1 /* 2 * Generic address resolution entity 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Fixes: 14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 15 * Harald Welte Add neighbour cache statistics like rtstat 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/socket.h> 22 #include <linux/netdevice.h> 23 #include <linux/proc_fs.h> 24 #ifdef CONFIG_SYSCTL 25 #include <linux/sysctl.h> 26 #endif 27 #include <linux/times.h> 28 #include <net/net_namespace.h> 29 #include <net/neighbour.h> 30 #include <net/dst.h> 31 #include <net/sock.h> 32 #include <net/netevent.h> 33 #include <net/netlink.h> 34 #include <linux/rtnetlink.h> 35 #include <linux/random.h> 36 #include <linux/string.h> 37 #include <linux/log2.h> 38 39 #define NEIGH_DEBUG 1 40 41 #define NEIGH_PRINTK(x...) printk(x) 42 #define NEIGH_NOPRINTK(x...) do { ; } while(0) 43 #define NEIGH_PRINTK0 NEIGH_PRINTK 44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK 45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK 46 47 #if NEIGH_DEBUG >= 1 48 #undef NEIGH_PRINTK1 49 #define NEIGH_PRINTK1 NEIGH_PRINTK 50 #endif 51 #if NEIGH_DEBUG >= 2 52 #undef NEIGH_PRINTK2 53 #define NEIGH_PRINTK2 NEIGH_PRINTK 54 #endif 55 56 #define PNEIGH_HASHMASK 0xF 57 58 static void neigh_timer_handler(unsigned long arg); 59 static void __neigh_notify(struct neighbour *n, int type, int flags); 60 static void neigh_update_notify(struct neighbour *neigh); 61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev); 62 63 static struct neigh_table *neigh_tables; 64 #ifdef CONFIG_PROC_FS 65 static const struct file_operations neigh_stat_seq_fops; 66 #endif 67 68 /* 69 Neighbour hash table buckets are protected with rwlock tbl->lock. 70 71 - All the scans/updates to hash buckets MUST be made under this lock. 72 - NOTHING clever should be made under this lock: no callbacks 73 to protocol backends, no attempts to send something to network. 74 It will result in deadlocks, if backend/driver wants to use neighbour 75 cache. 76 - If the entry requires some non-trivial actions, increase 77 its reference count and release table lock. 78 79 Neighbour entries are protected: 80 - with reference count. 81 - with rwlock neigh->lock 82 83 Reference count prevents destruction. 84 85 neigh->lock mainly serializes ll address data and its validity state. 86 However, the same lock is used to protect another entry fields: 87 - timer 88 - resolution queue 89 90 Again, nothing clever shall be made under neigh->lock, 91 the most complicated procedure, which we allow is dev->hard_header. 92 It is supposed, that dev->hard_header is simplistic and does 93 not make callbacks to neighbour tables. 94 95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting 96 list of neighbour tables. This list is used only in process context, 97 */ 98 99 static DEFINE_RWLOCK(neigh_tbl_lock); 100 101 static int neigh_blackhole(struct sk_buff *skb) 102 { 103 kfree_skb(skb); 104 return -ENETDOWN; 105 } 106 107 static void neigh_cleanup_and_release(struct neighbour *neigh) 108 { 109 if (neigh->parms->neigh_cleanup) 110 neigh->parms->neigh_cleanup(neigh); 111 112 __neigh_notify(neigh, RTM_DELNEIGH, 0); 113 neigh_release(neigh); 114 } 115 116 /* 117 * It is random distribution in the interval (1/2)*base...(3/2)*base. 118 * It corresponds to default IPv6 settings and is not overridable, 119 * because it is really reasonable choice. 120 */ 121 122 unsigned long neigh_rand_reach_time(unsigned long base) 123 { 124 return (base ? (net_random() % base) + (base >> 1) : 0); 125 } 126 EXPORT_SYMBOL(neigh_rand_reach_time); 127 128 129 static int neigh_forced_gc(struct neigh_table *tbl) 130 { 131 int shrunk = 0; 132 int i; 133 134 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 135 136 write_lock_bh(&tbl->lock); 137 for (i = 0; i <= tbl->hash_mask; i++) { 138 struct neighbour *n, **np; 139 140 np = &tbl->hash_buckets[i]; 141 while ((n = *np) != NULL) { 142 /* Neighbour record may be discarded if: 143 * - nobody refers to it. 144 * - it is not permanent 145 */ 146 write_lock(&n->lock); 147 if (atomic_read(&n->refcnt) == 1 && 148 !(n->nud_state & NUD_PERMANENT)) { 149 *np = n->next; 150 n->dead = 1; 151 shrunk = 1; 152 write_unlock(&n->lock); 153 neigh_cleanup_and_release(n); 154 continue; 155 } 156 write_unlock(&n->lock); 157 np = &n->next; 158 } 159 } 160 161 tbl->last_flush = jiffies; 162 163 write_unlock_bh(&tbl->lock); 164 165 return shrunk; 166 } 167 168 static void neigh_add_timer(struct neighbour *n, unsigned long when) 169 { 170 neigh_hold(n); 171 if (unlikely(mod_timer(&n->timer, when))) { 172 printk("NEIGH: BUG, double timer add, state is %x\n", 173 n->nud_state); 174 dump_stack(); 175 } 176 } 177 178 static int neigh_del_timer(struct neighbour *n) 179 { 180 if ((n->nud_state & NUD_IN_TIMER) && 181 del_timer(&n->timer)) { 182 neigh_release(n); 183 return 1; 184 } 185 return 0; 186 } 187 188 static void pneigh_queue_purge(struct sk_buff_head *list) 189 { 190 struct sk_buff *skb; 191 192 while ((skb = skb_dequeue(list)) != NULL) { 193 dev_put(skb->dev); 194 kfree_skb(skb); 195 } 196 } 197 198 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev) 199 { 200 int i; 201 202 for (i = 0; i <= tbl->hash_mask; i++) { 203 struct neighbour *n, **np = &tbl->hash_buckets[i]; 204 205 while ((n = *np) != NULL) { 206 if (dev && n->dev != dev) { 207 np = &n->next; 208 continue; 209 } 210 *np = n->next; 211 write_lock(&n->lock); 212 neigh_del_timer(n); 213 n->dead = 1; 214 215 if (atomic_read(&n->refcnt) != 1) { 216 /* The most unpleasant situation. 217 We must destroy neighbour entry, 218 but someone still uses it. 219 220 The destroy will be delayed until 221 the last user releases us, but 222 we must kill timers etc. and move 223 it to safe state. 224 */ 225 skb_queue_purge(&n->arp_queue); 226 n->output = neigh_blackhole; 227 if (n->nud_state & NUD_VALID) 228 n->nud_state = NUD_NOARP; 229 else 230 n->nud_state = NUD_NONE; 231 NEIGH_PRINTK2("neigh %p is stray.\n", n); 232 } 233 write_unlock(&n->lock); 234 neigh_cleanup_and_release(n); 235 } 236 } 237 } 238 239 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 240 { 241 write_lock_bh(&tbl->lock); 242 neigh_flush_dev(tbl, dev); 243 write_unlock_bh(&tbl->lock); 244 } 245 EXPORT_SYMBOL(neigh_changeaddr); 246 247 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 248 { 249 write_lock_bh(&tbl->lock); 250 neigh_flush_dev(tbl, dev); 251 pneigh_ifdown(tbl, dev); 252 write_unlock_bh(&tbl->lock); 253 254 del_timer_sync(&tbl->proxy_timer); 255 pneigh_queue_purge(&tbl->proxy_queue); 256 return 0; 257 } 258 EXPORT_SYMBOL(neigh_ifdown); 259 260 static struct neighbour *neigh_alloc(struct neigh_table *tbl) 261 { 262 struct neighbour *n = NULL; 263 unsigned long now = jiffies; 264 int entries; 265 266 entries = atomic_inc_return(&tbl->entries) - 1; 267 if (entries >= tbl->gc_thresh3 || 268 (entries >= tbl->gc_thresh2 && 269 time_after(now, tbl->last_flush + 5 * HZ))) { 270 if (!neigh_forced_gc(tbl) && 271 entries >= tbl->gc_thresh3) 272 goto out_entries; 273 } 274 275 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC); 276 if (!n) 277 goto out_entries; 278 279 skb_queue_head_init(&n->arp_queue); 280 rwlock_init(&n->lock); 281 n->updated = n->used = now; 282 n->nud_state = NUD_NONE; 283 n->output = neigh_blackhole; 284 n->parms = neigh_parms_clone(&tbl->parms); 285 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n); 286 287 NEIGH_CACHE_STAT_INC(tbl, allocs); 288 n->tbl = tbl; 289 atomic_set(&n->refcnt, 1); 290 n->dead = 1; 291 out: 292 return n; 293 294 out_entries: 295 atomic_dec(&tbl->entries); 296 goto out; 297 } 298 299 static struct neighbour **neigh_hash_alloc(unsigned int entries) 300 { 301 unsigned long size = entries * sizeof(struct neighbour *); 302 struct neighbour **ret; 303 304 if (size <= PAGE_SIZE) { 305 ret = kzalloc(size, GFP_ATOMIC); 306 } else { 307 ret = (struct neighbour **) 308 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size)); 309 } 310 return ret; 311 } 312 313 static void neigh_hash_free(struct neighbour **hash, unsigned int entries) 314 { 315 unsigned long size = entries * sizeof(struct neighbour *); 316 317 if (size <= PAGE_SIZE) 318 kfree(hash); 319 else 320 free_pages((unsigned long)hash, get_order(size)); 321 } 322 323 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries) 324 { 325 struct neighbour **new_hash, **old_hash; 326 unsigned int i, new_hash_mask, old_entries; 327 328 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 329 330 BUG_ON(!is_power_of_2(new_entries)); 331 new_hash = neigh_hash_alloc(new_entries); 332 if (!new_hash) 333 return; 334 335 old_entries = tbl->hash_mask + 1; 336 new_hash_mask = new_entries - 1; 337 old_hash = tbl->hash_buckets; 338 339 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 340 for (i = 0; i < old_entries; i++) { 341 struct neighbour *n, *next; 342 343 for (n = old_hash[i]; n; n = next) { 344 unsigned int hash_val = tbl->hash(n->primary_key, n->dev); 345 346 hash_val &= new_hash_mask; 347 next = n->next; 348 349 n->next = new_hash[hash_val]; 350 new_hash[hash_val] = n; 351 } 352 } 353 tbl->hash_buckets = new_hash; 354 tbl->hash_mask = new_hash_mask; 355 356 neigh_hash_free(old_hash, old_entries); 357 } 358 359 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 360 struct net_device *dev) 361 { 362 struct neighbour *n; 363 int key_len = tbl->key_len; 364 u32 hash_val; 365 366 NEIGH_CACHE_STAT_INC(tbl, lookups); 367 368 read_lock_bh(&tbl->lock); 369 hash_val = tbl->hash(pkey, dev); 370 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) { 371 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) { 372 neigh_hold(n); 373 NEIGH_CACHE_STAT_INC(tbl, hits); 374 break; 375 } 376 } 377 read_unlock_bh(&tbl->lock); 378 return n; 379 } 380 EXPORT_SYMBOL(neigh_lookup); 381 382 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 383 const void *pkey) 384 { 385 struct neighbour *n; 386 int key_len = tbl->key_len; 387 u32 hash_val; 388 389 NEIGH_CACHE_STAT_INC(tbl, lookups); 390 391 read_lock_bh(&tbl->lock); 392 hash_val = tbl->hash(pkey, NULL); 393 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) { 394 if (!memcmp(n->primary_key, pkey, key_len) && 395 net_eq(dev_net(n->dev), net)) { 396 neigh_hold(n); 397 NEIGH_CACHE_STAT_INC(tbl, hits); 398 break; 399 } 400 } 401 read_unlock_bh(&tbl->lock); 402 return n; 403 } 404 EXPORT_SYMBOL(neigh_lookup_nodev); 405 406 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, 407 struct net_device *dev) 408 { 409 u32 hash_val; 410 int key_len = tbl->key_len; 411 int error; 412 struct neighbour *n1, *rc, *n = neigh_alloc(tbl); 413 414 if (!n) { 415 rc = ERR_PTR(-ENOBUFS); 416 goto out; 417 } 418 419 memcpy(n->primary_key, pkey, key_len); 420 n->dev = dev; 421 dev_hold(dev); 422 423 /* Protocol specific setup. */ 424 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 425 rc = ERR_PTR(error); 426 goto out_neigh_release; 427 } 428 429 /* Device specific setup. */ 430 if (n->parms->neigh_setup && 431 (error = n->parms->neigh_setup(n)) < 0) { 432 rc = ERR_PTR(error); 433 goto out_neigh_release; 434 } 435 436 n->confirmed = jiffies - (n->parms->base_reachable_time << 1); 437 438 write_lock_bh(&tbl->lock); 439 440 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1)) 441 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1); 442 443 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask; 444 445 if (n->parms->dead) { 446 rc = ERR_PTR(-EINVAL); 447 goto out_tbl_unlock; 448 } 449 450 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) { 451 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) { 452 neigh_hold(n1); 453 rc = n1; 454 goto out_tbl_unlock; 455 } 456 } 457 458 n->next = tbl->hash_buckets[hash_val]; 459 tbl->hash_buckets[hash_val] = n; 460 n->dead = 0; 461 neigh_hold(n); 462 write_unlock_bh(&tbl->lock); 463 NEIGH_PRINTK2("neigh %p is created.\n", n); 464 rc = n; 465 out: 466 return rc; 467 out_tbl_unlock: 468 write_unlock_bh(&tbl->lock); 469 out_neigh_release: 470 neigh_release(n); 471 goto out; 472 } 473 EXPORT_SYMBOL(neigh_create); 474 475 static u32 pneigh_hash(const void *pkey, int key_len) 476 { 477 u32 hash_val = *(u32 *)(pkey + key_len - 4); 478 hash_val ^= (hash_val >> 16); 479 hash_val ^= hash_val >> 8; 480 hash_val ^= hash_val >> 4; 481 hash_val &= PNEIGH_HASHMASK; 482 return hash_val; 483 } 484 485 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 486 struct net *net, 487 const void *pkey, 488 int key_len, 489 struct net_device *dev) 490 { 491 while (n) { 492 if (!memcmp(n->key, pkey, key_len) && 493 net_eq(pneigh_net(n), net) && 494 (n->dev == dev || !n->dev)) 495 return n; 496 n = n->next; 497 } 498 return NULL; 499 } 500 501 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 502 struct net *net, const void *pkey, struct net_device *dev) 503 { 504 int key_len = tbl->key_len; 505 u32 hash_val = pneigh_hash(pkey, key_len); 506 507 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 508 net, pkey, key_len, dev); 509 } 510 EXPORT_SYMBOL_GPL(__pneigh_lookup); 511 512 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 513 struct net *net, const void *pkey, 514 struct net_device *dev, int creat) 515 { 516 struct pneigh_entry *n; 517 int key_len = tbl->key_len; 518 u32 hash_val = pneigh_hash(pkey, key_len); 519 520 read_lock_bh(&tbl->lock); 521 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 522 net, pkey, key_len, dev); 523 read_unlock_bh(&tbl->lock); 524 525 if (n || !creat) 526 goto out; 527 528 ASSERT_RTNL(); 529 530 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 531 if (!n) 532 goto out; 533 534 #ifdef CONFIG_NET_NS 535 n->net = hold_net(net); 536 #endif 537 memcpy(n->key, pkey, key_len); 538 n->dev = dev; 539 if (dev) 540 dev_hold(dev); 541 542 if (tbl->pconstructor && tbl->pconstructor(n)) { 543 if (dev) 544 dev_put(dev); 545 release_net(net); 546 kfree(n); 547 n = NULL; 548 goto out; 549 } 550 551 write_lock_bh(&tbl->lock); 552 n->next = tbl->phash_buckets[hash_val]; 553 tbl->phash_buckets[hash_val] = n; 554 write_unlock_bh(&tbl->lock); 555 out: 556 return n; 557 } 558 EXPORT_SYMBOL(pneigh_lookup); 559 560 561 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 562 struct net_device *dev) 563 { 564 struct pneigh_entry *n, **np; 565 int key_len = tbl->key_len; 566 u32 hash_val = pneigh_hash(pkey, key_len); 567 568 write_lock_bh(&tbl->lock); 569 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 570 np = &n->next) { 571 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 572 net_eq(pneigh_net(n), net)) { 573 *np = n->next; 574 write_unlock_bh(&tbl->lock); 575 if (tbl->pdestructor) 576 tbl->pdestructor(n); 577 if (n->dev) 578 dev_put(n->dev); 579 release_net(pneigh_net(n)); 580 kfree(n); 581 return 0; 582 } 583 } 584 write_unlock_bh(&tbl->lock); 585 return -ENOENT; 586 } 587 588 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 589 { 590 struct pneigh_entry *n, **np; 591 u32 h; 592 593 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 594 np = &tbl->phash_buckets[h]; 595 while ((n = *np) != NULL) { 596 if (!dev || n->dev == dev) { 597 *np = n->next; 598 if (tbl->pdestructor) 599 tbl->pdestructor(n); 600 if (n->dev) 601 dev_put(n->dev); 602 release_net(pneigh_net(n)); 603 kfree(n); 604 continue; 605 } 606 np = &n->next; 607 } 608 } 609 return -ENOENT; 610 } 611 612 static void neigh_parms_destroy(struct neigh_parms *parms); 613 614 static inline void neigh_parms_put(struct neigh_parms *parms) 615 { 616 if (atomic_dec_and_test(&parms->refcnt)) 617 neigh_parms_destroy(parms); 618 } 619 620 /* 621 * neighbour must already be out of the table; 622 * 623 */ 624 void neigh_destroy(struct neighbour *neigh) 625 { 626 struct hh_cache *hh; 627 628 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 629 630 if (!neigh->dead) { 631 printk(KERN_WARNING 632 "Destroying alive neighbour %p\n", neigh); 633 dump_stack(); 634 return; 635 } 636 637 if (neigh_del_timer(neigh)) 638 printk(KERN_WARNING "Impossible event.\n"); 639 640 while ((hh = neigh->hh) != NULL) { 641 neigh->hh = hh->hh_next; 642 hh->hh_next = NULL; 643 644 write_seqlock_bh(&hh->hh_lock); 645 hh->hh_output = neigh_blackhole; 646 write_sequnlock_bh(&hh->hh_lock); 647 if (atomic_dec_and_test(&hh->hh_refcnt)) 648 kfree(hh); 649 } 650 651 skb_queue_purge(&neigh->arp_queue); 652 653 dev_put(neigh->dev); 654 neigh_parms_put(neigh->parms); 655 656 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh); 657 658 atomic_dec(&neigh->tbl->entries); 659 kmem_cache_free(neigh->tbl->kmem_cachep, neigh); 660 } 661 EXPORT_SYMBOL(neigh_destroy); 662 663 /* Neighbour state is suspicious; 664 disable fast path. 665 666 Called with write_locked neigh. 667 */ 668 static void neigh_suspect(struct neighbour *neigh) 669 { 670 struct hh_cache *hh; 671 672 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 673 674 neigh->output = neigh->ops->output; 675 676 for (hh = neigh->hh; hh; hh = hh->hh_next) 677 hh->hh_output = neigh->ops->output; 678 } 679 680 /* Neighbour state is OK; 681 enable fast path. 682 683 Called with write_locked neigh. 684 */ 685 static void neigh_connect(struct neighbour *neigh) 686 { 687 struct hh_cache *hh; 688 689 NEIGH_PRINTK2("neigh %p is connected.\n", neigh); 690 691 neigh->output = neigh->ops->connected_output; 692 693 for (hh = neigh->hh; hh; hh = hh->hh_next) 694 hh->hh_output = neigh->ops->hh_output; 695 } 696 697 static void neigh_periodic_timer(unsigned long arg) 698 { 699 struct neigh_table *tbl = (struct neigh_table *)arg; 700 struct neighbour *n, **np; 701 unsigned long expire, now = jiffies; 702 703 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 704 705 write_lock(&tbl->lock); 706 707 /* 708 * periodically recompute ReachableTime from random function 709 */ 710 711 if (time_after(now, tbl->last_rand + 300 * HZ)) { 712 struct neigh_parms *p; 713 tbl->last_rand = now; 714 for (p = &tbl->parms; p; p = p->next) 715 p->reachable_time = 716 neigh_rand_reach_time(p->base_reachable_time); 717 } 718 719 np = &tbl->hash_buckets[tbl->hash_chain_gc]; 720 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask); 721 722 while ((n = *np) != NULL) { 723 unsigned int state; 724 725 write_lock(&n->lock); 726 727 state = n->nud_state; 728 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) { 729 write_unlock(&n->lock); 730 goto next_elt; 731 } 732 733 if (time_before(n->used, n->confirmed)) 734 n->used = n->confirmed; 735 736 if (atomic_read(&n->refcnt) == 1 && 737 (state == NUD_FAILED || 738 time_after(now, n->used + n->parms->gc_staletime))) { 739 *np = n->next; 740 n->dead = 1; 741 write_unlock(&n->lock); 742 neigh_cleanup_and_release(n); 743 continue; 744 } 745 write_unlock(&n->lock); 746 747 next_elt: 748 np = &n->next; 749 } 750 751 /* Cycle through all hash buckets every base_reachable_time/2 ticks. 752 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2 753 * base_reachable_time. 754 */ 755 expire = tbl->parms.base_reachable_time >> 1; 756 expire /= (tbl->hash_mask + 1); 757 if (!expire) 758 expire = 1; 759 760 if (expire>HZ) 761 mod_timer(&tbl->gc_timer, round_jiffies(now + expire)); 762 else 763 mod_timer(&tbl->gc_timer, now + expire); 764 765 write_unlock(&tbl->lock); 766 } 767 768 static __inline__ int neigh_max_probes(struct neighbour *n) 769 { 770 struct neigh_parms *p = n->parms; 771 return (n->nud_state & NUD_PROBE ? 772 p->ucast_probes : 773 p->ucast_probes + p->app_probes + p->mcast_probes); 774 } 775 776 /* Called when a timer expires for a neighbour entry. */ 777 778 static void neigh_timer_handler(unsigned long arg) 779 { 780 unsigned long now, next; 781 struct neighbour *neigh = (struct neighbour *)arg; 782 unsigned state; 783 int notify = 0; 784 785 write_lock(&neigh->lock); 786 787 state = neigh->nud_state; 788 now = jiffies; 789 next = now + HZ; 790 791 if (!(state & NUD_IN_TIMER)) { 792 #ifndef CONFIG_SMP 793 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n"); 794 #endif 795 goto out; 796 } 797 798 if (state & NUD_REACHABLE) { 799 if (time_before_eq(now, 800 neigh->confirmed + neigh->parms->reachable_time)) { 801 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh); 802 next = neigh->confirmed + neigh->parms->reachable_time; 803 } else if (time_before_eq(now, 804 neigh->used + neigh->parms->delay_probe_time)) { 805 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 806 neigh->nud_state = NUD_DELAY; 807 neigh->updated = jiffies; 808 neigh_suspect(neigh); 809 next = now + neigh->parms->delay_probe_time; 810 } else { 811 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 812 neigh->nud_state = NUD_STALE; 813 neigh->updated = jiffies; 814 neigh_suspect(neigh); 815 notify = 1; 816 } 817 } else if (state & NUD_DELAY) { 818 if (time_before_eq(now, 819 neigh->confirmed + neigh->parms->delay_probe_time)) { 820 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh); 821 neigh->nud_state = NUD_REACHABLE; 822 neigh->updated = jiffies; 823 neigh_connect(neigh); 824 notify = 1; 825 next = neigh->confirmed + neigh->parms->reachable_time; 826 } else { 827 NEIGH_PRINTK2("neigh %p is probed.\n", neigh); 828 neigh->nud_state = NUD_PROBE; 829 neigh->updated = jiffies; 830 atomic_set(&neigh->probes, 0); 831 next = now + neigh->parms->retrans_time; 832 } 833 } else { 834 /* NUD_PROBE|NUD_INCOMPLETE */ 835 next = now + neigh->parms->retrans_time; 836 } 837 838 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 839 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 840 struct sk_buff *skb; 841 842 neigh->nud_state = NUD_FAILED; 843 neigh->updated = jiffies; 844 notify = 1; 845 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 846 NEIGH_PRINTK2("neigh %p is failed.\n", neigh); 847 848 /* It is very thin place. report_unreachable is very complicated 849 routine. Particularly, it can hit the same neighbour entry! 850 851 So that, we try to be accurate and avoid dead loop. --ANK 852 */ 853 while (neigh->nud_state == NUD_FAILED && 854 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 855 write_unlock(&neigh->lock); 856 neigh->ops->error_report(neigh, skb); 857 write_lock(&neigh->lock); 858 } 859 skb_queue_purge(&neigh->arp_queue); 860 } 861 862 if (neigh->nud_state & NUD_IN_TIMER) { 863 if (time_before(next, jiffies + HZ/2)) 864 next = jiffies + HZ/2; 865 if (!mod_timer(&neigh->timer, next)) 866 neigh_hold(neigh); 867 } 868 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 869 struct sk_buff *skb = skb_peek(&neigh->arp_queue); 870 /* keep skb alive even if arp_queue overflows */ 871 if (skb) 872 skb = skb_copy(skb, GFP_ATOMIC); 873 write_unlock(&neigh->lock); 874 neigh->ops->solicit(neigh, skb); 875 atomic_inc(&neigh->probes); 876 if (skb) 877 kfree_skb(skb); 878 } else { 879 out: 880 write_unlock(&neigh->lock); 881 } 882 883 if (notify) 884 neigh_update_notify(neigh); 885 886 neigh_release(neigh); 887 } 888 889 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 890 { 891 int rc; 892 unsigned long now; 893 894 write_lock_bh(&neigh->lock); 895 896 rc = 0; 897 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 898 goto out_unlock_bh; 899 900 now = jiffies; 901 902 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 903 if (neigh->parms->mcast_probes + neigh->parms->app_probes) { 904 atomic_set(&neigh->probes, neigh->parms->ucast_probes); 905 neigh->nud_state = NUD_INCOMPLETE; 906 neigh->updated = jiffies; 907 neigh_add_timer(neigh, now + 1); 908 } else { 909 neigh->nud_state = NUD_FAILED; 910 neigh->updated = jiffies; 911 write_unlock_bh(&neigh->lock); 912 913 if (skb) 914 kfree_skb(skb); 915 return 1; 916 } 917 } else if (neigh->nud_state & NUD_STALE) { 918 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 919 neigh->nud_state = NUD_DELAY; 920 neigh->updated = jiffies; 921 neigh_add_timer(neigh, 922 jiffies + neigh->parms->delay_probe_time); 923 } 924 925 if (neigh->nud_state == NUD_INCOMPLETE) { 926 if (skb) { 927 if (skb_queue_len(&neigh->arp_queue) >= 928 neigh->parms->queue_len) { 929 struct sk_buff *buff; 930 buff = neigh->arp_queue.next; 931 __skb_unlink(buff, &neigh->arp_queue); 932 kfree_skb(buff); 933 } 934 __skb_queue_tail(&neigh->arp_queue, skb); 935 } 936 rc = 1; 937 } 938 out_unlock_bh: 939 write_unlock_bh(&neigh->lock); 940 return rc; 941 } 942 EXPORT_SYMBOL(__neigh_event_send); 943 944 static void neigh_update_hhs(struct neighbour *neigh) 945 { 946 struct hh_cache *hh; 947 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 948 = neigh->dev->header_ops->cache_update; 949 950 if (update) { 951 for (hh = neigh->hh; hh; hh = hh->hh_next) { 952 write_seqlock_bh(&hh->hh_lock); 953 update(hh, neigh->dev, neigh->ha); 954 write_sequnlock_bh(&hh->hh_lock); 955 } 956 } 957 } 958 959 960 961 /* Generic update routine. 962 -- lladdr is new lladdr or NULL, if it is not supplied. 963 -- new is new state. 964 -- flags 965 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 966 if it is different. 967 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 968 lladdr instead of overriding it 969 if it is different. 970 It also allows to retain current state 971 if lladdr is unchanged. 972 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 973 974 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 975 NTF_ROUTER flag. 976 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 977 a router. 978 979 Caller MUST hold reference count on the entry. 980 */ 981 982 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 983 u32 flags) 984 { 985 u8 old; 986 int err; 987 int notify = 0; 988 struct net_device *dev; 989 int update_isrouter = 0; 990 991 write_lock_bh(&neigh->lock); 992 993 dev = neigh->dev; 994 old = neigh->nud_state; 995 err = -EPERM; 996 997 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 998 (old & (NUD_NOARP | NUD_PERMANENT))) 999 goto out; 1000 1001 if (!(new & NUD_VALID)) { 1002 neigh_del_timer(neigh); 1003 if (old & NUD_CONNECTED) 1004 neigh_suspect(neigh); 1005 neigh->nud_state = new; 1006 err = 0; 1007 notify = old & NUD_VALID; 1008 goto out; 1009 } 1010 1011 /* Compare new lladdr with cached one */ 1012 if (!dev->addr_len) { 1013 /* First case: device needs no address. */ 1014 lladdr = neigh->ha; 1015 } else if (lladdr) { 1016 /* The second case: if something is already cached 1017 and a new address is proposed: 1018 - compare new & old 1019 - if they are different, check override flag 1020 */ 1021 if ((old & NUD_VALID) && 1022 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1023 lladdr = neigh->ha; 1024 } else { 1025 /* No address is supplied; if we know something, 1026 use it, otherwise discard the request. 1027 */ 1028 err = -EINVAL; 1029 if (!(old & NUD_VALID)) 1030 goto out; 1031 lladdr = neigh->ha; 1032 } 1033 1034 if (new & NUD_CONNECTED) 1035 neigh->confirmed = jiffies; 1036 neigh->updated = jiffies; 1037 1038 /* If entry was valid and address is not changed, 1039 do not change entry state, if new one is STALE. 1040 */ 1041 err = 0; 1042 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1043 if (old & NUD_VALID) { 1044 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1045 update_isrouter = 0; 1046 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1047 (old & NUD_CONNECTED)) { 1048 lladdr = neigh->ha; 1049 new = NUD_STALE; 1050 } else 1051 goto out; 1052 } else { 1053 if (lladdr == neigh->ha && new == NUD_STALE && 1054 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) || 1055 (old & NUD_CONNECTED)) 1056 ) 1057 new = old; 1058 } 1059 } 1060 1061 if (new != old) { 1062 neigh_del_timer(neigh); 1063 if (new & NUD_IN_TIMER) 1064 neigh_add_timer(neigh, (jiffies + 1065 ((new & NUD_REACHABLE) ? 1066 neigh->parms->reachable_time : 1067 0))); 1068 neigh->nud_state = new; 1069 } 1070 1071 if (lladdr != neigh->ha) { 1072 memcpy(&neigh->ha, lladdr, dev->addr_len); 1073 neigh_update_hhs(neigh); 1074 if (!(new & NUD_CONNECTED)) 1075 neigh->confirmed = jiffies - 1076 (neigh->parms->base_reachable_time << 1); 1077 notify = 1; 1078 } 1079 if (new == old) 1080 goto out; 1081 if (new & NUD_CONNECTED) 1082 neigh_connect(neigh); 1083 else 1084 neigh_suspect(neigh); 1085 if (!(old & NUD_VALID)) { 1086 struct sk_buff *skb; 1087 1088 /* Again: avoid dead loop if something went wrong */ 1089 1090 while (neigh->nud_state & NUD_VALID && 1091 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1092 struct neighbour *n1 = neigh; 1093 write_unlock_bh(&neigh->lock); 1094 /* On shaper/eql skb->dst->neighbour != neigh :( */ 1095 if (skb->dst && skb->dst->neighbour) 1096 n1 = skb->dst->neighbour; 1097 n1->output(skb); 1098 write_lock_bh(&neigh->lock); 1099 } 1100 skb_queue_purge(&neigh->arp_queue); 1101 } 1102 out: 1103 if (update_isrouter) { 1104 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ? 1105 (neigh->flags | NTF_ROUTER) : 1106 (neigh->flags & ~NTF_ROUTER); 1107 } 1108 write_unlock_bh(&neigh->lock); 1109 1110 if (notify) 1111 neigh_update_notify(neigh); 1112 1113 return err; 1114 } 1115 EXPORT_SYMBOL(neigh_update); 1116 1117 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1118 u8 *lladdr, void *saddr, 1119 struct net_device *dev) 1120 { 1121 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1122 lladdr || !dev->addr_len); 1123 if (neigh) 1124 neigh_update(neigh, lladdr, NUD_STALE, 1125 NEIGH_UPDATE_F_OVERRIDE); 1126 return neigh; 1127 } 1128 EXPORT_SYMBOL(neigh_event_ns); 1129 1130 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst, 1131 __be16 protocol) 1132 { 1133 struct hh_cache *hh; 1134 struct net_device *dev = dst->dev; 1135 1136 for (hh = n->hh; hh; hh = hh->hh_next) 1137 if (hh->hh_type == protocol) 1138 break; 1139 1140 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) { 1141 seqlock_init(&hh->hh_lock); 1142 hh->hh_type = protocol; 1143 atomic_set(&hh->hh_refcnt, 0); 1144 hh->hh_next = NULL; 1145 1146 if (dev->header_ops->cache(n, hh)) { 1147 kfree(hh); 1148 hh = NULL; 1149 } else { 1150 atomic_inc(&hh->hh_refcnt); 1151 hh->hh_next = n->hh; 1152 n->hh = hh; 1153 if (n->nud_state & NUD_CONNECTED) 1154 hh->hh_output = n->ops->hh_output; 1155 else 1156 hh->hh_output = n->ops->output; 1157 } 1158 } 1159 if (hh) { 1160 atomic_inc(&hh->hh_refcnt); 1161 dst->hh = hh; 1162 } 1163 } 1164 1165 /* This function can be used in contexts, where only old dev_queue_xmit 1166 worked, f.e. if you want to override normal output path (eql, shaper), 1167 but resolution is not made yet. 1168 */ 1169 1170 int neigh_compat_output(struct sk_buff *skb) 1171 { 1172 struct net_device *dev = skb->dev; 1173 1174 __skb_pull(skb, skb_network_offset(skb)); 1175 1176 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL, 1177 skb->len) < 0 && 1178 dev->header_ops->rebuild(skb)) 1179 return 0; 1180 1181 return dev_queue_xmit(skb); 1182 } 1183 EXPORT_SYMBOL(neigh_compat_output); 1184 1185 /* Slow and careful. */ 1186 1187 int neigh_resolve_output(struct sk_buff *skb) 1188 { 1189 struct dst_entry *dst = skb->dst; 1190 struct neighbour *neigh; 1191 int rc = 0; 1192 1193 if (!dst || !(neigh = dst->neighbour)) 1194 goto discard; 1195 1196 __skb_pull(skb, skb_network_offset(skb)); 1197 1198 if (!neigh_event_send(neigh, skb)) { 1199 int err; 1200 struct net_device *dev = neigh->dev; 1201 if (dev->header_ops->cache && !dst->hh) { 1202 write_lock_bh(&neigh->lock); 1203 if (!dst->hh) 1204 neigh_hh_init(neigh, dst, dst->ops->protocol); 1205 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1206 neigh->ha, NULL, skb->len); 1207 write_unlock_bh(&neigh->lock); 1208 } else { 1209 read_lock_bh(&neigh->lock); 1210 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1211 neigh->ha, NULL, skb->len); 1212 read_unlock_bh(&neigh->lock); 1213 } 1214 if (err >= 0) 1215 rc = neigh->ops->queue_xmit(skb); 1216 else 1217 goto out_kfree_skb; 1218 } 1219 out: 1220 return rc; 1221 discard: 1222 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n", 1223 dst, dst ? dst->neighbour : NULL); 1224 out_kfree_skb: 1225 rc = -EINVAL; 1226 kfree_skb(skb); 1227 goto out; 1228 } 1229 EXPORT_SYMBOL(neigh_resolve_output); 1230 1231 /* As fast as possible without hh cache */ 1232 1233 int neigh_connected_output(struct sk_buff *skb) 1234 { 1235 int err; 1236 struct dst_entry *dst = skb->dst; 1237 struct neighbour *neigh = dst->neighbour; 1238 struct net_device *dev = neigh->dev; 1239 1240 __skb_pull(skb, skb_network_offset(skb)); 1241 1242 read_lock_bh(&neigh->lock); 1243 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1244 neigh->ha, NULL, skb->len); 1245 read_unlock_bh(&neigh->lock); 1246 if (err >= 0) 1247 err = neigh->ops->queue_xmit(skb); 1248 else { 1249 err = -EINVAL; 1250 kfree_skb(skb); 1251 } 1252 return err; 1253 } 1254 EXPORT_SYMBOL(neigh_connected_output); 1255 1256 static void neigh_proxy_process(unsigned long arg) 1257 { 1258 struct neigh_table *tbl = (struct neigh_table *)arg; 1259 long sched_next = 0; 1260 unsigned long now = jiffies; 1261 struct sk_buff *skb; 1262 1263 spin_lock(&tbl->proxy_queue.lock); 1264 1265 skb = tbl->proxy_queue.next; 1266 1267 while (skb != (struct sk_buff *)&tbl->proxy_queue) { 1268 struct sk_buff *back = skb; 1269 long tdif = NEIGH_CB(back)->sched_next - now; 1270 1271 skb = skb->next; 1272 if (tdif <= 0) { 1273 struct net_device *dev = back->dev; 1274 __skb_unlink(back, &tbl->proxy_queue); 1275 if (tbl->proxy_redo && netif_running(dev)) 1276 tbl->proxy_redo(back); 1277 else 1278 kfree_skb(back); 1279 1280 dev_put(dev); 1281 } else if (!sched_next || tdif < sched_next) 1282 sched_next = tdif; 1283 } 1284 del_timer(&tbl->proxy_timer); 1285 if (sched_next) 1286 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1287 spin_unlock(&tbl->proxy_queue.lock); 1288 } 1289 1290 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1291 struct sk_buff *skb) 1292 { 1293 unsigned long now = jiffies; 1294 unsigned long sched_next = now + (net_random() % p->proxy_delay); 1295 1296 if (tbl->proxy_queue.qlen > p->proxy_qlen) { 1297 kfree_skb(skb); 1298 return; 1299 } 1300 1301 NEIGH_CB(skb)->sched_next = sched_next; 1302 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1303 1304 spin_lock(&tbl->proxy_queue.lock); 1305 if (del_timer(&tbl->proxy_timer)) { 1306 if (time_before(tbl->proxy_timer.expires, sched_next)) 1307 sched_next = tbl->proxy_timer.expires; 1308 } 1309 dst_release(skb->dst); 1310 skb->dst = NULL; 1311 dev_hold(skb->dev); 1312 __skb_queue_tail(&tbl->proxy_queue, skb); 1313 mod_timer(&tbl->proxy_timer, sched_next); 1314 spin_unlock(&tbl->proxy_queue.lock); 1315 } 1316 EXPORT_SYMBOL(pneigh_enqueue); 1317 1318 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl, 1319 struct net *net, int ifindex) 1320 { 1321 struct neigh_parms *p; 1322 1323 for (p = &tbl->parms; p; p = p->next) { 1324 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1325 (!p->dev && !ifindex)) 1326 return p; 1327 } 1328 1329 return NULL; 1330 } 1331 1332 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1333 struct neigh_table *tbl) 1334 { 1335 struct neigh_parms *p, *ref; 1336 struct net *net; 1337 1338 net = dev_net(dev); 1339 ref = lookup_neigh_params(tbl, net, 0); 1340 if (!ref) 1341 return NULL; 1342 1343 p = kmemdup(ref, sizeof(*p), GFP_KERNEL); 1344 if (p) { 1345 p->tbl = tbl; 1346 atomic_set(&p->refcnt, 1); 1347 INIT_RCU_HEAD(&p->rcu_head); 1348 p->reachable_time = 1349 neigh_rand_reach_time(p->base_reachable_time); 1350 1351 if (dev->neigh_setup && dev->neigh_setup(dev, p)) { 1352 kfree(p); 1353 return NULL; 1354 } 1355 1356 dev_hold(dev); 1357 p->dev = dev; 1358 #ifdef CONFIG_NET_NS 1359 p->net = hold_net(net); 1360 #endif 1361 p->sysctl_table = NULL; 1362 write_lock_bh(&tbl->lock); 1363 p->next = tbl->parms.next; 1364 tbl->parms.next = p; 1365 write_unlock_bh(&tbl->lock); 1366 } 1367 return p; 1368 } 1369 EXPORT_SYMBOL(neigh_parms_alloc); 1370 1371 static void neigh_rcu_free_parms(struct rcu_head *head) 1372 { 1373 struct neigh_parms *parms = 1374 container_of(head, struct neigh_parms, rcu_head); 1375 1376 neigh_parms_put(parms); 1377 } 1378 1379 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1380 { 1381 struct neigh_parms **p; 1382 1383 if (!parms || parms == &tbl->parms) 1384 return; 1385 write_lock_bh(&tbl->lock); 1386 for (p = &tbl->parms.next; *p; p = &(*p)->next) { 1387 if (*p == parms) { 1388 *p = parms->next; 1389 parms->dead = 1; 1390 write_unlock_bh(&tbl->lock); 1391 if (parms->dev) 1392 dev_put(parms->dev); 1393 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1394 return; 1395 } 1396 } 1397 write_unlock_bh(&tbl->lock); 1398 NEIGH_PRINTK1("neigh_parms_release: not found\n"); 1399 } 1400 EXPORT_SYMBOL(neigh_parms_release); 1401 1402 static void neigh_parms_destroy(struct neigh_parms *parms) 1403 { 1404 release_net(neigh_parms_net(parms)); 1405 kfree(parms); 1406 } 1407 1408 static struct lock_class_key neigh_table_proxy_queue_class; 1409 1410 void neigh_table_init_no_netlink(struct neigh_table *tbl) 1411 { 1412 unsigned long now = jiffies; 1413 unsigned long phsize; 1414 1415 #ifdef CONFIG_NET_NS 1416 tbl->parms.net = &init_net; 1417 #endif 1418 atomic_set(&tbl->parms.refcnt, 1); 1419 INIT_RCU_HEAD(&tbl->parms.rcu_head); 1420 tbl->parms.reachable_time = 1421 neigh_rand_reach_time(tbl->parms.base_reachable_time); 1422 1423 if (!tbl->kmem_cachep) 1424 tbl->kmem_cachep = 1425 kmem_cache_create(tbl->id, tbl->entry_size, 0, 1426 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1427 NULL); 1428 tbl->stats = alloc_percpu(struct neigh_statistics); 1429 if (!tbl->stats) 1430 panic("cannot create neighbour cache statistics"); 1431 1432 #ifdef CONFIG_PROC_FS 1433 tbl->pde = proc_create_data(tbl->id, 0, init_net.proc_net_stat, 1434 &neigh_stat_seq_fops, tbl); 1435 if (!tbl->pde) 1436 panic("cannot create neighbour proc dir entry"); 1437 #endif 1438 1439 tbl->hash_mask = 1; 1440 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1); 1441 1442 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1443 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1444 1445 if (!tbl->hash_buckets || !tbl->phash_buckets) 1446 panic("cannot allocate neighbour cache hashes"); 1447 1448 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 1449 1450 rwlock_init(&tbl->lock); 1451 setup_timer(&tbl->gc_timer, neigh_periodic_timer, (unsigned long)tbl); 1452 tbl->gc_timer.expires = now + 1; 1453 add_timer(&tbl->gc_timer); 1454 1455 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl); 1456 skb_queue_head_init_class(&tbl->proxy_queue, 1457 &neigh_table_proxy_queue_class); 1458 1459 tbl->last_flush = now; 1460 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1461 } 1462 EXPORT_SYMBOL(neigh_table_init_no_netlink); 1463 1464 void neigh_table_init(struct neigh_table *tbl) 1465 { 1466 struct neigh_table *tmp; 1467 1468 neigh_table_init_no_netlink(tbl); 1469 write_lock(&neigh_tbl_lock); 1470 for (tmp = neigh_tables; tmp; tmp = tmp->next) { 1471 if (tmp->family == tbl->family) 1472 break; 1473 } 1474 tbl->next = neigh_tables; 1475 neigh_tables = tbl; 1476 write_unlock(&neigh_tbl_lock); 1477 1478 if (unlikely(tmp)) { 1479 printk(KERN_ERR "NEIGH: Registering multiple tables for " 1480 "family %d\n", tbl->family); 1481 dump_stack(); 1482 } 1483 } 1484 EXPORT_SYMBOL(neigh_table_init); 1485 1486 int neigh_table_clear(struct neigh_table *tbl) 1487 { 1488 struct neigh_table **tp; 1489 1490 /* It is not clean... Fix it to unload IPv6 module safely */ 1491 del_timer_sync(&tbl->gc_timer); 1492 del_timer_sync(&tbl->proxy_timer); 1493 pneigh_queue_purge(&tbl->proxy_queue); 1494 neigh_ifdown(tbl, NULL); 1495 if (atomic_read(&tbl->entries)) 1496 printk(KERN_CRIT "neighbour leakage\n"); 1497 write_lock(&neigh_tbl_lock); 1498 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) { 1499 if (*tp == tbl) { 1500 *tp = tbl->next; 1501 break; 1502 } 1503 } 1504 write_unlock(&neigh_tbl_lock); 1505 1506 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1); 1507 tbl->hash_buckets = NULL; 1508 1509 kfree(tbl->phash_buckets); 1510 tbl->phash_buckets = NULL; 1511 1512 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1513 1514 free_percpu(tbl->stats); 1515 tbl->stats = NULL; 1516 1517 kmem_cache_destroy(tbl->kmem_cachep); 1518 tbl->kmem_cachep = NULL; 1519 1520 return 0; 1521 } 1522 EXPORT_SYMBOL(neigh_table_clear); 1523 1524 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1525 { 1526 struct net *net = sock_net(skb->sk); 1527 struct ndmsg *ndm; 1528 struct nlattr *dst_attr; 1529 struct neigh_table *tbl; 1530 struct net_device *dev = NULL; 1531 int err = -EINVAL; 1532 1533 if (nlmsg_len(nlh) < sizeof(*ndm)) 1534 goto out; 1535 1536 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1537 if (dst_attr == NULL) 1538 goto out; 1539 1540 ndm = nlmsg_data(nlh); 1541 if (ndm->ndm_ifindex) { 1542 dev = dev_get_by_index(net, ndm->ndm_ifindex); 1543 if (dev == NULL) { 1544 err = -ENODEV; 1545 goto out; 1546 } 1547 } 1548 1549 read_lock(&neigh_tbl_lock); 1550 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1551 struct neighbour *neigh; 1552 1553 if (tbl->family != ndm->ndm_family) 1554 continue; 1555 read_unlock(&neigh_tbl_lock); 1556 1557 if (nla_len(dst_attr) < tbl->key_len) 1558 goto out_dev_put; 1559 1560 if (ndm->ndm_flags & NTF_PROXY) { 1561 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1562 goto out_dev_put; 1563 } 1564 1565 if (dev == NULL) 1566 goto out_dev_put; 1567 1568 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1569 if (neigh == NULL) { 1570 err = -ENOENT; 1571 goto out_dev_put; 1572 } 1573 1574 err = neigh_update(neigh, NULL, NUD_FAILED, 1575 NEIGH_UPDATE_F_OVERRIDE | 1576 NEIGH_UPDATE_F_ADMIN); 1577 neigh_release(neigh); 1578 goto out_dev_put; 1579 } 1580 read_unlock(&neigh_tbl_lock); 1581 err = -EAFNOSUPPORT; 1582 1583 out_dev_put: 1584 if (dev) 1585 dev_put(dev); 1586 out: 1587 return err; 1588 } 1589 1590 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1591 { 1592 struct net *net = sock_net(skb->sk); 1593 struct ndmsg *ndm; 1594 struct nlattr *tb[NDA_MAX+1]; 1595 struct neigh_table *tbl; 1596 struct net_device *dev = NULL; 1597 int err; 1598 1599 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL); 1600 if (err < 0) 1601 goto out; 1602 1603 err = -EINVAL; 1604 if (tb[NDA_DST] == NULL) 1605 goto out; 1606 1607 ndm = nlmsg_data(nlh); 1608 if (ndm->ndm_ifindex) { 1609 dev = dev_get_by_index(net, ndm->ndm_ifindex); 1610 if (dev == NULL) { 1611 err = -ENODEV; 1612 goto out; 1613 } 1614 1615 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) 1616 goto out_dev_put; 1617 } 1618 1619 read_lock(&neigh_tbl_lock); 1620 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1621 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE; 1622 struct neighbour *neigh; 1623 void *dst, *lladdr; 1624 1625 if (tbl->family != ndm->ndm_family) 1626 continue; 1627 read_unlock(&neigh_tbl_lock); 1628 1629 if (nla_len(tb[NDA_DST]) < tbl->key_len) 1630 goto out_dev_put; 1631 dst = nla_data(tb[NDA_DST]); 1632 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1633 1634 if (ndm->ndm_flags & NTF_PROXY) { 1635 struct pneigh_entry *pn; 1636 1637 err = -ENOBUFS; 1638 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1639 if (pn) { 1640 pn->flags = ndm->ndm_flags; 1641 err = 0; 1642 } 1643 goto out_dev_put; 1644 } 1645 1646 if (dev == NULL) 1647 goto out_dev_put; 1648 1649 neigh = neigh_lookup(tbl, dst, dev); 1650 if (neigh == NULL) { 1651 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1652 err = -ENOENT; 1653 goto out_dev_put; 1654 } 1655 1656 neigh = __neigh_lookup_errno(tbl, dst, dev); 1657 if (IS_ERR(neigh)) { 1658 err = PTR_ERR(neigh); 1659 goto out_dev_put; 1660 } 1661 } else { 1662 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1663 err = -EEXIST; 1664 neigh_release(neigh); 1665 goto out_dev_put; 1666 } 1667 1668 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1669 flags &= ~NEIGH_UPDATE_F_OVERRIDE; 1670 } 1671 1672 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags); 1673 neigh_release(neigh); 1674 goto out_dev_put; 1675 } 1676 1677 read_unlock(&neigh_tbl_lock); 1678 err = -EAFNOSUPPORT; 1679 1680 out_dev_put: 1681 if (dev) 1682 dev_put(dev); 1683 out: 1684 return err; 1685 } 1686 1687 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1688 { 1689 struct nlattr *nest; 1690 1691 nest = nla_nest_start(skb, NDTA_PARMS); 1692 if (nest == NULL) 1693 return -ENOBUFS; 1694 1695 if (parms->dev) 1696 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex); 1697 1698 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)); 1699 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len); 1700 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen); 1701 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes); 1702 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes); 1703 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes); 1704 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time); 1705 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME, 1706 parms->base_reachable_time); 1707 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime); 1708 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time); 1709 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time); 1710 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay); 1711 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay); 1712 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime); 1713 1714 return nla_nest_end(skb, nest); 1715 1716 nla_put_failure: 1717 return nla_nest_cancel(skb, nest); 1718 } 1719 1720 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 1721 u32 pid, u32 seq, int type, int flags) 1722 { 1723 struct nlmsghdr *nlh; 1724 struct ndtmsg *ndtmsg; 1725 1726 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1727 if (nlh == NULL) 1728 return -EMSGSIZE; 1729 1730 ndtmsg = nlmsg_data(nlh); 1731 1732 read_lock_bh(&tbl->lock); 1733 ndtmsg->ndtm_family = tbl->family; 1734 ndtmsg->ndtm_pad1 = 0; 1735 ndtmsg->ndtm_pad2 = 0; 1736 1737 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id); 1738 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval); 1739 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1); 1740 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2); 1741 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3); 1742 1743 { 1744 unsigned long now = jiffies; 1745 unsigned int flush_delta = now - tbl->last_flush; 1746 unsigned int rand_delta = now - tbl->last_rand; 1747 1748 struct ndt_config ndc = { 1749 .ndtc_key_len = tbl->key_len, 1750 .ndtc_entry_size = tbl->entry_size, 1751 .ndtc_entries = atomic_read(&tbl->entries), 1752 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 1753 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 1754 .ndtc_hash_rnd = tbl->hash_rnd, 1755 .ndtc_hash_mask = tbl->hash_mask, 1756 .ndtc_hash_chain_gc = tbl->hash_chain_gc, 1757 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 1758 }; 1759 1760 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc); 1761 } 1762 1763 { 1764 int cpu; 1765 struct ndt_stats ndst; 1766 1767 memset(&ndst, 0, sizeof(ndst)); 1768 1769 for_each_possible_cpu(cpu) { 1770 struct neigh_statistics *st; 1771 1772 st = per_cpu_ptr(tbl->stats, cpu); 1773 ndst.ndts_allocs += st->allocs; 1774 ndst.ndts_destroys += st->destroys; 1775 ndst.ndts_hash_grows += st->hash_grows; 1776 ndst.ndts_res_failed += st->res_failed; 1777 ndst.ndts_lookups += st->lookups; 1778 ndst.ndts_hits += st->hits; 1779 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 1780 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 1781 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 1782 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 1783 } 1784 1785 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst); 1786 } 1787 1788 BUG_ON(tbl->parms.dev); 1789 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 1790 goto nla_put_failure; 1791 1792 read_unlock_bh(&tbl->lock); 1793 return nlmsg_end(skb, nlh); 1794 1795 nla_put_failure: 1796 read_unlock_bh(&tbl->lock); 1797 nlmsg_cancel(skb, nlh); 1798 return -EMSGSIZE; 1799 } 1800 1801 static int neightbl_fill_param_info(struct sk_buff *skb, 1802 struct neigh_table *tbl, 1803 struct neigh_parms *parms, 1804 u32 pid, u32 seq, int type, 1805 unsigned int flags) 1806 { 1807 struct ndtmsg *ndtmsg; 1808 struct nlmsghdr *nlh; 1809 1810 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1811 if (nlh == NULL) 1812 return -EMSGSIZE; 1813 1814 ndtmsg = nlmsg_data(nlh); 1815 1816 read_lock_bh(&tbl->lock); 1817 ndtmsg->ndtm_family = tbl->family; 1818 ndtmsg->ndtm_pad1 = 0; 1819 ndtmsg->ndtm_pad2 = 0; 1820 1821 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 1822 neightbl_fill_parms(skb, parms) < 0) 1823 goto errout; 1824 1825 read_unlock_bh(&tbl->lock); 1826 return nlmsg_end(skb, nlh); 1827 errout: 1828 read_unlock_bh(&tbl->lock); 1829 nlmsg_cancel(skb, nlh); 1830 return -EMSGSIZE; 1831 } 1832 1833 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 1834 [NDTA_NAME] = { .type = NLA_STRING }, 1835 [NDTA_THRESH1] = { .type = NLA_U32 }, 1836 [NDTA_THRESH2] = { .type = NLA_U32 }, 1837 [NDTA_THRESH3] = { .type = NLA_U32 }, 1838 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 1839 [NDTA_PARMS] = { .type = NLA_NESTED }, 1840 }; 1841 1842 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 1843 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 1844 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 1845 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 1846 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 1847 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 1848 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 1849 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 1850 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 1851 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 1852 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 1853 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 1854 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 1855 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 1856 }; 1857 1858 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1859 { 1860 struct net *net = sock_net(skb->sk); 1861 struct neigh_table *tbl; 1862 struct ndtmsg *ndtmsg; 1863 struct nlattr *tb[NDTA_MAX+1]; 1864 int err; 1865 1866 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 1867 nl_neightbl_policy); 1868 if (err < 0) 1869 goto errout; 1870 1871 if (tb[NDTA_NAME] == NULL) { 1872 err = -EINVAL; 1873 goto errout; 1874 } 1875 1876 ndtmsg = nlmsg_data(nlh); 1877 read_lock(&neigh_tbl_lock); 1878 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1879 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 1880 continue; 1881 1882 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) 1883 break; 1884 } 1885 1886 if (tbl == NULL) { 1887 err = -ENOENT; 1888 goto errout_locked; 1889 } 1890 1891 /* 1892 * We acquire tbl->lock to be nice to the periodic timers and 1893 * make sure they always see a consistent set of values. 1894 */ 1895 write_lock_bh(&tbl->lock); 1896 1897 if (tb[NDTA_PARMS]) { 1898 struct nlattr *tbp[NDTPA_MAX+1]; 1899 struct neigh_parms *p; 1900 int i, ifindex = 0; 1901 1902 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS], 1903 nl_ntbl_parm_policy); 1904 if (err < 0) 1905 goto errout_tbl_lock; 1906 1907 if (tbp[NDTPA_IFINDEX]) 1908 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 1909 1910 p = lookup_neigh_params(tbl, net, ifindex); 1911 if (p == NULL) { 1912 err = -ENOENT; 1913 goto errout_tbl_lock; 1914 } 1915 1916 for (i = 1; i <= NDTPA_MAX; i++) { 1917 if (tbp[i] == NULL) 1918 continue; 1919 1920 switch (i) { 1921 case NDTPA_QUEUE_LEN: 1922 p->queue_len = nla_get_u32(tbp[i]); 1923 break; 1924 case NDTPA_PROXY_QLEN: 1925 p->proxy_qlen = nla_get_u32(tbp[i]); 1926 break; 1927 case NDTPA_APP_PROBES: 1928 p->app_probes = nla_get_u32(tbp[i]); 1929 break; 1930 case NDTPA_UCAST_PROBES: 1931 p->ucast_probes = nla_get_u32(tbp[i]); 1932 break; 1933 case NDTPA_MCAST_PROBES: 1934 p->mcast_probes = nla_get_u32(tbp[i]); 1935 break; 1936 case NDTPA_BASE_REACHABLE_TIME: 1937 p->base_reachable_time = nla_get_msecs(tbp[i]); 1938 break; 1939 case NDTPA_GC_STALETIME: 1940 p->gc_staletime = nla_get_msecs(tbp[i]); 1941 break; 1942 case NDTPA_DELAY_PROBE_TIME: 1943 p->delay_probe_time = nla_get_msecs(tbp[i]); 1944 break; 1945 case NDTPA_RETRANS_TIME: 1946 p->retrans_time = nla_get_msecs(tbp[i]); 1947 break; 1948 case NDTPA_ANYCAST_DELAY: 1949 p->anycast_delay = nla_get_msecs(tbp[i]); 1950 break; 1951 case NDTPA_PROXY_DELAY: 1952 p->proxy_delay = nla_get_msecs(tbp[i]); 1953 break; 1954 case NDTPA_LOCKTIME: 1955 p->locktime = nla_get_msecs(tbp[i]); 1956 break; 1957 } 1958 } 1959 } 1960 1961 if (tb[NDTA_THRESH1]) 1962 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 1963 1964 if (tb[NDTA_THRESH2]) 1965 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 1966 1967 if (tb[NDTA_THRESH3]) 1968 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 1969 1970 if (tb[NDTA_GC_INTERVAL]) 1971 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 1972 1973 err = 0; 1974 1975 errout_tbl_lock: 1976 write_unlock_bh(&tbl->lock); 1977 errout_locked: 1978 read_unlock(&neigh_tbl_lock); 1979 errout: 1980 return err; 1981 } 1982 1983 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 1984 { 1985 struct net *net = sock_net(skb->sk); 1986 int family, tidx, nidx = 0; 1987 int tbl_skip = cb->args[0]; 1988 int neigh_skip = cb->args[1]; 1989 struct neigh_table *tbl; 1990 1991 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 1992 1993 read_lock(&neigh_tbl_lock); 1994 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) { 1995 struct neigh_parms *p; 1996 1997 if (tidx < tbl_skip || (family && tbl->family != family)) 1998 continue; 1999 2000 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid, 2001 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2002 NLM_F_MULTI) <= 0) 2003 break; 2004 2005 for (nidx = 0, p = tbl->parms.next; p; p = p->next) { 2006 if (!net_eq(neigh_parms_net(p), net)) 2007 continue; 2008 2009 if (nidx++ < neigh_skip) 2010 continue; 2011 2012 if (neightbl_fill_param_info(skb, tbl, p, 2013 NETLINK_CB(cb->skb).pid, 2014 cb->nlh->nlmsg_seq, 2015 RTM_NEWNEIGHTBL, 2016 NLM_F_MULTI) <= 0) 2017 goto out; 2018 } 2019 2020 neigh_skip = 0; 2021 } 2022 out: 2023 read_unlock(&neigh_tbl_lock); 2024 cb->args[0] = tidx; 2025 cb->args[1] = nidx; 2026 2027 return skb->len; 2028 } 2029 2030 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2031 u32 pid, u32 seq, int type, unsigned int flags) 2032 { 2033 unsigned long now = jiffies; 2034 struct nda_cacheinfo ci; 2035 struct nlmsghdr *nlh; 2036 struct ndmsg *ndm; 2037 2038 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2039 if (nlh == NULL) 2040 return -EMSGSIZE; 2041 2042 ndm = nlmsg_data(nlh); 2043 ndm->ndm_family = neigh->ops->family; 2044 ndm->ndm_pad1 = 0; 2045 ndm->ndm_pad2 = 0; 2046 ndm->ndm_flags = neigh->flags; 2047 ndm->ndm_type = neigh->type; 2048 ndm->ndm_ifindex = neigh->dev->ifindex; 2049 2050 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key); 2051 2052 read_lock_bh(&neigh->lock); 2053 ndm->ndm_state = neigh->nud_state; 2054 if ((neigh->nud_state & NUD_VALID) && 2055 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) { 2056 read_unlock_bh(&neigh->lock); 2057 goto nla_put_failure; 2058 } 2059 2060 ci.ndm_used = now - neigh->used; 2061 ci.ndm_confirmed = now - neigh->confirmed; 2062 ci.ndm_updated = now - neigh->updated; 2063 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1; 2064 read_unlock_bh(&neigh->lock); 2065 2066 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes)); 2067 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci); 2068 2069 return nlmsg_end(skb, nlh); 2070 2071 nla_put_failure: 2072 nlmsg_cancel(skb, nlh); 2073 return -EMSGSIZE; 2074 } 2075 2076 static void neigh_update_notify(struct neighbour *neigh) 2077 { 2078 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2079 __neigh_notify(neigh, RTM_NEWNEIGH, 0); 2080 } 2081 2082 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2083 struct netlink_callback *cb) 2084 { 2085 struct net * net = sock_net(skb->sk); 2086 struct neighbour *n; 2087 int rc, h, s_h = cb->args[1]; 2088 int idx, s_idx = idx = cb->args[2]; 2089 2090 read_lock_bh(&tbl->lock); 2091 for (h = 0; h <= tbl->hash_mask; h++) { 2092 if (h < s_h) 2093 continue; 2094 if (h > s_h) 2095 s_idx = 0; 2096 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next) { 2097 int lidx; 2098 if (dev_net(n->dev) != net) 2099 continue; 2100 lidx = idx++; 2101 if (lidx < s_idx) 2102 continue; 2103 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, 2104 cb->nlh->nlmsg_seq, 2105 RTM_NEWNEIGH, 2106 NLM_F_MULTI) <= 0) { 2107 read_unlock_bh(&tbl->lock); 2108 rc = -1; 2109 goto out; 2110 } 2111 } 2112 } 2113 read_unlock_bh(&tbl->lock); 2114 rc = skb->len; 2115 out: 2116 cb->args[1] = h; 2117 cb->args[2] = idx; 2118 return rc; 2119 } 2120 2121 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2122 { 2123 struct neigh_table *tbl; 2124 int t, family, s_t; 2125 2126 read_lock(&neigh_tbl_lock); 2127 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2128 s_t = cb->args[0]; 2129 2130 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) { 2131 if (t < s_t || (family && tbl->family != family)) 2132 continue; 2133 if (t > s_t) 2134 memset(&cb->args[1], 0, sizeof(cb->args) - 2135 sizeof(cb->args[0])); 2136 if (neigh_dump_table(tbl, skb, cb) < 0) 2137 break; 2138 } 2139 read_unlock(&neigh_tbl_lock); 2140 2141 cb->args[0] = t; 2142 return skb->len; 2143 } 2144 2145 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2146 { 2147 int chain; 2148 2149 read_lock_bh(&tbl->lock); 2150 for (chain = 0; chain <= tbl->hash_mask; chain++) { 2151 struct neighbour *n; 2152 2153 for (n = tbl->hash_buckets[chain]; n; n = n->next) 2154 cb(n, cookie); 2155 } 2156 read_unlock_bh(&tbl->lock); 2157 } 2158 EXPORT_SYMBOL(neigh_for_each); 2159 2160 /* The tbl->lock must be held as a writer and BH disabled. */ 2161 void __neigh_for_each_release(struct neigh_table *tbl, 2162 int (*cb)(struct neighbour *)) 2163 { 2164 int chain; 2165 2166 for (chain = 0; chain <= tbl->hash_mask; chain++) { 2167 struct neighbour *n, **np; 2168 2169 np = &tbl->hash_buckets[chain]; 2170 while ((n = *np) != NULL) { 2171 int release; 2172 2173 write_lock(&n->lock); 2174 release = cb(n); 2175 if (release) { 2176 *np = n->next; 2177 n->dead = 1; 2178 } else 2179 np = &n->next; 2180 write_unlock(&n->lock); 2181 if (release) 2182 neigh_cleanup_and_release(n); 2183 } 2184 } 2185 } 2186 EXPORT_SYMBOL(__neigh_for_each_release); 2187 2188 #ifdef CONFIG_PROC_FS 2189 2190 static struct neighbour *neigh_get_first(struct seq_file *seq) 2191 { 2192 struct neigh_seq_state *state = seq->private; 2193 struct net *net = seq_file_net(seq); 2194 struct neigh_table *tbl = state->tbl; 2195 struct neighbour *n = NULL; 2196 int bucket = state->bucket; 2197 2198 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 2199 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) { 2200 n = tbl->hash_buckets[bucket]; 2201 2202 while (n) { 2203 if (!net_eq(dev_net(n->dev), net)) 2204 goto next; 2205 if (state->neigh_sub_iter) { 2206 loff_t fakep = 0; 2207 void *v; 2208 2209 v = state->neigh_sub_iter(state, n, &fakep); 2210 if (!v) 2211 goto next; 2212 } 2213 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2214 break; 2215 if (n->nud_state & ~NUD_NOARP) 2216 break; 2217 next: 2218 n = n->next; 2219 } 2220 2221 if (n) 2222 break; 2223 } 2224 state->bucket = bucket; 2225 2226 return n; 2227 } 2228 2229 static struct neighbour *neigh_get_next(struct seq_file *seq, 2230 struct neighbour *n, 2231 loff_t *pos) 2232 { 2233 struct neigh_seq_state *state = seq->private; 2234 struct net *net = seq_file_net(seq); 2235 struct neigh_table *tbl = state->tbl; 2236 2237 if (state->neigh_sub_iter) { 2238 void *v = state->neigh_sub_iter(state, n, pos); 2239 if (v) 2240 return n; 2241 } 2242 n = n->next; 2243 2244 while (1) { 2245 while (n) { 2246 if (!net_eq(dev_net(n->dev), net)) 2247 goto next; 2248 if (state->neigh_sub_iter) { 2249 void *v = state->neigh_sub_iter(state, n, pos); 2250 if (v) 2251 return n; 2252 goto next; 2253 } 2254 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2255 break; 2256 2257 if (n->nud_state & ~NUD_NOARP) 2258 break; 2259 next: 2260 n = n->next; 2261 } 2262 2263 if (n) 2264 break; 2265 2266 if (++state->bucket > tbl->hash_mask) 2267 break; 2268 2269 n = tbl->hash_buckets[state->bucket]; 2270 } 2271 2272 if (n && pos) 2273 --(*pos); 2274 return n; 2275 } 2276 2277 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 2278 { 2279 struct neighbour *n = neigh_get_first(seq); 2280 2281 if (n) { 2282 while (*pos) { 2283 n = neigh_get_next(seq, n, pos); 2284 if (!n) 2285 break; 2286 } 2287 } 2288 return *pos ? NULL : n; 2289 } 2290 2291 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 2292 { 2293 struct neigh_seq_state *state = seq->private; 2294 struct net *net = seq_file_net(seq); 2295 struct neigh_table *tbl = state->tbl; 2296 struct pneigh_entry *pn = NULL; 2297 int bucket = state->bucket; 2298 2299 state->flags |= NEIGH_SEQ_IS_PNEIGH; 2300 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 2301 pn = tbl->phash_buckets[bucket]; 2302 while (pn && !net_eq(pneigh_net(pn), net)) 2303 pn = pn->next; 2304 if (pn) 2305 break; 2306 } 2307 state->bucket = bucket; 2308 2309 return pn; 2310 } 2311 2312 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 2313 struct pneigh_entry *pn, 2314 loff_t *pos) 2315 { 2316 struct neigh_seq_state *state = seq->private; 2317 struct net *net = seq_file_net(seq); 2318 struct neigh_table *tbl = state->tbl; 2319 2320 pn = pn->next; 2321 while (!pn) { 2322 if (++state->bucket > PNEIGH_HASHMASK) 2323 break; 2324 pn = tbl->phash_buckets[state->bucket]; 2325 while (pn && !net_eq(pneigh_net(pn), net)) 2326 pn = pn->next; 2327 if (pn) 2328 break; 2329 } 2330 2331 if (pn && pos) 2332 --(*pos); 2333 2334 return pn; 2335 } 2336 2337 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 2338 { 2339 struct pneigh_entry *pn = pneigh_get_first(seq); 2340 2341 if (pn) { 2342 while (*pos) { 2343 pn = pneigh_get_next(seq, pn, pos); 2344 if (!pn) 2345 break; 2346 } 2347 } 2348 return *pos ? NULL : pn; 2349 } 2350 2351 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 2352 { 2353 struct neigh_seq_state *state = seq->private; 2354 void *rc; 2355 2356 rc = neigh_get_idx(seq, pos); 2357 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2358 rc = pneigh_get_idx(seq, pos); 2359 2360 return rc; 2361 } 2362 2363 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 2364 __acquires(tbl->lock) 2365 { 2366 struct neigh_seq_state *state = seq->private; 2367 loff_t pos_minus_one; 2368 2369 state->tbl = tbl; 2370 state->bucket = 0; 2371 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 2372 2373 read_lock_bh(&tbl->lock); 2374 2375 pos_minus_one = *pos - 1; 2376 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN; 2377 } 2378 EXPORT_SYMBOL(neigh_seq_start); 2379 2380 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2381 { 2382 struct neigh_seq_state *state; 2383 void *rc; 2384 2385 if (v == SEQ_START_TOKEN) { 2386 rc = neigh_get_idx(seq, pos); 2387 goto out; 2388 } 2389 2390 state = seq->private; 2391 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 2392 rc = neigh_get_next(seq, v, NULL); 2393 if (rc) 2394 goto out; 2395 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2396 rc = pneigh_get_first(seq); 2397 } else { 2398 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 2399 rc = pneigh_get_next(seq, v, NULL); 2400 } 2401 out: 2402 ++(*pos); 2403 return rc; 2404 } 2405 EXPORT_SYMBOL(neigh_seq_next); 2406 2407 void neigh_seq_stop(struct seq_file *seq, void *v) 2408 __releases(tbl->lock) 2409 { 2410 struct neigh_seq_state *state = seq->private; 2411 struct neigh_table *tbl = state->tbl; 2412 2413 read_unlock_bh(&tbl->lock); 2414 } 2415 EXPORT_SYMBOL(neigh_seq_stop); 2416 2417 /* statistics via seq_file */ 2418 2419 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 2420 { 2421 struct proc_dir_entry *pde = seq->private; 2422 struct neigh_table *tbl = pde->data; 2423 int cpu; 2424 2425 if (*pos == 0) 2426 return SEQ_START_TOKEN; 2427 2428 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) { 2429 if (!cpu_possible(cpu)) 2430 continue; 2431 *pos = cpu+1; 2432 return per_cpu_ptr(tbl->stats, cpu); 2433 } 2434 return NULL; 2435 } 2436 2437 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2438 { 2439 struct proc_dir_entry *pde = seq->private; 2440 struct neigh_table *tbl = pde->data; 2441 int cpu; 2442 2443 for (cpu = *pos; cpu < NR_CPUS; ++cpu) { 2444 if (!cpu_possible(cpu)) 2445 continue; 2446 *pos = cpu+1; 2447 return per_cpu_ptr(tbl->stats, cpu); 2448 } 2449 return NULL; 2450 } 2451 2452 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 2453 { 2454 2455 } 2456 2457 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 2458 { 2459 struct proc_dir_entry *pde = seq->private; 2460 struct neigh_table *tbl = pde->data; 2461 struct neigh_statistics *st = v; 2462 2463 if (v == SEQ_START_TOKEN) { 2464 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n"); 2465 return 0; 2466 } 2467 2468 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 2469 "%08lx %08lx %08lx %08lx\n", 2470 atomic_read(&tbl->entries), 2471 2472 st->allocs, 2473 st->destroys, 2474 st->hash_grows, 2475 2476 st->lookups, 2477 st->hits, 2478 2479 st->res_failed, 2480 2481 st->rcv_probes_mcast, 2482 st->rcv_probes_ucast, 2483 2484 st->periodic_gc_runs, 2485 st->forced_gc_runs 2486 ); 2487 2488 return 0; 2489 } 2490 2491 static const struct seq_operations neigh_stat_seq_ops = { 2492 .start = neigh_stat_seq_start, 2493 .next = neigh_stat_seq_next, 2494 .stop = neigh_stat_seq_stop, 2495 .show = neigh_stat_seq_show, 2496 }; 2497 2498 static int neigh_stat_seq_open(struct inode *inode, struct file *file) 2499 { 2500 int ret = seq_open(file, &neigh_stat_seq_ops); 2501 2502 if (!ret) { 2503 struct seq_file *sf = file->private_data; 2504 sf->private = PDE(inode); 2505 } 2506 return ret; 2507 }; 2508 2509 static const struct file_operations neigh_stat_seq_fops = { 2510 .owner = THIS_MODULE, 2511 .open = neigh_stat_seq_open, 2512 .read = seq_read, 2513 .llseek = seq_lseek, 2514 .release = seq_release, 2515 }; 2516 2517 #endif /* CONFIG_PROC_FS */ 2518 2519 static inline size_t neigh_nlmsg_size(void) 2520 { 2521 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2522 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2523 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2524 + nla_total_size(sizeof(struct nda_cacheinfo)) 2525 + nla_total_size(4); /* NDA_PROBES */ 2526 } 2527 2528 static void __neigh_notify(struct neighbour *n, int type, int flags) 2529 { 2530 struct net *net = dev_net(n->dev); 2531 struct sk_buff *skb; 2532 int err = -ENOBUFS; 2533 2534 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 2535 if (skb == NULL) 2536 goto errout; 2537 2538 err = neigh_fill_info(skb, n, 0, 0, type, flags); 2539 if (err < 0) { 2540 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 2541 WARN_ON(err == -EMSGSIZE); 2542 kfree_skb(skb); 2543 goto errout; 2544 } 2545 err = rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 2546 errout: 2547 if (err < 0) 2548 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 2549 } 2550 2551 #ifdef CONFIG_ARPD 2552 void neigh_app_ns(struct neighbour *n) 2553 { 2554 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST); 2555 } 2556 EXPORT_SYMBOL(neigh_app_ns); 2557 #endif /* CONFIG_ARPD */ 2558 2559 #ifdef CONFIG_SYSCTL 2560 2561 static struct neigh_sysctl_table { 2562 struct ctl_table_header *sysctl_header; 2563 struct ctl_table neigh_vars[__NET_NEIGH_MAX]; 2564 char *dev_name; 2565 } neigh_sysctl_template __read_mostly = { 2566 .neigh_vars = { 2567 { 2568 .ctl_name = NET_NEIGH_MCAST_SOLICIT, 2569 .procname = "mcast_solicit", 2570 .maxlen = sizeof(int), 2571 .mode = 0644, 2572 .proc_handler = &proc_dointvec, 2573 }, 2574 { 2575 .ctl_name = NET_NEIGH_UCAST_SOLICIT, 2576 .procname = "ucast_solicit", 2577 .maxlen = sizeof(int), 2578 .mode = 0644, 2579 .proc_handler = &proc_dointvec, 2580 }, 2581 { 2582 .ctl_name = NET_NEIGH_APP_SOLICIT, 2583 .procname = "app_solicit", 2584 .maxlen = sizeof(int), 2585 .mode = 0644, 2586 .proc_handler = &proc_dointvec, 2587 }, 2588 { 2589 .procname = "retrans_time", 2590 .maxlen = sizeof(int), 2591 .mode = 0644, 2592 .proc_handler = &proc_dointvec_userhz_jiffies, 2593 }, 2594 { 2595 .ctl_name = NET_NEIGH_REACHABLE_TIME, 2596 .procname = "base_reachable_time", 2597 .maxlen = sizeof(int), 2598 .mode = 0644, 2599 .proc_handler = &proc_dointvec_jiffies, 2600 .strategy = &sysctl_jiffies, 2601 }, 2602 { 2603 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME, 2604 .procname = "delay_first_probe_time", 2605 .maxlen = sizeof(int), 2606 .mode = 0644, 2607 .proc_handler = &proc_dointvec_jiffies, 2608 .strategy = &sysctl_jiffies, 2609 }, 2610 { 2611 .ctl_name = NET_NEIGH_GC_STALE_TIME, 2612 .procname = "gc_stale_time", 2613 .maxlen = sizeof(int), 2614 .mode = 0644, 2615 .proc_handler = &proc_dointvec_jiffies, 2616 .strategy = &sysctl_jiffies, 2617 }, 2618 { 2619 .ctl_name = NET_NEIGH_UNRES_QLEN, 2620 .procname = "unres_qlen", 2621 .maxlen = sizeof(int), 2622 .mode = 0644, 2623 .proc_handler = &proc_dointvec, 2624 }, 2625 { 2626 .ctl_name = NET_NEIGH_PROXY_QLEN, 2627 .procname = "proxy_qlen", 2628 .maxlen = sizeof(int), 2629 .mode = 0644, 2630 .proc_handler = &proc_dointvec, 2631 }, 2632 { 2633 .procname = "anycast_delay", 2634 .maxlen = sizeof(int), 2635 .mode = 0644, 2636 .proc_handler = &proc_dointvec_userhz_jiffies, 2637 }, 2638 { 2639 .procname = "proxy_delay", 2640 .maxlen = sizeof(int), 2641 .mode = 0644, 2642 .proc_handler = &proc_dointvec_userhz_jiffies, 2643 }, 2644 { 2645 .procname = "locktime", 2646 .maxlen = sizeof(int), 2647 .mode = 0644, 2648 .proc_handler = &proc_dointvec_userhz_jiffies, 2649 }, 2650 { 2651 .ctl_name = NET_NEIGH_RETRANS_TIME_MS, 2652 .procname = "retrans_time_ms", 2653 .maxlen = sizeof(int), 2654 .mode = 0644, 2655 .proc_handler = &proc_dointvec_ms_jiffies, 2656 .strategy = &sysctl_ms_jiffies, 2657 }, 2658 { 2659 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS, 2660 .procname = "base_reachable_time_ms", 2661 .maxlen = sizeof(int), 2662 .mode = 0644, 2663 .proc_handler = &proc_dointvec_ms_jiffies, 2664 .strategy = &sysctl_ms_jiffies, 2665 }, 2666 { 2667 .ctl_name = NET_NEIGH_GC_INTERVAL, 2668 .procname = "gc_interval", 2669 .maxlen = sizeof(int), 2670 .mode = 0644, 2671 .proc_handler = &proc_dointvec_jiffies, 2672 .strategy = &sysctl_jiffies, 2673 }, 2674 { 2675 .ctl_name = NET_NEIGH_GC_THRESH1, 2676 .procname = "gc_thresh1", 2677 .maxlen = sizeof(int), 2678 .mode = 0644, 2679 .proc_handler = &proc_dointvec, 2680 }, 2681 { 2682 .ctl_name = NET_NEIGH_GC_THRESH2, 2683 .procname = "gc_thresh2", 2684 .maxlen = sizeof(int), 2685 .mode = 0644, 2686 .proc_handler = &proc_dointvec, 2687 }, 2688 { 2689 .ctl_name = NET_NEIGH_GC_THRESH3, 2690 .procname = "gc_thresh3", 2691 .maxlen = sizeof(int), 2692 .mode = 0644, 2693 .proc_handler = &proc_dointvec, 2694 }, 2695 {}, 2696 }, 2697 }; 2698 2699 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 2700 int p_id, int pdev_id, char *p_name, 2701 proc_handler *handler, ctl_handler *strategy) 2702 { 2703 struct neigh_sysctl_table *t; 2704 const char *dev_name_source = NULL; 2705 2706 #define NEIGH_CTL_PATH_ROOT 0 2707 #define NEIGH_CTL_PATH_PROTO 1 2708 #define NEIGH_CTL_PATH_NEIGH 2 2709 #define NEIGH_CTL_PATH_DEV 3 2710 2711 struct ctl_path neigh_path[] = { 2712 { .procname = "net", .ctl_name = CTL_NET, }, 2713 { .procname = "proto", .ctl_name = 0, }, 2714 { .procname = "neigh", .ctl_name = 0, }, 2715 { .procname = "default", .ctl_name = NET_PROTO_CONF_DEFAULT, }, 2716 { }, 2717 }; 2718 2719 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 2720 if (!t) 2721 goto err; 2722 2723 t->neigh_vars[0].data = &p->mcast_probes; 2724 t->neigh_vars[1].data = &p->ucast_probes; 2725 t->neigh_vars[2].data = &p->app_probes; 2726 t->neigh_vars[3].data = &p->retrans_time; 2727 t->neigh_vars[4].data = &p->base_reachable_time; 2728 t->neigh_vars[5].data = &p->delay_probe_time; 2729 t->neigh_vars[6].data = &p->gc_staletime; 2730 t->neigh_vars[7].data = &p->queue_len; 2731 t->neigh_vars[8].data = &p->proxy_qlen; 2732 t->neigh_vars[9].data = &p->anycast_delay; 2733 t->neigh_vars[10].data = &p->proxy_delay; 2734 t->neigh_vars[11].data = &p->locktime; 2735 t->neigh_vars[12].data = &p->retrans_time; 2736 t->neigh_vars[13].data = &p->base_reachable_time; 2737 2738 if (dev) { 2739 dev_name_source = dev->name; 2740 neigh_path[NEIGH_CTL_PATH_DEV].ctl_name = dev->ifindex; 2741 /* Terminate the table early */ 2742 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14])); 2743 } else { 2744 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname; 2745 t->neigh_vars[14].data = (int *)(p + 1); 2746 t->neigh_vars[15].data = (int *)(p + 1) + 1; 2747 t->neigh_vars[16].data = (int *)(p + 1) + 2; 2748 t->neigh_vars[17].data = (int *)(p + 1) + 3; 2749 } 2750 2751 2752 if (handler || strategy) { 2753 /* RetransTime */ 2754 t->neigh_vars[3].proc_handler = handler; 2755 t->neigh_vars[3].strategy = strategy; 2756 t->neigh_vars[3].extra1 = dev; 2757 if (!strategy) 2758 t->neigh_vars[3].ctl_name = CTL_UNNUMBERED; 2759 /* ReachableTime */ 2760 t->neigh_vars[4].proc_handler = handler; 2761 t->neigh_vars[4].strategy = strategy; 2762 t->neigh_vars[4].extra1 = dev; 2763 if (!strategy) 2764 t->neigh_vars[4].ctl_name = CTL_UNNUMBERED; 2765 /* RetransTime (in milliseconds)*/ 2766 t->neigh_vars[12].proc_handler = handler; 2767 t->neigh_vars[12].strategy = strategy; 2768 t->neigh_vars[12].extra1 = dev; 2769 if (!strategy) 2770 t->neigh_vars[12].ctl_name = CTL_UNNUMBERED; 2771 /* ReachableTime (in milliseconds) */ 2772 t->neigh_vars[13].proc_handler = handler; 2773 t->neigh_vars[13].strategy = strategy; 2774 t->neigh_vars[13].extra1 = dev; 2775 if (!strategy) 2776 t->neigh_vars[13].ctl_name = CTL_UNNUMBERED; 2777 } 2778 2779 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL); 2780 if (!t->dev_name) 2781 goto free; 2782 2783 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name; 2784 neigh_path[NEIGH_CTL_PATH_NEIGH].ctl_name = pdev_id; 2785 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name; 2786 neigh_path[NEIGH_CTL_PATH_PROTO].ctl_name = p_id; 2787 2788 t->sysctl_header = 2789 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars); 2790 if (!t->sysctl_header) 2791 goto free_procname; 2792 2793 p->sysctl_table = t; 2794 return 0; 2795 2796 free_procname: 2797 kfree(t->dev_name); 2798 free: 2799 kfree(t); 2800 err: 2801 return -ENOBUFS; 2802 } 2803 EXPORT_SYMBOL(neigh_sysctl_register); 2804 2805 void neigh_sysctl_unregister(struct neigh_parms *p) 2806 { 2807 if (p->sysctl_table) { 2808 struct neigh_sysctl_table *t = p->sysctl_table; 2809 p->sysctl_table = NULL; 2810 unregister_sysctl_table(t->sysctl_header); 2811 kfree(t->dev_name); 2812 kfree(t); 2813 } 2814 } 2815 EXPORT_SYMBOL(neigh_sysctl_unregister); 2816 2817 #endif /* CONFIG_SYSCTL */ 2818 2819 static int __init neigh_init(void) 2820 { 2821 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL); 2822 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL); 2823 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info); 2824 2825 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info); 2826 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL); 2827 2828 return 0; 2829 } 2830 2831 subsys_initcall(neigh_init); 2832 2833