1 /* 2 * Generic address resolution entity 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Fixes: 14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 15 * Harald Welte Add neighbour cache statistics like rtstat 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/slab.h> 21 #include <linux/types.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/socket.h> 25 #include <linux/netdevice.h> 26 #include <linux/proc_fs.h> 27 #ifdef CONFIG_SYSCTL 28 #include <linux/sysctl.h> 29 #endif 30 #include <linux/times.h> 31 #include <net/net_namespace.h> 32 #include <net/neighbour.h> 33 #include <net/dst.h> 34 #include <net/sock.h> 35 #include <net/netevent.h> 36 #include <net/netlink.h> 37 #include <linux/rtnetlink.h> 38 #include <linux/random.h> 39 #include <linux/string.h> 40 #include <linux/log2.h> 41 #include <linux/inetdevice.h> 42 #include <net/addrconf.h> 43 44 #define DEBUG 45 #define NEIGH_DEBUG 1 46 #define neigh_dbg(level, fmt, ...) \ 47 do { \ 48 if (level <= NEIGH_DEBUG) \ 49 pr_debug(fmt, ##__VA_ARGS__); \ 50 } while (0) 51 52 #define PNEIGH_HASHMASK 0xF 53 54 static void neigh_timer_handler(unsigned long arg); 55 static void __neigh_notify(struct neighbour *n, int type, int flags); 56 static void neigh_update_notify(struct neighbour *neigh); 57 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev); 58 59 #ifdef CONFIG_PROC_FS 60 static const struct file_operations neigh_stat_seq_fops; 61 #endif 62 63 /* 64 Neighbour hash table buckets are protected with rwlock tbl->lock. 65 66 - All the scans/updates to hash buckets MUST be made under this lock. 67 - NOTHING clever should be made under this lock: no callbacks 68 to protocol backends, no attempts to send something to network. 69 It will result in deadlocks, if backend/driver wants to use neighbour 70 cache. 71 - If the entry requires some non-trivial actions, increase 72 its reference count and release table lock. 73 74 Neighbour entries are protected: 75 - with reference count. 76 - with rwlock neigh->lock 77 78 Reference count prevents destruction. 79 80 neigh->lock mainly serializes ll address data and its validity state. 81 However, the same lock is used to protect another entry fields: 82 - timer 83 - resolution queue 84 85 Again, nothing clever shall be made under neigh->lock, 86 the most complicated procedure, which we allow is dev->hard_header. 87 It is supposed, that dev->hard_header is simplistic and does 88 not make callbacks to neighbour tables. 89 */ 90 91 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) 92 { 93 kfree_skb(skb); 94 return -ENETDOWN; 95 } 96 97 static void neigh_cleanup_and_release(struct neighbour *neigh) 98 { 99 if (neigh->parms->neigh_cleanup) 100 neigh->parms->neigh_cleanup(neigh); 101 102 __neigh_notify(neigh, RTM_DELNEIGH, 0); 103 neigh_release(neigh); 104 } 105 106 /* 107 * It is random distribution in the interval (1/2)*base...(3/2)*base. 108 * It corresponds to default IPv6 settings and is not overridable, 109 * because it is really reasonable choice. 110 */ 111 112 unsigned long neigh_rand_reach_time(unsigned long base) 113 { 114 return base ? (prandom_u32() % base) + (base >> 1) : 0; 115 } 116 EXPORT_SYMBOL(neigh_rand_reach_time); 117 118 119 static int neigh_forced_gc(struct neigh_table *tbl) 120 { 121 int shrunk = 0; 122 int i; 123 struct neigh_hash_table *nht; 124 125 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 126 127 write_lock_bh(&tbl->lock); 128 nht = rcu_dereference_protected(tbl->nht, 129 lockdep_is_held(&tbl->lock)); 130 for (i = 0; i < (1 << nht->hash_shift); i++) { 131 struct neighbour *n; 132 struct neighbour __rcu **np; 133 134 np = &nht->hash_buckets[i]; 135 while ((n = rcu_dereference_protected(*np, 136 lockdep_is_held(&tbl->lock))) != NULL) { 137 /* Neighbour record may be discarded if: 138 * - nobody refers to it. 139 * - it is not permanent 140 */ 141 write_lock(&n->lock); 142 if (atomic_read(&n->refcnt) == 1 && 143 !(n->nud_state & NUD_PERMANENT)) { 144 rcu_assign_pointer(*np, 145 rcu_dereference_protected(n->next, 146 lockdep_is_held(&tbl->lock))); 147 n->dead = 1; 148 shrunk = 1; 149 write_unlock(&n->lock); 150 neigh_cleanup_and_release(n); 151 continue; 152 } 153 write_unlock(&n->lock); 154 np = &n->next; 155 } 156 } 157 158 tbl->last_flush = jiffies; 159 160 write_unlock_bh(&tbl->lock); 161 162 return shrunk; 163 } 164 165 static void neigh_add_timer(struct neighbour *n, unsigned long when) 166 { 167 neigh_hold(n); 168 if (unlikely(mod_timer(&n->timer, when))) { 169 printk("NEIGH: BUG, double timer add, state is %x\n", 170 n->nud_state); 171 dump_stack(); 172 } 173 } 174 175 static int neigh_del_timer(struct neighbour *n) 176 { 177 if ((n->nud_state & NUD_IN_TIMER) && 178 del_timer(&n->timer)) { 179 neigh_release(n); 180 return 1; 181 } 182 return 0; 183 } 184 185 static void pneigh_queue_purge(struct sk_buff_head *list) 186 { 187 struct sk_buff *skb; 188 189 while ((skb = skb_dequeue(list)) != NULL) { 190 dev_put(skb->dev); 191 kfree_skb(skb); 192 } 193 } 194 195 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev) 196 { 197 int i; 198 struct neigh_hash_table *nht; 199 200 nht = rcu_dereference_protected(tbl->nht, 201 lockdep_is_held(&tbl->lock)); 202 203 for (i = 0; i < (1 << nht->hash_shift); i++) { 204 struct neighbour *n; 205 struct neighbour __rcu **np = &nht->hash_buckets[i]; 206 207 while ((n = rcu_dereference_protected(*np, 208 lockdep_is_held(&tbl->lock))) != NULL) { 209 if (dev && n->dev != dev) { 210 np = &n->next; 211 continue; 212 } 213 rcu_assign_pointer(*np, 214 rcu_dereference_protected(n->next, 215 lockdep_is_held(&tbl->lock))); 216 write_lock(&n->lock); 217 neigh_del_timer(n); 218 n->dead = 1; 219 220 if (atomic_read(&n->refcnt) != 1) { 221 /* The most unpleasant situation. 222 We must destroy neighbour entry, 223 but someone still uses it. 224 225 The destroy will be delayed until 226 the last user releases us, but 227 we must kill timers etc. and move 228 it to safe state. 229 */ 230 __skb_queue_purge(&n->arp_queue); 231 n->arp_queue_len_bytes = 0; 232 n->output = neigh_blackhole; 233 if (n->nud_state & NUD_VALID) 234 n->nud_state = NUD_NOARP; 235 else 236 n->nud_state = NUD_NONE; 237 neigh_dbg(2, "neigh %p is stray\n", n); 238 } 239 write_unlock(&n->lock); 240 neigh_cleanup_and_release(n); 241 } 242 } 243 } 244 245 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 246 { 247 write_lock_bh(&tbl->lock); 248 neigh_flush_dev(tbl, dev); 249 write_unlock_bh(&tbl->lock); 250 } 251 EXPORT_SYMBOL(neigh_changeaddr); 252 253 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 254 { 255 write_lock_bh(&tbl->lock); 256 neigh_flush_dev(tbl, dev); 257 pneigh_ifdown(tbl, dev); 258 write_unlock_bh(&tbl->lock); 259 260 del_timer_sync(&tbl->proxy_timer); 261 pneigh_queue_purge(&tbl->proxy_queue); 262 return 0; 263 } 264 EXPORT_SYMBOL(neigh_ifdown); 265 266 static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev) 267 { 268 struct neighbour *n = NULL; 269 unsigned long now = jiffies; 270 int entries; 271 272 entries = atomic_inc_return(&tbl->entries) - 1; 273 if (entries >= tbl->gc_thresh3 || 274 (entries >= tbl->gc_thresh2 && 275 time_after(now, tbl->last_flush + 5 * HZ))) { 276 if (!neigh_forced_gc(tbl) && 277 entries >= tbl->gc_thresh3) { 278 net_info_ratelimited("%s: neighbor table overflow!\n", 279 tbl->id); 280 NEIGH_CACHE_STAT_INC(tbl, table_fulls); 281 goto out_entries; 282 } 283 } 284 285 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC); 286 if (!n) 287 goto out_entries; 288 289 __skb_queue_head_init(&n->arp_queue); 290 rwlock_init(&n->lock); 291 seqlock_init(&n->ha_lock); 292 n->updated = n->used = now; 293 n->nud_state = NUD_NONE; 294 n->output = neigh_blackhole; 295 seqlock_init(&n->hh.hh_lock); 296 n->parms = neigh_parms_clone(&tbl->parms); 297 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n); 298 299 NEIGH_CACHE_STAT_INC(tbl, allocs); 300 n->tbl = tbl; 301 atomic_set(&n->refcnt, 1); 302 n->dead = 1; 303 out: 304 return n; 305 306 out_entries: 307 atomic_dec(&tbl->entries); 308 goto out; 309 } 310 311 static void neigh_get_hash_rnd(u32 *x) 312 { 313 get_random_bytes(x, sizeof(*x)); 314 *x |= 1; 315 } 316 317 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) 318 { 319 size_t size = (1 << shift) * sizeof(struct neighbour *); 320 struct neigh_hash_table *ret; 321 struct neighbour __rcu **buckets; 322 int i; 323 324 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 325 if (!ret) 326 return NULL; 327 if (size <= PAGE_SIZE) 328 buckets = kzalloc(size, GFP_ATOMIC); 329 else 330 buckets = (struct neighbour __rcu **) 331 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 332 get_order(size)); 333 if (!buckets) { 334 kfree(ret); 335 return NULL; 336 } 337 ret->hash_buckets = buckets; 338 ret->hash_shift = shift; 339 for (i = 0; i < NEIGH_NUM_HASH_RND; i++) 340 neigh_get_hash_rnd(&ret->hash_rnd[i]); 341 return ret; 342 } 343 344 static void neigh_hash_free_rcu(struct rcu_head *head) 345 { 346 struct neigh_hash_table *nht = container_of(head, 347 struct neigh_hash_table, 348 rcu); 349 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); 350 struct neighbour __rcu **buckets = nht->hash_buckets; 351 352 if (size <= PAGE_SIZE) 353 kfree(buckets); 354 else 355 free_pages((unsigned long)buckets, get_order(size)); 356 kfree(nht); 357 } 358 359 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, 360 unsigned long new_shift) 361 { 362 unsigned int i, hash; 363 struct neigh_hash_table *new_nht, *old_nht; 364 365 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 366 367 old_nht = rcu_dereference_protected(tbl->nht, 368 lockdep_is_held(&tbl->lock)); 369 new_nht = neigh_hash_alloc(new_shift); 370 if (!new_nht) 371 return old_nht; 372 373 for (i = 0; i < (1 << old_nht->hash_shift); i++) { 374 struct neighbour *n, *next; 375 376 for (n = rcu_dereference_protected(old_nht->hash_buckets[i], 377 lockdep_is_held(&tbl->lock)); 378 n != NULL; 379 n = next) { 380 hash = tbl->hash(n->primary_key, n->dev, 381 new_nht->hash_rnd); 382 383 hash >>= (32 - new_nht->hash_shift); 384 next = rcu_dereference_protected(n->next, 385 lockdep_is_held(&tbl->lock)); 386 387 rcu_assign_pointer(n->next, 388 rcu_dereference_protected( 389 new_nht->hash_buckets[hash], 390 lockdep_is_held(&tbl->lock))); 391 rcu_assign_pointer(new_nht->hash_buckets[hash], n); 392 } 393 } 394 395 rcu_assign_pointer(tbl->nht, new_nht); 396 call_rcu(&old_nht->rcu, neigh_hash_free_rcu); 397 return new_nht; 398 } 399 400 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 401 struct net_device *dev) 402 { 403 struct neighbour *n; 404 405 NEIGH_CACHE_STAT_INC(tbl, lookups); 406 407 rcu_read_lock_bh(); 408 n = __neigh_lookup_noref(tbl, pkey, dev); 409 if (n) { 410 if (!atomic_inc_not_zero(&n->refcnt)) 411 n = NULL; 412 NEIGH_CACHE_STAT_INC(tbl, hits); 413 } 414 415 rcu_read_unlock_bh(); 416 return n; 417 } 418 EXPORT_SYMBOL(neigh_lookup); 419 420 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 421 const void *pkey) 422 { 423 struct neighbour *n; 424 int key_len = tbl->key_len; 425 u32 hash_val; 426 struct neigh_hash_table *nht; 427 428 NEIGH_CACHE_STAT_INC(tbl, lookups); 429 430 rcu_read_lock_bh(); 431 nht = rcu_dereference_bh(tbl->nht); 432 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift); 433 434 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 435 n != NULL; 436 n = rcu_dereference_bh(n->next)) { 437 if (!memcmp(n->primary_key, pkey, key_len) && 438 net_eq(dev_net(n->dev), net)) { 439 if (!atomic_inc_not_zero(&n->refcnt)) 440 n = NULL; 441 NEIGH_CACHE_STAT_INC(tbl, hits); 442 break; 443 } 444 } 445 446 rcu_read_unlock_bh(); 447 return n; 448 } 449 EXPORT_SYMBOL(neigh_lookup_nodev); 450 451 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, 452 struct net_device *dev, bool want_ref) 453 { 454 u32 hash_val; 455 int key_len = tbl->key_len; 456 int error; 457 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev); 458 struct neigh_hash_table *nht; 459 460 if (!n) { 461 rc = ERR_PTR(-ENOBUFS); 462 goto out; 463 } 464 465 memcpy(n->primary_key, pkey, key_len); 466 n->dev = dev; 467 dev_hold(dev); 468 469 /* Protocol specific setup. */ 470 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 471 rc = ERR_PTR(error); 472 goto out_neigh_release; 473 } 474 475 if (dev->netdev_ops->ndo_neigh_construct) { 476 error = dev->netdev_ops->ndo_neigh_construct(dev, n); 477 if (error < 0) { 478 rc = ERR_PTR(error); 479 goto out_neigh_release; 480 } 481 } 482 483 /* Device specific setup. */ 484 if (n->parms->neigh_setup && 485 (error = n->parms->neigh_setup(n)) < 0) { 486 rc = ERR_PTR(error); 487 goto out_neigh_release; 488 } 489 490 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1); 491 492 write_lock_bh(&tbl->lock); 493 nht = rcu_dereference_protected(tbl->nht, 494 lockdep_is_held(&tbl->lock)); 495 496 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) 497 nht = neigh_hash_grow(tbl, nht->hash_shift + 1); 498 499 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 500 501 if (n->parms->dead) { 502 rc = ERR_PTR(-EINVAL); 503 goto out_tbl_unlock; 504 } 505 506 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], 507 lockdep_is_held(&tbl->lock)); 508 n1 != NULL; 509 n1 = rcu_dereference_protected(n1->next, 510 lockdep_is_held(&tbl->lock))) { 511 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) { 512 if (want_ref) 513 neigh_hold(n1); 514 rc = n1; 515 goto out_tbl_unlock; 516 } 517 } 518 519 n->dead = 0; 520 if (want_ref) 521 neigh_hold(n); 522 rcu_assign_pointer(n->next, 523 rcu_dereference_protected(nht->hash_buckets[hash_val], 524 lockdep_is_held(&tbl->lock))); 525 rcu_assign_pointer(nht->hash_buckets[hash_val], n); 526 write_unlock_bh(&tbl->lock); 527 neigh_dbg(2, "neigh %p is created\n", n); 528 rc = n; 529 out: 530 return rc; 531 out_tbl_unlock: 532 write_unlock_bh(&tbl->lock); 533 out_neigh_release: 534 neigh_release(n); 535 goto out; 536 } 537 EXPORT_SYMBOL(__neigh_create); 538 539 static u32 pneigh_hash(const void *pkey, int key_len) 540 { 541 u32 hash_val = *(u32 *)(pkey + key_len - 4); 542 hash_val ^= (hash_val >> 16); 543 hash_val ^= hash_val >> 8; 544 hash_val ^= hash_val >> 4; 545 hash_val &= PNEIGH_HASHMASK; 546 return hash_val; 547 } 548 549 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 550 struct net *net, 551 const void *pkey, 552 int key_len, 553 struct net_device *dev) 554 { 555 while (n) { 556 if (!memcmp(n->key, pkey, key_len) && 557 net_eq(pneigh_net(n), net) && 558 (n->dev == dev || !n->dev)) 559 return n; 560 n = n->next; 561 } 562 return NULL; 563 } 564 565 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 566 struct net *net, const void *pkey, struct net_device *dev) 567 { 568 int key_len = tbl->key_len; 569 u32 hash_val = pneigh_hash(pkey, key_len); 570 571 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 572 net, pkey, key_len, dev); 573 } 574 EXPORT_SYMBOL_GPL(__pneigh_lookup); 575 576 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 577 struct net *net, const void *pkey, 578 struct net_device *dev, int creat) 579 { 580 struct pneigh_entry *n; 581 int key_len = tbl->key_len; 582 u32 hash_val = pneigh_hash(pkey, key_len); 583 584 read_lock_bh(&tbl->lock); 585 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 586 net, pkey, key_len, dev); 587 read_unlock_bh(&tbl->lock); 588 589 if (n || !creat) 590 goto out; 591 592 ASSERT_RTNL(); 593 594 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 595 if (!n) 596 goto out; 597 598 write_pnet(&n->net, net); 599 memcpy(n->key, pkey, key_len); 600 n->dev = dev; 601 if (dev) 602 dev_hold(dev); 603 604 if (tbl->pconstructor && tbl->pconstructor(n)) { 605 if (dev) 606 dev_put(dev); 607 kfree(n); 608 n = NULL; 609 goto out; 610 } 611 612 write_lock_bh(&tbl->lock); 613 n->next = tbl->phash_buckets[hash_val]; 614 tbl->phash_buckets[hash_val] = n; 615 write_unlock_bh(&tbl->lock); 616 out: 617 return n; 618 } 619 EXPORT_SYMBOL(pneigh_lookup); 620 621 622 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 623 struct net_device *dev) 624 { 625 struct pneigh_entry *n, **np; 626 int key_len = tbl->key_len; 627 u32 hash_val = pneigh_hash(pkey, key_len); 628 629 write_lock_bh(&tbl->lock); 630 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 631 np = &n->next) { 632 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 633 net_eq(pneigh_net(n), net)) { 634 *np = n->next; 635 write_unlock_bh(&tbl->lock); 636 if (tbl->pdestructor) 637 tbl->pdestructor(n); 638 if (n->dev) 639 dev_put(n->dev); 640 kfree(n); 641 return 0; 642 } 643 } 644 write_unlock_bh(&tbl->lock); 645 return -ENOENT; 646 } 647 648 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 649 { 650 struct pneigh_entry *n, **np; 651 u32 h; 652 653 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 654 np = &tbl->phash_buckets[h]; 655 while ((n = *np) != NULL) { 656 if (!dev || n->dev == dev) { 657 *np = n->next; 658 if (tbl->pdestructor) 659 tbl->pdestructor(n); 660 if (n->dev) 661 dev_put(n->dev); 662 kfree(n); 663 continue; 664 } 665 np = &n->next; 666 } 667 } 668 return -ENOENT; 669 } 670 671 static void neigh_parms_destroy(struct neigh_parms *parms); 672 673 static inline void neigh_parms_put(struct neigh_parms *parms) 674 { 675 if (atomic_dec_and_test(&parms->refcnt)) 676 neigh_parms_destroy(parms); 677 } 678 679 /* 680 * neighbour must already be out of the table; 681 * 682 */ 683 void neigh_destroy(struct neighbour *neigh) 684 { 685 struct net_device *dev = neigh->dev; 686 687 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 688 689 if (!neigh->dead) { 690 pr_warn("Destroying alive neighbour %p\n", neigh); 691 dump_stack(); 692 return; 693 } 694 695 if (neigh_del_timer(neigh)) 696 pr_warn("Impossible event\n"); 697 698 write_lock_bh(&neigh->lock); 699 __skb_queue_purge(&neigh->arp_queue); 700 write_unlock_bh(&neigh->lock); 701 neigh->arp_queue_len_bytes = 0; 702 703 if (dev->netdev_ops->ndo_neigh_destroy) 704 dev->netdev_ops->ndo_neigh_destroy(dev, neigh); 705 706 dev_put(dev); 707 neigh_parms_put(neigh->parms); 708 709 neigh_dbg(2, "neigh %p is destroyed\n", neigh); 710 711 atomic_dec(&neigh->tbl->entries); 712 kfree_rcu(neigh, rcu); 713 } 714 EXPORT_SYMBOL(neigh_destroy); 715 716 /* Neighbour state is suspicious; 717 disable fast path. 718 719 Called with write_locked neigh. 720 */ 721 static void neigh_suspect(struct neighbour *neigh) 722 { 723 neigh_dbg(2, "neigh %p is suspected\n", neigh); 724 725 neigh->output = neigh->ops->output; 726 } 727 728 /* Neighbour state is OK; 729 enable fast path. 730 731 Called with write_locked neigh. 732 */ 733 static void neigh_connect(struct neighbour *neigh) 734 { 735 neigh_dbg(2, "neigh %p is connected\n", neigh); 736 737 neigh->output = neigh->ops->connected_output; 738 } 739 740 static void neigh_periodic_work(struct work_struct *work) 741 { 742 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 743 struct neighbour *n; 744 struct neighbour __rcu **np; 745 unsigned int i; 746 struct neigh_hash_table *nht; 747 748 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 749 750 write_lock_bh(&tbl->lock); 751 nht = rcu_dereference_protected(tbl->nht, 752 lockdep_is_held(&tbl->lock)); 753 754 /* 755 * periodically recompute ReachableTime from random function 756 */ 757 758 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 759 struct neigh_parms *p; 760 tbl->last_rand = jiffies; 761 list_for_each_entry(p, &tbl->parms_list, list) 762 p->reachable_time = 763 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 764 } 765 766 if (atomic_read(&tbl->entries) < tbl->gc_thresh1) 767 goto out; 768 769 for (i = 0 ; i < (1 << nht->hash_shift); i++) { 770 np = &nht->hash_buckets[i]; 771 772 while ((n = rcu_dereference_protected(*np, 773 lockdep_is_held(&tbl->lock))) != NULL) { 774 unsigned int state; 775 776 write_lock(&n->lock); 777 778 state = n->nud_state; 779 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) { 780 write_unlock(&n->lock); 781 goto next_elt; 782 } 783 784 if (time_before(n->used, n->confirmed)) 785 n->used = n->confirmed; 786 787 if (atomic_read(&n->refcnt) == 1 && 788 (state == NUD_FAILED || 789 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) { 790 *np = n->next; 791 n->dead = 1; 792 write_unlock(&n->lock); 793 neigh_cleanup_and_release(n); 794 continue; 795 } 796 write_unlock(&n->lock); 797 798 next_elt: 799 np = &n->next; 800 } 801 /* 802 * It's fine to release lock here, even if hash table 803 * grows while we are preempted. 804 */ 805 write_unlock_bh(&tbl->lock); 806 cond_resched(); 807 write_lock_bh(&tbl->lock); 808 nht = rcu_dereference_protected(tbl->nht, 809 lockdep_is_held(&tbl->lock)); 810 } 811 out: 812 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks. 813 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2 814 * BASE_REACHABLE_TIME. 815 */ 816 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 817 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1); 818 write_unlock_bh(&tbl->lock); 819 } 820 821 static __inline__ int neigh_max_probes(struct neighbour *n) 822 { 823 struct neigh_parms *p = n->parms; 824 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) + 825 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) : 826 NEIGH_VAR(p, MCAST_PROBES)); 827 } 828 829 static void neigh_invalidate(struct neighbour *neigh) 830 __releases(neigh->lock) 831 __acquires(neigh->lock) 832 { 833 struct sk_buff *skb; 834 835 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 836 neigh_dbg(2, "neigh %p is failed\n", neigh); 837 neigh->updated = jiffies; 838 839 /* It is very thin place. report_unreachable is very complicated 840 routine. Particularly, it can hit the same neighbour entry! 841 842 So that, we try to be accurate and avoid dead loop. --ANK 843 */ 844 while (neigh->nud_state == NUD_FAILED && 845 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 846 write_unlock(&neigh->lock); 847 neigh->ops->error_report(neigh, skb); 848 write_lock(&neigh->lock); 849 } 850 __skb_queue_purge(&neigh->arp_queue); 851 neigh->arp_queue_len_bytes = 0; 852 } 853 854 static void neigh_probe(struct neighbour *neigh) 855 __releases(neigh->lock) 856 { 857 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue); 858 /* keep skb alive even if arp_queue overflows */ 859 if (skb) 860 skb = skb_clone(skb, GFP_ATOMIC); 861 write_unlock(&neigh->lock); 862 neigh->ops->solicit(neigh, skb); 863 atomic_inc(&neigh->probes); 864 kfree_skb(skb); 865 } 866 867 /* Called when a timer expires for a neighbour entry. */ 868 869 static void neigh_timer_handler(unsigned long arg) 870 { 871 unsigned long now, next; 872 struct neighbour *neigh = (struct neighbour *)arg; 873 unsigned int state; 874 int notify = 0; 875 876 write_lock(&neigh->lock); 877 878 state = neigh->nud_state; 879 now = jiffies; 880 next = now + HZ; 881 882 if (!(state & NUD_IN_TIMER)) 883 goto out; 884 885 if (state & NUD_REACHABLE) { 886 if (time_before_eq(now, 887 neigh->confirmed + neigh->parms->reachable_time)) { 888 neigh_dbg(2, "neigh %p is still alive\n", neigh); 889 next = neigh->confirmed + neigh->parms->reachable_time; 890 } else if (time_before_eq(now, 891 neigh->used + 892 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 893 neigh_dbg(2, "neigh %p is delayed\n", neigh); 894 neigh->nud_state = NUD_DELAY; 895 neigh->updated = jiffies; 896 neigh_suspect(neigh); 897 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME); 898 } else { 899 neigh_dbg(2, "neigh %p is suspected\n", neigh); 900 neigh->nud_state = NUD_STALE; 901 neigh->updated = jiffies; 902 neigh_suspect(neigh); 903 notify = 1; 904 } 905 } else if (state & NUD_DELAY) { 906 if (time_before_eq(now, 907 neigh->confirmed + 908 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 909 neigh_dbg(2, "neigh %p is now reachable\n", neigh); 910 neigh->nud_state = NUD_REACHABLE; 911 neigh->updated = jiffies; 912 neigh_connect(neigh); 913 notify = 1; 914 next = neigh->confirmed + neigh->parms->reachable_time; 915 } else { 916 neigh_dbg(2, "neigh %p is probed\n", neigh); 917 neigh->nud_state = NUD_PROBE; 918 neigh->updated = jiffies; 919 atomic_set(&neigh->probes, 0); 920 notify = 1; 921 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME); 922 } 923 } else { 924 /* NUD_PROBE|NUD_INCOMPLETE */ 925 next = now + NEIGH_VAR(neigh->parms, RETRANS_TIME); 926 } 927 928 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 929 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 930 neigh->nud_state = NUD_FAILED; 931 notify = 1; 932 neigh_invalidate(neigh); 933 goto out; 934 } 935 936 if (neigh->nud_state & NUD_IN_TIMER) { 937 if (time_before(next, jiffies + HZ/2)) 938 next = jiffies + HZ/2; 939 if (!mod_timer(&neigh->timer, next)) 940 neigh_hold(neigh); 941 } 942 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 943 neigh_probe(neigh); 944 } else { 945 out: 946 write_unlock(&neigh->lock); 947 } 948 949 if (notify) 950 neigh_update_notify(neigh); 951 952 neigh_release(neigh); 953 } 954 955 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 956 { 957 int rc; 958 bool immediate_probe = false; 959 960 write_lock_bh(&neigh->lock); 961 962 rc = 0; 963 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 964 goto out_unlock_bh; 965 if (neigh->dead) 966 goto out_dead; 967 968 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 969 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) + 970 NEIGH_VAR(neigh->parms, APP_PROBES)) { 971 unsigned long next, now = jiffies; 972 973 atomic_set(&neigh->probes, 974 NEIGH_VAR(neigh->parms, UCAST_PROBES)); 975 neigh->nud_state = NUD_INCOMPLETE; 976 neigh->updated = now; 977 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 978 HZ/2); 979 neigh_add_timer(neigh, next); 980 immediate_probe = true; 981 } else { 982 neigh->nud_state = NUD_FAILED; 983 neigh->updated = jiffies; 984 write_unlock_bh(&neigh->lock); 985 986 kfree_skb(skb); 987 return 1; 988 } 989 } else if (neigh->nud_state & NUD_STALE) { 990 neigh_dbg(2, "neigh %p is delayed\n", neigh); 991 neigh->nud_state = NUD_DELAY; 992 neigh->updated = jiffies; 993 neigh_add_timer(neigh, jiffies + 994 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME)); 995 } 996 997 if (neigh->nud_state == NUD_INCOMPLETE) { 998 if (skb) { 999 while (neigh->arp_queue_len_bytes + skb->truesize > 1000 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) { 1001 struct sk_buff *buff; 1002 1003 buff = __skb_dequeue(&neigh->arp_queue); 1004 if (!buff) 1005 break; 1006 neigh->arp_queue_len_bytes -= buff->truesize; 1007 kfree_skb(buff); 1008 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 1009 } 1010 skb_dst_force(skb); 1011 __skb_queue_tail(&neigh->arp_queue, skb); 1012 neigh->arp_queue_len_bytes += skb->truesize; 1013 } 1014 rc = 1; 1015 } 1016 out_unlock_bh: 1017 if (immediate_probe) 1018 neigh_probe(neigh); 1019 else 1020 write_unlock(&neigh->lock); 1021 local_bh_enable(); 1022 return rc; 1023 1024 out_dead: 1025 if (neigh->nud_state & NUD_STALE) 1026 goto out_unlock_bh; 1027 write_unlock_bh(&neigh->lock); 1028 kfree_skb(skb); 1029 return 1; 1030 } 1031 EXPORT_SYMBOL(__neigh_event_send); 1032 1033 static void neigh_update_hhs(struct neighbour *neigh) 1034 { 1035 struct hh_cache *hh; 1036 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 1037 = NULL; 1038 1039 if (neigh->dev->header_ops) 1040 update = neigh->dev->header_ops->cache_update; 1041 1042 if (update) { 1043 hh = &neigh->hh; 1044 if (hh->hh_len) { 1045 write_seqlock_bh(&hh->hh_lock); 1046 update(hh, neigh->dev, neigh->ha); 1047 write_sequnlock_bh(&hh->hh_lock); 1048 } 1049 } 1050 } 1051 1052 1053 1054 /* Generic update routine. 1055 -- lladdr is new lladdr or NULL, if it is not supplied. 1056 -- new is new state. 1057 -- flags 1058 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 1059 if it is different. 1060 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 1061 lladdr instead of overriding it 1062 if it is different. 1063 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 1064 1065 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 1066 NTF_ROUTER flag. 1067 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 1068 a router. 1069 1070 Caller MUST hold reference count on the entry. 1071 */ 1072 1073 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 1074 u32 flags) 1075 { 1076 u8 old; 1077 int err; 1078 int notify = 0; 1079 struct net_device *dev; 1080 int update_isrouter = 0; 1081 1082 write_lock_bh(&neigh->lock); 1083 1084 dev = neigh->dev; 1085 old = neigh->nud_state; 1086 err = -EPERM; 1087 1088 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 1089 (old & (NUD_NOARP | NUD_PERMANENT))) 1090 goto out; 1091 if (neigh->dead) 1092 goto out; 1093 1094 if (!(new & NUD_VALID)) { 1095 neigh_del_timer(neigh); 1096 if (old & NUD_CONNECTED) 1097 neigh_suspect(neigh); 1098 neigh->nud_state = new; 1099 err = 0; 1100 notify = old & NUD_VALID; 1101 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1102 (new & NUD_FAILED)) { 1103 neigh_invalidate(neigh); 1104 notify = 1; 1105 } 1106 goto out; 1107 } 1108 1109 /* Compare new lladdr with cached one */ 1110 if (!dev->addr_len) { 1111 /* First case: device needs no address. */ 1112 lladdr = neigh->ha; 1113 } else if (lladdr) { 1114 /* The second case: if something is already cached 1115 and a new address is proposed: 1116 - compare new & old 1117 - if they are different, check override flag 1118 */ 1119 if ((old & NUD_VALID) && 1120 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1121 lladdr = neigh->ha; 1122 } else { 1123 /* No address is supplied; if we know something, 1124 use it, otherwise discard the request. 1125 */ 1126 err = -EINVAL; 1127 if (!(old & NUD_VALID)) 1128 goto out; 1129 lladdr = neigh->ha; 1130 } 1131 1132 if (new & NUD_CONNECTED) 1133 neigh->confirmed = jiffies; 1134 neigh->updated = jiffies; 1135 1136 /* If entry was valid and address is not changed, 1137 do not change entry state, if new one is STALE. 1138 */ 1139 err = 0; 1140 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1141 if (old & NUD_VALID) { 1142 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1143 update_isrouter = 0; 1144 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1145 (old & NUD_CONNECTED)) { 1146 lladdr = neigh->ha; 1147 new = NUD_STALE; 1148 } else 1149 goto out; 1150 } else { 1151 if (lladdr == neigh->ha && new == NUD_STALE) 1152 new = old; 1153 } 1154 } 1155 1156 if (new != old) { 1157 neigh_del_timer(neigh); 1158 if (new & NUD_PROBE) 1159 atomic_set(&neigh->probes, 0); 1160 if (new & NUD_IN_TIMER) 1161 neigh_add_timer(neigh, (jiffies + 1162 ((new & NUD_REACHABLE) ? 1163 neigh->parms->reachable_time : 1164 0))); 1165 neigh->nud_state = new; 1166 notify = 1; 1167 } 1168 1169 if (lladdr != neigh->ha) { 1170 write_seqlock(&neigh->ha_lock); 1171 memcpy(&neigh->ha, lladdr, dev->addr_len); 1172 write_sequnlock(&neigh->ha_lock); 1173 neigh_update_hhs(neigh); 1174 if (!(new & NUD_CONNECTED)) 1175 neigh->confirmed = jiffies - 1176 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1); 1177 notify = 1; 1178 } 1179 if (new == old) 1180 goto out; 1181 if (new & NUD_CONNECTED) 1182 neigh_connect(neigh); 1183 else 1184 neigh_suspect(neigh); 1185 if (!(old & NUD_VALID)) { 1186 struct sk_buff *skb; 1187 1188 /* Again: avoid dead loop if something went wrong */ 1189 1190 while (neigh->nud_state & NUD_VALID && 1191 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1192 struct dst_entry *dst = skb_dst(skb); 1193 struct neighbour *n2, *n1 = neigh; 1194 write_unlock_bh(&neigh->lock); 1195 1196 rcu_read_lock(); 1197 1198 /* Why not just use 'neigh' as-is? The problem is that 1199 * things such as shaper, eql, and sch_teql can end up 1200 * using alternative, different, neigh objects to output 1201 * the packet in the output path. So what we need to do 1202 * here is re-lookup the top-level neigh in the path so 1203 * we can reinject the packet there. 1204 */ 1205 n2 = NULL; 1206 if (dst) { 1207 n2 = dst_neigh_lookup_skb(dst, skb); 1208 if (n2) 1209 n1 = n2; 1210 } 1211 n1->output(n1, skb); 1212 if (n2) 1213 neigh_release(n2); 1214 rcu_read_unlock(); 1215 1216 write_lock_bh(&neigh->lock); 1217 } 1218 __skb_queue_purge(&neigh->arp_queue); 1219 neigh->arp_queue_len_bytes = 0; 1220 } 1221 out: 1222 if (update_isrouter) { 1223 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ? 1224 (neigh->flags | NTF_ROUTER) : 1225 (neigh->flags & ~NTF_ROUTER); 1226 } 1227 write_unlock_bh(&neigh->lock); 1228 1229 if (notify) 1230 neigh_update_notify(neigh); 1231 1232 return err; 1233 } 1234 EXPORT_SYMBOL(neigh_update); 1235 1236 /* Update the neigh to listen temporarily for probe responses, even if it is 1237 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing. 1238 */ 1239 void __neigh_set_probe_once(struct neighbour *neigh) 1240 { 1241 if (neigh->dead) 1242 return; 1243 neigh->updated = jiffies; 1244 if (!(neigh->nud_state & NUD_FAILED)) 1245 return; 1246 neigh->nud_state = NUD_INCOMPLETE; 1247 atomic_set(&neigh->probes, neigh_max_probes(neigh)); 1248 neigh_add_timer(neigh, 1249 jiffies + NEIGH_VAR(neigh->parms, RETRANS_TIME)); 1250 } 1251 EXPORT_SYMBOL(__neigh_set_probe_once); 1252 1253 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1254 u8 *lladdr, void *saddr, 1255 struct net_device *dev) 1256 { 1257 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1258 lladdr || !dev->addr_len); 1259 if (neigh) 1260 neigh_update(neigh, lladdr, NUD_STALE, 1261 NEIGH_UPDATE_F_OVERRIDE); 1262 return neigh; 1263 } 1264 EXPORT_SYMBOL(neigh_event_ns); 1265 1266 /* called with read_lock_bh(&n->lock); */ 1267 static void neigh_hh_init(struct neighbour *n) 1268 { 1269 struct net_device *dev = n->dev; 1270 __be16 prot = n->tbl->protocol; 1271 struct hh_cache *hh = &n->hh; 1272 1273 write_lock_bh(&n->lock); 1274 1275 /* Only one thread can come in here and initialize the 1276 * hh_cache entry. 1277 */ 1278 if (!hh->hh_len) 1279 dev->header_ops->cache(n, hh, prot); 1280 1281 write_unlock_bh(&n->lock); 1282 } 1283 1284 /* Slow and careful. */ 1285 1286 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) 1287 { 1288 int rc = 0; 1289 1290 if (!neigh_event_send(neigh, skb)) { 1291 int err; 1292 struct net_device *dev = neigh->dev; 1293 unsigned int seq; 1294 1295 if (dev->header_ops->cache && !neigh->hh.hh_len) 1296 neigh_hh_init(neigh); 1297 1298 do { 1299 __skb_pull(skb, skb_network_offset(skb)); 1300 seq = read_seqbegin(&neigh->ha_lock); 1301 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1302 neigh->ha, NULL, skb->len); 1303 } while (read_seqretry(&neigh->ha_lock, seq)); 1304 1305 if (err >= 0) 1306 rc = dev_queue_xmit(skb); 1307 else 1308 goto out_kfree_skb; 1309 } 1310 out: 1311 return rc; 1312 out_kfree_skb: 1313 rc = -EINVAL; 1314 kfree_skb(skb); 1315 goto out; 1316 } 1317 EXPORT_SYMBOL(neigh_resolve_output); 1318 1319 /* As fast as possible without hh cache */ 1320 1321 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) 1322 { 1323 struct net_device *dev = neigh->dev; 1324 unsigned int seq; 1325 int err; 1326 1327 do { 1328 __skb_pull(skb, skb_network_offset(skb)); 1329 seq = read_seqbegin(&neigh->ha_lock); 1330 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1331 neigh->ha, NULL, skb->len); 1332 } while (read_seqretry(&neigh->ha_lock, seq)); 1333 1334 if (err >= 0) 1335 err = dev_queue_xmit(skb); 1336 else { 1337 err = -EINVAL; 1338 kfree_skb(skb); 1339 } 1340 return err; 1341 } 1342 EXPORT_SYMBOL(neigh_connected_output); 1343 1344 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) 1345 { 1346 return dev_queue_xmit(skb); 1347 } 1348 EXPORT_SYMBOL(neigh_direct_output); 1349 1350 static void neigh_proxy_process(unsigned long arg) 1351 { 1352 struct neigh_table *tbl = (struct neigh_table *)arg; 1353 long sched_next = 0; 1354 unsigned long now = jiffies; 1355 struct sk_buff *skb, *n; 1356 1357 spin_lock(&tbl->proxy_queue.lock); 1358 1359 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1360 long tdif = NEIGH_CB(skb)->sched_next - now; 1361 1362 if (tdif <= 0) { 1363 struct net_device *dev = skb->dev; 1364 1365 __skb_unlink(skb, &tbl->proxy_queue); 1366 if (tbl->proxy_redo && netif_running(dev)) { 1367 rcu_read_lock(); 1368 tbl->proxy_redo(skb); 1369 rcu_read_unlock(); 1370 } else { 1371 kfree_skb(skb); 1372 } 1373 1374 dev_put(dev); 1375 } else if (!sched_next || tdif < sched_next) 1376 sched_next = tdif; 1377 } 1378 del_timer(&tbl->proxy_timer); 1379 if (sched_next) 1380 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1381 spin_unlock(&tbl->proxy_queue.lock); 1382 } 1383 1384 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1385 struct sk_buff *skb) 1386 { 1387 unsigned long now = jiffies; 1388 1389 unsigned long sched_next = now + (prandom_u32() % 1390 NEIGH_VAR(p, PROXY_DELAY)); 1391 1392 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) { 1393 kfree_skb(skb); 1394 return; 1395 } 1396 1397 NEIGH_CB(skb)->sched_next = sched_next; 1398 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1399 1400 spin_lock(&tbl->proxy_queue.lock); 1401 if (del_timer(&tbl->proxy_timer)) { 1402 if (time_before(tbl->proxy_timer.expires, sched_next)) 1403 sched_next = tbl->proxy_timer.expires; 1404 } 1405 skb_dst_drop(skb); 1406 dev_hold(skb->dev); 1407 __skb_queue_tail(&tbl->proxy_queue, skb); 1408 mod_timer(&tbl->proxy_timer, sched_next); 1409 spin_unlock(&tbl->proxy_queue.lock); 1410 } 1411 EXPORT_SYMBOL(pneigh_enqueue); 1412 1413 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1414 struct net *net, int ifindex) 1415 { 1416 struct neigh_parms *p; 1417 1418 list_for_each_entry(p, &tbl->parms_list, list) { 1419 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1420 (!p->dev && !ifindex && net_eq(net, &init_net))) 1421 return p; 1422 } 1423 1424 return NULL; 1425 } 1426 1427 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1428 struct neigh_table *tbl) 1429 { 1430 struct neigh_parms *p; 1431 struct net *net = dev_net(dev); 1432 const struct net_device_ops *ops = dev->netdev_ops; 1433 1434 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL); 1435 if (p) { 1436 p->tbl = tbl; 1437 atomic_set(&p->refcnt, 1); 1438 p->reachable_time = 1439 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 1440 dev_hold(dev); 1441 p->dev = dev; 1442 write_pnet(&p->net, net); 1443 p->sysctl_table = NULL; 1444 1445 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1446 dev_put(dev); 1447 kfree(p); 1448 return NULL; 1449 } 1450 1451 write_lock_bh(&tbl->lock); 1452 list_add(&p->list, &tbl->parms.list); 1453 write_unlock_bh(&tbl->lock); 1454 1455 neigh_parms_data_state_cleanall(p); 1456 } 1457 return p; 1458 } 1459 EXPORT_SYMBOL(neigh_parms_alloc); 1460 1461 static void neigh_rcu_free_parms(struct rcu_head *head) 1462 { 1463 struct neigh_parms *parms = 1464 container_of(head, struct neigh_parms, rcu_head); 1465 1466 neigh_parms_put(parms); 1467 } 1468 1469 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1470 { 1471 if (!parms || parms == &tbl->parms) 1472 return; 1473 write_lock_bh(&tbl->lock); 1474 list_del(&parms->list); 1475 parms->dead = 1; 1476 write_unlock_bh(&tbl->lock); 1477 if (parms->dev) 1478 dev_put(parms->dev); 1479 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1480 } 1481 EXPORT_SYMBOL(neigh_parms_release); 1482 1483 static void neigh_parms_destroy(struct neigh_parms *parms) 1484 { 1485 kfree(parms); 1486 } 1487 1488 static struct lock_class_key neigh_table_proxy_queue_class; 1489 1490 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly; 1491 1492 void neigh_table_init(int index, struct neigh_table *tbl) 1493 { 1494 unsigned long now = jiffies; 1495 unsigned long phsize; 1496 1497 INIT_LIST_HEAD(&tbl->parms_list); 1498 list_add(&tbl->parms.list, &tbl->parms_list); 1499 write_pnet(&tbl->parms.net, &init_net); 1500 atomic_set(&tbl->parms.refcnt, 1); 1501 tbl->parms.reachable_time = 1502 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME)); 1503 1504 tbl->stats = alloc_percpu(struct neigh_statistics); 1505 if (!tbl->stats) 1506 panic("cannot create neighbour cache statistics"); 1507 1508 #ifdef CONFIG_PROC_FS 1509 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat, 1510 &neigh_stat_seq_fops, tbl)) 1511 panic("cannot create neighbour proc dir entry"); 1512 #endif 1513 1514 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); 1515 1516 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1517 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1518 1519 if (!tbl->nht || !tbl->phash_buckets) 1520 panic("cannot allocate neighbour cache hashes"); 1521 1522 if (!tbl->entry_size) 1523 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) + 1524 tbl->key_len, NEIGH_PRIV_ALIGN); 1525 else 1526 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN); 1527 1528 rwlock_init(&tbl->lock); 1529 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work); 1530 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 1531 tbl->parms.reachable_time); 1532 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl); 1533 skb_queue_head_init_class(&tbl->proxy_queue, 1534 &neigh_table_proxy_queue_class); 1535 1536 tbl->last_flush = now; 1537 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1538 1539 neigh_tables[index] = tbl; 1540 } 1541 EXPORT_SYMBOL(neigh_table_init); 1542 1543 int neigh_table_clear(int index, struct neigh_table *tbl) 1544 { 1545 neigh_tables[index] = NULL; 1546 /* It is not clean... Fix it to unload IPv6 module safely */ 1547 cancel_delayed_work_sync(&tbl->gc_work); 1548 del_timer_sync(&tbl->proxy_timer); 1549 pneigh_queue_purge(&tbl->proxy_queue); 1550 neigh_ifdown(tbl, NULL); 1551 if (atomic_read(&tbl->entries)) 1552 pr_crit("neighbour leakage\n"); 1553 1554 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, 1555 neigh_hash_free_rcu); 1556 tbl->nht = NULL; 1557 1558 kfree(tbl->phash_buckets); 1559 tbl->phash_buckets = NULL; 1560 1561 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1562 1563 free_percpu(tbl->stats); 1564 tbl->stats = NULL; 1565 1566 return 0; 1567 } 1568 EXPORT_SYMBOL(neigh_table_clear); 1569 1570 static struct neigh_table *neigh_find_table(int family) 1571 { 1572 struct neigh_table *tbl = NULL; 1573 1574 switch (family) { 1575 case AF_INET: 1576 tbl = neigh_tables[NEIGH_ARP_TABLE]; 1577 break; 1578 case AF_INET6: 1579 tbl = neigh_tables[NEIGH_ND_TABLE]; 1580 break; 1581 case AF_DECnet: 1582 tbl = neigh_tables[NEIGH_DN_TABLE]; 1583 break; 1584 } 1585 1586 return tbl; 1587 } 1588 1589 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh) 1590 { 1591 struct net *net = sock_net(skb->sk); 1592 struct ndmsg *ndm; 1593 struct nlattr *dst_attr; 1594 struct neigh_table *tbl; 1595 struct neighbour *neigh; 1596 struct net_device *dev = NULL; 1597 int err = -EINVAL; 1598 1599 ASSERT_RTNL(); 1600 if (nlmsg_len(nlh) < sizeof(*ndm)) 1601 goto out; 1602 1603 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1604 if (dst_attr == NULL) 1605 goto out; 1606 1607 ndm = nlmsg_data(nlh); 1608 if (ndm->ndm_ifindex) { 1609 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1610 if (dev == NULL) { 1611 err = -ENODEV; 1612 goto out; 1613 } 1614 } 1615 1616 tbl = neigh_find_table(ndm->ndm_family); 1617 if (tbl == NULL) 1618 return -EAFNOSUPPORT; 1619 1620 if (nla_len(dst_attr) < tbl->key_len) 1621 goto out; 1622 1623 if (ndm->ndm_flags & NTF_PROXY) { 1624 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1625 goto out; 1626 } 1627 1628 if (dev == NULL) 1629 goto out; 1630 1631 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1632 if (neigh == NULL) { 1633 err = -ENOENT; 1634 goto out; 1635 } 1636 1637 err = neigh_update(neigh, NULL, NUD_FAILED, 1638 NEIGH_UPDATE_F_OVERRIDE | 1639 NEIGH_UPDATE_F_ADMIN); 1640 neigh_release(neigh); 1641 1642 out: 1643 return err; 1644 } 1645 1646 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh) 1647 { 1648 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE; 1649 struct net *net = sock_net(skb->sk); 1650 struct ndmsg *ndm; 1651 struct nlattr *tb[NDA_MAX+1]; 1652 struct neigh_table *tbl; 1653 struct net_device *dev = NULL; 1654 struct neighbour *neigh; 1655 void *dst, *lladdr; 1656 int err; 1657 1658 ASSERT_RTNL(); 1659 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL); 1660 if (err < 0) 1661 goto out; 1662 1663 err = -EINVAL; 1664 if (tb[NDA_DST] == NULL) 1665 goto out; 1666 1667 ndm = nlmsg_data(nlh); 1668 if (ndm->ndm_ifindex) { 1669 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1670 if (dev == NULL) { 1671 err = -ENODEV; 1672 goto out; 1673 } 1674 1675 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) 1676 goto out; 1677 } 1678 1679 tbl = neigh_find_table(ndm->ndm_family); 1680 if (tbl == NULL) 1681 return -EAFNOSUPPORT; 1682 1683 if (nla_len(tb[NDA_DST]) < tbl->key_len) 1684 goto out; 1685 dst = nla_data(tb[NDA_DST]); 1686 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1687 1688 if (ndm->ndm_flags & NTF_PROXY) { 1689 struct pneigh_entry *pn; 1690 1691 err = -ENOBUFS; 1692 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1693 if (pn) { 1694 pn->flags = ndm->ndm_flags; 1695 err = 0; 1696 } 1697 goto out; 1698 } 1699 1700 if (dev == NULL) 1701 goto out; 1702 1703 neigh = neigh_lookup(tbl, dst, dev); 1704 if (neigh == NULL) { 1705 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1706 err = -ENOENT; 1707 goto out; 1708 } 1709 1710 neigh = __neigh_lookup_errno(tbl, dst, dev); 1711 if (IS_ERR(neigh)) { 1712 err = PTR_ERR(neigh); 1713 goto out; 1714 } 1715 } else { 1716 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1717 err = -EEXIST; 1718 neigh_release(neigh); 1719 goto out; 1720 } 1721 1722 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1723 flags &= ~NEIGH_UPDATE_F_OVERRIDE; 1724 } 1725 1726 if (ndm->ndm_flags & NTF_USE) { 1727 neigh_event_send(neigh, NULL); 1728 err = 0; 1729 } else 1730 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags); 1731 neigh_release(neigh); 1732 1733 out: 1734 return err; 1735 } 1736 1737 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1738 { 1739 struct nlattr *nest; 1740 1741 nest = nla_nest_start(skb, NDTA_PARMS); 1742 if (nest == NULL) 1743 return -ENOBUFS; 1744 1745 if ((parms->dev && 1746 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) || 1747 nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) || 1748 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, 1749 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) || 1750 /* approximative value for deprecated QUEUE_LEN (in packets) */ 1751 nla_put_u32(skb, NDTPA_QUEUE_LEN, 1752 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) || 1753 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) || 1754 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) || 1755 nla_put_u32(skb, NDTPA_UCAST_PROBES, 1756 NEIGH_VAR(parms, UCAST_PROBES)) || 1757 nla_put_u32(skb, NDTPA_MCAST_PROBES, 1758 NEIGH_VAR(parms, MCAST_PROBES)) || 1759 nla_put_u32(skb, NDTPA_MCAST_REPROBES, 1760 NEIGH_VAR(parms, MCAST_REPROBES)) || 1761 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time, 1762 NDTPA_PAD) || 1763 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME, 1764 NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) || 1765 nla_put_msecs(skb, NDTPA_GC_STALETIME, 1766 NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) || 1767 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME, 1768 NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) || 1769 nla_put_msecs(skb, NDTPA_RETRANS_TIME, 1770 NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) || 1771 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, 1772 NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) || 1773 nla_put_msecs(skb, NDTPA_PROXY_DELAY, 1774 NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) || 1775 nla_put_msecs(skb, NDTPA_LOCKTIME, 1776 NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD)) 1777 goto nla_put_failure; 1778 return nla_nest_end(skb, nest); 1779 1780 nla_put_failure: 1781 nla_nest_cancel(skb, nest); 1782 return -EMSGSIZE; 1783 } 1784 1785 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 1786 u32 pid, u32 seq, int type, int flags) 1787 { 1788 struct nlmsghdr *nlh; 1789 struct ndtmsg *ndtmsg; 1790 1791 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1792 if (nlh == NULL) 1793 return -EMSGSIZE; 1794 1795 ndtmsg = nlmsg_data(nlh); 1796 1797 read_lock_bh(&tbl->lock); 1798 ndtmsg->ndtm_family = tbl->family; 1799 ndtmsg->ndtm_pad1 = 0; 1800 ndtmsg->ndtm_pad2 = 0; 1801 1802 if (nla_put_string(skb, NDTA_NAME, tbl->id) || 1803 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval, NDTA_PAD) || 1804 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) || 1805 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) || 1806 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3)) 1807 goto nla_put_failure; 1808 { 1809 unsigned long now = jiffies; 1810 unsigned int flush_delta = now - tbl->last_flush; 1811 unsigned int rand_delta = now - tbl->last_rand; 1812 struct neigh_hash_table *nht; 1813 struct ndt_config ndc = { 1814 .ndtc_key_len = tbl->key_len, 1815 .ndtc_entry_size = tbl->entry_size, 1816 .ndtc_entries = atomic_read(&tbl->entries), 1817 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 1818 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 1819 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 1820 }; 1821 1822 rcu_read_lock_bh(); 1823 nht = rcu_dereference_bh(tbl->nht); 1824 ndc.ndtc_hash_rnd = nht->hash_rnd[0]; 1825 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); 1826 rcu_read_unlock_bh(); 1827 1828 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc)) 1829 goto nla_put_failure; 1830 } 1831 1832 { 1833 int cpu; 1834 struct ndt_stats ndst; 1835 1836 memset(&ndst, 0, sizeof(ndst)); 1837 1838 for_each_possible_cpu(cpu) { 1839 struct neigh_statistics *st; 1840 1841 st = per_cpu_ptr(tbl->stats, cpu); 1842 ndst.ndts_allocs += st->allocs; 1843 ndst.ndts_destroys += st->destroys; 1844 ndst.ndts_hash_grows += st->hash_grows; 1845 ndst.ndts_res_failed += st->res_failed; 1846 ndst.ndts_lookups += st->lookups; 1847 ndst.ndts_hits += st->hits; 1848 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 1849 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 1850 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 1851 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 1852 ndst.ndts_table_fulls += st->table_fulls; 1853 } 1854 1855 if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst, 1856 NDTA_PAD)) 1857 goto nla_put_failure; 1858 } 1859 1860 BUG_ON(tbl->parms.dev); 1861 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 1862 goto nla_put_failure; 1863 1864 read_unlock_bh(&tbl->lock); 1865 nlmsg_end(skb, nlh); 1866 return 0; 1867 1868 nla_put_failure: 1869 read_unlock_bh(&tbl->lock); 1870 nlmsg_cancel(skb, nlh); 1871 return -EMSGSIZE; 1872 } 1873 1874 static int neightbl_fill_param_info(struct sk_buff *skb, 1875 struct neigh_table *tbl, 1876 struct neigh_parms *parms, 1877 u32 pid, u32 seq, int type, 1878 unsigned int flags) 1879 { 1880 struct ndtmsg *ndtmsg; 1881 struct nlmsghdr *nlh; 1882 1883 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1884 if (nlh == NULL) 1885 return -EMSGSIZE; 1886 1887 ndtmsg = nlmsg_data(nlh); 1888 1889 read_lock_bh(&tbl->lock); 1890 ndtmsg->ndtm_family = tbl->family; 1891 ndtmsg->ndtm_pad1 = 0; 1892 ndtmsg->ndtm_pad2 = 0; 1893 1894 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 1895 neightbl_fill_parms(skb, parms) < 0) 1896 goto errout; 1897 1898 read_unlock_bh(&tbl->lock); 1899 nlmsg_end(skb, nlh); 1900 return 0; 1901 errout: 1902 read_unlock_bh(&tbl->lock); 1903 nlmsg_cancel(skb, nlh); 1904 return -EMSGSIZE; 1905 } 1906 1907 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 1908 [NDTA_NAME] = { .type = NLA_STRING }, 1909 [NDTA_THRESH1] = { .type = NLA_U32 }, 1910 [NDTA_THRESH2] = { .type = NLA_U32 }, 1911 [NDTA_THRESH3] = { .type = NLA_U32 }, 1912 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 1913 [NDTA_PARMS] = { .type = NLA_NESTED }, 1914 }; 1915 1916 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 1917 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 1918 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 1919 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 1920 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 1921 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 1922 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 1923 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 }, 1924 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 1925 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 1926 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 1927 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 1928 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 1929 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 1930 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 1931 }; 1932 1933 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh) 1934 { 1935 struct net *net = sock_net(skb->sk); 1936 struct neigh_table *tbl; 1937 struct ndtmsg *ndtmsg; 1938 struct nlattr *tb[NDTA_MAX+1]; 1939 bool found = false; 1940 int err, tidx; 1941 1942 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 1943 nl_neightbl_policy); 1944 if (err < 0) 1945 goto errout; 1946 1947 if (tb[NDTA_NAME] == NULL) { 1948 err = -EINVAL; 1949 goto errout; 1950 } 1951 1952 ndtmsg = nlmsg_data(nlh); 1953 1954 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 1955 tbl = neigh_tables[tidx]; 1956 if (!tbl) 1957 continue; 1958 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 1959 continue; 1960 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) { 1961 found = true; 1962 break; 1963 } 1964 } 1965 1966 if (!found) 1967 return -ENOENT; 1968 1969 /* 1970 * We acquire tbl->lock to be nice to the periodic timers and 1971 * make sure they always see a consistent set of values. 1972 */ 1973 write_lock_bh(&tbl->lock); 1974 1975 if (tb[NDTA_PARMS]) { 1976 struct nlattr *tbp[NDTPA_MAX+1]; 1977 struct neigh_parms *p; 1978 int i, ifindex = 0; 1979 1980 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS], 1981 nl_ntbl_parm_policy); 1982 if (err < 0) 1983 goto errout_tbl_lock; 1984 1985 if (tbp[NDTPA_IFINDEX]) 1986 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 1987 1988 p = lookup_neigh_parms(tbl, net, ifindex); 1989 if (p == NULL) { 1990 err = -ENOENT; 1991 goto errout_tbl_lock; 1992 } 1993 1994 for (i = 1; i <= NDTPA_MAX; i++) { 1995 if (tbp[i] == NULL) 1996 continue; 1997 1998 switch (i) { 1999 case NDTPA_QUEUE_LEN: 2000 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2001 nla_get_u32(tbp[i]) * 2002 SKB_TRUESIZE(ETH_FRAME_LEN)); 2003 break; 2004 case NDTPA_QUEUE_LENBYTES: 2005 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2006 nla_get_u32(tbp[i])); 2007 break; 2008 case NDTPA_PROXY_QLEN: 2009 NEIGH_VAR_SET(p, PROXY_QLEN, 2010 nla_get_u32(tbp[i])); 2011 break; 2012 case NDTPA_APP_PROBES: 2013 NEIGH_VAR_SET(p, APP_PROBES, 2014 nla_get_u32(tbp[i])); 2015 break; 2016 case NDTPA_UCAST_PROBES: 2017 NEIGH_VAR_SET(p, UCAST_PROBES, 2018 nla_get_u32(tbp[i])); 2019 break; 2020 case NDTPA_MCAST_PROBES: 2021 NEIGH_VAR_SET(p, MCAST_PROBES, 2022 nla_get_u32(tbp[i])); 2023 break; 2024 case NDTPA_MCAST_REPROBES: 2025 NEIGH_VAR_SET(p, MCAST_REPROBES, 2026 nla_get_u32(tbp[i])); 2027 break; 2028 case NDTPA_BASE_REACHABLE_TIME: 2029 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME, 2030 nla_get_msecs(tbp[i])); 2031 /* update reachable_time as well, otherwise, the change will 2032 * only be effective after the next time neigh_periodic_work 2033 * decides to recompute it (can be multiple minutes) 2034 */ 2035 p->reachable_time = 2036 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 2037 break; 2038 case NDTPA_GC_STALETIME: 2039 NEIGH_VAR_SET(p, GC_STALETIME, 2040 nla_get_msecs(tbp[i])); 2041 break; 2042 case NDTPA_DELAY_PROBE_TIME: 2043 NEIGH_VAR_SET(p, DELAY_PROBE_TIME, 2044 nla_get_msecs(tbp[i])); 2045 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 2046 break; 2047 case NDTPA_RETRANS_TIME: 2048 NEIGH_VAR_SET(p, RETRANS_TIME, 2049 nla_get_msecs(tbp[i])); 2050 break; 2051 case NDTPA_ANYCAST_DELAY: 2052 NEIGH_VAR_SET(p, ANYCAST_DELAY, 2053 nla_get_msecs(tbp[i])); 2054 break; 2055 case NDTPA_PROXY_DELAY: 2056 NEIGH_VAR_SET(p, PROXY_DELAY, 2057 nla_get_msecs(tbp[i])); 2058 break; 2059 case NDTPA_LOCKTIME: 2060 NEIGH_VAR_SET(p, LOCKTIME, 2061 nla_get_msecs(tbp[i])); 2062 break; 2063 } 2064 } 2065 } 2066 2067 err = -ENOENT; 2068 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] || 2069 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) && 2070 !net_eq(net, &init_net)) 2071 goto errout_tbl_lock; 2072 2073 if (tb[NDTA_THRESH1]) 2074 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 2075 2076 if (tb[NDTA_THRESH2]) 2077 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 2078 2079 if (tb[NDTA_THRESH3]) 2080 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 2081 2082 if (tb[NDTA_GC_INTERVAL]) 2083 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 2084 2085 err = 0; 2086 2087 errout_tbl_lock: 2088 write_unlock_bh(&tbl->lock); 2089 errout: 2090 return err; 2091 } 2092 2093 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2094 { 2095 struct net *net = sock_net(skb->sk); 2096 int family, tidx, nidx = 0; 2097 int tbl_skip = cb->args[0]; 2098 int neigh_skip = cb->args[1]; 2099 struct neigh_table *tbl; 2100 2101 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2102 2103 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2104 struct neigh_parms *p; 2105 2106 tbl = neigh_tables[tidx]; 2107 if (!tbl) 2108 continue; 2109 2110 if (tidx < tbl_skip || (family && tbl->family != family)) 2111 continue; 2112 2113 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid, 2114 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2115 NLM_F_MULTI) < 0) 2116 break; 2117 2118 nidx = 0; 2119 p = list_next_entry(&tbl->parms, list); 2120 list_for_each_entry_from(p, &tbl->parms_list, list) { 2121 if (!net_eq(neigh_parms_net(p), net)) 2122 continue; 2123 2124 if (nidx < neigh_skip) 2125 goto next; 2126 2127 if (neightbl_fill_param_info(skb, tbl, p, 2128 NETLINK_CB(cb->skb).portid, 2129 cb->nlh->nlmsg_seq, 2130 RTM_NEWNEIGHTBL, 2131 NLM_F_MULTI) < 0) 2132 goto out; 2133 next: 2134 nidx++; 2135 } 2136 2137 neigh_skip = 0; 2138 } 2139 out: 2140 cb->args[0] = tidx; 2141 cb->args[1] = nidx; 2142 2143 return skb->len; 2144 } 2145 2146 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2147 u32 pid, u32 seq, int type, unsigned int flags) 2148 { 2149 unsigned long now = jiffies; 2150 struct nda_cacheinfo ci; 2151 struct nlmsghdr *nlh; 2152 struct ndmsg *ndm; 2153 2154 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2155 if (nlh == NULL) 2156 return -EMSGSIZE; 2157 2158 ndm = nlmsg_data(nlh); 2159 ndm->ndm_family = neigh->ops->family; 2160 ndm->ndm_pad1 = 0; 2161 ndm->ndm_pad2 = 0; 2162 ndm->ndm_flags = neigh->flags; 2163 ndm->ndm_type = neigh->type; 2164 ndm->ndm_ifindex = neigh->dev->ifindex; 2165 2166 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key)) 2167 goto nla_put_failure; 2168 2169 read_lock_bh(&neigh->lock); 2170 ndm->ndm_state = neigh->nud_state; 2171 if (neigh->nud_state & NUD_VALID) { 2172 char haddr[MAX_ADDR_LEN]; 2173 2174 neigh_ha_snapshot(haddr, neigh, neigh->dev); 2175 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { 2176 read_unlock_bh(&neigh->lock); 2177 goto nla_put_failure; 2178 } 2179 } 2180 2181 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2182 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2183 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2184 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1; 2185 read_unlock_bh(&neigh->lock); 2186 2187 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) || 2188 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci)) 2189 goto nla_put_failure; 2190 2191 nlmsg_end(skb, nlh); 2192 return 0; 2193 2194 nla_put_failure: 2195 nlmsg_cancel(skb, nlh); 2196 return -EMSGSIZE; 2197 } 2198 2199 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, 2200 u32 pid, u32 seq, int type, unsigned int flags, 2201 struct neigh_table *tbl) 2202 { 2203 struct nlmsghdr *nlh; 2204 struct ndmsg *ndm; 2205 2206 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2207 if (nlh == NULL) 2208 return -EMSGSIZE; 2209 2210 ndm = nlmsg_data(nlh); 2211 ndm->ndm_family = tbl->family; 2212 ndm->ndm_pad1 = 0; 2213 ndm->ndm_pad2 = 0; 2214 ndm->ndm_flags = pn->flags | NTF_PROXY; 2215 ndm->ndm_type = RTN_UNICAST; 2216 ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0; 2217 ndm->ndm_state = NUD_NONE; 2218 2219 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key)) 2220 goto nla_put_failure; 2221 2222 nlmsg_end(skb, nlh); 2223 return 0; 2224 2225 nla_put_failure: 2226 nlmsg_cancel(skb, nlh); 2227 return -EMSGSIZE; 2228 } 2229 2230 static void neigh_update_notify(struct neighbour *neigh) 2231 { 2232 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2233 __neigh_notify(neigh, RTM_NEWNEIGH, 0); 2234 } 2235 2236 static bool neigh_master_filtered(struct net_device *dev, int master_idx) 2237 { 2238 struct net_device *master; 2239 2240 if (!master_idx) 2241 return false; 2242 2243 master = netdev_master_upper_dev_get(dev); 2244 if (!master || master->ifindex != master_idx) 2245 return true; 2246 2247 return false; 2248 } 2249 2250 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx) 2251 { 2252 if (filter_idx && dev->ifindex != filter_idx) 2253 return true; 2254 2255 return false; 2256 } 2257 2258 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2259 struct netlink_callback *cb) 2260 { 2261 struct net *net = sock_net(skb->sk); 2262 const struct nlmsghdr *nlh = cb->nlh; 2263 struct nlattr *tb[NDA_MAX + 1]; 2264 struct neighbour *n; 2265 int rc, h, s_h = cb->args[1]; 2266 int idx, s_idx = idx = cb->args[2]; 2267 struct neigh_hash_table *nht; 2268 int filter_master_idx = 0, filter_idx = 0; 2269 unsigned int flags = NLM_F_MULTI; 2270 int err; 2271 2272 err = nlmsg_parse(nlh, sizeof(struct ndmsg), tb, NDA_MAX, NULL); 2273 if (!err) { 2274 if (tb[NDA_IFINDEX]) 2275 filter_idx = nla_get_u32(tb[NDA_IFINDEX]); 2276 2277 if (tb[NDA_MASTER]) 2278 filter_master_idx = nla_get_u32(tb[NDA_MASTER]); 2279 2280 if (filter_idx || filter_master_idx) 2281 flags |= NLM_F_DUMP_FILTERED; 2282 } 2283 2284 rcu_read_lock_bh(); 2285 nht = rcu_dereference_bh(tbl->nht); 2286 2287 for (h = s_h; h < (1 << nht->hash_shift); h++) { 2288 if (h > s_h) 2289 s_idx = 0; 2290 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; 2291 n != NULL; 2292 n = rcu_dereference_bh(n->next)) { 2293 if (!net_eq(dev_net(n->dev), net)) 2294 continue; 2295 if (neigh_ifindex_filtered(n->dev, filter_idx)) 2296 continue; 2297 if (neigh_master_filtered(n->dev, filter_master_idx)) 2298 continue; 2299 if (idx < s_idx) 2300 goto next; 2301 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2302 cb->nlh->nlmsg_seq, 2303 RTM_NEWNEIGH, 2304 flags) < 0) { 2305 rc = -1; 2306 goto out; 2307 } 2308 next: 2309 idx++; 2310 } 2311 } 2312 rc = skb->len; 2313 out: 2314 rcu_read_unlock_bh(); 2315 cb->args[1] = h; 2316 cb->args[2] = idx; 2317 return rc; 2318 } 2319 2320 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2321 struct netlink_callback *cb) 2322 { 2323 struct pneigh_entry *n; 2324 struct net *net = sock_net(skb->sk); 2325 int rc, h, s_h = cb->args[3]; 2326 int idx, s_idx = idx = cb->args[4]; 2327 2328 read_lock_bh(&tbl->lock); 2329 2330 for (h = s_h; h <= PNEIGH_HASHMASK; h++) { 2331 if (h > s_h) 2332 s_idx = 0; 2333 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { 2334 if (pneigh_net(n) != net) 2335 continue; 2336 if (idx < s_idx) 2337 goto next; 2338 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2339 cb->nlh->nlmsg_seq, 2340 RTM_NEWNEIGH, 2341 NLM_F_MULTI, tbl) < 0) { 2342 read_unlock_bh(&tbl->lock); 2343 rc = -1; 2344 goto out; 2345 } 2346 next: 2347 idx++; 2348 } 2349 } 2350 2351 read_unlock_bh(&tbl->lock); 2352 rc = skb->len; 2353 out: 2354 cb->args[3] = h; 2355 cb->args[4] = idx; 2356 return rc; 2357 2358 } 2359 2360 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2361 { 2362 struct neigh_table *tbl; 2363 int t, family, s_t; 2364 int proxy = 0; 2365 int err; 2366 2367 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2368 2369 /* check for full ndmsg structure presence, family member is 2370 * the same for both structures 2371 */ 2372 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) && 2373 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY) 2374 proxy = 1; 2375 2376 s_t = cb->args[0]; 2377 2378 for (t = 0; t < NEIGH_NR_TABLES; t++) { 2379 tbl = neigh_tables[t]; 2380 2381 if (!tbl) 2382 continue; 2383 if (t < s_t || (family && tbl->family != family)) 2384 continue; 2385 if (t > s_t) 2386 memset(&cb->args[1], 0, sizeof(cb->args) - 2387 sizeof(cb->args[0])); 2388 if (proxy) 2389 err = pneigh_dump_table(tbl, skb, cb); 2390 else 2391 err = neigh_dump_table(tbl, skb, cb); 2392 if (err < 0) 2393 break; 2394 } 2395 2396 cb->args[0] = t; 2397 return skb->len; 2398 } 2399 2400 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2401 { 2402 int chain; 2403 struct neigh_hash_table *nht; 2404 2405 rcu_read_lock_bh(); 2406 nht = rcu_dereference_bh(tbl->nht); 2407 2408 read_lock(&tbl->lock); /* avoid resizes */ 2409 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2410 struct neighbour *n; 2411 2412 for (n = rcu_dereference_bh(nht->hash_buckets[chain]); 2413 n != NULL; 2414 n = rcu_dereference_bh(n->next)) 2415 cb(n, cookie); 2416 } 2417 read_unlock(&tbl->lock); 2418 rcu_read_unlock_bh(); 2419 } 2420 EXPORT_SYMBOL(neigh_for_each); 2421 2422 /* The tbl->lock must be held as a writer and BH disabled. */ 2423 void __neigh_for_each_release(struct neigh_table *tbl, 2424 int (*cb)(struct neighbour *)) 2425 { 2426 int chain; 2427 struct neigh_hash_table *nht; 2428 2429 nht = rcu_dereference_protected(tbl->nht, 2430 lockdep_is_held(&tbl->lock)); 2431 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2432 struct neighbour *n; 2433 struct neighbour __rcu **np; 2434 2435 np = &nht->hash_buckets[chain]; 2436 while ((n = rcu_dereference_protected(*np, 2437 lockdep_is_held(&tbl->lock))) != NULL) { 2438 int release; 2439 2440 write_lock(&n->lock); 2441 release = cb(n); 2442 if (release) { 2443 rcu_assign_pointer(*np, 2444 rcu_dereference_protected(n->next, 2445 lockdep_is_held(&tbl->lock))); 2446 n->dead = 1; 2447 } else 2448 np = &n->next; 2449 write_unlock(&n->lock); 2450 if (release) 2451 neigh_cleanup_and_release(n); 2452 } 2453 } 2454 } 2455 EXPORT_SYMBOL(__neigh_for_each_release); 2456 2457 int neigh_xmit(int index, struct net_device *dev, 2458 const void *addr, struct sk_buff *skb) 2459 { 2460 int err = -EAFNOSUPPORT; 2461 if (likely(index < NEIGH_NR_TABLES)) { 2462 struct neigh_table *tbl; 2463 struct neighbour *neigh; 2464 2465 tbl = neigh_tables[index]; 2466 if (!tbl) 2467 goto out; 2468 rcu_read_lock_bh(); 2469 neigh = __neigh_lookup_noref(tbl, addr, dev); 2470 if (!neigh) 2471 neigh = __neigh_create(tbl, addr, dev, false); 2472 err = PTR_ERR(neigh); 2473 if (IS_ERR(neigh)) { 2474 rcu_read_unlock_bh(); 2475 goto out_kfree_skb; 2476 } 2477 err = neigh->output(neigh, skb); 2478 rcu_read_unlock_bh(); 2479 } 2480 else if (index == NEIGH_LINK_TABLE) { 2481 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 2482 addr, NULL, skb->len); 2483 if (err < 0) 2484 goto out_kfree_skb; 2485 err = dev_queue_xmit(skb); 2486 } 2487 out: 2488 return err; 2489 out_kfree_skb: 2490 kfree_skb(skb); 2491 goto out; 2492 } 2493 EXPORT_SYMBOL(neigh_xmit); 2494 2495 #ifdef CONFIG_PROC_FS 2496 2497 static struct neighbour *neigh_get_first(struct seq_file *seq) 2498 { 2499 struct neigh_seq_state *state = seq->private; 2500 struct net *net = seq_file_net(seq); 2501 struct neigh_hash_table *nht = state->nht; 2502 struct neighbour *n = NULL; 2503 int bucket = state->bucket; 2504 2505 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 2506 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { 2507 n = rcu_dereference_bh(nht->hash_buckets[bucket]); 2508 2509 while (n) { 2510 if (!net_eq(dev_net(n->dev), net)) 2511 goto next; 2512 if (state->neigh_sub_iter) { 2513 loff_t fakep = 0; 2514 void *v; 2515 2516 v = state->neigh_sub_iter(state, n, &fakep); 2517 if (!v) 2518 goto next; 2519 } 2520 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2521 break; 2522 if (n->nud_state & ~NUD_NOARP) 2523 break; 2524 next: 2525 n = rcu_dereference_bh(n->next); 2526 } 2527 2528 if (n) 2529 break; 2530 } 2531 state->bucket = bucket; 2532 2533 return n; 2534 } 2535 2536 static struct neighbour *neigh_get_next(struct seq_file *seq, 2537 struct neighbour *n, 2538 loff_t *pos) 2539 { 2540 struct neigh_seq_state *state = seq->private; 2541 struct net *net = seq_file_net(seq); 2542 struct neigh_hash_table *nht = state->nht; 2543 2544 if (state->neigh_sub_iter) { 2545 void *v = state->neigh_sub_iter(state, n, pos); 2546 if (v) 2547 return n; 2548 } 2549 n = rcu_dereference_bh(n->next); 2550 2551 while (1) { 2552 while (n) { 2553 if (!net_eq(dev_net(n->dev), net)) 2554 goto next; 2555 if (state->neigh_sub_iter) { 2556 void *v = state->neigh_sub_iter(state, n, pos); 2557 if (v) 2558 return n; 2559 goto next; 2560 } 2561 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2562 break; 2563 2564 if (n->nud_state & ~NUD_NOARP) 2565 break; 2566 next: 2567 n = rcu_dereference_bh(n->next); 2568 } 2569 2570 if (n) 2571 break; 2572 2573 if (++state->bucket >= (1 << nht->hash_shift)) 2574 break; 2575 2576 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); 2577 } 2578 2579 if (n && pos) 2580 --(*pos); 2581 return n; 2582 } 2583 2584 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 2585 { 2586 struct neighbour *n = neigh_get_first(seq); 2587 2588 if (n) { 2589 --(*pos); 2590 while (*pos) { 2591 n = neigh_get_next(seq, n, pos); 2592 if (!n) 2593 break; 2594 } 2595 } 2596 return *pos ? NULL : n; 2597 } 2598 2599 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 2600 { 2601 struct neigh_seq_state *state = seq->private; 2602 struct net *net = seq_file_net(seq); 2603 struct neigh_table *tbl = state->tbl; 2604 struct pneigh_entry *pn = NULL; 2605 int bucket = state->bucket; 2606 2607 state->flags |= NEIGH_SEQ_IS_PNEIGH; 2608 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 2609 pn = tbl->phash_buckets[bucket]; 2610 while (pn && !net_eq(pneigh_net(pn), net)) 2611 pn = pn->next; 2612 if (pn) 2613 break; 2614 } 2615 state->bucket = bucket; 2616 2617 return pn; 2618 } 2619 2620 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 2621 struct pneigh_entry *pn, 2622 loff_t *pos) 2623 { 2624 struct neigh_seq_state *state = seq->private; 2625 struct net *net = seq_file_net(seq); 2626 struct neigh_table *tbl = state->tbl; 2627 2628 do { 2629 pn = pn->next; 2630 } while (pn && !net_eq(pneigh_net(pn), net)); 2631 2632 while (!pn) { 2633 if (++state->bucket > PNEIGH_HASHMASK) 2634 break; 2635 pn = tbl->phash_buckets[state->bucket]; 2636 while (pn && !net_eq(pneigh_net(pn), net)) 2637 pn = pn->next; 2638 if (pn) 2639 break; 2640 } 2641 2642 if (pn && pos) 2643 --(*pos); 2644 2645 return pn; 2646 } 2647 2648 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 2649 { 2650 struct pneigh_entry *pn = pneigh_get_first(seq); 2651 2652 if (pn) { 2653 --(*pos); 2654 while (*pos) { 2655 pn = pneigh_get_next(seq, pn, pos); 2656 if (!pn) 2657 break; 2658 } 2659 } 2660 return *pos ? NULL : pn; 2661 } 2662 2663 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 2664 { 2665 struct neigh_seq_state *state = seq->private; 2666 void *rc; 2667 loff_t idxpos = *pos; 2668 2669 rc = neigh_get_idx(seq, &idxpos); 2670 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2671 rc = pneigh_get_idx(seq, &idxpos); 2672 2673 return rc; 2674 } 2675 2676 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 2677 __acquires(rcu_bh) 2678 { 2679 struct neigh_seq_state *state = seq->private; 2680 2681 state->tbl = tbl; 2682 state->bucket = 0; 2683 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 2684 2685 rcu_read_lock_bh(); 2686 state->nht = rcu_dereference_bh(tbl->nht); 2687 2688 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 2689 } 2690 EXPORT_SYMBOL(neigh_seq_start); 2691 2692 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2693 { 2694 struct neigh_seq_state *state; 2695 void *rc; 2696 2697 if (v == SEQ_START_TOKEN) { 2698 rc = neigh_get_first(seq); 2699 goto out; 2700 } 2701 2702 state = seq->private; 2703 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 2704 rc = neigh_get_next(seq, v, NULL); 2705 if (rc) 2706 goto out; 2707 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2708 rc = pneigh_get_first(seq); 2709 } else { 2710 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 2711 rc = pneigh_get_next(seq, v, NULL); 2712 } 2713 out: 2714 ++(*pos); 2715 return rc; 2716 } 2717 EXPORT_SYMBOL(neigh_seq_next); 2718 2719 void neigh_seq_stop(struct seq_file *seq, void *v) 2720 __releases(rcu_bh) 2721 { 2722 rcu_read_unlock_bh(); 2723 } 2724 EXPORT_SYMBOL(neigh_seq_stop); 2725 2726 /* statistics via seq_file */ 2727 2728 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 2729 { 2730 struct neigh_table *tbl = seq->private; 2731 int cpu; 2732 2733 if (*pos == 0) 2734 return SEQ_START_TOKEN; 2735 2736 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 2737 if (!cpu_possible(cpu)) 2738 continue; 2739 *pos = cpu+1; 2740 return per_cpu_ptr(tbl->stats, cpu); 2741 } 2742 return NULL; 2743 } 2744 2745 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2746 { 2747 struct neigh_table *tbl = seq->private; 2748 int cpu; 2749 2750 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 2751 if (!cpu_possible(cpu)) 2752 continue; 2753 *pos = cpu+1; 2754 return per_cpu_ptr(tbl->stats, cpu); 2755 } 2756 return NULL; 2757 } 2758 2759 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 2760 { 2761 2762 } 2763 2764 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 2765 { 2766 struct neigh_table *tbl = seq->private; 2767 struct neigh_statistics *st = v; 2768 2769 if (v == SEQ_START_TOKEN) { 2770 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n"); 2771 return 0; 2772 } 2773 2774 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 2775 "%08lx %08lx %08lx %08lx %08lx %08lx\n", 2776 atomic_read(&tbl->entries), 2777 2778 st->allocs, 2779 st->destroys, 2780 st->hash_grows, 2781 2782 st->lookups, 2783 st->hits, 2784 2785 st->res_failed, 2786 2787 st->rcv_probes_mcast, 2788 st->rcv_probes_ucast, 2789 2790 st->periodic_gc_runs, 2791 st->forced_gc_runs, 2792 st->unres_discards, 2793 st->table_fulls 2794 ); 2795 2796 return 0; 2797 } 2798 2799 static const struct seq_operations neigh_stat_seq_ops = { 2800 .start = neigh_stat_seq_start, 2801 .next = neigh_stat_seq_next, 2802 .stop = neigh_stat_seq_stop, 2803 .show = neigh_stat_seq_show, 2804 }; 2805 2806 static int neigh_stat_seq_open(struct inode *inode, struct file *file) 2807 { 2808 int ret = seq_open(file, &neigh_stat_seq_ops); 2809 2810 if (!ret) { 2811 struct seq_file *sf = file->private_data; 2812 sf->private = PDE_DATA(inode); 2813 } 2814 return ret; 2815 }; 2816 2817 static const struct file_operations neigh_stat_seq_fops = { 2818 .owner = THIS_MODULE, 2819 .open = neigh_stat_seq_open, 2820 .read = seq_read, 2821 .llseek = seq_lseek, 2822 .release = seq_release, 2823 }; 2824 2825 #endif /* CONFIG_PROC_FS */ 2826 2827 static inline size_t neigh_nlmsg_size(void) 2828 { 2829 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2830 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2831 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2832 + nla_total_size(sizeof(struct nda_cacheinfo)) 2833 + nla_total_size(4); /* NDA_PROBES */ 2834 } 2835 2836 static void __neigh_notify(struct neighbour *n, int type, int flags) 2837 { 2838 struct net *net = dev_net(n->dev); 2839 struct sk_buff *skb; 2840 int err = -ENOBUFS; 2841 2842 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 2843 if (skb == NULL) 2844 goto errout; 2845 2846 err = neigh_fill_info(skb, n, 0, 0, type, flags); 2847 if (err < 0) { 2848 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 2849 WARN_ON(err == -EMSGSIZE); 2850 kfree_skb(skb); 2851 goto errout; 2852 } 2853 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 2854 return; 2855 errout: 2856 if (err < 0) 2857 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 2858 } 2859 2860 void neigh_app_ns(struct neighbour *n) 2861 { 2862 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST); 2863 } 2864 EXPORT_SYMBOL(neigh_app_ns); 2865 2866 #ifdef CONFIG_SYSCTL 2867 static int zero; 2868 static int int_max = INT_MAX; 2869 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN); 2870 2871 static int proc_unres_qlen(struct ctl_table *ctl, int write, 2872 void __user *buffer, size_t *lenp, loff_t *ppos) 2873 { 2874 int size, ret; 2875 struct ctl_table tmp = *ctl; 2876 2877 tmp.extra1 = &zero; 2878 tmp.extra2 = &unres_qlen_max; 2879 tmp.data = &size; 2880 2881 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN); 2882 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 2883 2884 if (write && !ret) 2885 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); 2886 return ret; 2887 } 2888 2889 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev, 2890 int family) 2891 { 2892 switch (family) { 2893 case AF_INET: 2894 return __in_dev_arp_parms_get_rcu(dev); 2895 case AF_INET6: 2896 return __in6_dev_nd_parms_get_rcu(dev); 2897 } 2898 return NULL; 2899 } 2900 2901 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p, 2902 int index) 2903 { 2904 struct net_device *dev; 2905 int family = neigh_parms_family(p); 2906 2907 rcu_read_lock(); 2908 for_each_netdev_rcu(net, dev) { 2909 struct neigh_parms *dst_p = 2910 neigh_get_dev_parms_rcu(dev, family); 2911 2912 if (dst_p && !test_bit(index, dst_p->data_state)) 2913 dst_p->data[index] = p->data[index]; 2914 } 2915 rcu_read_unlock(); 2916 } 2917 2918 static void neigh_proc_update(struct ctl_table *ctl, int write) 2919 { 2920 struct net_device *dev = ctl->extra1; 2921 struct neigh_parms *p = ctl->extra2; 2922 struct net *net = neigh_parms_net(p); 2923 int index = (int *) ctl->data - p->data; 2924 2925 if (!write) 2926 return; 2927 2928 set_bit(index, p->data_state); 2929 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 2930 if (!dev) /* NULL dev means this is default value */ 2931 neigh_copy_dflt_parms(net, p, index); 2932 } 2933 2934 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write, 2935 void __user *buffer, 2936 size_t *lenp, loff_t *ppos) 2937 { 2938 struct ctl_table tmp = *ctl; 2939 int ret; 2940 2941 tmp.extra1 = &zero; 2942 tmp.extra2 = &int_max; 2943 2944 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 2945 neigh_proc_update(ctl, write); 2946 return ret; 2947 } 2948 2949 int neigh_proc_dointvec(struct ctl_table *ctl, int write, 2950 void __user *buffer, size_t *lenp, loff_t *ppos) 2951 { 2952 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 2953 2954 neigh_proc_update(ctl, write); 2955 return ret; 2956 } 2957 EXPORT_SYMBOL(neigh_proc_dointvec); 2958 2959 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, 2960 void __user *buffer, 2961 size_t *lenp, loff_t *ppos) 2962 { 2963 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 2964 2965 neigh_proc_update(ctl, write); 2966 return ret; 2967 } 2968 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies); 2969 2970 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write, 2971 void __user *buffer, 2972 size_t *lenp, loff_t *ppos) 2973 { 2974 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos); 2975 2976 neigh_proc_update(ctl, write); 2977 return ret; 2978 } 2979 2980 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write, 2981 void __user *buffer, 2982 size_t *lenp, loff_t *ppos) 2983 { 2984 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 2985 2986 neigh_proc_update(ctl, write); 2987 return ret; 2988 } 2989 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies); 2990 2991 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write, 2992 void __user *buffer, 2993 size_t *lenp, loff_t *ppos) 2994 { 2995 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos); 2996 2997 neigh_proc_update(ctl, write); 2998 return ret; 2999 } 3000 3001 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write, 3002 void __user *buffer, 3003 size_t *lenp, loff_t *ppos) 3004 { 3005 struct neigh_parms *p = ctl->extra2; 3006 int ret; 3007 3008 if (strcmp(ctl->procname, "base_reachable_time") == 0) 3009 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3010 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0) 3011 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3012 else 3013 ret = -1; 3014 3015 if (write && ret == 0) { 3016 /* update reachable_time as well, otherwise, the change will 3017 * only be effective after the next time neigh_periodic_work 3018 * decides to recompute it 3019 */ 3020 p->reachable_time = 3021 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 3022 } 3023 return ret; 3024 } 3025 3026 #define NEIGH_PARMS_DATA_OFFSET(index) \ 3027 (&((struct neigh_parms *) 0)->data[index]) 3028 3029 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \ 3030 [NEIGH_VAR_ ## attr] = { \ 3031 .procname = name, \ 3032 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \ 3033 .maxlen = sizeof(int), \ 3034 .mode = mval, \ 3035 .proc_handler = proc, \ 3036 } 3037 3038 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \ 3039 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax) 3040 3041 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \ 3042 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies) 3043 3044 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \ 3045 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies) 3046 3047 #define NEIGH_SYSCTL_MS_JIFFIES_ENTRY(attr, name) \ 3048 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies) 3049 3050 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \ 3051 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies) 3052 3053 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \ 3054 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen) 3055 3056 static struct neigh_sysctl_table { 3057 struct ctl_table_header *sysctl_header; 3058 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1]; 3059 } neigh_sysctl_template __read_mostly = { 3060 .neigh_vars = { 3061 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"), 3062 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"), 3063 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"), 3064 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"), 3065 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"), 3066 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"), 3067 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"), 3068 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"), 3069 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"), 3070 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"), 3071 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"), 3072 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"), 3073 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"), 3074 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"), 3075 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"), 3076 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"), 3077 [NEIGH_VAR_GC_INTERVAL] = { 3078 .procname = "gc_interval", 3079 .maxlen = sizeof(int), 3080 .mode = 0644, 3081 .proc_handler = proc_dointvec_jiffies, 3082 }, 3083 [NEIGH_VAR_GC_THRESH1] = { 3084 .procname = "gc_thresh1", 3085 .maxlen = sizeof(int), 3086 .mode = 0644, 3087 .extra1 = &zero, 3088 .extra2 = &int_max, 3089 .proc_handler = proc_dointvec_minmax, 3090 }, 3091 [NEIGH_VAR_GC_THRESH2] = { 3092 .procname = "gc_thresh2", 3093 .maxlen = sizeof(int), 3094 .mode = 0644, 3095 .extra1 = &zero, 3096 .extra2 = &int_max, 3097 .proc_handler = proc_dointvec_minmax, 3098 }, 3099 [NEIGH_VAR_GC_THRESH3] = { 3100 .procname = "gc_thresh3", 3101 .maxlen = sizeof(int), 3102 .mode = 0644, 3103 .extra1 = &zero, 3104 .extra2 = &int_max, 3105 .proc_handler = proc_dointvec_minmax, 3106 }, 3107 {}, 3108 }, 3109 }; 3110 3111 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 3112 proc_handler *handler) 3113 { 3114 int i; 3115 struct neigh_sysctl_table *t; 3116 const char *dev_name_source; 3117 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ]; 3118 char *p_name; 3119 3120 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 3121 if (!t) 3122 goto err; 3123 3124 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) { 3125 t->neigh_vars[i].data += (long) p; 3126 t->neigh_vars[i].extra1 = dev; 3127 t->neigh_vars[i].extra2 = p; 3128 } 3129 3130 if (dev) { 3131 dev_name_source = dev->name; 3132 /* Terminate the table early */ 3133 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0, 3134 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL])); 3135 } else { 3136 struct neigh_table *tbl = p->tbl; 3137 dev_name_source = "default"; 3138 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval; 3139 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1; 3140 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2; 3141 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3; 3142 } 3143 3144 if (handler) { 3145 /* RetransTime */ 3146 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; 3147 /* ReachableTime */ 3148 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; 3149 /* RetransTime (in milliseconds)*/ 3150 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; 3151 /* ReachableTime (in milliseconds) */ 3152 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; 3153 } else { 3154 /* Those handlers will update p->reachable_time after 3155 * base_reachable_time(_ms) is set to ensure the new timer starts being 3156 * applied after the next neighbour update instead of waiting for 3157 * neigh_periodic_work to update its value (can be multiple minutes) 3158 * So any handler that replaces them should do this as well 3159 */ 3160 /* ReachableTime */ 3161 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = 3162 neigh_proc_base_reachable_time; 3163 /* ReachableTime (in milliseconds) */ 3164 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = 3165 neigh_proc_base_reachable_time; 3166 } 3167 3168 /* Don't export sysctls to unprivileged users */ 3169 if (neigh_parms_net(p)->user_ns != &init_user_ns) 3170 t->neigh_vars[0].procname = NULL; 3171 3172 switch (neigh_parms_family(p)) { 3173 case AF_INET: 3174 p_name = "ipv4"; 3175 break; 3176 case AF_INET6: 3177 p_name = "ipv6"; 3178 break; 3179 default: 3180 BUG(); 3181 } 3182 3183 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s", 3184 p_name, dev_name_source); 3185 t->sysctl_header = 3186 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars); 3187 if (!t->sysctl_header) 3188 goto free; 3189 3190 p->sysctl_table = t; 3191 return 0; 3192 3193 free: 3194 kfree(t); 3195 err: 3196 return -ENOBUFS; 3197 } 3198 EXPORT_SYMBOL(neigh_sysctl_register); 3199 3200 void neigh_sysctl_unregister(struct neigh_parms *p) 3201 { 3202 if (p->sysctl_table) { 3203 struct neigh_sysctl_table *t = p->sysctl_table; 3204 p->sysctl_table = NULL; 3205 unregister_net_sysctl_table(t->sysctl_header); 3206 kfree(t); 3207 } 3208 } 3209 EXPORT_SYMBOL(neigh_sysctl_unregister); 3210 3211 #endif /* CONFIG_SYSCTL */ 3212 3213 static int __init neigh_init(void) 3214 { 3215 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL); 3216 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL); 3217 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL); 3218 3219 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, 3220 NULL); 3221 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL); 3222 3223 return 0; 3224 } 3225 3226 subsys_initcall(neigh_init); 3227 3228