1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic address resolution entity 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 8 * 9 * Fixes: 10 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 11 * Harald Welte Add neighbour cache statistics like rtstat 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/slab.h> 17 #include <linux/kmemleak.h> 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/socket.h> 22 #include <linux/netdevice.h> 23 #include <linux/proc_fs.h> 24 #ifdef CONFIG_SYSCTL 25 #include <linux/sysctl.h> 26 #endif 27 #include <linux/times.h> 28 #include <net/net_namespace.h> 29 #include <net/neighbour.h> 30 #include <net/arp.h> 31 #include <net/dst.h> 32 #include <net/sock.h> 33 #include <net/netevent.h> 34 #include <net/netlink.h> 35 #include <linux/rtnetlink.h> 36 #include <linux/random.h> 37 #include <linux/string.h> 38 #include <linux/log2.h> 39 #include <linux/inetdevice.h> 40 #include <net/addrconf.h> 41 42 #include <trace/events/neigh.h> 43 44 #define NEIGH_DEBUG 1 45 #define neigh_dbg(level, fmt, ...) \ 46 do { \ 47 if (level <= NEIGH_DEBUG) \ 48 pr_debug(fmt, ##__VA_ARGS__); \ 49 } while (0) 50 51 #define PNEIGH_HASHMASK 0xF 52 53 static void neigh_timer_handler(struct timer_list *t); 54 static void __neigh_notify(struct neighbour *n, int type, int flags, 55 u32 pid); 56 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid); 57 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 58 struct net_device *dev); 59 60 #ifdef CONFIG_PROC_FS 61 static const struct seq_operations neigh_stat_seq_ops; 62 #endif 63 64 /* 65 Neighbour hash table buckets are protected with rwlock tbl->lock. 66 67 - All the scans/updates to hash buckets MUST be made under this lock. 68 - NOTHING clever should be made under this lock: no callbacks 69 to protocol backends, no attempts to send something to network. 70 It will result in deadlocks, if backend/driver wants to use neighbour 71 cache. 72 - If the entry requires some non-trivial actions, increase 73 its reference count and release table lock. 74 75 Neighbour entries are protected: 76 - with reference count. 77 - with rwlock neigh->lock 78 79 Reference count prevents destruction. 80 81 neigh->lock mainly serializes ll address data and its validity state. 82 However, the same lock is used to protect another entry fields: 83 - timer 84 - resolution queue 85 86 Again, nothing clever shall be made under neigh->lock, 87 the most complicated procedure, which we allow is dev->hard_header. 88 It is supposed, that dev->hard_header is simplistic and does 89 not make callbacks to neighbour tables. 90 */ 91 92 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) 93 { 94 kfree_skb(skb); 95 return -ENETDOWN; 96 } 97 98 static void neigh_cleanup_and_release(struct neighbour *neigh) 99 { 100 trace_neigh_cleanup_and_release(neigh, 0); 101 __neigh_notify(neigh, RTM_DELNEIGH, 0, 0); 102 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 103 neigh_release(neigh); 104 } 105 106 /* 107 * It is random distribution in the interval (1/2)*base...(3/2)*base. 108 * It corresponds to default IPv6 settings and is not overridable, 109 * because it is really reasonable choice. 110 */ 111 112 unsigned long neigh_rand_reach_time(unsigned long base) 113 { 114 return base ? get_random_u32_below(base) + (base >> 1) : 0; 115 } 116 EXPORT_SYMBOL(neigh_rand_reach_time); 117 118 static void neigh_mark_dead(struct neighbour *n) 119 { 120 n->dead = 1; 121 if (!list_empty(&n->gc_list)) { 122 list_del_init(&n->gc_list); 123 atomic_dec(&n->tbl->gc_entries); 124 } 125 if (!list_empty(&n->managed_list)) 126 list_del_init(&n->managed_list); 127 } 128 129 static void neigh_update_gc_list(struct neighbour *n) 130 { 131 bool on_gc_list, exempt_from_gc; 132 133 write_lock_bh(&n->tbl->lock); 134 write_lock(&n->lock); 135 if (n->dead) 136 goto out; 137 138 /* remove from the gc list if new state is permanent or if neighbor 139 * is externally learned; otherwise entry should be on the gc list 140 */ 141 exempt_from_gc = n->nud_state & NUD_PERMANENT || 142 n->flags & NTF_EXT_LEARNED; 143 on_gc_list = !list_empty(&n->gc_list); 144 145 if (exempt_from_gc && on_gc_list) { 146 list_del_init(&n->gc_list); 147 atomic_dec(&n->tbl->gc_entries); 148 } else if (!exempt_from_gc && !on_gc_list) { 149 /* add entries to the tail; cleaning removes from the front */ 150 list_add_tail(&n->gc_list, &n->tbl->gc_list); 151 atomic_inc(&n->tbl->gc_entries); 152 } 153 out: 154 write_unlock(&n->lock); 155 write_unlock_bh(&n->tbl->lock); 156 } 157 158 static void neigh_update_managed_list(struct neighbour *n) 159 { 160 bool on_managed_list, add_to_managed; 161 162 write_lock_bh(&n->tbl->lock); 163 write_lock(&n->lock); 164 if (n->dead) 165 goto out; 166 167 add_to_managed = n->flags & NTF_MANAGED; 168 on_managed_list = !list_empty(&n->managed_list); 169 170 if (!add_to_managed && on_managed_list) 171 list_del_init(&n->managed_list); 172 else if (add_to_managed && !on_managed_list) 173 list_add_tail(&n->managed_list, &n->tbl->managed_list); 174 out: 175 write_unlock(&n->lock); 176 write_unlock_bh(&n->tbl->lock); 177 } 178 179 static void neigh_update_flags(struct neighbour *neigh, u32 flags, int *notify, 180 bool *gc_update, bool *managed_update) 181 { 182 u32 ndm_flags, old_flags = neigh->flags; 183 184 if (!(flags & NEIGH_UPDATE_F_ADMIN)) 185 return; 186 187 ndm_flags = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0; 188 ndm_flags |= (flags & NEIGH_UPDATE_F_MANAGED) ? NTF_MANAGED : 0; 189 190 if ((old_flags ^ ndm_flags) & NTF_EXT_LEARNED) { 191 if (ndm_flags & NTF_EXT_LEARNED) 192 neigh->flags |= NTF_EXT_LEARNED; 193 else 194 neigh->flags &= ~NTF_EXT_LEARNED; 195 *notify = 1; 196 *gc_update = true; 197 } 198 if ((old_flags ^ ndm_flags) & NTF_MANAGED) { 199 if (ndm_flags & NTF_MANAGED) 200 neigh->flags |= NTF_MANAGED; 201 else 202 neigh->flags &= ~NTF_MANAGED; 203 *notify = 1; 204 *managed_update = true; 205 } 206 } 207 208 static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np, 209 struct neigh_table *tbl) 210 { 211 bool retval = false; 212 213 write_lock(&n->lock); 214 if (refcount_read(&n->refcnt) == 1) { 215 struct neighbour *neigh; 216 217 neigh = rcu_dereference_protected(n->next, 218 lockdep_is_held(&tbl->lock)); 219 rcu_assign_pointer(*np, neigh); 220 neigh_mark_dead(n); 221 retval = true; 222 } 223 write_unlock(&n->lock); 224 if (retval) 225 neigh_cleanup_and_release(n); 226 return retval; 227 } 228 229 bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl) 230 { 231 struct neigh_hash_table *nht; 232 void *pkey = ndel->primary_key; 233 u32 hash_val; 234 struct neighbour *n; 235 struct neighbour __rcu **np; 236 237 nht = rcu_dereference_protected(tbl->nht, 238 lockdep_is_held(&tbl->lock)); 239 hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd); 240 hash_val = hash_val >> (32 - nht->hash_shift); 241 242 np = &nht->hash_buckets[hash_val]; 243 while ((n = rcu_dereference_protected(*np, 244 lockdep_is_held(&tbl->lock)))) { 245 if (n == ndel) 246 return neigh_del(n, np, tbl); 247 np = &n->next; 248 } 249 return false; 250 } 251 252 static int neigh_forced_gc(struct neigh_table *tbl) 253 { 254 int max_clean = atomic_read(&tbl->gc_entries) - tbl->gc_thresh2; 255 unsigned long tref = jiffies - 5 * HZ; 256 struct neighbour *n, *tmp; 257 int shrunk = 0; 258 259 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 260 261 write_lock_bh(&tbl->lock); 262 263 list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) { 264 if (refcount_read(&n->refcnt) == 1) { 265 bool remove = false; 266 267 write_lock(&n->lock); 268 if ((n->nud_state == NUD_FAILED) || 269 (n->nud_state == NUD_NOARP) || 270 (tbl->is_multicast && 271 tbl->is_multicast(n->primary_key)) || 272 !time_in_range(n->updated, tref, jiffies)) 273 remove = true; 274 write_unlock(&n->lock); 275 276 if (remove && neigh_remove_one(n, tbl)) 277 shrunk++; 278 if (shrunk >= max_clean) 279 break; 280 } 281 } 282 283 tbl->last_flush = jiffies; 284 285 write_unlock_bh(&tbl->lock); 286 287 return shrunk; 288 } 289 290 static void neigh_add_timer(struct neighbour *n, unsigned long when) 291 { 292 /* Use safe distance from the jiffies - LONG_MAX point while timer 293 * is running in DELAY/PROBE state but still show to user space 294 * large times in the past. 295 */ 296 unsigned long mint = jiffies - (LONG_MAX - 86400 * HZ); 297 298 neigh_hold(n); 299 if (!time_in_range(n->confirmed, mint, jiffies)) 300 n->confirmed = mint; 301 if (time_before(n->used, n->confirmed)) 302 n->used = n->confirmed; 303 if (unlikely(mod_timer(&n->timer, when))) { 304 printk("NEIGH: BUG, double timer add, state is %x\n", 305 n->nud_state); 306 dump_stack(); 307 } 308 } 309 310 static int neigh_del_timer(struct neighbour *n) 311 { 312 if ((n->nud_state & NUD_IN_TIMER) && 313 del_timer(&n->timer)) { 314 neigh_release(n); 315 return 1; 316 } 317 return 0; 318 } 319 320 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev, 321 int family) 322 { 323 switch (family) { 324 case AF_INET: 325 return __in_dev_arp_parms_get_rcu(dev); 326 case AF_INET6: 327 return __in6_dev_nd_parms_get_rcu(dev); 328 } 329 return NULL; 330 } 331 332 static void neigh_parms_qlen_dec(struct net_device *dev, int family) 333 { 334 struct neigh_parms *p; 335 336 rcu_read_lock(); 337 p = neigh_get_dev_parms_rcu(dev, family); 338 if (p) 339 p->qlen--; 340 rcu_read_unlock(); 341 } 342 343 static void pneigh_queue_purge(struct sk_buff_head *list, struct net *net, 344 int family) 345 { 346 struct sk_buff_head tmp; 347 unsigned long flags; 348 struct sk_buff *skb; 349 350 skb_queue_head_init(&tmp); 351 spin_lock_irqsave(&list->lock, flags); 352 skb = skb_peek(list); 353 while (skb != NULL) { 354 struct sk_buff *skb_next = skb_peek_next(skb, list); 355 struct net_device *dev = skb->dev; 356 357 if (net == NULL || net_eq(dev_net(dev), net)) { 358 neigh_parms_qlen_dec(dev, family); 359 __skb_unlink(skb, list); 360 __skb_queue_tail(&tmp, skb); 361 } 362 skb = skb_next; 363 } 364 spin_unlock_irqrestore(&list->lock, flags); 365 366 while ((skb = __skb_dequeue(&tmp))) { 367 dev_put(skb->dev); 368 kfree_skb(skb); 369 } 370 } 371 372 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev, 373 bool skip_perm) 374 { 375 int i; 376 struct neigh_hash_table *nht; 377 378 nht = rcu_dereference_protected(tbl->nht, 379 lockdep_is_held(&tbl->lock)); 380 381 for (i = 0; i < (1 << nht->hash_shift); i++) { 382 struct neighbour *n; 383 struct neighbour __rcu **np = &nht->hash_buckets[i]; 384 385 while ((n = rcu_dereference_protected(*np, 386 lockdep_is_held(&tbl->lock))) != NULL) { 387 if (dev && n->dev != dev) { 388 np = &n->next; 389 continue; 390 } 391 if (skip_perm && n->nud_state & NUD_PERMANENT) { 392 np = &n->next; 393 continue; 394 } 395 rcu_assign_pointer(*np, 396 rcu_dereference_protected(n->next, 397 lockdep_is_held(&tbl->lock))); 398 write_lock(&n->lock); 399 neigh_del_timer(n); 400 neigh_mark_dead(n); 401 if (refcount_read(&n->refcnt) != 1) { 402 /* The most unpleasant situation. 403 We must destroy neighbour entry, 404 but someone still uses it. 405 406 The destroy will be delayed until 407 the last user releases us, but 408 we must kill timers etc. and move 409 it to safe state. 410 */ 411 __skb_queue_purge(&n->arp_queue); 412 n->arp_queue_len_bytes = 0; 413 n->output = neigh_blackhole; 414 if (n->nud_state & NUD_VALID) 415 n->nud_state = NUD_NOARP; 416 else 417 n->nud_state = NUD_NONE; 418 neigh_dbg(2, "neigh %p is stray\n", n); 419 } 420 write_unlock(&n->lock); 421 neigh_cleanup_and_release(n); 422 } 423 } 424 } 425 426 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 427 { 428 write_lock_bh(&tbl->lock); 429 neigh_flush_dev(tbl, dev, false); 430 write_unlock_bh(&tbl->lock); 431 } 432 EXPORT_SYMBOL(neigh_changeaddr); 433 434 static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev, 435 bool skip_perm) 436 { 437 write_lock_bh(&tbl->lock); 438 neigh_flush_dev(tbl, dev, skip_perm); 439 pneigh_ifdown_and_unlock(tbl, dev); 440 pneigh_queue_purge(&tbl->proxy_queue, dev ? dev_net(dev) : NULL, 441 tbl->family); 442 if (skb_queue_empty_lockless(&tbl->proxy_queue)) 443 del_timer_sync(&tbl->proxy_timer); 444 return 0; 445 } 446 447 int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev) 448 { 449 __neigh_ifdown(tbl, dev, true); 450 return 0; 451 } 452 EXPORT_SYMBOL(neigh_carrier_down); 453 454 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 455 { 456 __neigh_ifdown(tbl, dev, false); 457 return 0; 458 } 459 EXPORT_SYMBOL(neigh_ifdown); 460 461 static struct neighbour *neigh_alloc(struct neigh_table *tbl, 462 struct net_device *dev, 463 u32 flags, bool exempt_from_gc) 464 { 465 struct neighbour *n = NULL; 466 unsigned long now = jiffies; 467 int entries; 468 469 if (exempt_from_gc) 470 goto do_alloc; 471 472 entries = atomic_inc_return(&tbl->gc_entries) - 1; 473 if (entries >= tbl->gc_thresh3 || 474 (entries >= tbl->gc_thresh2 && 475 time_after(now, tbl->last_flush + 5 * HZ))) { 476 if (!neigh_forced_gc(tbl) && 477 entries >= tbl->gc_thresh3) { 478 net_info_ratelimited("%s: neighbor table overflow!\n", 479 tbl->id); 480 NEIGH_CACHE_STAT_INC(tbl, table_fulls); 481 goto out_entries; 482 } 483 } 484 485 do_alloc: 486 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC); 487 if (!n) 488 goto out_entries; 489 490 __skb_queue_head_init(&n->arp_queue); 491 rwlock_init(&n->lock); 492 seqlock_init(&n->ha_lock); 493 n->updated = n->used = now; 494 n->nud_state = NUD_NONE; 495 n->output = neigh_blackhole; 496 n->flags = flags; 497 seqlock_init(&n->hh.hh_lock); 498 n->parms = neigh_parms_clone(&tbl->parms); 499 timer_setup(&n->timer, neigh_timer_handler, 0); 500 501 NEIGH_CACHE_STAT_INC(tbl, allocs); 502 n->tbl = tbl; 503 refcount_set(&n->refcnt, 1); 504 n->dead = 1; 505 INIT_LIST_HEAD(&n->gc_list); 506 INIT_LIST_HEAD(&n->managed_list); 507 508 atomic_inc(&tbl->entries); 509 out: 510 return n; 511 512 out_entries: 513 if (!exempt_from_gc) 514 atomic_dec(&tbl->gc_entries); 515 goto out; 516 } 517 518 static void neigh_get_hash_rnd(u32 *x) 519 { 520 *x = get_random_u32() | 1; 521 } 522 523 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) 524 { 525 size_t size = (1 << shift) * sizeof(struct neighbour *); 526 struct neigh_hash_table *ret; 527 struct neighbour __rcu **buckets; 528 int i; 529 530 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 531 if (!ret) 532 return NULL; 533 if (size <= PAGE_SIZE) { 534 buckets = kzalloc(size, GFP_ATOMIC); 535 } else { 536 buckets = (struct neighbour __rcu **) 537 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 538 get_order(size)); 539 kmemleak_alloc(buckets, size, 1, GFP_ATOMIC); 540 } 541 if (!buckets) { 542 kfree(ret); 543 return NULL; 544 } 545 ret->hash_buckets = buckets; 546 ret->hash_shift = shift; 547 for (i = 0; i < NEIGH_NUM_HASH_RND; i++) 548 neigh_get_hash_rnd(&ret->hash_rnd[i]); 549 return ret; 550 } 551 552 static void neigh_hash_free_rcu(struct rcu_head *head) 553 { 554 struct neigh_hash_table *nht = container_of(head, 555 struct neigh_hash_table, 556 rcu); 557 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); 558 struct neighbour __rcu **buckets = nht->hash_buckets; 559 560 if (size <= PAGE_SIZE) { 561 kfree(buckets); 562 } else { 563 kmemleak_free(buckets); 564 free_pages((unsigned long)buckets, get_order(size)); 565 } 566 kfree(nht); 567 } 568 569 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, 570 unsigned long new_shift) 571 { 572 unsigned int i, hash; 573 struct neigh_hash_table *new_nht, *old_nht; 574 575 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 576 577 old_nht = rcu_dereference_protected(tbl->nht, 578 lockdep_is_held(&tbl->lock)); 579 new_nht = neigh_hash_alloc(new_shift); 580 if (!new_nht) 581 return old_nht; 582 583 for (i = 0; i < (1 << old_nht->hash_shift); i++) { 584 struct neighbour *n, *next; 585 586 for (n = rcu_dereference_protected(old_nht->hash_buckets[i], 587 lockdep_is_held(&tbl->lock)); 588 n != NULL; 589 n = next) { 590 hash = tbl->hash(n->primary_key, n->dev, 591 new_nht->hash_rnd); 592 593 hash >>= (32 - new_nht->hash_shift); 594 next = rcu_dereference_protected(n->next, 595 lockdep_is_held(&tbl->lock)); 596 597 rcu_assign_pointer(n->next, 598 rcu_dereference_protected( 599 new_nht->hash_buckets[hash], 600 lockdep_is_held(&tbl->lock))); 601 rcu_assign_pointer(new_nht->hash_buckets[hash], n); 602 } 603 } 604 605 rcu_assign_pointer(tbl->nht, new_nht); 606 call_rcu(&old_nht->rcu, neigh_hash_free_rcu); 607 return new_nht; 608 } 609 610 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 611 struct net_device *dev) 612 { 613 struct neighbour *n; 614 615 NEIGH_CACHE_STAT_INC(tbl, lookups); 616 617 rcu_read_lock_bh(); 618 n = __neigh_lookup_noref(tbl, pkey, dev); 619 if (n) { 620 if (!refcount_inc_not_zero(&n->refcnt)) 621 n = NULL; 622 NEIGH_CACHE_STAT_INC(tbl, hits); 623 } 624 625 rcu_read_unlock_bh(); 626 return n; 627 } 628 EXPORT_SYMBOL(neigh_lookup); 629 630 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 631 const void *pkey) 632 { 633 struct neighbour *n; 634 unsigned int key_len = tbl->key_len; 635 u32 hash_val; 636 struct neigh_hash_table *nht; 637 638 NEIGH_CACHE_STAT_INC(tbl, lookups); 639 640 rcu_read_lock_bh(); 641 nht = rcu_dereference_bh(tbl->nht); 642 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift); 643 644 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 645 n != NULL; 646 n = rcu_dereference_bh(n->next)) { 647 if (!memcmp(n->primary_key, pkey, key_len) && 648 net_eq(dev_net(n->dev), net)) { 649 if (!refcount_inc_not_zero(&n->refcnt)) 650 n = NULL; 651 NEIGH_CACHE_STAT_INC(tbl, hits); 652 break; 653 } 654 } 655 656 rcu_read_unlock_bh(); 657 return n; 658 } 659 EXPORT_SYMBOL(neigh_lookup_nodev); 660 661 static struct neighbour * 662 ___neigh_create(struct neigh_table *tbl, const void *pkey, 663 struct net_device *dev, u32 flags, 664 bool exempt_from_gc, bool want_ref) 665 { 666 u32 hash_val, key_len = tbl->key_len; 667 struct neighbour *n1, *rc, *n; 668 struct neigh_hash_table *nht; 669 int error; 670 671 n = neigh_alloc(tbl, dev, flags, exempt_from_gc); 672 trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc); 673 if (!n) { 674 rc = ERR_PTR(-ENOBUFS); 675 goto out; 676 } 677 678 memcpy(n->primary_key, pkey, key_len); 679 n->dev = dev; 680 netdev_hold(dev, &n->dev_tracker, GFP_ATOMIC); 681 682 /* Protocol specific setup. */ 683 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 684 rc = ERR_PTR(error); 685 goto out_neigh_release; 686 } 687 688 if (dev->netdev_ops->ndo_neigh_construct) { 689 error = dev->netdev_ops->ndo_neigh_construct(dev, n); 690 if (error < 0) { 691 rc = ERR_PTR(error); 692 goto out_neigh_release; 693 } 694 } 695 696 /* Device specific setup. */ 697 if (n->parms->neigh_setup && 698 (error = n->parms->neigh_setup(n)) < 0) { 699 rc = ERR_PTR(error); 700 goto out_neigh_release; 701 } 702 703 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1); 704 705 write_lock_bh(&tbl->lock); 706 nht = rcu_dereference_protected(tbl->nht, 707 lockdep_is_held(&tbl->lock)); 708 709 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) 710 nht = neigh_hash_grow(tbl, nht->hash_shift + 1); 711 712 hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 713 714 if (n->parms->dead) { 715 rc = ERR_PTR(-EINVAL); 716 goto out_tbl_unlock; 717 } 718 719 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], 720 lockdep_is_held(&tbl->lock)); 721 n1 != NULL; 722 n1 = rcu_dereference_protected(n1->next, 723 lockdep_is_held(&tbl->lock))) { 724 if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) { 725 if (want_ref) 726 neigh_hold(n1); 727 rc = n1; 728 goto out_tbl_unlock; 729 } 730 } 731 732 n->dead = 0; 733 if (!exempt_from_gc) 734 list_add_tail(&n->gc_list, &n->tbl->gc_list); 735 if (n->flags & NTF_MANAGED) 736 list_add_tail(&n->managed_list, &n->tbl->managed_list); 737 if (want_ref) 738 neigh_hold(n); 739 rcu_assign_pointer(n->next, 740 rcu_dereference_protected(nht->hash_buckets[hash_val], 741 lockdep_is_held(&tbl->lock))); 742 rcu_assign_pointer(nht->hash_buckets[hash_val], n); 743 write_unlock_bh(&tbl->lock); 744 neigh_dbg(2, "neigh %p is created\n", n); 745 rc = n; 746 out: 747 return rc; 748 out_tbl_unlock: 749 write_unlock_bh(&tbl->lock); 750 out_neigh_release: 751 if (!exempt_from_gc) 752 atomic_dec(&tbl->gc_entries); 753 neigh_release(n); 754 goto out; 755 } 756 757 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, 758 struct net_device *dev, bool want_ref) 759 { 760 return ___neigh_create(tbl, pkey, dev, 0, false, want_ref); 761 } 762 EXPORT_SYMBOL(__neigh_create); 763 764 static u32 pneigh_hash(const void *pkey, unsigned int key_len) 765 { 766 u32 hash_val = *(u32 *)(pkey + key_len - 4); 767 hash_val ^= (hash_val >> 16); 768 hash_val ^= hash_val >> 8; 769 hash_val ^= hash_val >> 4; 770 hash_val &= PNEIGH_HASHMASK; 771 return hash_val; 772 } 773 774 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 775 struct net *net, 776 const void *pkey, 777 unsigned int key_len, 778 struct net_device *dev) 779 { 780 while (n) { 781 if (!memcmp(n->key, pkey, key_len) && 782 net_eq(pneigh_net(n), net) && 783 (n->dev == dev || !n->dev)) 784 return n; 785 n = n->next; 786 } 787 return NULL; 788 } 789 790 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 791 struct net *net, const void *pkey, struct net_device *dev) 792 { 793 unsigned int key_len = tbl->key_len; 794 u32 hash_val = pneigh_hash(pkey, key_len); 795 796 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 797 net, pkey, key_len, dev); 798 } 799 EXPORT_SYMBOL_GPL(__pneigh_lookup); 800 801 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 802 struct net *net, const void *pkey, 803 struct net_device *dev, int creat) 804 { 805 struct pneigh_entry *n; 806 unsigned int key_len = tbl->key_len; 807 u32 hash_val = pneigh_hash(pkey, key_len); 808 809 read_lock_bh(&tbl->lock); 810 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 811 net, pkey, key_len, dev); 812 read_unlock_bh(&tbl->lock); 813 814 if (n || !creat) 815 goto out; 816 817 ASSERT_RTNL(); 818 819 n = kzalloc(sizeof(*n) + key_len, GFP_KERNEL); 820 if (!n) 821 goto out; 822 823 write_pnet(&n->net, net); 824 memcpy(n->key, pkey, key_len); 825 n->dev = dev; 826 netdev_hold(dev, &n->dev_tracker, GFP_KERNEL); 827 828 if (tbl->pconstructor && tbl->pconstructor(n)) { 829 netdev_put(dev, &n->dev_tracker); 830 kfree(n); 831 n = NULL; 832 goto out; 833 } 834 835 write_lock_bh(&tbl->lock); 836 n->next = tbl->phash_buckets[hash_val]; 837 tbl->phash_buckets[hash_val] = n; 838 write_unlock_bh(&tbl->lock); 839 out: 840 return n; 841 } 842 EXPORT_SYMBOL(pneigh_lookup); 843 844 845 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 846 struct net_device *dev) 847 { 848 struct pneigh_entry *n, **np; 849 unsigned int key_len = tbl->key_len; 850 u32 hash_val = pneigh_hash(pkey, key_len); 851 852 write_lock_bh(&tbl->lock); 853 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 854 np = &n->next) { 855 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 856 net_eq(pneigh_net(n), net)) { 857 *np = n->next; 858 write_unlock_bh(&tbl->lock); 859 if (tbl->pdestructor) 860 tbl->pdestructor(n); 861 netdev_put(n->dev, &n->dev_tracker); 862 kfree(n); 863 return 0; 864 } 865 } 866 write_unlock_bh(&tbl->lock); 867 return -ENOENT; 868 } 869 870 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 871 struct net_device *dev) 872 { 873 struct pneigh_entry *n, **np, *freelist = NULL; 874 u32 h; 875 876 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 877 np = &tbl->phash_buckets[h]; 878 while ((n = *np) != NULL) { 879 if (!dev || n->dev == dev) { 880 *np = n->next; 881 n->next = freelist; 882 freelist = n; 883 continue; 884 } 885 np = &n->next; 886 } 887 } 888 write_unlock_bh(&tbl->lock); 889 while ((n = freelist)) { 890 freelist = n->next; 891 n->next = NULL; 892 if (tbl->pdestructor) 893 tbl->pdestructor(n); 894 netdev_put(n->dev, &n->dev_tracker); 895 kfree(n); 896 } 897 return -ENOENT; 898 } 899 900 static void neigh_parms_destroy(struct neigh_parms *parms); 901 902 static inline void neigh_parms_put(struct neigh_parms *parms) 903 { 904 if (refcount_dec_and_test(&parms->refcnt)) 905 neigh_parms_destroy(parms); 906 } 907 908 /* 909 * neighbour must already be out of the table; 910 * 911 */ 912 void neigh_destroy(struct neighbour *neigh) 913 { 914 struct net_device *dev = neigh->dev; 915 916 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 917 918 if (!neigh->dead) { 919 pr_warn("Destroying alive neighbour %p\n", neigh); 920 dump_stack(); 921 return; 922 } 923 924 if (neigh_del_timer(neigh)) 925 pr_warn("Impossible event\n"); 926 927 write_lock_bh(&neigh->lock); 928 __skb_queue_purge(&neigh->arp_queue); 929 write_unlock_bh(&neigh->lock); 930 neigh->arp_queue_len_bytes = 0; 931 932 if (dev->netdev_ops->ndo_neigh_destroy) 933 dev->netdev_ops->ndo_neigh_destroy(dev, neigh); 934 935 netdev_put(dev, &neigh->dev_tracker); 936 neigh_parms_put(neigh->parms); 937 938 neigh_dbg(2, "neigh %p is destroyed\n", neigh); 939 940 atomic_dec(&neigh->tbl->entries); 941 kfree_rcu(neigh, rcu); 942 } 943 EXPORT_SYMBOL(neigh_destroy); 944 945 /* Neighbour state is suspicious; 946 disable fast path. 947 948 Called with write_locked neigh. 949 */ 950 static void neigh_suspect(struct neighbour *neigh) 951 { 952 neigh_dbg(2, "neigh %p is suspected\n", neigh); 953 954 neigh->output = neigh->ops->output; 955 } 956 957 /* Neighbour state is OK; 958 enable fast path. 959 960 Called with write_locked neigh. 961 */ 962 static void neigh_connect(struct neighbour *neigh) 963 { 964 neigh_dbg(2, "neigh %p is connected\n", neigh); 965 966 neigh->output = neigh->ops->connected_output; 967 } 968 969 static void neigh_periodic_work(struct work_struct *work) 970 { 971 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 972 struct neighbour *n; 973 struct neighbour __rcu **np; 974 unsigned int i; 975 struct neigh_hash_table *nht; 976 977 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 978 979 write_lock_bh(&tbl->lock); 980 nht = rcu_dereference_protected(tbl->nht, 981 lockdep_is_held(&tbl->lock)); 982 983 /* 984 * periodically recompute ReachableTime from random function 985 */ 986 987 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 988 struct neigh_parms *p; 989 tbl->last_rand = jiffies; 990 list_for_each_entry(p, &tbl->parms_list, list) 991 p->reachable_time = 992 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 993 } 994 995 if (atomic_read(&tbl->entries) < tbl->gc_thresh1) 996 goto out; 997 998 for (i = 0 ; i < (1 << nht->hash_shift); i++) { 999 np = &nht->hash_buckets[i]; 1000 1001 while ((n = rcu_dereference_protected(*np, 1002 lockdep_is_held(&tbl->lock))) != NULL) { 1003 unsigned int state; 1004 1005 write_lock(&n->lock); 1006 1007 state = n->nud_state; 1008 if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) || 1009 (n->flags & NTF_EXT_LEARNED)) { 1010 write_unlock(&n->lock); 1011 goto next_elt; 1012 } 1013 1014 if (time_before(n->used, n->confirmed) && 1015 time_is_before_eq_jiffies(n->confirmed)) 1016 n->used = n->confirmed; 1017 1018 if (refcount_read(&n->refcnt) == 1 && 1019 (state == NUD_FAILED || 1020 !time_in_range_open(jiffies, n->used, 1021 n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) { 1022 *np = n->next; 1023 neigh_mark_dead(n); 1024 write_unlock(&n->lock); 1025 neigh_cleanup_and_release(n); 1026 continue; 1027 } 1028 write_unlock(&n->lock); 1029 1030 next_elt: 1031 np = &n->next; 1032 } 1033 /* 1034 * It's fine to release lock here, even if hash table 1035 * grows while we are preempted. 1036 */ 1037 write_unlock_bh(&tbl->lock); 1038 cond_resched(); 1039 write_lock_bh(&tbl->lock); 1040 nht = rcu_dereference_protected(tbl->nht, 1041 lockdep_is_held(&tbl->lock)); 1042 } 1043 out: 1044 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks. 1045 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2 1046 * BASE_REACHABLE_TIME. 1047 */ 1048 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 1049 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1); 1050 write_unlock_bh(&tbl->lock); 1051 } 1052 1053 static __inline__ int neigh_max_probes(struct neighbour *n) 1054 { 1055 struct neigh_parms *p = n->parms; 1056 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) + 1057 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) : 1058 NEIGH_VAR(p, MCAST_PROBES)); 1059 } 1060 1061 static void neigh_invalidate(struct neighbour *neigh) 1062 __releases(neigh->lock) 1063 __acquires(neigh->lock) 1064 { 1065 struct sk_buff *skb; 1066 1067 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 1068 neigh_dbg(2, "neigh %p is failed\n", neigh); 1069 neigh->updated = jiffies; 1070 1071 /* It is very thin place. report_unreachable is very complicated 1072 routine. Particularly, it can hit the same neighbour entry! 1073 1074 So that, we try to be accurate and avoid dead loop. --ANK 1075 */ 1076 while (neigh->nud_state == NUD_FAILED && 1077 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1078 write_unlock(&neigh->lock); 1079 neigh->ops->error_report(neigh, skb); 1080 write_lock(&neigh->lock); 1081 } 1082 __skb_queue_purge(&neigh->arp_queue); 1083 neigh->arp_queue_len_bytes = 0; 1084 } 1085 1086 static void neigh_probe(struct neighbour *neigh) 1087 __releases(neigh->lock) 1088 { 1089 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue); 1090 /* keep skb alive even if arp_queue overflows */ 1091 if (skb) 1092 skb = skb_clone(skb, GFP_ATOMIC); 1093 write_unlock(&neigh->lock); 1094 if (neigh->ops->solicit) 1095 neigh->ops->solicit(neigh, skb); 1096 atomic_inc(&neigh->probes); 1097 consume_skb(skb); 1098 } 1099 1100 /* Called when a timer expires for a neighbour entry. */ 1101 1102 static void neigh_timer_handler(struct timer_list *t) 1103 { 1104 unsigned long now, next; 1105 struct neighbour *neigh = from_timer(neigh, t, timer); 1106 unsigned int state; 1107 int notify = 0; 1108 1109 write_lock(&neigh->lock); 1110 1111 state = neigh->nud_state; 1112 now = jiffies; 1113 next = now + HZ; 1114 1115 if (!(state & NUD_IN_TIMER)) 1116 goto out; 1117 1118 if (state & NUD_REACHABLE) { 1119 if (time_before_eq(now, 1120 neigh->confirmed + neigh->parms->reachable_time)) { 1121 neigh_dbg(2, "neigh %p is still alive\n", neigh); 1122 next = neigh->confirmed + neigh->parms->reachable_time; 1123 } else if (time_before_eq(now, 1124 neigh->used + 1125 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1126 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1127 neigh->nud_state = NUD_DELAY; 1128 neigh->updated = jiffies; 1129 neigh_suspect(neigh); 1130 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME); 1131 } else { 1132 neigh_dbg(2, "neigh %p is suspected\n", neigh); 1133 neigh->nud_state = NUD_STALE; 1134 neigh->updated = jiffies; 1135 neigh_suspect(neigh); 1136 notify = 1; 1137 } 1138 } else if (state & NUD_DELAY) { 1139 if (time_before_eq(now, 1140 neigh->confirmed + 1141 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1142 neigh_dbg(2, "neigh %p is now reachable\n", neigh); 1143 neigh->nud_state = NUD_REACHABLE; 1144 neigh->updated = jiffies; 1145 neigh_connect(neigh); 1146 notify = 1; 1147 next = neigh->confirmed + neigh->parms->reachable_time; 1148 } else { 1149 neigh_dbg(2, "neigh %p is probed\n", neigh); 1150 neigh->nud_state = NUD_PROBE; 1151 neigh->updated = jiffies; 1152 atomic_set(&neigh->probes, 0); 1153 notify = 1; 1154 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1155 HZ/100); 1156 } 1157 } else { 1158 /* NUD_PROBE|NUD_INCOMPLETE */ 1159 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100); 1160 } 1161 1162 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 1163 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 1164 neigh->nud_state = NUD_FAILED; 1165 notify = 1; 1166 neigh_invalidate(neigh); 1167 goto out; 1168 } 1169 1170 if (neigh->nud_state & NUD_IN_TIMER) { 1171 if (time_before(next, jiffies + HZ/100)) 1172 next = jiffies + HZ/100; 1173 if (!mod_timer(&neigh->timer, next)) 1174 neigh_hold(neigh); 1175 } 1176 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 1177 neigh_probe(neigh); 1178 } else { 1179 out: 1180 write_unlock(&neigh->lock); 1181 } 1182 1183 if (notify) 1184 neigh_update_notify(neigh, 0); 1185 1186 trace_neigh_timer_handler(neigh, 0); 1187 1188 neigh_release(neigh); 1189 } 1190 1191 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb, 1192 const bool immediate_ok) 1193 { 1194 int rc; 1195 bool immediate_probe = false; 1196 1197 write_lock_bh(&neigh->lock); 1198 1199 rc = 0; 1200 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 1201 goto out_unlock_bh; 1202 if (neigh->dead) 1203 goto out_dead; 1204 1205 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 1206 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) + 1207 NEIGH_VAR(neigh->parms, APP_PROBES)) { 1208 unsigned long next, now = jiffies; 1209 1210 atomic_set(&neigh->probes, 1211 NEIGH_VAR(neigh->parms, UCAST_PROBES)); 1212 neigh_del_timer(neigh); 1213 neigh->nud_state = NUD_INCOMPLETE; 1214 neigh->updated = now; 1215 if (!immediate_ok) { 1216 next = now + 1; 1217 } else { 1218 immediate_probe = true; 1219 next = now + max(NEIGH_VAR(neigh->parms, 1220 RETRANS_TIME), 1221 HZ / 100); 1222 } 1223 neigh_add_timer(neigh, next); 1224 } else { 1225 neigh->nud_state = NUD_FAILED; 1226 neigh->updated = jiffies; 1227 write_unlock_bh(&neigh->lock); 1228 1229 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED); 1230 return 1; 1231 } 1232 } else if (neigh->nud_state & NUD_STALE) { 1233 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1234 neigh_del_timer(neigh); 1235 neigh->nud_state = NUD_DELAY; 1236 neigh->updated = jiffies; 1237 neigh_add_timer(neigh, jiffies + 1238 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME)); 1239 } 1240 1241 if (neigh->nud_state == NUD_INCOMPLETE) { 1242 if (skb) { 1243 while (neigh->arp_queue_len_bytes + skb->truesize > 1244 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) { 1245 struct sk_buff *buff; 1246 1247 buff = __skb_dequeue(&neigh->arp_queue); 1248 if (!buff) 1249 break; 1250 neigh->arp_queue_len_bytes -= buff->truesize; 1251 kfree_skb_reason(buff, SKB_DROP_REASON_NEIGH_QUEUEFULL); 1252 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 1253 } 1254 skb_dst_force(skb); 1255 __skb_queue_tail(&neigh->arp_queue, skb); 1256 neigh->arp_queue_len_bytes += skb->truesize; 1257 } 1258 rc = 1; 1259 } 1260 out_unlock_bh: 1261 if (immediate_probe) 1262 neigh_probe(neigh); 1263 else 1264 write_unlock(&neigh->lock); 1265 local_bh_enable(); 1266 trace_neigh_event_send_done(neigh, rc); 1267 return rc; 1268 1269 out_dead: 1270 if (neigh->nud_state & NUD_STALE) 1271 goto out_unlock_bh; 1272 write_unlock_bh(&neigh->lock); 1273 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_DEAD); 1274 trace_neigh_event_send_dead(neigh, 1); 1275 return 1; 1276 } 1277 EXPORT_SYMBOL(__neigh_event_send); 1278 1279 static void neigh_update_hhs(struct neighbour *neigh) 1280 { 1281 struct hh_cache *hh; 1282 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 1283 = NULL; 1284 1285 if (neigh->dev->header_ops) 1286 update = neigh->dev->header_ops->cache_update; 1287 1288 if (update) { 1289 hh = &neigh->hh; 1290 if (READ_ONCE(hh->hh_len)) { 1291 write_seqlock_bh(&hh->hh_lock); 1292 update(hh, neigh->dev, neigh->ha); 1293 write_sequnlock_bh(&hh->hh_lock); 1294 } 1295 } 1296 } 1297 1298 /* Generic update routine. 1299 -- lladdr is new lladdr or NULL, if it is not supplied. 1300 -- new is new state. 1301 -- flags 1302 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 1303 if it is different. 1304 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 1305 lladdr instead of overriding it 1306 if it is different. 1307 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 1308 NEIGH_UPDATE_F_USE means that the entry is user triggered. 1309 NEIGH_UPDATE_F_MANAGED means that the entry will be auto-refreshed. 1310 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 1311 NTF_ROUTER flag. 1312 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 1313 a router. 1314 1315 Caller MUST hold reference count on the entry. 1316 */ 1317 static int __neigh_update(struct neighbour *neigh, const u8 *lladdr, 1318 u8 new, u32 flags, u32 nlmsg_pid, 1319 struct netlink_ext_ack *extack) 1320 { 1321 bool gc_update = false, managed_update = false; 1322 int update_isrouter = 0; 1323 struct net_device *dev; 1324 int err, notify = 0; 1325 u8 old; 1326 1327 trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid); 1328 1329 write_lock_bh(&neigh->lock); 1330 1331 dev = neigh->dev; 1332 old = neigh->nud_state; 1333 err = -EPERM; 1334 1335 if (neigh->dead) { 1336 NL_SET_ERR_MSG(extack, "Neighbor entry is now dead"); 1337 new = old; 1338 goto out; 1339 } 1340 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 1341 (old & (NUD_NOARP | NUD_PERMANENT))) 1342 goto out; 1343 1344 neigh_update_flags(neigh, flags, ¬ify, &gc_update, &managed_update); 1345 if (flags & (NEIGH_UPDATE_F_USE | NEIGH_UPDATE_F_MANAGED)) { 1346 new = old & ~NUD_PERMANENT; 1347 neigh->nud_state = new; 1348 err = 0; 1349 goto out; 1350 } 1351 1352 if (!(new & NUD_VALID)) { 1353 neigh_del_timer(neigh); 1354 if (old & NUD_CONNECTED) 1355 neigh_suspect(neigh); 1356 neigh->nud_state = new; 1357 err = 0; 1358 notify = old & NUD_VALID; 1359 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1360 (new & NUD_FAILED)) { 1361 neigh_invalidate(neigh); 1362 notify = 1; 1363 } 1364 goto out; 1365 } 1366 1367 /* Compare new lladdr with cached one */ 1368 if (!dev->addr_len) { 1369 /* First case: device needs no address. */ 1370 lladdr = neigh->ha; 1371 } else if (lladdr) { 1372 /* The second case: if something is already cached 1373 and a new address is proposed: 1374 - compare new & old 1375 - if they are different, check override flag 1376 */ 1377 if ((old & NUD_VALID) && 1378 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1379 lladdr = neigh->ha; 1380 } else { 1381 /* No address is supplied; if we know something, 1382 use it, otherwise discard the request. 1383 */ 1384 err = -EINVAL; 1385 if (!(old & NUD_VALID)) { 1386 NL_SET_ERR_MSG(extack, "No link layer address given"); 1387 goto out; 1388 } 1389 lladdr = neigh->ha; 1390 } 1391 1392 /* Update confirmed timestamp for neighbour entry after we 1393 * received ARP packet even if it doesn't change IP to MAC binding. 1394 */ 1395 if (new & NUD_CONNECTED) 1396 neigh->confirmed = jiffies; 1397 1398 /* If entry was valid and address is not changed, 1399 do not change entry state, if new one is STALE. 1400 */ 1401 err = 0; 1402 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1403 if (old & NUD_VALID) { 1404 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1405 update_isrouter = 0; 1406 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1407 (old & NUD_CONNECTED)) { 1408 lladdr = neigh->ha; 1409 new = NUD_STALE; 1410 } else 1411 goto out; 1412 } else { 1413 if (lladdr == neigh->ha && new == NUD_STALE && 1414 !(flags & NEIGH_UPDATE_F_ADMIN)) 1415 new = old; 1416 } 1417 } 1418 1419 /* Update timestamp only once we know we will make a change to the 1420 * neighbour entry. Otherwise we risk to move the locktime window with 1421 * noop updates and ignore relevant ARP updates. 1422 */ 1423 if (new != old || lladdr != neigh->ha) 1424 neigh->updated = jiffies; 1425 1426 if (new != old) { 1427 neigh_del_timer(neigh); 1428 if (new & NUD_PROBE) 1429 atomic_set(&neigh->probes, 0); 1430 if (new & NUD_IN_TIMER) 1431 neigh_add_timer(neigh, (jiffies + 1432 ((new & NUD_REACHABLE) ? 1433 neigh->parms->reachable_time : 1434 0))); 1435 neigh->nud_state = new; 1436 notify = 1; 1437 } 1438 1439 if (lladdr != neigh->ha) { 1440 write_seqlock(&neigh->ha_lock); 1441 memcpy(&neigh->ha, lladdr, dev->addr_len); 1442 write_sequnlock(&neigh->ha_lock); 1443 neigh_update_hhs(neigh); 1444 if (!(new & NUD_CONNECTED)) 1445 neigh->confirmed = jiffies - 1446 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1); 1447 notify = 1; 1448 } 1449 if (new == old) 1450 goto out; 1451 if (new & NUD_CONNECTED) 1452 neigh_connect(neigh); 1453 else 1454 neigh_suspect(neigh); 1455 if (!(old & NUD_VALID)) { 1456 struct sk_buff *skb; 1457 1458 /* Again: avoid dead loop if something went wrong */ 1459 1460 while (neigh->nud_state & NUD_VALID && 1461 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1462 struct dst_entry *dst = skb_dst(skb); 1463 struct neighbour *n2, *n1 = neigh; 1464 write_unlock_bh(&neigh->lock); 1465 1466 rcu_read_lock(); 1467 1468 /* Why not just use 'neigh' as-is? The problem is that 1469 * things such as shaper, eql, and sch_teql can end up 1470 * using alternative, different, neigh objects to output 1471 * the packet in the output path. So what we need to do 1472 * here is re-lookup the top-level neigh in the path so 1473 * we can reinject the packet there. 1474 */ 1475 n2 = NULL; 1476 if (dst && dst->obsolete != DST_OBSOLETE_DEAD) { 1477 n2 = dst_neigh_lookup_skb(dst, skb); 1478 if (n2) 1479 n1 = n2; 1480 } 1481 n1->output(n1, skb); 1482 if (n2) 1483 neigh_release(n2); 1484 rcu_read_unlock(); 1485 1486 write_lock_bh(&neigh->lock); 1487 } 1488 __skb_queue_purge(&neigh->arp_queue); 1489 neigh->arp_queue_len_bytes = 0; 1490 } 1491 out: 1492 if (update_isrouter) 1493 neigh_update_is_router(neigh, flags, ¬ify); 1494 write_unlock_bh(&neigh->lock); 1495 if (((new ^ old) & NUD_PERMANENT) || gc_update) 1496 neigh_update_gc_list(neigh); 1497 if (managed_update) 1498 neigh_update_managed_list(neigh); 1499 if (notify) 1500 neigh_update_notify(neigh, nlmsg_pid); 1501 trace_neigh_update_done(neigh, err); 1502 return err; 1503 } 1504 1505 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 1506 u32 flags, u32 nlmsg_pid) 1507 { 1508 return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL); 1509 } 1510 EXPORT_SYMBOL(neigh_update); 1511 1512 /* Update the neigh to listen temporarily for probe responses, even if it is 1513 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing. 1514 */ 1515 void __neigh_set_probe_once(struct neighbour *neigh) 1516 { 1517 if (neigh->dead) 1518 return; 1519 neigh->updated = jiffies; 1520 if (!(neigh->nud_state & NUD_FAILED)) 1521 return; 1522 neigh->nud_state = NUD_INCOMPLETE; 1523 atomic_set(&neigh->probes, neigh_max_probes(neigh)); 1524 neigh_add_timer(neigh, 1525 jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1526 HZ/100)); 1527 } 1528 EXPORT_SYMBOL(__neigh_set_probe_once); 1529 1530 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1531 u8 *lladdr, void *saddr, 1532 struct net_device *dev) 1533 { 1534 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1535 lladdr || !dev->addr_len); 1536 if (neigh) 1537 neigh_update(neigh, lladdr, NUD_STALE, 1538 NEIGH_UPDATE_F_OVERRIDE, 0); 1539 return neigh; 1540 } 1541 EXPORT_SYMBOL(neigh_event_ns); 1542 1543 /* called with read_lock_bh(&n->lock); */ 1544 static void neigh_hh_init(struct neighbour *n) 1545 { 1546 struct net_device *dev = n->dev; 1547 __be16 prot = n->tbl->protocol; 1548 struct hh_cache *hh = &n->hh; 1549 1550 write_lock_bh(&n->lock); 1551 1552 /* Only one thread can come in here and initialize the 1553 * hh_cache entry. 1554 */ 1555 if (!hh->hh_len) 1556 dev->header_ops->cache(n, hh, prot); 1557 1558 write_unlock_bh(&n->lock); 1559 } 1560 1561 /* Slow and careful. */ 1562 1563 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) 1564 { 1565 int rc = 0; 1566 1567 if (!neigh_event_send(neigh, skb)) { 1568 int err; 1569 struct net_device *dev = neigh->dev; 1570 unsigned int seq; 1571 1572 if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len)) 1573 neigh_hh_init(neigh); 1574 1575 do { 1576 __skb_pull(skb, skb_network_offset(skb)); 1577 seq = read_seqbegin(&neigh->ha_lock); 1578 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1579 neigh->ha, NULL, skb->len); 1580 } while (read_seqretry(&neigh->ha_lock, seq)); 1581 1582 if (err >= 0) 1583 rc = dev_queue_xmit(skb); 1584 else 1585 goto out_kfree_skb; 1586 } 1587 out: 1588 return rc; 1589 out_kfree_skb: 1590 rc = -EINVAL; 1591 kfree_skb(skb); 1592 goto out; 1593 } 1594 EXPORT_SYMBOL(neigh_resolve_output); 1595 1596 /* As fast as possible without hh cache */ 1597 1598 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) 1599 { 1600 struct net_device *dev = neigh->dev; 1601 unsigned int seq; 1602 int err; 1603 1604 do { 1605 __skb_pull(skb, skb_network_offset(skb)); 1606 seq = read_seqbegin(&neigh->ha_lock); 1607 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1608 neigh->ha, NULL, skb->len); 1609 } while (read_seqretry(&neigh->ha_lock, seq)); 1610 1611 if (err >= 0) 1612 err = dev_queue_xmit(skb); 1613 else { 1614 err = -EINVAL; 1615 kfree_skb(skb); 1616 } 1617 return err; 1618 } 1619 EXPORT_SYMBOL(neigh_connected_output); 1620 1621 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) 1622 { 1623 return dev_queue_xmit(skb); 1624 } 1625 EXPORT_SYMBOL(neigh_direct_output); 1626 1627 static void neigh_managed_work(struct work_struct *work) 1628 { 1629 struct neigh_table *tbl = container_of(work, struct neigh_table, 1630 managed_work.work); 1631 struct neighbour *neigh; 1632 1633 write_lock_bh(&tbl->lock); 1634 list_for_each_entry(neigh, &tbl->managed_list, managed_list) 1635 neigh_event_send_probe(neigh, NULL, false); 1636 queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 1637 NEIGH_VAR(&tbl->parms, INTERVAL_PROBE_TIME_MS)); 1638 write_unlock_bh(&tbl->lock); 1639 } 1640 1641 static void neigh_proxy_process(struct timer_list *t) 1642 { 1643 struct neigh_table *tbl = from_timer(tbl, t, proxy_timer); 1644 long sched_next = 0; 1645 unsigned long now = jiffies; 1646 struct sk_buff *skb, *n; 1647 1648 spin_lock(&tbl->proxy_queue.lock); 1649 1650 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1651 long tdif = NEIGH_CB(skb)->sched_next - now; 1652 1653 if (tdif <= 0) { 1654 struct net_device *dev = skb->dev; 1655 1656 neigh_parms_qlen_dec(dev, tbl->family); 1657 __skb_unlink(skb, &tbl->proxy_queue); 1658 1659 if (tbl->proxy_redo && netif_running(dev)) { 1660 rcu_read_lock(); 1661 tbl->proxy_redo(skb); 1662 rcu_read_unlock(); 1663 } else { 1664 kfree_skb(skb); 1665 } 1666 1667 dev_put(dev); 1668 } else if (!sched_next || tdif < sched_next) 1669 sched_next = tdif; 1670 } 1671 del_timer(&tbl->proxy_timer); 1672 if (sched_next) 1673 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1674 spin_unlock(&tbl->proxy_queue.lock); 1675 } 1676 1677 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1678 struct sk_buff *skb) 1679 { 1680 unsigned long sched_next = jiffies + 1681 get_random_u32_below(NEIGH_VAR(p, PROXY_DELAY)); 1682 1683 if (p->qlen > NEIGH_VAR(p, PROXY_QLEN)) { 1684 kfree_skb(skb); 1685 return; 1686 } 1687 1688 NEIGH_CB(skb)->sched_next = sched_next; 1689 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1690 1691 spin_lock(&tbl->proxy_queue.lock); 1692 if (del_timer(&tbl->proxy_timer)) { 1693 if (time_before(tbl->proxy_timer.expires, sched_next)) 1694 sched_next = tbl->proxy_timer.expires; 1695 } 1696 skb_dst_drop(skb); 1697 dev_hold(skb->dev); 1698 __skb_queue_tail(&tbl->proxy_queue, skb); 1699 p->qlen++; 1700 mod_timer(&tbl->proxy_timer, sched_next); 1701 spin_unlock(&tbl->proxy_queue.lock); 1702 } 1703 EXPORT_SYMBOL(pneigh_enqueue); 1704 1705 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1706 struct net *net, int ifindex) 1707 { 1708 struct neigh_parms *p; 1709 1710 list_for_each_entry(p, &tbl->parms_list, list) { 1711 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1712 (!p->dev && !ifindex && net_eq(net, &init_net))) 1713 return p; 1714 } 1715 1716 return NULL; 1717 } 1718 1719 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1720 struct neigh_table *tbl) 1721 { 1722 struct neigh_parms *p; 1723 struct net *net = dev_net(dev); 1724 const struct net_device_ops *ops = dev->netdev_ops; 1725 1726 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL); 1727 if (p) { 1728 p->tbl = tbl; 1729 refcount_set(&p->refcnt, 1); 1730 p->reachable_time = 1731 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 1732 p->qlen = 0; 1733 netdev_hold(dev, &p->dev_tracker, GFP_KERNEL); 1734 p->dev = dev; 1735 write_pnet(&p->net, net); 1736 p->sysctl_table = NULL; 1737 1738 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1739 netdev_put(dev, &p->dev_tracker); 1740 kfree(p); 1741 return NULL; 1742 } 1743 1744 write_lock_bh(&tbl->lock); 1745 list_add(&p->list, &tbl->parms.list); 1746 write_unlock_bh(&tbl->lock); 1747 1748 neigh_parms_data_state_cleanall(p); 1749 } 1750 return p; 1751 } 1752 EXPORT_SYMBOL(neigh_parms_alloc); 1753 1754 static void neigh_rcu_free_parms(struct rcu_head *head) 1755 { 1756 struct neigh_parms *parms = 1757 container_of(head, struct neigh_parms, rcu_head); 1758 1759 neigh_parms_put(parms); 1760 } 1761 1762 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1763 { 1764 if (!parms || parms == &tbl->parms) 1765 return; 1766 write_lock_bh(&tbl->lock); 1767 list_del(&parms->list); 1768 parms->dead = 1; 1769 write_unlock_bh(&tbl->lock); 1770 netdev_put(parms->dev, &parms->dev_tracker); 1771 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1772 } 1773 EXPORT_SYMBOL(neigh_parms_release); 1774 1775 static void neigh_parms_destroy(struct neigh_parms *parms) 1776 { 1777 kfree(parms); 1778 } 1779 1780 static struct lock_class_key neigh_table_proxy_queue_class; 1781 1782 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly; 1783 1784 void neigh_table_init(int index, struct neigh_table *tbl) 1785 { 1786 unsigned long now = jiffies; 1787 unsigned long phsize; 1788 1789 INIT_LIST_HEAD(&tbl->parms_list); 1790 INIT_LIST_HEAD(&tbl->gc_list); 1791 INIT_LIST_HEAD(&tbl->managed_list); 1792 1793 list_add(&tbl->parms.list, &tbl->parms_list); 1794 write_pnet(&tbl->parms.net, &init_net); 1795 refcount_set(&tbl->parms.refcnt, 1); 1796 tbl->parms.reachable_time = 1797 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME)); 1798 tbl->parms.qlen = 0; 1799 1800 tbl->stats = alloc_percpu(struct neigh_statistics); 1801 if (!tbl->stats) 1802 panic("cannot create neighbour cache statistics"); 1803 1804 #ifdef CONFIG_PROC_FS 1805 if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat, 1806 &neigh_stat_seq_ops, tbl)) 1807 panic("cannot create neighbour proc dir entry"); 1808 #endif 1809 1810 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); 1811 1812 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1813 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1814 1815 if (!tbl->nht || !tbl->phash_buckets) 1816 panic("cannot allocate neighbour cache hashes"); 1817 1818 if (!tbl->entry_size) 1819 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) + 1820 tbl->key_len, NEIGH_PRIV_ALIGN); 1821 else 1822 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN); 1823 1824 rwlock_init(&tbl->lock); 1825 1826 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work); 1827 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 1828 tbl->parms.reachable_time); 1829 INIT_DEFERRABLE_WORK(&tbl->managed_work, neigh_managed_work); 1830 queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 0); 1831 1832 timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0); 1833 skb_queue_head_init_class(&tbl->proxy_queue, 1834 &neigh_table_proxy_queue_class); 1835 1836 tbl->last_flush = now; 1837 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1838 1839 neigh_tables[index] = tbl; 1840 } 1841 EXPORT_SYMBOL(neigh_table_init); 1842 1843 int neigh_table_clear(int index, struct neigh_table *tbl) 1844 { 1845 neigh_tables[index] = NULL; 1846 /* It is not clean... Fix it to unload IPv6 module safely */ 1847 cancel_delayed_work_sync(&tbl->managed_work); 1848 cancel_delayed_work_sync(&tbl->gc_work); 1849 del_timer_sync(&tbl->proxy_timer); 1850 pneigh_queue_purge(&tbl->proxy_queue, NULL, tbl->family); 1851 neigh_ifdown(tbl, NULL); 1852 if (atomic_read(&tbl->entries)) 1853 pr_crit("neighbour leakage\n"); 1854 1855 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, 1856 neigh_hash_free_rcu); 1857 tbl->nht = NULL; 1858 1859 kfree(tbl->phash_buckets); 1860 tbl->phash_buckets = NULL; 1861 1862 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1863 1864 free_percpu(tbl->stats); 1865 tbl->stats = NULL; 1866 1867 return 0; 1868 } 1869 EXPORT_SYMBOL(neigh_table_clear); 1870 1871 static struct neigh_table *neigh_find_table(int family) 1872 { 1873 struct neigh_table *tbl = NULL; 1874 1875 switch (family) { 1876 case AF_INET: 1877 tbl = neigh_tables[NEIGH_ARP_TABLE]; 1878 break; 1879 case AF_INET6: 1880 tbl = neigh_tables[NEIGH_ND_TABLE]; 1881 break; 1882 } 1883 1884 return tbl; 1885 } 1886 1887 const struct nla_policy nda_policy[NDA_MAX+1] = { 1888 [NDA_UNSPEC] = { .strict_start_type = NDA_NH_ID }, 1889 [NDA_DST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1890 [NDA_LLADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1891 [NDA_CACHEINFO] = { .len = sizeof(struct nda_cacheinfo) }, 1892 [NDA_PROBES] = { .type = NLA_U32 }, 1893 [NDA_VLAN] = { .type = NLA_U16 }, 1894 [NDA_PORT] = { .type = NLA_U16 }, 1895 [NDA_VNI] = { .type = NLA_U32 }, 1896 [NDA_IFINDEX] = { .type = NLA_U32 }, 1897 [NDA_MASTER] = { .type = NLA_U32 }, 1898 [NDA_PROTOCOL] = { .type = NLA_U8 }, 1899 [NDA_NH_ID] = { .type = NLA_U32 }, 1900 [NDA_FLAGS_EXT] = NLA_POLICY_MASK(NLA_U32, NTF_EXT_MASK), 1901 [NDA_FDB_EXT_ATTRS] = { .type = NLA_NESTED }, 1902 }; 1903 1904 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, 1905 struct netlink_ext_ack *extack) 1906 { 1907 struct net *net = sock_net(skb->sk); 1908 struct ndmsg *ndm; 1909 struct nlattr *dst_attr; 1910 struct neigh_table *tbl; 1911 struct neighbour *neigh; 1912 struct net_device *dev = NULL; 1913 int err = -EINVAL; 1914 1915 ASSERT_RTNL(); 1916 if (nlmsg_len(nlh) < sizeof(*ndm)) 1917 goto out; 1918 1919 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1920 if (!dst_attr) { 1921 NL_SET_ERR_MSG(extack, "Network address not specified"); 1922 goto out; 1923 } 1924 1925 ndm = nlmsg_data(nlh); 1926 if (ndm->ndm_ifindex) { 1927 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1928 if (dev == NULL) { 1929 err = -ENODEV; 1930 goto out; 1931 } 1932 } 1933 1934 tbl = neigh_find_table(ndm->ndm_family); 1935 if (tbl == NULL) 1936 return -EAFNOSUPPORT; 1937 1938 if (nla_len(dst_attr) < (int)tbl->key_len) { 1939 NL_SET_ERR_MSG(extack, "Invalid network address"); 1940 goto out; 1941 } 1942 1943 if (ndm->ndm_flags & NTF_PROXY) { 1944 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1945 goto out; 1946 } 1947 1948 if (dev == NULL) 1949 goto out; 1950 1951 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1952 if (neigh == NULL) { 1953 err = -ENOENT; 1954 goto out; 1955 } 1956 1957 err = __neigh_update(neigh, NULL, NUD_FAILED, 1958 NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN, 1959 NETLINK_CB(skb).portid, extack); 1960 write_lock_bh(&tbl->lock); 1961 neigh_release(neigh); 1962 neigh_remove_one(neigh, tbl); 1963 write_unlock_bh(&tbl->lock); 1964 1965 out: 1966 return err; 1967 } 1968 1969 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, 1970 struct netlink_ext_ack *extack) 1971 { 1972 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE | 1973 NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1974 struct net *net = sock_net(skb->sk); 1975 struct ndmsg *ndm; 1976 struct nlattr *tb[NDA_MAX+1]; 1977 struct neigh_table *tbl; 1978 struct net_device *dev = NULL; 1979 struct neighbour *neigh; 1980 void *dst, *lladdr; 1981 u8 protocol = 0; 1982 u32 ndm_flags; 1983 int err; 1984 1985 ASSERT_RTNL(); 1986 err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX, 1987 nda_policy, extack); 1988 if (err < 0) 1989 goto out; 1990 1991 err = -EINVAL; 1992 if (!tb[NDA_DST]) { 1993 NL_SET_ERR_MSG(extack, "Network address not specified"); 1994 goto out; 1995 } 1996 1997 ndm = nlmsg_data(nlh); 1998 ndm_flags = ndm->ndm_flags; 1999 if (tb[NDA_FLAGS_EXT]) { 2000 u32 ext = nla_get_u32(tb[NDA_FLAGS_EXT]); 2001 2002 BUILD_BUG_ON(sizeof(neigh->flags) * BITS_PER_BYTE < 2003 (sizeof(ndm->ndm_flags) * BITS_PER_BYTE + 2004 hweight32(NTF_EXT_MASK))); 2005 ndm_flags |= (ext << NTF_EXT_SHIFT); 2006 } 2007 if (ndm->ndm_ifindex) { 2008 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 2009 if (dev == NULL) { 2010 err = -ENODEV; 2011 goto out; 2012 } 2013 2014 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) { 2015 NL_SET_ERR_MSG(extack, "Invalid link address"); 2016 goto out; 2017 } 2018 } 2019 2020 tbl = neigh_find_table(ndm->ndm_family); 2021 if (tbl == NULL) 2022 return -EAFNOSUPPORT; 2023 2024 if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) { 2025 NL_SET_ERR_MSG(extack, "Invalid network address"); 2026 goto out; 2027 } 2028 2029 dst = nla_data(tb[NDA_DST]); 2030 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 2031 2032 if (tb[NDA_PROTOCOL]) 2033 protocol = nla_get_u8(tb[NDA_PROTOCOL]); 2034 if (ndm_flags & NTF_PROXY) { 2035 struct pneigh_entry *pn; 2036 2037 if (ndm_flags & NTF_MANAGED) { 2038 NL_SET_ERR_MSG(extack, "Invalid NTF_* flag combination"); 2039 goto out; 2040 } 2041 2042 err = -ENOBUFS; 2043 pn = pneigh_lookup(tbl, net, dst, dev, 1); 2044 if (pn) { 2045 pn->flags = ndm_flags; 2046 if (protocol) 2047 pn->protocol = protocol; 2048 err = 0; 2049 } 2050 goto out; 2051 } 2052 2053 if (!dev) { 2054 NL_SET_ERR_MSG(extack, "Device not specified"); 2055 goto out; 2056 } 2057 2058 if (tbl->allow_add && !tbl->allow_add(dev, extack)) { 2059 err = -EINVAL; 2060 goto out; 2061 } 2062 2063 neigh = neigh_lookup(tbl, dst, dev); 2064 if (neigh == NULL) { 2065 bool ndm_permanent = ndm->ndm_state & NUD_PERMANENT; 2066 bool exempt_from_gc = ndm_permanent || 2067 ndm_flags & NTF_EXT_LEARNED; 2068 2069 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 2070 err = -ENOENT; 2071 goto out; 2072 } 2073 if (ndm_permanent && (ndm_flags & NTF_MANAGED)) { 2074 NL_SET_ERR_MSG(extack, "Invalid NTF_* flag for permanent entry"); 2075 err = -EINVAL; 2076 goto out; 2077 } 2078 2079 neigh = ___neigh_create(tbl, dst, dev, 2080 ndm_flags & 2081 (NTF_EXT_LEARNED | NTF_MANAGED), 2082 exempt_from_gc, true); 2083 if (IS_ERR(neigh)) { 2084 err = PTR_ERR(neigh); 2085 goto out; 2086 } 2087 } else { 2088 if (nlh->nlmsg_flags & NLM_F_EXCL) { 2089 err = -EEXIST; 2090 neigh_release(neigh); 2091 goto out; 2092 } 2093 2094 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 2095 flags &= ~(NEIGH_UPDATE_F_OVERRIDE | 2096 NEIGH_UPDATE_F_OVERRIDE_ISROUTER); 2097 } 2098 2099 if (protocol) 2100 neigh->protocol = protocol; 2101 if (ndm_flags & NTF_EXT_LEARNED) 2102 flags |= NEIGH_UPDATE_F_EXT_LEARNED; 2103 if (ndm_flags & NTF_ROUTER) 2104 flags |= NEIGH_UPDATE_F_ISROUTER; 2105 if (ndm_flags & NTF_MANAGED) 2106 flags |= NEIGH_UPDATE_F_MANAGED; 2107 if (ndm_flags & NTF_USE) 2108 flags |= NEIGH_UPDATE_F_USE; 2109 2110 err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags, 2111 NETLINK_CB(skb).portid, extack); 2112 if (!err && ndm_flags & (NTF_USE | NTF_MANAGED)) { 2113 neigh_event_send(neigh, NULL); 2114 err = 0; 2115 } 2116 neigh_release(neigh); 2117 out: 2118 return err; 2119 } 2120 2121 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 2122 { 2123 struct nlattr *nest; 2124 2125 nest = nla_nest_start_noflag(skb, NDTA_PARMS); 2126 if (nest == NULL) 2127 return -ENOBUFS; 2128 2129 if ((parms->dev && 2130 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) || 2131 nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) || 2132 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, 2133 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) || 2134 /* approximative value for deprecated QUEUE_LEN (in packets) */ 2135 nla_put_u32(skb, NDTPA_QUEUE_LEN, 2136 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) || 2137 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) || 2138 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) || 2139 nla_put_u32(skb, NDTPA_UCAST_PROBES, 2140 NEIGH_VAR(parms, UCAST_PROBES)) || 2141 nla_put_u32(skb, NDTPA_MCAST_PROBES, 2142 NEIGH_VAR(parms, MCAST_PROBES)) || 2143 nla_put_u32(skb, NDTPA_MCAST_REPROBES, 2144 NEIGH_VAR(parms, MCAST_REPROBES)) || 2145 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time, 2146 NDTPA_PAD) || 2147 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME, 2148 NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) || 2149 nla_put_msecs(skb, NDTPA_GC_STALETIME, 2150 NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) || 2151 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME, 2152 NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) || 2153 nla_put_msecs(skb, NDTPA_RETRANS_TIME, 2154 NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) || 2155 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, 2156 NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) || 2157 nla_put_msecs(skb, NDTPA_PROXY_DELAY, 2158 NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) || 2159 nla_put_msecs(skb, NDTPA_LOCKTIME, 2160 NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD) || 2161 nla_put_msecs(skb, NDTPA_INTERVAL_PROBE_TIME_MS, 2162 NEIGH_VAR(parms, INTERVAL_PROBE_TIME_MS), NDTPA_PAD)) 2163 goto nla_put_failure; 2164 return nla_nest_end(skb, nest); 2165 2166 nla_put_failure: 2167 nla_nest_cancel(skb, nest); 2168 return -EMSGSIZE; 2169 } 2170 2171 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 2172 u32 pid, u32 seq, int type, int flags) 2173 { 2174 struct nlmsghdr *nlh; 2175 struct ndtmsg *ndtmsg; 2176 2177 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2178 if (nlh == NULL) 2179 return -EMSGSIZE; 2180 2181 ndtmsg = nlmsg_data(nlh); 2182 2183 read_lock_bh(&tbl->lock); 2184 ndtmsg->ndtm_family = tbl->family; 2185 ndtmsg->ndtm_pad1 = 0; 2186 ndtmsg->ndtm_pad2 = 0; 2187 2188 if (nla_put_string(skb, NDTA_NAME, tbl->id) || 2189 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval, NDTA_PAD) || 2190 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) || 2191 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) || 2192 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3)) 2193 goto nla_put_failure; 2194 { 2195 unsigned long now = jiffies; 2196 long flush_delta = now - tbl->last_flush; 2197 long rand_delta = now - tbl->last_rand; 2198 struct neigh_hash_table *nht; 2199 struct ndt_config ndc = { 2200 .ndtc_key_len = tbl->key_len, 2201 .ndtc_entry_size = tbl->entry_size, 2202 .ndtc_entries = atomic_read(&tbl->entries), 2203 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 2204 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 2205 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 2206 }; 2207 2208 rcu_read_lock_bh(); 2209 nht = rcu_dereference_bh(tbl->nht); 2210 ndc.ndtc_hash_rnd = nht->hash_rnd[0]; 2211 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); 2212 rcu_read_unlock_bh(); 2213 2214 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc)) 2215 goto nla_put_failure; 2216 } 2217 2218 { 2219 int cpu; 2220 struct ndt_stats ndst; 2221 2222 memset(&ndst, 0, sizeof(ndst)); 2223 2224 for_each_possible_cpu(cpu) { 2225 struct neigh_statistics *st; 2226 2227 st = per_cpu_ptr(tbl->stats, cpu); 2228 ndst.ndts_allocs += st->allocs; 2229 ndst.ndts_destroys += st->destroys; 2230 ndst.ndts_hash_grows += st->hash_grows; 2231 ndst.ndts_res_failed += st->res_failed; 2232 ndst.ndts_lookups += st->lookups; 2233 ndst.ndts_hits += st->hits; 2234 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 2235 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 2236 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 2237 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 2238 ndst.ndts_table_fulls += st->table_fulls; 2239 } 2240 2241 if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst, 2242 NDTA_PAD)) 2243 goto nla_put_failure; 2244 } 2245 2246 BUG_ON(tbl->parms.dev); 2247 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 2248 goto nla_put_failure; 2249 2250 read_unlock_bh(&tbl->lock); 2251 nlmsg_end(skb, nlh); 2252 return 0; 2253 2254 nla_put_failure: 2255 read_unlock_bh(&tbl->lock); 2256 nlmsg_cancel(skb, nlh); 2257 return -EMSGSIZE; 2258 } 2259 2260 static int neightbl_fill_param_info(struct sk_buff *skb, 2261 struct neigh_table *tbl, 2262 struct neigh_parms *parms, 2263 u32 pid, u32 seq, int type, 2264 unsigned int flags) 2265 { 2266 struct ndtmsg *ndtmsg; 2267 struct nlmsghdr *nlh; 2268 2269 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2270 if (nlh == NULL) 2271 return -EMSGSIZE; 2272 2273 ndtmsg = nlmsg_data(nlh); 2274 2275 read_lock_bh(&tbl->lock); 2276 ndtmsg->ndtm_family = tbl->family; 2277 ndtmsg->ndtm_pad1 = 0; 2278 ndtmsg->ndtm_pad2 = 0; 2279 2280 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 2281 neightbl_fill_parms(skb, parms) < 0) 2282 goto errout; 2283 2284 read_unlock_bh(&tbl->lock); 2285 nlmsg_end(skb, nlh); 2286 return 0; 2287 errout: 2288 read_unlock_bh(&tbl->lock); 2289 nlmsg_cancel(skb, nlh); 2290 return -EMSGSIZE; 2291 } 2292 2293 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 2294 [NDTA_NAME] = { .type = NLA_STRING }, 2295 [NDTA_THRESH1] = { .type = NLA_U32 }, 2296 [NDTA_THRESH2] = { .type = NLA_U32 }, 2297 [NDTA_THRESH3] = { .type = NLA_U32 }, 2298 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 2299 [NDTA_PARMS] = { .type = NLA_NESTED }, 2300 }; 2301 2302 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 2303 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 2304 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 2305 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 2306 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 2307 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 2308 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 2309 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 }, 2310 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 2311 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 2312 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 2313 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 2314 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 2315 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 2316 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 2317 [NDTPA_INTERVAL_PROBE_TIME_MS] = { .type = NLA_U64, .min = 1 }, 2318 }; 2319 2320 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, 2321 struct netlink_ext_ack *extack) 2322 { 2323 struct net *net = sock_net(skb->sk); 2324 struct neigh_table *tbl; 2325 struct ndtmsg *ndtmsg; 2326 struct nlattr *tb[NDTA_MAX+1]; 2327 bool found = false; 2328 int err, tidx; 2329 2330 err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 2331 nl_neightbl_policy, extack); 2332 if (err < 0) 2333 goto errout; 2334 2335 if (tb[NDTA_NAME] == NULL) { 2336 err = -EINVAL; 2337 goto errout; 2338 } 2339 2340 ndtmsg = nlmsg_data(nlh); 2341 2342 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2343 tbl = neigh_tables[tidx]; 2344 if (!tbl) 2345 continue; 2346 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 2347 continue; 2348 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) { 2349 found = true; 2350 break; 2351 } 2352 } 2353 2354 if (!found) 2355 return -ENOENT; 2356 2357 /* 2358 * We acquire tbl->lock to be nice to the periodic timers and 2359 * make sure they always see a consistent set of values. 2360 */ 2361 write_lock_bh(&tbl->lock); 2362 2363 if (tb[NDTA_PARMS]) { 2364 struct nlattr *tbp[NDTPA_MAX+1]; 2365 struct neigh_parms *p; 2366 int i, ifindex = 0; 2367 2368 err = nla_parse_nested_deprecated(tbp, NDTPA_MAX, 2369 tb[NDTA_PARMS], 2370 nl_ntbl_parm_policy, extack); 2371 if (err < 0) 2372 goto errout_tbl_lock; 2373 2374 if (tbp[NDTPA_IFINDEX]) 2375 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 2376 2377 p = lookup_neigh_parms(tbl, net, ifindex); 2378 if (p == NULL) { 2379 err = -ENOENT; 2380 goto errout_tbl_lock; 2381 } 2382 2383 for (i = 1; i <= NDTPA_MAX; i++) { 2384 if (tbp[i] == NULL) 2385 continue; 2386 2387 switch (i) { 2388 case NDTPA_QUEUE_LEN: 2389 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2390 nla_get_u32(tbp[i]) * 2391 SKB_TRUESIZE(ETH_FRAME_LEN)); 2392 break; 2393 case NDTPA_QUEUE_LENBYTES: 2394 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2395 nla_get_u32(tbp[i])); 2396 break; 2397 case NDTPA_PROXY_QLEN: 2398 NEIGH_VAR_SET(p, PROXY_QLEN, 2399 nla_get_u32(tbp[i])); 2400 break; 2401 case NDTPA_APP_PROBES: 2402 NEIGH_VAR_SET(p, APP_PROBES, 2403 nla_get_u32(tbp[i])); 2404 break; 2405 case NDTPA_UCAST_PROBES: 2406 NEIGH_VAR_SET(p, UCAST_PROBES, 2407 nla_get_u32(tbp[i])); 2408 break; 2409 case NDTPA_MCAST_PROBES: 2410 NEIGH_VAR_SET(p, MCAST_PROBES, 2411 nla_get_u32(tbp[i])); 2412 break; 2413 case NDTPA_MCAST_REPROBES: 2414 NEIGH_VAR_SET(p, MCAST_REPROBES, 2415 nla_get_u32(tbp[i])); 2416 break; 2417 case NDTPA_BASE_REACHABLE_TIME: 2418 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME, 2419 nla_get_msecs(tbp[i])); 2420 /* update reachable_time as well, otherwise, the change will 2421 * only be effective after the next time neigh_periodic_work 2422 * decides to recompute it (can be multiple minutes) 2423 */ 2424 p->reachable_time = 2425 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 2426 break; 2427 case NDTPA_GC_STALETIME: 2428 NEIGH_VAR_SET(p, GC_STALETIME, 2429 nla_get_msecs(tbp[i])); 2430 break; 2431 case NDTPA_DELAY_PROBE_TIME: 2432 NEIGH_VAR_SET(p, DELAY_PROBE_TIME, 2433 nla_get_msecs(tbp[i])); 2434 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 2435 break; 2436 case NDTPA_INTERVAL_PROBE_TIME_MS: 2437 NEIGH_VAR_SET(p, INTERVAL_PROBE_TIME_MS, 2438 nla_get_msecs(tbp[i])); 2439 break; 2440 case NDTPA_RETRANS_TIME: 2441 NEIGH_VAR_SET(p, RETRANS_TIME, 2442 nla_get_msecs(tbp[i])); 2443 break; 2444 case NDTPA_ANYCAST_DELAY: 2445 NEIGH_VAR_SET(p, ANYCAST_DELAY, 2446 nla_get_msecs(tbp[i])); 2447 break; 2448 case NDTPA_PROXY_DELAY: 2449 NEIGH_VAR_SET(p, PROXY_DELAY, 2450 nla_get_msecs(tbp[i])); 2451 break; 2452 case NDTPA_LOCKTIME: 2453 NEIGH_VAR_SET(p, LOCKTIME, 2454 nla_get_msecs(tbp[i])); 2455 break; 2456 } 2457 } 2458 } 2459 2460 err = -ENOENT; 2461 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] || 2462 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) && 2463 !net_eq(net, &init_net)) 2464 goto errout_tbl_lock; 2465 2466 if (tb[NDTA_THRESH1]) 2467 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 2468 2469 if (tb[NDTA_THRESH2]) 2470 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 2471 2472 if (tb[NDTA_THRESH3]) 2473 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 2474 2475 if (tb[NDTA_GC_INTERVAL]) 2476 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 2477 2478 err = 0; 2479 2480 errout_tbl_lock: 2481 write_unlock_bh(&tbl->lock); 2482 errout: 2483 return err; 2484 } 2485 2486 static int neightbl_valid_dump_info(const struct nlmsghdr *nlh, 2487 struct netlink_ext_ack *extack) 2488 { 2489 struct ndtmsg *ndtm; 2490 2491 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) { 2492 NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request"); 2493 return -EINVAL; 2494 } 2495 2496 ndtm = nlmsg_data(nlh); 2497 if (ndtm->ndtm_pad1 || ndtm->ndtm_pad2) { 2498 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request"); 2499 return -EINVAL; 2500 } 2501 2502 if (nlmsg_attrlen(nlh, sizeof(*ndtm))) { 2503 NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request"); 2504 return -EINVAL; 2505 } 2506 2507 return 0; 2508 } 2509 2510 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2511 { 2512 const struct nlmsghdr *nlh = cb->nlh; 2513 struct net *net = sock_net(skb->sk); 2514 int family, tidx, nidx = 0; 2515 int tbl_skip = cb->args[0]; 2516 int neigh_skip = cb->args[1]; 2517 struct neigh_table *tbl; 2518 2519 if (cb->strict_check) { 2520 int err = neightbl_valid_dump_info(nlh, cb->extack); 2521 2522 if (err < 0) 2523 return err; 2524 } 2525 2526 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2527 2528 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2529 struct neigh_parms *p; 2530 2531 tbl = neigh_tables[tidx]; 2532 if (!tbl) 2533 continue; 2534 2535 if (tidx < tbl_skip || (family && tbl->family != family)) 2536 continue; 2537 2538 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid, 2539 nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2540 NLM_F_MULTI) < 0) 2541 break; 2542 2543 nidx = 0; 2544 p = list_next_entry(&tbl->parms, list); 2545 list_for_each_entry_from(p, &tbl->parms_list, list) { 2546 if (!net_eq(neigh_parms_net(p), net)) 2547 continue; 2548 2549 if (nidx < neigh_skip) 2550 goto next; 2551 2552 if (neightbl_fill_param_info(skb, tbl, p, 2553 NETLINK_CB(cb->skb).portid, 2554 nlh->nlmsg_seq, 2555 RTM_NEWNEIGHTBL, 2556 NLM_F_MULTI) < 0) 2557 goto out; 2558 next: 2559 nidx++; 2560 } 2561 2562 neigh_skip = 0; 2563 } 2564 out: 2565 cb->args[0] = tidx; 2566 cb->args[1] = nidx; 2567 2568 return skb->len; 2569 } 2570 2571 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2572 u32 pid, u32 seq, int type, unsigned int flags) 2573 { 2574 u32 neigh_flags, neigh_flags_ext; 2575 unsigned long now = jiffies; 2576 struct nda_cacheinfo ci; 2577 struct nlmsghdr *nlh; 2578 struct ndmsg *ndm; 2579 2580 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2581 if (nlh == NULL) 2582 return -EMSGSIZE; 2583 2584 neigh_flags_ext = neigh->flags >> NTF_EXT_SHIFT; 2585 neigh_flags = neigh->flags & NTF_OLD_MASK; 2586 2587 ndm = nlmsg_data(nlh); 2588 ndm->ndm_family = neigh->ops->family; 2589 ndm->ndm_pad1 = 0; 2590 ndm->ndm_pad2 = 0; 2591 ndm->ndm_flags = neigh_flags; 2592 ndm->ndm_type = neigh->type; 2593 ndm->ndm_ifindex = neigh->dev->ifindex; 2594 2595 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key)) 2596 goto nla_put_failure; 2597 2598 read_lock_bh(&neigh->lock); 2599 ndm->ndm_state = neigh->nud_state; 2600 if (neigh->nud_state & NUD_VALID) { 2601 char haddr[MAX_ADDR_LEN]; 2602 2603 neigh_ha_snapshot(haddr, neigh, neigh->dev); 2604 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { 2605 read_unlock_bh(&neigh->lock); 2606 goto nla_put_failure; 2607 } 2608 } 2609 2610 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2611 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2612 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2613 ci.ndm_refcnt = refcount_read(&neigh->refcnt) - 1; 2614 read_unlock_bh(&neigh->lock); 2615 2616 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) || 2617 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci)) 2618 goto nla_put_failure; 2619 2620 if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol)) 2621 goto nla_put_failure; 2622 if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext)) 2623 goto nla_put_failure; 2624 2625 nlmsg_end(skb, nlh); 2626 return 0; 2627 2628 nla_put_failure: 2629 nlmsg_cancel(skb, nlh); 2630 return -EMSGSIZE; 2631 } 2632 2633 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, 2634 u32 pid, u32 seq, int type, unsigned int flags, 2635 struct neigh_table *tbl) 2636 { 2637 u32 neigh_flags, neigh_flags_ext; 2638 struct nlmsghdr *nlh; 2639 struct ndmsg *ndm; 2640 2641 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2642 if (nlh == NULL) 2643 return -EMSGSIZE; 2644 2645 neigh_flags_ext = pn->flags >> NTF_EXT_SHIFT; 2646 neigh_flags = pn->flags & NTF_OLD_MASK; 2647 2648 ndm = nlmsg_data(nlh); 2649 ndm->ndm_family = tbl->family; 2650 ndm->ndm_pad1 = 0; 2651 ndm->ndm_pad2 = 0; 2652 ndm->ndm_flags = neigh_flags | NTF_PROXY; 2653 ndm->ndm_type = RTN_UNICAST; 2654 ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0; 2655 ndm->ndm_state = NUD_NONE; 2656 2657 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key)) 2658 goto nla_put_failure; 2659 2660 if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol)) 2661 goto nla_put_failure; 2662 if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext)) 2663 goto nla_put_failure; 2664 2665 nlmsg_end(skb, nlh); 2666 return 0; 2667 2668 nla_put_failure: 2669 nlmsg_cancel(skb, nlh); 2670 return -EMSGSIZE; 2671 } 2672 2673 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid) 2674 { 2675 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2676 __neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid); 2677 } 2678 2679 static bool neigh_master_filtered(struct net_device *dev, int master_idx) 2680 { 2681 struct net_device *master; 2682 2683 if (!master_idx) 2684 return false; 2685 2686 master = dev ? netdev_master_upper_dev_get(dev) : NULL; 2687 2688 /* 0 is already used to denote NDA_MASTER wasn't passed, therefore need another 2689 * invalid value for ifindex to denote "no master". 2690 */ 2691 if (master_idx == -1) 2692 return !!master; 2693 2694 if (!master || master->ifindex != master_idx) 2695 return true; 2696 2697 return false; 2698 } 2699 2700 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx) 2701 { 2702 if (filter_idx && (!dev || dev->ifindex != filter_idx)) 2703 return true; 2704 2705 return false; 2706 } 2707 2708 struct neigh_dump_filter { 2709 int master_idx; 2710 int dev_idx; 2711 }; 2712 2713 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2714 struct netlink_callback *cb, 2715 struct neigh_dump_filter *filter) 2716 { 2717 struct net *net = sock_net(skb->sk); 2718 struct neighbour *n; 2719 int rc, h, s_h = cb->args[1]; 2720 int idx, s_idx = idx = cb->args[2]; 2721 struct neigh_hash_table *nht; 2722 unsigned int flags = NLM_F_MULTI; 2723 2724 if (filter->dev_idx || filter->master_idx) 2725 flags |= NLM_F_DUMP_FILTERED; 2726 2727 rcu_read_lock_bh(); 2728 nht = rcu_dereference_bh(tbl->nht); 2729 2730 for (h = s_h; h < (1 << nht->hash_shift); h++) { 2731 if (h > s_h) 2732 s_idx = 0; 2733 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; 2734 n != NULL; 2735 n = rcu_dereference_bh(n->next)) { 2736 if (idx < s_idx || !net_eq(dev_net(n->dev), net)) 2737 goto next; 2738 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2739 neigh_master_filtered(n->dev, filter->master_idx)) 2740 goto next; 2741 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2742 cb->nlh->nlmsg_seq, 2743 RTM_NEWNEIGH, 2744 flags) < 0) { 2745 rc = -1; 2746 goto out; 2747 } 2748 next: 2749 idx++; 2750 } 2751 } 2752 rc = skb->len; 2753 out: 2754 rcu_read_unlock_bh(); 2755 cb->args[1] = h; 2756 cb->args[2] = idx; 2757 return rc; 2758 } 2759 2760 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2761 struct netlink_callback *cb, 2762 struct neigh_dump_filter *filter) 2763 { 2764 struct pneigh_entry *n; 2765 struct net *net = sock_net(skb->sk); 2766 int rc, h, s_h = cb->args[3]; 2767 int idx, s_idx = idx = cb->args[4]; 2768 unsigned int flags = NLM_F_MULTI; 2769 2770 if (filter->dev_idx || filter->master_idx) 2771 flags |= NLM_F_DUMP_FILTERED; 2772 2773 read_lock_bh(&tbl->lock); 2774 2775 for (h = s_h; h <= PNEIGH_HASHMASK; h++) { 2776 if (h > s_h) 2777 s_idx = 0; 2778 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { 2779 if (idx < s_idx || pneigh_net(n) != net) 2780 goto next; 2781 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2782 neigh_master_filtered(n->dev, filter->master_idx)) 2783 goto next; 2784 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2785 cb->nlh->nlmsg_seq, 2786 RTM_NEWNEIGH, flags, tbl) < 0) { 2787 read_unlock_bh(&tbl->lock); 2788 rc = -1; 2789 goto out; 2790 } 2791 next: 2792 idx++; 2793 } 2794 } 2795 2796 read_unlock_bh(&tbl->lock); 2797 rc = skb->len; 2798 out: 2799 cb->args[3] = h; 2800 cb->args[4] = idx; 2801 return rc; 2802 2803 } 2804 2805 static int neigh_valid_dump_req(const struct nlmsghdr *nlh, 2806 bool strict_check, 2807 struct neigh_dump_filter *filter, 2808 struct netlink_ext_ack *extack) 2809 { 2810 struct nlattr *tb[NDA_MAX + 1]; 2811 int err, i; 2812 2813 if (strict_check) { 2814 struct ndmsg *ndm; 2815 2816 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2817 NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request"); 2818 return -EINVAL; 2819 } 2820 2821 ndm = nlmsg_data(nlh); 2822 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_ifindex || 2823 ndm->ndm_state || ndm->ndm_type) { 2824 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request"); 2825 return -EINVAL; 2826 } 2827 2828 if (ndm->ndm_flags & ~NTF_PROXY) { 2829 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request"); 2830 return -EINVAL; 2831 } 2832 2833 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), 2834 tb, NDA_MAX, nda_policy, 2835 extack); 2836 } else { 2837 err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb, 2838 NDA_MAX, nda_policy, extack); 2839 } 2840 if (err < 0) 2841 return err; 2842 2843 for (i = 0; i <= NDA_MAX; ++i) { 2844 if (!tb[i]) 2845 continue; 2846 2847 /* all new attributes should require strict_check */ 2848 switch (i) { 2849 case NDA_IFINDEX: 2850 filter->dev_idx = nla_get_u32(tb[i]); 2851 break; 2852 case NDA_MASTER: 2853 filter->master_idx = nla_get_u32(tb[i]); 2854 break; 2855 default: 2856 if (strict_check) { 2857 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request"); 2858 return -EINVAL; 2859 } 2860 } 2861 } 2862 2863 return 0; 2864 } 2865 2866 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2867 { 2868 const struct nlmsghdr *nlh = cb->nlh; 2869 struct neigh_dump_filter filter = {}; 2870 struct neigh_table *tbl; 2871 int t, family, s_t; 2872 int proxy = 0; 2873 int err; 2874 2875 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2876 2877 /* check for full ndmsg structure presence, family member is 2878 * the same for both structures 2879 */ 2880 if (nlmsg_len(nlh) >= sizeof(struct ndmsg) && 2881 ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY) 2882 proxy = 1; 2883 2884 err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack); 2885 if (err < 0 && cb->strict_check) 2886 return err; 2887 2888 s_t = cb->args[0]; 2889 2890 for (t = 0; t < NEIGH_NR_TABLES; t++) { 2891 tbl = neigh_tables[t]; 2892 2893 if (!tbl) 2894 continue; 2895 if (t < s_t || (family && tbl->family != family)) 2896 continue; 2897 if (t > s_t) 2898 memset(&cb->args[1], 0, sizeof(cb->args) - 2899 sizeof(cb->args[0])); 2900 if (proxy) 2901 err = pneigh_dump_table(tbl, skb, cb, &filter); 2902 else 2903 err = neigh_dump_table(tbl, skb, cb, &filter); 2904 if (err < 0) 2905 break; 2906 } 2907 2908 cb->args[0] = t; 2909 return skb->len; 2910 } 2911 2912 static int neigh_valid_get_req(const struct nlmsghdr *nlh, 2913 struct neigh_table **tbl, 2914 void **dst, int *dev_idx, u8 *ndm_flags, 2915 struct netlink_ext_ack *extack) 2916 { 2917 struct nlattr *tb[NDA_MAX + 1]; 2918 struct ndmsg *ndm; 2919 int err, i; 2920 2921 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2922 NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request"); 2923 return -EINVAL; 2924 } 2925 2926 ndm = nlmsg_data(nlh); 2927 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_state || 2928 ndm->ndm_type) { 2929 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request"); 2930 return -EINVAL; 2931 } 2932 2933 if (ndm->ndm_flags & ~NTF_PROXY) { 2934 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request"); 2935 return -EINVAL; 2936 } 2937 2938 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb, 2939 NDA_MAX, nda_policy, extack); 2940 if (err < 0) 2941 return err; 2942 2943 *ndm_flags = ndm->ndm_flags; 2944 *dev_idx = ndm->ndm_ifindex; 2945 *tbl = neigh_find_table(ndm->ndm_family); 2946 if (*tbl == NULL) { 2947 NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request"); 2948 return -EAFNOSUPPORT; 2949 } 2950 2951 for (i = 0; i <= NDA_MAX; ++i) { 2952 if (!tb[i]) 2953 continue; 2954 2955 switch (i) { 2956 case NDA_DST: 2957 if (nla_len(tb[i]) != (int)(*tbl)->key_len) { 2958 NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request"); 2959 return -EINVAL; 2960 } 2961 *dst = nla_data(tb[i]); 2962 break; 2963 default: 2964 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request"); 2965 return -EINVAL; 2966 } 2967 } 2968 2969 return 0; 2970 } 2971 2972 static inline size_t neigh_nlmsg_size(void) 2973 { 2974 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2975 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2976 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2977 + nla_total_size(sizeof(struct nda_cacheinfo)) 2978 + nla_total_size(4) /* NDA_PROBES */ 2979 + nla_total_size(4) /* NDA_FLAGS_EXT */ 2980 + nla_total_size(1); /* NDA_PROTOCOL */ 2981 } 2982 2983 static int neigh_get_reply(struct net *net, struct neighbour *neigh, 2984 u32 pid, u32 seq) 2985 { 2986 struct sk_buff *skb; 2987 int err = 0; 2988 2989 skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL); 2990 if (!skb) 2991 return -ENOBUFS; 2992 2993 err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0); 2994 if (err) { 2995 kfree_skb(skb); 2996 goto errout; 2997 } 2998 2999 err = rtnl_unicast(skb, net, pid); 3000 errout: 3001 return err; 3002 } 3003 3004 static inline size_t pneigh_nlmsg_size(void) 3005 { 3006 return NLMSG_ALIGN(sizeof(struct ndmsg)) 3007 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 3008 + nla_total_size(4) /* NDA_FLAGS_EXT */ 3009 + nla_total_size(1); /* NDA_PROTOCOL */ 3010 } 3011 3012 static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh, 3013 u32 pid, u32 seq, struct neigh_table *tbl) 3014 { 3015 struct sk_buff *skb; 3016 int err = 0; 3017 3018 skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL); 3019 if (!skb) 3020 return -ENOBUFS; 3021 3022 err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl); 3023 if (err) { 3024 kfree_skb(skb); 3025 goto errout; 3026 } 3027 3028 err = rtnl_unicast(skb, net, pid); 3029 errout: 3030 return err; 3031 } 3032 3033 static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh, 3034 struct netlink_ext_ack *extack) 3035 { 3036 struct net *net = sock_net(in_skb->sk); 3037 struct net_device *dev = NULL; 3038 struct neigh_table *tbl = NULL; 3039 struct neighbour *neigh; 3040 void *dst = NULL; 3041 u8 ndm_flags = 0; 3042 int dev_idx = 0; 3043 int err; 3044 3045 err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags, 3046 extack); 3047 if (err < 0) 3048 return err; 3049 3050 if (dev_idx) { 3051 dev = __dev_get_by_index(net, dev_idx); 3052 if (!dev) { 3053 NL_SET_ERR_MSG(extack, "Unknown device ifindex"); 3054 return -ENODEV; 3055 } 3056 } 3057 3058 if (!dst) { 3059 NL_SET_ERR_MSG(extack, "Network address not specified"); 3060 return -EINVAL; 3061 } 3062 3063 if (ndm_flags & NTF_PROXY) { 3064 struct pneigh_entry *pn; 3065 3066 pn = pneigh_lookup(tbl, net, dst, dev, 0); 3067 if (!pn) { 3068 NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found"); 3069 return -ENOENT; 3070 } 3071 return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid, 3072 nlh->nlmsg_seq, tbl); 3073 } 3074 3075 if (!dev) { 3076 NL_SET_ERR_MSG(extack, "No device specified"); 3077 return -EINVAL; 3078 } 3079 3080 neigh = neigh_lookup(tbl, dst, dev); 3081 if (!neigh) { 3082 NL_SET_ERR_MSG(extack, "Neighbour entry not found"); 3083 return -ENOENT; 3084 } 3085 3086 err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid, 3087 nlh->nlmsg_seq); 3088 3089 neigh_release(neigh); 3090 3091 return err; 3092 } 3093 3094 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 3095 { 3096 int chain; 3097 struct neigh_hash_table *nht; 3098 3099 rcu_read_lock_bh(); 3100 nht = rcu_dereference_bh(tbl->nht); 3101 3102 read_lock(&tbl->lock); /* avoid resizes */ 3103 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 3104 struct neighbour *n; 3105 3106 for (n = rcu_dereference_bh(nht->hash_buckets[chain]); 3107 n != NULL; 3108 n = rcu_dereference_bh(n->next)) 3109 cb(n, cookie); 3110 } 3111 read_unlock(&tbl->lock); 3112 rcu_read_unlock_bh(); 3113 } 3114 EXPORT_SYMBOL(neigh_for_each); 3115 3116 /* The tbl->lock must be held as a writer and BH disabled. */ 3117 void __neigh_for_each_release(struct neigh_table *tbl, 3118 int (*cb)(struct neighbour *)) 3119 { 3120 int chain; 3121 struct neigh_hash_table *nht; 3122 3123 nht = rcu_dereference_protected(tbl->nht, 3124 lockdep_is_held(&tbl->lock)); 3125 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 3126 struct neighbour *n; 3127 struct neighbour __rcu **np; 3128 3129 np = &nht->hash_buckets[chain]; 3130 while ((n = rcu_dereference_protected(*np, 3131 lockdep_is_held(&tbl->lock))) != NULL) { 3132 int release; 3133 3134 write_lock(&n->lock); 3135 release = cb(n); 3136 if (release) { 3137 rcu_assign_pointer(*np, 3138 rcu_dereference_protected(n->next, 3139 lockdep_is_held(&tbl->lock))); 3140 neigh_mark_dead(n); 3141 } else 3142 np = &n->next; 3143 write_unlock(&n->lock); 3144 if (release) 3145 neigh_cleanup_and_release(n); 3146 } 3147 } 3148 } 3149 EXPORT_SYMBOL(__neigh_for_each_release); 3150 3151 int neigh_xmit(int index, struct net_device *dev, 3152 const void *addr, struct sk_buff *skb) 3153 { 3154 int err = -EAFNOSUPPORT; 3155 if (likely(index < NEIGH_NR_TABLES)) { 3156 struct neigh_table *tbl; 3157 struct neighbour *neigh; 3158 3159 tbl = neigh_tables[index]; 3160 if (!tbl) 3161 goto out; 3162 rcu_read_lock_bh(); 3163 if (index == NEIGH_ARP_TABLE) { 3164 u32 key = *((u32 *)addr); 3165 3166 neigh = __ipv4_neigh_lookup_noref(dev, key); 3167 } else { 3168 neigh = __neigh_lookup_noref(tbl, addr, dev); 3169 } 3170 if (!neigh) 3171 neigh = __neigh_create(tbl, addr, dev, false); 3172 err = PTR_ERR(neigh); 3173 if (IS_ERR(neigh)) { 3174 rcu_read_unlock_bh(); 3175 goto out_kfree_skb; 3176 } 3177 err = neigh->output(neigh, skb); 3178 rcu_read_unlock_bh(); 3179 } 3180 else if (index == NEIGH_LINK_TABLE) { 3181 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 3182 addr, NULL, skb->len); 3183 if (err < 0) 3184 goto out_kfree_skb; 3185 err = dev_queue_xmit(skb); 3186 } 3187 out: 3188 return err; 3189 out_kfree_skb: 3190 kfree_skb(skb); 3191 goto out; 3192 } 3193 EXPORT_SYMBOL(neigh_xmit); 3194 3195 #ifdef CONFIG_PROC_FS 3196 3197 static struct neighbour *neigh_get_first(struct seq_file *seq) 3198 { 3199 struct neigh_seq_state *state = seq->private; 3200 struct net *net = seq_file_net(seq); 3201 struct neigh_hash_table *nht = state->nht; 3202 struct neighbour *n = NULL; 3203 int bucket; 3204 3205 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 3206 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { 3207 n = rcu_dereference_bh(nht->hash_buckets[bucket]); 3208 3209 while (n) { 3210 if (!net_eq(dev_net(n->dev), net)) 3211 goto next; 3212 if (state->neigh_sub_iter) { 3213 loff_t fakep = 0; 3214 void *v; 3215 3216 v = state->neigh_sub_iter(state, n, &fakep); 3217 if (!v) 3218 goto next; 3219 } 3220 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3221 break; 3222 if (n->nud_state & ~NUD_NOARP) 3223 break; 3224 next: 3225 n = rcu_dereference_bh(n->next); 3226 } 3227 3228 if (n) 3229 break; 3230 } 3231 state->bucket = bucket; 3232 3233 return n; 3234 } 3235 3236 static struct neighbour *neigh_get_next(struct seq_file *seq, 3237 struct neighbour *n, 3238 loff_t *pos) 3239 { 3240 struct neigh_seq_state *state = seq->private; 3241 struct net *net = seq_file_net(seq); 3242 struct neigh_hash_table *nht = state->nht; 3243 3244 if (state->neigh_sub_iter) { 3245 void *v = state->neigh_sub_iter(state, n, pos); 3246 if (v) 3247 return n; 3248 } 3249 n = rcu_dereference_bh(n->next); 3250 3251 while (1) { 3252 while (n) { 3253 if (!net_eq(dev_net(n->dev), net)) 3254 goto next; 3255 if (state->neigh_sub_iter) { 3256 void *v = state->neigh_sub_iter(state, n, pos); 3257 if (v) 3258 return n; 3259 goto next; 3260 } 3261 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3262 break; 3263 3264 if (n->nud_state & ~NUD_NOARP) 3265 break; 3266 next: 3267 n = rcu_dereference_bh(n->next); 3268 } 3269 3270 if (n) 3271 break; 3272 3273 if (++state->bucket >= (1 << nht->hash_shift)) 3274 break; 3275 3276 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); 3277 } 3278 3279 if (n && pos) 3280 --(*pos); 3281 return n; 3282 } 3283 3284 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 3285 { 3286 struct neighbour *n = neigh_get_first(seq); 3287 3288 if (n) { 3289 --(*pos); 3290 while (*pos) { 3291 n = neigh_get_next(seq, n, pos); 3292 if (!n) 3293 break; 3294 } 3295 } 3296 return *pos ? NULL : n; 3297 } 3298 3299 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 3300 { 3301 struct neigh_seq_state *state = seq->private; 3302 struct net *net = seq_file_net(seq); 3303 struct neigh_table *tbl = state->tbl; 3304 struct pneigh_entry *pn = NULL; 3305 int bucket; 3306 3307 state->flags |= NEIGH_SEQ_IS_PNEIGH; 3308 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 3309 pn = tbl->phash_buckets[bucket]; 3310 while (pn && !net_eq(pneigh_net(pn), net)) 3311 pn = pn->next; 3312 if (pn) 3313 break; 3314 } 3315 state->bucket = bucket; 3316 3317 return pn; 3318 } 3319 3320 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 3321 struct pneigh_entry *pn, 3322 loff_t *pos) 3323 { 3324 struct neigh_seq_state *state = seq->private; 3325 struct net *net = seq_file_net(seq); 3326 struct neigh_table *tbl = state->tbl; 3327 3328 do { 3329 pn = pn->next; 3330 } while (pn && !net_eq(pneigh_net(pn), net)); 3331 3332 while (!pn) { 3333 if (++state->bucket > PNEIGH_HASHMASK) 3334 break; 3335 pn = tbl->phash_buckets[state->bucket]; 3336 while (pn && !net_eq(pneigh_net(pn), net)) 3337 pn = pn->next; 3338 if (pn) 3339 break; 3340 } 3341 3342 if (pn && pos) 3343 --(*pos); 3344 3345 return pn; 3346 } 3347 3348 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 3349 { 3350 struct pneigh_entry *pn = pneigh_get_first(seq); 3351 3352 if (pn) { 3353 --(*pos); 3354 while (*pos) { 3355 pn = pneigh_get_next(seq, pn, pos); 3356 if (!pn) 3357 break; 3358 } 3359 } 3360 return *pos ? NULL : pn; 3361 } 3362 3363 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 3364 { 3365 struct neigh_seq_state *state = seq->private; 3366 void *rc; 3367 loff_t idxpos = *pos; 3368 3369 rc = neigh_get_idx(seq, &idxpos); 3370 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3371 rc = pneigh_get_idx(seq, &idxpos); 3372 3373 return rc; 3374 } 3375 3376 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 3377 __acquires(tbl->lock) 3378 __acquires(rcu_bh) 3379 { 3380 struct neigh_seq_state *state = seq->private; 3381 3382 state->tbl = tbl; 3383 state->bucket = 0; 3384 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 3385 3386 rcu_read_lock_bh(); 3387 state->nht = rcu_dereference_bh(tbl->nht); 3388 read_lock(&tbl->lock); 3389 3390 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 3391 } 3392 EXPORT_SYMBOL(neigh_seq_start); 3393 3394 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3395 { 3396 struct neigh_seq_state *state; 3397 void *rc; 3398 3399 if (v == SEQ_START_TOKEN) { 3400 rc = neigh_get_first(seq); 3401 goto out; 3402 } 3403 3404 state = seq->private; 3405 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 3406 rc = neigh_get_next(seq, v, NULL); 3407 if (rc) 3408 goto out; 3409 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3410 rc = pneigh_get_first(seq); 3411 } else { 3412 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 3413 rc = pneigh_get_next(seq, v, NULL); 3414 } 3415 out: 3416 ++(*pos); 3417 return rc; 3418 } 3419 EXPORT_SYMBOL(neigh_seq_next); 3420 3421 void neigh_seq_stop(struct seq_file *seq, void *v) 3422 __releases(tbl->lock) 3423 __releases(rcu_bh) 3424 { 3425 struct neigh_seq_state *state = seq->private; 3426 struct neigh_table *tbl = state->tbl; 3427 3428 read_unlock(&tbl->lock); 3429 rcu_read_unlock_bh(); 3430 } 3431 EXPORT_SYMBOL(neigh_seq_stop); 3432 3433 /* statistics via seq_file */ 3434 3435 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 3436 { 3437 struct neigh_table *tbl = pde_data(file_inode(seq->file)); 3438 int cpu; 3439 3440 if (*pos == 0) 3441 return SEQ_START_TOKEN; 3442 3443 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 3444 if (!cpu_possible(cpu)) 3445 continue; 3446 *pos = cpu+1; 3447 return per_cpu_ptr(tbl->stats, cpu); 3448 } 3449 return NULL; 3450 } 3451 3452 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3453 { 3454 struct neigh_table *tbl = pde_data(file_inode(seq->file)); 3455 int cpu; 3456 3457 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 3458 if (!cpu_possible(cpu)) 3459 continue; 3460 *pos = cpu+1; 3461 return per_cpu_ptr(tbl->stats, cpu); 3462 } 3463 (*pos)++; 3464 return NULL; 3465 } 3466 3467 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 3468 { 3469 3470 } 3471 3472 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 3473 { 3474 struct neigh_table *tbl = pde_data(file_inode(seq->file)); 3475 struct neigh_statistics *st = v; 3476 3477 if (v == SEQ_START_TOKEN) { 3478 seq_puts(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n"); 3479 return 0; 3480 } 3481 3482 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 3483 "%08lx %08lx %08lx " 3484 "%08lx %08lx %08lx\n", 3485 atomic_read(&tbl->entries), 3486 3487 st->allocs, 3488 st->destroys, 3489 st->hash_grows, 3490 3491 st->lookups, 3492 st->hits, 3493 3494 st->res_failed, 3495 3496 st->rcv_probes_mcast, 3497 st->rcv_probes_ucast, 3498 3499 st->periodic_gc_runs, 3500 st->forced_gc_runs, 3501 st->unres_discards, 3502 st->table_fulls 3503 ); 3504 3505 return 0; 3506 } 3507 3508 static const struct seq_operations neigh_stat_seq_ops = { 3509 .start = neigh_stat_seq_start, 3510 .next = neigh_stat_seq_next, 3511 .stop = neigh_stat_seq_stop, 3512 .show = neigh_stat_seq_show, 3513 }; 3514 #endif /* CONFIG_PROC_FS */ 3515 3516 static void __neigh_notify(struct neighbour *n, int type, int flags, 3517 u32 pid) 3518 { 3519 struct net *net = dev_net(n->dev); 3520 struct sk_buff *skb; 3521 int err = -ENOBUFS; 3522 3523 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 3524 if (skb == NULL) 3525 goto errout; 3526 3527 err = neigh_fill_info(skb, n, pid, 0, type, flags); 3528 if (err < 0) { 3529 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 3530 WARN_ON(err == -EMSGSIZE); 3531 kfree_skb(skb); 3532 goto errout; 3533 } 3534 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 3535 return; 3536 errout: 3537 if (err < 0) 3538 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 3539 } 3540 3541 void neigh_app_ns(struct neighbour *n) 3542 { 3543 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0); 3544 } 3545 EXPORT_SYMBOL(neigh_app_ns); 3546 3547 #ifdef CONFIG_SYSCTL 3548 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN); 3549 3550 static int proc_unres_qlen(struct ctl_table *ctl, int write, 3551 void *buffer, size_t *lenp, loff_t *ppos) 3552 { 3553 int size, ret; 3554 struct ctl_table tmp = *ctl; 3555 3556 tmp.extra1 = SYSCTL_ZERO; 3557 tmp.extra2 = &unres_qlen_max; 3558 tmp.data = &size; 3559 3560 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN); 3561 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3562 3563 if (write && !ret) 3564 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); 3565 return ret; 3566 } 3567 3568 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p, 3569 int index) 3570 { 3571 struct net_device *dev; 3572 int family = neigh_parms_family(p); 3573 3574 rcu_read_lock(); 3575 for_each_netdev_rcu(net, dev) { 3576 struct neigh_parms *dst_p = 3577 neigh_get_dev_parms_rcu(dev, family); 3578 3579 if (dst_p && !test_bit(index, dst_p->data_state)) 3580 dst_p->data[index] = p->data[index]; 3581 } 3582 rcu_read_unlock(); 3583 } 3584 3585 static void neigh_proc_update(struct ctl_table *ctl, int write) 3586 { 3587 struct net_device *dev = ctl->extra1; 3588 struct neigh_parms *p = ctl->extra2; 3589 struct net *net = neigh_parms_net(p); 3590 int index = (int *) ctl->data - p->data; 3591 3592 if (!write) 3593 return; 3594 3595 set_bit(index, p->data_state); 3596 if (index == NEIGH_VAR_DELAY_PROBE_TIME) 3597 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 3598 if (!dev) /* NULL dev means this is default value */ 3599 neigh_copy_dflt_parms(net, p, index); 3600 } 3601 3602 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write, 3603 void *buffer, size_t *lenp, 3604 loff_t *ppos) 3605 { 3606 struct ctl_table tmp = *ctl; 3607 int ret; 3608 3609 tmp.extra1 = SYSCTL_ZERO; 3610 tmp.extra2 = SYSCTL_INT_MAX; 3611 3612 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3613 neigh_proc_update(ctl, write); 3614 return ret; 3615 } 3616 3617 static int neigh_proc_dointvec_ms_jiffies_positive(struct ctl_table *ctl, int write, 3618 void *buffer, size_t *lenp, loff_t *ppos) 3619 { 3620 struct ctl_table tmp = *ctl; 3621 int ret; 3622 3623 int min = msecs_to_jiffies(1); 3624 3625 tmp.extra1 = &min; 3626 tmp.extra2 = NULL; 3627 3628 ret = proc_dointvec_ms_jiffies_minmax(&tmp, write, buffer, lenp, ppos); 3629 neigh_proc_update(ctl, write); 3630 return ret; 3631 } 3632 3633 int neigh_proc_dointvec(struct ctl_table *ctl, int write, void *buffer, 3634 size_t *lenp, loff_t *ppos) 3635 { 3636 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 3637 3638 neigh_proc_update(ctl, write); 3639 return ret; 3640 } 3641 EXPORT_SYMBOL(neigh_proc_dointvec); 3642 3643 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, void *buffer, 3644 size_t *lenp, loff_t *ppos) 3645 { 3646 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3647 3648 neigh_proc_update(ctl, write); 3649 return ret; 3650 } 3651 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies); 3652 3653 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write, 3654 void *buffer, size_t *lenp, 3655 loff_t *ppos) 3656 { 3657 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos); 3658 3659 neigh_proc_update(ctl, write); 3660 return ret; 3661 } 3662 3663 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write, 3664 void *buffer, size_t *lenp, loff_t *ppos) 3665 { 3666 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3667 3668 neigh_proc_update(ctl, write); 3669 return ret; 3670 } 3671 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies); 3672 3673 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write, 3674 void *buffer, size_t *lenp, 3675 loff_t *ppos) 3676 { 3677 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos); 3678 3679 neigh_proc_update(ctl, write); 3680 return ret; 3681 } 3682 3683 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write, 3684 void *buffer, size_t *lenp, 3685 loff_t *ppos) 3686 { 3687 struct neigh_parms *p = ctl->extra2; 3688 int ret; 3689 3690 if (strcmp(ctl->procname, "base_reachable_time") == 0) 3691 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3692 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0) 3693 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3694 else 3695 ret = -1; 3696 3697 if (write && ret == 0) { 3698 /* update reachable_time as well, otherwise, the change will 3699 * only be effective after the next time neigh_periodic_work 3700 * decides to recompute it 3701 */ 3702 p->reachable_time = 3703 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 3704 } 3705 return ret; 3706 } 3707 3708 #define NEIGH_PARMS_DATA_OFFSET(index) \ 3709 (&((struct neigh_parms *) 0)->data[index]) 3710 3711 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \ 3712 [NEIGH_VAR_ ## attr] = { \ 3713 .procname = name, \ 3714 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \ 3715 .maxlen = sizeof(int), \ 3716 .mode = mval, \ 3717 .proc_handler = proc, \ 3718 } 3719 3720 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \ 3721 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax) 3722 3723 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \ 3724 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies) 3725 3726 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \ 3727 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies) 3728 3729 #define NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(attr, name) \ 3730 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies_positive) 3731 3732 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \ 3733 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies) 3734 3735 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \ 3736 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen) 3737 3738 static struct neigh_sysctl_table { 3739 struct ctl_table_header *sysctl_header; 3740 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1]; 3741 } neigh_sysctl_template __read_mostly = { 3742 .neigh_vars = { 3743 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"), 3744 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"), 3745 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"), 3746 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"), 3747 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"), 3748 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"), 3749 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"), 3750 NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(INTERVAL_PROBE_TIME_MS, 3751 "interval_probe_time_ms"), 3752 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"), 3753 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"), 3754 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"), 3755 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"), 3756 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"), 3757 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"), 3758 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"), 3759 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"), 3760 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"), 3761 [NEIGH_VAR_GC_INTERVAL] = { 3762 .procname = "gc_interval", 3763 .maxlen = sizeof(int), 3764 .mode = 0644, 3765 .proc_handler = proc_dointvec_jiffies, 3766 }, 3767 [NEIGH_VAR_GC_THRESH1] = { 3768 .procname = "gc_thresh1", 3769 .maxlen = sizeof(int), 3770 .mode = 0644, 3771 .extra1 = SYSCTL_ZERO, 3772 .extra2 = SYSCTL_INT_MAX, 3773 .proc_handler = proc_dointvec_minmax, 3774 }, 3775 [NEIGH_VAR_GC_THRESH2] = { 3776 .procname = "gc_thresh2", 3777 .maxlen = sizeof(int), 3778 .mode = 0644, 3779 .extra1 = SYSCTL_ZERO, 3780 .extra2 = SYSCTL_INT_MAX, 3781 .proc_handler = proc_dointvec_minmax, 3782 }, 3783 [NEIGH_VAR_GC_THRESH3] = { 3784 .procname = "gc_thresh3", 3785 .maxlen = sizeof(int), 3786 .mode = 0644, 3787 .extra1 = SYSCTL_ZERO, 3788 .extra2 = SYSCTL_INT_MAX, 3789 .proc_handler = proc_dointvec_minmax, 3790 }, 3791 {}, 3792 }, 3793 }; 3794 3795 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 3796 proc_handler *handler) 3797 { 3798 int i; 3799 struct neigh_sysctl_table *t; 3800 const char *dev_name_source; 3801 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ]; 3802 char *p_name; 3803 3804 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL_ACCOUNT); 3805 if (!t) 3806 goto err; 3807 3808 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) { 3809 t->neigh_vars[i].data += (long) p; 3810 t->neigh_vars[i].extra1 = dev; 3811 t->neigh_vars[i].extra2 = p; 3812 } 3813 3814 if (dev) { 3815 dev_name_source = dev->name; 3816 /* Terminate the table early */ 3817 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0, 3818 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL])); 3819 } else { 3820 struct neigh_table *tbl = p->tbl; 3821 dev_name_source = "default"; 3822 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval; 3823 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1; 3824 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2; 3825 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3; 3826 } 3827 3828 if (handler) { 3829 /* RetransTime */ 3830 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; 3831 /* ReachableTime */ 3832 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; 3833 /* RetransTime (in milliseconds)*/ 3834 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; 3835 /* ReachableTime (in milliseconds) */ 3836 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; 3837 } else { 3838 /* Those handlers will update p->reachable_time after 3839 * base_reachable_time(_ms) is set to ensure the new timer starts being 3840 * applied after the next neighbour update instead of waiting for 3841 * neigh_periodic_work to update its value (can be multiple minutes) 3842 * So any handler that replaces them should do this as well 3843 */ 3844 /* ReachableTime */ 3845 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = 3846 neigh_proc_base_reachable_time; 3847 /* ReachableTime (in milliseconds) */ 3848 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = 3849 neigh_proc_base_reachable_time; 3850 } 3851 3852 switch (neigh_parms_family(p)) { 3853 case AF_INET: 3854 p_name = "ipv4"; 3855 break; 3856 case AF_INET6: 3857 p_name = "ipv6"; 3858 break; 3859 default: 3860 BUG(); 3861 } 3862 3863 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s", 3864 p_name, dev_name_source); 3865 t->sysctl_header = 3866 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars); 3867 if (!t->sysctl_header) 3868 goto free; 3869 3870 p->sysctl_table = t; 3871 return 0; 3872 3873 free: 3874 kfree(t); 3875 err: 3876 return -ENOBUFS; 3877 } 3878 EXPORT_SYMBOL(neigh_sysctl_register); 3879 3880 void neigh_sysctl_unregister(struct neigh_parms *p) 3881 { 3882 if (p->sysctl_table) { 3883 struct neigh_sysctl_table *t = p->sysctl_table; 3884 p->sysctl_table = NULL; 3885 unregister_net_sysctl_table(t->sysctl_header); 3886 kfree(t); 3887 } 3888 } 3889 EXPORT_SYMBOL(neigh_sysctl_unregister); 3890 3891 #endif /* CONFIG_SYSCTL */ 3892 3893 static int __init neigh_init(void) 3894 { 3895 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0); 3896 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0); 3897 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info, 0); 3898 3899 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, 3900 0); 3901 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0); 3902 3903 return 0; 3904 } 3905 3906 subsys_initcall(neigh_init); 3907