1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic address resolution entity 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 8 * 9 * Fixes: 10 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 11 * Harald Welte Add neighbour cache statistics like rtstat 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/slab.h> 17 #include <linux/kmemleak.h> 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/socket.h> 22 #include <linux/netdevice.h> 23 #include <linux/proc_fs.h> 24 #ifdef CONFIG_SYSCTL 25 #include <linux/sysctl.h> 26 #endif 27 #include <linux/times.h> 28 #include <net/net_namespace.h> 29 #include <net/neighbour.h> 30 #include <net/arp.h> 31 #include <net/dst.h> 32 #include <net/sock.h> 33 #include <net/netevent.h> 34 #include <net/netlink.h> 35 #include <linux/rtnetlink.h> 36 #include <linux/random.h> 37 #include <linux/string.h> 38 #include <linux/log2.h> 39 #include <linux/inetdevice.h> 40 #include <net/addrconf.h> 41 42 #include <trace/events/neigh.h> 43 44 #define DEBUG 45 #define NEIGH_DEBUG 1 46 #define neigh_dbg(level, fmt, ...) \ 47 do { \ 48 if (level <= NEIGH_DEBUG) \ 49 pr_debug(fmt, ##__VA_ARGS__); \ 50 } while (0) 51 52 #define PNEIGH_HASHMASK 0xF 53 54 static void neigh_timer_handler(struct timer_list *t); 55 static void __neigh_notify(struct neighbour *n, int type, int flags, 56 u32 pid); 57 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid); 58 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 59 struct net_device *dev); 60 61 #ifdef CONFIG_PROC_FS 62 static const struct seq_operations neigh_stat_seq_ops; 63 #endif 64 65 /* 66 Neighbour hash table buckets are protected with rwlock tbl->lock. 67 68 - All the scans/updates to hash buckets MUST be made under this lock. 69 - NOTHING clever should be made under this lock: no callbacks 70 to protocol backends, no attempts to send something to network. 71 It will result in deadlocks, if backend/driver wants to use neighbour 72 cache. 73 - If the entry requires some non-trivial actions, increase 74 its reference count and release table lock. 75 76 Neighbour entries are protected: 77 - with reference count. 78 - with rwlock neigh->lock 79 80 Reference count prevents destruction. 81 82 neigh->lock mainly serializes ll address data and its validity state. 83 However, the same lock is used to protect another entry fields: 84 - timer 85 - resolution queue 86 87 Again, nothing clever shall be made under neigh->lock, 88 the most complicated procedure, which we allow is dev->hard_header. 89 It is supposed, that dev->hard_header is simplistic and does 90 not make callbacks to neighbour tables. 91 */ 92 93 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) 94 { 95 kfree_skb(skb); 96 return -ENETDOWN; 97 } 98 99 static void neigh_cleanup_and_release(struct neighbour *neigh) 100 { 101 trace_neigh_cleanup_and_release(neigh, 0); 102 __neigh_notify(neigh, RTM_DELNEIGH, 0, 0); 103 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 104 neigh_release(neigh); 105 } 106 107 /* 108 * It is random distribution in the interval (1/2)*base...(3/2)*base. 109 * It corresponds to default IPv6 settings and is not overridable, 110 * because it is really reasonable choice. 111 */ 112 113 unsigned long neigh_rand_reach_time(unsigned long base) 114 { 115 return base ? (prandom_u32() % base) + (base >> 1) : 0; 116 } 117 EXPORT_SYMBOL(neigh_rand_reach_time); 118 119 static void neigh_mark_dead(struct neighbour *n) 120 { 121 n->dead = 1; 122 if (!list_empty(&n->gc_list)) { 123 list_del_init(&n->gc_list); 124 atomic_dec(&n->tbl->gc_entries); 125 } 126 } 127 128 static void neigh_update_gc_list(struct neighbour *n) 129 { 130 bool on_gc_list, exempt_from_gc; 131 132 write_lock_bh(&n->tbl->lock); 133 write_lock(&n->lock); 134 135 /* remove from the gc list if new state is permanent or if neighbor 136 * is externally learned; otherwise entry should be on the gc list 137 */ 138 exempt_from_gc = n->nud_state & NUD_PERMANENT || 139 n->flags & NTF_EXT_LEARNED; 140 on_gc_list = !list_empty(&n->gc_list); 141 142 if (exempt_from_gc && on_gc_list) { 143 list_del_init(&n->gc_list); 144 atomic_dec(&n->tbl->gc_entries); 145 } else if (!exempt_from_gc && !on_gc_list) { 146 /* add entries to the tail; cleaning removes from the front */ 147 list_add_tail(&n->gc_list, &n->tbl->gc_list); 148 atomic_inc(&n->tbl->gc_entries); 149 } 150 151 write_unlock(&n->lock); 152 write_unlock_bh(&n->tbl->lock); 153 } 154 155 static bool neigh_update_ext_learned(struct neighbour *neigh, u32 flags, 156 int *notify) 157 { 158 bool rc = false; 159 u8 ndm_flags; 160 161 if (!(flags & NEIGH_UPDATE_F_ADMIN)) 162 return rc; 163 164 ndm_flags = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0; 165 if ((neigh->flags ^ ndm_flags) & NTF_EXT_LEARNED) { 166 if (ndm_flags & NTF_EXT_LEARNED) 167 neigh->flags |= NTF_EXT_LEARNED; 168 else 169 neigh->flags &= ~NTF_EXT_LEARNED; 170 rc = true; 171 *notify = 1; 172 } 173 174 return rc; 175 } 176 177 static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np, 178 struct neigh_table *tbl) 179 { 180 bool retval = false; 181 182 write_lock(&n->lock); 183 if (refcount_read(&n->refcnt) == 1) { 184 struct neighbour *neigh; 185 186 neigh = rcu_dereference_protected(n->next, 187 lockdep_is_held(&tbl->lock)); 188 rcu_assign_pointer(*np, neigh); 189 neigh_mark_dead(n); 190 retval = true; 191 } 192 write_unlock(&n->lock); 193 if (retval) 194 neigh_cleanup_and_release(n); 195 return retval; 196 } 197 198 bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl) 199 { 200 struct neigh_hash_table *nht; 201 void *pkey = ndel->primary_key; 202 u32 hash_val; 203 struct neighbour *n; 204 struct neighbour __rcu **np; 205 206 nht = rcu_dereference_protected(tbl->nht, 207 lockdep_is_held(&tbl->lock)); 208 hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd); 209 hash_val = hash_val >> (32 - nht->hash_shift); 210 211 np = &nht->hash_buckets[hash_val]; 212 while ((n = rcu_dereference_protected(*np, 213 lockdep_is_held(&tbl->lock)))) { 214 if (n == ndel) 215 return neigh_del(n, np, tbl); 216 np = &n->next; 217 } 218 return false; 219 } 220 221 static int neigh_forced_gc(struct neigh_table *tbl) 222 { 223 int max_clean = atomic_read(&tbl->gc_entries) - tbl->gc_thresh2; 224 unsigned long tref = jiffies - 5 * HZ; 225 struct neighbour *n, *tmp; 226 int shrunk = 0; 227 228 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 229 230 write_lock_bh(&tbl->lock); 231 232 list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) { 233 if (refcount_read(&n->refcnt) == 1) { 234 bool remove = false; 235 236 write_lock(&n->lock); 237 if ((n->nud_state == NUD_FAILED) || 238 time_after(tref, n->updated)) 239 remove = true; 240 write_unlock(&n->lock); 241 242 if (remove && neigh_remove_one(n, tbl)) 243 shrunk++; 244 if (shrunk >= max_clean) 245 break; 246 } 247 } 248 249 tbl->last_flush = jiffies; 250 251 write_unlock_bh(&tbl->lock); 252 253 return shrunk; 254 } 255 256 static void neigh_add_timer(struct neighbour *n, unsigned long when) 257 { 258 neigh_hold(n); 259 if (unlikely(mod_timer(&n->timer, when))) { 260 printk("NEIGH: BUG, double timer add, state is %x\n", 261 n->nud_state); 262 dump_stack(); 263 } 264 } 265 266 static int neigh_del_timer(struct neighbour *n) 267 { 268 if ((n->nud_state & NUD_IN_TIMER) && 269 del_timer(&n->timer)) { 270 neigh_release(n); 271 return 1; 272 } 273 return 0; 274 } 275 276 static void pneigh_queue_purge(struct sk_buff_head *list) 277 { 278 struct sk_buff *skb; 279 280 while ((skb = skb_dequeue(list)) != NULL) { 281 dev_put(skb->dev); 282 kfree_skb(skb); 283 } 284 } 285 286 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev, 287 bool skip_perm) 288 { 289 int i; 290 struct neigh_hash_table *nht; 291 292 nht = rcu_dereference_protected(tbl->nht, 293 lockdep_is_held(&tbl->lock)); 294 295 for (i = 0; i < (1 << nht->hash_shift); i++) { 296 struct neighbour *n; 297 struct neighbour __rcu **np = &nht->hash_buckets[i]; 298 299 while ((n = rcu_dereference_protected(*np, 300 lockdep_is_held(&tbl->lock))) != NULL) { 301 if (dev && n->dev != dev) { 302 np = &n->next; 303 continue; 304 } 305 if (skip_perm && n->nud_state & NUD_PERMANENT) { 306 np = &n->next; 307 continue; 308 } 309 rcu_assign_pointer(*np, 310 rcu_dereference_protected(n->next, 311 lockdep_is_held(&tbl->lock))); 312 write_lock(&n->lock); 313 neigh_del_timer(n); 314 neigh_mark_dead(n); 315 if (refcount_read(&n->refcnt) != 1) { 316 /* The most unpleasant situation. 317 We must destroy neighbour entry, 318 but someone still uses it. 319 320 The destroy will be delayed until 321 the last user releases us, but 322 we must kill timers etc. and move 323 it to safe state. 324 */ 325 __skb_queue_purge(&n->arp_queue); 326 n->arp_queue_len_bytes = 0; 327 n->output = neigh_blackhole; 328 if (n->nud_state & NUD_VALID) 329 n->nud_state = NUD_NOARP; 330 else 331 n->nud_state = NUD_NONE; 332 neigh_dbg(2, "neigh %p is stray\n", n); 333 } 334 write_unlock(&n->lock); 335 neigh_cleanup_and_release(n); 336 } 337 } 338 } 339 340 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 341 { 342 write_lock_bh(&tbl->lock); 343 neigh_flush_dev(tbl, dev, false); 344 write_unlock_bh(&tbl->lock); 345 } 346 EXPORT_SYMBOL(neigh_changeaddr); 347 348 static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev, 349 bool skip_perm) 350 { 351 write_lock_bh(&tbl->lock); 352 neigh_flush_dev(tbl, dev, skip_perm); 353 pneigh_ifdown_and_unlock(tbl, dev); 354 355 del_timer_sync(&tbl->proxy_timer); 356 pneigh_queue_purge(&tbl->proxy_queue); 357 return 0; 358 } 359 360 int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev) 361 { 362 __neigh_ifdown(tbl, dev, true); 363 return 0; 364 } 365 EXPORT_SYMBOL(neigh_carrier_down); 366 367 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 368 { 369 __neigh_ifdown(tbl, dev, false); 370 return 0; 371 } 372 EXPORT_SYMBOL(neigh_ifdown); 373 374 static struct neighbour *neigh_alloc(struct neigh_table *tbl, 375 struct net_device *dev, 376 bool exempt_from_gc) 377 { 378 struct neighbour *n = NULL; 379 unsigned long now = jiffies; 380 int entries; 381 382 if (exempt_from_gc) 383 goto do_alloc; 384 385 entries = atomic_inc_return(&tbl->gc_entries) - 1; 386 if (entries >= tbl->gc_thresh3 || 387 (entries >= tbl->gc_thresh2 && 388 time_after(now, tbl->last_flush + 5 * HZ))) { 389 if (!neigh_forced_gc(tbl) && 390 entries >= tbl->gc_thresh3) { 391 net_info_ratelimited("%s: neighbor table overflow!\n", 392 tbl->id); 393 NEIGH_CACHE_STAT_INC(tbl, table_fulls); 394 goto out_entries; 395 } 396 } 397 398 do_alloc: 399 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC); 400 if (!n) 401 goto out_entries; 402 403 __skb_queue_head_init(&n->arp_queue); 404 rwlock_init(&n->lock); 405 seqlock_init(&n->ha_lock); 406 n->updated = n->used = now; 407 n->nud_state = NUD_NONE; 408 n->output = neigh_blackhole; 409 seqlock_init(&n->hh.hh_lock); 410 n->parms = neigh_parms_clone(&tbl->parms); 411 timer_setup(&n->timer, neigh_timer_handler, 0); 412 413 NEIGH_CACHE_STAT_INC(tbl, allocs); 414 n->tbl = tbl; 415 refcount_set(&n->refcnt, 1); 416 n->dead = 1; 417 INIT_LIST_HEAD(&n->gc_list); 418 419 atomic_inc(&tbl->entries); 420 out: 421 return n; 422 423 out_entries: 424 if (!exempt_from_gc) 425 atomic_dec(&tbl->gc_entries); 426 goto out; 427 } 428 429 static void neigh_get_hash_rnd(u32 *x) 430 { 431 *x = get_random_u32() | 1; 432 } 433 434 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) 435 { 436 size_t size = (1 << shift) * sizeof(struct neighbour *); 437 struct neigh_hash_table *ret; 438 struct neighbour __rcu **buckets; 439 int i; 440 441 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 442 if (!ret) 443 return NULL; 444 if (size <= PAGE_SIZE) { 445 buckets = kzalloc(size, GFP_ATOMIC); 446 } else { 447 buckets = (struct neighbour __rcu **) 448 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 449 get_order(size)); 450 kmemleak_alloc(buckets, size, 1, GFP_ATOMIC); 451 } 452 if (!buckets) { 453 kfree(ret); 454 return NULL; 455 } 456 ret->hash_buckets = buckets; 457 ret->hash_shift = shift; 458 for (i = 0; i < NEIGH_NUM_HASH_RND; i++) 459 neigh_get_hash_rnd(&ret->hash_rnd[i]); 460 return ret; 461 } 462 463 static void neigh_hash_free_rcu(struct rcu_head *head) 464 { 465 struct neigh_hash_table *nht = container_of(head, 466 struct neigh_hash_table, 467 rcu); 468 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); 469 struct neighbour __rcu **buckets = nht->hash_buckets; 470 471 if (size <= PAGE_SIZE) { 472 kfree(buckets); 473 } else { 474 kmemleak_free(buckets); 475 free_pages((unsigned long)buckets, get_order(size)); 476 } 477 kfree(nht); 478 } 479 480 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, 481 unsigned long new_shift) 482 { 483 unsigned int i, hash; 484 struct neigh_hash_table *new_nht, *old_nht; 485 486 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 487 488 old_nht = rcu_dereference_protected(tbl->nht, 489 lockdep_is_held(&tbl->lock)); 490 new_nht = neigh_hash_alloc(new_shift); 491 if (!new_nht) 492 return old_nht; 493 494 for (i = 0; i < (1 << old_nht->hash_shift); i++) { 495 struct neighbour *n, *next; 496 497 for (n = rcu_dereference_protected(old_nht->hash_buckets[i], 498 lockdep_is_held(&tbl->lock)); 499 n != NULL; 500 n = next) { 501 hash = tbl->hash(n->primary_key, n->dev, 502 new_nht->hash_rnd); 503 504 hash >>= (32 - new_nht->hash_shift); 505 next = rcu_dereference_protected(n->next, 506 lockdep_is_held(&tbl->lock)); 507 508 rcu_assign_pointer(n->next, 509 rcu_dereference_protected( 510 new_nht->hash_buckets[hash], 511 lockdep_is_held(&tbl->lock))); 512 rcu_assign_pointer(new_nht->hash_buckets[hash], n); 513 } 514 } 515 516 rcu_assign_pointer(tbl->nht, new_nht); 517 call_rcu(&old_nht->rcu, neigh_hash_free_rcu); 518 return new_nht; 519 } 520 521 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 522 struct net_device *dev) 523 { 524 struct neighbour *n; 525 526 NEIGH_CACHE_STAT_INC(tbl, lookups); 527 528 rcu_read_lock_bh(); 529 n = __neigh_lookup_noref(tbl, pkey, dev); 530 if (n) { 531 if (!refcount_inc_not_zero(&n->refcnt)) 532 n = NULL; 533 NEIGH_CACHE_STAT_INC(tbl, hits); 534 } 535 536 rcu_read_unlock_bh(); 537 return n; 538 } 539 EXPORT_SYMBOL(neigh_lookup); 540 541 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 542 const void *pkey) 543 { 544 struct neighbour *n; 545 unsigned int key_len = tbl->key_len; 546 u32 hash_val; 547 struct neigh_hash_table *nht; 548 549 NEIGH_CACHE_STAT_INC(tbl, lookups); 550 551 rcu_read_lock_bh(); 552 nht = rcu_dereference_bh(tbl->nht); 553 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift); 554 555 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 556 n != NULL; 557 n = rcu_dereference_bh(n->next)) { 558 if (!memcmp(n->primary_key, pkey, key_len) && 559 net_eq(dev_net(n->dev), net)) { 560 if (!refcount_inc_not_zero(&n->refcnt)) 561 n = NULL; 562 NEIGH_CACHE_STAT_INC(tbl, hits); 563 break; 564 } 565 } 566 567 rcu_read_unlock_bh(); 568 return n; 569 } 570 EXPORT_SYMBOL(neigh_lookup_nodev); 571 572 static struct neighbour *___neigh_create(struct neigh_table *tbl, 573 const void *pkey, 574 struct net_device *dev, 575 bool exempt_from_gc, bool want_ref) 576 { 577 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev, exempt_from_gc); 578 u32 hash_val; 579 unsigned int key_len = tbl->key_len; 580 int error; 581 struct neigh_hash_table *nht; 582 583 trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc); 584 585 if (!n) { 586 rc = ERR_PTR(-ENOBUFS); 587 goto out; 588 } 589 590 memcpy(n->primary_key, pkey, key_len); 591 n->dev = dev; 592 dev_hold(dev); 593 594 /* Protocol specific setup. */ 595 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 596 rc = ERR_PTR(error); 597 goto out_neigh_release; 598 } 599 600 if (dev->netdev_ops->ndo_neigh_construct) { 601 error = dev->netdev_ops->ndo_neigh_construct(dev, n); 602 if (error < 0) { 603 rc = ERR_PTR(error); 604 goto out_neigh_release; 605 } 606 } 607 608 /* Device specific setup. */ 609 if (n->parms->neigh_setup && 610 (error = n->parms->neigh_setup(n)) < 0) { 611 rc = ERR_PTR(error); 612 goto out_neigh_release; 613 } 614 615 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1); 616 617 write_lock_bh(&tbl->lock); 618 nht = rcu_dereference_protected(tbl->nht, 619 lockdep_is_held(&tbl->lock)); 620 621 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) 622 nht = neigh_hash_grow(tbl, nht->hash_shift + 1); 623 624 hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 625 626 if (n->parms->dead) { 627 rc = ERR_PTR(-EINVAL); 628 goto out_tbl_unlock; 629 } 630 631 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], 632 lockdep_is_held(&tbl->lock)); 633 n1 != NULL; 634 n1 = rcu_dereference_protected(n1->next, 635 lockdep_is_held(&tbl->lock))) { 636 if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) { 637 if (want_ref) 638 neigh_hold(n1); 639 rc = n1; 640 goto out_tbl_unlock; 641 } 642 } 643 644 n->dead = 0; 645 if (!exempt_from_gc) 646 list_add_tail(&n->gc_list, &n->tbl->gc_list); 647 648 if (want_ref) 649 neigh_hold(n); 650 rcu_assign_pointer(n->next, 651 rcu_dereference_protected(nht->hash_buckets[hash_val], 652 lockdep_is_held(&tbl->lock))); 653 rcu_assign_pointer(nht->hash_buckets[hash_val], n); 654 write_unlock_bh(&tbl->lock); 655 neigh_dbg(2, "neigh %p is created\n", n); 656 rc = n; 657 out: 658 return rc; 659 out_tbl_unlock: 660 write_unlock_bh(&tbl->lock); 661 out_neigh_release: 662 if (!exempt_from_gc) 663 atomic_dec(&tbl->gc_entries); 664 neigh_release(n); 665 goto out; 666 } 667 668 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, 669 struct net_device *dev, bool want_ref) 670 { 671 return ___neigh_create(tbl, pkey, dev, false, want_ref); 672 } 673 EXPORT_SYMBOL(__neigh_create); 674 675 static u32 pneigh_hash(const void *pkey, unsigned int key_len) 676 { 677 u32 hash_val = *(u32 *)(pkey + key_len - 4); 678 hash_val ^= (hash_val >> 16); 679 hash_val ^= hash_val >> 8; 680 hash_val ^= hash_val >> 4; 681 hash_val &= PNEIGH_HASHMASK; 682 return hash_val; 683 } 684 685 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 686 struct net *net, 687 const void *pkey, 688 unsigned int key_len, 689 struct net_device *dev) 690 { 691 while (n) { 692 if (!memcmp(n->key, pkey, key_len) && 693 net_eq(pneigh_net(n), net) && 694 (n->dev == dev || !n->dev)) 695 return n; 696 n = n->next; 697 } 698 return NULL; 699 } 700 701 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 702 struct net *net, const void *pkey, struct net_device *dev) 703 { 704 unsigned int key_len = tbl->key_len; 705 u32 hash_val = pneigh_hash(pkey, key_len); 706 707 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 708 net, pkey, key_len, dev); 709 } 710 EXPORT_SYMBOL_GPL(__pneigh_lookup); 711 712 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 713 struct net *net, const void *pkey, 714 struct net_device *dev, int creat) 715 { 716 struct pneigh_entry *n; 717 unsigned int key_len = tbl->key_len; 718 u32 hash_val = pneigh_hash(pkey, key_len); 719 720 read_lock_bh(&tbl->lock); 721 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 722 net, pkey, key_len, dev); 723 read_unlock_bh(&tbl->lock); 724 725 if (n || !creat) 726 goto out; 727 728 ASSERT_RTNL(); 729 730 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 731 if (!n) 732 goto out; 733 734 n->protocol = 0; 735 write_pnet(&n->net, net); 736 memcpy(n->key, pkey, key_len); 737 n->dev = dev; 738 if (dev) 739 dev_hold(dev); 740 741 if (tbl->pconstructor && tbl->pconstructor(n)) { 742 if (dev) 743 dev_put(dev); 744 kfree(n); 745 n = NULL; 746 goto out; 747 } 748 749 write_lock_bh(&tbl->lock); 750 n->next = tbl->phash_buckets[hash_val]; 751 tbl->phash_buckets[hash_val] = n; 752 write_unlock_bh(&tbl->lock); 753 out: 754 return n; 755 } 756 EXPORT_SYMBOL(pneigh_lookup); 757 758 759 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 760 struct net_device *dev) 761 { 762 struct pneigh_entry *n, **np; 763 unsigned int key_len = tbl->key_len; 764 u32 hash_val = pneigh_hash(pkey, key_len); 765 766 write_lock_bh(&tbl->lock); 767 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 768 np = &n->next) { 769 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 770 net_eq(pneigh_net(n), net)) { 771 *np = n->next; 772 write_unlock_bh(&tbl->lock); 773 if (tbl->pdestructor) 774 tbl->pdestructor(n); 775 if (n->dev) 776 dev_put(n->dev); 777 kfree(n); 778 return 0; 779 } 780 } 781 write_unlock_bh(&tbl->lock); 782 return -ENOENT; 783 } 784 785 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 786 struct net_device *dev) 787 { 788 struct pneigh_entry *n, **np, *freelist = NULL; 789 u32 h; 790 791 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 792 np = &tbl->phash_buckets[h]; 793 while ((n = *np) != NULL) { 794 if (!dev || n->dev == dev) { 795 *np = n->next; 796 n->next = freelist; 797 freelist = n; 798 continue; 799 } 800 np = &n->next; 801 } 802 } 803 write_unlock_bh(&tbl->lock); 804 while ((n = freelist)) { 805 freelist = n->next; 806 n->next = NULL; 807 if (tbl->pdestructor) 808 tbl->pdestructor(n); 809 if (n->dev) 810 dev_put(n->dev); 811 kfree(n); 812 } 813 return -ENOENT; 814 } 815 816 static void neigh_parms_destroy(struct neigh_parms *parms); 817 818 static inline void neigh_parms_put(struct neigh_parms *parms) 819 { 820 if (refcount_dec_and_test(&parms->refcnt)) 821 neigh_parms_destroy(parms); 822 } 823 824 /* 825 * neighbour must already be out of the table; 826 * 827 */ 828 void neigh_destroy(struct neighbour *neigh) 829 { 830 struct net_device *dev = neigh->dev; 831 832 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 833 834 if (!neigh->dead) { 835 pr_warn("Destroying alive neighbour %p\n", neigh); 836 dump_stack(); 837 return; 838 } 839 840 if (neigh_del_timer(neigh)) 841 pr_warn("Impossible event\n"); 842 843 write_lock_bh(&neigh->lock); 844 __skb_queue_purge(&neigh->arp_queue); 845 write_unlock_bh(&neigh->lock); 846 neigh->arp_queue_len_bytes = 0; 847 848 if (dev->netdev_ops->ndo_neigh_destroy) 849 dev->netdev_ops->ndo_neigh_destroy(dev, neigh); 850 851 dev_put(dev); 852 neigh_parms_put(neigh->parms); 853 854 neigh_dbg(2, "neigh %p is destroyed\n", neigh); 855 856 atomic_dec(&neigh->tbl->entries); 857 kfree_rcu(neigh, rcu); 858 } 859 EXPORT_SYMBOL(neigh_destroy); 860 861 /* Neighbour state is suspicious; 862 disable fast path. 863 864 Called with write_locked neigh. 865 */ 866 static void neigh_suspect(struct neighbour *neigh) 867 { 868 neigh_dbg(2, "neigh %p is suspected\n", neigh); 869 870 neigh->output = neigh->ops->output; 871 } 872 873 /* Neighbour state is OK; 874 enable fast path. 875 876 Called with write_locked neigh. 877 */ 878 static void neigh_connect(struct neighbour *neigh) 879 { 880 neigh_dbg(2, "neigh %p is connected\n", neigh); 881 882 neigh->output = neigh->ops->connected_output; 883 } 884 885 static void neigh_periodic_work(struct work_struct *work) 886 { 887 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 888 struct neighbour *n; 889 struct neighbour __rcu **np; 890 unsigned int i; 891 struct neigh_hash_table *nht; 892 893 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 894 895 write_lock_bh(&tbl->lock); 896 nht = rcu_dereference_protected(tbl->nht, 897 lockdep_is_held(&tbl->lock)); 898 899 /* 900 * periodically recompute ReachableTime from random function 901 */ 902 903 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 904 struct neigh_parms *p; 905 tbl->last_rand = jiffies; 906 list_for_each_entry(p, &tbl->parms_list, list) 907 p->reachable_time = 908 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 909 } 910 911 if (atomic_read(&tbl->entries) < tbl->gc_thresh1) 912 goto out; 913 914 for (i = 0 ; i < (1 << nht->hash_shift); i++) { 915 np = &nht->hash_buckets[i]; 916 917 while ((n = rcu_dereference_protected(*np, 918 lockdep_is_held(&tbl->lock))) != NULL) { 919 unsigned int state; 920 921 write_lock(&n->lock); 922 923 state = n->nud_state; 924 if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) || 925 (n->flags & NTF_EXT_LEARNED)) { 926 write_unlock(&n->lock); 927 goto next_elt; 928 } 929 930 if (time_before(n->used, n->confirmed)) 931 n->used = n->confirmed; 932 933 if (refcount_read(&n->refcnt) == 1 && 934 (state == NUD_FAILED || 935 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) { 936 *np = n->next; 937 neigh_mark_dead(n); 938 write_unlock(&n->lock); 939 neigh_cleanup_and_release(n); 940 continue; 941 } 942 write_unlock(&n->lock); 943 944 next_elt: 945 np = &n->next; 946 } 947 /* 948 * It's fine to release lock here, even if hash table 949 * grows while we are preempted. 950 */ 951 write_unlock_bh(&tbl->lock); 952 cond_resched(); 953 write_lock_bh(&tbl->lock); 954 nht = rcu_dereference_protected(tbl->nht, 955 lockdep_is_held(&tbl->lock)); 956 } 957 out: 958 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks. 959 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2 960 * BASE_REACHABLE_TIME. 961 */ 962 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 963 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1); 964 write_unlock_bh(&tbl->lock); 965 } 966 967 static __inline__ int neigh_max_probes(struct neighbour *n) 968 { 969 struct neigh_parms *p = n->parms; 970 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) + 971 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) : 972 NEIGH_VAR(p, MCAST_PROBES)); 973 } 974 975 static void neigh_invalidate(struct neighbour *neigh) 976 __releases(neigh->lock) 977 __acquires(neigh->lock) 978 { 979 struct sk_buff *skb; 980 981 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 982 neigh_dbg(2, "neigh %p is failed\n", neigh); 983 neigh->updated = jiffies; 984 985 /* It is very thin place. report_unreachable is very complicated 986 routine. Particularly, it can hit the same neighbour entry! 987 988 So that, we try to be accurate and avoid dead loop. --ANK 989 */ 990 while (neigh->nud_state == NUD_FAILED && 991 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 992 write_unlock(&neigh->lock); 993 neigh->ops->error_report(neigh, skb); 994 write_lock(&neigh->lock); 995 } 996 __skb_queue_purge(&neigh->arp_queue); 997 neigh->arp_queue_len_bytes = 0; 998 } 999 1000 static void neigh_probe(struct neighbour *neigh) 1001 __releases(neigh->lock) 1002 { 1003 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue); 1004 /* keep skb alive even if arp_queue overflows */ 1005 if (skb) 1006 skb = skb_clone(skb, GFP_ATOMIC); 1007 write_unlock(&neigh->lock); 1008 if (neigh->ops->solicit) 1009 neigh->ops->solicit(neigh, skb); 1010 atomic_inc(&neigh->probes); 1011 consume_skb(skb); 1012 } 1013 1014 /* Called when a timer expires for a neighbour entry. */ 1015 1016 static void neigh_timer_handler(struct timer_list *t) 1017 { 1018 unsigned long now, next; 1019 struct neighbour *neigh = from_timer(neigh, t, timer); 1020 unsigned int state; 1021 int notify = 0; 1022 1023 write_lock(&neigh->lock); 1024 1025 state = neigh->nud_state; 1026 now = jiffies; 1027 next = now + HZ; 1028 1029 if (!(state & NUD_IN_TIMER)) 1030 goto out; 1031 1032 if (state & NUD_REACHABLE) { 1033 if (time_before_eq(now, 1034 neigh->confirmed + neigh->parms->reachable_time)) { 1035 neigh_dbg(2, "neigh %p is still alive\n", neigh); 1036 next = neigh->confirmed + neigh->parms->reachable_time; 1037 } else if (time_before_eq(now, 1038 neigh->used + 1039 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1040 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1041 neigh->nud_state = NUD_DELAY; 1042 neigh->updated = jiffies; 1043 neigh_suspect(neigh); 1044 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME); 1045 } else { 1046 neigh_dbg(2, "neigh %p is suspected\n", neigh); 1047 neigh->nud_state = NUD_STALE; 1048 neigh->updated = jiffies; 1049 neigh_suspect(neigh); 1050 notify = 1; 1051 } 1052 } else if (state & NUD_DELAY) { 1053 if (time_before_eq(now, 1054 neigh->confirmed + 1055 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1056 neigh_dbg(2, "neigh %p is now reachable\n", neigh); 1057 neigh->nud_state = NUD_REACHABLE; 1058 neigh->updated = jiffies; 1059 neigh_connect(neigh); 1060 notify = 1; 1061 next = neigh->confirmed + neigh->parms->reachable_time; 1062 } else { 1063 neigh_dbg(2, "neigh %p is probed\n", neigh); 1064 neigh->nud_state = NUD_PROBE; 1065 neigh->updated = jiffies; 1066 atomic_set(&neigh->probes, 0); 1067 notify = 1; 1068 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1069 HZ/100); 1070 } 1071 } else { 1072 /* NUD_PROBE|NUD_INCOMPLETE */ 1073 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100); 1074 } 1075 1076 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 1077 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 1078 neigh->nud_state = NUD_FAILED; 1079 notify = 1; 1080 neigh_invalidate(neigh); 1081 goto out; 1082 } 1083 1084 if (neigh->nud_state & NUD_IN_TIMER) { 1085 if (time_before(next, jiffies + HZ/2)) 1086 next = jiffies + HZ/2; 1087 if (!mod_timer(&neigh->timer, next)) 1088 neigh_hold(neigh); 1089 } 1090 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 1091 neigh_probe(neigh); 1092 } else { 1093 out: 1094 write_unlock(&neigh->lock); 1095 } 1096 1097 if (notify) 1098 neigh_update_notify(neigh, 0); 1099 1100 trace_neigh_timer_handler(neigh, 0); 1101 1102 neigh_release(neigh); 1103 } 1104 1105 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 1106 { 1107 int rc; 1108 bool immediate_probe = false; 1109 1110 write_lock_bh(&neigh->lock); 1111 1112 rc = 0; 1113 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 1114 goto out_unlock_bh; 1115 if (neigh->dead) 1116 goto out_dead; 1117 1118 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 1119 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) + 1120 NEIGH_VAR(neigh->parms, APP_PROBES)) { 1121 unsigned long next, now = jiffies; 1122 1123 atomic_set(&neigh->probes, 1124 NEIGH_VAR(neigh->parms, UCAST_PROBES)); 1125 neigh_del_timer(neigh); 1126 neigh->nud_state = NUD_INCOMPLETE; 1127 neigh->updated = now; 1128 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1129 HZ/100); 1130 neigh_add_timer(neigh, next); 1131 immediate_probe = true; 1132 } else { 1133 neigh->nud_state = NUD_FAILED; 1134 neigh->updated = jiffies; 1135 write_unlock_bh(&neigh->lock); 1136 1137 kfree_skb(skb); 1138 return 1; 1139 } 1140 } else if (neigh->nud_state & NUD_STALE) { 1141 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1142 neigh_del_timer(neigh); 1143 neigh->nud_state = NUD_DELAY; 1144 neigh->updated = jiffies; 1145 neigh_add_timer(neigh, jiffies + 1146 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME)); 1147 } 1148 1149 if (neigh->nud_state == NUD_INCOMPLETE) { 1150 if (skb) { 1151 while (neigh->arp_queue_len_bytes + skb->truesize > 1152 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) { 1153 struct sk_buff *buff; 1154 1155 buff = __skb_dequeue(&neigh->arp_queue); 1156 if (!buff) 1157 break; 1158 neigh->arp_queue_len_bytes -= buff->truesize; 1159 kfree_skb(buff); 1160 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 1161 } 1162 skb_dst_force(skb); 1163 __skb_queue_tail(&neigh->arp_queue, skb); 1164 neigh->arp_queue_len_bytes += skb->truesize; 1165 } 1166 rc = 1; 1167 } 1168 out_unlock_bh: 1169 if (immediate_probe) 1170 neigh_probe(neigh); 1171 else 1172 write_unlock(&neigh->lock); 1173 local_bh_enable(); 1174 trace_neigh_event_send_done(neigh, rc); 1175 return rc; 1176 1177 out_dead: 1178 if (neigh->nud_state & NUD_STALE) 1179 goto out_unlock_bh; 1180 write_unlock_bh(&neigh->lock); 1181 kfree_skb(skb); 1182 trace_neigh_event_send_dead(neigh, 1); 1183 return 1; 1184 } 1185 EXPORT_SYMBOL(__neigh_event_send); 1186 1187 static void neigh_update_hhs(struct neighbour *neigh) 1188 { 1189 struct hh_cache *hh; 1190 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 1191 = NULL; 1192 1193 if (neigh->dev->header_ops) 1194 update = neigh->dev->header_ops->cache_update; 1195 1196 if (update) { 1197 hh = &neigh->hh; 1198 if (READ_ONCE(hh->hh_len)) { 1199 write_seqlock_bh(&hh->hh_lock); 1200 update(hh, neigh->dev, neigh->ha); 1201 write_sequnlock_bh(&hh->hh_lock); 1202 } 1203 } 1204 } 1205 1206 1207 1208 /* Generic update routine. 1209 -- lladdr is new lladdr or NULL, if it is not supplied. 1210 -- new is new state. 1211 -- flags 1212 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 1213 if it is different. 1214 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 1215 lladdr instead of overriding it 1216 if it is different. 1217 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 1218 1219 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 1220 NTF_ROUTER flag. 1221 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 1222 a router. 1223 1224 Caller MUST hold reference count on the entry. 1225 */ 1226 1227 static int __neigh_update(struct neighbour *neigh, const u8 *lladdr, 1228 u8 new, u32 flags, u32 nlmsg_pid, 1229 struct netlink_ext_ack *extack) 1230 { 1231 bool ext_learn_change = false; 1232 u8 old; 1233 int err; 1234 int notify = 0; 1235 struct net_device *dev; 1236 int update_isrouter = 0; 1237 1238 trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid); 1239 1240 write_lock_bh(&neigh->lock); 1241 1242 dev = neigh->dev; 1243 old = neigh->nud_state; 1244 err = -EPERM; 1245 1246 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 1247 (old & (NUD_NOARP | NUD_PERMANENT))) 1248 goto out; 1249 if (neigh->dead) { 1250 NL_SET_ERR_MSG(extack, "Neighbor entry is now dead"); 1251 goto out; 1252 } 1253 1254 ext_learn_change = neigh_update_ext_learned(neigh, flags, ¬ify); 1255 1256 if (!(new & NUD_VALID)) { 1257 neigh_del_timer(neigh); 1258 if (old & NUD_CONNECTED) 1259 neigh_suspect(neigh); 1260 neigh->nud_state = new; 1261 err = 0; 1262 notify = old & NUD_VALID; 1263 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1264 (new & NUD_FAILED)) { 1265 neigh_invalidate(neigh); 1266 notify = 1; 1267 } 1268 goto out; 1269 } 1270 1271 /* Compare new lladdr with cached one */ 1272 if (!dev->addr_len) { 1273 /* First case: device needs no address. */ 1274 lladdr = neigh->ha; 1275 } else if (lladdr) { 1276 /* The second case: if something is already cached 1277 and a new address is proposed: 1278 - compare new & old 1279 - if they are different, check override flag 1280 */ 1281 if ((old & NUD_VALID) && 1282 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1283 lladdr = neigh->ha; 1284 } else { 1285 /* No address is supplied; if we know something, 1286 use it, otherwise discard the request. 1287 */ 1288 err = -EINVAL; 1289 if (!(old & NUD_VALID)) { 1290 NL_SET_ERR_MSG(extack, "No link layer address given"); 1291 goto out; 1292 } 1293 lladdr = neigh->ha; 1294 } 1295 1296 /* Update confirmed timestamp for neighbour entry after we 1297 * received ARP packet even if it doesn't change IP to MAC binding. 1298 */ 1299 if (new & NUD_CONNECTED) 1300 neigh->confirmed = jiffies; 1301 1302 /* If entry was valid and address is not changed, 1303 do not change entry state, if new one is STALE. 1304 */ 1305 err = 0; 1306 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1307 if (old & NUD_VALID) { 1308 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1309 update_isrouter = 0; 1310 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1311 (old & NUD_CONNECTED)) { 1312 lladdr = neigh->ha; 1313 new = NUD_STALE; 1314 } else 1315 goto out; 1316 } else { 1317 if (lladdr == neigh->ha && new == NUD_STALE && 1318 !(flags & NEIGH_UPDATE_F_ADMIN)) 1319 new = old; 1320 } 1321 } 1322 1323 /* Update timestamp only once we know we will make a change to the 1324 * neighbour entry. Otherwise we risk to move the locktime window with 1325 * noop updates and ignore relevant ARP updates. 1326 */ 1327 if (new != old || lladdr != neigh->ha) 1328 neigh->updated = jiffies; 1329 1330 if (new != old) { 1331 neigh_del_timer(neigh); 1332 if (new & NUD_PROBE) 1333 atomic_set(&neigh->probes, 0); 1334 if (new & NUD_IN_TIMER) 1335 neigh_add_timer(neigh, (jiffies + 1336 ((new & NUD_REACHABLE) ? 1337 neigh->parms->reachable_time : 1338 0))); 1339 neigh->nud_state = new; 1340 notify = 1; 1341 } 1342 1343 if (lladdr != neigh->ha) { 1344 write_seqlock(&neigh->ha_lock); 1345 memcpy(&neigh->ha, lladdr, dev->addr_len); 1346 write_sequnlock(&neigh->ha_lock); 1347 neigh_update_hhs(neigh); 1348 if (!(new & NUD_CONNECTED)) 1349 neigh->confirmed = jiffies - 1350 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1); 1351 notify = 1; 1352 } 1353 if (new == old) 1354 goto out; 1355 if (new & NUD_CONNECTED) 1356 neigh_connect(neigh); 1357 else 1358 neigh_suspect(neigh); 1359 if (!(old & NUD_VALID)) { 1360 struct sk_buff *skb; 1361 1362 /* Again: avoid dead loop if something went wrong */ 1363 1364 while (neigh->nud_state & NUD_VALID && 1365 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1366 struct dst_entry *dst = skb_dst(skb); 1367 struct neighbour *n2, *n1 = neigh; 1368 write_unlock_bh(&neigh->lock); 1369 1370 rcu_read_lock(); 1371 1372 /* Why not just use 'neigh' as-is? The problem is that 1373 * things such as shaper, eql, and sch_teql can end up 1374 * using alternative, different, neigh objects to output 1375 * the packet in the output path. So what we need to do 1376 * here is re-lookup the top-level neigh in the path so 1377 * we can reinject the packet there. 1378 */ 1379 n2 = NULL; 1380 if (dst) { 1381 n2 = dst_neigh_lookup_skb(dst, skb); 1382 if (n2) 1383 n1 = n2; 1384 } 1385 n1->output(n1, skb); 1386 if (n2) 1387 neigh_release(n2); 1388 rcu_read_unlock(); 1389 1390 write_lock_bh(&neigh->lock); 1391 } 1392 __skb_queue_purge(&neigh->arp_queue); 1393 neigh->arp_queue_len_bytes = 0; 1394 } 1395 out: 1396 if (update_isrouter) 1397 neigh_update_is_router(neigh, flags, ¬ify); 1398 write_unlock_bh(&neigh->lock); 1399 1400 if (((new ^ old) & NUD_PERMANENT) || ext_learn_change) 1401 neigh_update_gc_list(neigh); 1402 1403 if (notify) 1404 neigh_update_notify(neigh, nlmsg_pid); 1405 1406 trace_neigh_update_done(neigh, err); 1407 1408 return err; 1409 } 1410 1411 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 1412 u32 flags, u32 nlmsg_pid) 1413 { 1414 return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL); 1415 } 1416 EXPORT_SYMBOL(neigh_update); 1417 1418 /* Update the neigh to listen temporarily for probe responses, even if it is 1419 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing. 1420 */ 1421 void __neigh_set_probe_once(struct neighbour *neigh) 1422 { 1423 if (neigh->dead) 1424 return; 1425 neigh->updated = jiffies; 1426 if (!(neigh->nud_state & NUD_FAILED)) 1427 return; 1428 neigh->nud_state = NUD_INCOMPLETE; 1429 atomic_set(&neigh->probes, neigh_max_probes(neigh)); 1430 neigh_add_timer(neigh, 1431 jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1432 HZ/100)); 1433 } 1434 EXPORT_SYMBOL(__neigh_set_probe_once); 1435 1436 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1437 u8 *lladdr, void *saddr, 1438 struct net_device *dev) 1439 { 1440 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1441 lladdr || !dev->addr_len); 1442 if (neigh) 1443 neigh_update(neigh, lladdr, NUD_STALE, 1444 NEIGH_UPDATE_F_OVERRIDE, 0); 1445 return neigh; 1446 } 1447 EXPORT_SYMBOL(neigh_event_ns); 1448 1449 /* called with read_lock_bh(&n->lock); */ 1450 static void neigh_hh_init(struct neighbour *n) 1451 { 1452 struct net_device *dev = n->dev; 1453 __be16 prot = n->tbl->protocol; 1454 struct hh_cache *hh = &n->hh; 1455 1456 write_lock_bh(&n->lock); 1457 1458 /* Only one thread can come in here and initialize the 1459 * hh_cache entry. 1460 */ 1461 if (!hh->hh_len) 1462 dev->header_ops->cache(n, hh, prot); 1463 1464 write_unlock_bh(&n->lock); 1465 } 1466 1467 /* Slow and careful. */ 1468 1469 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) 1470 { 1471 int rc = 0; 1472 1473 if (!neigh_event_send(neigh, skb)) { 1474 int err; 1475 struct net_device *dev = neigh->dev; 1476 unsigned int seq; 1477 1478 if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len)) 1479 neigh_hh_init(neigh); 1480 1481 do { 1482 __skb_pull(skb, skb_network_offset(skb)); 1483 seq = read_seqbegin(&neigh->ha_lock); 1484 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1485 neigh->ha, NULL, skb->len); 1486 } while (read_seqretry(&neigh->ha_lock, seq)); 1487 1488 if (err >= 0) 1489 rc = dev_queue_xmit(skb); 1490 else 1491 goto out_kfree_skb; 1492 } 1493 out: 1494 return rc; 1495 out_kfree_skb: 1496 rc = -EINVAL; 1497 kfree_skb(skb); 1498 goto out; 1499 } 1500 EXPORT_SYMBOL(neigh_resolve_output); 1501 1502 /* As fast as possible without hh cache */ 1503 1504 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) 1505 { 1506 struct net_device *dev = neigh->dev; 1507 unsigned int seq; 1508 int err; 1509 1510 do { 1511 __skb_pull(skb, skb_network_offset(skb)); 1512 seq = read_seqbegin(&neigh->ha_lock); 1513 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1514 neigh->ha, NULL, skb->len); 1515 } while (read_seqretry(&neigh->ha_lock, seq)); 1516 1517 if (err >= 0) 1518 err = dev_queue_xmit(skb); 1519 else { 1520 err = -EINVAL; 1521 kfree_skb(skb); 1522 } 1523 return err; 1524 } 1525 EXPORT_SYMBOL(neigh_connected_output); 1526 1527 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) 1528 { 1529 return dev_queue_xmit(skb); 1530 } 1531 EXPORT_SYMBOL(neigh_direct_output); 1532 1533 static void neigh_proxy_process(struct timer_list *t) 1534 { 1535 struct neigh_table *tbl = from_timer(tbl, t, proxy_timer); 1536 long sched_next = 0; 1537 unsigned long now = jiffies; 1538 struct sk_buff *skb, *n; 1539 1540 spin_lock(&tbl->proxy_queue.lock); 1541 1542 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1543 long tdif = NEIGH_CB(skb)->sched_next - now; 1544 1545 if (tdif <= 0) { 1546 struct net_device *dev = skb->dev; 1547 1548 __skb_unlink(skb, &tbl->proxy_queue); 1549 if (tbl->proxy_redo && netif_running(dev)) { 1550 rcu_read_lock(); 1551 tbl->proxy_redo(skb); 1552 rcu_read_unlock(); 1553 } else { 1554 kfree_skb(skb); 1555 } 1556 1557 dev_put(dev); 1558 } else if (!sched_next || tdif < sched_next) 1559 sched_next = tdif; 1560 } 1561 del_timer(&tbl->proxy_timer); 1562 if (sched_next) 1563 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1564 spin_unlock(&tbl->proxy_queue.lock); 1565 } 1566 1567 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1568 struct sk_buff *skb) 1569 { 1570 unsigned long now = jiffies; 1571 1572 unsigned long sched_next = now + (prandom_u32() % 1573 NEIGH_VAR(p, PROXY_DELAY)); 1574 1575 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) { 1576 kfree_skb(skb); 1577 return; 1578 } 1579 1580 NEIGH_CB(skb)->sched_next = sched_next; 1581 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1582 1583 spin_lock(&tbl->proxy_queue.lock); 1584 if (del_timer(&tbl->proxy_timer)) { 1585 if (time_before(tbl->proxy_timer.expires, sched_next)) 1586 sched_next = tbl->proxy_timer.expires; 1587 } 1588 skb_dst_drop(skb); 1589 dev_hold(skb->dev); 1590 __skb_queue_tail(&tbl->proxy_queue, skb); 1591 mod_timer(&tbl->proxy_timer, sched_next); 1592 spin_unlock(&tbl->proxy_queue.lock); 1593 } 1594 EXPORT_SYMBOL(pneigh_enqueue); 1595 1596 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1597 struct net *net, int ifindex) 1598 { 1599 struct neigh_parms *p; 1600 1601 list_for_each_entry(p, &tbl->parms_list, list) { 1602 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1603 (!p->dev && !ifindex && net_eq(net, &init_net))) 1604 return p; 1605 } 1606 1607 return NULL; 1608 } 1609 1610 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1611 struct neigh_table *tbl) 1612 { 1613 struct neigh_parms *p; 1614 struct net *net = dev_net(dev); 1615 const struct net_device_ops *ops = dev->netdev_ops; 1616 1617 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL); 1618 if (p) { 1619 p->tbl = tbl; 1620 refcount_set(&p->refcnt, 1); 1621 p->reachable_time = 1622 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 1623 dev_hold(dev); 1624 p->dev = dev; 1625 write_pnet(&p->net, net); 1626 p->sysctl_table = NULL; 1627 1628 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1629 dev_put(dev); 1630 kfree(p); 1631 return NULL; 1632 } 1633 1634 write_lock_bh(&tbl->lock); 1635 list_add(&p->list, &tbl->parms.list); 1636 write_unlock_bh(&tbl->lock); 1637 1638 neigh_parms_data_state_cleanall(p); 1639 } 1640 return p; 1641 } 1642 EXPORT_SYMBOL(neigh_parms_alloc); 1643 1644 static void neigh_rcu_free_parms(struct rcu_head *head) 1645 { 1646 struct neigh_parms *parms = 1647 container_of(head, struct neigh_parms, rcu_head); 1648 1649 neigh_parms_put(parms); 1650 } 1651 1652 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1653 { 1654 if (!parms || parms == &tbl->parms) 1655 return; 1656 write_lock_bh(&tbl->lock); 1657 list_del(&parms->list); 1658 parms->dead = 1; 1659 write_unlock_bh(&tbl->lock); 1660 if (parms->dev) 1661 dev_put(parms->dev); 1662 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1663 } 1664 EXPORT_SYMBOL(neigh_parms_release); 1665 1666 static void neigh_parms_destroy(struct neigh_parms *parms) 1667 { 1668 kfree(parms); 1669 } 1670 1671 static struct lock_class_key neigh_table_proxy_queue_class; 1672 1673 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly; 1674 1675 void neigh_table_init(int index, struct neigh_table *tbl) 1676 { 1677 unsigned long now = jiffies; 1678 unsigned long phsize; 1679 1680 INIT_LIST_HEAD(&tbl->parms_list); 1681 INIT_LIST_HEAD(&tbl->gc_list); 1682 list_add(&tbl->parms.list, &tbl->parms_list); 1683 write_pnet(&tbl->parms.net, &init_net); 1684 refcount_set(&tbl->parms.refcnt, 1); 1685 tbl->parms.reachable_time = 1686 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME)); 1687 1688 tbl->stats = alloc_percpu(struct neigh_statistics); 1689 if (!tbl->stats) 1690 panic("cannot create neighbour cache statistics"); 1691 1692 #ifdef CONFIG_PROC_FS 1693 if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat, 1694 &neigh_stat_seq_ops, tbl)) 1695 panic("cannot create neighbour proc dir entry"); 1696 #endif 1697 1698 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); 1699 1700 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1701 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1702 1703 if (!tbl->nht || !tbl->phash_buckets) 1704 panic("cannot allocate neighbour cache hashes"); 1705 1706 if (!tbl->entry_size) 1707 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) + 1708 tbl->key_len, NEIGH_PRIV_ALIGN); 1709 else 1710 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN); 1711 1712 rwlock_init(&tbl->lock); 1713 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work); 1714 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 1715 tbl->parms.reachable_time); 1716 timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0); 1717 skb_queue_head_init_class(&tbl->proxy_queue, 1718 &neigh_table_proxy_queue_class); 1719 1720 tbl->last_flush = now; 1721 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1722 1723 neigh_tables[index] = tbl; 1724 } 1725 EXPORT_SYMBOL(neigh_table_init); 1726 1727 int neigh_table_clear(int index, struct neigh_table *tbl) 1728 { 1729 neigh_tables[index] = NULL; 1730 /* It is not clean... Fix it to unload IPv6 module safely */ 1731 cancel_delayed_work_sync(&tbl->gc_work); 1732 del_timer_sync(&tbl->proxy_timer); 1733 pneigh_queue_purge(&tbl->proxy_queue); 1734 neigh_ifdown(tbl, NULL); 1735 if (atomic_read(&tbl->entries)) 1736 pr_crit("neighbour leakage\n"); 1737 1738 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, 1739 neigh_hash_free_rcu); 1740 tbl->nht = NULL; 1741 1742 kfree(tbl->phash_buckets); 1743 tbl->phash_buckets = NULL; 1744 1745 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1746 1747 free_percpu(tbl->stats); 1748 tbl->stats = NULL; 1749 1750 return 0; 1751 } 1752 EXPORT_SYMBOL(neigh_table_clear); 1753 1754 static struct neigh_table *neigh_find_table(int family) 1755 { 1756 struct neigh_table *tbl = NULL; 1757 1758 switch (family) { 1759 case AF_INET: 1760 tbl = neigh_tables[NEIGH_ARP_TABLE]; 1761 break; 1762 case AF_INET6: 1763 tbl = neigh_tables[NEIGH_ND_TABLE]; 1764 break; 1765 case AF_DECnet: 1766 tbl = neigh_tables[NEIGH_DN_TABLE]; 1767 break; 1768 } 1769 1770 return tbl; 1771 } 1772 1773 const struct nla_policy nda_policy[NDA_MAX+1] = { 1774 [NDA_DST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1775 [NDA_LLADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1776 [NDA_CACHEINFO] = { .len = sizeof(struct nda_cacheinfo) }, 1777 [NDA_PROBES] = { .type = NLA_U32 }, 1778 [NDA_VLAN] = { .type = NLA_U16 }, 1779 [NDA_PORT] = { .type = NLA_U16 }, 1780 [NDA_VNI] = { .type = NLA_U32 }, 1781 [NDA_IFINDEX] = { .type = NLA_U32 }, 1782 [NDA_MASTER] = { .type = NLA_U32 }, 1783 [NDA_PROTOCOL] = { .type = NLA_U8 }, 1784 }; 1785 1786 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, 1787 struct netlink_ext_ack *extack) 1788 { 1789 struct net *net = sock_net(skb->sk); 1790 struct ndmsg *ndm; 1791 struct nlattr *dst_attr; 1792 struct neigh_table *tbl; 1793 struct neighbour *neigh; 1794 struct net_device *dev = NULL; 1795 int err = -EINVAL; 1796 1797 ASSERT_RTNL(); 1798 if (nlmsg_len(nlh) < sizeof(*ndm)) 1799 goto out; 1800 1801 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1802 if (!dst_attr) { 1803 NL_SET_ERR_MSG(extack, "Network address not specified"); 1804 goto out; 1805 } 1806 1807 ndm = nlmsg_data(nlh); 1808 if (ndm->ndm_ifindex) { 1809 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1810 if (dev == NULL) { 1811 err = -ENODEV; 1812 goto out; 1813 } 1814 } 1815 1816 tbl = neigh_find_table(ndm->ndm_family); 1817 if (tbl == NULL) 1818 return -EAFNOSUPPORT; 1819 1820 if (nla_len(dst_attr) < (int)tbl->key_len) { 1821 NL_SET_ERR_MSG(extack, "Invalid network address"); 1822 goto out; 1823 } 1824 1825 if (ndm->ndm_flags & NTF_PROXY) { 1826 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1827 goto out; 1828 } 1829 1830 if (dev == NULL) 1831 goto out; 1832 1833 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1834 if (neigh == NULL) { 1835 err = -ENOENT; 1836 goto out; 1837 } 1838 1839 err = __neigh_update(neigh, NULL, NUD_FAILED, 1840 NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN, 1841 NETLINK_CB(skb).portid, extack); 1842 write_lock_bh(&tbl->lock); 1843 neigh_release(neigh); 1844 neigh_remove_one(neigh, tbl); 1845 write_unlock_bh(&tbl->lock); 1846 1847 out: 1848 return err; 1849 } 1850 1851 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, 1852 struct netlink_ext_ack *extack) 1853 { 1854 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE | 1855 NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1856 struct net *net = sock_net(skb->sk); 1857 struct ndmsg *ndm; 1858 struct nlattr *tb[NDA_MAX+1]; 1859 struct neigh_table *tbl; 1860 struct net_device *dev = NULL; 1861 struct neighbour *neigh; 1862 void *dst, *lladdr; 1863 u8 protocol = 0; 1864 int err; 1865 1866 ASSERT_RTNL(); 1867 err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX, 1868 nda_policy, extack); 1869 if (err < 0) 1870 goto out; 1871 1872 err = -EINVAL; 1873 if (!tb[NDA_DST]) { 1874 NL_SET_ERR_MSG(extack, "Network address not specified"); 1875 goto out; 1876 } 1877 1878 ndm = nlmsg_data(nlh); 1879 if (ndm->ndm_ifindex) { 1880 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1881 if (dev == NULL) { 1882 err = -ENODEV; 1883 goto out; 1884 } 1885 1886 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) { 1887 NL_SET_ERR_MSG(extack, "Invalid link address"); 1888 goto out; 1889 } 1890 } 1891 1892 tbl = neigh_find_table(ndm->ndm_family); 1893 if (tbl == NULL) 1894 return -EAFNOSUPPORT; 1895 1896 if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) { 1897 NL_SET_ERR_MSG(extack, "Invalid network address"); 1898 goto out; 1899 } 1900 1901 dst = nla_data(tb[NDA_DST]); 1902 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1903 1904 if (tb[NDA_PROTOCOL]) 1905 protocol = nla_get_u8(tb[NDA_PROTOCOL]); 1906 1907 if (ndm->ndm_flags & NTF_PROXY) { 1908 struct pneigh_entry *pn; 1909 1910 err = -ENOBUFS; 1911 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1912 if (pn) { 1913 pn->flags = ndm->ndm_flags; 1914 if (protocol) 1915 pn->protocol = protocol; 1916 err = 0; 1917 } 1918 goto out; 1919 } 1920 1921 if (!dev) { 1922 NL_SET_ERR_MSG(extack, "Device not specified"); 1923 goto out; 1924 } 1925 1926 if (tbl->allow_add && !tbl->allow_add(dev, extack)) { 1927 err = -EINVAL; 1928 goto out; 1929 } 1930 1931 neigh = neigh_lookup(tbl, dst, dev); 1932 if (neigh == NULL) { 1933 bool exempt_from_gc; 1934 1935 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1936 err = -ENOENT; 1937 goto out; 1938 } 1939 1940 exempt_from_gc = ndm->ndm_state & NUD_PERMANENT || 1941 ndm->ndm_flags & NTF_EXT_LEARNED; 1942 neigh = ___neigh_create(tbl, dst, dev, exempt_from_gc, true); 1943 if (IS_ERR(neigh)) { 1944 err = PTR_ERR(neigh); 1945 goto out; 1946 } 1947 } else { 1948 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1949 err = -EEXIST; 1950 neigh_release(neigh); 1951 goto out; 1952 } 1953 1954 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1955 flags &= ~(NEIGH_UPDATE_F_OVERRIDE | 1956 NEIGH_UPDATE_F_OVERRIDE_ISROUTER); 1957 } 1958 1959 if (protocol) 1960 neigh->protocol = protocol; 1961 1962 if (ndm->ndm_flags & NTF_EXT_LEARNED) 1963 flags |= NEIGH_UPDATE_F_EXT_LEARNED; 1964 1965 if (ndm->ndm_flags & NTF_ROUTER) 1966 flags |= NEIGH_UPDATE_F_ISROUTER; 1967 1968 if (ndm->ndm_flags & NTF_USE) { 1969 neigh_event_send(neigh, NULL); 1970 err = 0; 1971 } else 1972 err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags, 1973 NETLINK_CB(skb).portid, extack); 1974 1975 neigh_release(neigh); 1976 1977 out: 1978 return err; 1979 } 1980 1981 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1982 { 1983 struct nlattr *nest; 1984 1985 nest = nla_nest_start_noflag(skb, NDTA_PARMS); 1986 if (nest == NULL) 1987 return -ENOBUFS; 1988 1989 if ((parms->dev && 1990 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) || 1991 nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) || 1992 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, 1993 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) || 1994 /* approximative value for deprecated QUEUE_LEN (in packets) */ 1995 nla_put_u32(skb, NDTPA_QUEUE_LEN, 1996 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) || 1997 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) || 1998 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) || 1999 nla_put_u32(skb, NDTPA_UCAST_PROBES, 2000 NEIGH_VAR(parms, UCAST_PROBES)) || 2001 nla_put_u32(skb, NDTPA_MCAST_PROBES, 2002 NEIGH_VAR(parms, MCAST_PROBES)) || 2003 nla_put_u32(skb, NDTPA_MCAST_REPROBES, 2004 NEIGH_VAR(parms, MCAST_REPROBES)) || 2005 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time, 2006 NDTPA_PAD) || 2007 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME, 2008 NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) || 2009 nla_put_msecs(skb, NDTPA_GC_STALETIME, 2010 NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) || 2011 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME, 2012 NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) || 2013 nla_put_msecs(skb, NDTPA_RETRANS_TIME, 2014 NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) || 2015 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, 2016 NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) || 2017 nla_put_msecs(skb, NDTPA_PROXY_DELAY, 2018 NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) || 2019 nla_put_msecs(skb, NDTPA_LOCKTIME, 2020 NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD)) 2021 goto nla_put_failure; 2022 return nla_nest_end(skb, nest); 2023 2024 nla_put_failure: 2025 nla_nest_cancel(skb, nest); 2026 return -EMSGSIZE; 2027 } 2028 2029 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 2030 u32 pid, u32 seq, int type, int flags) 2031 { 2032 struct nlmsghdr *nlh; 2033 struct ndtmsg *ndtmsg; 2034 2035 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2036 if (nlh == NULL) 2037 return -EMSGSIZE; 2038 2039 ndtmsg = nlmsg_data(nlh); 2040 2041 read_lock_bh(&tbl->lock); 2042 ndtmsg->ndtm_family = tbl->family; 2043 ndtmsg->ndtm_pad1 = 0; 2044 ndtmsg->ndtm_pad2 = 0; 2045 2046 if (nla_put_string(skb, NDTA_NAME, tbl->id) || 2047 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval, NDTA_PAD) || 2048 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) || 2049 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) || 2050 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3)) 2051 goto nla_put_failure; 2052 { 2053 unsigned long now = jiffies; 2054 long flush_delta = now - tbl->last_flush; 2055 long rand_delta = now - tbl->last_rand; 2056 struct neigh_hash_table *nht; 2057 struct ndt_config ndc = { 2058 .ndtc_key_len = tbl->key_len, 2059 .ndtc_entry_size = tbl->entry_size, 2060 .ndtc_entries = atomic_read(&tbl->entries), 2061 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 2062 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 2063 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 2064 }; 2065 2066 rcu_read_lock_bh(); 2067 nht = rcu_dereference_bh(tbl->nht); 2068 ndc.ndtc_hash_rnd = nht->hash_rnd[0]; 2069 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); 2070 rcu_read_unlock_bh(); 2071 2072 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc)) 2073 goto nla_put_failure; 2074 } 2075 2076 { 2077 int cpu; 2078 struct ndt_stats ndst; 2079 2080 memset(&ndst, 0, sizeof(ndst)); 2081 2082 for_each_possible_cpu(cpu) { 2083 struct neigh_statistics *st; 2084 2085 st = per_cpu_ptr(tbl->stats, cpu); 2086 ndst.ndts_allocs += st->allocs; 2087 ndst.ndts_destroys += st->destroys; 2088 ndst.ndts_hash_grows += st->hash_grows; 2089 ndst.ndts_res_failed += st->res_failed; 2090 ndst.ndts_lookups += st->lookups; 2091 ndst.ndts_hits += st->hits; 2092 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 2093 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 2094 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 2095 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 2096 ndst.ndts_table_fulls += st->table_fulls; 2097 } 2098 2099 if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst, 2100 NDTA_PAD)) 2101 goto nla_put_failure; 2102 } 2103 2104 BUG_ON(tbl->parms.dev); 2105 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 2106 goto nla_put_failure; 2107 2108 read_unlock_bh(&tbl->lock); 2109 nlmsg_end(skb, nlh); 2110 return 0; 2111 2112 nla_put_failure: 2113 read_unlock_bh(&tbl->lock); 2114 nlmsg_cancel(skb, nlh); 2115 return -EMSGSIZE; 2116 } 2117 2118 static int neightbl_fill_param_info(struct sk_buff *skb, 2119 struct neigh_table *tbl, 2120 struct neigh_parms *parms, 2121 u32 pid, u32 seq, int type, 2122 unsigned int flags) 2123 { 2124 struct ndtmsg *ndtmsg; 2125 struct nlmsghdr *nlh; 2126 2127 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2128 if (nlh == NULL) 2129 return -EMSGSIZE; 2130 2131 ndtmsg = nlmsg_data(nlh); 2132 2133 read_lock_bh(&tbl->lock); 2134 ndtmsg->ndtm_family = tbl->family; 2135 ndtmsg->ndtm_pad1 = 0; 2136 ndtmsg->ndtm_pad2 = 0; 2137 2138 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 2139 neightbl_fill_parms(skb, parms) < 0) 2140 goto errout; 2141 2142 read_unlock_bh(&tbl->lock); 2143 nlmsg_end(skb, nlh); 2144 return 0; 2145 errout: 2146 read_unlock_bh(&tbl->lock); 2147 nlmsg_cancel(skb, nlh); 2148 return -EMSGSIZE; 2149 } 2150 2151 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 2152 [NDTA_NAME] = { .type = NLA_STRING }, 2153 [NDTA_THRESH1] = { .type = NLA_U32 }, 2154 [NDTA_THRESH2] = { .type = NLA_U32 }, 2155 [NDTA_THRESH3] = { .type = NLA_U32 }, 2156 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 2157 [NDTA_PARMS] = { .type = NLA_NESTED }, 2158 }; 2159 2160 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 2161 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 2162 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 2163 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 2164 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 2165 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 2166 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 2167 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 }, 2168 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 2169 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 2170 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 2171 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 2172 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 2173 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 2174 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 2175 }; 2176 2177 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, 2178 struct netlink_ext_ack *extack) 2179 { 2180 struct net *net = sock_net(skb->sk); 2181 struct neigh_table *tbl; 2182 struct ndtmsg *ndtmsg; 2183 struct nlattr *tb[NDTA_MAX+1]; 2184 bool found = false; 2185 int err, tidx; 2186 2187 err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 2188 nl_neightbl_policy, extack); 2189 if (err < 0) 2190 goto errout; 2191 2192 if (tb[NDTA_NAME] == NULL) { 2193 err = -EINVAL; 2194 goto errout; 2195 } 2196 2197 ndtmsg = nlmsg_data(nlh); 2198 2199 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2200 tbl = neigh_tables[tidx]; 2201 if (!tbl) 2202 continue; 2203 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 2204 continue; 2205 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) { 2206 found = true; 2207 break; 2208 } 2209 } 2210 2211 if (!found) 2212 return -ENOENT; 2213 2214 /* 2215 * We acquire tbl->lock to be nice to the periodic timers and 2216 * make sure they always see a consistent set of values. 2217 */ 2218 write_lock_bh(&tbl->lock); 2219 2220 if (tb[NDTA_PARMS]) { 2221 struct nlattr *tbp[NDTPA_MAX+1]; 2222 struct neigh_parms *p; 2223 int i, ifindex = 0; 2224 2225 err = nla_parse_nested_deprecated(tbp, NDTPA_MAX, 2226 tb[NDTA_PARMS], 2227 nl_ntbl_parm_policy, extack); 2228 if (err < 0) 2229 goto errout_tbl_lock; 2230 2231 if (tbp[NDTPA_IFINDEX]) 2232 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 2233 2234 p = lookup_neigh_parms(tbl, net, ifindex); 2235 if (p == NULL) { 2236 err = -ENOENT; 2237 goto errout_tbl_lock; 2238 } 2239 2240 for (i = 1; i <= NDTPA_MAX; i++) { 2241 if (tbp[i] == NULL) 2242 continue; 2243 2244 switch (i) { 2245 case NDTPA_QUEUE_LEN: 2246 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2247 nla_get_u32(tbp[i]) * 2248 SKB_TRUESIZE(ETH_FRAME_LEN)); 2249 break; 2250 case NDTPA_QUEUE_LENBYTES: 2251 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2252 nla_get_u32(tbp[i])); 2253 break; 2254 case NDTPA_PROXY_QLEN: 2255 NEIGH_VAR_SET(p, PROXY_QLEN, 2256 nla_get_u32(tbp[i])); 2257 break; 2258 case NDTPA_APP_PROBES: 2259 NEIGH_VAR_SET(p, APP_PROBES, 2260 nla_get_u32(tbp[i])); 2261 break; 2262 case NDTPA_UCAST_PROBES: 2263 NEIGH_VAR_SET(p, UCAST_PROBES, 2264 nla_get_u32(tbp[i])); 2265 break; 2266 case NDTPA_MCAST_PROBES: 2267 NEIGH_VAR_SET(p, MCAST_PROBES, 2268 nla_get_u32(tbp[i])); 2269 break; 2270 case NDTPA_MCAST_REPROBES: 2271 NEIGH_VAR_SET(p, MCAST_REPROBES, 2272 nla_get_u32(tbp[i])); 2273 break; 2274 case NDTPA_BASE_REACHABLE_TIME: 2275 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME, 2276 nla_get_msecs(tbp[i])); 2277 /* update reachable_time as well, otherwise, the change will 2278 * only be effective after the next time neigh_periodic_work 2279 * decides to recompute it (can be multiple minutes) 2280 */ 2281 p->reachable_time = 2282 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 2283 break; 2284 case NDTPA_GC_STALETIME: 2285 NEIGH_VAR_SET(p, GC_STALETIME, 2286 nla_get_msecs(tbp[i])); 2287 break; 2288 case NDTPA_DELAY_PROBE_TIME: 2289 NEIGH_VAR_SET(p, DELAY_PROBE_TIME, 2290 nla_get_msecs(tbp[i])); 2291 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 2292 break; 2293 case NDTPA_RETRANS_TIME: 2294 NEIGH_VAR_SET(p, RETRANS_TIME, 2295 nla_get_msecs(tbp[i])); 2296 break; 2297 case NDTPA_ANYCAST_DELAY: 2298 NEIGH_VAR_SET(p, ANYCAST_DELAY, 2299 nla_get_msecs(tbp[i])); 2300 break; 2301 case NDTPA_PROXY_DELAY: 2302 NEIGH_VAR_SET(p, PROXY_DELAY, 2303 nla_get_msecs(tbp[i])); 2304 break; 2305 case NDTPA_LOCKTIME: 2306 NEIGH_VAR_SET(p, LOCKTIME, 2307 nla_get_msecs(tbp[i])); 2308 break; 2309 } 2310 } 2311 } 2312 2313 err = -ENOENT; 2314 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] || 2315 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) && 2316 !net_eq(net, &init_net)) 2317 goto errout_tbl_lock; 2318 2319 if (tb[NDTA_THRESH1]) 2320 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 2321 2322 if (tb[NDTA_THRESH2]) 2323 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 2324 2325 if (tb[NDTA_THRESH3]) 2326 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 2327 2328 if (tb[NDTA_GC_INTERVAL]) 2329 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 2330 2331 err = 0; 2332 2333 errout_tbl_lock: 2334 write_unlock_bh(&tbl->lock); 2335 errout: 2336 return err; 2337 } 2338 2339 static int neightbl_valid_dump_info(const struct nlmsghdr *nlh, 2340 struct netlink_ext_ack *extack) 2341 { 2342 struct ndtmsg *ndtm; 2343 2344 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) { 2345 NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request"); 2346 return -EINVAL; 2347 } 2348 2349 ndtm = nlmsg_data(nlh); 2350 if (ndtm->ndtm_pad1 || ndtm->ndtm_pad2) { 2351 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request"); 2352 return -EINVAL; 2353 } 2354 2355 if (nlmsg_attrlen(nlh, sizeof(*ndtm))) { 2356 NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request"); 2357 return -EINVAL; 2358 } 2359 2360 return 0; 2361 } 2362 2363 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2364 { 2365 const struct nlmsghdr *nlh = cb->nlh; 2366 struct net *net = sock_net(skb->sk); 2367 int family, tidx, nidx = 0; 2368 int tbl_skip = cb->args[0]; 2369 int neigh_skip = cb->args[1]; 2370 struct neigh_table *tbl; 2371 2372 if (cb->strict_check) { 2373 int err = neightbl_valid_dump_info(nlh, cb->extack); 2374 2375 if (err < 0) 2376 return err; 2377 } 2378 2379 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2380 2381 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2382 struct neigh_parms *p; 2383 2384 tbl = neigh_tables[tidx]; 2385 if (!tbl) 2386 continue; 2387 2388 if (tidx < tbl_skip || (family && tbl->family != family)) 2389 continue; 2390 2391 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid, 2392 nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2393 NLM_F_MULTI) < 0) 2394 break; 2395 2396 nidx = 0; 2397 p = list_next_entry(&tbl->parms, list); 2398 list_for_each_entry_from(p, &tbl->parms_list, list) { 2399 if (!net_eq(neigh_parms_net(p), net)) 2400 continue; 2401 2402 if (nidx < neigh_skip) 2403 goto next; 2404 2405 if (neightbl_fill_param_info(skb, tbl, p, 2406 NETLINK_CB(cb->skb).portid, 2407 nlh->nlmsg_seq, 2408 RTM_NEWNEIGHTBL, 2409 NLM_F_MULTI) < 0) 2410 goto out; 2411 next: 2412 nidx++; 2413 } 2414 2415 neigh_skip = 0; 2416 } 2417 out: 2418 cb->args[0] = tidx; 2419 cb->args[1] = nidx; 2420 2421 return skb->len; 2422 } 2423 2424 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2425 u32 pid, u32 seq, int type, unsigned int flags) 2426 { 2427 unsigned long now = jiffies; 2428 struct nda_cacheinfo ci; 2429 struct nlmsghdr *nlh; 2430 struct ndmsg *ndm; 2431 2432 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2433 if (nlh == NULL) 2434 return -EMSGSIZE; 2435 2436 ndm = nlmsg_data(nlh); 2437 ndm->ndm_family = neigh->ops->family; 2438 ndm->ndm_pad1 = 0; 2439 ndm->ndm_pad2 = 0; 2440 ndm->ndm_flags = neigh->flags; 2441 ndm->ndm_type = neigh->type; 2442 ndm->ndm_ifindex = neigh->dev->ifindex; 2443 2444 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key)) 2445 goto nla_put_failure; 2446 2447 read_lock_bh(&neigh->lock); 2448 ndm->ndm_state = neigh->nud_state; 2449 if (neigh->nud_state & NUD_VALID) { 2450 char haddr[MAX_ADDR_LEN]; 2451 2452 neigh_ha_snapshot(haddr, neigh, neigh->dev); 2453 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { 2454 read_unlock_bh(&neigh->lock); 2455 goto nla_put_failure; 2456 } 2457 } 2458 2459 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2460 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2461 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2462 ci.ndm_refcnt = refcount_read(&neigh->refcnt) - 1; 2463 read_unlock_bh(&neigh->lock); 2464 2465 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) || 2466 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci)) 2467 goto nla_put_failure; 2468 2469 if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol)) 2470 goto nla_put_failure; 2471 2472 nlmsg_end(skb, nlh); 2473 return 0; 2474 2475 nla_put_failure: 2476 nlmsg_cancel(skb, nlh); 2477 return -EMSGSIZE; 2478 } 2479 2480 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, 2481 u32 pid, u32 seq, int type, unsigned int flags, 2482 struct neigh_table *tbl) 2483 { 2484 struct nlmsghdr *nlh; 2485 struct ndmsg *ndm; 2486 2487 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2488 if (nlh == NULL) 2489 return -EMSGSIZE; 2490 2491 ndm = nlmsg_data(nlh); 2492 ndm->ndm_family = tbl->family; 2493 ndm->ndm_pad1 = 0; 2494 ndm->ndm_pad2 = 0; 2495 ndm->ndm_flags = pn->flags | NTF_PROXY; 2496 ndm->ndm_type = RTN_UNICAST; 2497 ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0; 2498 ndm->ndm_state = NUD_NONE; 2499 2500 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key)) 2501 goto nla_put_failure; 2502 2503 if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol)) 2504 goto nla_put_failure; 2505 2506 nlmsg_end(skb, nlh); 2507 return 0; 2508 2509 nla_put_failure: 2510 nlmsg_cancel(skb, nlh); 2511 return -EMSGSIZE; 2512 } 2513 2514 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid) 2515 { 2516 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2517 __neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid); 2518 } 2519 2520 static bool neigh_master_filtered(struct net_device *dev, int master_idx) 2521 { 2522 struct net_device *master; 2523 2524 if (!master_idx) 2525 return false; 2526 2527 master = dev ? netdev_master_upper_dev_get(dev) : NULL; 2528 if (!master || master->ifindex != master_idx) 2529 return true; 2530 2531 return false; 2532 } 2533 2534 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx) 2535 { 2536 if (filter_idx && (!dev || dev->ifindex != filter_idx)) 2537 return true; 2538 2539 return false; 2540 } 2541 2542 struct neigh_dump_filter { 2543 int master_idx; 2544 int dev_idx; 2545 }; 2546 2547 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2548 struct netlink_callback *cb, 2549 struct neigh_dump_filter *filter) 2550 { 2551 struct net *net = sock_net(skb->sk); 2552 struct neighbour *n; 2553 int rc, h, s_h = cb->args[1]; 2554 int idx, s_idx = idx = cb->args[2]; 2555 struct neigh_hash_table *nht; 2556 unsigned int flags = NLM_F_MULTI; 2557 2558 if (filter->dev_idx || filter->master_idx) 2559 flags |= NLM_F_DUMP_FILTERED; 2560 2561 rcu_read_lock_bh(); 2562 nht = rcu_dereference_bh(tbl->nht); 2563 2564 for (h = s_h; h < (1 << nht->hash_shift); h++) { 2565 if (h > s_h) 2566 s_idx = 0; 2567 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; 2568 n != NULL; 2569 n = rcu_dereference_bh(n->next)) { 2570 if (idx < s_idx || !net_eq(dev_net(n->dev), net)) 2571 goto next; 2572 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2573 neigh_master_filtered(n->dev, filter->master_idx)) 2574 goto next; 2575 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2576 cb->nlh->nlmsg_seq, 2577 RTM_NEWNEIGH, 2578 flags) < 0) { 2579 rc = -1; 2580 goto out; 2581 } 2582 next: 2583 idx++; 2584 } 2585 } 2586 rc = skb->len; 2587 out: 2588 rcu_read_unlock_bh(); 2589 cb->args[1] = h; 2590 cb->args[2] = idx; 2591 return rc; 2592 } 2593 2594 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2595 struct netlink_callback *cb, 2596 struct neigh_dump_filter *filter) 2597 { 2598 struct pneigh_entry *n; 2599 struct net *net = sock_net(skb->sk); 2600 int rc, h, s_h = cb->args[3]; 2601 int idx, s_idx = idx = cb->args[4]; 2602 unsigned int flags = NLM_F_MULTI; 2603 2604 if (filter->dev_idx || filter->master_idx) 2605 flags |= NLM_F_DUMP_FILTERED; 2606 2607 read_lock_bh(&tbl->lock); 2608 2609 for (h = s_h; h <= PNEIGH_HASHMASK; h++) { 2610 if (h > s_h) 2611 s_idx = 0; 2612 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { 2613 if (idx < s_idx || pneigh_net(n) != net) 2614 goto next; 2615 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2616 neigh_master_filtered(n->dev, filter->master_idx)) 2617 goto next; 2618 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2619 cb->nlh->nlmsg_seq, 2620 RTM_NEWNEIGH, flags, tbl) < 0) { 2621 read_unlock_bh(&tbl->lock); 2622 rc = -1; 2623 goto out; 2624 } 2625 next: 2626 idx++; 2627 } 2628 } 2629 2630 read_unlock_bh(&tbl->lock); 2631 rc = skb->len; 2632 out: 2633 cb->args[3] = h; 2634 cb->args[4] = idx; 2635 return rc; 2636 2637 } 2638 2639 static int neigh_valid_dump_req(const struct nlmsghdr *nlh, 2640 bool strict_check, 2641 struct neigh_dump_filter *filter, 2642 struct netlink_ext_ack *extack) 2643 { 2644 struct nlattr *tb[NDA_MAX + 1]; 2645 int err, i; 2646 2647 if (strict_check) { 2648 struct ndmsg *ndm; 2649 2650 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2651 NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request"); 2652 return -EINVAL; 2653 } 2654 2655 ndm = nlmsg_data(nlh); 2656 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_ifindex || 2657 ndm->ndm_state || ndm->ndm_type) { 2658 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request"); 2659 return -EINVAL; 2660 } 2661 2662 if (ndm->ndm_flags & ~NTF_PROXY) { 2663 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request"); 2664 return -EINVAL; 2665 } 2666 2667 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), 2668 tb, NDA_MAX, nda_policy, 2669 extack); 2670 } else { 2671 err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb, 2672 NDA_MAX, nda_policy, extack); 2673 } 2674 if (err < 0) 2675 return err; 2676 2677 for (i = 0; i <= NDA_MAX; ++i) { 2678 if (!tb[i]) 2679 continue; 2680 2681 /* all new attributes should require strict_check */ 2682 switch (i) { 2683 case NDA_IFINDEX: 2684 filter->dev_idx = nla_get_u32(tb[i]); 2685 break; 2686 case NDA_MASTER: 2687 filter->master_idx = nla_get_u32(tb[i]); 2688 break; 2689 default: 2690 if (strict_check) { 2691 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request"); 2692 return -EINVAL; 2693 } 2694 } 2695 } 2696 2697 return 0; 2698 } 2699 2700 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2701 { 2702 const struct nlmsghdr *nlh = cb->nlh; 2703 struct neigh_dump_filter filter = {}; 2704 struct neigh_table *tbl; 2705 int t, family, s_t; 2706 int proxy = 0; 2707 int err; 2708 2709 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2710 2711 /* check for full ndmsg structure presence, family member is 2712 * the same for both structures 2713 */ 2714 if (nlmsg_len(nlh) >= sizeof(struct ndmsg) && 2715 ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY) 2716 proxy = 1; 2717 2718 err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack); 2719 if (err < 0 && cb->strict_check) 2720 return err; 2721 2722 s_t = cb->args[0]; 2723 2724 for (t = 0; t < NEIGH_NR_TABLES; t++) { 2725 tbl = neigh_tables[t]; 2726 2727 if (!tbl) 2728 continue; 2729 if (t < s_t || (family && tbl->family != family)) 2730 continue; 2731 if (t > s_t) 2732 memset(&cb->args[1], 0, sizeof(cb->args) - 2733 sizeof(cb->args[0])); 2734 if (proxy) 2735 err = pneigh_dump_table(tbl, skb, cb, &filter); 2736 else 2737 err = neigh_dump_table(tbl, skb, cb, &filter); 2738 if (err < 0) 2739 break; 2740 } 2741 2742 cb->args[0] = t; 2743 return skb->len; 2744 } 2745 2746 static int neigh_valid_get_req(const struct nlmsghdr *nlh, 2747 struct neigh_table **tbl, 2748 void **dst, int *dev_idx, u8 *ndm_flags, 2749 struct netlink_ext_ack *extack) 2750 { 2751 struct nlattr *tb[NDA_MAX + 1]; 2752 struct ndmsg *ndm; 2753 int err, i; 2754 2755 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2756 NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request"); 2757 return -EINVAL; 2758 } 2759 2760 ndm = nlmsg_data(nlh); 2761 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_state || 2762 ndm->ndm_type) { 2763 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request"); 2764 return -EINVAL; 2765 } 2766 2767 if (ndm->ndm_flags & ~NTF_PROXY) { 2768 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request"); 2769 return -EINVAL; 2770 } 2771 2772 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb, 2773 NDA_MAX, nda_policy, extack); 2774 if (err < 0) 2775 return err; 2776 2777 *ndm_flags = ndm->ndm_flags; 2778 *dev_idx = ndm->ndm_ifindex; 2779 *tbl = neigh_find_table(ndm->ndm_family); 2780 if (*tbl == NULL) { 2781 NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request"); 2782 return -EAFNOSUPPORT; 2783 } 2784 2785 for (i = 0; i <= NDA_MAX; ++i) { 2786 if (!tb[i]) 2787 continue; 2788 2789 switch (i) { 2790 case NDA_DST: 2791 if (nla_len(tb[i]) != (int)(*tbl)->key_len) { 2792 NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request"); 2793 return -EINVAL; 2794 } 2795 *dst = nla_data(tb[i]); 2796 break; 2797 default: 2798 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request"); 2799 return -EINVAL; 2800 } 2801 } 2802 2803 return 0; 2804 } 2805 2806 static inline size_t neigh_nlmsg_size(void) 2807 { 2808 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2809 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2810 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2811 + nla_total_size(sizeof(struct nda_cacheinfo)) 2812 + nla_total_size(4) /* NDA_PROBES */ 2813 + nla_total_size(1); /* NDA_PROTOCOL */ 2814 } 2815 2816 static int neigh_get_reply(struct net *net, struct neighbour *neigh, 2817 u32 pid, u32 seq) 2818 { 2819 struct sk_buff *skb; 2820 int err = 0; 2821 2822 skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL); 2823 if (!skb) 2824 return -ENOBUFS; 2825 2826 err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0); 2827 if (err) { 2828 kfree_skb(skb); 2829 goto errout; 2830 } 2831 2832 err = rtnl_unicast(skb, net, pid); 2833 errout: 2834 return err; 2835 } 2836 2837 static inline size_t pneigh_nlmsg_size(void) 2838 { 2839 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2840 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2841 + nla_total_size(1); /* NDA_PROTOCOL */ 2842 } 2843 2844 static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh, 2845 u32 pid, u32 seq, struct neigh_table *tbl) 2846 { 2847 struct sk_buff *skb; 2848 int err = 0; 2849 2850 skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL); 2851 if (!skb) 2852 return -ENOBUFS; 2853 2854 err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl); 2855 if (err) { 2856 kfree_skb(skb); 2857 goto errout; 2858 } 2859 2860 err = rtnl_unicast(skb, net, pid); 2861 errout: 2862 return err; 2863 } 2864 2865 static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2866 struct netlink_ext_ack *extack) 2867 { 2868 struct net *net = sock_net(in_skb->sk); 2869 struct net_device *dev = NULL; 2870 struct neigh_table *tbl = NULL; 2871 struct neighbour *neigh; 2872 void *dst = NULL; 2873 u8 ndm_flags = 0; 2874 int dev_idx = 0; 2875 int err; 2876 2877 err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags, 2878 extack); 2879 if (err < 0) 2880 return err; 2881 2882 if (dev_idx) { 2883 dev = __dev_get_by_index(net, dev_idx); 2884 if (!dev) { 2885 NL_SET_ERR_MSG(extack, "Unknown device ifindex"); 2886 return -ENODEV; 2887 } 2888 } 2889 2890 if (!dst) { 2891 NL_SET_ERR_MSG(extack, "Network address not specified"); 2892 return -EINVAL; 2893 } 2894 2895 if (ndm_flags & NTF_PROXY) { 2896 struct pneigh_entry *pn; 2897 2898 pn = pneigh_lookup(tbl, net, dst, dev, 0); 2899 if (!pn) { 2900 NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found"); 2901 return -ENOENT; 2902 } 2903 return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid, 2904 nlh->nlmsg_seq, tbl); 2905 } 2906 2907 if (!dev) { 2908 NL_SET_ERR_MSG(extack, "No device specified"); 2909 return -EINVAL; 2910 } 2911 2912 neigh = neigh_lookup(tbl, dst, dev); 2913 if (!neigh) { 2914 NL_SET_ERR_MSG(extack, "Neighbour entry not found"); 2915 return -ENOENT; 2916 } 2917 2918 err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid, 2919 nlh->nlmsg_seq); 2920 2921 neigh_release(neigh); 2922 2923 return err; 2924 } 2925 2926 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2927 { 2928 int chain; 2929 struct neigh_hash_table *nht; 2930 2931 rcu_read_lock_bh(); 2932 nht = rcu_dereference_bh(tbl->nht); 2933 2934 read_lock(&tbl->lock); /* avoid resizes */ 2935 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2936 struct neighbour *n; 2937 2938 for (n = rcu_dereference_bh(nht->hash_buckets[chain]); 2939 n != NULL; 2940 n = rcu_dereference_bh(n->next)) 2941 cb(n, cookie); 2942 } 2943 read_unlock(&tbl->lock); 2944 rcu_read_unlock_bh(); 2945 } 2946 EXPORT_SYMBOL(neigh_for_each); 2947 2948 /* The tbl->lock must be held as a writer and BH disabled. */ 2949 void __neigh_for_each_release(struct neigh_table *tbl, 2950 int (*cb)(struct neighbour *)) 2951 { 2952 int chain; 2953 struct neigh_hash_table *nht; 2954 2955 nht = rcu_dereference_protected(tbl->nht, 2956 lockdep_is_held(&tbl->lock)); 2957 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2958 struct neighbour *n; 2959 struct neighbour __rcu **np; 2960 2961 np = &nht->hash_buckets[chain]; 2962 while ((n = rcu_dereference_protected(*np, 2963 lockdep_is_held(&tbl->lock))) != NULL) { 2964 int release; 2965 2966 write_lock(&n->lock); 2967 release = cb(n); 2968 if (release) { 2969 rcu_assign_pointer(*np, 2970 rcu_dereference_protected(n->next, 2971 lockdep_is_held(&tbl->lock))); 2972 neigh_mark_dead(n); 2973 } else 2974 np = &n->next; 2975 write_unlock(&n->lock); 2976 if (release) 2977 neigh_cleanup_and_release(n); 2978 } 2979 } 2980 } 2981 EXPORT_SYMBOL(__neigh_for_each_release); 2982 2983 int neigh_xmit(int index, struct net_device *dev, 2984 const void *addr, struct sk_buff *skb) 2985 { 2986 int err = -EAFNOSUPPORT; 2987 if (likely(index < NEIGH_NR_TABLES)) { 2988 struct neigh_table *tbl; 2989 struct neighbour *neigh; 2990 2991 tbl = neigh_tables[index]; 2992 if (!tbl) 2993 goto out; 2994 rcu_read_lock_bh(); 2995 if (index == NEIGH_ARP_TABLE) { 2996 u32 key = *((u32 *)addr); 2997 2998 neigh = __ipv4_neigh_lookup_noref(dev, key); 2999 } else { 3000 neigh = __neigh_lookup_noref(tbl, addr, dev); 3001 } 3002 if (!neigh) 3003 neigh = __neigh_create(tbl, addr, dev, false); 3004 err = PTR_ERR(neigh); 3005 if (IS_ERR(neigh)) { 3006 rcu_read_unlock_bh(); 3007 goto out_kfree_skb; 3008 } 3009 err = neigh->output(neigh, skb); 3010 rcu_read_unlock_bh(); 3011 } 3012 else if (index == NEIGH_LINK_TABLE) { 3013 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 3014 addr, NULL, skb->len); 3015 if (err < 0) 3016 goto out_kfree_skb; 3017 err = dev_queue_xmit(skb); 3018 } 3019 out: 3020 return err; 3021 out_kfree_skb: 3022 kfree_skb(skb); 3023 goto out; 3024 } 3025 EXPORT_SYMBOL(neigh_xmit); 3026 3027 #ifdef CONFIG_PROC_FS 3028 3029 static struct neighbour *neigh_get_first(struct seq_file *seq) 3030 { 3031 struct neigh_seq_state *state = seq->private; 3032 struct net *net = seq_file_net(seq); 3033 struct neigh_hash_table *nht = state->nht; 3034 struct neighbour *n = NULL; 3035 int bucket; 3036 3037 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 3038 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { 3039 n = rcu_dereference_bh(nht->hash_buckets[bucket]); 3040 3041 while (n) { 3042 if (!net_eq(dev_net(n->dev), net)) 3043 goto next; 3044 if (state->neigh_sub_iter) { 3045 loff_t fakep = 0; 3046 void *v; 3047 3048 v = state->neigh_sub_iter(state, n, &fakep); 3049 if (!v) 3050 goto next; 3051 } 3052 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3053 break; 3054 if (n->nud_state & ~NUD_NOARP) 3055 break; 3056 next: 3057 n = rcu_dereference_bh(n->next); 3058 } 3059 3060 if (n) 3061 break; 3062 } 3063 state->bucket = bucket; 3064 3065 return n; 3066 } 3067 3068 static struct neighbour *neigh_get_next(struct seq_file *seq, 3069 struct neighbour *n, 3070 loff_t *pos) 3071 { 3072 struct neigh_seq_state *state = seq->private; 3073 struct net *net = seq_file_net(seq); 3074 struct neigh_hash_table *nht = state->nht; 3075 3076 if (state->neigh_sub_iter) { 3077 void *v = state->neigh_sub_iter(state, n, pos); 3078 if (v) 3079 return n; 3080 } 3081 n = rcu_dereference_bh(n->next); 3082 3083 while (1) { 3084 while (n) { 3085 if (!net_eq(dev_net(n->dev), net)) 3086 goto next; 3087 if (state->neigh_sub_iter) { 3088 void *v = state->neigh_sub_iter(state, n, pos); 3089 if (v) 3090 return n; 3091 goto next; 3092 } 3093 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3094 break; 3095 3096 if (n->nud_state & ~NUD_NOARP) 3097 break; 3098 next: 3099 n = rcu_dereference_bh(n->next); 3100 } 3101 3102 if (n) 3103 break; 3104 3105 if (++state->bucket >= (1 << nht->hash_shift)) 3106 break; 3107 3108 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); 3109 } 3110 3111 if (n && pos) 3112 --(*pos); 3113 return n; 3114 } 3115 3116 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 3117 { 3118 struct neighbour *n = neigh_get_first(seq); 3119 3120 if (n) { 3121 --(*pos); 3122 while (*pos) { 3123 n = neigh_get_next(seq, n, pos); 3124 if (!n) 3125 break; 3126 } 3127 } 3128 return *pos ? NULL : n; 3129 } 3130 3131 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 3132 { 3133 struct neigh_seq_state *state = seq->private; 3134 struct net *net = seq_file_net(seq); 3135 struct neigh_table *tbl = state->tbl; 3136 struct pneigh_entry *pn = NULL; 3137 int bucket = state->bucket; 3138 3139 state->flags |= NEIGH_SEQ_IS_PNEIGH; 3140 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 3141 pn = tbl->phash_buckets[bucket]; 3142 while (pn && !net_eq(pneigh_net(pn), net)) 3143 pn = pn->next; 3144 if (pn) 3145 break; 3146 } 3147 state->bucket = bucket; 3148 3149 return pn; 3150 } 3151 3152 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 3153 struct pneigh_entry *pn, 3154 loff_t *pos) 3155 { 3156 struct neigh_seq_state *state = seq->private; 3157 struct net *net = seq_file_net(seq); 3158 struct neigh_table *tbl = state->tbl; 3159 3160 do { 3161 pn = pn->next; 3162 } while (pn && !net_eq(pneigh_net(pn), net)); 3163 3164 while (!pn) { 3165 if (++state->bucket > PNEIGH_HASHMASK) 3166 break; 3167 pn = tbl->phash_buckets[state->bucket]; 3168 while (pn && !net_eq(pneigh_net(pn), net)) 3169 pn = pn->next; 3170 if (pn) 3171 break; 3172 } 3173 3174 if (pn && pos) 3175 --(*pos); 3176 3177 return pn; 3178 } 3179 3180 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 3181 { 3182 struct pneigh_entry *pn = pneigh_get_first(seq); 3183 3184 if (pn) { 3185 --(*pos); 3186 while (*pos) { 3187 pn = pneigh_get_next(seq, pn, pos); 3188 if (!pn) 3189 break; 3190 } 3191 } 3192 return *pos ? NULL : pn; 3193 } 3194 3195 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 3196 { 3197 struct neigh_seq_state *state = seq->private; 3198 void *rc; 3199 loff_t idxpos = *pos; 3200 3201 rc = neigh_get_idx(seq, &idxpos); 3202 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3203 rc = pneigh_get_idx(seq, &idxpos); 3204 3205 return rc; 3206 } 3207 3208 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 3209 __acquires(tbl->lock) 3210 __acquires(rcu_bh) 3211 { 3212 struct neigh_seq_state *state = seq->private; 3213 3214 state->tbl = tbl; 3215 state->bucket = 0; 3216 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 3217 3218 rcu_read_lock_bh(); 3219 state->nht = rcu_dereference_bh(tbl->nht); 3220 read_lock(&tbl->lock); 3221 3222 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 3223 } 3224 EXPORT_SYMBOL(neigh_seq_start); 3225 3226 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3227 { 3228 struct neigh_seq_state *state; 3229 void *rc; 3230 3231 if (v == SEQ_START_TOKEN) { 3232 rc = neigh_get_first(seq); 3233 goto out; 3234 } 3235 3236 state = seq->private; 3237 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 3238 rc = neigh_get_next(seq, v, NULL); 3239 if (rc) 3240 goto out; 3241 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3242 rc = pneigh_get_first(seq); 3243 } else { 3244 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 3245 rc = pneigh_get_next(seq, v, NULL); 3246 } 3247 out: 3248 ++(*pos); 3249 return rc; 3250 } 3251 EXPORT_SYMBOL(neigh_seq_next); 3252 3253 void neigh_seq_stop(struct seq_file *seq, void *v) 3254 __releases(tbl->lock) 3255 __releases(rcu_bh) 3256 { 3257 struct neigh_seq_state *state = seq->private; 3258 struct neigh_table *tbl = state->tbl; 3259 3260 read_unlock(&tbl->lock); 3261 rcu_read_unlock_bh(); 3262 } 3263 EXPORT_SYMBOL(neigh_seq_stop); 3264 3265 /* statistics via seq_file */ 3266 3267 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 3268 { 3269 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3270 int cpu; 3271 3272 if (*pos == 0) 3273 return SEQ_START_TOKEN; 3274 3275 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 3276 if (!cpu_possible(cpu)) 3277 continue; 3278 *pos = cpu+1; 3279 return per_cpu_ptr(tbl->stats, cpu); 3280 } 3281 return NULL; 3282 } 3283 3284 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3285 { 3286 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3287 int cpu; 3288 3289 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 3290 if (!cpu_possible(cpu)) 3291 continue; 3292 *pos = cpu+1; 3293 return per_cpu_ptr(tbl->stats, cpu); 3294 } 3295 (*pos)++; 3296 return NULL; 3297 } 3298 3299 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 3300 { 3301 3302 } 3303 3304 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 3305 { 3306 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3307 struct neigh_statistics *st = v; 3308 3309 if (v == SEQ_START_TOKEN) { 3310 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n"); 3311 return 0; 3312 } 3313 3314 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 3315 "%08lx %08lx %08lx %08lx %08lx %08lx\n", 3316 atomic_read(&tbl->entries), 3317 3318 st->allocs, 3319 st->destroys, 3320 st->hash_grows, 3321 3322 st->lookups, 3323 st->hits, 3324 3325 st->res_failed, 3326 3327 st->rcv_probes_mcast, 3328 st->rcv_probes_ucast, 3329 3330 st->periodic_gc_runs, 3331 st->forced_gc_runs, 3332 st->unres_discards, 3333 st->table_fulls 3334 ); 3335 3336 return 0; 3337 } 3338 3339 static const struct seq_operations neigh_stat_seq_ops = { 3340 .start = neigh_stat_seq_start, 3341 .next = neigh_stat_seq_next, 3342 .stop = neigh_stat_seq_stop, 3343 .show = neigh_stat_seq_show, 3344 }; 3345 #endif /* CONFIG_PROC_FS */ 3346 3347 static void __neigh_notify(struct neighbour *n, int type, int flags, 3348 u32 pid) 3349 { 3350 struct net *net = dev_net(n->dev); 3351 struct sk_buff *skb; 3352 int err = -ENOBUFS; 3353 3354 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 3355 if (skb == NULL) 3356 goto errout; 3357 3358 err = neigh_fill_info(skb, n, pid, 0, type, flags); 3359 if (err < 0) { 3360 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 3361 WARN_ON(err == -EMSGSIZE); 3362 kfree_skb(skb); 3363 goto errout; 3364 } 3365 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 3366 return; 3367 errout: 3368 if (err < 0) 3369 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 3370 } 3371 3372 void neigh_app_ns(struct neighbour *n) 3373 { 3374 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0); 3375 } 3376 EXPORT_SYMBOL(neigh_app_ns); 3377 3378 #ifdef CONFIG_SYSCTL 3379 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN); 3380 3381 static int proc_unres_qlen(struct ctl_table *ctl, int write, 3382 void __user *buffer, size_t *lenp, loff_t *ppos) 3383 { 3384 int size, ret; 3385 struct ctl_table tmp = *ctl; 3386 3387 tmp.extra1 = SYSCTL_ZERO; 3388 tmp.extra2 = &unres_qlen_max; 3389 tmp.data = &size; 3390 3391 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN); 3392 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3393 3394 if (write && !ret) 3395 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); 3396 return ret; 3397 } 3398 3399 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev, 3400 int family) 3401 { 3402 switch (family) { 3403 case AF_INET: 3404 return __in_dev_arp_parms_get_rcu(dev); 3405 case AF_INET6: 3406 return __in6_dev_nd_parms_get_rcu(dev); 3407 } 3408 return NULL; 3409 } 3410 3411 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p, 3412 int index) 3413 { 3414 struct net_device *dev; 3415 int family = neigh_parms_family(p); 3416 3417 rcu_read_lock(); 3418 for_each_netdev_rcu(net, dev) { 3419 struct neigh_parms *dst_p = 3420 neigh_get_dev_parms_rcu(dev, family); 3421 3422 if (dst_p && !test_bit(index, dst_p->data_state)) 3423 dst_p->data[index] = p->data[index]; 3424 } 3425 rcu_read_unlock(); 3426 } 3427 3428 static void neigh_proc_update(struct ctl_table *ctl, int write) 3429 { 3430 struct net_device *dev = ctl->extra1; 3431 struct neigh_parms *p = ctl->extra2; 3432 struct net *net = neigh_parms_net(p); 3433 int index = (int *) ctl->data - p->data; 3434 3435 if (!write) 3436 return; 3437 3438 set_bit(index, p->data_state); 3439 if (index == NEIGH_VAR_DELAY_PROBE_TIME) 3440 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 3441 if (!dev) /* NULL dev means this is default value */ 3442 neigh_copy_dflt_parms(net, p, index); 3443 } 3444 3445 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write, 3446 void __user *buffer, 3447 size_t *lenp, loff_t *ppos) 3448 { 3449 struct ctl_table tmp = *ctl; 3450 int ret; 3451 3452 tmp.extra1 = SYSCTL_ZERO; 3453 tmp.extra2 = SYSCTL_INT_MAX; 3454 3455 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3456 neigh_proc_update(ctl, write); 3457 return ret; 3458 } 3459 3460 int neigh_proc_dointvec(struct ctl_table *ctl, int write, 3461 void __user *buffer, size_t *lenp, loff_t *ppos) 3462 { 3463 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 3464 3465 neigh_proc_update(ctl, write); 3466 return ret; 3467 } 3468 EXPORT_SYMBOL(neigh_proc_dointvec); 3469 3470 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, 3471 void __user *buffer, 3472 size_t *lenp, loff_t *ppos) 3473 { 3474 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3475 3476 neigh_proc_update(ctl, write); 3477 return ret; 3478 } 3479 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies); 3480 3481 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write, 3482 void __user *buffer, 3483 size_t *lenp, loff_t *ppos) 3484 { 3485 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos); 3486 3487 neigh_proc_update(ctl, write); 3488 return ret; 3489 } 3490 3491 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write, 3492 void __user *buffer, 3493 size_t *lenp, loff_t *ppos) 3494 { 3495 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3496 3497 neigh_proc_update(ctl, write); 3498 return ret; 3499 } 3500 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies); 3501 3502 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write, 3503 void __user *buffer, 3504 size_t *lenp, loff_t *ppos) 3505 { 3506 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos); 3507 3508 neigh_proc_update(ctl, write); 3509 return ret; 3510 } 3511 3512 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write, 3513 void __user *buffer, 3514 size_t *lenp, loff_t *ppos) 3515 { 3516 struct neigh_parms *p = ctl->extra2; 3517 int ret; 3518 3519 if (strcmp(ctl->procname, "base_reachable_time") == 0) 3520 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3521 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0) 3522 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3523 else 3524 ret = -1; 3525 3526 if (write && ret == 0) { 3527 /* update reachable_time as well, otherwise, the change will 3528 * only be effective after the next time neigh_periodic_work 3529 * decides to recompute it 3530 */ 3531 p->reachable_time = 3532 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 3533 } 3534 return ret; 3535 } 3536 3537 #define NEIGH_PARMS_DATA_OFFSET(index) \ 3538 (&((struct neigh_parms *) 0)->data[index]) 3539 3540 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \ 3541 [NEIGH_VAR_ ## attr] = { \ 3542 .procname = name, \ 3543 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \ 3544 .maxlen = sizeof(int), \ 3545 .mode = mval, \ 3546 .proc_handler = proc, \ 3547 } 3548 3549 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \ 3550 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax) 3551 3552 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \ 3553 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies) 3554 3555 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \ 3556 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies) 3557 3558 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \ 3559 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies) 3560 3561 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \ 3562 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen) 3563 3564 static struct neigh_sysctl_table { 3565 struct ctl_table_header *sysctl_header; 3566 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1]; 3567 } neigh_sysctl_template __read_mostly = { 3568 .neigh_vars = { 3569 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"), 3570 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"), 3571 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"), 3572 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"), 3573 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"), 3574 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"), 3575 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"), 3576 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"), 3577 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"), 3578 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"), 3579 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"), 3580 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"), 3581 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"), 3582 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"), 3583 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"), 3584 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"), 3585 [NEIGH_VAR_GC_INTERVAL] = { 3586 .procname = "gc_interval", 3587 .maxlen = sizeof(int), 3588 .mode = 0644, 3589 .proc_handler = proc_dointvec_jiffies, 3590 }, 3591 [NEIGH_VAR_GC_THRESH1] = { 3592 .procname = "gc_thresh1", 3593 .maxlen = sizeof(int), 3594 .mode = 0644, 3595 .extra1 = SYSCTL_ZERO, 3596 .extra2 = SYSCTL_INT_MAX, 3597 .proc_handler = proc_dointvec_minmax, 3598 }, 3599 [NEIGH_VAR_GC_THRESH2] = { 3600 .procname = "gc_thresh2", 3601 .maxlen = sizeof(int), 3602 .mode = 0644, 3603 .extra1 = SYSCTL_ZERO, 3604 .extra2 = SYSCTL_INT_MAX, 3605 .proc_handler = proc_dointvec_minmax, 3606 }, 3607 [NEIGH_VAR_GC_THRESH3] = { 3608 .procname = "gc_thresh3", 3609 .maxlen = sizeof(int), 3610 .mode = 0644, 3611 .extra1 = SYSCTL_ZERO, 3612 .extra2 = SYSCTL_INT_MAX, 3613 .proc_handler = proc_dointvec_minmax, 3614 }, 3615 {}, 3616 }, 3617 }; 3618 3619 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 3620 proc_handler *handler) 3621 { 3622 int i; 3623 struct neigh_sysctl_table *t; 3624 const char *dev_name_source; 3625 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ]; 3626 char *p_name; 3627 3628 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 3629 if (!t) 3630 goto err; 3631 3632 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) { 3633 t->neigh_vars[i].data += (long) p; 3634 t->neigh_vars[i].extra1 = dev; 3635 t->neigh_vars[i].extra2 = p; 3636 } 3637 3638 if (dev) { 3639 dev_name_source = dev->name; 3640 /* Terminate the table early */ 3641 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0, 3642 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL])); 3643 } else { 3644 struct neigh_table *tbl = p->tbl; 3645 dev_name_source = "default"; 3646 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval; 3647 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1; 3648 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2; 3649 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3; 3650 } 3651 3652 if (handler) { 3653 /* RetransTime */ 3654 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; 3655 /* ReachableTime */ 3656 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; 3657 /* RetransTime (in milliseconds)*/ 3658 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; 3659 /* ReachableTime (in milliseconds) */ 3660 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; 3661 } else { 3662 /* Those handlers will update p->reachable_time after 3663 * base_reachable_time(_ms) is set to ensure the new timer starts being 3664 * applied after the next neighbour update instead of waiting for 3665 * neigh_periodic_work to update its value (can be multiple minutes) 3666 * So any handler that replaces them should do this as well 3667 */ 3668 /* ReachableTime */ 3669 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = 3670 neigh_proc_base_reachable_time; 3671 /* ReachableTime (in milliseconds) */ 3672 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = 3673 neigh_proc_base_reachable_time; 3674 } 3675 3676 /* Don't export sysctls to unprivileged users */ 3677 if (neigh_parms_net(p)->user_ns != &init_user_ns) 3678 t->neigh_vars[0].procname = NULL; 3679 3680 switch (neigh_parms_family(p)) { 3681 case AF_INET: 3682 p_name = "ipv4"; 3683 break; 3684 case AF_INET6: 3685 p_name = "ipv6"; 3686 break; 3687 default: 3688 BUG(); 3689 } 3690 3691 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s", 3692 p_name, dev_name_source); 3693 t->sysctl_header = 3694 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars); 3695 if (!t->sysctl_header) 3696 goto free; 3697 3698 p->sysctl_table = t; 3699 return 0; 3700 3701 free: 3702 kfree(t); 3703 err: 3704 return -ENOBUFS; 3705 } 3706 EXPORT_SYMBOL(neigh_sysctl_register); 3707 3708 void neigh_sysctl_unregister(struct neigh_parms *p) 3709 { 3710 if (p->sysctl_table) { 3711 struct neigh_sysctl_table *t = p->sysctl_table; 3712 p->sysctl_table = NULL; 3713 unregister_net_sysctl_table(t->sysctl_header); 3714 kfree(t); 3715 } 3716 } 3717 EXPORT_SYMBOL(neigh_sysctl_unregister); 3718 3719 #endif /* CONFIG_SYSCTL */ 3720 3721 static int __init neigh_init(void) 3722 { 3723 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0); 3724 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0); 3725 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info, 0); 3726 3727 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, 3728 0); 3729 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0); 3730 3731 return 0; 3732 } 3733 3734 subsys_initcall(neigh_init); 3735