1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic address resolution entity 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 8 * 9 * Fixes: 10 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 11 * Harald Welte Add neighbour cache statistics like rtstat 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/slab.h> 17 #include <linux/kmemleak.h> 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/socket.h> 22 #include <linux/netdevice.h> 23 #include <linux/proc_fs.h> 24 #ifdef CONFIG_SYSCTL 25 #include <linux/sysctl.h> 26 #endif 27 #include <linux/times.h> 28 #include <net/net_namespace.h> 29 #include <net/neighbour.h> 30 #include <net/arp.h> 31 #include <net/dst.h> 32 #include <net/sock.h> 33 #include <net/netevent.h> 34 #include <net/netlink.h> 35 #include <linux/rtnetlink.h> 36 #include <linux/random.h> 37 #include <linux/string.h> 38 #include <linux/log2.h> 39 #include <linux/inetdevice.h> 40 #include <net/addrconf.h> 41 42 #include <trace/events/neigh.h> 43 44 #define NEIGH_DEBUG 1 45 #define neigh_dbg(level, fmt, ...) \ 46 do { \ 47 if (level <= NEIGH_DEBUG) \ 48 pr_debug(fmt, ##__VA_ARGS__); \ 49 } while (0) 50 51 #define PNEIGH_HASHMASK 0xF 52 53 static void neigh_timer_handler(struct timer_list *t); 54 static void __neigh_notify(struct neighbour *n, int type, int flags, 55 u32 pid); 56 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid); 57 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 58 struct net_device *dev); 59 60 #ifdef CONFIG_PROC_FS 61 static const struct seq_operations neigh_stat_seq_ops; 62 #endif 63 64 /* 65 Neighbour hash table buckets are protected with rwlock tbl->lock. 66 67 - All the scans/updates to hash buckets MUST be made under this lock. 68 - NOTHING clever should be made under this lock: no callbacks 69 to protocol backends, no attempts to send something to network. 70 It will result in deadlocks, if backend/driver wants to use neighbour 71 cache. 72 - If the entry requires some non-trivial actions, increase 73 its reference count and release table lock. 74 75 Neighbour entries are protected: 76 - with reference count. 77 - with rwlock neigh->lock 78 79 Reference count prevents destruction. 80 81 neigh->lock mainly serializes ll address data and its validity state. 82 However, the same lock is used to protect another entry fields: 83 - timer 84 - resolution queue 85 86 Again, nothing clever shall be made under neigh->lock, 87 the most complicated procedure, which we allow is dev->hard_header. 88 It is supposed, that dev->hard_header is simplistic and does 89 not make callbacks to neighbour tables. 90 */ 91 92 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) 93 { 94 kfree_skb(skb); 95 return -ENETDOWN; 96 } 97 98 static void neigh_cleanup_and_release(struct neighbour *neigh) 99 { 100 trace_neigh_cleanup_and_release(neigh, 0); 101 __neigh_notify(neigh, RTM_DELNEIGH, 0, 0); 102 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 103 neigh_release(neigh); 104 } 105 106 /* 107 * It is random distribution in the interval (1/2)*base...(3/2)*base. 108 * It corresponds to default IPv6 settings and is not overridable, 109 * because it is really reasonable choice. 110 */ 111 112 unsigned long neigh_rand_reach_time(unsigned long base) 113 { 114 return base ? (prandom_u32() % base) + (base >> 1) : 0; 115 } 116 EXPORT_SYMBOL(neigh_rand_reach_time); 117 118 static void neigh_mark_dead(struct neighbour *n) 119 { 120 n->dead = 1; 121 if (!list_empty(&n->gc_list)) { 122 list_del_init(&n->gc_list); 123 atomic_dec(&n->tbl->gc_entries); 124 } 125 if (!list_empty(&n->managed_list)) 126 list_del_init(&n->managed_list); 127 } 128 129 static void neigh_update_gc_list(struct neighbour *n) 130 { 131 bool on_gc_list, exempt_from_gc; 132 133 write_lock_bh(&n->tbl->lock); 134 write_lock(&n->lock); 135 if (n->dead) 136 goto out; 137 138 /* remove from the gc list if new state is permanent or if neighbor 139 * is externally learned; otherwise entry should be on the gc list 140 */ 141 exempt_from_gc = n->nud_state & NUD_PERMANENT || 142 n->flags & NTF_EXT_LEARNED; 143 on_gc_list = !list_empty(&n->gc_list); 144 145 if (exempt_from_gc && on_gc_list) { 146 list_del_init(&n->gc_list); 147 atomic_dec(&n->tbl->gc_entries); 148 } else if (!exempt_from_gc && !on_gc_list) { 149 /* add entries to the tail; cleaning removes from the front */ 150 list_add_tail(&n->gc_list, &n->tbl->gc_list); 151 atomic_inc(&n->tbl->gc_entries); 152 } 153 out: 154 write_unlock(&n->lock); 155 write_unlock_bh(&n->tbl->lock); 156 } 157 158 static void neigh_update_managed_list(struct neighbour *n) 159 { 160 bool on_managed_list, add_to_managed; 161 162 write_lock_bh(&n->tbl->lock); 163 write_lock(&n->lock); 164 if (n->dead) 165 goto out; 166 167 add_to_managed = n->flags & NTF_MANAGED; 168 on_managed_list = !list_empty(&n->managed_list); 169 170 if (!add_to_managed && on_managed_list) 171 list_del_init(&n->managed_list); 172 else if (add_to_managed && !on_managed_list) 173 list_add_tail(&n->managed_list, &n->tbl->managed_list); 174 out: 175 write_unlock(&n->lock); 176 write_unlock_bh(&n->tbl->lock); 177 } 178 179 static void neigh_update_flags(struct neighbour *neigh, u32 flags, int *notify, 180 bool *gc_update, bool *managed_update) 181 { 182 u32 ndm_flags, old_flags = neigh->flags; 183 184 if (!(flags & NEIGH_UPDATE_F_ADMIN)) 185 return; 186 187 ndm_flags = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0; 188 ndm_flags |= (flags & NEIGH_UPDATE_F_MANAGED) ? NTF_MANAGED : 0; 189 190 if ((old_flags ^ ndm_flags) & NTF_EXT_LEARNED) { 191 if (ndm_flags & NTF_EXT_LEARNED) 192 neigh->flags |= NTF_EXT_LEARNED; 193 else 194 neigh->flags &= ~NTF_EXT_LEARNED; 195 *notify = 1; 196 *gc_update = true; 197 } 198 if ((old_flags ^ ndm_flags) & NTF_MANAGED) { 199 if (ndm_flags & NTF_MANAGED) 200 neigh->flags |= NTF_MANAGED; 201 else 202 neigh->flags &= ~NTF_MANAGED; 203 *notify = 1; 204 *managed_update = true; 205 } 206 } 207 208 static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np, 209 struct neigh_table *tbl) 210 { 211 bool retval = false; 212 213 write_lock(&n->lock); 214 if (refcount_read(&n->refcnt) == 1) { 215 struct neighbour *neigh; 216 217 neigh = rcu_dereference_protected(n->next, 218 lockdep_is_held(&tbl->lock)); 219 rcu_assign_pointer(*np, neigh); 220 neigh_mark_dead(n); 221 retval = true; 222 } 223 write_unlock(&n->lock); 224 if (retval) 225 neigh_cleanup_and_release(n); 226 return retval; 227 } 228 229 bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl) 230 { 231 struct neigh_hash_table *nht; 232 void *pkey = ndel->primary_key; 233 u32 hash_val; 234 struct neighbour *n; 235 struct neighbour __rcu **np; 236 237 nht = rcu_dereference_protected(tbl->nht, 238 lockdep_is_held(&tbl->lock)); 239 hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd); 240 hash_val = hash_val >> (32 - nht->hash_shift); 241 242 np = &nht->hash_buckets[hash_val]; 243 while ((n = rcu_dereference_protected(*np, 244 lockdep_is_held(&tbl->lock)))) { 245 if (n == ndel) 246 return neigh_del(n, np, tbl); 247 np = &n->next; 248 } 249 return false; 250 } 251 252 static int neigh_forced_gc(struct neigh_table *tbl) 253 { 254 int max_clean = atomic_read(&tbl->gc_entries) - tbl->gc_thresh2; 255 unsigned long tref = jiffies - 5 * HZ; 256 struct neighbour *n, *tmp; 257 int shrunk = 0; 258 259 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 260 261 write_lock_bh(&tbl->lock); 262 263 list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) { 264 if (refcount_read(&n->refcnt) == 1) { 265 bool remove = false; 266 267 write_lock(&n->lock); 268 if ((n->nud_state == NUD_FAILED) || 269 (n->nud_state == NUD_NOARP) || 270 (tbl->is_multicast && 271 tbl->is_multicast(n->primary_key)) || 272 time_after(tref, n->updated)) 273 remove = true; 274 write_unlock(&n->lock); 275 276 if (remove && neigh_remove_one(n, tbl)) 277 shrunk++; 278 if (shrunk >= max_clean) 279 break; 280 } 281 } 282 283 tbl->last_flush = jiffies; 284 285 write_unlock_bh(&tbl->lock); 286 287 return shrunk; 288 } 289 290 static void neigh_add_timer(struct neighbour *n, unsigned long when) 291 { 292 neigh_hold(n); 293 if (unlikely(mod_timer(&n->timer, when))) { 294 printk("NEIGH: BUG, double timer add, state is %x\n", 295 n->nud_state); 296 dump_stack(); 297 } 298 } 299 300 static int neigh_del_timer(struct neighbour *n) 301 { 302 if ((n->nud_state & NUD_IN_TIMER) && 303 del_timer(&n->timer)) { 304 neigh_release(n); 305 return 1; 306 } 307 return 0; 308 } 309 310 static void pneigh_queue_purge(struct sk_buff_head *list) 311 { 312 struct sk_buff *skb; 313 314 while ((skb = skb_dequeue(list)) != NULL) { 315 dev_put(skb->dev); 316 kfree_skb(skb); 317 } 318 } 319 320 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev, 321 bool skip_perm) 322 { 323 int i; 324 struct neigh_hash_table *nht; 325 326 nht = rcu_dereference_protected(tbl->nht, 327 lockdep_is_held(&tbl->lock)); 328 329 for (i = 0; i < (1 << nht->hash_shift); i++) { 330 struct neighbour *n; 331 struct neighbour __rcu **np = &nht->hash_buckets[i]; 332 333 while ((n = rcu_dereference_protected(*np, 334 lockdep_is_held(&tbl->lock))) != NULL) { 335 if (dev && n->dev != dev) { 336 np = &n->next; 337 continue; 338 } 339 if (skip_perm && n->nud_state & NUD_PERMANENT) { 340 np = &n->next; 341 continue; 342 } 343 rcu_assign_pointer(*np, 344 rcu_dereference_protected(n->next, 345 lockdep_is_held(&tbl->lock))); 346 write_lock(&n->lock); 347 neigh_del_timer(n); 348 neigh_mark_dead(n); 349 if (refcount_read(&n->refcnt) != 1) { 350 /* The most unpleasant situation. 351 We must destroy neighbour entry, 352 but someone still uses it. 353 354 The destroy will be delayed until 355 the last user releases us, but 356 we must kill timers etc. and move 357 it to safe state. 358 */ 359 __skb_queue_purge(&n->arp_queue); 360 n->arp_queue_len_bytes = 0; 361 n->output = neigh_blackhole; 362 if (n->nud_state & NUD_VALID) 363 n->nud_state = NUD_NOARP; 364 else 365 n->nud_state = NUD_NONE; 366 neigh_dbg(2, "neigh %p is stray\n", n); 367 } 368 write_unlock(&n->lock); 369 neigh_cleanup_and_release(n); 370 } 371 } 372 } 373 374 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 375 { 376 write_lock_bh(&tbl->lock); 377 neigh_flush_dev(tbl, dev, false); 378 write_unlock_bh(&tbl->lock); 379 } 380 EXPORT_SYMBOL(neigh_changeaddr); 381 382 static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev, 383 bool skip_perm) 384 { 385 write_lock_bh(&tbl->lock); 386 neigh_flush_dev(tbl, dev, skip_perm); 387 pneigh_ifdown_and_unlock(tbl, dev); 388 389 del_timer_sync(&tbl->proxy_timer); 390 pneigh_queue_purge(&tbl->proxy_queue); 391 return 0; 392 } 393 394 int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev) 395 { 396 __neigh_ifdown(tbl, dev, true); 397 return 0; 398 } 399 EXPORT_SYMBOL(neigh_carrier_down); 400 401 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 402 { 403 __neigh_ifdown(tbl, dev, false); 404 return 0; 405 } 406 EXPORT_SYMBOL(neigh_ifdown); 407 408 static struct neighbour *neigh_alloc(struct neigh_table *tbl, 409 struct net_device *dev, 410 u32 flags, bool exempt_from_gc) 411 { 412 struct neighbour *n = NULL; 413 unsigned long now = jiffies; 414 int entries; 415 416 if (exempt_from_gc) 417 goto do_alloc; 418 419 entries = atomic_inc_return(&tbl->gc_entries) - 1; 420 if (entries >= tbl->gc_thresh3 || 421 (entries >= tbl->gc_thresh2 && 422 time_after(now, tbl->last_flush + 5 * HZ))) { 423 if (!neigh_forced_gc(tbl) && 424 entries >= tbl->gc_thresh3) { 425 net_info_ratelimited("%s: neighbor table overflow!\n", 426 tbl->id); 427 NEIGH_CACHE_STAT_INC(tbl, table_fulls); 428 goto out_entries; 429 } 430 } 431 432 do_alloc: 433 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC); 434 if (!n) 435 goto out_entries; 436 437 __skb_queue_head_init(&n->arp_queue); 438 rwlock_init(&n->lock); 439 seqlock_init(&n->ha_lock); 440 n->updated = n->used = now; 441 n->nud_state = NUD_NONE; 442 n->output = neigh_blackhole; 443 n->flags = flags; 444 seqlock_init(&n->hh.hh_lock); 445 n->parms = neigh_parms_clone(&tbl->parms); 446 timer_setup(&n->timer, neigh_timer_handler, 0); 447 448 NEIGH_CACHE_STAT_INC(tbl, allocs); 449 n->tbl = tbl; 450 refcount_set(&n->refcnt, 1); 451 n->dead = 1; 452 INIT_LIST_HEAD(&n->gc_list); 453 INIT_LIST_HEAD(&n->managed_list); 454 455 atomic_inc(&tbl->entries); 456 out: 457 return n; 458 459 out_entries: 460 if (!exempt_from_gc) 461 atomic_dec(&tbl->gc_entries); 462 goto out; 463 } 464 465 static void neigh_get_hash_rnd(u32 *x) 466 { 467 *x = get_random_u32() | 1; 468 } 469 470 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) 471 { 472 size_t size = (1 << shift) * sizeof(struct neighbour *); 473 struct neigh_hash_table *ret; 474 struct neighbour __rcu **buckets; 475 int i; 476 477 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 478 if (!ret) 479 return NULL; 480 if (size <= PAGE_SIZE) { 481 buckets = kzalloc(size, GFP_ATOMIC); 482 } else { 483 buckets = (struct neighbour __rcu **) 484 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 485 get_order(size)); 486 kmemleak_alloc(buckets, size, 1, GFP_ATOMIC); 487 } 488 if (!buckets) { 489 kfree(ret); 490 return NULL; 491 } 492 ret->hash_buckets = buckets; 493 ret->hash_shift = shift; 494 for (i = 0; i < NEIGH_NUM_HASH_RND; i++) 495 neigh_get_hash_rnd(&ret->hash_rnd[i]); 496 return ret; 497 } 498 499 static void neigh_hash_free_rcu(struct rcu_head *head) 500 { 501 struct neigh_hash_table *nht = container_of(head, 502 struct neigh_hash_table, 503 rcu); 504 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); 505 struct neighbour __rcu **buckets = nht->hash_buckets; 506 507 if (size <= PAGE_SIZE) { 508 kfree(buckets); 509 } else { 510 kmemleak_free(buckets); 511 free_pages((unsigned long)buckets, get_order(size)); 512 } 513 kfree(nht); 514 } 515 516 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, 517 unsigned long new_shift) 518 { 519 unsigned int i, hash; 520 struct neigh_hash_table *new_nht, *old_nht; 521 522 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 523 524 old_nht = rcu_dereference_protected(tbl->nht, 525 lockdep_is_held(&tbl->lock)); 526 new_nht = neigh_hash_alloc(new_shift); 527 if (!new_nht) 528 return old_nht; 529 530 for (i = 0; i < (1 << old_nht->hash_shift); i++) { 531 struct neighbour *n, *next; 532 533 for (n = rcu_dereference_protected(old_nht->hash_buckets[i], 534 lockdep_is_held(&tbl->lock)); 535 n != NULL; 536 n = next) { 537 hash = tbl->hash(n->primary_key, n->dev, 538 new_nht->hash_rnd); 539 540 hash >>= (32 - new_nht->hash_shift); 541 next = rcu_dereference_protected(n->next, 542 lockdep_is_held(&tbl->lock)); 543 544 rcu_assign_pointer(n->next, 545 rcu_dereference_protected( 546 new_nht->hash_buckets[hash], 547 lockdep_is_held(&tbl->lock))); 548 rcu_assign_pointer(new_nht->hash_buckets[hash], n); 549 } 550 } 551 552 rcu_assign_pointer(tbl->nht, new_nht); 553 call_rcu(&old_nht->rcu, neigh_hash_free_rcu); 554 return new_nht; 555 } 556 557 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 558 struct net_device *dev) 559 { 560 struct neighbour *n; 561 562 NEIGH_CACHE_STAT_INC(tbl, lookups); 563 564 rcu_read_lock_bh(); 565 n = __neigh_lookup_noref(tbl, pkey, dev); 566 if (n) { 567 if (!refcount_inc_not_zero(&n->refcnt)) 568 n = NULL; 569 NEIGH_CACHE_STAT_INC(tbl, hits); 570 } 571 572 rcu_read_unlock_bh(); 573 return n; 574 } 575 EXPORT_SYMBOL(neigh_lookup); 576 577 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 578 const void *pkey) 579 { 580 struct neighbour *n; 581 unsigned int key_len = tbl->key_len; 582 u32 hash_val; 583 struct neigh_hash_table *nht; 584 585 NEIGH_CACHE_STAT_INC(tbl, lookups); 586 587 rcu_read_lock_bh(); 588 nht = rcu_dereference_bh(tbl->nht); 589 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift); 590 591 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 592 n != NULL; 593 n = rcu_dereference_bh(n->next)) { 594 if (!memcmp(n->primary_key, pkey, key_len) && 595 net_eq(dev_net(n->dev), net)) { 596 if (!refcount_inc_not_zero(&n->refcnt)) 597 n = NULL; 598 NEIGH_CACHE_STAT_INC(tbl, hits); 599 break; 600 } 601 } 602 603 rcu_read_unlock_bh(); 604 return n; 605 } 606 EXPORT_SYMBOL(neigh_lookup_nodev); 607 608 static struct neighbour * 609 ___neigh_create(struct neigh_table *tbl, const void *pkey, 610 struct net_device *dev, u32 flags, 611 bool exempt_from_gc, bool want_ref) 612 { 613 u32 hash_val, key_len = tbl->key_len; 614 struct neighbour *n1, *rc, *n; 615 struct neigh_hash_table *nht; 616 int error; 617 618 n = neigh_alloc(tbl, dev, flags, exempt_from_gc); 619 trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc); 620 if (!n) { 621 rc = ERR_PTR(-ENOBUFS); 622 goto out; 623 } 624 625 memcpy(n->primary_key, pkey, key_len); 626 n->dev = dev; 627 dev_hold(dev); 628 629 /* Protocol specific setup. */ 630 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 631 rc = ERR_PTR(error); 632 goto out_neigh_release; 633 } 634 635 if (dev->netdev_ops->ndo_neigh_construct) { 636 error = dev->netdev_ops->ndo_neigh_construct(dev, n); 637 if (error < 0) { 638 rc = ERR_PTR(error); 639 goto out_neigh_release; 640 } 641 } 642 643 /* Device specific setup. */ 644 if (n->parms->neigh_setup && 645 (error = n->parms->neigh_setup(n)) < 0) { 646 rc = ERR_PTR(error); 647 goto out_neigh_release; 648 } 649 650 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1); 651 652 write_lock_bh(&tbl->lock); 653 nht = rcu_dereference_protected(tbl->nht, 654 lockdep_is_held(&tbl->lock)); 655 656 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) 657 nht = neigh_hash_grow(tbl, nht->hash_shift + 1); 658 659 hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 660 661 if (n->parms->dead) { 662 rc = ERR_PTR(-EINVAL); 663 goto out_tbl_unlock; 664 } 665 666 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], 667 lockdep_is_held(&tbl->lock)); 668 n1 != NULL; 669 n1 = rcu_dereference_protected(n1->next, 670 lockdep_is_held(&tbl->lock))) { 671 if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) { 672 if (want_ref) 673 neigh_hold(n1); 674 rc = n1; 675 goto out_tbl_unlock; 676 } 677 } 678 679 n->dead = 0; 680 if (!exempt_from_gc) 681 list_add_tail(&n->gc_list, &n->tbl->gc_list); 682 if (n->flags & NTF_MANAGED) 683 list_add_tail(&n->managed_list, &n->tbl->managed_list); 684 if (want_ref) 685 neigh_hold(n); 686 rcu_assign_pointer(n->next, 687 rcu_dereference_protected(nht->hash_buckets[hash_val], 688 lockdep_is_held(&tbl->lock))); 689 rcu_assign_pointer(nht->hash_buckets[hash_val], n); 690 write_unlock_bh(&tbl->lock); 691 neigh_dbg(2, "neigh %p is created\n", n); 692 rc = n; 693 out: 694 return rc; 695 out_tbl_unlock: 696 write_unlock_bh(&tbl->lock); 697 out_neigh_release: 698 if (!exempt_from_gc) 699 atomic_dec(&tbl->gc_entries); 700 neigh_release(n); 701 goto out; 702 } 703 704 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, 705 struct net_device *dev, bool want_ref) 706 { 707 return ___neigh_create(tbl, pkey, dev, 0, false, want_ref); 708 } 709 EXPORT_SYMBOL(__neigh_create); 710 711 static u32 pneigh_hash(const void *pkey, unsigned int key_len) 712 { 713 u32 hash_val = *(u32 *)(pkey + key_len - 4); 714 hash_val ^= (hash_val >> 16); 715 hash_val ^= hash_val >> 8; 716 hash_val ^= hash_val >> 4; 717 hash_val &= PNEIGH_HASHMASK; 718 return hash_val; 719 } 720 721 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 722 struct net *net, 723 const void *pkey, 724 unsigned int key_len, 725 struct net_device *dev) 726 { 727 while (n) { 728 if (!memcmp(n->key, pkey, key_len) && 729 net_eq(pneigh_net(n), net) && 730 (n->dev == dev || !n->dev)) 731 return n; 732 n = n->next; 733 } 734 return NULL; 735 } 736 737 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 738 struct net *net, const void *pkey, struct net_device *dev) 739 { 740 unsigned int key_len = tbl->key_len; 741 u32 hash_val = pneigh_hash(pkey, key_len); 742 743 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 744 net, pkey, key_len, dev); 745 } 746 EXPORT_SYMBOL_GPL(__pneigh_lookup); 747 748 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 749 struct net *net, const void *pkey, 750 struct net_device *dev, int creat) 751 { 752 struct pneigh_entry *n; 753 unsigned int key_len = tbl->key_len; 754 u32 hash_val = pneigh_hash(pkey, key_len); 755 756 read_lock_bh(&tbl->lock); 757 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 758 net, pkey, key_len, dev); 759 read_unlock_bh(&tbl->lock); 760 761 if (n || !creat) 762 goto out; 763 764 ASSERT_RTNL(); 765 766 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 767 if (!n) 768 goto out; 769 770 n->protocol = 0; 771 write_pnet(&n->net, net); 772 memcpy(n->key, pkey, key_len); 773 n->dev = dev; 774 dev_hold(dev); 775 776 if (tbl->pconstructor && tbl->pconstructor(n)) { 777 dev_put(dev); 778 kfree(n); 779 n = NULL; 780 goto out; 781 } 782 783 write_lock_bh(&tbl->lock); 784 n->next = tbl->phash_buckets[hash_val]; 785 tbl->phash_buckets[hash_val] = n; 786 write_unlock_bh(&tbl->lock); 787 out: 788 return n; 789 } 790 EXPORT_SYMBOL(pneigh_lookup); 791 792 793 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 794 struct net_device *dev) 795 { 796 struct pneigh_entry *n, **np; 797 unsigned int key_len = tbl->key_len; 798 u32 hash_val = pneigh_hash(pkey, key_len); 799 800 write_lock_bh(&tbl->lock); 801 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 802 np = &n->next) { 803 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 804 net_eq(pneigh_net(n), net)) { 805 *np = n->next; 806 write_unlock_bh(&tbl->lock); 807 if (tbl->pdestructor) 808 tbl->pdestructor(n); 809 dev_put(n->dev); 810 kfree(n); 811 return 0; 812 } 813 } 814 write_unlock_bh(&tbl->lock); 815 return -ENOENT; 816 } 817 818 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 819 struct net_device *dev) 820 { 821 struct pneigh_entry *n, **np, *freelist = NULL; 822 u32 h; 823 824 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 825 np = &tbl->phash_buckets[h]; 826 while ((n = *np) != NULL) { 827 if (!dev || n->dev == dev) { 828 *np = n->next; 829 n->next = freelist; 830 freelist = n; 831 continue; 832 } 833 np = &n->next; 834 } 835 } 836 write_unlock_bh(&tbl->lock); 837 while ((n = freelist)) { 838 freelist = n->next; 839 n->next = NULL; 840 if (tbl->pdestructor) 841 tbl->pdestructor(n); 842 dev_put(n->dev); 843 kfree(n); 844 } 845 return -ENOENT; 846 } 847 848 static void neigh_parms_destroy(struct neigh_parms *parms); 849 850 static inline void neigh_parms_put(struct neigh_parms *parms) 851 { 852 if (refcount_dec_and_test(&parms->refcnt)) 853 neigh_parms_destroy(parms); 854 } 855 856 /* 857 * neighbour must already be out of the table; 858 * 859 */ 860 void neigh_destroy(struct neighbour *neigh) 861 { 862 struct net_device *dev = neigh->dev; 863 864 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 865 866 if (!neigh->dead) { 867 pr_warn("Destroying alive neighbour %p\n", neigh); 868 dump_stack(); 869 return; 870 } 871 872 if (neigh_del_timer(neigh)) 873 pr_warn("Impossible event\n"); 874 875 write_lock_bh(&neigh->lock); 876 __skb_queue_purge(&neigh->arp_queue); 877 write_unlock_bh(&neigh->lock); 878 neigh->arp_queue_len_bytes = 0; 879 880 if (dev->netdev_ops->ndo_neigh_destroy) 881 dev->netdev_ops->ndo_neigh_destroy(dev, neigh); 882 883 dev_put(dev); 884 neigh_parms_put(neigh->parms); 885 886 neigh_dbg(2, "neigh %p is destroyed\n", neigh); 887 888 atomic_dec(&neigh->tbl->entries); 889 kfree_rcu(neigh, rcu); 890 } 891 EXPORT_SYMBOL(neigh_destroy); 892 893 /* Neighbour state is suspicious; 894 disable fast path. 895 896 Called with write_locked neigh. 897 */ 898 static void neigh_suspect(struct neighbour *neigh) 899 { 900 neigh_dbg(2, "neigh %p is suspected\n", neigh); 901 902 neigh->output = neigh->ops->output; 903 } 904 905 /* Neighbour state is OK; 906 enable fast path. 907 908 Called with write_locked neigh. 909 */ 910 static void neigh_connect(struct neighbour *neigh) 911 { 912 neigh_dbg(2, "neigh %p is connected\n", neigh); 913 914 neigh->output = neigh->ops->connected_output; 915 } 916 917 static void neigh_periodic_work(struct work_struct *work) 918 { 919 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 920 struct neighbour *n; 921 struct neighbour __rcu **np; 922 unsigned int i; 923 struct neigh_hash_table *nht; 924 925 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 926 927 write_lock_bh(&tbl->lock); 928 nht = rcu_dereference_protected(tbl->nht, 929 lockdep_is_held(&tbl->lock)); 930 931 /* 932 * periodically recompute ReachableTime from random function 933 */ 934 935 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 936 struct neigh_parms *p; 937 tbl->last_rand = jiffies; 938 list_for_each_entry(p, &tbl->parms_list, list) 939 p->reachable_time = 940 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 941 } 942 943 if (atomic_read(&tbl->entries) < tbl->gc_thresh1) 944 goto out; 945 946 for (i = 0 ; i < (1 << nht->hash_shift); i++) { 947 np = &nht->hash_buckets[i]; 948 949 while ((n = rcu_dereference_protected(*np, 950 lockdep_is_held(&tbl->lock))) != NULL) { 951 unsigned int state; 952 953 write_lock(&n->lock); 954 955 state = n->nud_state; 956 if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) || 957 (n->flags & NTF_EXT_LEARNED)) { 958 write_unlock(&n->lock); 959 goto next_elt; 960 } 961 962 if (time_before(n->used, n->confirmed)) 963 n->used = n->confirmed; 964 965 if (refcount_read(&n->refcnt) == 1 && 966 (state == NUD_FAILED || 967 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) { 968 *np = n->next; 969 neigh_mark_dead(n); 970 write_unlock(&n->lock); 971 neigh_cleanup_and_release(n); 972 continue; 973 } 974 write_unlock(&n->lock); 975 976 next_elt: 977 np = &n->next; 978 } 979 /* 980 * It's fine to release lock here, even if hash table 981 * grows while we are preempted. 982 */ 983 write_unlock_bh(&tbl->lock); 984 cond_resched(); 985 write_lock_bh(&tbl->lock); 986 nht = rcu_dereference_protected(tbl->nht, 987 lockdep_is_held(&tbl->lock)); 988 } 989 out: 990 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks. 991 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2 992 * BASE_REACHABLE_TIME. 993 */ 994 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 995 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1); 996 write_unlock_bh(&tbl->lock); 997 } 998 999 static __inline__ int neigh_max_probes(struct neighbour *n) 1000 { 1001 struct neigh_parms *p = n->parms; 1002 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) + 1003 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) : 1004 NEIGH_VAR(p, MCAST_PROBES)); 1005 } 1006 1007 static void neigh_invalidate(struct neighbour *neigh) 1008 __releases(neigh->lock) 1009 __acquires(neigh->lock) 1010 { 1011 struct sk_buff *skb; 1012 1013 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 1014 neigh_dbg(2, "neigh %p is failed\n", neigh); 1015 neigh->updated = jiffies; 1016 1017 /* It is very thin place. report_unreachable is very complicated 1018 routine. Particularly, it can hit the same neighbour entry! 1019 1020 So that, we try to be accurate and avoid dead loop. --ANK 1021 */ 1022 while (neigh->nud_state == NUD_FAILED && 1023 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1024 write_unlock(&neigh->lock); 1025 neigh->ops->error_report(neigh, skb); 1026 write_lock(&neigh->lock); 1027 } 1028 __skb_queue_purge(&neigh->arp_queue); 1029 neigh->arp_queue_len_bytes = 0; 1030 } 1031 1032 static void neigh_probe(struct neighbour *neigh) 1033 __releases(neigh->lock) 1034 { 1035 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue); 1036 /* keep skb alive even if arp_queue overflows */ 1037 if (skb) 1038 skb = skb_clone(skb, GFP_ATOMIC); 1039 write_unlock(&neigh->lock); 1040 if (neigh->ops->solicit) 1041 neigh->ops->solicit(neigh, skb); 1042 atomic_inc(&neigh->probes); 1043 consume_skb(skb); 1044 } 1045 1046 /* Called when a timer expires for a neighbour entry. */ 1047 1048 static void neigh_timer_handler(struct timer_list *t) 1049 { 1050 unsigned long now, next; 1051 struct neighbour *neigh = from_timer(neigh, t, timer); 1052 unsigned int state; 1053 int notify = 0; 1054 1055 write_lock(&neigh->lock); 1056 1057 state = neigh->nud_state; 1058 now = jiffies; 1059 next = now + HZ; 1060 1061 if (!(state & NUD_IN_TIMER)) 1062 goto out; 1063 1064 if (state & NUD_REACHABLE) { 1065 if (time_before_eq(now, 1066 neigh->confirmed + neigh->parms->reachable_time)) { 1067 neigh_dbg(2, "neigh %p is still alive\n", neigh); 1068 next = neigh->confirmed + neigh->parms->reachable_time; 1069 } else if (time_before_eq(now, 1070 neigh->used + 1071 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1072 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1073 neigh->nud_state = NUD_DELAY; 1074 neigh->updated = jiffies; 1075 neigh_suspect(neigh); 1076 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME); 1077 } else { 1078 neigh_dbg(2, "neigh %p is suspected\n", neigh); 1079 neigh->nud_state = NUD_STALE; 1080 neigh->updated = jiffies; 1081 neigh_suspect(neigh); 1082 notify = 1; 1083 } 1084 } else if (state & NUD_DELAY) { 1085 if (time_before_eq(now, 1086 neigh->confirmed + 1087 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1088 neigh_dbg(2, "neigh %p is now reachable\n", neigh); 1089 neigh->nud_state = NUD_REACHABLE; 1090 neigh->updated = jiffies; 1091 neigh_connect(neigh); 1092 notify = 1; 1093 next = neigh->confirmed + neigh->parms->reachable_time; 1094 } else { 1095 neigh_dbg(2, "neigh %p is probed\n", neigh); 1096 neigh->nud_state = NUD_PROBE; 1097 neigh->updated = jiffies; 1098 atomic_set(&neigh->probes, 0); 1099 notify = 1; 1100 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1101 HZ/100); 1102 } 1103 } else { 1104 /* NUD_PROBE|NUD_INCOMPLETE */ 1105 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100); 1106 } 1107 1108 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 1109 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 1110 neigh->nud_state = NUD_FAILED; 1111 notify = 1; 1112 neigh_invalidate(neigh); 1113 goto out; 1114 } 1115 1116 if (neigh->nud_state & NUD_IN_TIMER) { 1117 if (time_before(next, jiffies + HZ/100)) 1118 next = jiffies + HZ/100; 1119 if (!mod_timer(&neigh->timer, next)) 1120 neigh_hold(neigh); 1121 } 1122 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 1123 neigh_probe(neigh); 1124 } else { 1125 out: 1126 write_unlock(&neigh->lock); 1127 } 1128 1129 if (notify) 1130 neigh_update_notify(neigh, 0); 1131 1132 trace_neigh_timer_handler(neigh, 0); 1133 1134 neigh_release(neigh); 1135 } 1136 1137 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 1138 { 1139 int rc; 1140 bool immediate_probe = false; 1141 1142 write_lock_bh(&neigh->lock); 1143 1144 rc = 0; 1145 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 1146 goto out_unlock_bh; 1147 if (neigh->dead) 1148 goto out_dead; 1149 1150 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 1151 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) + 1152 NEIGH_VAR(neigh->parms, APP_PROBES)) { 1153 unsigned long next, now = jiffies; 1154 1155 atomic_set(&neigh->probes, 1156 NEIGH_VAR(neigh->parms, UCAST_PROBES)); 1157 neigh_del_timer(neigh); 1158 neigh->nud_state = NUD_INCOMPLETE; 1159 neigh->updated = now; 1160 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1161 HZ/100); 1162 neigh_add_timer(neigh, next); 1163 immediate_probe = true; 1164 } else { 1165 neigh->nud_state = NUD_FAILED; 1166 neigh->updated = jiffies; 1167 write_unlock_bh(&neigh->lock); 1168 1169 kfree_skb(skb); 1170 return 1; 1171 } 1172 } else if (neigh->nud_state & NUD_STALE) { 1173 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1174 neigh_del_timer(neigh); 1175 neigh->nud_state = NUD_DELAY; 1176 neigh->updated = jiffies; 1177 neigh_add_timer(neigh, jiffies + 1178 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME)); 1179 } 1180 1181 if (neigh->nud_state == NUD_INCOMPLETE) { 1182 if (skb) { 1183 while (neigh->arp_queue_len_bytes + skb->truesize > 1184 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) { 1185 struct sk_buff *buff; 1186 1187 buff = __skb_dequeue(&neigh->arp_queue); 1188 if (!buff) 1189 break; 1190 neigh->arp_queue_len_bytes -= buff->truesize; 1191 kfree_skb(buff); 1192 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 1193 } 1194 skb_dst_force(skb); 1195 __skb_queue_tail(&neigh->arp_queue, skb); 1196 neigh->arp_queue_len_bytes += skb->truesize; 1197 } 1198 rc = 1; 1199 } 1200 out_unlock_bh: 1201 if (immediate_probe) 1202 neigh_probe(neigh); 1203 else 1204 write_unlock(&neigh->lock); 1205 local_bh_enable(); 1206 trace_neigh_event_send_done(neigh, rc); 1207 return rc; 1208 1209 out_dead: 1210 if (neigh->nud_state & NUD_STALE) 1211 goto out_unlock_bh; 1212 write_unlock_bh(&neigh->lock); 1213 kfree_skb(skb); 1214 trace_neigh_event_send_dead(neigh, 1); 1215 return 1; 1216 } 1217 EXPORT_SYMBOL(__neigh_event_send); 1218 1219 static void neigh_update_hhs(struct neighbour *neigh) 1220 { 1221 struct hh_cache *hh; 1222 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 1223 = NULL; 1224 1225 if (neigh->dev->header_ops) 1226 update = neigh->dev->header_ops->cache_update; 1227 1228 if (update) { 1229 hh = &neigh->hh; 1230 if (READ_ONCE(hh->hh_len)) { 1231 write_seqlock_bh(&hh->hh_lock); 1232 update(hh, neigh->dev, neigh->ha); 1233 write_sequnlock_bh(&hh->hh_lock); 1234 } 1235 } 1236 } 1237 1238 /* Generic update routine. 1239 -- lladdr is new lladdr or NULL, if it is not supplied. 1240 -- new is new state. 1241 -- flags 1242 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 1243 if it is different. 1244 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 1245 lladdr instead of overriding it 1246 if it is different. 1247 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 1248 NEIGH_UPDATE_F_USE means that the entry is user triggered. 1249 NEIGH_UPDATE_F_MANAGED means that the entry will be auto-refreshed. 1250 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 1251 NTF_ROUTER flag. 1252 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 1253 a router. 1254 1255 Caller MUST hold reference count on the entry. 1256 */ 1257 static int __neigh_update(struct neighbour *neigh, const u8 *lladdr, 1258 u8 new, u32 flags, u32 nlmsg_pid, 1259 struct netlink_ext_ack *extack) 1260 { 1261 bool gc_update = false, managed_update = false; 1262 int update_isrouter = 0; 1263 struct net_device *dev; 1264 int err, notify = 0; 1265 u8 old; 1266 1267 trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid); 1268 1269 write_lock_bh(&neigh->lock); 1270 1271 dev = neigh->dev; 1272 old = neigh->nud_state; 1273 err = -EPERM; 1274 1275 if (neigh->dead) { 1276 NL_SET_ERR_MSG(extack, "Neighbor entry is now dead"); 1277 new = old; 1278 goto out; 1279 } 1280 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 1281 (old & (NUD_NOARP | NUD_PERMANENT))) 1282 goto out; 1283 1284 neigh_update_flags(neigh, flags, ¬ify, &gc_update, &managed_update); 1285 if (flags & (NEIGH_UPDATE_F_USE | NEIGH_UPDATE_F_MANAGED)) { 1286 new = old & ~NUD_PERMANENT; 1287 neigh->nud_state = new; 1288 err = 0; 1289 goto out; 1290 } 1291 1292 if (!(new & NUD_VALID)) { 1293 neigh_del_timer(neigh); 1294 if (old & NUD_CONNECTED) 1295 neigh_suspect(neigh); 1296 neigh->nud_state = new; 1297 err = 0; 1298 notify = old & NUD_VALID; 1299 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1300 (new & NUD_FAILED)) { 1301 neigh_invalidate(neigh); 1302 notify = 1; 1303 } 1304 goto out; 1305 } 1306 1307 /* Compare new lladdr with cached one */ 1308 if (!dev->addr_len) { 1309 /* First case: device needs no address. */ 1310 lladdr = neigh->ha; 1311 } else if (lladdr) { 1312 /* The second case: if something is already cached 1313 and a new address is proposed: 1314 - compare new & old 1315 - if they are different, check override flag 1316 */ 1317 if ((old & NUD_VALID) && 1318 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1319 lladdr = neigh->ha; 1320 } else { 1321 /* No address is supplied; if we know something, 1322 use it, otherwise discard the request. 1323 */ 1324 err = -EINVAL; 1325 if (!(old & NUD_VALID)) { 1326 NL_SET_ERR_MSG(extack, "No link layer address given"); 1327 goto out; 1328 } 1329 lladdr = neigh->ha; 1330 } 1331 1332 /* Update confirmed timestamp for neighbour entry after we 1333 * received ARP packet even if it doesn't change IP to MAC binding. 1334 */ 1335 if (new & NUD_CONNECTED) 1336 neigh->confirmed = jiffies; 1337 1338 /* If entry was valid and address is not changed, 1339 do not change entry state, if new one is STALE. 1340 */ 1341 err = 0; 1342 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1343 if (old & NUD_VALID) { 1344 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1345 update_isrouter = 0; 1346 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1347 (old & NUD_CONNECTED)) { 1348 lladdr = neigh->ha; 1349 new = NUD_STALE; 1350 } else 1351 goto out; 1352 } else { 1353 if (lladdr == neigh->ha && new == NUD_STALE && 1354 !(flags & NEIGH_UPDATE_F_ADMIN)) 1355 new = old; 1356 } 1357 } 1358 1359 /* Update timestamp only once we know we will make a change to the 1360 * neighbour entry. Otherwise we risk to move the locktime window with 1361 * noop updates and ignore relevant ARP updates. 1362 */ 1363 if (new != old || lladdr != neigh->ha) 1364 neigh->updated = jiffies; 1365 1366 if (new != old) { 1367 neigh_del_timer(neigh); 1368 if (new & NUD_PROBE) 1369 atomic_set(&neigh->probes, 0); 1370 if (new & NUD_IN_TIMER) 1371 neigh_add_timer(neigh, (jiffies + 1372 ((new & NUD_REACHABLE) ? 1373 neigh->parms->reachable_time : 1374 0))); 1375 neigh->nud_state = new; 1376 notify = 1; 1377 } 1378 1379 if (lladdr != neigh->ha) { 1380 write_seqlock(&neigh->ha_lock); 1381 memcpy(&neigh->ha, lladdr, dev->addr_len); 1382 write_sequnlock(&neigh->ha_lock); 1383 neigh_update_hhs(neigh); 1384 if (!(new & NUD_CONNECTED)) 1385 neigh->confirmed = jiffies - 1386 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1); 1387 notify = 1; 1388 } 1389 if (new == old) 1390 goto out; 1391 if (new & NUD_CONNECTED) 1392 neigh_connect(neigh); 1393 else 1394 neigh_suspect(neigh); 1395 if (!(old & NUD_VALID)) { 1396 struct sk_buff *skb; 1397 1398 /* Again: avoid dead loop if something went wrong */ 1399 1400 while (neigh->nud_state & NUD_VALID && 1401 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1402 struct dst_entry *dst = skb_dst(skb); 1403 struct neighbour *n2, *n1 = neigh; 1404 write_unlock_bh(&neigh->lock); 1405 1406 rcu_read_lock(); 1407 1408 /* Why not just use 'neigh' as-is? The problem is that 1409 * things such as shaper, eql, and sch_teql can end up 1410 * using alternative, different, neigh objects to output 1411 * the packet in the output path. So what we need to do 1412 * here is re-lookup the top-level neigh in the path so 1413 * we can reinject the packet there. 1414 */ 1415 n2 = NULL; 1416 if (dst && dst->obsolete != DST_OBSOLETE_DEAD) { 1417 n2 = dst_neigh_lookup_skb(dst, skb); 1418 if (n2) 1419 n1 = n2; 1420 } 1421 n1->output(n1, skb); 1422 if (n2) 1423 neigh_release(n2); 1424 rcu_read_unlock(); 1425 1426 write_lock_bh(&neigh->lock); 1427 } 1428 __skb_queue_purge(&neigh->arp_queue); 1429 neigh->arp_queue_len_bytes = 0; 1430 } 1431 out: 1432 if (update_isrouter) 1433 neigh_update_is_router(neigh, flags, ¬ify); 1434 write_unlock_bh(&neigh->lock); 1435 if (((new ^ old) & NUD_PERMANENT) || gc_update) 1436 neigh_update_gc_list(neigh); 1437 if (managed_update) 1438 neigh_update_managed_list(neigh); 1439 if (notify) 1440 neigh_update_notify(neigh, nlmsg_pid); 1441 trace_neigh_update_done(neigh, err); 1442 return err; 1443 } 1444 1445 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 1446 u32 flags, u32 nlmsg_pid) 1447 { 1448 return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL); 1449 } 1450 EXPORT_SYMBOL(neigh_update); 1451 1452 /* Update the neigh to listen temporarily for probe responses, even if it is 1453 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing. 1454 */ 1455 void __neigh_set_probe_once(struct neighbour *neigh) 1456 { 1457 if (neigh->dead) 1458 return; 1459 neigh->updated = jiffies; 1460 if (!(neigh->nud_state & NUD_FAILED)) 1461 return; 1462 neigh->nud_state = NUD_INCOMPLETE; 1463 atomic_set(&neigh->probes, neigh_max_probes(neigh)); 1464 neigh_add_timer(neigh, 1465 jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1466 HZ/100)); 1467 } 1468 EXPORT_SYMBOL(__neigh_set_probe_once); 1469 1470 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1471 u8 *lladdr, void *saddr, 1472 struct net_device *dev) 1473 { 1474 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1475 lladdr || !dev->addr_len); 1476 if (neigh) 1477 neigh_update(neigh, lladdr, NUD_STALE, 1478 NEIGH_UPDATE_F_OVERRIDE, 0); 1479 return neigh; 1480 } 1481 EXPORT_SYMBOL(neigh_event_ns); 1482 1483 /* called with read_lock_bh(&n->lock); */ 1484 static void neigh_hh_init(struct neighbour *n) 1485 { 1486 struct net_device *dev = n->dev; 1487 __be16 prot = n->tbl->protocol; 1488 struct hh_cache *hh = &n->hh; 1489 1490 write_lock_bh(&n->lock); 1491 1492 /* Only one thread can come in here and initialize the 1493 * hh_cache entry. 1494 */ 1495 if (!hh->hh_len) 1496 dev->header_ops->cache(n, hh, prot); 1497 1498 write_unlock_bh(&n->lock); 1499 } 1500 1501 /* Slow and careful. */ 1502 1503 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) 1504 { 1505 int rc = 0; 1506 1507 if (!neigh_event_send(neigh, skb)) { 1508 int err; 1509 struct net_device *dev = neigh->dev; 1510 unsigned int seq; 1511 1512 if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len)) 1513 neigh_hh_init(neigh); 1514 1515 do { 1516 __skb_pull(skb, skb_network_offset(skb)); 1517 seq = read_seqbegin(&neigh->ha_lock); 1518 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1519 neigh->ha, NULL, skb->len); 1520 } while (read_seqretry(&neigh->ha_lock, seq)); 1521 1522 if (err >= 0) 1523 rc = dev_queue_xmit(skb); 1524 else 1525 goto out_kfree_skb; 1526 } 1527 out: 1528 return rc; 1529 out_kfree_skb: 1530 rc = -EINVAL; 1531 kfree_skb(skb); 1532 goto out; 1533 } 1534 EXPORT_SYMBOL(neigh_resolve_output); 1535 1536 /* As fast as possible without hh cache */ 1537 1538 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) 1539 { 1540 struct net_device *dev = neigh->dev; 1541 unsigned int seq; 1542 int err; 1543 1544 do { 1545 __skb_pull(skb, skb_network_offset(skb)); 1546 seq = read_seqbegin(&neigh->ha_lock); 1547 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1548 neigh->ha, NULL, skb->len); 1549 } while (read_seqretry(&neigh->ha_lock, seq)); 1550 1551 if (err >= 0) 1552 err = dev_queue_xmit(skb); 1553 else { 1554 err = -EINVAL; 1555 kfree_skb(skb); 1556 } 1557 return err; 1558 } 1559 EXPORT_SYMBOL(neigh_connected_output); 1560 1561 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) 1562 { 1563 return dev_queue_xmit(skb); 1564 } 1565 EXPORT_SYMBOL(neigh_direct_output); 1566 1567 static void neigh_managed_work(struct work_struct *work) 1568 { 1569 struct neigh_table *tbl = container_of(work, struct neigh_table, 1570 managed_work.work); 1571 struct neighbour *neigh; 1572 1573 write_lock_bh(&tbl->lock); 1574 list_for_each_entry(neigh, &tbl->managed_list, managed_list) 1575 neigh_event_send(neigh, NULL); 1576 queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 1577 NEIGH_VAR(&tbl->parms, DELAY_PROBE_TIME)); 1578 write_unlock_bh(&tbl->lock); 1579 } 1580 1581 static void neigh_proxy_process(struct timer_list *t) 1582 { 1583 struct neigh_table *tbl = from_timer(tbl, t, proxy_timer); 1584 long sched_next = 0; 1585 unsigned long now = jiffies; 1586 struct sk_buff *skb, *n; 1587 1588 spin_lock(&tbl->proxy_queue.lock); 1589 1590 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1591 long tdif = NEIGH_CB(skb)->sched_next - now; 1592 1593 if (tdif <= 0) { 1594 struct net_device *dev = skb->dev; 1595 1596 __skb_unlink(skb, &tbl->proxy_queue); 1597 if (tbl->proxy_redo && netif_running(dev)) { 1598 rcu_read_lock(); 1599 tbl->proxy_redo(skb); 1600 rcu_read_unlock(); 1601 } else { 1602 kfree_skb(skb); 1603 } 1604 1605 dev_put(dev); 1606 } else if (!sched_next || tdif < sched_next) 1607 sched_next = tdif; 1608 } 1609 del_timer(&tbl->proxy_timer); 1610 if (sched_next) 1611 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1612 spin_unlock(&tbl->proxy_queue.lock); 1613 } 1614 1615 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1616 struct sk_buff *skb) 1617 { 1618 unsigned long sched_next = jiffies + 1619 prandom_u32_max(NEIGH_VAR(p, PROXY_DELAY)); 1620 1621 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) { 1622 kfree_skb(skb); 1623 return; 1624 } 1625 1626 NEIGH_CB(skb)->sched_next = sched_next; 1627 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1628 1629 spin_lock(&tbl->proxy_queue.lock); 1630 if (del_timer(&tbl->proxy_timer)) { 1631 if (time_before(tbl->proxy_timer.expires, sched_next)) 1632 sched_next = tbl->proxy_timer.expires; 1633 } 1634 skb_dst_drop(skb); 1635 dev_hold(skb->dev); 1636 __skb_queue_tail(&tbl->proxy_queue, skb); 1637 mod_timer(&tbl->proxy_timer, sched_next); 1638 spin_unlock(&tbl->proxy_queue.lock); 1639 } 1640 EXPORT_SYMBOL(pneigh_enqueue); 1641 1642 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1643 struct net *net, int ifindex) 1644 { 1645 struct neigh_parms *p; 1646 1647 list_for_each_entry(p, &tbl->parms_list, list) { 1648 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1649 (!p->dev && !ifindex && net_eq(net, &init_net))) 1650 return p; 1651 } 1652 1653 return NULL; 1654 } 1655 1656 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1657 struct neigh_table *tbl) 1658 { 1659 struct neigh_parms *p; 1660 struct net *net = dev_net(dev); 1661 const struct net_device_ops *ops = dev->netdev_ops; 1662 1663 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL); 1664 if (p) { 1665 p->tbl = tbl; 1666 refcount_set(&p->refcnt, 1); 1667 p->reachable_time = 1668 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 1669 dev_hold(dev); 1670 p->dev = dev; 1671 write_pnet(&p->net, net); 1672 p->sysctl_table = NULL; 1673 1674 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1675 dev_put(dev); 1676 kfree(p); 1677 return NULL; 1678 } 1679 1680 write_lock_bh(&tbl->lock); 1681 list_add(&p->list, &tbl->parms.list); 1682 write_unlock_bh(&tbl->lock); 1683 1684 neigh_parms_data_state_cleanall(p); 1685 } 1686 return p; 1687 } 1688 EXPORT_SYMBOL(neigh_parms_alloc); 1689 1690 static void neigh_rcu_free_parms(struct rcu_head *head) 1691 { 1692 struct neigh_parms *parms = 1693 container_of(head, struct neigh_parms, rcu_head); 1694 1695 neigh_parms_put(parms); 1696 } 1697 1698 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1699 { 1700 if (!parms || parms == &tbl->parms) 1701 return; 1702 write_lock_bh(&tbl->lock); 1703 list_del(&parms->list); 1704 parms->dead = 1; 1705 write_unlock_bh(&tbl->lock); 1706 dev_put(parms->dev); 1707 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1708 } 1709 EXPORT_SYMBOL(neigh_parms_release); 1710 1711 static void neigh_parms_destroy(struct neigh_parms *parms) 1712 { 1713 kfree(parms); 1714 } 1715 1716 static struct lock_class_key neigh_table_proxy_queue_class; 1717 1718 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly; 1719 1720 void neigh_table_init(int index, struct neigh_table *tbl) 1721 { 1722 unsigned long now = jiffies; 1723 unsigned long phsize; 1724 1725 INIT_LIST_HEAD(&tbl->parms_list); 1726 INIT_LIST_HEAD(&tbl->gc_list); 1727 INIT_LIST_HEAD(&tbl->managed_list); 1728 1729 list_add(&tbl->parms.list, &tbl->parms_list); 1730 write_pnet(&tbl->parms.net, &init_net); 1731 refcount_set(&tbl->parms.refcnt, 1); 1732 tbl->parms.reachable_time = 1733 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME)); 1734 1735 tbl->stats = alloc_percpu(struct neigh_statistics); 1736 if (!tbl->stats) 1737 panic("cannot create neighbour cache statistics"); 1738 1739 #ifdef CONFIG_PROC_FS 1740 if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat, 1741 &neigh_stat_seq_ops, tbl)) 1742 panic("cannot create neighbour proc dir entry"); 1743 #endif 1744 1745 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); 1746 1747 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1748 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1749 1750 if (!tbl->nht || !tbl->phash_buckets) 1751 panic("cannot allocate neighbour cache hashes"); 1752 1753 if (!tbl->entry_size) 1754 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) + 1755 tbl->key_len, NEIGH_PRIV_ALIGN); 1756 else 1757 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN); 1758 1759 rwlock_init(&tbl->lock); 1760 1761 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work); 1762 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 1763 tbl->parms.reachable_time); 1764 INIT_DEFERRABLE_WORK(&tbl->managed_work, neigh_managed_work); 1765 queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 0); 1766 1767 timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0); 1768 skb_queue_head_init_class(&tbl->proxy_queue, 1769 &neigh_table_proxy_queue_class); 1770 1771 tbl->last_flush = now; 1772 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1773 1774 neigh_tables[index] = tbl; 1775 } 1776 EXPORT_SYMBOL(neigh_table_init); 1777 1778 int neigh_table_clear(int index, struct neigh_table *tbl) 1779 { 1780 neigh_tables[index] = NULL; 1781 /* It is not clean... Fix it to unload IPv6 module safely */ 1782 cancel_delayed_work_sync(&tbl->gc_work); 1783 del_timer_sync(&tbl->proxy_timer); 1784 pneigh_queue_purge(&tbl->proxy_queue); 1785 neigh_ifdown(tbl, NULL); 1786 if (atomic_read(&tbl->entries)) 1787 pr_crit("neighbour leakage\n"); 1788 1789 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, 1790 neigh_hash_free_rcu); 1791 tbl->nht = NULL; 1792 1793 kfree(tbl->phash_buckets); 1794 tbl->phash_buckets = NULL; 1795 1796 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1797 1798 free_percpu(tbl->stats); 1799 tbl->stats = NULL; 1800 1801 return 0; 1802 } 1803 EXPORT_SYMBOL(neigh_table_clear); 1804 1805 static struct neigh_table *neigh_find_table(int family) 1806 { 1807 struct neigh_table *tbl = NULL; 1808 1809 switch (family) { 1810 case AF_INET: 1811 tbl = neigh_tables[NEIGH_ARP_TABLE]; 1812 break; 1813 case AF_INET6: 1814 tbl = neigh_tables[NEIGH_ND_TABLE]; 1815 break; 1816 case AF_DECnet: 1817 tbl = neigh_tables[NEIGH_DN_TABLE]; 1818 break; 1819 } 1820 1821 return tbl; 1822 } 1823 1824 const struct nla_policy nda_policy[NDA_MAX+1] = { 1825 [NDA_UNSPEC] = { .strict_start_type = NDA_NH_ID }, 1826 [NDA_DST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1827 [NDA_LLADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1828 [NDA_CACHEINFO] = { .len = sizeof(struct nda_cacheinfo) }, 1829 [NDA_PROBES] = { .type = NLA_U32 }, 1830 [NDA_VLAN] = { .type = NLA_U16 }, 1831 [NDA_PORT] = { .type = NLA_U16 }, 1832 [NDA_VNI] = { .type = NLA_U32 }, 1833 [NDA_IFINDEX] = { .type = NLA_U32 }, 1834 [NDA_MASTER] = { .type = NLA_U32 }, 1835 [NDA_PROTOCOL] = { .type = NLA_U8 }, 1836 [NDA_NH_ID] = { .type = NLA_U32 }, 1837 [NDA_FLAGS_EXT] = NLA_POLICY_MASK(NLA_U32, NTF_EXT_MASK), 1838 [NDA_FDB_EXT_ATTRS] = { .type = NLA_NESTED }, 1839 }; 1840 1841 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, 1842 struct netlink_ext_ack *extack) 1843 { 1844 struct net *net = sock_net(skb->sk); 1845 struct ndmsg *ndm; 1846 struct nlattr *dst_attr; 1847 struct neigh_table *tbl; 1848 struct neighbour *neigh; 1849 struct net_device *dev = NULL; 1850 int err = -EINVAL; 1851 1852 ASSERT_RTNL(); 1853 if (nlmsg_len(nlh) < sizeof(*ndm)) 1854 goto out; 1855 1856 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1857 if (!dst_attr) { 1858 NL_SET_ERR_MSG(extack, "Network address not specified"); 1859 goto out; 1860 } 1861 1862 ndm = nlmsg_data(nlh); 1863 if (ndm->ndm_ifindex) { 1864 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1865 if (dev == NULL) { 1866 err = -ENODEV; 1867 goto out; 1868 } 1869 } 1870 1871 tbl = neigh_find_table(ndm->ndm_family); 1872 if (tbl == NULL) 1873 return -EAFNOSUPPORT; 1874 1875 if (nla_len(dst_attr) < (int)tbl->key_len) { 1876 NL_SET_ERR_MSG(extack, "Invalid network address"); 1877 goto out; 1878 } 1879 1880 if (ndm->ndm_flags & NTF_PROXY) { 1881 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1882 goto out; 1883 } 1884 1885 if (dev == NULL) 1886 goto out; 1887 1888 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1889 if (neigh == NULL) { 1890 err = -ENOENT; 1891 goto out; 1892 } 1893 1894 err = __neigh_update(neigh, NULL, NUD_FAILED, 1895 NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN, 1896 NETLINK_CB(skb).portid, extack); 1897 write_lock_bh(&tbl->lock); 1898 neigh_release(neigh); 1899 neigh_remove_one(neigh, tbl); 1900 write_unlock_bh(&tbl->lock); 1901 1902 out: 1903 return err; 1904 } 1905 1906 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, 1907 struct netlink_ext_ack *extack) 1908 { 1909 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE | 1910 NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1911 struct net *net = sock_net(skb->sk); 1912 struct ndmsg *ndm; 1913 struct nlattr *tb[NDA_MAX+1]; 1914 struct neigh_table *tbl; 1915 struct net_device *dev = NULL; 1916 struct neighbour *neigh; 1917 void *dst, *lladdr; 1918 u8 protocol = 0; 1919 u32 ndm_flags; 1920 int err; 1921 1922 ASSERT_RTNL(); 1923 err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX, 1924 nda_policy, extack); 1925 if (err < 0) 1926 goto out; 1927 1928 err = -EINVAL; 1929 if (!tb[NDA_DST]) { 1930 NL_SET_ERR_MSG(extack, "Network address not specified"); 1931 goto out; 1932 } 1933 1934 ndm = nlmsg_data(nlh); 1935 ndm_flags = ndm->ndm_flags; 1936 if (tb[NDA_FLAGS_EXT]) { 1937 u32 ext = nla_get_u32(tb[NDA_FLAGS_EXT]); 1938 1939 BUILD_BUG_ON(sizeof(neigh->flags) * BITS_PER_BYTE < 1940 (sizeof(ndm->ndm_flags) * BITS_PER_BYTE + 1941 hweight32(NTF_EXT_MASK))); 1942 ndm_flags |= (ext << NTF_EXT_SHIFT); 1943 } 1944 if (ndm->ndm_ifindex) { 1945 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1946 if (dev == NULL) { 1947 err = -ENODEV; 1948 goto out; 1949 } 1950 1951 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) { 1952 NL_SET_ERR_MSG(extack, "Invalid link address"); 1953 goto out; 1954 } 1955 } 1956 1957 tbl = neigh_find_table(ndm->ndm_family); 1958 if (tbl == NULL) 1959 return -EAFNOSUPPORT; 1960 1961 if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) { 1962 NL_SET_ERR_MSG(extack, "Invalid network address"); 1963 goto out; 1964 } 1965 1966 dst = nla_data(tb[NDA_DST]); 1967 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1968 1969 if (tb[NDA_PROTOCOL]) 1970 protocol = nla_get_u8(tb[NDA_PROTOCOL]); 1971 if (ndm_flags & NTF_PROXY) { 1972 struct pneigh_entry *pn; 1973 1974 if (ndm_flags & NTF_MANAGED) { 1975 NL_SET_ERR_MSG(extack, "Invalid NTF_* flag combination"); 1976 goto out; 1977 } 1978 1979 err = -ENOBUFS; 1980 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1981 if (pn) { 1982 pn->flags = ndm_flags; 1983 if (protocol) 1984 pn->protocol = protocol; 1985 err = 0; 1986 } 1987 goto out; 1988 } 1989 1990 if (!dev) { 1991 NL_SET_ERR_MSG(extack, "Device not specified"); 1992 goto out; 1993 } 1994 1995 if (tbl->allow_add && !tbl->allow_add(dev, extack)) { 1996 err = -EINVAL; 1997 goto out; 1998 } 1999 2000 neigh = neigh_lookup(tbl, dst, dev); 2001 if (neigh == NULL) { 2002 bool ndm_permanent = ndm->ndm_state & NUD_PERMANENT; 2003 bool exempt_from_gc = ndm_permanent || 2004 ndm_flags & NTF_EXT_LEARNED; 2005 2006 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 2007 err = -ENOENT; 2008 goto out; 2009 } 2010 if (ndm_permanent && (ndm_flags & NTF_MANAGED)) { 2011 NL_SET_ERR_MSG(extack, "Invalid NTF_* flag for permanent entry"); 2012 err = -EINVAL; 2013 goto out; 2014 } 2015 2016 neigh = ___neigh_create(tbl, dst, dev, 2017 ndm_flags & 2018 (NTF_EXT_LEARNED | NTF_MANAGED), 2019 exempt_from_gc, true); 2020 if (IS_ERR(neigh)) { 2021 err = PTR_ERR(neigh); 2022 goto out; 2023 } 2024 } else { 2025 if (nlh->nlmsg_flags & NLM_F_EXCL) { 2026 err = -EEXIST; 2027 neigh_release(neigh); 2028 goto out; 2029 } 2030 2031 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 2032 flags &= ~(NEIGH_UPDATE_F_OVERRIDE | 2033 NEIGH_UPDATE_F_OVERRIDE_ISROUTER); 2034 } 2035 2036 if (protocol) 2037 neigh->protocol = protocol; 2038 if (ndm_flags & NTF_EXT_LEARNED) 2039 flags |= NEIGH_UPDATE_F_EXT_LEARNED; 2040 if (ndm_flags & NTF_ROUTER) 2041 flags |= NEIGH_UPDATE_F_ISROUTER; 2042 if (ndm_flags & NTF_MANAGED) 2043 flags |= NEIGH_UPDATE_F_MANAGED; 2044 if (ndm_flags & NTF_USE) 2045 flags |= NEIGH_UPDATE_F_USE; 2046 2047 err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags, 2048 NETLINK_CB(skb).portid, extack); 2049 if (!err && ndm_flags & (NTF_USE | NTF_MANAGED)) { 2050 neigh_event_send(neigh, NULL); 2051 err = 0; 2052 } 2053 neigh_release(neigh); 2054 out: 2055 return err; 2056 } 2057 2058 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 2059 { 2060 struct nlattr *nest; 2061 2062 nest = nla_nest_start_noflag(skb, NDTA_PARMS); 2063 if (nest == NULL) 2064 return -ENOBUFS; 2065 2066 if ((parms->dev && 2067 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) || 2068 nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) || 2069 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, 2070 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) || 2071 /* approximative value for deprecated QUEUE_LEN (in packets) */ 2072 nla_put_u32(skb, NDTPA_QUEUE_LEN, 2073 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) || 2074 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) || 2075 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) || 2076 nla_put_u32(skb, NDTPA_UCAST_PROBES, 2077 NEIGH_VAR(parms, UCAST_PROBES)) || 2078 nla_put_u32(skb, NDTPA_MCAST_PROBES, 2079 NEIGH_VAR(parms, MCAST_PROBES)) || 2080 nla_put_u32(skb, NDTPA_MCAST_REPROBES, 2081 NEIGH_VAR(parms, MCAST_REPROBES)) || 2082 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time, 2083 NDTPA_PAD) || 2084 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME, 2085 NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) || 2086 nla_put_msecs(skb, NDTPA_GC_STALETIME, 2087 NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) || 2088 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME, 2089 NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) || 2090 nla_put_msecs(skb, NDTPA_RETRANS_TIME, 2091 NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) || 2092 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, 2093 NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) || 2094 nla_put_msecs(skb, NDTPA_PROXY_DELAY, 2095 NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) || 2096 nla_put_msecs(skb, NDTPA_LOCKTIME, 2097 NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD)) 2098 goto nla_put_failure; 2099 return nla_nest_end(skb, nest); 2100 2101 nla_put_failure: 2102 nla_nest_cancel(skb, nest); 2103 return -EMSGSIZE; 2104 } 2105 2106 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 2107 u32 pid, u32 seq, int type, int flags) 2108 { 2109 struct nlmsghdr *nlh; 2110 struct ndtmsg *ndtmsg; 2111 2112 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2113 if (nlh == NULL) 2114 return -EMSGSIZE; 2115 2116 ndtmsg = nlmsg_data(nlh); 2117 2118 read_lock_bh(&tbl->lock); 2119 ndtmsg->ndtm_family = tbl->family; 2120 ndtmsg->ndtm_pad1 = 0; 2121 ndtmsg->ndtm_pad2 = 0; 2122 2123 if (nla_put_string(skb, NDTA_NAME, tbl->id) || 2124 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval, NDTA_PAD) || 2125 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) || 2126 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) || 2127 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3)) 2128 goto nla_put_failure; 2129 { 2130 unsigned long now = jiffies; 2131 long flush_delta = now - tbl->last_flush; 2132 long rand_delta = now - tbl->last_rand; 2133 struct neigh_hash_table *nht; 2134 struct ndt_config ndc = { 2135 .ndtc_key_len = tbl->key_len, 2136 .ndtc_entry_size = tbl->entry_size, 2137 .ndtc_entries = atomic_read(&tbl->entries), 2138 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 2139 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 2140 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 2141 }; 2142 2143 rcu_read_lock_bh(); 2144 nht = rcu_dereference_bh(tbl->nht); 2145 ndc.ndtc_hash_rnd = nht->hash_rnd[0]; 2146 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); 2147 rcu_read_unlock_bh(); 2148 2149 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc)) 2150 goto nla_put_failure; 2151 } 2152 2153 { 2154 int cpu; 2155 struct ndt_stats ndst; 2156 2157 memset(&ndst, 0, sizeof(ndst)); 2158 2159 for_each_possible_cpu(cpu) { 2160 struct neigh_statistics *st; 2161 2162 st = per_cpu_ptr(tbl->stats, cpu); 2163 ndst.ndts_allocs += st->allocs; 2164 ndst.ndts_destroys += st->destroys; 2165 ndst.ndts_hash_grows += st->hash_grows; 2166 ndst.ndts_res_failed += st->res_failed; 2167 ndst.ndts_lookups += st->lookups; 2168 ndst.ndts_hits += st->hits; 2169 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 2170 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 2171 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 2172 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 2173 ndst.ndts_table_fulls += st->table_fulls; 2174 } 2175 2176 if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst, 2177 NDTA_PAD)) 2178 goto nla_put_failure; 2179 } 2180 2181 BUG_ON(tbl->parms.dev); 2182 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 2183 goto nla_put_failure; 2184 2185 read_unlock_bh(&tbl->lock); 2186 nlmsg_end(skb, nlh); 2187 return 0; 2188 2189 nla_put_failure: 2190 read_unlock_bh(&tbl->lock); 2191 nlmsg_cancel(skb, nlh); 2192 return -EMSGSIZE; 2193 } 2194 2195 static int neightbl_fill_param_info(struct sk_buff *skb, 2196 struct neigh_table *tbl, 2197 struct neigh_parms *parms, 2198 u32 pid, u32 seq, int type, 2199 unsigned int flags) 2200 { 2201 struct ndtmsg *ndtmsg; 2202 struct nlmsghdr *nlh; 2203 2204 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2205 if (nlh == NULL) 2206 return -EMSGSIZE; 2207 2208 ndtmsg = nlmsg_data(nlh); 2209 2210 read_lock_bh(&tbl->lock); 2211 ndtmsg->ndtm_family = tbl->family; 2212 ndtmsg->ndtm_pad1 = 0; 2213 ndtmsg->ndtm_pad2 = 0; 2214 2215 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 2216 neightbl_fill_parms(skb, parms) < 0) 2217 goto errout; 2218 2219 read_unlock_bh(&tbl->lock); 2220 nlmsg_end(skb, nlh); 2221 return 0; 2222 errout: 2223 read_unlock_bh(&tbl->lock); 2224 nlmsg_cancel(skb, nlh); 2225 return -EMSGSIZE; 2226 } 2227 2228 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 2229 [NDTA_NAME] = { .type = NLA_STRING }, 2230 [NDTA_THRESH1] = { .type = NLA_U32 }, 2231 [NDTA_THRESH2] = { .type = NLA_U32 }, 2232 [NDTA_THRESH3] = { .type = NLA_U32 }, 2233 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 2234 [NDTA_PARMS] = { .type = NLA_NESTED }, 2235 }; 2236 2237 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 2238 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 2239 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 2240 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 2241 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 2242 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 2243 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 2244 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 }, 2245 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 2246 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 2247 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 2248 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 2249 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 2250 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 2251 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 2252 }; 2253 2254 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, 2255 struct netlink_ext_ack *extack) 2256 { 2257 struct net *net = sock_net(skb->sk); 2258 struct neigh_table *tbl; 2259 struct ndtmsg *ndtmsg; 2260 struct nlattr *tb[NDTA_MAX+1]; 2261 bool found = false; 2262 int err, tidx; 2263 2264 err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 2265 nl_neightbl_policy, extack); 2266 if (err < 0) 2267 goto errout; 2268 2269 if (tb[NDTA_NAME] == NULL) { 2270 err = -EINVAL; 2271 goto errout; 2272 } 2273 2274 ndtmsg = nlmsg_data(nlh); 2275 2276 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2277 tbl = neigh_tables[tidx]; 2278 if (!tbl) 2279 continue; 2280 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 2281 continue; 2282 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) { 2283 found = true; 2284 break; 2285 } 2286 } 2287 2288 if (!found) 2289 return -ENOENT; 2290 2291 /* 2292 * We acquire tbl->lock to be nice to the periodic timers and 2293 * make sure they always see a consistent set of values. 2294 */ 2295 write_lock_bh(&tbl->lock); 2296 2297 if (tb[NDTA_PARMS]) { 2298 struct nlattr *tbp[NDTPA_MAX+1]; 2299 struct neigh_parms *p; 2300 int i, ifindex = 0; 2301 2302 err = nla_parse_nested_deprecated(tbp, NDTPA_MAX, 2303 tb[NDTA_PARMS], 2304 nl_ntbl_parm_policy, extack); 2305 if (err < 0) 2306 goto errout_tbl_lock; 2307 2308 if (tbp[NDTPA_IFINDEX]) 2309 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 2310 2311 p = lookup_neigh_parms(tbl, net, ifindex); 2312 if (p == NULL) { 2313 err = -ENOENT; 2314 goto errout_tbl_lock; 2315 } 2316 2317 for (i = 1; i <= NDTPA_MAX; i++) { 2318 if (tbp[i] == NULL) 2319 continue; 2320 2321 switch (i) { 2322 case NDTPA_QUEUE_LEN: 2323 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2324 nla_get_u32(tbp[i]) * 2325 SKB_TRUESIZE(ETH_FRAME_LEN)); 2326 break; 2327 case NDTPA_QUEUE_LENBYTES: 2328 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2329 nla_get_u32(tbp[i])); 2330 break; 2331 case NDTPA_PROXY_QLEN: 2332 NEIGH_VAR_SET(p, PROXY_QLEN, 2333 nla_get_u32(tbp[i])); 2334 break; 2335 case NDTPA_APP_PROBES: 2336 NEIGH_VAR_SET(p, APP_PROBES, 2337 nla_get_u32(tbp[i])); 2338 break; 2339 case NDTPA_UCAST_PROBES: 2340 NEIGH_VAR_SET(p, UCAST_PROBES, 2341 nla_get_u32(tbp[i])); 2342 break; 2343 case NDTPA_MCAST_PROBES: 2344 NEIGH_VAR_SET(p, MCAST_PROBES, 2345 nla_get_u32(tbp[i])); 2346 break; 2347 case NDTPA_MCAST_REPROBES: 2348 NEIGH_VAR_SET(p, MCAST_REPROBES, 2349 nla_get_u32(tbp[i])); 2350 break; 2351 case NDTPA_BASE_REACHABLE_TIME: 2352 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME, 2353 nla_get_msecs(tbp[i])); 2354 /* update reachable_time as well, otherwise, the change will 2355 * only be effective after the next time neigh_periodic_work 2356 * decides to recompute it (can be multiple minutes) 2357 */ 2358 p->reachable_time = 2359 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 2360 break; 2361 case NDTPA_GC_STALETIME: 2362 NEIGH_VAR_SET(p, GC_STALETIME, 2363 nla_get_msecs(tbp[i])); 2364 break; 2365 case NDTPA_DELAY_PROBE_TIME: 2366 NEIGH_VAR_SET(p, DELAY_PROBE_TIME, 2367 nla_get_msecs(tbp[i])); 2368 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 2369 break; 2370 case NDTPA_RETRANS_TIME: 2371 NEIGH_VAR_SET(p, RETRANS_TIME, 2372 nla_get_msecs(tbp[i])); 2373 break; 2374 case NDTPA_ANYCAST_DELAY: 2375 NEIGH_VAR_SET(p, ANYCAST_DELAY, 2376 nla_get_msecs(tbp[i])); 2377 break; 2378 case NDTPA_PROXY_DELAY: 2379 NEIGH_VAR_SET(p, PROXY_DELAY, 2380 nla_get_msecs(tbp[i])); 2381 break; 2382 case NDTPA_LOCKTIME: 2383 NEIGH_VAR_SET(p, LOCKTIME, 2384 nla_get_msecs(tbp[i])); 2385 break; 2386 } 2387 } 2388 } 2389 2390 err = -ENOENT; 2391 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] || 2392 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) && 2393 !net_eq(net, &init_net)) 2394 goto errout_tbl_lock; 2395 2396 if (tb[NDTA_THRESH1]) 2397 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 2398 2399 if (tb[NDTA_THRESH2]) 2400 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 2401 2402 if (tb[NDTA_THRESH3]) 2403 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 2404 2405 if (tb[NDTA_GC_INTERVAL]) 2406 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 2407 2408 err = 0; 2409 2410 errout_tbl_lock: 2411 write_unlock_bh(&tbl->lock); 2412 errout: 2413 return err; 2414 } 2415 2416 static int neightbl_valid_dump_info(const struct nlmsghdr *nlh, 2417 struct netlink_ext_ack *extack) 2418 { 2419 struct ndtmsg *ndtm; 2420 2421 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) { 2422 NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request"); 2423 return -EINVAL; 2424 } 2425 2426 ndtm = nlmsg_data(nlh); 2427 if (ndtm->ndtm_pad1 || ndtm->ndtm_pad2) { 2428 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request"); 2429 return -EINVAL; 2430 } 2431 2432 if (nlmsg_attrlen(nlh, sizeof(*ndtm))) { 2433 NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request"); 2434 return -EINVAL; 2435 } 2436 2437 return 0; 2438 } 2439 2440 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2441 { 2442 const struct nlmsghdr *nlh = cb->nlh; 2443 struct net *net = sock_net(skb->sk); 2444 int family, tidx, nidx = 0; 2445 int tbl_skip = cb->args[0]; 2446 int neigh_skip = cb->args[1]; 2447 struct neigh_table *tbl; 2448 2449 if (cb->strict_check) { 2450 int err = neightbl_valid_dump_info(nlh, cb->extack); 2451 2452 if (err < 0) 2453 return err; 2454 } 2455 2456 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2457 2458 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2459 struct neigh_parms *p; 2460 2461 tbl = neigh_tables[tidx]; 2462 if (!tbl) 2463 continue; 2464 2465 if (tidx < tbl_skip || (family && tbl->family != family)) 2466 continue; 2467 2468 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid, 2469 nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2470 NLM_F_MULTI) < 0) 2471 break; 2472 2473 nidx = 0; 2474 p = list_next_entry(&tbl->parms, list); 2475 list_for_each_entry_from(p, &tbl->parms_list, list) { 2476 if (!net_eq(neigh_parms_net(p), net)) 2477 continue; 2478 2479 if (nidx < neigh_skip) 2480 goto next; 2481 2482 if (neightbl_fill_param_info(skb, tbl, p, 2483 NETLINK_CB(cb->skb).portid, 2484 nlh->nlmsg_seq, 2485 RTM_NEWNEIGHTBL, 2486 NLM_F_MULTI) < 0) 2487 goto out; 2488 next: 2489 nidx++; 2490 } 2491 2492 neigh_skip = 0; 2493 } 2494 out: 2495 cb->args[0] = tidx; 2496 cb->args[1] = nidx; 2497 2498 return skb->len; 2499 } 2500 2501 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2502 u32 pid, u32 seq, int type, unsigned int flags) 2503 { 2504 u32 neigh_flags, neigh_flags_ext; 2505 unsigned long now = jiffies; 2506 struct nda_cacheinfo ci; 2507 struct nlmsghdr *nlh; 2508 struct ndmsg *ndm; 2509 2510 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2511 if (nlh == NULL) 2512 return -EMSGSIZE; 2513 2514 neigh_flags_ext = neigh->flags >> NTF_EXT_SHIFT; 2515 neigh_flags = neigh->flags & NTF_OLD_MASK; 2516 2517 ndm = nlmsg_data(nlh); 2518 ndm->ndm_family = neigh->ops->family; 2519 ndm->ndm_pad1 = 0; 2520 ndm->ndm_pad2 = 0; 2521 ndm->ndm_flags = neigh_flags; 2522 ndm->ndm_type = neigh->type; 2523 ndm->ndm_ifindex = neigh->dev->ifindex; 2524 2525 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key)) 2526 goto nla_put_failure; 2527 2528 read_lock_bh(&neigh->lock); 2529 ndm->ndm_state = neigh->nud_state; 2530 if (neigh->nud_state & NUD_VALID) { 2531 char haddr[MAX_ADDR_LEN]; 2532 2533 neigh_ha_snapshot(haddr, neigh, neigh->dev); 2534 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { 2535 read_unlock_bh(&neigh->lock); 2536 goto nla_put_failure; 2537 } 2538 } 2539 2540 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2541 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2542 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2543 ci.ndm_refcnt = refcount_read(&neigh->refcnt) - 1; 2544 read_unlock_bh(&neigh->lock); 2545 2546 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) || 2547 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci)) 2548 goto nla_put_failure; 2549 2550 if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol)) 2551 goto nla_put_failure; 2552 if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext)) 2553 goto nla_put_failure; 2554 2555 nlmsg_end(skb, nlh); 2556 return 0; 2557 2558 nla_put_failure: 2559 nlmsg_cancel(skb, nlh); 2560 return -EMSGSIZE; 2561 } 2562 2563 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, 2564 u32 pid, u32 seq, int type, unsigned int flags, 2565 struct neigh_table *tbl) 2566 { 2567 u32 neigh_flags, neigh_flags_ext; 2568 struct nlmsghdr *nlh; 2569 struct ndmsg *ndm; 2570 2571 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2572 if (nlh == NULL) 2573 return -EMSGSIZE; 2574 2575 neigh_flags_ext = pn->flags >> NTF_EXT_SHIFT; 2576 neigh_flags = pn->flags & NTF_OLD_MASK; 2577 2578 ndm = nlmsg_data(nlh); 2579 ndm->ndm_family = tbl->family; 2580 ndm->ndm_pad1 = 0; 2581 ndm->ndm_pad2 = 0; 2582 ndm->ndm_flags = neigh_flags | NTF_PROXY; 2583 ndm->ndm_type = RTN_UNICAST; 2584 ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0; 2585 ndm->ndm_state = NUD_NONE; 2586 2587 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key)) 2588 goto nla_put_failure; 2589 2590 if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol)) 2591 goto nla_put_failure; 2592 if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext)) 2593 goto nla_put_failure; 2594 2595 nlmsg_end(skb, nlh); 2596 return 0; 2597 2598 nla_put_failure: 2599 nlmsg_cancel(skb, nlh); 2600 return -EMSGSIZE; 2601 } 2602 2603 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid) 2604 { 2605 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2606 __neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid); 2607 } 2608 2609 static bool neigh_master_filtered(struct net_device *dev, int master_idx) 2610 { 2611 struct net_device *master; 2612 2613 if (!master_idx) 2614 return false; 2615 2616 master = dev ? netdev_master_upper_dev_get(dev) : NULL; 2617 2618 /* 0 is already used to denote NDA_MASTER wasn't passed, therefore need another 2619 * invalid value for ifindex to denote "no master". 2620 */ 2621 if (master_idx == -1) 2622 return !!master; 2623 2624 if (!master || master->ifindex != master_idx) 2625 return true; 2626 2627 return false; 2628 } 2629 2630 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx) 2631 { 2632 if (filter_idx && (!dev || dev->ifindex != filter_idx)) 2633 return true; 2634 2635 return false; 2636 } 2637 2638 struct neigh_dump_filter { 2639 int master_idx; 2640 int dev_idx; 2641 }; 2642 2643 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2644 struct netlink_callback *cb, 2645 struct neigh_dump_filter *filter) 2646 { 2647 struct net *net = sock_net(skb->sk); 2648 struct neighbour *n; 2649 int rc, h, s_h = cb->args[1]; 2650 int idx, s_idx = idx = cb->args[2]; 2651 struct neigh_hash_table *nht; 2652 unsigned int flags = NLM_F_MULTI; 2653 2654 if (filter->dev_idx || filter->master_idx) 2655 flags |= NLM_F_DUMP_FILTERED; 2656 2657 rcu_read_lock_bh(); 2658 nht = rcu_dereference_bh(tbl->nht); 2659 2660 for (h = s_h; h < (1 << nht->hash_shift); h++) { 2661 if (h > s_h) 2662 s_idx = 0; 2663 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; 2664 n != NULL; 2665 n = rcu_dereference_bh(n->next)) { 2666 if (idx < s_idx || !net_eq(dev_net(n->dev), net)) 2667 goto next; 2668 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2669 neigh_master_filtered(n->dev, filter->master_idx)) 2670 goto next; 2671 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2672 cb->nlh->nlmsg_seq, 2673 RTM_NEWNEIGH, 2674 flags) < 0) { 2675 rc = -1; 2676 goto out; 2677 } 2678 next: 2679 idx++; 2680 } 2681 } 2682 rc = skb->len; 2683 out: 2684 rcu_read_unlock_bh(); 2685 cb->args[1] = h; 2686 cb->args[2] = idx; 2687 return rc; 2688 } 2689 2690 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2691 struct netlink_callback *cb, 2692 struct neigh_dump_filter *filter) 2693 { 2694 struct pneigh_entry *n; 2695 struct net *net = sock_net(skb->sk); 2696 int rc, h, s_h = cb->args[3]; 2697 int idx, s_idx = idx = cb->args[4]; 2698 unsigned int flags = NLM_F_MULTI; 2699 2700 if (filter->dev_idx || filter->master_idx) 2701 flags |= NLM_F_DUMP_FILTERED; 2702 2703 read_lock_bh(&tbl->lock); 2704 2705 for (h = s_h; h <= PNEIGH_HASHMASK; h++) { 2706 if (h > s_h) 2707 s_idx = 0; 2708 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { 2709 if (idx < s_idx || pneigh_net(n) != net) 2710 goto next; 2711 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2712 neigh_master_filtered(n->dev, filter->master_idx)) 2713 goto next; 2714 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2715 cb->nlh->nlmsg_seq, 2716 RTM_NEWNEIGH, flags, tbl) < 0) { 2717 read_unlock_bh(&tbl->lock); 2718 rc = -1; 2719 goto out; 2720 } 2721 next: 2722 idx++; 2723 } 2724 } 2725 2726 read_unlock_bh(&tbl->lock); 2727 rc = skb->len; 2728 out: 2729 cb->args[3] = h; 2730 cb->args[4] = idx; 2731 return rc; 2732 2733 } 2734 2735 static int neigh_valid_dump_req(const struct nlmsghdr *nlh, 2736 bool strict_check, 2737 struct neigh_dump_filter *filter, 2738 struct netlink_ext_ack *extack) 2739 { 2740 struct nlattr *tb[NDA_MAX + 1]; 2741 int err, i; 2742 2743 if (strict_check) { 2744 struct ndmsg *ndm; 2745 2746 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2747 NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request"); 2748 return -EINVAL; 2749 } 2750 2751 ndm = nlmsg_data(nlh); 2752 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_ifindex || 2753 ndm->ndm_state || ndm->ndm_type) { 2754 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request"); 2755 return -EINVAL; 2756 } 2757 2758 if (ndm->ndm_flags & ~NTF_PROXY) { 2759 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request"); 2760 return -EINVAL; 2761 } 2762 2763 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), 2764 tb, NDA_MAX, nda_policy, 2765 extack); 2766 } else { 2767 err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb, 2768 NDA_MAX, nda_policy, extack); 2769 } 2770 if (err < 0) 2771 return err; 2772 2773 for (i = 0; i <= NDA_MAX; ++i) { 2774 if (!tb[i]) 2775 continue; 2776 2777 /* all new attributes should require strict_check */ 2778 switch (i) { 2779 case NDA_IFINDEX: 2780 filter->dev_idx = nla_get_u32(tb[i]); 2781 break; 2782 case NDA_MASTER: 2783 filter->master_idx = nla_get_u32(tb[i]); 2784 break; 2785 default: 2786 if (strict_check) { 2787 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request"); 2788 return -EINVAL; 2789 } 2790 } 2791 } 2792 2793 return 0; 2794 } 2795 2796 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2797 { 2798 const struct nlmsghdr *nlh = cb->nlh; 2799 struct neigh_dump_filter filter = {}; 2800 struct neigh_table *tbl; 2801 int t, family, s_t; 2802 int proxy = 0; 2803 int err; 2804 2805 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2806 2807 /* check for full ndmsg structure presence, family member is 2808 * the same for both structures 2809 */ 2810 if (nlmsg_len(nlh) >= sizeof(struct ndmsg) && 2811 ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY) 2812 proxy = 1; 2813 2814 err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack); 2815 if (err < 0 && cb->strict_check) 2816 return err; 2817 2818 s_t = cb->args[0]; 2819 2820 for (t = 0; t < NEIGH_NR_TABLES; t++) { 2821 tbl = neigh_tables[t]; 2822 2823 if (!tbl) 2824 continue; 2825 if (t < s_t || (family && tbl->family != family)) 2826 continue; 2827 if (t > s_t) 2828 memset(&cb->args[1], 0, sizeof(cb->args) - 2829 sizeof(cb->args[0])); 2830 if (proxy) 2831 err = pneigh_dump_table(tbl, skb, cb, &filter); 2832 else 2833 err = neigh_dump_table(tbl, skb, cb, &filter); 2834 if (err < 0) 2835 break; 2836 } 2837 2838 cb->args[0] = t; 2839 return skb->len; 2840 } 2841 2842 static int neigh_valid_get_req(const struct nlmsghdr *nlh, 2843 struct neigh_table **tbl, 2844 void **dst, int *dev_idx, u8 *ndm_flags, 2845 struct netlink_ext_ack *extack) 2846 { 2847 struct nlattr *tb[NDA_MAX + 1]; 2848 struct ndmsg *ndm; 2849 int err, i; 2850 2851 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2852 NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request"); 2853 return -EINVAL; 2854 } 2855 2856 ndm = nlmsg_data(nlh); 2857 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_state || 2858 ndm->ndm_type) { 2859 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request"); 2860 return -EINVAL; 2861 } 2862 2863 if (ndm->ndm_flags & ~NTF_PROXY) { 2864 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request"); 2865 return -EINVAL; 2866 } 2867 2868 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb, 2869 NDA_MAX, nda_policy, extack); 2870 if (err < 0) 2871 return err; 2872 2873 *ndm_flags = ndm->ndm_flags; 2874 *dev_idx = ndm->ndm_ifindex; 2875 *tbl = neigh_find_table(ndm->ndm_family); 2876 if (*tbl == NULL) { 2877 NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request"); 2878 return -EAFNOSUPPORT; 2879 } 2880 2881 for (i = 0; i <= NDA_MAX; ++i) { 2882 if (!tb[i]) 2883 continue; 2884 2885 switch (i) { 2886 case NDA_DST: 2887 if (nla_len(tb[i]) != (int)(*tbl)->key_len) { 2888 NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request"); 2889 return -EINVAL; 2890 } 2891 *dst = nla_data(tb[i]); 2892 break; 2893 default: 2894 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request"); 2895 return -EINVAL; 2896 } 2897 } 2898 2899 return 0; 2900 } 2901 2902 static inline size_t neigh_nlmsg_size(void) 2903 { 2904 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2905 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2906 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2907 + nla_total_size(sizeof(struct nda_cacheinfo)) 2908 + nla_total_size(4) /* NDA_PROBES */ 2909 + nla_total_size(4) /* NDA_FLAGS_EXT */ 2910 + nla_total_size(1); /* NDA_PROTOCOL */ 2911 } 2912 2913 static int neigh_get_reply(struct net *net, struct neighbour *neigh, 2914 u32 pid, u32 seq) 2915 { 2916 struct sk_buff *skb; 2917 int err = 0; 2918 2919 skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL); 2920 if (!skb) 2921 return -ENOBUFS; 2922 2923 err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0); 2924 if (err) { 2925 kfree_skb(skb); 2926 goto errout; 2927 } 2928 2929 err = rtnl_unicast(skb, net, pid); 2930 errout: 2931 return err; 2932 } 2933 2934 static inline size_t pneigh_nlmsg_size(void) 2935 { 2936 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2937 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2938 + nla_total_size(4) /* NDA_FLAGS_EXT */ 2939 + nla_total_size(1); /* NDA_PROTOCOL */ 2940 } 2941 2942 static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh, 2943 u32 pid, u32 seq, struct neigh_table *tbl) 2944 { 2945 struct sk_buff *skb; 2946 int err = 0; 2947 2948 skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL); 2949 if (!skb) 2950 return -ENOBUFS; 2951 2952 err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl); 2953 if (err) { 2954 kfree_skb(skb); 2955 goto errout; 2956 } 2957 2958 err = rtnl_unicast(skb, net, pid); 2959 errout: 2960 return err; 2961 } 2962 2963 static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2964 struct netlink_ext_ack *extack) 2965 { 2966 struct net *net = sock_net(in_skb->sk); 2967 struct net_device *dev = NULL; 2968 struct neigh_table *tbl = NULL; 2969 struct neighbour *neigh; 2970 void *dst = NULL; 2971 u8 ndm_flags = 0; 2972 int dev_idx = 0; 2973 int err; 2974 2975 err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags, 2976 extack); 2977 if (err < 0) 2978 return err; 2979 2980 if (dev_idx) { 2981 dev = __dev_get_by_index(net, dev_idx); 2982 if (!dev) { 2983 NL_SET_ERR_MSG(extack, "Unknown device ifindex"); 2984 return -ENODEV; 2985 } 2986 } 2987 2988 if (!dst) { 2989 NL_SET_ERR_MSG(extack, "Network address not specified"); 2990 return -EINVAL; 2991 } 2992 2993 if (ndm_flags & NTF_PROXY) { 2994 struct pneigh_entry *pn; 2995 2996 pn = pneigh_lookup(tbl, net, dst, dev, 0); 2997 if (!pn) { 2998 NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found"); 2999 return -ENOENT; 3000 } 3001 return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid, 3002 nlh->nlmsg_seq, tbl); 3003 } 3004 3005 if (!dev) { 3006 NL_SET_ERR_MSG(extack, "No device specified"); 3007 return -EINVAL; 3008 } 3009 3010 neigh = neigh_lookup(tbl, dst, dev); 3011 if (!neigh) { 3012 NL_SET_ERR_MSG(extack, "Neighbour entry not found"); 3013 return -ENOENT; 3014 } 3015 3016 err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid, 3017 nlh->nlmsg_seq); 3018 3019 neigh_release(neigh); 3020 3021 return err; 3022 } 3023 3024 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 3025 { 3026 int chain; 3027 struct neigh_hash_table *nht; 3028 3029 rcu_read_lock_bh(); 3030 nht = rcu_dereference_bh(tbl->nht); 3031 3032 read_lock(&tbl->lock); /* avoid resizes */ 3033 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 3034 struct neighbour *n; 3035 3036 for (n = rcu_dereference_bh(nht->hash_buckets[chain]); 3037 n != NULL; 3038 n = rcu_dereference_bh(n->next)) 3039 cb(n, cookie); 3040 } 3041 read_unlock(&tbl->lock); 3042 rcu_read_unlock_bh(); 3043 } 3044 EXPORT_SYMBOL(neigh_for_each); 3045 3046 /* The tbl->lock must be held as a writer and BH disabled. */ 3047 void __neigh_for_each_release(struct neigh_table *tbl, 3048 int (*cb)(struct neighbour *)) 3049 { 3050 int chain; 3051 struct neigh_hash_table *nht; 3052 3053 nht = rcu_dereference_protected(tbl->nht, 3054 lockdep_is_held(&tbl->lock)); 3055 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 3056 struct neighbour *n; 3057 struct neighbour __rcu **np; 3058 3059 np = &nht->hash_buckets[chain]; 3060 while ((n = rcu_dereference_protected(*np, 3061 lockdep_is_held(&tbl->lock))) != NULL) { 3062 int release; 3063 3064 write_lock(&n->lock); 3065 release = cb(n); 3066 if (release) { 3067 rcu_assign_pointer(*np, 3068 rcu_dereference_protected(n->next, 3069 lockdep_is_held(&tbl->lock))); 3070 neigh_mark_dead(n); 3071 } else 3072 np = &n->next; 3073 write_unlock(&n->lock); 3074 if (release) 3075 neigh_cleanup_and_release(n); 3076 } 3077 } 3078 } 3079 EXPORT_SYMBOL(__neigh_for_each_release); 3080 3081 int neigh_xmit(int index, struct net_device *dev, 3082 const void *addr, struct sk_buff *skb) 3083 { 3084 int err = -EAFNOSUPPORT; 3085 if (likely(index < NEIGH_NR_TABLES)) { 3086 struct neigh_table *tbl; 3087 struct neighbour *neigh; 3088 3089 tbl = neigh_tables[index]; 3090 if (!tbl) 3091 goto out; 3092 rcu_read_lock_bh(); 3093 if (index == NEIGH_ARP_TABLE) { 3094 u32 key = *((u32 *)addr); 3095 3096 neigh = __ipv4_neigh_lookup_noref(dev, key); 3097 } else { 3098 neigh = __neigh_lookup_noref(tbl, addr, dev); 3099 } 3100 if (!neigh) 3101 neigh = __neigh_create(tbl, addr, dev, false); 3102 err = PTR_ERR(neigh); 3103 if (IS_ERR(neigh)) { 3104 rcu_read_unlock_bh(); 3105 goto out_kfree_skb; 3106 } 3107 err = neigh->output(neigh, skb); 3108 rcu_read_unlock_bh(); 3109 } 3110 else if (index == NEIGH_LINK_TABLE) { 3111 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 3112 addr, NULL, skb->len); 3113 if (err < 0) 3114 goto out_kfree_skb; 3115 err = dev_queue_xmit(skb); 3116 } 3117 out: 3118 return err; 3119 out_kfree_skb: 3120 kfree_skb(skb); 3121 goto out; 3122 } 3123 EXPORT_SYMBOL(neigh_xmit); 3124 3125 #ifdef CONFIG_PROC_FS 3126 3127 static struct neighbour *neigh_get_first(struct seq_file *seq) 3128 { 3129 struct neigh_seq_state *state = seq->private; 3130 struct net *net = seq_file_net(seq); 3131 struct neigh_hash_table *nht = state->nht; 3132 struct neighbour *n = NULL; 3133 int bucket; 3134 3135 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 3136 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { 3137 n = rcu_dereference_bh(nht->hash_buckets[bucket]); 3138 3139 while (n) { 3140 if (!net_eq(dev_net(n->dev), net)) 3141 goto next; 3142 if (state->neigh_sub_iter) { 3143 loff_t fakep = 0; 3144 void *v; 3145 3146 v = state->neigh_sub_iter(state, n, &fakep); 3147 if (!v) 3148 goto next; 3149 } 3150 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3151 break; 3152 if (n->nud_state & ~NUD_NOARP) 3153 break; 3154 next: 3155 n = rcu_dereference_bh(n->next); 3156 } 3157 3158 if (n) 3159 break; 3160 } 3161 state->bucket = bucket; 3162 3163 return n; 3164 } 3165 3166 static struct neighbour *neigh_get_next(struct seq_file *seq, 3167 struct neighbour *n, 3168 loff_t *pos) 3169 { 3170 struct neigh_seq_state *state = seq->private; 3171 struct net *net = seq_file_net(seq); 3172 struct neigh_hash_table *nht = state->nht; 3173 3174 if (state->neigh_sub_iter) { 3175 void *v = state->neigh_sub_iter(state, n, pos); 3176 if (v) 3177 return n; 3178 } 3179 n = rcu_dereference_bh(n->next); 3180 3181 while (1) { 3182 while (n) { 3183 if (!net_eq(dev_net(n->dev), net)) 3184 goto next; 3185 if (state->neigh_sub_iter) { 3186 void *v = state->neigh_sub_iter(state, n, pos); 3187 if (v) 3188 return n; 3189 goto next; 3190 } 3191 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3192 break; 3193 3194 if (n->nud_state & ~NUD_NOARP) 3195 break; 3196 next: 3197 n = rcu_dereference_bh(n->next); 3198 } 3199 3200 if (n) 3201 break; 3202 3203 if (++state->bucket >= (1 << nht->hash_shift)) 3204 break; 3205 3206 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); 3207 } 3208 3209 if (n && pos) 3210 --(*pos); 3211 return n; 3212 } 3213 3214 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 3215 { 3216 struct neighbour *n = neigh_get_first(seq); 3217 3218 if (n) { 3219 --(*pos); 3220 while (*pos) { 3221 n = neigh_get_next(seq, n, pos); 3222 if (!n) 3223 break; 3224 } 3225 } 3226 return *pos ? NULL : n; 3227 } 3228 3229 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 3230 { 3231 struct neigh_seq_state *state = seq->private; 3232 struct net *net = seq_file_net(seq); 3233 struct neigh_table *tbl = state->tbl; 3234 struct pneigh_entry *pn = NULL; 3235 int bucket; 3236 3237 state->flags |= NEIGH_SEQ_IS_PNEIGH; 3238 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 3239 pn = tbl->phash_buckets[bucket]; 3240 while (pn && !net_eq(pneigh_net(pn), net)) 3241 pn = pn->next; 3242 if (pn) 3243 break; 3244 } 3245 state->bucket = bucket; 3246 3247 return pn; 3248 } 3249 3250 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 3251 struct pneigh_entry *pn, 3252 loff_t *pos) 3253 { 3254 struct neigh_seq_state *state = seq->private; 3255 struct net *net = seq_file_net(seq); 3256 struct neigh_table *tbl = state->tbl; 3257 3258 do { 3259 pn = pn->next; 3260 } while (pn && !net_eq(pneigh_net(pn), net)); 3261 3262 while (!pn) { 3263 if (++state->bucket > PNEIGH_HASHMASK) 3264 break; 3265 pn = tbl->phash_buckets[state->bucket]; 3266 while (pn && !net_eq(pneigh_net(pn), net)) 3267 pn = pn->next; 3268 if (pn) 3269 break; 3270 } 3271 3272 if (pn && pos) 3273 --(*pos); 3274 3275 return pn; 3276 } 3277 3278 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 3279 { 3280 struct pneigh_entry *pn = pneigh_get_first(seq); 3281 3282 if (pn) { 3283 --(*pos); 3284 while (*pos) { 3285 pn = pneigh_get_next(seq, pn, pos); 3286 if (!pn) 3287 break; 3288 } 3289 } 3290 return *pos ? NULL : pn; 3291 } 3292 3293 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 3294 { 3295 struct neigh_seq_state *state = seq->private; 3296 void *rc; 3297 loff_t idxpos = *pos; 3298 3299 rc = neigh_get_idx(seq, &idxpos); 3300 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3301 rc = pneigh_get_idx(seq, &idxpos); 3302 3303 return rc; 3304 } 3305 3306 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 3307 __acquires(tbl->lock) 3308 __acquires(rcu_bh) 3309 { 3310 struct neigh_seq_state *state = seq->private; 3311 3312 state->tbl = tbl; 3313 state->bucket = 0; 3314 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 3315 3316 rcu_read_lock_bh(); 3317 state->nht = rcu_dereference_bh(tbl->nht); 3318 read_lock(&tbl->lock); 3319 3320 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 3321 } 3322 EXPORT_SYMBOL(neigh_seq_start); 3323 3324 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3325 { 3326 struct neigh_seq_state *state; 3327 void *rc; 3328 3329 if (v == SEQ_START_TOKEN) { 3330 rc = neigh_get_first(seq); 3331 goto out; 3332 } 3333 3334 state = seq->private; 3335 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 3336 rc = neigh_get_next(seq, v, NULL); 3337 if (rc) 3338 goto out; 3339 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3340 rc = pneigh_get_first(seq); 3341 } else { 3342 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 3343 rc = pneigh_get_next(seq, v, NULL); 3344 } 3345 out: 3346 ++(*pos); 3347 return rc; 3348 } 3349 EXPORT_SYMBOL(neigh_seq_next); 3350 3351 void neigh_seq_stop(struct seq_file *seq, void *v) 3352 __releases(tbl->lock) 3353 __releases(rcu_bh) 3354 { 3355 struct neigh_seq_state *state = seq->private; 3356 struct neigh_table *tbl = state->tbl; 3357 3358 read_unlock(&tbl->lock); 3359 rcu_read_unlock_bh(); 3360 } 3361 EXPORT_SYMBOL(neigh_seq_stop); 3362 3363 /* statistics via seq_file */ 3364 3365 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 3366 { 3367 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3368 int cpu; 3369 3370 if (*pos == 0) 3371 return SEQ_START_TOKEN; 3372 3373 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 3374 if (!cpu_possible(cpu)) 3375 continue; 3376 *pos = cpu+1; 3377 return per_cpu_ptr(tbl->stats, cpu); 3378 } 3379 return NULL; 3380 } 3381 3382 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3383 { 3384 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3385 int cpu; 3386 3387 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 3388 if (!cpu_possible(cpu)) 3389 continue; 3390 *pos = cpu+1; 3391 return per_cpu_ptr(tbl->stats, cpu); 3392 } 3393 (*pos)++; 3394 return NULL; 3395 } 3396 3397 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 3398 { 3399 3400 } 3401 3402 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 3403 { 3404 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3405 struct neigh_statistics *st = v; 3406 3407 if (v == SEQ_START_TOKEN) { 3408 seq_puts(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n"); 3409 return 0; 3410 } 3411 3412 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 3413 "%08lx %08lx %08lx " 3414 "%08lx %08lx %08lx\n", 3415 atomic_read(&tbl->entries), 3416 3417 st->allocs, 3418 st->destroys, 3419 st->hash_grows, 3420 3421 st->lookups, 3422 st->hits, 3423 3424 st->res_failed, 3425 3426 st->rcv_probes_mcast, 3427 st->rcv_probes_ucast, 3428 3429 st->periodic_gc_runs, 3430 st->forced_gc_runs, 3431 st->unres_discards, 3432 st->table_fulls 3433 ); 3434 3435 return 0; 3436 } 3437 3438 static const struct seq_operations neigh_stat_seq_ops = { 3439 .start = neigh_stat_seq_start, 3440 .next = neigh_stat_seq_next, 3441 .stop = neigh_stat_seq_stop, 3442 .show = neigh_stat_seq_show, 3443 }; 3444 #endif /* CONFIG_PROC_FS */ 3445 3446 static void __neigh_notify(struct neighbour *n, int type, int flags, 3447 u32 pid) 3448 { 3449 struct net *net = dev_net(n->dev); 3450 struct sk_buff *skb; 3451 int err = -ENOBUFS; 3452 3453 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 3454 if (skb == NULL) 3455 goto errout; 3456 3457 err = neigh_fill_info(skb, n, pid, 0, type, flags); 3458 if (err < 0) { 3459 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 3460 WARN_ON(err == -EMSGSIZE); 3461 kfree_skb(skb); 3462 goto errout; 3463 } 3464 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 3465 return; 3466 errout: 3467 if (err < 0) 3468 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 3469 } 3470 3471 void neigh_app_ns(struct neighbour *n) 3472 { 3473 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0); 3474 } 3475 EXPORT_SYMBOL(neigh_app_ns); 3476 3477 #ifdef CONFIG_SYSCTL 3478 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN); 3479 3480 static int proc_unres_qlen(struct ctl_table *ctl, int write, 3481 void *buffer, size_t *lenp, loff_t *ppos) 3482 { 3483 int size, ret; 3484 struct ctl_table tmp = *ctl; 3485 3486 tmp.extra1 = SYSCTL_ZERO; 3487 tmp.extra2 = &unres_qlen_max; 3488 tmp.data = &size; 3489 3490 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN); 3491 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3492 3493 if (write && !ret) 3494 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); 3495 return ret; 3496 } 3497 3498 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev, 3499 int family) 3500 { 3501 switch (family) { 3502 case AF_INET: 3503 return __in_dev_arp_parms_get_rcu(dev); 3504 case AF_INET6: 3505 return __in6_dev_nd_parms_get_rcu(dev); 3506 } 3507 return NULL; 3508 } 3509 3510 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p, 3511 int index) 3512 { 3513 struct net_device *dev; 3514 int family = neigh_parms_family(p); 3515 3516 rcu_read_lock(); 3517 for_each_netdev_rcu(net, dev) { 3518 struct neigh_parms *dst_p = 3519 neigh_get_dev_parms_rcu(dev, family); 3520 3521 if (dst_p && !test_bit(index, dst_p->data_state)) 3522 dst_p->data[index] = p->data[index]; 3523 } 3524 rcu_read_unlock(); 3525 } 3526 3527 static void neigh_proc_update(struct ctl_table *ctl, int write) 3528 { 3529 struct net_device *dev = ctl->extra1; 3530 struct neigh_parms *p = ctl->extra2; 3531 struct net *net = neigh_parms_net(p); 3532 int index = (int *) ctl->data - p->data; 3533 3534 if (!write) 3535 return; 3536 3537 set_bit(index, p->data_state); 3538 if (index == NEIGH_VAR_DELAY_PROBE_TIME) 3539 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 3540 if (!dev) /* NULL dev means this is default value */ 3541 neigh_copy_dflt_parms(net, p, index); 3542 } 3543 3544 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write, 3545 void *buffer, size_t *lenp, 3546 loff_t *ppos) 3547 { 3548 struct ctl_table tmp = *ctl; 3549 int ret; 3550 3551 tmp.extra1 = SYSCTL_ZERO; 3552 tmp.extra2 = SYSCTL_INT_MAX; 3553 3554 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3555 neigh_proc_update(ctl, write); 3556 return ret; 3557 } 3558 3559 int neigh_proc_dointvec(struct ctl_table *ctl, int write, void *buffer, 3560 size_t *lenp, loff_t *ppos) 3561 { 3562 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 3563 3564 neigh_proc_update(ctl, write); 3565 return ret; 3566 } 3567 EXPORT_SYMBOL(neigh_proc_dointvec); 3568 3569 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, void *buffer, 3570 size_t *lenp, loff_t *ppos) 3571 { 3572 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3573 3574 neigh_proc_update(ctl, write); 3575 return ret; 3576 } 3577 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies); 3578 3579 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write, 3580 void *buffer, size_t *lenp, 3581 loff_t *ppos) 3582 { 3583 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos); 3584 3585 neigh_proc_update(ctl, write); 3586 return ret; 3587 } 3588 3589 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write, 3590 void *buffer, size_t *lenp, loff_t *ppos) 3591 { 3592 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3593 3594 neigh_proc_update(ctl, write); 3595 return ret; 3596 } 3597 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies); 3598 3599 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write, 3600 void *buffer, size_t *lenp, 3601 loff_t *ppos) 3602 { 3603 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos); 3604 3605 neigh_proc_update(ctl, write); 3606 return ret; 3607 } 3608 3609 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write, 3610 void *buffer, size_t *lenp, 3611 loff_t *ppos) 3612 { 3613 struct neigh_parms *p = ctl->extra2; 3614 int ret; 3615 3616 if (strcmp(ctl->procname, "base_reachable_time") == 0) 3617 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3618 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0) 3619 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3620 else 3621 ret = -1; 3622 3623 if (write && ret == 0) { 3624 /* update reachable_time as well, otherwise, the change will 3625 * only be effective after the next time neigh_periodic_work 3626 * decides to recompute it 3627 */ 3628 p->reachable_time = 3629 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 3630 } 3631 return ret; 3632 } 3633 3634 #define NEIGH_PARMS_DATA_OFFSET(index) \ 3635 (&((struct neigh_parms *) 0)->data[index]) 3636 3637 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \ 3638 [NEIGH_VAR_ ## attr] = { \ 3639 .procname = name, \ 3640 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \ 3641 .maxlen = sizeof(int), \ 3642 .mode = mval, \ 3643 .proc_handler = proc, \ 3644 } 3645 3646 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \ 3647 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax) 3648 3649 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \ 3650 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies) 3651 3652 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \ 3653 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies) 3654 3655 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \ 3656 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies) 3657 3658 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \ 3659 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen) 3660 3661 static struct neigh_sysctl_table { 3662 struct ctl_table_header *sysctl_header; 3663 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1]; 3664 } neigh_sysctl_template __read_mostly = { 3665 .neigh_vars = { 3666 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"), 3667 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"), 3668 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"), 3669 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"), 3670 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"), 3671 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"), 3672 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"), 3673 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"), 3674 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"), 3675 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"), 3676 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"), 3677 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"), 3678 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"), 3679 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"), 3680 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"), 3681 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"), 3682 [NEIGH_VAR_GC_INTERVAL] = { 3683 .procname = "gc_interval", 3684 .maxlen = sizeof(int), 3685 .mode = 0644, 3686 .proc_handler = proc_dointvec_jiffies, 3687 }, 3688 [NEIGH_VAR_GC_THRESH1] = { 3689 .procname = "gc_thresh1", 3690 .maxlen = sizeof(int), 3691 .mode = 0644, 3692 .extra1 = SYSCTL_ZERO, 3693 .extra2 = SYSCTL_INT_MAX, 3694 .proc_handler = proc_dointvec_minmax, 3695 }, 3696 [NEIGH_VAR_GC_THRESH2] = { 3697 .procname = "gc_thresh2", 3698 .maxlen = sizeof(int), 3699 .mode = 0644, 3700 .extra1 = SYSCTL_ZERO, 3701 .extra2 = SYSCTL_INT_MAX, 3702 .proc_handler = proc_dointvec_minmax, 3703 }, 3704 [NEIGH_VAR_GC_THRESH3] = { 3705 .procname = "gc_thresh3", 3706 .maxlen = sizeof(int), 3707 .mode = 0644, 3708 .extra1 = SYSCTL_ZERO, 3709 .extra2 = SYSCTL_INT_MAX, 3710 .proc_handler = proc_dointvec_minmax, 3711 }, 3712 {}, 3713 }, 3714 }; 3715 3716 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 3717 proc_handler *handler) 3718 { 3719 int i; 3720 struct neigh_sysctl_table *t; 3721 const char *dev_name_source; 3722 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ]; 3723 char *p_name; 3724 3725 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 3726 if (!t) 3727 goto err; 3728 3729 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) { 3730 t->neigh_vars[i].data += (long) p; 3731 t->neigh_vars[i].extra1 = dev; 3732 t->neigh_vars[i].extra2 = p; 3733 } 3734 3735 if (dev) { 3736 dev_name_source = dev->name; 3737 /* Terminate the table early */ 3738 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0, 3739 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL])); 3740 } else { 3741 struct neigh_table *tbl = p->tbl; 3742 dev_name_source = "default"; 3743 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval; 3744 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1; 3745 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2; 3746 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3; 3747 } 3748 3749 if (handler) { 3750 /* RetransTime */ 3751 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; 3752 /* ReachableTime */ 3753 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; 3754 /* RetransTime (in milliseconds)*/ 3755 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; 3756 /* ReachableTime (in milliseconds) */ 3757 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; 3758 } else { 3759 /* Those handlers will update p->reachable_time after 3760 * base_reachable_time(_ms) is set to ensure the new timer starts being 3761 * applied after the next neighbour update instead of waiting for 3762 * neigh_periodic_work to update its value (can be multiple minutes) 3763 * So any handler that replaces them should do this as well 3764 */ 3765 /* ReachableTime */ 3766 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = 3767 neigh_proc_base_reachable_time; 3768 /* ReachableTime (in milliseconds) */ 3769 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = 3770 neigh_proc_base_reachable_time; 3771 } 3772 3773 /* Don't export sysctls to unprivileged users */ 3774 if (neigh_parms_net(p)->user_ns != &init_user_ns) 3775 t->neigh_vars[0].procname = NULL; 3776 3777 switch (neigh_parms_family(p)) { 3778 case AF_INET: 3779 p_name = "ipv4"; 3780 break; 3781 case AF_INET6: 3782 p_name = "ipv6"; 3783 break; 3784 default: 3785 BUG(); 3786 } 3787 3788 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s", 3789 p_name, dev_name_source); 3790 t->sysctl_header = 3791 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars); 3792 if (!t->sysctl_header) 3793 goto free; 3794 3795 p->sysctl_table = t; 3796 return 0; 3797 3798 free: 3799 kfree(t); 3800 err: 3801 return -ENOBUFS; 3802 } 3803 EXPORT_SYMBOL(neigh_sysctl_register); 3804 3805 void neigh_sysctl_unregister(struct neigh_parms *p) 3806 { 3807 if (p->sysctl_table) { 3808 struct neigh_sysctl_table *t = p->sysctl_table; 3809 p->sysctl_table = NULL; 3810 unregister_net_sysctl_table(t->sysctl_header); 3811 kfree(t); 3812 } 3813 } 3814 EXPORT_SYMBOL(neigh_sysctl_unregister); 3815 3816 #endif /* CONFIG_SYSCTL */ 3817 3818 static int __init neigh_init(void) 3819 { 3820 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0); 3821 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0); 3822 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info, 0); 3823 3824 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, 3825 0); 3826 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0); 3827 3828 return 0; 3829 } 3830 3831 subsys_initcall(neigh_init); 3832