1 /* 2 * Generic address resolution entity 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Fixes: 14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 15 * Harald Welte Add neighbour cache statistics like rtstat 16 */ 17 18 #include <linux/slab.h> 19 #include <linux/types.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/socket.h> 23 #include <linux/netdevice.h> 24 #include <linux/proc_fs.h> 25 #ifdef CONFIG_SYSCTL 26 #include <linux/sysctl.h> 27 #endif 28 #include <linux/times.h> 29 #include <net/net_namespace.h> 30 #include <net/neighbour.h> 31 #include <net/dst.h> 32 #include <net/sock.h> 33 #include <net/netevent.h> 34 #include <net/netlink.h> 35 #include <linux/rtnetlink.h> 36 #include <linux/random.h> 37 #include <linux/string.h> 38 #include <linux/log2.h> 39 40 #define NEIGH_DEBUG 1 41 42 #define NEIGH_PRINTK(x...) printk(x) 43 #define NEIGH_NOPRINTK(x...) do { ; } while(0) 44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK 45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK 46 47 #if NEIGH_DEBUG >= 1 48 #undef NEIGH_PRINTK1 49 #define NEIGH_PRINTK1 NEIGH_PRINTK 50 #endif 51 #if NEIGH_DEBUG >= 2 52 #undef NEIGH_PRINTK2 53 #define NEIGH_PRINTK2 NEIGH_PRINTK 54 #endif 55 56 #define PNEIGH_HASHMASK 0xF 57 58 static void neigh_timer_handler(unsigned long arg); 59 static void __neigh_notify(struct neighbour *n, int type, int flags); 60 static void neigh_update_notify(struct neighbour *neigh); 61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev); 62 63 static struct neigh_table *neigh_tables; 64 #ifdef CONFIG_PROC_FS 65 static const struct file_operations neigh_stat_seq_fops; 66 #endif 67 68 /* 69 Neighbour hash table buckets are protected with rwlock tbl->lock. 70 71 - All the scans/updates to hash buckets MUST be made under this lock. 72 - NOTHING clever should be made under this lock: no callbacks 73 to protocol backends, no attempts to send something to network. 74 It will result in deadlocks, if backend/driver wants to use neighbour 75 cache. 76 - If the entry requires some non-trivial actions, increase 77 its reference count and release table lock. 78 79 Neighbour entries are protected: 80 - with reference count. 81 - with rwlock neigh->lock 82 83 Reference count prevents destruction. 84 85 neigh->lock mainly serializes ll address data and its validity state. 86 However, the same lock is used to protect another entry fields: 87 - timer 88 - resolution queue 89 90 Again, nothing clever shall be made under neigh->lock, 91 the most complicated procedure, which we allow is dev->hard_header. 92 It is supposed, that dev->hard_header is simplistic and does 93 not make callbacks to neighbour tables. 94 95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting 96 list of neighbour tables. This list is used only in process context, 97 */ 98 99 static DEFINE_RWLOCK(neigh_tbl_lock); 100 101 static int neigh_blackhole(struct sk_buff *skb) 102 { 103 kfree_skb(skb); 104 return -ENETDOWN; 105 } 106 107 static void neigh_cleanup_and_release(struct neighbour *neigh) 108 { 109 if (neigh->parms->neigh_cleanup) 110 neigh->parms->neigh_cleanup(neigh); 111 112 __neigh_notify(neigh, RTM_DELNEIGH, 0); 113 neigh_release(neigh); 114 } 115 116 /* 117 * It is random distribution in the interval (1/2)*base...(3/2)*base. 118 * It corresponds to default IPv6 settings and is not overridable, 119 * because it is really reasonable choice. 120 */ 121 122 unsigned long neigh_rand_reach_time(unsigned long base) 123 { 124 return base ? (net_random() % base) + (base >> 1) : 0; 125 } 126 EXPORT_SYMBOL(neigh_rand_reach_time); 127 128 129 static int neigh_forced_gc(struct neigh_table *tbl) 130 { 131 int shrunk = 0; 132 int i; 133 struct neigh_hash_table *nht; 134 135 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 136 137 write_lock_bh(&tbl->lock); 138 nht = rcu_dereference_protected(tbl->nht, 139 lockdep_is_held(&tbl->lock)); 140 for (i = 0; i <= nht->hash_mask; i++) { 141 struct neighbour *n; 142 struct neighbour __rcu **np; 143 144 np = &nht->hash_buckets[i]; 145 while ((n = rcu_dereference_protected(*np, 146 lockdep_is_held(&tbl->lock))) != NULL) { 147 /* Neighbour record may be discarded if: 148 * - nobody refers to it. 149 * - it is not permanent 150 */ 151 write_lock(&n->lock); 152 if (atomic_read(&n->refcnt) == 1 && 153 !(n->nud_state & NUD_PERMANENT)) { 154 rcu_assign_pointer(*np, 155 rcu_dereference_protected(n->next, 156 lockdep_is_held(&tbl->lock))); 157 n->dead = 1; 158 shrunk = 1; 159 write_unlock(&n->lock); 160 neigh_cleanup_and_release(n); 161 continue; 162 } 163 write_unlock(&n->lock); 164 np = &n->next; 165 } 166 } 167 168 tbl->last_flush = jiffies; 169 170 write_unlock_bh(&tbl->lock); 171 172 return shrunk; 173 } 174 175 static void neigh_add_timer(struct neighbour *n, unsigned long when) 176 { 177 neigh_hold(n); 178 if (unlikely(mod_timer(&n->timer, when))) { 179 printk("NEIGH: BUG, double timer add, state is %x\n", 180 n->nud_state); 181 dump_stack(); 182 } 183 } 184 185 static int neigh_del_timer(struct neighbour *n) 186 { 187 if ((n->nud_state & NUD_IN_TIMER) && 188 del_timer(&n->timer)) { 189 neigh_release(n); 190 return 1; 191 } 192 return 0; 193 } 194 195 static void pneigh_queue_purge(struct sk_buff_head *list) 196 { 197 struct sk_buff *skb; 198 199 while ((skb = skb_dequeue(list)) != NULL) { 200 dev_put(skb->dev); 201 kfree_skb(skb); 202 } 203 } 204 205 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev) 206 { 207 int i; 208 struct neigh_hash_table *nht; 209 210 nht = rcu_dereference_protected(tbl->nht, 211 lockdep_is_held(&tbl->lock)); 212 213 for (i = 0; i <= nht->hash_mask; i++) { 214 struct neighbour *n; 215 struct neighbour __rcu **np = &nht->hash_buckets[i]; 216 217 while ((n = rcu_dereference_protected(*np, 218 lockdep_is_held(&tbl->lock))) != NULL) { 219 if (dev && n->dev != dev) { 220 np = &n->next; 221 continue; 222 } 223 rcu_assign_pointer(*np, 224 rcu_dereference_protected(n->next, 225 lockdep_is_held(&tbl->lock))); 226 write_lock(&n->lock); 227 neigh_del_timer(n); 228 n->dead = 1; 229 230 if (atomic_read(&n->refcnt) != 1) { 231 /* The most unpleasant situation. 232 We must destroy neighbour entry, 233 but someone still uses it. 234 235 The destroy will be delayed until 236 the last user releases us, but 237 we must kill timers etc. and move 238 it to safe state. 239 */ 240 skb_queue_purge(&n->arp_queue); 241 n->output = neigh_blackhole; 242 if (n->nud_state & NUD_VALID) 243 n->nud_state = NUD_NOARP; 244 else 245 n->nud_state = NUD_NONE; 246 NEIGH_PRINTK2("neigh %p is stray.\n", n); 247 } 248 write_unlock(&n->lock); 249 neigh_cleanup_and_release(n); 250 } 251 } 252 } 253 254 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 255 { 256 write_lock_bh(&tbl->lock); 257 neigh_flush_dev(tbl, dev); 258 write_unlock_bh(&tbl->lock); 259 } 260 EXPORT_SYMBOL(neigh_changeaddr); 261 262 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 263 { 264 write_lock_bh(&tbl->lock); 265 neigh_flush_dev(tbl, dev); 266 pneigh_ifdown(tbl, dev); 267 write_unlock_bh(&tbl->lock); 268 269 del_timer_sync(&tbl->proxy_timer); 270 pneigh_queue_purge(&tbl->proxy_queue); 271 return 0; 272 } 273 EXPORT_SYMBOL(neigh_ifdown); 274 275 static struct neighbour *neigh_alloc(struct neigh_table *tbl) 276 { 277 struct neighbour *n = NULL; 278 unsigned long now = jiffies; 279 int entries; 280 281 entries = atomic_inc_return(&tbl->entries) - 1; 282 if (entries >= tbl->gc_thresh3 || 283 (entries >= tbl->gc_thresh2 && 284 time_after(now, tbl->last_flush + 5 * HZ))) { 285 if (!neigh_forced_gc(tbl) && 286 entries >= tbl->gc_thresh3) 287 goto out_entries; 288 } 289 290 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC); 291 if (!n) 292 goto out_entries; 293 294 skb_queue_head_init(&n->arp_queue); 295 rwlock_init(&n->lock); 296 seqlock_init(&n->ha_lock); 297 n->updated = n->used = now; 298 n->nud_state = NUD_NONE; 299 n->output = neigh_blackhole; 300 n->parms = neigh_parms_clone(&tbl->parms); 301 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n); 302 303 NEIGH_CACHE_STAT_INC(tbl, allocs); 304 n->tbl = tbl; 305 atomic_set(&n->refcnt, 1); 306 n->dead = 1; 307 out: 308 return n; 309 310 out_entries: 311 atomic_dec(&tbl->entries); 312 goto out; 313 } 314 315 static struct neigh_hash_table *neigh_hash_alloc(unsigned int entries) 316 { 317 size_t size = entries * sizeof(struct neighbour *); 318 struct neigh_hash_table *ret; 319 struct neighbour __rcu **buckets; 320 321 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 322 if (!ret) 323 return NULL; 324 if (size <= PAGE_SIZE) 325 buckets = kzalloc(size, GFP_ATOMIC); 326 else 327 buckets = (struct neighbour __rcu **) 328 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 329 get_order(size)); 330 if (!buckets) { 331 kfree(ret); 332 return NULL; 333 } 334 ret->hash_buckets = buckets; 335 ret->hash_mask = entries - 1; 336 get_random_bytes(&ret->hash_rnd, sizeof(ret->hash_rnd)); 337 return ret; 338 } 339 340 static void neigh_hash_free_rcu(struct rcu_head *head) 341 { 342 struct neigh_hash_table *nht = container_of(head, 343 struct neigh_hash_table, 344 rcu); 345 size_t size = (nht->hash_mask + 1) * sizeof(struct neighbour *); 346 struct neighbour __rcu **buckets = nht->hash_buckets; 347 348 if (size <= PAGE_SIZE) 349 kfree(buckets); 350 else 351 free_pages((unsigned long)buckets, get_order(size)); 352 kfree(nht); 353 } 354 355 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, 356 unsigned long new_entries) 357 { 358 unsigned int i, hash; 359 struct neigh_hash_table *new_nht, *old_nht; 360 361 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 362 363 BUG_ON(!is_power_of_2(new_entries)); 364 old_nht = rcu_dereference_protected(tbl->nht, 365 lockdep_is_held(&tbl->lock)); 366 new_nht = neigh_hash_alloc(new_entries); 367 if (!new_nht) 368 return old_nht; 369 370 for (i = 0; i <= old_nht->hash_mask; i++) { 371 struct neighbour *n, *next; 372 373 for (n = rcu_dereference_protected(old_nht->hash_buckets[i], 374 lockdep_is_held(&tbl->lock)); 375 n != NULL; 376 n = next) { 377 hash = tbl->hash(n->primary_key, n->dev, 378 new_nht->hash_rnd); 379 380 hash &= new_nht->hash_mask; 381 next = rcu_dereference_protected(n->next, 382 lockdep_is_held(&tbl->lock)); 383 384 rcu_assign_pointer(n->next, 385 rcu_dereference_protected( 386 new_nht->hash_buckets[hash], 387 lockdep_is_held(&tbl->lock))); 388 rcu_assign_pointer(new_nht->hash_buckets[hash], n); 389 } 390 } 391 392 rcu_assign_pointer(tbl->nht, new_nht); 393 call_rcu(&old_nht->rcu, neigh_hash_free_rcu); 394 return new_nht; 395 } 396 397 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 398 struct net_device *dev) 399 { 400 struct neighbour *n; 401 int key_len = tbl->key_len; 402 u32 hash_val; 403 struct neigh_hash_table *nht; 404 405 NEIGH_CACHE_STAT_INC(tbl, lookups); 406 407 rcu_read_lock_bh(); 408 nht = rcu_dereference_bh(tbl->nht); 409 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) & nht->hash_mask; 410 411 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 412 n != NULL; 413 n = rcu_dereference_bh(n->next)) { 414 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) { 415 if (!atomic_inc_not_zero(&n->refcnt)) 416 n = NULL; 417 NEIGH_CACHE_STAT_INC(tbl, hits); 418 break; 419 } 420 } 421 422 rcu_read_unlock_bh(); 423 return n; 424 } 425 EXPORT_SYMBOL(neigh_lookup); 426 427 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 428 const void *pkey) 429 { 430 struct neighbour *n; 431 int key_len = tbl->key_len; 432 u32 hash_val; 433 struct neigh_hash_table *nht; 434 435 NEIGH_CACHE_STAT_INC(tbl, lookups); 436 437 rcu_read_lock_bh(); 438 nht = rcu_dereference_bh(tbl->nht); 439 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) & nht->hash_mask; 440 441 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 442 n != NULL; 443 n = rcu_dereference_bh(n->next)) { 444 if (!memcmp(n->primary_key, pkey, key_len) && 445 net_eq(dev_net(n->dev), net)) { 446 if (!atomic_inc_not_zero(&n->refcnt)) 447 n = NULL; 448 NEIGH_CACHE_STAT_INC(tbl, hits); 449 break; 450 } 451 } 452 453 rcu_read_unlock_bh(); 454 return n; 455 } 456 EXPORT_SYMBOL(neigh_lookup_nodev); 457 458 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, 459 struct net_device *dev) 460 { 461 u32 hash_val; 462 int key_len = tbl->key_len; 463 int error; 464 struct neighbour *n1, *rc, *n = neigh_alloc(tbl); 465 struct neigh_hash_table *nht; 466 467 if (!n) { 468 rc = ERR_PTR(-ENOBUFS); 469 goto out; 470 } 471 472 memcpy(n->primary_key, pkey, key_len); 473 n->dev = dev; 474 dev_hold(dev); 475 476 /* Protocol specific setup. */ 477 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 478 rc = ERR_PTR(error); 479 goto out_neigh_release; 480 } 481 482 /* Device specific setup. */ 483 if (n->parms->neigh_setup && 484 (error = n->parms->neigh_setup(n)) < 0) { 485 rc = ERR_PTR(error); 486 goto out_neigh_release; 487 } 488 489 n->confirmed = jiffies - (n->parms->base_reachable_time << 1); 490 491 write_lock_bh(&tbl->lock); 492 nht = rcu_dereference_protected(tbl->nht, 493 lockdep_is_held(&tbl->lock)); 494 495 if (atomic_read(&tbl->entries) > (nht->hash_mask + 1)) 496 nht = neigh_hash_grow(tbl, (nht->hash_mask + 1) << 1); 497 498 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) & nht->hash_mask; 499 500 if (n->parms->dead) { 501 rc = ERR_PTR(-EINVAL); 502 goto out_tbl_unlock; 503 } 504 505 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], 506 lockdep_is_held(&tbl->lock)); 507 n1 != NULL; 508 n1 = rcu_dereference_protected(n1->next, 509 lockdep_is_held(&tbl->lock))) { 510 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) { 511 neigh_hold(n1); 512 rc = n1; 513 goto out_tbl_unlock; 514 } 515 } 516 517 n->dead = 0; 518 neigh_hold(n); 519 rcu_assign_pointer(n->next, 520 rcu_dereference_protected(nht->hash_buckets[hash_val], 521 lockdep_is_held(&tbl->lock))); 522 rcu_assign_pointer(nht->hash_buckets[hash_val], n); 523 write_unlock_bh(&tbl->lock); 524 NEIGH_PRINTK2("neigh %p is created.\n", n); 525 rc = n; 526 out: 527 return rc; 528 out_tbl_unlock: 529 write_unlock_bh(&tbl->lock); 530 out_neigh_release: 531 neigh_release(n); 532 goto out; 533 } 534 EXPORT_SYMBOL(neigh_create); 535 536 static u32 pneigh_hash(const void *pkey, int key_len) 537 { 538 u32 hash_val = *(u32 *)(pkey + key_len - 4); 539 hash_val ^= (hash_val >> 16); 540 hash_val ^= hash_val >> 8; 541 hash_val ^= hash_val >> 4; 542 hash_val &= PNEIGH_HASHMASK; 543 return hash_val; 544 } 545 546 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 547 struct net *net, 548 const void *pkey, 549 int key_len, 550 struct net_device *dev) 551 { 552 while (n) { 553 if (!memcmp(n->key, pkey, key_len) && 554 net_eq(pneigh_net(n), net) && 555 (n->dev == dev || !n->dev)) 556 return n; 557 n = n->next; 558 } 559 return NULL; 560 } 561 562 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 563 struct net *net, const void *pkey, struct net_device *dev) 564 { 565 int key_len = tbl->key_len; 566 u32 hash_val = pneigh_hash(pkey, key_len); 567 568 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 569 net, pkey, key_len, dev); 570 } 571 EXPORT_SYMBOL_GPL(__pneigh_lookup); 572 573 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 574 struct net *net, const void *pkey, 575 struct net_device *dev, int creat) 576 { 577 struct pneigh_entry *n; 578 int key_len = tbl->key_len; 579 u32 hash_val = pneigh_hash(pkey, key_len); 580 581 read_lock_bh(&tbl->lock); 582 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 583 net, pkey, key_len, dev); 584 read_unlock_bh(&tbl->lock); 585 586 if (n || !creat) 587 goto out; 588 589 ASSERT_RTNL(); 590 591 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 592 if (!n) 593 goto out; 594 595 write_pnet(&n->net, hold_net(net)); 596 memcpy(n->key, pkey, key_len); 597 n->dev = dev; 598 if (dev) 599 dev_hold(dev); 600 601 if (tbl->pconstructor && tbl->pconstructor(n)) { 602 if (dev) 603 dev_put(dev); 604 release_net(net); 605 kfree(n); 606 n = NULL; 607 goto out; 608 } 609 610 write_lock_bh(&tbl->lock); 611 n->next = tbl->phash_buckets[hash_val]; 612 tbl->phash_buckets[hash_val] = n; 613 write_unlock_bh(&tbl->lock); 614 out: 615 return n; 616 } 617 EXPORT_SYMBOL(pneigh_lookup); 618 619 620 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 621 struct net_device *dev) 622 { 623 struct pneigh_entry *n, **np; 624 int key_len = tbl->key_len; 625 u32 hash_val = pneigh_hash(pkey, key_len); 626 627 write_lock_bh(&tbl->lock); 628 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 629 np = &n->next) { 630 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 631 net_eq(pneigh_net(n), net)) { 632 *np = n->next; 633 write_unlock_bh(&tbl->lock); 634 if (tbl->pdestructor) 635 tbl->pdestructor(n); 636 if (n->dev) 637 dev_put(n->dev); 638 release_net(pneigh_net(n)); 639 kfree(n); 640 return 0; 641 } 642 } 643 write_unlock_bh(&tbl->lock); 644 return -ENOENT; 645 } 646 647 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 648 { 649 struct pneigh_entry *n, **np; 650 u32 h; 651 652 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 653 np = &tbl->phash_buckets[h]; 654 while ((n = *np) != NULL) { 655 if (!dev || n->dev == dev) { 656 *np = n->next; 657 if (tbl->pdestructor) 658 tbl->pdestructor(n); 659 if (n->dev) 660 dev_put(n->dev); 661 release_net(pneigh_net(n)); 662 kfree(n); 663 continue; 664 } 665 np = &n->next; 666 } 667 } 668 return -ENOENT; 669 } 670 671 static void neigh_parms_destroy(struct neigh_parms *parms); 672 673 static inline void neigh_parms_put(struct neigh_parms *parms) 674 { 675 if (atomic_dec_and_test(&parms->refcnt)) 676 neigh_parms_destroy(parms); 677 } 678 679 static void neigh_destroy_rcu(struct rcu_head *head) 680 { 681 struct neighbour *neigh = container_of(head, struct neighbour, rcu); 682 683 kmem_cache_free(neigh->tbl->kmem_cachep, neigh); 684 } 685 /* 686 * neighbour must already be out of the table; 687 * 688 */ 689 void neigh_destroy(struct neighbour *neigh) 690 { 691 struct hh_cache *hh; 692 693 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 694 695 if (!neigh->dead) { 696 printk(KERN_WARNING 697 "Destroying alive neighbour %p\n", neigh); 698 dump_stack(); 699 return; 700 } 701 702 if (neigh_del_timer(neigh)) 703 printk(KERN_WARNING "Impossible event.\n"); 704 705 while ((hh = neigh->hh) != NULL) { 706 neigh->hh = hh->hh_next; 707 hh->hh_next = NULL; 708 709 write_seqlock_bh(&hh->hh_lock); 710 hh->hh_output = neigh_blackhole; 711 write_sequnlock_bh(&hh->hh_lock); 712 hh_cache_put(hh); 713 } 714 715 skb_queue_purge(&neigh->arp_queue); 716 717 dev_put(neigh->dev); 718 neigh_parms_put(neigh->parms); 719 720 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh); 721 722 atomic_dec(&neigh->tbl->entries); 723 call_rcu(&neigh->rcu, neigh_destroy_rcu); 724 } 725 EXPORT_SYMBOL(neigh_destroy); 726 727 /* Neighbour state is suspicious; 728 disable fast path. 729 730 Called with write_locked neigh. 731 */ 732 static void neigh_suspect(struct neighbour *neigh) 733 { 734 struct hh_cache *hh; 735 736 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 737 738 neigh->output = neigh->ops->output; 739 740 for (hh = neigh->hh; hh; hh = hh->hh_next) 741 hh->hh_output = neigh->ops->output; 742 } 743 744 /* Neighbour state is OK; 745 enable fast path. 746 747 Called with write_locked neigh. 748 */ 749 static void neigh_connect(struct neighbour *neigh) 750 { 751 struct hh_cache *hh; 752 753 NEIGH_PRINTK2("neigh %p is connected.\n", neigh); 754 755 neigh->output = neigh->ops->connected_output; 756 757 for (hh = neigh->hh; hh; hh = hh->hh_next) 758 hh->hh_output = neigh->ops->hh_output; 759 } 760 761 static void neigh_periodic_work(struct work_struct *work) 762 { 763 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 764 struct neighbour *n; 765 struct neighbour __rcu **np; 766 unsigned int i; 767 struct neigh_hash_table *nht; 768 769 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 770 771 write_lock_bh(&tbl->lock); 772 nht = rcu_dereference_protected(tbl->nht, 773 lockdep_is_held(&tbl->lock)); 774 775 /* 776 * periodically recompute ReachableTime from random function 777 */ 778 779 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 780 struct neigh_parms *p; 781 tbl->last_rand = jiffies; 782 for (p = &tbl->parms; p; p = p->next) 783 p->reachable_time = 784 neigh_rand_reach_time(p->base_reachable_time); 785 } 786 787 for (i = 0 ; i <= nht->hash_mask; i++) { 788 np = &nht->hash_buckets[i]; 789 790 while ((n = rcu_dereference_protected(*np, 791 lockdep_is_held(&tbl->lock))) != NULL) { 792 unsigned int state; 793 794 write_lock(&n->lock); 795 796 state = n->nud_state; 797 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) { 798 write_unlock(&n->lock); 799 goto next_elt; 800 } 801 802 if (time_before(n->used, n->confirmed)) 803 n->used = n->confirmed; 804 805 if (atomic_read(&n->refcnt) == 1 && 806 (state == NUD_FAILED || 807 time_after(jiffies, n->used + n->parms->gc_staletime))) { 808 *np = n->next; 809 n->dead = 1; 810 write_unlock(&n->lock); 811 neigh_cleanup_and_release(n); 812 continue; 813 } 814 write_unlock(&n->lock); 815 816 next_elt: 817 np = &n->next; 818 } 819 /* 820 * It's fine to release lock here, even if hash table 821 * grows while we are preempted. 822 */ 823 write_unlock_bh(&tbl->lock); 824 cond_resched(); 825 write_lock_bh(&tbl->lock); 826 } 827 /* Cycle through all hash buckets every base_reachable_time/2 ticks. 828 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2 829 * base_reachable_time. 830 */ 831 schedule_delayed_work(&tbl->gc_work, 832 tbl->parms.base_reachable_time >> 1); 833 write_unlock_bh(&tbl->lock); 834 } 835 836 static __inline__ int neigh_max_probes(struct neighbour *n) 837 { 838 struct neigh_parms *p = n->parms; 839 return (n->nud_state & NUD_PROBE) ? 840 p->ucast_probes : 841 p->ucast_probes + p->app_probes + p->mcast_probes; 842 } 843 844 static void neigh_invalidate(struct neighbour *neigh) 845 __releases(neigh->lock) 846 __acquires(neigh->lock) 847 { 848 struct sk_buff *skb; 849 850 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 851 NEIGH_PRINTK2("neigh %p is failed.\n", neigh); 852 neigh->updated = jiffies; 853 854 /* It is very thin place. report_unreachable is very complicated 855 routine. Particularly, it can hit the same neighbour entry! 856 857 So that, we try to be accurate and avoid dead loop. --ANK 858 */ 859 while (neigh->nud_state == NUD_FAILED && 860 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 861 write_unlock(&neigh->lock); 862 neigh->ops->error_report(neigh, skb); 863 write_lock(&neigh->lock); 864 } 865 skb_queue_purge(&neigh->arp_queue); 866 } 867 868 /* Called when a timer expires for a neighbour entry. */ 869 870 static void neigh_timer_handler(unsigned long arg) 871 { 872 unsigned long now, next; 873 struct neighbour *neigh = (struct neighbour *)arg; 874 unsigned state; 875 int notify = 0; 876 877 write_lock(&neigh->lock); 878 879 state = neigh->nud_state; 880 now = jiffies; 881 next = now + HZ; 882 883 if (!(state & NUD_IN_TIMER)) { 884 #ifndef CONFIG_SMP 885 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n"); 886 #endif 887 goto out; 888 } 889 890 if (state & NUD_REACHABLE) { 891 if (time_before_eq(now, 892 neigh->confirmed + neigh->parms->reachable_time)) { 893 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh); 894 next = neigh->confirmed + neigh->parms->reachable_time; 895 } else if (time_before_eq(now, 896 neigh->used + neigh->parms->delay_probe_time)) { 897 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 898 neigh->nud_state = NUD_DELAY; 899 neigh->updated = jiffies; 900 neigh_suspect(neigh); 901 next = now + neigh->parms->delay_probe_time; 902 } else { 903 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 904 neigh->nud_state = NUD_STALE; 905 neigh->updated = jiffies; 906 neigh_suspect(neigh); 907 notify = 1; 908 } 909 } else if (state & NUD_DELAY) { 910 if (time_before_eq(now, 911 neigh->confirmed + neigh->parms->delay_probe_time)) { 912 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh); 913 neigh->nud_state = NUD_REACHABLE; 914 neigh->updated = jiffies; 915 neigh_connect(neigh); 916 notify = 1; 917 next = neigh->confirmed + neigh->parms->reachable_time; 918 } else { 919 NEIGH_PRINTK2("neigh %p is probed.\n", neigh); 920 neigh->nud_state = NUD_PROBE; 921 neigh->updated = jiffies; 922 atomic_set(&neigh->probes, 0); 923 next = now + neigh->parms->retrans_time; 924 } 925 } else { 926 /* NUD_PROBE|NUD_INCOMPLETE */ 927 next = now + neigh->parms->retrans_time; 928 } 929 930 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 931 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 932 neigh->nud_state = NUD_FAILED; 933 notify = 1; 934 neigh_invalidate(neigh); 935 } 936 937 if (neigh->nud_state & NUD_IN_TIMER) { 938 if (time_before(next, jiffies + HZ/2)) 939 next = jiffies + HZ/2; 940 if (!mod_timer(&neigh->timer, next)) 941 neigh_hold(neigh); 942 } 943 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 944 struct sk_buff *skb = skb_peek(&neigh->arp_queue); 945 /* keep skb alive even if arp_queue overflows */ 946 if (skb) 947 skb = skb_copy(skb, GFP_ATOMIC); 948 write_unlock(&neigh->lock); 949 neigh->ops->solicit(neigh, skb); 950 atomic_inc(&neigh->probes); 951 kfree_skb(skb); 952 } else { 953 out: 954 write_unlock(&neigh->lock); 955 } 956 957 if (notify) 958 neigh_update_notify(neigh); 959 960 neigh_release(neigh); 961 } 962 963 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 964 { 965 int rc; 966 unsigned long now; 967 968 write_lock_bh(&neigh->lock); 969 970 rc = 0; 971 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 972 goto out_unlock_bh; 973 974 now = jiffies; 975 976 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 977 if (neigh->parms->mcast_probes + neigh->parms->app_probes) { 978 atomic_set(&neigh->probes, neigh->parms->ucast_probes); 979 neigh->nud_state = NUD_INCOMPLETE; 980 neigh->updated = jiffies; 981 neigh_add_timer(neigh, now + 1); 982 } else { 983 neigh->nud_state = NUD_FAILED; 984 neigh->updated = jiffies; 985 write_unlock_bh(&neigh->lock); 986 987 kfree_skb(skb); 988 return 1; 989 } 990 } else if (neigh->nud_state & NUD_STALE) { 991 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 992 neigh->nud_state = NUD_DELAY; 993 neigh->updated = jiffies; 994 neigh_add_timer(neigh, 995 jiffies + neigh->parms->delay_probe_time); 996 } 997 998 if (neigh->nud_state == NUD_INCOMPLETE) { 999 if (skb) { 1000 if (skb_queue_len(&neigh->arp_queue) >= 1001 neigh->parms->queue_len) { 1002 struct sk_buff *buff; 1003 buff = __skb_dequeue(&neigh->arp_queue); 1004 kfree_skb(buff); 1005 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 1006 } 1007 skb_dst_force(skb); 1008 __skb_queue_tail(&neigh->arp_queue, skb); 1009 } 1010 rc = 1; 1011 } 1012 out_unlock_bh: 1013 write_unlock_bh(&neigh->lock); 1014 return rc; 1015 } 1016 EXPORT_SYMBOL(__neigh_event_send); 1017 1018 static void neigh_update_hhs(const struct neighbour *neigh) 1019 { 1020 struct hh_cache *hh; 1021 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 1022 = NULL; 1023 1024 if (neigh->dev->header_ops) 1025 update = neigh->dev->header_ops->cache_update; 1026 1027 if (update) { 1028 for (hh = neigh->hh; hh; hh = hh->hh_next) { 1029 write_seqlock_bh(&hh->hh_lock); 1030 update(hh, neigh->dev, neigh->ha); 1031 write_sequnlock_bh(&hh->hh_lock); 1032 } 1033 } 1034 } 1035 1036 1037 1038 /* Generic update routine. 1039 -- lladdr is new lladdr or NULL, if it is not supplied. 1040 -- new is new state. 1041 -- flags 1042 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 1043 if it is different. 1044 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 1045 lladdr instead of overriding it 1046 if it is different. 1047 It also allows to retain current state 1048 if lladdr is unchanged. 1049 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 1050 1051 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 1052 NTF_ROUTER flag. 1053 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 1054 a router. 1055 1056 Caller MUST hold reference count on the entry. 1057 */ 1058 1059 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 1060 u32 flags) 1061 { 1062 u8 old; 1063 int err; 1064 int notify = 0; 1065 struct net_device *dev; 1066 int update_isrouter = 0; 1067 1068 write_lock_bh(&neigh->lock); 1069 1070 dev = neigh->dev; 1071 old = neigh->nud_state; 1072 err = -EPERM; 1073 1074 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 1075 (old & (NUD_NOARP | NUD_PERMANENT))) 1076 goto out; 1077 1078 if (!(new & NUD_VALID)) { 1079 neigh_del_timer(neigh); 1080 if (old & NUD_CONNECTED) 1081 neigh_suspect(neigh); 1082 neigh->nud_state = new; 1083 err = 0; 1084 notify = old & NUD_VALID; 1085 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1086 (new & NUD_FAILED)) { 1087 neigh_invalidate(neigh); 1088 notify = 1; 1089 } 1090 goto out; 1091 } 1092 1093 /* Compare new lladdr with cached one */ 1094 if (!dev->addr_len) { 1095 /* First case: device needs no address. */ 1096 lladdr = neigh->ha; 1097 } else if (lladdr) { 1098 /* The second case: if something is already cached 1099 and a new address is proposed: 1100 - compare new & old 1101 - if they are different, check override flag 1102 */ 1103 if ((old & NUD_VALID) && 1104 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1105 lladdr = neigh->ha; 1106 } else { 1107 /* No address is supplied; if we know something, 1108 use it, otherwise discard the request. 1109 */ 1110 err = -EINVAL; 1111 if (!(old & NUD_VALID)) 1112 goto out; 1113 lladdr = neigh->ha; 1114 } 1115 1116 if (new & NUD_CONNECTED) 1117 neigh->confirmed = jiffies; 1118 neigh->updated = jiffies; 1119 1120 /* If entry was valid and address is not changed, 1121 do not change entry state, if new one is STALE. 1122 */ 1123 err = 0; 1124 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1125 if (old & NUD_VALID) { 1126 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1127 update_isrouter = 0; 1128 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1129 (old & NUD_CONNECTED)) { 1130 lladdr = neigh->ha; 1131 new = NUD_STALE; 1132 } else 1133 goto out; 1134 } else { 1135 if (lladdr == neigh->ha && new == NUD_STALE && 1136 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) || 1137 (old & NUD_CONNECTED)) 1138 ) 1139 new = old; 1140 } 1141 } 1142 1143 if (new != old) { 1144 neigh_del_timer(neigh); 1145 if (new & NUD_IN_TIMER) 1146 neigh_add_timer(neigh, (jiffies + 1147 ((new & NUD_REACHABLE) ? 1148 neigh->parms->reachable_time : 1149 0))); 1150 neigh->nud_state = new; 1151 } 1152 1153 if (lladdr != neigh->ha) { 1154 write_seqlock(&neigh->ha_lock); 1155 memcpy(&neigh->ha, lladdr, dev->addr_len); 1156 write_sequnlock(&neigh->ha_lock); 1157 neigh_update_hhs(neigh); 1158 if (!(new & NUD_CONNECTED)) 1159 neigh->confirmed = jiffies - 1160 (neigh->parms->base_reachable_time << 1); 1161 notify = 1; 1162 } 1163 if (new == old) 1164 goto out; 1165 if (new & NUD_CONNECTED) 1166 neigh_connect(neigh); 1167 else 1168 neigh_suspect(neigh); 1169 if (!(old & NUD_VALID)) { 1170 struct sk_buff *skb; 1171 1172 /* Again: avoid dead loop if something went wrong */ 1173 1174 while (neigh->nud_state & NUD_VALID && 1175 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1176 struct neighbour *n1 = neigh; 1177 write_unlock_bh(&neigh->lock); 1178 /* On shaper/eql skb->dst->neighbour != neigh :( */ 1179 if (skb_dst(skb) && skb_dst(skb)->neighbour) 1180 n1 = skb_dst(skb)->neighbour; 1181 n1->output(skb); 1182 write_lock_bh(&neigh->lock); 1183 } 1184 skb_queue_purge(&neigh->arp_queue); 1185 } 1186 out: 1187 if (update_isrouter) { 1188 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ? 1189 (neigh->flags | NTF_ROUTER) : 1190 (neigh->flags & ~NTF_ROUTER); 1191 } 1192 write_unlock_bh(&neigh->lock); 1193 1194 if (notify) 1195 neigh_update_notify(neigh); 1196 1197 return err; 1198 } 1199 EXPORT_SYMBOL(neigh_update); 1200 1201 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1202 u8 *lladdr, void *saddr, 1203 struct net_device *dev) 1204 { 1205 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1206 lladdr || !dev->addr_len); 1207 if (neigh) 1208 neigh_update(neigh, lladdr, NUD_STALE, 1209 NEIGH_UPDATE_F_OVERRIDE); 1210 return neigh; 1211 } 1212 EXPORT_SYMBOL(neigh_event_ns); 1213 1214 static inline bool neigh_hh_lookup(struct neighbour *n, struct dst_entry *dst, 1215 __be16 protocol) 1216 { 1217 struct hh_cache *hh; 1218 1219 smp_rmb(); /* paired with smp_wmb() in neigh_hh_init() */ 1220 for (hh = n->hh; hh; hh = hh->hh_next) { 1221 if (hh->hh_type == protocol) { 1222 atomic_inc(&hh->hh_refcnt); 1223 if (unlikely(cmpxchg(&dst->hh, NULL, hh) != NULL)) 1224 hh_cache_put(hh); 1225 return true; 1226 } 1227 } 1228 return false; 1229 } 1230 1231 /* called with read_lock_bh(&n->lock); */ 1232 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst, 1233 __be16 protocol) 1234 { 1235 struct hh_cache *hh; 1236 struct net_device *dev = dst->dev; 1237 1238 if (likely(neigh_hh_lookup(n, dst, protocol))) 1239 return; 1240 1241 /* slow path */ 1242 hh = kzalloc(sizeof(*hh), GFP_ATOMIC); 1243 if (!hh) 1244 return; 1245 1246 seqlock_init(&hh->hh_lock); 1247 hh->hh_type = protocol; 1248 atomic_set(&hh->hh_refcnt, 2); 1249 1250 if (dev->header_ops->cache(n, hh)) { 1251 kfree(hh); 1252 return; 1253 } 1254 1255 write_lock_bh(&n->lock); 1256 1257 /* must check if another thread already did the insert */ 1258 if (neigh_hh_lookup(n, dst, protocol)) { 1259 kfree(hh); 1260 goto end; 1261 } 1262 1263 if (n->nud_state & NUD_CONNECTED) 1264 hh->hh_output = n->ops->hh_output; 1265 else 1266 hh->hh_output = n->ops->output; 1267 1268 hh->hh_next = n->hh; 1269 smp_wmb(); /* paired with smp_rmb() in neigh_hh_lookup() */ 1270 n->hh = hh; 1271 1272 if (unlikely(cmpxchg(&dst->hh, NULL, hh) != NULL)) 1273 hh_cache_put(hh); 1274 end: 1275 write_unlock_bh(&n->lock); 1276 } 1277 1278 /* This function can be used in contexts, where only old dev_queue_xmit 1279 * worked, f.e. if you want to override normal output path (eql, shaper), 1280 * but resolution is not made yet. 1281 */ 1282 1283 int neigh_compat_output(struct sk_buff *skb) 1284 { 1285 struct net_device *dev = skb->dev; 1286 1287 __skb_pull(skb, skb_network_offset(skb)); 1288 1289 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL, 1290 skb->len) < 0 && 1291 dev->header_ops->rebuild(skb)) 1292 return 0; 1293 1294 return dev_queue_xmit(skb); 1295 } 1296 EXPORT_SYMBOL(neigh_compat_output); 1297 1298 /* Slow and careful. */ 1299 1300 int neigh_resolve_output(struct sk_buff *skb) 1301 { 1302 struct dst_entry *dst = skb_dst(skb); 1303 struct neighbour *neigh; 1304 int rc = 0; 1305 1306 if (!dst || !(neigh = dst->neighbour)) 1307 goto discard; 1308 1309 __skb_pull(skb, skb_network_offset(skb)); 1310 1311 if (!neigh_event_send(neigh, skb)) { 1312 int err; 1313 struct net_device *dev = neigh->dev; 1314 unsigned int seq; 1315 1316 if (dev->header_ops->cache && 1317 !dst->hh && 1318 !(dst->flags & DST_NOCACHE)) 1319 neigh_hh_init(neigh, dst, dst->ops->protocol); 1320 1321 do { 1322 seq = read_seqbegin(&neigh->ha_lock); 1323 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1324 neigh->ha, NULL, skb->len); 1325 } while (read_seqretry(&neigh->ha_lock, seq)); 1326 1327 if (err >= 0) 1328 rc = neigh->ops->queue_xmit(skb); 1329 else 1330 goto out_kfree_skb; 1331 } 1332 out: 1333 return rc; 1334 discard: 1335 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n", 1336 dst, dst ? dst->neighbour : NULL); 1337 out_kfree_skb: 1338 rc = -EINVAL; 1339 kfree_skb(skb); 1340 goto out; 1341 } 1342 EXPORT_SYMBOL(neigh_resolve_output); 1343 1344 /* As fast as possible without hh cache */ 1345 1346 int neigh_connected_output(struct sk_buff *skb) 1347 { 1348 int err; 1349 struct dst_entry *dst = skb_dst(skb); 1350 struct neighbour *neigh = dst->neighbour; 1351 struct net_device *dev = neigh->dev; 1352 unsigned int seq; 1353 1354 __skb_pull(skb, skb_network_offset(skb)); 1355 1356 do { 1357 seq = read_seqbegin(&neigh->ha_lock); 1358 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1359 neigh->ha, NULL, skb->len); 1360 } while (read_seqretry(&neigh->ha_lock, seq)); 1361 1362 if (err >= 0) 1363 err = neigh->ops->queue_xmit(skb); 1364 else { 1365 err = -EINVAL; 1366 kfree_skb(skb); 1367 } 1368 return err; 1369 } 1370 EXPORT_SYMBOL(neigh_connected_output); 1371 1372 static void neigh_proxy_process(unsigned long arg) 1373 { 1374 struct neigh_table *tbl = (struct neigh_table *)arg; 1375 long sched_next = 0; 1376 unsigned long now = jiffies; 1377 struct sk_buff *skb, *n; 1378 1379 spin_lock(&tbl->proxy_queue.lock); 1380 1381 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1382 long tdif = NEIGH_CB(skb)->sched_next - now; 1383 1384 if (tdif <= 0) { 1385 struct net_device *dev = skb->dev; 1386 __skb_unlink(skb, &tbl->proxy_queue); 1387 if (tbl->proxy_redo && netif_running(dev)) 1388 tbl->proxy_redo(skb); 1389 else 1390 kfree_skb(skb); 1391 1392 dev_put(dev); 1393 } else if (!sched_next || tdif < sched_next) 1394 sched_next = tdif; 1395 } 1396 del_timer(&tbl->proxy_timer); 1397 if (sched_next) 1398 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1399 spin_unlock(&tbl->proxy_queue.lock); 1400 } 1401 1402 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1403 struct sk_buff *skb) 1404 { 1405 unsigned long now = jiffies; 1406 unsigned long sched_next = now + (net_random() % p->proxy_delay); 1407 1408 if (tbl->proxy_queue.qlen > p->proxy_qlen) { 1409 kfree_skb(skb); 1410 return; 1411 } 1412 1413 NEIGH_CB(skb)->sched_next = sched_next; 1414 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1415 1416 spin_lock(&tbl->proxy_queue.lock); 1417 if (del_timer(&tbl->proxy_timer)) { 1418 if (time_before(tbl->proxy_timer.expires, sched_next)) 1419 sched_next = tbl->proxy_timer.expires; 1420 } 1421 skb_dst_drop(skb); 1422 dev_hold(skb->dev); 1423 __skb_queue_tail(&tbl->proxy_queue, skb); 1424 mod_timer(&tbl->proxy_timer, sched_next); 1425 spin_unlock(&tbl->proxy_queue.lock); 1426 } 1427 EXPORT_SYMBOL(pneigh_enqueue); 1428 1429 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1430 struct net *net, int ifindex) 1431 { 1432 struct neigh_parms *p; 1433 1434 for (p = &tbl->parms; p; p = p->next) { 1435 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1436 (!p->dev && !ifindex)) 1437 return p; 1438 } 1439 1440 return NULL; 1441 } 1442 1443 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1444 struct neigh_table *tbl) 1445 { 1446 struct neigh_parms *p, *ref; 1447 struct net *net = dev_net(dev); 1448 const struct net_device_ops *ops = dev->netdev_ops; 1449 1450 ref = lookup_neigh_parms(tbl, net, 0); 1451 if (!ref) 1452 return NULL; 1453 1454 p = kmemdup(ref, sizeof(*p), GFP_KERNEL); 1455 if (p) { 1456 p->tbl = tbl; 1457 atomic_set(&p->refcnt, 1); 1458 p->reachable_time = 1459 neigh_rand_reach_time(p->base_reachable_time); 1460 1461 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1462 kfree(p); 1463 return NULL; 1464 } 1465 1466 dev_hold(dev); 1467 p->dev = dev; 1468 write_pnet(&p->net, hold_net(net)); 1469 p->sysctl_table = NULL; 1470 write_lock_bh(&tbl->lock); 1471 p->next = tbl->parms.next; 1472 tbl->parms.next = p; 1473 write_unlock_bh(&tbl->lock); 1474 } 1475 return p; 1476 } 1477 EXPORT_SYMBOL(neigh_parms_alloc); 1478 1479 static void neigh_rcu_free_parms(struct rcu_head *head) 1480 { 1481 struct neigh_parms *parms = 1482 container_of(head, struct neigh_parms, rcu_head); 1483 1484 neigh_parms_put(parms); 1485 } 1486 1487 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1488 { 1489 struct neigh_parms **p; 1490 1491 if (!parms || parms == &tbl->parms) 1492 return; 1493 write_lock_bh(&tbl->lock); 1494 for (p = &tbl->parms.next; *p; p = &(*p)->next) { 1495 if (*p == parms) { 1496 *p = parms->next; 1497 parms->dead = 1; 1498 write_unlock_bh(&tbl->lock); 1499 if (parms->dev) 1500 dev_put(parms->dev); 1501 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1502 return; 1503 } 1504 } 1505 write_unlock_bh(&tbl->lock); 1506 NEIGH_PRINTK1("neigh_parms_release: not found\n"); 1507 } 1508 EXPORT_SYMBOL(neigh_parms_release); 1509 1510 static void neigh_parms_destroy(struct neigh_parms *parms) 1511 { 1512 release_net(neigh_parms_net(parms)); 1513 kfree(parms); 1514 } 1515 1516 static struct lock_class_key neigh_table_proxy_queue_class; 1517 1518 void neigh_table_init_no_netlink(struct neigh_table *tbl) 1519 { 1520 unsigned long now = jiffies; 1521 unsigned long phsize; 1522 1523 write_pnet(&tbl->parms.net, &init_net); 1524 atomic_set(&tbl->parms.refcnt, 1); 1525 tbl->parms.reachable_time = 1526 neigh_rand_reach_time(tbl->parms.base_reachable_time); 1527 1528 if (!tbl->kmem_cachep) 1529 tbl->kmem_cachep = 1530 kmem_cache_create(tbl->id, tbl->entry_size, 0, 1531 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1532 NULL); 1533 tbl->stats = alloc_percpu(struct neigh_statistics); 1534 if (!tbl->stats) 1535 panic("cannot create neighbour cache statistics"); 1536 1537 #ifdef CONFIG_PROC_FS 1538 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat, 1539 &neigh_stat_seq_fops, tbl)) 1540 panic("cannot create neighbour proc dir entry"); 1541 #endif 1542 1543 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(8)); 1544 1545 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1546 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1547 1548 if (!tbl->nht || !tbl->phash_buckets) 1549 panic("cannot allocate neighbour cache hashes"); 1550 1551 rwlock_init(&tbl->lock); 1552 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work); 1553 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time); 1554 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl); 1555 skb_queue_head_init_class(&tbl->proxy_queue, 1556 &neigh_table_proxy_queue_class); 1557 1558 tbl->last_flush = now; 1559 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1560 } 1561 EXPORT_SYMBOL(neigh_table_init_no_netlink); 1562 1563 void neigh_table_init(struct neigh_table *tbl) 1564 { 1565 struct neigh_table *tmp; 1566 1567 neigh_table_init_no_netlink(tbl); 1568 write_lock(&neigh_tbl_lock); 1569 for (tmp = neigh_tables; tmp; tmp = tmp->next) { 1570 if (tmp->family == tbl->family) 1571 break; 1572 } 1573 tbl->next = neigh_tables; 1574 neigh_tables = tbl; 1575 write_unlock(&neigh_tbl_lock); 1576 1577 if (unlikely(tmp)) { 1578 printk(KERN_ERR "NEIGH: Registering multiple tables for " 1579 "family %d\n", tbl->family); 1580 dump_stack(); 1581 } 1582 } 1583 EXPORT_SYMBOL(neigh_table_init); 1584 1585 int neigh_table_clear(struct neigh_table *tbl) 1586 { 1587 struct neigh_table **tp; 1588 1589 /* It is not clean... Fix it to unload IPv6 module safely */ 1590 cancel_delayed_work_sync(&tbl->gc_work); 1591 del_timer_sync(&tbl->proxy_timer); 1592 pneigh_queue_purge(&tbl->proxy_queue); 1593 neigh_ifdown(tbl, NULL); 1594 if (atomic_read(&tbl->entries)) 1595 printk(KERN_CRIT "neighbour leakage\n"); 1596 write_lock(&neigh_tbl_lock); 1597 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) { 1598 if (*tp == tbl) { 1599 *tp = tbl->next; 1600 break; 1601 } 1602 } 1603 write_unlock(&neigh_tbl_lock); 1604 1605 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, 1606 neigh_hash_free_rcu); 1607 tbl->nht = NULL; 1608 1609 kfree(tbl->phash_buckets); 1610 tbl->phash_buckets = NULL; 1611 1612 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1613 1614 free_percpu(tbl->stats); 1615 tbl->stats = NULL; 1616 1617 kmem_cache_destroy(tbl->kmem_cachep); 1618 tbl->kmem_cachep = NULL; 1619 1620 return 0; 1621 } 1622 EXPORT_SYMBOL(neigh_table_clear); 1623 1624 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1625 { 1626 struct net *net = sock_net(skb->sk); 1627 struct ndmsg *ndm; 1628 struct nlattr *dst_attr; 1629 struct neigh_table *tbl; 1630 struct net_device *dev = NULL; 1631 int err = -EINVAL; 1632 1633 ASSERT_RTNL(); 1634 if (nlmsg_len(nlh) < sizeof(*ndm)) 1635 goto out; 1636 1637 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1638 if (dst_attr == NULL) 1639 goto out; 1640 1641 ndm = nlmsg_data(nlh); 1642 if (ndm->ndm_ifindex) { 1643 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1644 if (dev == NULL) { 1645 err = -ENODEV; 1646 goto out; 1647 } 1648 } 1649 1650 read_lock(&neigh_tbl_lock); 1651 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1652 struct neighbour *neigh; 1653 1654 if (tbl->family != ndm->ndm_family) 1655 continue; 1656 read_unlock(&neigh_tbl_lock); 1657 1658 if (nla_len(dst_attr) < tbl->key_len) 1659 goto out; 1660 1661 if (ndm->ndm_flags & NTF_PROXY) { 1662 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1663 goto out; 1664 } 1665 1666 if (dev == NULL) 1667 goto out; 1668 1669 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1670 if (neigh == NULL) { 1671 err = -ENOENT; 1672 goto out; 1673 } 1674 1675 err = neigh_update(neigh, NULL, NUD_FAILED, 1676 NEIGH_UPDATE_F_OVERRIDE | 1677 NEIGH_UPDATE_F_ADMIN); 1678 neigh_release(neigh); 1679 goto out; 1680 } 1681 read_unlock(&neigh_tbl_lock); 1682 err = -EAFNOSUPPORT; 1683 1684 out: 1685 return err; 1686 } 1687 1688 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1689 { 1690 struct net *net = sock_net(skb->sk); 1691 struct ndmsg *ndm; 1692 struct nlattr *tb[NDA_MAX+1]; 1693 struct neigh_table *tbl; 1694 struct net_device *dev = NULL; 1695 int err; 1696 1697 ASSERT_RTNL(); 1698 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL); 1699 if (err < 0) 1700 goto out; 1701 1702 err = -EINVAL; 1703 if (tb[NDA_DST] == NULL) 1704 goto out; 1705 1706 ndm = nlmsg_data(nlh); 1707 if (ndm->ndm_ifindex) { 1708 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1709 if (dev == NULL) { 1710 err = -ENODEV; 1711 goto out; 1712 } 1713 1714 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) 1715 goto out; 1716 } 1717 1718 read_lock(&neigh_tbl_lock); 1719 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1720 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE; 1721 struct neighbour *neigh; 1722 void *dst, *lladdr; 1723 1724 if (tbl->family != ndm->ndm_family) 1725 continue; 1726 read_unlock(&neigh_tbl_lock); 1727 1728 if (nla_len(tb[NDA_DST]) < tbl->key_len) 1729 goto out; 1730 dst = nla_data(tb[NDA_DST]); 1731 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1732 1733 if (ndm->ndm_flags & NTF_PROXY) { 1734 struct pneigh_entry *pn; 1735 1736 err = -ENOBUFS; 1737 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1738 if (pn) { 1739 pn->flags = ndm->ndm_flags; 1740 err = 0; 1741 } 1742 goto out; 1743 } 1744 1745 if (dev == NULL) 1746 goto out; 1747 1748 neigh = neigh_lookup(tbl, dst, dev); 1749 if (neigh == NULL) { 1750 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1751 err = -ENOENT; 1752 goto out; 1753 } 1754 1755 neigh = __neigh_lookup_errno(tbl, dst, dev); 1756 if (IS_ERR(neigh)) { 1757 err = PTR_ERR(neigh); 1758 goto out; 1759 } 1760 } else { 1761 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1762 err = -EEXIST; 1763 neigh_release(neigh); 1764 goto out; 1765 } 1766 1767 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1768 flags &= ~NEIGH_UPDATE_F_OVERRIDE; 1769 } 1770 1771 if (ndm->ndm_flags & NTF_USE) { 1772 neigh_event_send(neigh, NULL); 1773 err = 0; 1774 } else 1775 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags); 1776 neigh_release(neigh); 1777 goto out; 1778 } 1779 1780 read_unlock(&neigh_tbl_lock); 1781 err = -EAFNOSUPPORT; 1782 out: 1783 return err; 1784 } 1785 1786 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1787 { 1788 struct nlattr *nest; 1789 1790 nest = nla_nest_start(skb, NDTA_PARMS); 1791 if (nest == NULL) 1792 return -ENOBUFS; 1793 1794 if (parms->dev) 1795 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex); 1796 1797 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)); 1798 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len); 1799 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen); 1800 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes); 1801 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes); 1802 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes); 1803 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time); 1804 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME, 1805 parms->base_reachable_time); 1806 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime); 1807 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time); 1808 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time); 1809 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay); 1810 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay); 1811 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime); 1812 1813 return nla_nest_end(skb, nest); 1814 1815 nla_put_failure: 1816 nla_nest_cancel(skb, nest); 1817 return -EMSGSIZE; 1818 } 1819 1820 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 1821 u32 pid, u32 seq, int type, int flags) 1822 { 1823 struct nlmsghdr *nlh; 1824 struct ndtmsg *ndtmsg; 1825 1826 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1827 if (nlh == NULL) 1828 return -EMSGSIZE; 1829 1830 ndtmsg = nlmsg_data(nlh); 1831 1832 read_lock_bh(&tbl->lock); 1833 ndtmsg->ndtm_family = tbl->family; 1834 ndtmsg->ndtm_pad1 = 0; 1835 ndtmsg->ndtm_pad2 = 0; 1836 1837 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id); 1838 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval); 1839 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1); 1840 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2); 1841 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3); 1842 1843 { 1844 unsigned long now = jiffies; 1845 unsigned int flush_delta = now - tbl->last_flush; 1846 unsigned int rand_delta = now - tbl->last_rand; 1847 struct neigh_hash_table *nht; 1848 struct ndt_config ndc = { 1849 .ndtc_key_len = tbl->key_len, 1850 .ndtc_entry_size = tbl->entry_size, 1851 .ndtc_entries = atomic_read(&tbl->entries), 1852 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 1853 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 1854 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 1855 }; 1856 1857 rcu_read_lock_bh(); 1858 nht = rcu_dereference_bh(tbl->nht); 1859 ndc.ndtc_hash_rnd = nht->hash_rnd; 1860 ndc.ndtc_hash_mask = nht->hash_mask; 1861 rcu_read_unlock_bh(); 1862 1863 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc); 1864 } 1865 1866 { 1867 int cpu; 1868 struct ndt_stats ndst; 1869 1870 memset(&ndst, 0, sizeof(ndst)); 1871 1872 for_each_possible_cpu(cpu) { 1873 struct neigh_statistics *st; 1874 1875 st = per_cpu_ptr(tbl->stats, cpu); 1876 ndst.ndts_allocs += st->allocs; 1877 ndst.ndts_destroys += st->destroys; 1878 ndst.ndts_hash_grows += st->hash_grows; 1879 ndst.ndts_res_failed += st->res_failed; 1880 ndst.ndts_lookups += st->lookups; 1881 ndst.ndts_hits += st->hits; 1882 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 1883 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 1884 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 1885 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 1886 } 1887 1888 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst); 1889 } 1890 1891 BUG_ON(tbl->parms.dev); 1892 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 1893 goto nla_put_failure; 1894 1895 read_unlock_bh(&tbl->lock); 1896 return nlmsg_end(skb, nlh); 1897 1898 nla_put_failure: 1899 read_unlock_bh(&tbl->lock); 1900 nlmsg_cancel(skb, nlh); 1901 return -EMSGSIZE; 1902 } 1903 1904 static int neightbl_fill_param_info(struct sk_buff *skb, 1905 struct neigh_table *tbl, 1906 struct neigh_parms *parms, 1907 u32 pid, u32 seq, int type, 1908 unsigned int flags) 1909 { 1910 struct ndtmsg *ndtmsg; 1911 struct nlmsghdr *nlh; 1912 1913 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1914 if (nlh == NULL) 1915 return -EMSGSIZE; 1916 1917 ndtmsg = nlmsg_data(nlh); 1918 1919 read_lock_bh(&tbl->lock); 1920 ndtmsg->ndtm_family = tbl->family; 1921 ndtmsg->ndtm_pad1 = 0; 1922 ndtmsg->ndtm_pad2 = 0; 1923 1924 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 1925 neightbl_fill_parms(skb, parms) < 0) 1926 goto errout; 1927 1928 read_unlock_bh(&tbl->lock); 1929 return nlmsg_end(skb, nlh); 1930 errout: 1931 read_unlock_bh(&tbl->lock); 1932 nlmsg_cancel(skb, nlh); 1933 return -EMSGSIZE; 1934 } 1935 1936 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 1937 [NDTA_NAME] = { .type = NLA_STRING }, 1938 [NDTA_THRESH1] = { .type = NLA_U32 }, 1939 [NDTA_THRESH2] = { .type = NLA_U32 }, 1940 [NDTA_THRESH3] = { .type = NLA_U32 }, 1941 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 1942 [NDTA_PARMS] = { .type = NLA_NESTED }, 1943 }; 1944 1945 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 1946 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 1947 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 1948 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 1949 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 1950 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 1951 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 1952 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 1953 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 1954 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 1955 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 1956 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 1957 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 1958 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 1959 }; 1960 1961 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1962 { 1963 struct net *net = sock_net(skb->sk); 1964 struct neigh_table *tbl; 1965 struct ndtmsg *ndtmsg; 1966 struct nlattr *tb[NDTA_MAX+1]; 1967 int err; 1968 1969 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 1970 nl_neightbl_policy); 1971 if (err < 0) 1972 goto errout; 1973 1974 if (tb[NDTA_NAME] == NULL) { 1975 err = -EINVAL; 1976 goto errout; 1977 } 1978 1979 ndtmsg = nlmsg_data(nlh); 1980 read_lock(&neigh_tbl_lock); 1981 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1982 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 1983 continue; 1984 1985 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) 1986 break; 1987 } 1988 1989 if (tbl == NULL) { 1990 err = -ENOENT; 1991 goto errout_locked; 1992 } 1993 1994 /* 1995 * We acquire tbl->lock to be nice to the periodic timers and 1996 * make sure they always see a consistent set of values. 1997 */ 1998 write_lock_bh(&tbl->lock); 1999 2000 if (tb[NDTA_PARMS]) { 2001 struct nlattr *tbp[NDTPA_MAX+1]; 2002 struct neigh_parms *p; 2003 int i, ifindex = 0; 2004 2005 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS], 2006 nl_ntbl_parm_policy); 2007 if (err < 0) 2008 goto errout_tbl_lock; 2009 2010 if (tbp[NDTPA_IFINDEX]) 2011 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 2012 2013 p = lookup_neigh_parms(tbl, net, ifindex); 2014 if (p == NULL) { 2015 err = -ENOENT; 2016 goto errout_tbl_lock; 2017 } 2018 2019 for (i = 1; i <= NDTPA_MAX; i++) { 2020 if (tbp[i] == NULL) 2021 continue; 2022 2023 switch (i) { 2024 case NDTPA_QUEUE_LEN: 2025 p->queue_len = nla_get_u32(tbp[i]); 2026 break; 2027 case NDTPA_PROXY_QLEN: 2028 p->proxy_qlen = nla_get_u32(tbp[i]); 2029 break; 2030 case NDTPA_APP_PROBES: 2031 p->app_probes = nla_get_u32(tbp[i]); 2032 break; 2033 case NDTPA_UCAST_PROBES: 2034 p->ucast_probes = nla_get_u32(tbp[i]); 2035 break; 2036 case NDTPA_MCAST_PROBES: 2037 p->mcast_probes = nla_get_u32(tbp[i]); 2038 break; 2039 case NDTPA_BASE_REACHABLE_TIME: 2040 p->base_reachable_time = nla_get_msecs(tbp[i]); 2041 break; 2042 case NDTPA_GC_STALETIME: 2043 p->gc_staletime = nla_get_msecs(tbp[i]); 2044 break; 2045 case NDTPA_DELAY_PROBE_TIME: 2046 p->delay_probe_time = nla_get_msecs(tbp[i]); 2047 break; 2048 case NDTPA_RETRANS_TIME: 2049 p->retrans_time = nla_get_msecs(tbp[i]); 2050 break; 2051 case NDTPA_ANYCAST_DELAY: 2052 p->anycast_delay = nla_get_msecs(tbp[i]); 2053 break; 2054 case NDTPA_PROXY_DELAY: 2055 p->proxy_delay = nla_get_msecs(tbp[i]); 2056 break; 2057 case NDTPA_LOCKTIME: 2058 p->locktime = nla_get_msecs(tbp[i]); 2059 break; 2060 } 2061 } 2062 } 2063 2064 if (tb[NDTA_THRESH1]) 2065 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 2066 2067 if (tb[NDTA_THRESH2]) 2068 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 2069 2070 if (tb[NDTA_THRESH3]) 2071 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 2072 2073 if (tb[NDTA_GC_INTERVAL]) 2074 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 2075 2076 err = 0; 2077 2078 errout_tbl_lock: 2079 write_unlock_bh(&tbl->lock); 2080 errout_locked: 2081 read_unlock(&neigh_tbl_lock); 2082 errout: 2083 return err; 2084 } 2085 2086 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2087 { 2088 struct net *net = sock_net(skb->sk); 2089 int family, tidx, nidx = 0; 2090 int tbl_skip = cb->args[0]; 2091 int neigh_skip = cb->args[1]; 2092 struct neigh_table *tbl; 2093 2094 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2095 2096 read_lock(&neigh_tbl_lock); 2097 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) { 2098 struct neigh_parms *p; 2099 2100 if (tidx < tbl_skip || (family && tbl->family != family)) 2101 continue; 2102 2103 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid, 2104 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2105 NLM_F_MULTI) <= 0) 2106 break; 2107 2108 for (nidx = 0, p = tbl->parms.next; p; p = p->next) { 2109 if (!net_eq(neigh_parms_net(p), net)) 2110 continue; 2111 2112 if (nidx < neigh_skip) 2113 goto next; 2114 2115 if (neightbl_fill_param_info(skb, tbl, p, 2116 NETLINK_CB(cb->skb).pid, 2117 cb->nlh->nlmsg_seq, 2118 RTM_NEWNEIGHTBL, 2119 NLM_F_MULTI) <= 0) 2120 goto out; 2121 next: 2122 nidx++; 2123 } 2124 2125 neigh_skip = 0; 2126 } 2127 out: 2128 read_unlock(&neigh_tbl_lock); 2129 cb->args[0] = tidx; 2130 cb->args[1] = nidx; 2131 2132 return skb->len; 2133 } 2134 2135 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2136 u32 pid, u32 seq, int type, unsigned int flags) 2137 { 2138 unsigned long now = jiffies; 2139 struct nda_cacheinfo ci; 2140 struct nlmsghdr *nlh; 2141 struct ndmsg *ndm; 2142 2143 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2144 if (nlh == NULL) 2145 return -EMSGSIZE; 2146 2147 ndm = nlmsg_data(nlh); 2148 ndm->ndm_family = neigh->ops->family; 2149 ndm->ndm_pad1 = 0; 2150 ndm->ndm_pad2 = 0; 2151 ndm->ndm_flags = neigh->flags; 2152 ndm->ndm_type = neigh->type; 2153 ndm->ndm_ifindex = neigh->dev->ifindex; 2154 2155 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key); 2156 2157 read_lock_bh(&neigh->lock); 2158 ndm->ndm_state = neigh->nud_state; 2159 if (neigh->nud_state & NUD_VALID) { 2160 char haddr[MAX_ADDR_LEN]; 2161 2162 neigh_ha_snapshot(haddr, neigh, neigh->dev); 2163 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { 2164 read_unlock_bh(&neigh->lock); 2165 goto nla_put_failure; 2166 } 2167 } 2168 2169 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2170 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2171 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2172 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1; 2173 read_unlock_bh(&neigh->lock); 2174 2175 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes)); 2176 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci); 2177 2178 return nlmsg_end(skb, nlh); 2179 2180 nla_put_failure: 2181 nlmsg_cancel(skb, nlh); 2182 return -EMSGSIZE; 2183 } 2184 2185 static void neigh_update_notify(struct neighbour *neigh) 2186 { 2187 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2188 __neigh_notify(neigh, RTM_NEWNEIGH, 0); 2189 } 2190 2191 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2192 struct netlink_callback *cb) 2193 { 2194 struct net *net = sock_net(skb->sk); 2195 struct neighbour *n; 2196 int rc, h, s_h = cb->args[1]; 2197 int idx, s_idx = idx = cb->args[2]; 2198 struct neigh_hash_table *nht; 2199 2200 rcu_read_lock_bh(); 2201 nht = rcu_dereference_bh(tbl->nht); 2202 2203 for (h = 0; h <= nht->hash_mask; h++) { 2204 if (h < s_h) 2205 continue; 2206 if (h > s_h) 2207 s_idx = 0; 2208 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; 2209 n != NULL; 2210 n = rcu_dereference_bh(n->next)) { 2211 if (!net_eq(dev_net(n->dev), net)) 2212 continue; 2213 if (idx < s_idx) 2214 goto next; 2215 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, 2216 cb->nlh->nlmsg_seq, 2217 RTM_NEWNEIGH, 2218 NLM_F_MULTI) <= 0) { 2219 rc = -1; 2220 goto out; 2221 } 2222 next: 2223 idx++; 2224 } 2225 } 2226 rc = skb->len; 2227 out: 2228 rcu_read_unlock_bh(); 2229 cb->args[1] = h; 2230 cb->args[2] = idx; 2231 return rc; 2232 } 2233 2234 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2235 { 2236 struct neigh_table *tbl; 2237 int t, family, s_t; 2238 2239 read_lock(&neigh_tbl_lock); 2240 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2241 s_t = cb->args[0]; 2242 2243 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) { 2244 if (t < s_t || (family && tbl->family != family)) 2245 continue; 2246 if (t > s_t) 2247 memset(&cb->args[1], 0, sizeof(cb->args) - 2248 sizeof(cb->args[0])); 2249 if (neigh_dump_table(tbl, skb, cb) < 0) 2250 break; 2251 } 2252 read_unlock(&neigh_tbl_lock); 2253 2254 cb->args[0] = t; 2255 return skb->len; 2256 } 2257 2258 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2259 { 2260 int chain; 2261 struct neigh_hash_table *nht; 2262 2263 rcu_read_lock_bh(); 2264 nht = rcu_dereference_bh(tbl->nht); 2265 2266 read_lock(&tbl->lock); /* avoid resizes */ 2267 for (chain = 0; chain <= nht->hash_mask; chain++) { 2268 struct neighbour *n; 2269 2270 for (n = rcu_dereference_bh(nht->hash_buckets[chain]); 2271 n != NULL; 2272 n = rcu_dereference_bh(n->next)) 2273 cb(n, cookie); 2274 } 2275 read_unlock(&tbl->lock); 2276 rcu_read_unlock_bh(); 2277 } 2278 EXPORT_SYMBOL(neigh_for_each); 2279 2280 /* The tbl->lock must be held as a writer and BH disabled. */ 2281 void __neigh_for_each_release(struct neigh_table *tbl, 2282 int (*cb)(struct neighbour *)) 2283 { 2284 int chain; 2285 struct neigh_hash_table *nht; 2286 2287 nht = rcu_dereference_protected(tbl->nht, 2288 lockdep_is_held(&tbl->lock)); 2289 for (chain = 0; chain <= nht->hash_mask; chain++) { 2290 struct neighbour *n; 2291 struct neighbour __rcu **np; 2292 2293 np = &nht->hash_buckets[chain]; 2294 while ((n = rcu_dereference_protected(*np, 2295 lockdep_is_held(&tbl->lock))) != NULL) { 2296 int release; 2297 2298 write_lock(&n->lock); 2299 release = cb(n); 2300 if (release) { 2301 rcu_assign_pointer(*np, 2302 rcu_dereference_protected(n->next, 2303 lockdep_is_held(&tbl->lock))); 2304 n->dead = 1; 2305 } else 2306 np = &n->next; 2307 write_unlock(&n->lock); 2308 if (release) 2309 neigh_cleanup_and_release(n); 2310 } 2311 } 2312 } 2313 EXPORT_SYMBOL(__neigh_for_each_release); 2314 2315 #ifdef CONFIG_PROC_FS 2316 2317 static struct neighbour *neigh_get_first(struct seq_file *seq) 2318 { 2319 struct neigh_seq_state *state = seq->private; 2320 struct net *net = seq_file_net(seq); 2321 struct neigh_hash_table *nht = state->nht; 2322 struct neighbour *n = NULL; 2323 int bucket = state->bucket; 2324 2325 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 2326 for (bucket = 0; bucket <= nht->hash_mask; bucket++) { 2327 n = rcu_dereference_bh(nht->hash_buckets[bucket]); 2328 2329 while (n) { 2330 if (!net_eq(dev_net(n->dev), net)) 2331 goto next; 2332 if (state->neigh_sub_iter) { 2333 loff_t fakep = 0; 2334 void *v; 2335 2336 v = state->neigh_sub_iter(state, n, &fakep); 2337 if (!v) 2338 goto next; 2339 } 2340 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2341 break; 2342 if (n->nud_state & ~NUD_NOARP) 2343 break; 2344 next: 2345 n = rcu_dereference_bh(n->next); 2346 } 2347 2348 if (n) 2349 break; 2350 } 2351 state->bucket = bucket; 2352 2353 return n; 2354 } 2355 2356 static struct neighbour *neigh_get_next(struct seq_file *seq, 2357 struct neighbour *n, 2358 loff_t *pos) 2359 { 2360 struct neigh_seq_state *state = seq->private; 2361 struct net *net = seq_file_net(seq); 2362 struct neigh_hash_table *nht = state->nht; 2363 2364 if (state->neigh_sub_iter) { 2365 void *v = state->neigh_sub_iter(state, n, pos); 2366 if (v) 2367 return n; 2368 } 2369 n = rcu_dereference_bh(n->next); 2370 2371 while (1) { 2372 while (n) { 2373 if (!net_eq(dev_net(n->dev), net)) 2374 goto next; 2375 if (state->neigh_sub_iter) { 2376 void *v = state->neigh_sub_iter(state, n, pos); 2377 if (v) 2378 return n; 2379 goto next; 2380 } 2381 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2382 break; 2383 2384 if (n->nud_state & ~NUD_NOARP) 2385 break; 2386 next: 2387 n = rcu_dereference_bh(n->next); 2388 } 2389 2390 if (n) 2391 break; 2392 2393 if (++state->bucket > nht->hash_mask) 2394 break; 2395 2396 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); 2397 } 2398 2399 if (n && pos) 2400 --(*pos); 2401 return n; 2402 } 2403 2404 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 2405 { 2406 struct neighbour *n = neigh_get_first(seq); 2407 2408 if (n) { 2409 --(*pos); 2410 while (*pos) { 2411 n = neigh_get_next(seq, n, pos); 2412 if (!n) 2413 break; 2414 } 2415 } 2416 return *pos ? NULL : n; 2417 } 2418 2419 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 2420 { 2421 struct neigh_seq_state *state = seq->private; 2422 struct net *net = seq_file_net(seq); 2423 struct neigh_table *tbl = state->tbl; 2424 struct pneigh_entry *pn = NULL; 2425 int bucket = state->bucket; 2426 2427 state->flags |= NEIGH_SEQ_IS_PNEIGH; 2428 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 2429 pn = tbl->phash_buckets[bucket]; 2430 while (pn && !net_eq(pneigh_net(pn), net)) 2431 pn = pn->next; 2432 if (pn) 2433 break; 2434 } 2435 state->bucket = bucket; 2436 2437 return pn; 2438 } 2439 2440 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 2441 struct pneigh_entry *pn, 2442 loff_t *pos) 2443 { 2444 struct neigh_seq_state *state = seq->private; 2445 struct net *net = seq_file_net(seq); 2446 struct neigh_table *tbl = state->tbl; 2447 2448 pn = pn->next; 2449 while (!pn) { 2450 if (++state->bucket > PNEIGH_HASHMASK) 2451 break; 2452 pn = tbl->phash_buckets[state->bucket]; 2453 while (pn && !net_eq(pneigh_net(pn), net)) 2454 pn = pn->next; 2455 if (pn) 2456 break; 2457 } 2458 2459 if (pn && pos) 2460 --(*pos); 2461 2462 return pn; 2463 } 2464 2465 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 2466 { 2467 struct pneigh_entry *pn = pneigh_get_first(seq); 2468 2469 if (pn) { 2470 --(*pos); 2471 while (*pos) { 2472 pn = pneigh_get_next(seq, pn, pos); 2473 if (!pn) 2474 break; 2475 } 2476 } 2477 return *pos ? NULL : pn; 2478 } 2479 2480 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 2481 { 2482 struct neigh_seq_state *state = seq->private; 2483 void *rc; 2484 loff_t idxpos = *pos; 2485 2486 rc = neigh_get_idx(seq, &idxpos); 2487 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2488 rc = pneigh_get_idx(seq, &idxpos); 2489 2490 return rc; 2491 } 2492 2493 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 2494 __acquires(rcu_bh) 2495 { 2496 struct neigh_seq_state *state = seq->private; 2497 2498 state->tbl = tbl; 2499 state->bucket = 0; 2500 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 2501 2502 rcu_read_lock_bh(); 2503 state->nht = rcu_dereference_bh(tbl->nht); 2504 2505 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 2506 } 2507 EXPORT_SYMBOL(neigh_seq_start); 2508 2509 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2510 { 2511 struct neigh_seq_state *state; 2512 void *rc; 2513 2514 if (v == SEQ_START_TOKEN) { 2515 rc = neigh_get_first(seq); 2516 goto out; 2517 } 2518 2519 state = seq->private; 2520 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 2521 rc = neigh_get_next(seq, v, NULL); 2522 if (rc) 2523 goto out; 2524 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2525 rc = pneigh_get_first(seq); 2526 } else { 2527 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 2528 rc = pneigh_get_next(seq, v, NULL); 2529 } 2530 out: 2531 ++(*pos); 2532 return rc; 2533 } 2534 EXPORT_SYMBOL(neigh_seq_next); 2535 2536 void neigh_seq_stop(struct seq_file *seq, void *v) 2537 __releases(rcu_bh) 2538 { 2539 rcu_read_unlock_bh(); 2540 } 2541 EXPORT_SYMBOL(neigh_seq_stop); 2542 2543 /* statistics via seq_file */ 2544 2545 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 2546 { 2547 struct neigh_table *tbl = seq->private; 2548 int cpu; 2549 2550 if (*pos == 0) 2551 return SEQ_START_TOKEN; 2552 2553 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 2554 if (!cpu_possible(cpu)) 2555 continue; 2556 *pos = cpu+1; 2557 return per_cpu_ptr(tbl->stats, cpu); 2558 } 2559 return NULL; 2560 } 2561 2562 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2563 { 2564 struct neigh_table *tbl = seq->private; 2565 int cpu; 2566 2567 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 2568 if (!cpu_possible(cpu)) 2569 continue; 2570 *pos = cpu+1; 2571 return per_cpu_ptr(tbl->stats, cpu); 2572 } 2573 return NULL; 2574 } 2575 2576 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 2577 { 2578 2579 } 2580 2581 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 2582 { 2583 struct neigh_table *tbl = seq->private; 2584 struct neigh_statistics *st = v; 2585 2586 if (v == SEQ_START_TOKEN) { 2587 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n"); 2588 return 0; 2589 } 2590 2591 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 2592 "%08lx %08lx %08lx %08lx %08lx\n", 2593 atomic_read(&tbl->entries), 2594 2595 st->allocs, 2596 st->destroys, 2597 st->hash_grows, 2598 2599 st->lookups, 2600 st->hits, 2601 2602 st->res_failed, 2603 2604 st->rcv_probes_mcast, 2605 st->rcv_probes_ucast, 2606 2607 st->periodic_gc_runs, 2608 st->forced_gc_runs, 2609 st->unres_discards 2610 ); 2611 2612 return 0; 2613 } 2614 2615 static const struct seq_operations neigh_stat_seq_ops = { 2616 .start = neigh_stat_seq_start, 2617 .next = neigh_stat_seq_next, 2618 .stop = neigh_stat_seq_stop, 2619 .show = neigh_stat_seq_show, 2620 }; 2621 2622 static int neigh_stat_seq_open(struct inode *inode, struct file *file) 2623 { 2624 int ret = seq_open(file, &neigh_stat_seq_ops); 2625 2626 if (!ret) { 2627 struct seq_file *sf = file->private_data; 2628 sf->private = PDE(inode)->data; 2629 } 2630 return ret; 2631 }; 2632 2633 static const struct file_operations neigh_stat_seq_fops = { 2634 .owner = THIS_MODULE, 2635 .open = neigh_stat_seq_open, 2636 .read = seq_read, 2637 .llseek = seq_lseek, 2638 .release = seq_release, 2639 }; 2640 2641 #endif /* CONFIG_PROC_FS */ 2642 2643 static inline size_t neigh_nlmsg_size(void) 2644 { 2645 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2646 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2647 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2648 + nla_total_size(sizeof(struct nda_cacheinfo)) 2649 + nla_total_size(4); /* NDA_PROBES */ 2650 } 2651 2652 static void __neigh_notify(struct neighbour *n, int type, int flags) 2653 { 2654 struct net *net = dev_net(n->dev); 2655 struct sk_buff *skb; 2656 int err = -ENOBUFS; 2657 2658 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 2659 if (skb == NULL) 2660 goto errout; 2661 2662 err = neigh_fill_info(skb, n, 0, 0, type, flags); 2663 if (err < 0) { 2664 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 2665 WARN_ON(err == -EMSGSIZE); 2666 kfree_skb(skb); 2667 goto errout; 2668 } 2669 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 2670 return; 2671 errout: 2672 if (err < 0) 2673 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 2674 } 2675 2676 #ifdef CONFIG_ARPD 2677 void neigh_app_ns(struct neighbour *n) 2678 { 2679 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST); 2680 } 2681 EXPORT_SYMBOL(neigh_app_ns); 2682 #endif /* CONFIG_ARPD */ 2683 2684 #ifdef CONFIG_SYSCTL 2685 2686 #define NEIGH_VARS_MAX 19 2687 2688 static struct neigh_sysctl_table { 2689 struct ctl_table_header *sysctl_header; 2690 struct ctl_table neigh_vars[NEIGH_VARS_MAX]; 2691 char *dev_name; 2692 } neigh_sysctl_template __read_mostly = { 2693 .neigh_vars = { 2694 { 2695 .procname = "mcast_solicit", 2696 .maxlen = sizeof(int), 2697 .mode = 0644, 2698 .proc_handler = proc_dointvec, 2699 }, 2700 { 2701 .procname = "ucast_solicit", 2702 .maxlen = sizeof(int), 2703 .mode = 0644, 2704 .proc_handler = proc_dointvec, 2705 }, 2706 { 2707 .procname = "app_solicit", 2708 .maxlen = sizeof(int), 2709 .mode = 0644, 2710 .proc_handler = proc_dointvec, 2711 }, 2712 { 2713 .procname = "retrans_time", 2714 .maxlen = sizeof(int), 2715 .mode = 0644, 2716 .proc_handler = proc_dointvec_userhz_jiffies, 2717 }, 2718 { 2719 .procname = "base_reachable_time", 2720 .maxlen = sizeof(int), 2721 .mode = 0644, 2722 .proc_handler = proc_dointvec_jiffies, 2723 }, 2724 { 2725 .procname = "delay_first_probe_time", 2726 .maxlen = sizeof(int), 2727 .mode = 0644, 2728 .proc_handler = proc_dointvec_jiffies, 2729 }, 2730 { 2731 .procname = "gc_stale_time", 2732 .maxlen = sizeof(int), 2733 .mode = 0644, 2734 .proc_handler = proc_dointvec_jiffies, 2735 }, 2736 { 2737 .procname = "unres_qlen", 2738 .maxlen = sizeof(int), 2739 .mode = 0644, 2740 .proc_handler = proc_dointvec, 2741 }, 2742 { 2743 .procname = "proxy_qlen", 2744 .maxlen = sizeof(int), 2745 .mode = 0644, 2746 .proc_handler = proc_dointvec, 2747 }, 2748 { 2749 .procname = "anycast_delay", 2750 .maxlen = sizeof(int), 2751 .mode = 0644, 2752 .proc_handler = proc_dointvec_userhz_jiffies, 2753 }, 2754 { 2755 .procname = "proxy_delay", 2756 .maxlen = sizeof(int), 2757 .mode = 0644, 2758 .proc_handler = proc_dointvec_userhz_jiffies, 2759 }, 2760 { 2761 .procname = "locktime", 2762 .maxlen = sizeof(int), 2763 .mode = 0644, 2764 .proc_handler = proc_dointvec_userhz_jiffies, 2765 }, 2766 { 2767 .procname = "retrans_time_ms", 2768 .maxlen = sizeof(int), 2769 .mode = 0644, 2770 .proc_handler = proc_dointvec_ms_jiffies, 2771 }, 2772 { 2773 .procname = "base_reachable_time_ms", 2774 .maxlen = sizeof(int), 2775 .mode = 0644, 2776 .proc_handler = proc_dointvec_ms_jiffies, 2777 }, 2778 { 2779 .procname = "gc_interval", 2780 .maxlen = sizeof(int), 2781 .mode = 0644, 2782 .proc_handler = proc_dointvec_jiffies, 2783 }, 2784 { 2785 .procname = "gc_thresh1", 2786 .maxlen = sizeof(int), 2787 .mode = 0644, 2788 .proc_handler = proc_dointvec, 2789 }, 2790 { 2791 .procname = "gc_thresh2", 2792 .maxlen = sizeof(int), 2793 .mode = 0644, 2794 .proc_handler = proc_dointvec, 2795 }, 2796 { 2797 .procname = "gc_thresh3", 2798 .maxlen = sizeof(int), 2799 .mode = 0644, 2800 .proc_handler = proc_dointvec, 2801 }, 2802 {}, 2803 }, 2804 }; 2805 2806 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 2807 char *p_name, proc_handler *handler) 2808 { 2809 struct neigh_sysctl_table *t; 2810 const char *dev_name_source = NULL; 2811 2812 #define NEIGH_CTL_PATH_ROOT 0 2813 #define NEIGH_CTL_PATH_PROTO 1 2814 #define NEIGH_CTL_PATH_NEIGH 2 2815 #define NEIGH_CTL_PATH_DEV 3 2816 2817 struct ctl_path neigh_path[] = { 2818 { .procname = "net", }, 2819 { .procname = "proto", }, 2820 { .procname = "neigh", }, 2821 { .procname = "default", }, 2822 { }, 2823 }; 2824 2825 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 2826 if (!t) 2827 goto err; 2828 2829 t->neigh_vars[0].data = &p->mcast_probes; 2830 t->neigh_vars[1].data = &p->ucast_probes; 2831 t->neigh_vars[2].data = &p->app_probes; 2832 t->neigh_vars[3].data = &p->retrans_time; 2833 t->neigh_vars[4].data = &p->base_reachable_time; 2834 t->neigh_vars[5].data = &p->delay_probe_time; 2835 t->neigh_vars[6].data = &p->gc_staletime; 2836 t->neigh_vars[7].data = &p->queue_len; 2837 t->neigh_vars[8].data = &p->proxy_qlen; 2838 t->neigh_vars[9].data = &p->anycast_delay; 2839 t->neigh_vars[10].data = &p->proxy_delay; 2840 t->neigh_vars[11].data = &p->locktime; 2841 t->neigh_vars[12].data = &p->retrans_time; 2842 t->neigh_vars[13].data = &p->base_reachable_time; 2843 2844 if (dev) { 2845 dev_name_source = dev->name; 2846 /* Terminate the table early */ 2847 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14])); 2848 } else { 2849 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname; 2850 t->neigh_vars[14].data = (int *)(p + 1); 2851 t->neigh_vars[15].data = (int *)(p + 1) + 1; 2852 t->neigh_vars[16].data = (int *)(p + 1) + 2; 2853 t->neigh_vars[17].data = (int *)(p + 1) + 3; 2854 } 2855 2856 2857 if (handler) { 2858 /* RetransTime */ 2859 t->neigh_vars[3].proc_handler = handler; 2860 t->neigh_vars[3].extra1 = dev; 2861 /* ReachableTime */ 2862 t->neigh_vars[4].proc_handler = handler; 2863 t->neigh_vars[4].extra1 = dev; 2864 /* RetransTime (in milliseconds)*/ 2865 t->neigh_vars[12].proc_handler = handler; 2866 t->neigh_vars[12].extra1 = dev; 2867 /* ReachableTime (in milliseconds) */ 2868 t->neigh_vars[13].proc_handler = handler; 2869 t->neigh_vars[13].extra1 = dev; 2870 } 2871 2872 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL); 2873 if (!t->dev_name) 2874 goto free; 2875 2876 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name; 2877 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name; 2878 2879 t->sysctl_header = 2880 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars); 2881 if (!t->sysctl_header) 2882 goto free_procname; 2883 2884 p->sysctl_table = t; 2885 return 0; 2886 2887 free_procname: 2888 kfree(t->dev_name); 2889 free: 2890 kfree(t); 2891 err: 2892 return -ENOBUFS; 2893 } 2894 EXPORT_SYMBOL(neigh_sysctl_register); 2895 2896 void neigh_sysctl_unregister(struct neigh_parms *p) 2897 { 2898 if (p->sysctl_table) { 2899 struct neigh_sysctl_table *t = p->sysctl_table; 2900 p->sysctl_table = NULL; 2901 unregister_sysctl_table(t->sysctl_header); 2902 kfree(t->dev_name); 2903 kfree(t); 2904 } 2905 } 2906 EXPORT_SYMBOL(neigh_sysctl_unregister); 2907 2908 #endif /* CONFIG_SYSCTL */ 2909 2910 static int __init neigh_init(void) 2911 { 2912 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL); 2913 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL); 2914 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info); 2915 2916 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info); 2917 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL); 2918 2919 return 0; 2920 } 2921 2922 subsys_initcall(neigh_init); 2923 2924