base_reachable_time_ms", 2887 .maxlen = sizeof(int), 2888 .mode = 0644, 2889 .proc_handler = proc_dointvec_ms_jiffies, 2890 }, 2891 [NEIGH_VAR_GC_INTERVAL] = { 2892 .procname = "gc_interval", 2893 .maxlen = sizeof(int), 2894 .mode = 0644, 2895 .proc_handler = proc_dointvec_jiffies, 2896 }, 2897 [NEIGH_VAR_GC_THRESH1] = { 2898 .procname = "gc_thresh1", 2899 .maxlen = sizeof(int), 2900 .mode = 0644, 2901 .proc_handler = proc_dointvec, 2902 }, 2903 [NEIGH_VAR_GC_THRESH2] = { 2904 .procname = "gc_thresh2", 2905 .maxlen = sizeof(int), 2906 .mode = 0644, 2907 .proc_handler = proc_dointvec, 2908 }, 2909 [NEIGH_VAR_GC_THRESH3] = { 2910 .procname = "gc_thresh3", 2911 .maxlen = sizeof(int), 2912 .mode = 0644, 2913 .proc_handler = proc_dointvec, 2914 }, 2915 {}, 2916 }, 2917 }; 2918 2919 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 2920 char *p_name, proc_handler *handler) 2921 { 2922 struct neigh_sysctl_table *t; 2923 const char *dev_name_source = NULL; 2924 2925 #define NEIGH_CTL_PATH_ROOT 0 2926 #define NEIGH_CTL_PATH_PROTO 1 2927 #define NEIGH_CTL_PATH_NEIGH 2 2928 #define NEIGH_CTL_PATH_DEV 3 2929 2930 struct ctl_path neigh_path[] = { 2931 { .procname = "net", }, 2932 { .procname = "proto", }, 2933 { .procname = "neigh", }, 2934 { .procname = "default", }, 2935 { }, 2936 }; 2937 2938 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 2939 if (!t) 2940 goto err; 2941 2942 t->neigh_vars[NEIGH_VAR_MCAST_PROBE].data = &p->mcast_probes; 2943 t->neigh_vars[NEIGH_VAR_UCAST_PROBE].data = &p->ucast_probes; 2944 t->neigh_vars[NEIGH_VAR_APP_PROBE].data = &p->app_probes; 2945 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].data = &p->retrans_time; 2946 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].data = &p->base_reachable_time; 2947 t->neigh_vars[NEIGH_VAR_DELAY_PROBE_TIME].data = &p->delay_probe_time; 2948 t->neigh_vars[NEIGH_VAR_GC_STALETIME].data = &p->gc_staletime; 2949 t->neigh_vars[NEIGH_VAR_QUEUE_LEN].data = &p->queue_len_bytes; 2950 t->neigh_vars[NEIGH_VAR_QUEUE_LEN_BYTES].data = &p->queue_len_bytes; 2951 t->neigh_vars[NEIGH_VAR_PROXY_QLEN].data = &p->proxy_qlen; 2952 t->neigh_vars[NEIGH_VAR_ANYCAST_DELAY].data = &p->anycast_delay; 2953 t->neigh_vars[NEIGH_VAR_PROXY_DELAY].data = &p->proxy_delay; 2954 t->neigh_vars[NEIGH_VAR_LOCKTIME].data = &p->locktime; 2955 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].data = &p->retrans_time; 2956 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].data = &p->base_reachable_time; 2957 2958 if (dev) { 2959 dev_name_source = dev->name; 2960 /* Terminate the table early */ 2961 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0, 2962 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL])); 2963 } else { 2964 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname; 2965 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = (int *)(p + 1); 2966 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = (int *)(p + 1) + 1; 2967 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = (int *)(p + 1) + 2; 2968 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = (int *)(p + 1) + 3; 2969 } 2970 2971 2972 if (handler) { 2973 /* RetransTime */ 2974 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; 2975 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].extra1 = dev; 2976 /* ReachableTime */ 2977 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; 2978 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].extra1 = dev; 2979 /* RetransTime (in milliseconds)*/ 2980 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; 2981 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].extra1 = dev; 2982 /* ReachableTime (in milliseconds) */ 2983 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; 2984 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].extra1 = dev; 2985 } 2986 2987 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL); 2988 if (!t->dev_name) 2989 goto free; 2990 2991 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name; 2992 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name; 2993 2994 t->sysctl_header = 2995 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars); 2996 if (!t->sysctl_header) 2997 goto free_procname; 2998 2999 p->sysctl_table = t; 3000 return 0; 3001 3002 free_procname: 3003 kfree(t->dev_name); 3004 free: 3005 kfree(t); 3006 err: 3007 return -ENOBUFS; 3008 } 3009 EXPORT_SYMBOL(neigh_sysctl_register); 3010 3011 void neigh_sysctl_unregister(struct neigh_parms *p) 3012 { 3013 if (p->sysctl_table) { 3014 struct neigh_sysctl_table *t = p->sysctl_table; 3015 p->sysctl_table = NULL; 3016 unregister_sysctl_table(t->sysctl_header); 3017 kfree(t->dev_name); 3018 kfree(t); 3019 } 3020 } 3021 EXPORT_SYMBOL(neigh_sysctl_unregister); 3022 3023 #endif /* CONFIG_SYSCTL */ 3024 3025 static int __init neigh_init(void) 3026 { 3027 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL); 3028 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL); 3029 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL); 3030 3031 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, 3032 NULL); 3033 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL); 3034 3035 return 0; 3036 } 3037 3038 subsys_initcall(neigh_init); 3039 3040