xref: /openbmc/linux/net/core/neighbour.c (revision 1da177e4)
1 /*
2  *	Generic address resolution entity
3  *
4  *	Authors:
5  *	Pedro Roque		<roque@di.fc.ul.pt>
6  *	Alexey Kuznetsov	<kuznet@ms2.inr.ac.ru>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Fixes:
14  *	Vitaly E. Lavrov	releasing NULL neighbor in neigh_add.
15  *	Harald Welte		Add neighbour cache statistics like rtstat
16  */
17 
18 #include <linux/config.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/sched.h>
24 #include <linux/netdevice.h>
25 #include <linux/proc_fs.h>
26 #ifdef CONFIG_SYSCTL
27 #include <linux/sysctl.h>
28 #endif
29 #include <linux/times.h>
30 #include <net/neighbour.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <linux/rtnetlink.h>
34 #include <linux/random.h>
35 
36 #define NEIGH_DEBUG 1
37 
38 #define NEIGH_PRINTK(x...) printk(x)
39 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
40 #define NEIGH_PRINTK0 NEIGH_PRINTK
41 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
42 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
43 
44 #if NEIGH_DEBUG >= 1
45 #undef NEIGH_PRINTK1
46 #define NEIGH_PRINTK1 NEIGH_PRINTK
47 #endif
48 #if NEIGH_DEBUG >= 2
49 #undef NEIGH_PRINTK2
50 #define NEIGH_PRINTK2 NEIGH_PRINTK
51 #endif
52 
53 #define PNEIGH_HASHMASK		0xF
54 
55 static void neigh_timer_handler(unsigned long arg);
56 #ifdef CONFIG_ARPD
57 static void neigh_app_notify(struct neighbour *n);
58 #endif
59 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
60 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev);
61 
62 static struct neigh_table *neigh_tables;
63 static struct file_operations neigh_stat_seq_fops;
64 
65 /*
66    Neighbour hash table buckets are protected with rwlock tbl->lock.
67 
68    - All the scans/updates to hash buckets MUST be made under this lock.
69    - NOTHING clever should be made under this lock: no callbacks
70      to protocol backends, no attempts to send something to network.
71      It will result in deadlocks, if backend/driver wants to use neighbour
72      cache.
73    - If the entry requires some non-trivial actions, increase
74      its reference count and release table lock.
75 
76    Neighbour entries are protected:
77    - with reference count.
78    - with rwlock neigh->lock
79 
80    Reference count prevents destruction.
81 
82    neigh->lock mainly serializes ll address data and its validity state.
83    However, the same lock is used to protect another entry fields:
84     - timer
85     - resolution queue
86 
87    Again, nothing clever shall be made under neigh->lock,
88    the most complicated procedure, which we allow is dev->hard_header.
89    It is supposed, that dev->hard_header is simplistic and does
90    not make callbacks to neighbour tables.
91 
92    The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
93    list of neighbour tables. This list is used only in process context,
94  */
95 
96 static DEFINE_RWLOCK(neigh_tbl_lock);
97 
98 static int neigh_blackhole(struct sk_buff *skb)
99 {
100 	kfree_skb(skb);
101 	return -ENETDOWN;
102 }
103 
104 /*
105  * It is random distribution in the interval (1/2)*base...(3/2)*base.
106  * It corresponds to default IPv6 settings and is not overridable,
107  * because it is really reasonable choice.
108  */
109 
110 unsigned long neigh_rand_reach_time(unsigned long base)
111 {
112 	return (base ? (net_random() % base) + (base >> 1) : 0);
113 }
114 
115 
116 static int neigh_forced_gc(struct neigh_table *tbl)
117 {
118 	int shrunk = 0;
119 	int i;
120 
121 	NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
122 
123 	write_lock_bh(&tbl->lock);
124 	for (i = 0; i <= tbl->hash_mask; i++) {
125 		struct neighbour *n, **np;
126 
127 		np = &tbl->hash_buckets[i];
128 		while ((n = *np) != NULL) {
129 			/* Neighbour record may be discarded if:
130 			 * - nobody refers to it.
131 			 * - it is not permanent
132 			 */
133 			write_lock(&n->lock);
134 			if (atomic_read(&n->refcnt) == 1 &&
135 			    !(n->nud_state & NUD_PERMANENT)) {
136 				*np	= n->next;
137 				n->dead = 1;
138 				shrunk	= 1;
139 				write_unlock(&n->lock);
140 				neigh_release(n);
141 				continue;
142 			}
143 			write_unlock(&n->lock);
144 			np = &n->next;
145 		}
146 	}
147 
148 	tbl->last_flush = jiffies;
149 
150 	write_unlock_bh(&tbl->lock);
151 
152 	return shrunk;
153 }
154 
155 static int neigh_del_timer(struct neighbour *n)
156 {
157 	if ((n->nud_state & NUD_IN_TIMER) &&
158 	    del_timer(&n->timer)) {
159 		neigh_release(n);
160 		return 1;
161 	}
162 	return 0;
163 }
164 
165 static void pneigh_queue_purge(struct sk_buff_head *list)
166 {
167 	struct sk_buff *skb;
168 
169 	while ((skb = skb_dequeue(list)) != NULL) {
170 		dev_put(skb->dev);
171 		kfree_skb(skb);
172 	}
173 }
174 
175 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
176 {
177 	int i;
178 
179 	write_lock_bh(&tbl->lock);
180 
181 	for (i=0; i <= tbl->hash_mask; i++) {
182 		struct neighbour *n, **np;
183 
184 		np = &tbl->hash_buckets[i];
185 		while ((n = *np) != NULL) {
186 			if (dev && n->dev != dev) {
187 				np = &n->next;
188 				continue;
189 			}
190 			*np = n->next;
191 			write_lock_bh(&n->lock);
192 			n->dead = 1;
193 			neigh_del_timer(n);
194 			write_unlock_bh(&n->lock);
195 			neigh_release(n);
196 		}
197 	}
198 
199         write_unlock_bh(&tbl->lock);
200 }
201 
202 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
203 {
204 	int i;
205 
206 	write_lock_bh(&tbl->lock);
207 
208 	for (i = 0; i <= tbl->hash_mask; i++) {
209 		struct neighbour *n, **np = &tbl->hash_buckets[i];
210 
211 		while ((n = *np) != NULL) {
212 			if (dev && n->dev != dev) {
213 				np = &n->next;
214 				continue;
215 			}
216 			*np = n->next;
217 			write_lock(&n->lock);
218 			neigh_del_timer(n);
219 			n->dead = 1;
220 
221 			if (atomic_read(&n->refcnt) != 1) {
222 				/* The most unpleasant situation.
223 				   We must destroy neighbour entry,
224 				   but someone still uses it.
225 
226 				   The destroy will be delayed until
227 				   the last user releases us, but
228 				   we must kill timers etc. and move
229 				   it to safe state.
230 				 */
231 				skb_queue_purge(&n->arp_queue);
232 				n->output = neigh_blackhole;
233 				if (n->nud_state & NUD_VALID)
234 					n->nud_state = NUD_NOARP;
235 				else
236 					n->nud_state = NUD_NONE;
237 				NEIGH_PRINTK2("neigh %p is stray.\n", n);
238 			}
239 			write_unlock(&n->lock);
240 			neigh_release(n);
241 		}
242 	}
243 
244 	pneigh_ifdown(tbl, dev);
245 	write_unlock_bh(&tbl->lock);
246 
247 	del_timer_sync(&tbl->proxy_timer);
248 	pneigh_queue_purge(&tbl->proxy_queue);
249 	return 0;
250 }
251 
252 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
253 {
254 	struct neighbour *n = NULL;
255 	unsigned long now = jiffies;
256 	int entries;
257 
258 	entries = atomic_inc_return(&tbl->entries) - 1;
259 	if (entries >= tbl->gc_thresh3 ||
260 	    (entries >= tbl->gc_thresh2 &&
261 	     time_after(now, tbl->last_flush + 5 * HZ))) {
262 		if (!neigh_forced_gc(tbl) &&
263 		    entries >= tbl->gc_thresh3)
264 			goto out_entries;
265 	}
266 
267 	n = kmem_cache_alloc(tbl->kmem_cachep, SLAB_ATOMIC);
268 	if (!n)
269 		goto out_entries;
270 
271 	memset(n, 0, tbl->entry_size);
272 
273 	skb_queue_head_init(&n->arp_queue);
274 	rwlock_init(&n->lock);
275 	n->updated	  = n->used = now;
276 	n->nud_state	  = NUD_NONE;
277 	n->output	  = neigh_blackhole;
278 	n->parms	  = neigh_parms_clone(&tbl->parms);
279 	init_timer(&n->timer);
280 	n->timer.function = neigh_timer_handler;
281 	n->timer.data	  = (unsigned long)n;
282 
283 	NEIGH_CACHE_STAT_INC(tbl, allocs);
284 	n->tbl		  = tbl;
285 	atomic_set(&n->refcnt, 1);
286 	n->dead		  = 1;
287 out:
288 	return n;
289 
290 out_entries:
291 	atomic_dec(&tbl->entries);
292 	goto out;
293 }
294 
295 static struct neighbour **neigh_hash_alloc(unsigned int entries)
296 {
297 	unsigned long size = entries * sizeof(struct neighbour *);
298 	struct neighbour **ret;
299 
300 	if (size <= PAGE_SIZE) {
301 		ret = kmalloc(size, GFP_ATOMIC);
302 	} else {
303 		ret = (struct neighbour **)
304 			__get_free_pages(GFP_ATOMIC, get_order(size));
305 	}
306 	if (ret)
307 		memset(ret, 0, size);
308 
309 	return ret;
310 }
311 
312 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
313 {
314 	unsigned long size = entries * sizeof(struct neighbour *);
315 
316 	if (size <= PAGE_SIZE)
317 		kfree(hash);
318 	else
319 		free_pages((unsigned long)hash, get_order(size));
320 }
321 
322 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
323 {
324 	struct neighbour **new_hash, **old_hash;
325 	unsigned int i, new_hash_mask, old_entries;
326 
327 	NEIGH_CACHE_STAT_INC(tbl, hash_grows);
328 
329 	BUG_ON(new_entries & (new_entries - 1));
330 	new_hash = neigh_hash_alloc(new_entries);
331 	if (!new_hash)
332 		return;
333 
334 	old_entries = tbl->hash_mask + 1;
335 	new_hash_mask = new_entries - 1;
336 	old_hash = tbl->hash_buckets;
337 
338 	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
339 	for (i = 0; i < old_entries; i++) {
340 		struct neighbour *n, *next;
341 
342 		for (n = old_hash[i]; n; n = next) {
343 			unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
344 
345 			hash_val &= new_hash_mask;
346 			next = n->next;
347 
348 			n->next = new_hash[hash_val];
349 			new_hash[hash_val] = n;
350 		}
351 	}
352 	tbl->hash_buckets = new_hash;
353 	tbl->hash_mask = new_hash_mask;
354 
355 	neigh_hash_free(old_hash, old_entries);
356 }
357 
358 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
359 			       struct net_device *dev)
360 {
361 	struct neighbour *n;
362 	int key_len = tbl->key_len;
363 	u32 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
364 
365 	NEIGH_CACHE_STAT_INC(tbl, lookups);
366 
367 	read_lock_bh(&tbl->lock);
368 	for (n = tbl->hash_buckets[hash_val]; n; n = n->next) {
369 		if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
370 			neigh_hold(n);
371 			NEIGH_CACHE_STAT_INC(tbl, hits);
372 			break;
373 		}
374 	}
375 	read_unlock_bh(&tbl->lock);
376 	return n;
377 }
378 
379 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey)
380 {
381 	struct neighbour *n;
382 	int key_len = tbl->key_len;
383 	u32 hash_val = tbl->hash(pkey, NULL) & tbl->hash_mask;
384 
385 	NEIGH_CACHE_STAT_INC(tbl, lookups);
386 
387 	read_lock_bh(&tbl->lock);
388 	for (n = tbl->hash_buckets[hash_val]; n; n = n->next) {
389 		if (!memcmp(n->primary_key, pkey, key_len)) {
390 			neigh_hold(n);
391 			NEIGH_CACHE_STAT_INC(tbl, hits);
392 			break;
393 		}
394 	}
395 	read_unlock_bh(&tbl->lock);
396 	return n;
397 }
398 
399 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
400 			       struct net_device *dev)
401 {
402 	u32 hash_val;
403 	int key_len = tbl->key_len;
404 	int error;
405 	struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
406 
407 	if (!n) {
408 		rc = ERR_PTR(-ENOBUFS);
409 		goto out;
410 	}
411 
412 	memcpy(n->primary_key, pkey, key_len);
413 	n->dev = dev;
414 	dev_hold(dev);
415 
416 	/* Protocol specific setup. */
417 	if (tbl->constructor &&	(error = tbl->constructor(n)) < 0) {
418 		rc = ERR_PTR(error);
419 		goto out_neigh_release;
420 	}
421 
422 	/* Device specific setup. */
423 	if (n->parms->neigh_setup &&
424 	    (error = n->parms->neigh_setup(n)) < 0) {
425 		rc = ERR_PTR(error);
426 		goto out_neigh_release;
427 	}
428 
429 	n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
430 
431 	write_lock_bh(&tbl->lock);
432 
433 	if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
434 		neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
435 
436 	hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
437 
438 	if (n->parms->dead) {
439 		rc = ERR_PTR(-EINVAL);
440 		goto out_tbl_unlock;
441 	}
442 
443 	for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
444 		if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
445 			neigh_hold(n1);
446 			rc = n1;
447 			goto out_tbl_unlock;
448 		}
449 	}
450 
451 	n->next = tbl->hash_buckets[hash_val];
452 	tbl->hash_buckets[hash_val] = n;
453 	n->dead = 0;
454 	neigh_hold(n);
455 	write_unlock_bh(&tbl->lock);
456 	NEIGH_PRINTK2("neigh %p is created.\n", n);
457 	rc = n;
458 out:
459 	return rc;
460 out_tbl_unlock:
461 	write_unlock_bh(&tbl->lock);
462 out_neigh_release:
463 	neigh_release(n);
464 	goto out;
465 }
466 
467 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey,
468 				    struct net_device *dev, int creat)
469 {
470 	struct pneigh_entry *n;
471 	int key_len = tbl->key_len;
472 	u32 hash_val = *(u32 *)(pkey + key_len - 4);
473 
474 	hash_val ^= (hash_val >> 16);
475 	hash_val ^= hash_val >> 8;
476 	hash_val ^= hash_val >> 4;
477 	hash_val &= PNEIGH_HASHMASK;
478 
479 	read_lock_bh(&tbl->lock);
480 
481 	for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
482 		if (!memcmp(n->key, pkey, key_len) &&
483 		    (n->dev == dev || !n->dev)) {
484 			read_unlock_bh(&tbl->lock);
485 			goto out;
486 		}
487 	}
488 	read_unlock_bh(&tbl->lock);
489 	n = NULL;
490 	if (!creat)
491 		goto out;
492 
493 	n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
494 	if (!n)
495 		goto out;
496 
497 	memcpy(n->key, pkey, key_len);
498 	n->dev = dev;
499 	if (dev)
500 		dev_hold(dev);
501 
502 	if (tbl->pconstructor && tbl->pconstructor(n)) {
503 		if (dev)
504 			dev_put(dev);
505 		kfree(n);
506 		n = NULL;
507 		goto out;
508 	}
509 
510 	write_lock_bh(&tbl->lock);
511 	n->next = tbl->phash_buckets[hash_val];
512 	tbl->phash_buckets[hash_val] = n;
513 	write_unlock_bh(&tbl->lock);
514 out:
515 	return n;
516 }
517 
518 
519 int pneigh_delete(struct neigh_table *tbl, const void *pkey,
520 		  struct net_device *dev)
521 {
522 	struct pneigh_entry *n, **np;
523 	int key_len = tbl->key_len;
524 	u32 hash_val = *(u32 *)(pkey + key_len - 4);
525 
526 	hash_val ^= (hash_val >> 16);
527 	hash_val ^= hash_val >> 8;
528 	hash_val ^= hash_val >> 4;
529 	hash_val &= PNEIGH_HASHMASK;
530 
531 	write_lock_bh(&tbl->lock);
532 	for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
533 	     np = &n->next) {
534 		if (!memcmp(n->key, pkey, key_len) && n->dev == dev) {
535 			*np = n->next;
536 			write_unlock_bh(&tbl->lock);
537 			if (tbl->pdestructor)
538 				tbl->pdestructor(n);
539 			if (n->dev)
540 				dev_put(n->dev);
541 			kfree(n);
542 			return 0;
543 		}
544 	}
545 	write_unlock_bh(&tbl->lock);
546 	return -ENOENT;
547 }
548 
549 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
550 {
551 	struct pneigh_entry *n, **np;
552 	u32 h;
553 
554 	for (h = 0; h <= PNEIGH_HASHMASK; h++) {
555 		np = &tbl->phash_buckets[h];
556 		while ((n = *np) != NULL) {
557 			if (!dev || n->dev == dev) {
558 				*np = n->next;
559 				if (tbl->pdestructor)
560 					tbl->pdestructor(n);
561 				if (n->dev)
562 					dev_put(n->dev);
563 				kfree(n);
564 				continue;
565 			}
566 			np = &n->next;
567 		}
568 	}
569 	return -ENOENT;
570 }
571 
572 
573 /*
574  *	neighbour must already be out of the table;
575  *
576  */
577 void neigh_destroy(struct neighbour *neigh)
578 {
579 	struct hh_cache *hh;
580 
581 	NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
582 
583 	if (!neigh->dead) {
584 		printk(KERN_WARNING
585 		       "Destroying alive neighbour %p\n", neigh);
586 		dump_stack();
587 		return;
588 	}
589 
590 	if (neigh_del_timer(neigh))
591 		printk(KERN_WARNING "Impossible event.\n");
592 
593 	while ((hh = neigh->hh) != NULL) {
594 		neigh->hh = hh->hh_next;
595 		hh->hh_next = NULL;
596 		write_lock_bh(&hh->hh_lock);
597 		hh->hh_output = neigh_blackhole;
598 		write_unlock_bh(&hh->hh_lock);
599 		if (atomic_dec_and_test(&hh->hh_refcnt))
600 			kfree(hh);
601 	}
602 
603 	if (neigh->ops && neigh->ops->destructor)
604 		(neigh->ops->destructor)(neigh);
605 
606 	skb_queue_purge(&neigh->arp_queue);
607 
608 	dev_put(neigh->dev);
609 	neigh_parms_put(neigh->parms);
610 
611 	NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
612 
613 	atomic_dec(&neigh->tbl->entries);
614 	kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
615 }
616 
617 /* Neighbour state is suspicious;
618    disable fast path.
619 
620    Called with write_locked neigh.
621  */
622 static void neigh_suspect(struct neighbour *neigh)
623 {
624 	struct hh_cache *hh;
625 
626 	NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
627 
628 	neigh->output = neigh->ops->output;
629 
630 	for (hh = neigh->hh; hh; hh = hh->hh_next)
631 		hh->hh_output = neigh->ops->output;
632 }
633 
634 /* Neighbour state is OK;
635    enable fast path.
636 
637    Called with write_locked neigh.
638  */
639 static void neigh_connect(struct neighbour *neigh)
640 {
641 	struct hh_cache *hh;
642 
643 	NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
644 
645 	neigh->output = neigh->ops->connected_output;
646 
647 	for (hh = neigh->hh; hh; hh = hh->hh_next)
648 		hh->hh_output = neigh->ops->hh_output;
649 }
650 
651 static void neigh_periodic_timer(unsigned long arg)
652 {
653 	struct neigh_table *tbl = (struct neigh_table *)arg;
654 	struct neighbour *n, **np;
655 	unsigned long expire, now = jiffies;
656 
657 	NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
658 
659 	write_lock(&tbl->lock);
660 
661 	/*
662 	 *	periodically recompute ReachableTime from random function
663 	 */
664 
665 	if (time_after(now, tbl->last_rand + 300 * HZ)) {
666 		struct neigh_parms *p;
667 		tbl->last_rand = now;
668 		for (p = &tbl->parms; p; p = p->next)
669 			p->reachable_time =
670 				neigh_rand_reach_time(p->base_reachable_time);
671 	}
672 
673 	np = &tbl->hash_buckets[tbl->hash_chain_gc];
674 	tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
675 
676 	while ((n = *np) != NULL) {
677 		unsigned int state;
678 
679 		write_lock(&n->lock);
680 
681 		state = n->nud_state;
682 		if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
683 			write_unlock(&n->lock);
684 			goto next_elt;
685 		}
686 
687 		if (time_before(n->used, n->confirmed))
688 			n->used = n->confirmed;
689 
690 		if (atomic_read(&n->refcnt) == 1 &&
691 		    (state == NUD_FAILED ||
692 		     time_after(now, n->used + n->parms->gc_staletime))) {
693 			*np = n->next;
694 			n->dead = 1;
695 			write_unlock(&n->lock);
696 			neigh_release(n);
697 			continue;
698 		}
699 		write_unlock(&n->lock);
700 
701 next_elt:
702 		np = &n->next;
703 	}
704 
705  	/* Cycle through all hash buckets every base_reachable_time/2 ticks.
706  	 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
707  	 * base_reachable_time.
708 	 */
709 	expire = tbl->parms.base_reachable_time >> 1;
710 	expire /= (tbl->hash_mask + 1);
711 	if (!expire)
712 		expire = 1;
713 
714  	mod_timer(&tbl->gc_timer, now + expire);
715 
716 	write_unlock(&tbl->lock);
717 }
718 
719 static __inline__ int neigh_max_probes(struct neighbour *n)
720 {
721 	struct neigh_parms *p = n->parms;
722 	return (n->nud_state & NUD_PROBE ?
723 		p->ucast_probes :
724 		p->ucast_probes + p->app_probes + p->mcast_probes);
725 }
726 
727 
728 /* Called when a timer expires for a neighbour entry. */
729 
730 static void neigh_timer_handler(unsigned long arg)
731 {
732 	unsigned long now, next;
733 	struct neighbour *neigh = (struct neighbour *)arg;
734 	unsigned state;
735 	int notify = 0;
736 
737 	write_lock(&neigh->lock);
738 
739 	state = neigh->nud_state;
740 	now = jiffies;
741 	next = now + HZ;
742 
743 	if (!(state & NUD_IN_TIMER)) {
744 #ifndef CONFIG_SMP
745 		printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
746 #endif
747 		goto out;
748 	}
749 
750 	if (state & NUD_REACHABLE) {
751 		if (time_before_eq(now,
752 				   neigh->confirmed + neigh->parms->reachable_time)) {
753 			NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
754 			next = neigh->confirmed + neigh->parms->reachable_time;
755 		} else if (time_before_eq(now,
756 					  neigh->used + neigh->parms->delay_probe_time)) {
757 			NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
758 			neigh->nud_state = NUD_DELAY;
759 			neigh_suspect(neigh);
760 			next = now + neigh->parms->delay_probe_time;
761 		} else {
762 			NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
763 			neigh->nud_state = NUD_STALE;
764 			neigh_suspect(neigh);
765 		}
766 	} else if (state & NUD_DELAY) {
767 		if (time_before_eq(now,
768 				   neigh->confirmed + neigh->parms->delay_probe_time)) {
769 			NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
770 			neigh->nud_state = NUD_REACHABLE;
771 			neigh_connect(neigh);
772 			next = neigh->confirmed + neigh->parms->reachable_time;
773 		} else {
774 			NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
775 			neigh->nud_state = NUD_PROBE;
776 			atomic_set(&neigh->probes, 0);
777 			next = now + neigh->parms->retrans_time;
778 		}
779 	} else {
780 		/* NUD_PROBE|NUD_INCOMPLETE */
781 		next = now + neigh->parms->retrans_time;
782 	}
783 
784 	if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
785 	    atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
786 		struct sk_buff *skb;
787 
788 		neigh->nud_state = NUD_FAILED;
789 		notify = 1;
790 		NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
791 		NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
792 
793 		/* It is very thin place. report_unreachable is very complicated
794 		   routine. Particularly, it can hit the same neighbour entry!
795 
796 		   So that, we try to be accurate and avoid dead loop. --ANK
797 		 */
798 		while (neigh->nud_state == NUD_FAILED &&
799 		       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
800 			write_unlock(&neigh->lock);
801 			neigh->ops->error_report(neigh, skb);
802 			write_lock(&neigh->lock);
803 		}
804 		skb_queue_purge(&neigh->arp_queue);
805 	}
806 
807 	if (neigh->nud_state & NUD_IN_TIMER) {
808 		neigh_hold(neigh);
809 		if (time_before(next, jiffies + HZ/2))
810 			next = jiffies + HZ/2;
811 		neigh->timer.expires = next;
812 		add_timer(&neigh->timer);
813 	}
814 	if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
815 		struct sk_buff *skb = skb_peek(&neigh->arp_queue);
816 		/* keep skb alive even if arp_queue overflows */
817 		if (skb)
818 			skb_get(skb);
819 		write_unlock(&neigh->lock);
820 		neigh->ops->solicit(neigh, skb);
821 		atomic_inc(&neigh->probes);
822 		if (skb)
823 			kfree_skb(skb);
824 	} else {
825 out:
826 		write_unlock(&neigh->lock);
827 	}
828 
829 #ifdef CONFIG_ARPD
830 	if (notify && neigh->parms->app_probes)
831 		neigh_app_notify(neigh);
832 #endif
833 	neigh_release(neigh);
834 }
835 
836 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
837 {
838 	int rc;
839 	unsigned long now;
840 
841 	write_lock_bh(&neigh->lock);
842 
843 	rc = 0;
844 	if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
845 		goto out_unlock_bh;
846 
847 	now = jiffies;
848 
849 	if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
850 		if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
851 			atomic_set(&neigh->probes, neigh->parms->ucast_probes);
852 			neigh->nud_state     = NUD_INCOMPLETE;
853 			neigh_hold(neigh);
854 			neigh->timer.expires = now + 1;
855 			add_timer(&neigh->timer);
856 		} else {
857 			neigh->nud_state = NUD_FAILED;
858 			write_unlock_bh(&neigh->lock);
859 
860 			if (skb)
861 				kfree_skb(skb);
862 			return 1;
863 		}
864 	} else if (neigh->nud_state & NUD_STALE) {
865 		NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
866 		neigh_hold(neigh);
867 		neigh->nud_state = NUD_DELAY;
868 		neigh->timer.expires = jiffies + neigh->parms->delay_probe_time;
869 		add_timer(&neigh->timer);
870 	}
871 
872 	if (neigh->nud_state == NUD_INCOMPLETE) {
873 		if (skb) {
874 			if (skb_queue_len(&neigh->arp_queue) >=
875 			    neigh->parms->queue_len) {
876 				struct sk_buff *buff;
877 				buff = neigh->arp_queue.next;
878 				__skb_unlink(buff, &neigh->arp_queue);
879 				kfree_skb(buff);
880 			}
881 			__skb_queue_tail(&neigh->arp_queue, skb);
882 		}
883 		rc = 1;
884 	}
885 out_unlock_bh:
886 	write_unlock_bh(&neigh->lock);
887 	return rc;
888 }
889 
890 static __inline__ void neigh_update_hhs(struct neighbour *neigh)
891 {
892 	struct hh_cache *hh;
893 	void (*update)(struct hh_cache*, struct net_device*, unsigned char *) =
894 		neigh->dev->header_cache_update;
895 
896 	if (update) {
897 		for (hh = neigh->hh; hh; hh = hh->hh_next) {
898 			write_lock_bh(&hh->hh_lock);
899 			update(hh, neigh->dev, neigh->ha);
900 			write_unlock_bh(&hh->hh_lock);
901 		}
902 	}
903 }
904 
905 
906 
907 /* Generic update routine.
908    -- lladdr is new lladdr or NULL, if it is not supplied.
909    -- new    is new state.
910    -- flags
911 	NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
912 				if it is different.
913 	NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
914 				lladdr instead of overriding it
915 				if it is different.
916 				It also allows to retain current state
917 				if lladdr is unchanged.
918 	NEIGH_UPDATE_F_ADMIN	means that the change is administrative.
919 
920 	NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
921 				NTF_ROUTER flag.
922 	NEIGH_UPDATE_F_ISROUTER	indicates if the neighbour is known as
923 				a router.
924 
925    Caller MUST hold reference count on the entry.
926  */
927 
928 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
929 		 u32 flags)
930 {
931 	u8 old;
932 	int err;
933 #ifdef CONFIG_ARPD
934 	int notify = 0;
935 #endif
936 	struct net_device *dev;
937 	int update_isrouter = 0;
938 
939 	write_lock_bh(&neigh->lock);
940 
941 	dev    = neigh->dev;
942 	old    = neigh->nud_state;
943 	err    = -EPERM;
944 
945 	if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
946 	    (old & (NUD_NOARP | NUD_PERMANENT)))
947 		goto out;
948 
949 	if (!(new & NUD_VALID)) {
950 		neigh_del_timer(neigh);
951 		if (old & NUD_CONNECTED)
952 			neigh_suspect(neigh);
953 		neigh->nud_state = new;
954 		err = 0;
955 #ifdef CONFIG_ARPD
956 		notify = old & NUD_VALID;
957 #endif
958 		goto out;
959 	}
960 
961 	/* Compare new lladdr with cached one */
962 	if (!dev->addr_len) {
963 		/* First case: device needs no address. */
964 		lladdr = neigh->ha;
965 	} else if (lladdr) {
966 		/* The second case: if something is already cached
967 		   and a new address is proposed:
968 		   - compare new & old
969 		   - if they are different, check override flag
970 		 */
971 		if ((old & NUD_VALID) &&
972 		    !memcmp(lladdr, neigh->ha, dev->addr_len))
973 			lladdr = neigh->ha;
974 	} else {
975 		/* No address is supplied; if we know something,
976 		   use it, otherwise discard the request.
977 		 */
978 		err = -EINVAL;
979 		if (!(old & NUD_VALID))
980 			goto out;
981 		lladdr = neigh->ha;
982 	}
983 
984 	if (new & NUD_CONNECTED)
985 		neigh->confirmed = jiffies;
986 	neigh->updated = jiffies;
987 
988 	/* If entry was valid and address is not changed,
989 	   do not change entry state, if new one is STALE.
990 	 */
991 	err = 0;
992 	update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
993 	if (old & NUD_VALID) {
994 		if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
995 			update_isrouter = 0;
996 			if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
997 			    (old & NUD_CONNECTED)) {
998 				lladdr = neigh->ha;
999 				new = NUD_STALE;
1000 			} else
1001 				goto out;
1002 		} else {
1003 			if (lladdr == neigh->ha && new == NUD_STALE &&
1004 			    ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1005 			     (old & NUD_CONNECTED))
1006 			    )
1007 				new = old;
1008 		}
1009 	}
1010 
1011 	if (new != old) {
1012 		neigh_del_timer(neigh);
1013 		if (new & NUD_IN_TIMER) {
1014 			neigh_hold(neigh);
1015 			neigh->timer.expires = jiffies +
1016 						((new & NUD_REACHABLE) ?
1017 						 neigh->parms->reachable_time : 0);
1018 			add_timer(&neigh->timer);
1019 		}
1020 		neigh->nud_state = new;
1021 	}
1022 
1023 	if (lladdr != neigh->ha) {
1024 		memcpy(&neigh->ha, lladdr, dev->addr_len);
1025 		neigh_update_hhs(neigh);
1026 		if (!(new & NUD_CONNECTED))
1027 			neigh->confirmed = jiffies -
1028 				      (neigh->parms->base_reachable_time << 1);
1029 #ifdef CONFIG_ARPD
1030 		notify = 1;
1031 #endif
1032 	}
1033 	if (new == old)
1034 		goto out;
1035 	if (new & NUD_CONNECTED)
1036 		neigh_connect(neigh);
1037 	else
1038 		neigh_suspect(neigh);
1039 	if (!(old & NUD_VALID)) {
1040 		struct sk_buff *skb;
1041 
1042 		/* Again: avoid dead loop if something went wrong */
1043 
1044 		while (neigh->nud_state & NUD_VALID &&
1045 		       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1046 			struct neighbour *n1 = neigh;
1047 			write_unlock_bh(&neigh->lock);
1048 			/* On shaper/eql skb->dst->neighbour != neigh :( */
1049 			if (skb->dst && skb->dst->neighbour)
1050 				n1 = skb->dst->neighbour;
1051 			n1->output(skb);
1052 			write_lock_bh(&neigh->lock);
1053 		}
1054 		skb_queue_purge(&neigh->arp_queue);
1055 	}
1056 out:
1057 	if (update_isrouter) {
1058 		neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1059 			(neigh->flags | NTF_ROUTER) :
1060 			(neigh->flags & ~NTF_ROUTER);
1061 	}
1062 	write_unlock_bh(&neigh->lock);
1063 #ifdef CONFIG_ARPD
1064 	if (notify && neigh->parms->app_probes)
1065 		neigh_app_notify(neigh);
1066 #endif
1067 	return err;
1068 }
1069 
1070 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1071 				 u8 *lladdr, void *saddr,
1072 				 struct net_device *dev)
1073 {
1074 	struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1075 						 lladdr || !dev->addr_len);
1076 	if (neigh)
1077 		neigh_update(neigh, lladdr, NUD_STALE,
1078 			     NEIGH_UPDATE_F_OVERRIDE);
1079 	return neigh;
1080 }
1081 
1082 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1083 			  u16 protocol)
1084 {
1085 	struct hh_cache	*hh;
1086 	struct net_device *dev = dst->dev;
1087 
1088 	for (hh = n->hh; hh; hh = hh->hh_next)
1089 		if (hh->hh_type == protocol)
1090 			break;
1091 
1092 	if (!hh && (hh = kmalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1093 		memset(hh, 0, sizeof(struct hh_cache));
1094 		rwlock_init(&hh->hh_lock);
1095 		hh->hh_type = protocol;
1096 		atomic_set(&hh->hh_refcnt, 0);
1097 		hh->hh_next = NULL;
1098 		if (dev->hard_header_cache(n, hh)) {
1099 			kfree(hh);
1100 			hh = NULL;
1101 		} else {
1102 			atomic_inc(&hh->hh_refcnt);
1103 			hh->hh_next = n->hh;
1104 			n->hh	    = hh;
1105 			if (n->nud_state & NUD_CONNECTED)
1106 				hh->hh_output = n->ops->hh_output;
1107 			else
1108 				hh->hh_output = n->ops->output;
1109 		}
1110 	}
1111 	if (hh)	{
1112 		atomic_inc(&hh->hh_refcnt);
1113 		dst->hh = hh;
1114 	}
1115 }
1116 
1117 /* This function can be used in contexts, where only old dev_queue_xmit
1118    worked, f.e. if you want to override normal output path (eql, shaper),
1119    but resolution is not made yet.
1120  */
1121 
1122 int neigh_compat_output(struct sk_buff *skb)
1123 {
1124 	struct net_device *dev = skb->dev;
1125 
1126 	__skb_pull(skb, skb->nh.raw - skb->data);
1127 
1128 	if (dev->hard_header &&
1129 	    dev->hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1130 		    	     skb->len) < 0 &&
1131 	    dev->rebuild_header(skb))
1132 		return 0;
1133 
1134 	return dev_queue_xmit(skb);
1135 }
1136 
1137 /* Slow and careful. */
1138 
1139 int neigh_resolve_output(struct sk_buff *skb)
1140 {
1141 	struct dst_entry *dst = skb->dst;
1142 	struct neighbour *neigh;
1143 	int rc = 0;
1144 
1145 	if (!dst || !(neigh = dst->neighbour))
1146 		goto discard;
1147 
1148 	__skb_pull(skb, skb->nh.raw - skb->data);
1149 
1150 	if (!neigh_event_send(neigh, skb)) {
1151 		int err;
1152 		struct net_device *dev = neigh->dev;
1153 		if (dev->hard_header_cache && !dst->hh) {
1154 			write_lock_bh(&neigh->lock);
1155 			if (!dst->hh)
1156 				neigh_hh_init(neigh, dst, dst->ops->protocol);
1157 			err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1158 					       neigh->ha, NULL, skb->len);
1159 			write_unlock_bh(&neigh->lock);
1160 		} else {
1161 			read_lock_bh(&neigh->lock);
1162 			err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1163 					       neigh->ha, NULL, skb->len);
1164 			read_unlock_bh(&neigh->lock);
1165 		}
1166 		if (err >= 0)
1167 			rc = neigh->ops->queue_xmit(skb);
1168 		else
1169 			goto out_kfree_skb;
1170 	}
1171 out:
1172 	return rc;
1173 discard:
1174 	NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1175 		      dst, dst ? dst->neighbour : NULL);
1176 out_kfree_skb:
1177 	rc = -EINVAL;
1178 	kfree_skb(skb);
1179 	goto out;
1180 }
1181 
1182 /* As fast as possible without hh cache */
1183 
1184 int neigh_connected_output(struct sk_buff *skb)
1185 {
1186 	int err;
1187 	struct dst_entry *dst = skb->dst;
1188 	struct neighbour *neigh = dst->neighbour;
1189 	struct net_device *dev = neigh->dev;
1190 
1191 	__skb_pull(skb, skb->nh.raw - skb->data);
1192 
1193 	read_lock_bh(&neigh->lock);
1194 	err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1195 			       neigh->ha, NULL, skb->len);
1196 	read_unlock_bh(&neigh->lock);
1197 	if (err >= 0)
1198 		err = neigh->ops->queue_xmit(skb);
1199 	else {
1200 		err = -EINVAL;
1201 		kfree_skb(skb);
1202 	}
1203 	return err;
1204 }
1205 
1206 static void neigh_proxy_process(unsigned long arg)
1207 {
1208 	struct neigh_table *tbl = (struct neigh_table *)arg;
1209 	long sched_next = 0;
1210 	unsigned long now = jiffies;
1211 	struct sk_buff *skb;
1212 
1213 	spin_lock(&tbl->proxy_queue.lock);
1214 
1215 	skb = tbl->proxy_queue.next;
1216 
1217 	while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1218 		struct sk_buff *back = skb;
1219 		long tdif = back->stamp.tv_usec - now;
1220 
1221 		skb = skb->next;
1222 		if (tdif <= 0) {
1223 			struct net_device *dev = back->dev;
1224 			__skb_unlink(back, &tbl->proxy_queue);
1225 			if (tbl->proxy_redo && netif_running(dev))
1226 				tbl->proxy_redo(back);
1227 			else
1228 				kfree_skb(back);
1229 
1230 			dev_put(dev);
1231 		} else if (!sched_next || tdif < sched_next)
1232 			sched_next = tdif;
1233 	}
1234 	del_timer(&tbl->proxy_timer);
1235 	if (sched_next)
1236 		mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1237 	spin_unlock(&tbl->proxy_queue.lock);
1238 }
1239 
1240 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1241 		    struct sk_buff *skb)
1242 {
1243 	unsigned long now = jiffies;
1244 	unsigned long sched_next = now + (net_random() % p->proxy_delay);
1245 
1246 	if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1247 		kfree_skb(skb);
1248 		return;
1249 	}
1250 	skb->stamp.tv_sec  = LOCALLY_ENQUEUED;
1251 	skb->stamp.tv_usec = sched_next;
1252 
1253 	spin_lock(&tbl->proxy_queue.lock);
1254 	if (del_timer(&tbl->proxy_timer)) {
1255 		if (time_before(tbl->proxy_timer.expires, sched_next))
1256 			sched_next = tbl->proxy_timer.expires;
1257 	}
1258 	dst_release(skb->dst);
1259 	skb->dst = NULL;
1260 	dev_hold(skb->dev);
1261 	__skb_queue_tail(&tbl->proxy_queue, skb);
1262 	mod_timer(&tbl->proxy_timer, sched_next);
1263 	spin_unlock(&tbl->proxy_queue.lock);
1264 }
1265 
1266 
1267 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1268 				      struct neigh_table *tbl)
1269 {
1270 	struct neigh_parms *p = kmalloc(sizeof(*p), GFP_KERNEL);
1271 
1272 	if (p) {
1273 		memcpy(p, &tbl->parms, sizeof(*p));
1274 		p->tbl		  = tbl;
1275 		atomic_set(&p->refcnt, 1);
1276 		INIT_RCU_HEAD(&p->rcu_head);
1277 		p->reachable_time =
1278 				neigh_rand_reach_time(p->base_reachable_time);
1279 		if (dev && dev->neigh_setup && dev->neigh_setup(dev, p)) {
1280 			kfree(p);
1281 			return NULL;
1282 		}
1283 		p->sysctl_table = NULL;
1284 		write_lock_bh(&tbl->lock);
1285 		p->next		= tbl->parms.next;
1286 		tbl->parms.next = p;
1287 		write_unlock_bh(&tbl->lock);
1288 	}
1289 	return p;
1290 }
1291 
1292 static void neigh_rcu_free_parms(struct rcu_head *head)
1293 {
1294 	struct neigh_parms *parms =
1295 		container_of(head, struct neigh_parms, rcu_head);
1296 
1297 	neigh_parms_put(parms);
1298 }
1299 
1300 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1301 {
1302 	struct neigh_parms **p;
1303 
1304 	if (!parms || parms == &tbl->parms)
1305 		return;
1306 	write_lock_bh(&tbl->lock);
1307 	for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1308 		if (*p == parms) {
1309 			*p = parms->next;
1310 			parms->dead = 1;
1311 			write_unlock_bh(&tbl->lock);
1312 			call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1313 			return;
1314 		}
1315 	}
1316 	write_unlock_bh(&tbl->lock);
1317 	NEIGH_PRINTK1("neigh_parms_release: not found\n");
1318 }
1319 
1320 void neigh_parms_destroy(struct neigh_parms *parms)
1321 {
1322 	kfree(parms);
1323 }
1324 
1325 
1326 void neigh_table_init(struct neigh_table *tbl)
1327 {
1328 	unsigned long now = jiffies;
1329 	unsigned long phsize;
1330 
1331 	atomic_set(&tbl->parms.refcnt, 1);
1332 	INIT_RCU_HEAD(&tbl->parms.rcu_head);
1333 	tbl->parms.reachable_time =
1334 			  neigh_rand_reach_time(tbl->parms.base_reachable_time);
1335 
1336 	if (!tbl->kmem_cachep)
1337 		tbl->kmem_cachep = kmem_cache_create(tbl->id,
1338 						     tbl->entry_size,
1339 						     0, SLAB_HWCACHE_ALIGN,
1340 						     NULL, NULL);
1341 
1342 	if (!tbl->kmem_cachep)
1343 		panic("cannot create neighbour cache");
1344 
1345 	tbl->stats = alloc_percpu(struct neigh_statistics);
1346 	if (!tbl->stats)
1347 		panic("cannot create neighbour cache statistics");
1348 
1349 #ifdef CONFIG_PROC_FS
1350 	tbl->pde = create_proc_entry(tbl->id, 0, proc_net_stat);
1351 	if (!tbl->pde)
1352 		panic("cannot create neighbour proc dir entry");
1353 	tbl->pde->proc_fops = &neigh_stat_seq_fops;
1354 	tbl->pde->data = tbl;
1355 #endif
1356 
1357 	tbl->hash_mask = 1;
1358 	tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1359 
1360 	phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1361 	tbl->phash_buckets = kmalloc(phsize, GFP_KERNEL);
1362 
1363 	if (!tbl->hash_buckets || !tbl->phash_buckets)
1364 		panic("cannot allocate neighbour cache hashes");
1365 
1366 	memset(tbl->phash_buckets, 0, phsize);
1367 
1368 	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1369 
1370 	rwlock_init(&tbl->lock);
1371 	init_timer(&tbl->gc_timer);
1372 	tbl->gc_timer.data     = (unsigned long)tbl;
1373 	tbl->gc_timer.function = neigh_periodic_timer;
1374 	tbl->gc_timer.expires  = now + 1;
1375 	add_timer(&tbl->gc_timer);
1376 
1377 	init_timer(&tbl->proxy_timer);
1378 	tbl->proxy_timer.data	  = (unsigned long)tbl;
1379 	tbl->proxy_timer.function = neigh_proxy_process;
1380 	skb_queue_head_init(&tbl->proxy_queue);
1381 
1382 	tbl->last_flush = now;
1383 	tbl->last_rand	= now + tbl->parms.reachable_time * 20;
1384 	write_lock(&neigh_tbl_lock);
1385 	tbl->next	= neigh_tables;
1386 	neigh_tables	= tbl;
1387 	write_unlock(&neigh_tbl_lock);
1388 }
1389 
1390 int neigh_table_clear(struct neigh_table *tbl)
1391 {
1392 	struct neigh_table **tp;
1393 
1394 	/* It is not clean... Fix it to unload IPv6 module safely */
1395 	del_timer_sync(&tbl->gc_timer);
1396 	del_timer_sync(&tbl->proxy_timer);
1397 	pneigh_queue_purge(&tbl->proxy_queue);
1398 	neigh_ifdown(tbl, NULL);
1399 	if (atomic_read(&tbl->entries))
1400 		printk(KERN_CRIT "neighbour leakage\n");
1401 	write_lock(&neigh_tbl_lock);
1402 	for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1403 		if (*tp == tbl) {
1404 			*tp = tbl->next;
1405 			break;
1406 		}
1407 	}
1408 	write_unlock(&neigh_tbl_lock);
1409 
1410 	neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1411 	tbl->hash_buckets = NULL;
1412 
1413 	kfree(tbl->phash_buckets);
1414 	tbl->phash_buckets = NULL;
1415 
1416 	return 0;
1417 }
1418 
1419 int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1420 {
1421 	struct ndmsg *ndm = NLMSG_DATA(nlh);
1422 	struct rtattr **nda = arg;
1423 	struct neigh_table *tbl;
1424 	struct net_device *dev = NULL;
1425 	int err = -ENODEV;
1426 
1427 	if (ndm->ndm_ifindex &&
1428 	    (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL)
1429 		goto out;
1430 
1431 	read_lock(&neigh_tbl_lock);
1432 	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1433 		struct rtattr *dst_attr = nda[NDA_DST - 1];
1434 		struct neighbour *n;
1435 
1436 		if (tbl->family != ndm->ndm_family)
1437 			continue;
1438 		read_unlock(&neigh_tbl_lock);
1439 
1440 		err = -EINVAL;
1441 		if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len)
1442 			goto out_dev_put;
1443 
1444 		if (ndm->ndm_flags & NTF_PROXY) {
1445 			err = pneigh_delete(tbl, RTA_DATA(dst_attr), dev);
1446 			goto out_dev_put;
1447 		}
1448 
1449 		if (!dev)
1450 			goto out;
1451 
1452 		n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev);
1453 		if (n) {
1454 			err = neigh_update(n, NULL, NUD_FAILED,
1455 					   NEIGH_UPDATE_F_OVERRIDE|
1456 					   NEIGH_UPDATE_F_ADMIN);
1457 			neigh_release(n);
1458 		}
1459 		goto out_dev_put;
1460 	}
1461 	read_unlock(&neigh_tbl_lock);
1462 	err = -EADDRNOTAVAIL;
1463 out_dev_put:
1464 	if (dev)
1465 		dev_put(dev);
1466 out:
1467 	return err;
1468 }
1469 
1470 int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1471 {
1472 	struct ndmsg *ndm = NLMSG_DATA(nlh);
1473 	struct rtattr **nda = arg;
1474 	struct neigh_table *tbl;
1475 	struct net_device *dev = NULL;
1476 	int err = -ENODEV;
1477 
1478 	if (ndm->ndm_ifindex &&
1479 	    (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL)
1480 		goto out;
1481 
1482 	read_lock(&neigh_tbl_lock);
1483 	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1484 		struct rtattr *lladdr_attr = nda[NDA_LLADDR - 1];
1485 		struct rtattr *dst_attr = nda[NDA_DST - 1];
1486 		int override = 1;
1487 		struct neighbour *n;
1488 
1489 		if (tbl->family != ndm->ndm_family)
1490 			continue;
1491 		read_unlock(&neigh_tbl_lock);
1492 
1493 		err = -EINVAL;
1494 		if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len)
1495 			goto out_dev_put;
1496 
1497 		if (ndm->ndm_flags & NTF_PROXY) {
1498 			err = -ENOBUFS;
1499 			if (pneigh_lookup(tbl, RTA_DATA(dst_attr), dev, 1))
1500 				err = 0;
1501 			goto out_dev_put;
1502 		}
1503 
1504 		err = -EINVAL;
1505 		if (!dev)
1506 			goto out;
1507 		if (lladdr_attr && RTA_PAYLOAD(lladdr_attr) < dev->addr_len)
1508 			goto out_dev_put;
1509 
1510 		n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev);
1511 		if (n) {
1512 			if (nlh->nlmsg_flags & NLM_F_EXCL) {
1513 				err = -EEXIST;
1514 				neigh_release(n);
1515 				goto out_dev_put;
1516 			}
1517 
1518 			override = nlh->nlmsg_flags & NLM_F_REPLACE;
1519 		} else if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1520 			err = -ENOENT;
1521 			goto out_dev_put;
1522 		} else {
1523 			n = __neigh_lookup_errno(tbl, RTA_DATA(dst_attr), dev);
1524 			if (IS_ERR(n)) {
1525 				err = PTR_ERR(n);
1526 				goto out_dev_put;
1527 			}
1528 		}
1529 
1530 		err = neigh_update(n,
1531 				   lladdr_attr ? RTA_DATA(lladdr_attr) : NULL,
1532 				   ndm->ndm_state,
1533 				   (override ? NEIGH_UPDATE_F_OVERRIDE : 0) |
1534 				   NEIGH_UPDATE_F_ADMIN);
1535 
1536 		neigh_release(n);
1537 		goto out_dev_put;
1538 	}
1539 
1540 	read_unlock(&neigh_tbl_lock);
1541 	err = -EADDRNOTAVAIL;
1542 out_dev_put:
1543 	if (dev)
1544 		dev_put(dev);
1545 out:
1546 	return err;
1547 }
1548 
1549 
1550 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *n,
1551 			   u32 pid, u32 seq, int event)
1552 {
1553 	unsigned long now = jiffies;
1554 	unsigned char *b = skb->tail;
1555 	struct nda_cacheinfo ci;
1556 	int locked = 0;
1557 	u32 probes;
1558 	struct nlmsghdr *nlh = NLMSG_PUT(skb, pid, seq, event,
1559 					 sizeof(struct ndmsg));
1560 	struct ndmsg *ndm = NLMSG_DATA(nlh);
1561 
1562 	nlh->nlmsg_flags = pid ? NLM_F_MULTI : 0;
1563 	ndm->ndm_family	 = n->ops->family;
1564 	ndm->ndm_flags	 = n->flags;
1565 	ndm->ndm_type	 = n->type;
1566 	ndm->ndm_ifindex = n->dev->ifindex;
1567 	RTA_PUT(skb, NDA_DST, n->tbl->key_len, n->primary_key);
1568 	read_lock_bh(&n->lock);
1569 	locked		 = 1;
1570 	ndm->ndm_state	 = n->nud_state;
1571 	if (n->nud_state & NUD_VALID)
1572 		RTA_PUT(skb, NDA_LLADDR, n->dev->addr_len, n->ha);
1573 	ci.ndm_used	 = now - n->used;
1574 	ci.ndm_confirmed = now - n->confirmed;
1575 	ci.ndm_updated	 = now - n->updated;
1576 	ci.ndm_refcnt	 = atomic_read(&n->refcnt) - 1;
1577 	probes = atomic_read(&n->probes);
1578 	read_unlock_bh(&n->lock);
1579 	locked		 = 0;
1580 	RTA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
1581 	RTA_PUT(skb, NDA_PROBES, sizeof(probes), &probes);
1582 	nlh->nlmsg_len	 = skb->tail - b;
1583 	return skb->len;
1584 
1585 nlmsg_failure:
1586 rtattr_failure:
1587 	if (locked)
1588 		read_unlock_bh(&n->lock);
1589 	skb_trim(skb, b - skb->data);
1590 	return -1;
1591 }
1592 
1593 
1594 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
1595 			    struct netlink_callback *cb)
1596 {
1597 	struct neighbour *n;
1598 	int rc, h, s_h = cb->args[1];
1599 	int idx, s_idx = idx = cb->args[2];
1600 
1601 	for (h = 0; h <= tbl->hash_mask; h++) {
1602 		if (h < s_h)
1603 			continue;
1604 		if (h > s_h)
1605 			s_idx = 0;
1606 		read_lock_bh(&tbl->lock);
1607 		for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) {
1608 			if (idx < s_idx)
1609 				continue;
1610 			if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
1611 					    cb->nlh->nlmsg_seq,
1612 					    RTM_NEWNEIGH) <= 0) {
1613 				read_unlock_bh(&tbl->lock);
1614 				rc = -1;
1615 				goto out;
1616 			}
1617 		}
1618 		read_unlock_bh(&tbl->lock);
1619 	}
1620 	rc = skb->len;
1621 out:
1622 	cb->args[1] = h;
1623 	cb->args[2] = idx;
1624 	return rc;
1625 }
1626 
1627 int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1628 {
1629 	struct neigh_table *tbl;
1630 	int t, family, s_t;
1631 
1632 	read_lock(&neigh_tbl_lock);
1633 	family = ((struct rtgenmsg *)NLMSG_DATA(cb->nlh))->rtgen_family;
1634 	s_t = cb->args[0];
1635 
1636 	for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
1637 		if (t < s_t || (family && tbl->family != family))
1638 			continue;
1639 		if (t > s_t)
1640 			memset(&cb->args[1], 0, sizeof(cb->args) -
1641 						sizeof(cb->args[0]));
1642 		if (neigh_dump_table(tbl, skb, cb) < 0)
1643 			break;
1644 	}
1645 	read_unlock(&neigh_tbl_lock);
1646 
1647 	cb->args[0] = t;
1648 	return skb->len;
1649 }
1650 
1651 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
1652 {
1653 	int chain;
1654 
1655 	read_lock_bh(&tbl->lock);
1656 	for (chain = 0; chain <= tbl->hash_mask; chain++) {
1657 		struct neighbour *n;
1658 
1659 		for (n = tbl->hash_buckets[chain]; n; n = n->next)
1660 			cb(n, cookie);
1661 	}
1662 	read_unlock_bh(&tbl->lock);
1663 }
1664 EXPORT_SYMBOL(neigh_for_each);
1665 
1666 /* The tbl->lock must be held as a writer and BH disabled. */
1667 void __neigh_for_each_release(struct neigh_table *tbl,
1668 			      int (*cb)(struct neighbour *))
1669 {
1670 	int chain;
1671 
1672 	for (chain = 0; chain <= tbl->hash_mask; chain++) {
1673 		struct neighbour *n, **np;
1674 
1675 		np = &tbl->hash_buckets[chain];
1676 		while ((n = *np) != NULL) {
1677 			int release;
1678 
1679 			write_lock(&n->lock);
1680 			release = cb(n);
1681 			if (release) {
1682 				*np = n->next;
1683 				n->dead = 1;
1684 			} else
1685 				np = &n->next;
1686 			write_unlock(&n->lock);
1687 			if (release)
1688 				neigh_release(n);
1689 		}
1690 	}
1691 }
1692 EXPORT_SYMBOL(__neigh_for_each_release);
1693 
1694 #ifdef CONFIG_PROC_FS
1695 
1696 static struct neighbour *neigh_get_first(struct seq_file *seq)
1697 {
1698 	struct neigh_seq_state *state = seq->private;
1699 	struct neigh_table *tbl = state->tbl;
1700 	struct neighbour *n = NULL;
1701 	int bucket = state->bucket;
1702 
1703 	state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
1704 	for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
1705 		n = tbl->hash_buckets[bucket];
1706 
1707 		while (n) {
1708 			if (state->neigh_sub_iter) {
1709 				loff_t fakep = 0;
1710 				void *v;
1711 
1712 				v = state->neigh_sub_iter(state, n, &fakep);
1713 				if (!v)
1714 					goto next;
1715 			}
1716 			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
1717 				break;
1718 			if (n->nud_state & ~NUD_NOARP)
1719 				break;
1720 		next:
1721 			n = n->next;
1722 		}
1723 
1724 		if (n)
1725 			break;
1726 	}
1727 	state->bucket = bucket;
1728 
1729 	return n;
1730 }
1731 
1732 static struct neighbour *neigh_get_next(struct seq_file *seq,
1733 					struct neighbour *n,
1734 					loff_t *pos)
1735 {
1736 	struct neigh_seq_state *state = seq->private;
1737 	struct neigh_table *tbl = state->tbl;
1738 
1739 	if (state->neigh_sub_iter) {
1740 		void *v = state->neigh_sub_iter(state, n, pos);
1741 		if (v)
1742 			return n;
1743 	}
1744 	n = n->next;
1745 
1746 	while (1) {
1747 		while (n) {
1748 			if (state->neigh_sub_iter) {
1749 				void *v = state->neigh_sub_iter(state, n, pos);
1750 				if (v)
1751 					return n;
1752 				goto next;
1753 			}
1754 			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
1755 				break;
1756 
1757 			if (n->nud_state & ~NUD_NOARP)
1758 				break;
1759 		next:
1760 			n = n->next;
1761 		}
1762 
1763 		if (n)
1764 			break;
1765 
1766 		if (++state->bucket > tbl->hash_mask)
1767 			break;
1768 
1769 		n = tbl->hash_buckets[state->bucket];
1770 	}
1771 
1772 	if (n && pos)
1773 		--(*pos);
1774 	return n;
1775 }
1776 
1777 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
1778 {
1779 	struct neighbour *n = neigh_get_first(seq);
1780 
1781 	if (n) {
1782 		while (*pos) {
1783 			n = neigh_get_next(seq, n, pos);
1784 			if (!n)
1785 				break;
1786 		}
1787 	}
1788 	return *pos ? NULL : n;
1789 }
1790 
1791 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
1792 {
1793 	struct neigh_seq_state *state = seq->private;
1794 	struct neigh_table *tbl = state->tbl;
1795 	struct pneigh_entry *pn = NULL;
1796 	int bucket = state->bucket;
1797 
1798 	state->flags |= NEIGH_SEQ_IS_PNEIGH;
1799 	for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
1800 		pn = tbl->phash_buckets[bucket];
1801 		if (pn)
1802 			break;
1803 	}
1804 	state->bucket = bucket;
1805 
1806 	return pn;
1807 }
1808 
1809 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
1810 					    struct pneigh_entry *pn,
1811 					    loff_t *pos)
1812 {
1813 	struct neigh_seq_state *state = seq->private;
1814 	struct neigh_table *tbl = state->tbl;
1815 
1816 	pn = pn->next;
1817 	while (!pn) {
1818 		if (++state->bucket > PNEIGH_HASHMASK)
1819 			break;
1820 		pn = tbl->phash_buckets[state->bucket];
1821 		if (pn)
1822 			break;
1823 	}
1824 
1825 	if (pn && pos)
1826 		--(*pos);
1827 
1828 	return pn;
1829 }
1830 
1831 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
1832 {
1833 	struct pneigh_entry *pn = pneigh_get_first(seq);
1834 
1835 	if (pn) {
1836 		while (*pos) {
1837 			pn = pneigh_get_next(seq, pn, pos);
1838 			if (!pn)
1839 				break;
1840 		}
1841 	}
1842 	return *pos ? NULL : pn;
1843 }
1844 
1845 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
1846 {
1847 	struct neigh_seq_state *state = seq->private;
1848 	void *rc;
1849 
1850 	rc = neigh_get_idx(seq, pos);
1851 	if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
1852 		rc = pneigh_get_idx(seq, pos);
1853 
1854 	return rc;
1855 }
1856 
1857 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
1858 {
1859 	struct neigh_seq_state *state = seq->private;
1860 	loff_t pos_minus_one;
1861 
1862 	state->tbl = tbl;
1863 	state->bucket = 0;
1864 	state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
1865 
1866 	read_lock_bh(&tbl->lock);
1867 
1868 	pos_minus_one = *pos - 1;
1869 	return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
1870 }
1871 EXPORT_SYMBOL(neigh_seq_start);
1872 
1873 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1874 {
1875 	struct neigh_seq_state *state;
1876 	void *rc;
1877 
1878 	if (v == SEQ_START_TOKEN) {
1879 		rc = neigh_get_idx(seq, pos);
1880 		goto out;
1881 	}
1882 
1883 	state = seq->private;
1884 	if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
1885 		rc = neigh_get_next(seq, v, NULL);
1886 		if (rc)
1887 			goto out;
1888 		if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
1889 			rc = pneigh_get_first(seq);
1890 	} else {
1891 		BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
1892 		rc = pneigh_get_next(seq, v, NULL);
1893 	}
1894 out:
1895 	++(*pos);
1896 	return rc;
1897 }
1898 EXPORT_SYMBOL(neigh_seq_next);
1899 
1900 void neigh_seq_stop(struct seq_file *seq, void *v)
1901 {
1902 	struct neigh_seq_state *state = seq->private;
1903 	struct neigh_table *tbl = state->tbl;
1904 
1905 	read_unlock_bh(&tbl->lock);
1906 }
1907 EXPORT_SYMBOL(neigh_seq_stop);
1908 
1909 /* statistics via seq_file */
1910 
1911 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
1912 {
1913 	struct proc_dir_entry *pde = seq->private;
1914 	struct neigh_table *tbl = pde->data;
1915 	int cpu;
1916 
1917 	if (*pos == 0)
1918 		return SEQ_START_TOKEN;
1919 
1920 	for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
1921 		if (!cpu_possible(cpu))
1922 			continue;
1923 		*pos = cpu+1;
1924 		return per_cpu_ptr(tbl->stats, cpu);
1925 	}
1926 	return NULL;
1927 }
1928 
1929 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1930 {
1931 	struct proc_dir_entry *pde = seq->private;
1932 	struct neigh_table *tbl = pde->data;
1933 	int cpu;
1934 
1935 	for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
1936 		if (!cpu_possible(cpu))
1937 			continue;
1938 		*pos = cpu+1;
1939 		return per_cpu_ptr(tbl->stats, cpu);
1940 	}
1941 	return NULL;
1942 }
1943 
1944 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
1945 {
1946 
1947 }
1948 
1949 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
1950 {
1951 	struct proc_dir_entry *pde = seq->private;
1952 	struct neigh_table *tbl = pde->data;
1953 	struct neigh_statistics *st = v;
1954 
1955 	if (v == SEQ_START_TOKEN) {
1956 		seq_printf(seq, "entries  allocs destroys hash_grows  lookups hits  res_failed  rcv_probes_mcast rcv_probes_ucast  periodic_gc_runs forced_gc_runs forced_gc_goal_miss\n");
1957 		return 0;
1958 	}
1959 
1960 	seq_printf(seq, "%08x  %08lx %08lx %08lx  %08lx %08lx  %08lx  "
1961 			"%08lx %08lx  %08lx %08lx\n",
1962 		   atomic_read(&tbl->entries),
1963 
1964 		   st->allocs,
1965 		   st->destroys,
1966 		   st->hash_grows,
1967 
1968 		   st->lookups,
1969 		   st->hits,
1970 
1971 		   st->res_failed,
1972 
1973 		   st->rcv_probes_mcast,
1974 		   st->rcv_probes_ucast,
1975 
1976 		   st->periodic_gc_runs,
1977 		   st->forced_gc_runs
1978 		   );
1979 
1980 	return 0;
1981 }
1982 
1983 static struct seq_operations neigh_stat_seq_ops = {
1984 	.start	= neigh_stat_seq_start,
1985 	.next	= neigh_stat_seq_next,
1986 	.stop	= neigh_stat_seq_stop,
1987 	.show	= neigh_stat_seq_show,
1988 };
1989 
1990 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
1991 {
1992 	int ret = seq_open(file, &neigh_stat_seq_ops);
1993 
1994 	if (!ret) {
1995 		struct seq_file *sf = file->private_data;
1996 		sf->private = PDE(inode);
1997 	}
1998 	return ret;
1999 };
2000 
2001 static struct file_operations neigh_stat_seq_fops = {
2002 	.owner	 = THIS_MODULE,
2003 	.open 	 = neigh_stat_seq_open,
2004 	.read	 = seq_read,
2005 	.llseek	 = seq_lseek,
2006 	.release = seq_release,
2007 };
2008 
2009 #endif /* CONFIG_PROC_FS */
2010 
2011 #ifdef CONFIG_ARPD
2012 void neigh_app_ns(struct neighbour *n)
2013 {
2014 	struct nlmsghdr  *nlh;
2015 	int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256);
2016 	struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC);
2017 
2018 	if (!skb)
2019 		return;
2020 
2021 	if (neigh_fill_info(skb, n, 0, 0, RTM_GETNEIGH) < 0) {
2022 		kfree_skb(skb);
2023 		return;
2024 	}
2025 	nlh			   = (struct nlmsghdr *)skb->data;
2026 	nlh->nlmsg_flags	   = NLM_F_REQUEST;
2027 	NETLINK_CB(skb).dst_groups = RTMGRP_NEIGH;
2028 	netlink_broadcast(rtnl, skb, 0, RTMGRP_NEIGH, GFP_ATOMIC);
2029 }
2030 
2031 static void neigh_app_notify(struct neighbour *n)
2032 {
2033 	struct nlmsghdr *nlh;
2034 	int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256);
2035 	struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC);
2036 
2037 	if (!skb)
2038 		return;
2039 
2040 	if (neigh_fill_info(skb, n, 0, 0, RTM_NEWNEIGH) < 0) {
2041 		kfree_skb(skb);
2042 		return;
2043 	}
2044 	nlh			   = (struct nlmsghdr *)skb->data;
2045 	NETLINK_CB(skb).dst_groups = RTMGRP_NEIGH;
2046 	netlink_broadcast(rtnl, skb, 0, RTMGRP_NEIGH, GFP_ATOMIC);
2047 }
2048 
2049 #endif /* CONFIG_ARPD */
2050 
2051 #ifdef CONFIG_SYSCTL
2052 
2053 static struct neigh_sysctl_table {
2054 	struct ctl_table_header *sysctl_header;
2055 	ctl_table		neigh_vars[__NET_NEIGH_MAX];
2056 	ctl_table		neigh_dev[2];
2057 	ctl_table		neigh_neigh_dir[2];
2058 	ctl_table		neigh_proto_dir[2];
2059 	ctl_table		neigh_root_dir[2];
2060 } neigh_sysctl_template = {
2061 	.neigh_vars = {
2062 		{
2063 			.ctl_name	= NET_NEIGH_MCAST_SOLICIT,
2064 			.procname	= "mcast_solicit",
2065 			.maxlen		= sizeof(int),
2066 			.mode		= 0644,
2067 			.proc_handler	= &proc_dointvec,
2068 		},
2069 		{
2070 			.ctl_name	= NET_NEIGH_UCAST_SOLICIT,
2071 			.procname	= "ucast_solicit",
2072 			.maxlen		= sizeof(int),
2073 			.mode		= 0644,
2074 			.proc_handler	= &proc_dointvec,
2075 		},
2076 		{
2077 			.ctl_name	= NET_NEIGH_APP_SOLICIT,
2078 			.procname	= "app_solicit",
2079 			.maxlen		= sizeof(int),
2080 			.mode		= 0644,
2081 			.proc_handler	= &proc_dointvec,
2082 		},
2083 		{
2084 			.ctl_name	= NET_NEIGH_RETRANS_TIME,
2085 			.procname	= "retrans_time",
2086 			.maxlen		= sizeof(int),
2087 			.mode		= 0644,
2088 			.proc_handler	= &proc_dointvec_userhz_jiffies,
2089 		},
2090 		{
2091 			.ctl_name	= NET_NEIGH_REACHABLE_TIME,
2092 			.procname	= "base_reachable_time",
2093 			.maxlen		= sizeof(int),
2094 			.mode		= 0644,
2095 			.proc_handler	= &proc_dointvec_jiffies,
2096 			.strategy	= &sysctl_jiffies,
2097 		},
2098 		{
2099 			.ctl_name	= NET_NEIGH_DELAY_PROBE_TIME,
2100 			.procname	= "delay_first_probe_time",
2101 			.maxlen		= sizeof(int),
2102 			.mode		= 0644,
2103 			.proc_handler	= &proc_dointvec_jiffies,
2104 			.strategy	= &sysctl_jiffies,
2105 		},
2106 		{
2107 			.ctl_name	= NET_NEIGH_GC_STALE_TIME,
2108 			.procname	= "gc_stale_time",
2109 			.maxlen		= sizeof(int),
2110 			.mode		= 0644,
2111 			.proc_handler	= &proc_dointvec_jiffies,
2112 			.strategy	= &sysctl_jiffies,
2113 		},
2114 		{
2115 			.ctl_name	= NET_NEIGH_UNRES_QLEN,
2116 			.procname	= "unres_qlen",
2117 			.maxlen		= sizeof(int),
2118 			.mode		= 0644,
2119 			.proc_handler	= &proc_dointvec,
2120 		},
2121 		{
2122 			.ctl_name	= NET_NEIGH_PROXY_QLEN,
2123 			.procname	= "proxy_qlen",
2124 			.maxlen		= sizeof(int),
2125 			.mode		= 0644,
2126 			.proc_handler	= &proc_dointvec,
2127 		},
2128 		{
2129 			.ctl_name	= NET_NEIGH_ANYCAST_DELAY,
2130 			.procname	= "anycast_delay",
2131 			.maxlen		= sizeof(int),
2132 			.mode		= 0644,
2133 			.proc_handler	= &proc_dointvec_userhz_jiffies,
2134 		},
2135 		{
2136 			.ctl_name	= NET_NEIGH_PROXY_DELAY,
2137 			.procname	= "proxy_delay",
2138 			.maxlen		= sizeof(int),
2139 			.mode		= 0644,
2140 			.proc_handler	= &proc_dointvec_userhz_jiffies,
2141 		},
2142 		{
2143 			.ctl_name	= NET_NEIGH_LOCKTIME,
2144 			.procname	= "locktime",
2145 			.maxlen		= sizeof(int),
2146 			.mode		= 0644,
2147 			.proc_handler	= &proc_dointvec_userhz_jiffies,
2148 		},
2149 		{
2150 			.ctl_name	= NET_NEIGH_GC_INTERVAL,
2151 			.procname	= "gc_interval",
2152 			.maxlen		= sizeof(int),
2153 			.mode		= 0644,
2154 			.proc_handler	= &proc_dointvec_jiffies,
2155 			.strategy	= &sysctl_jiffies,
2156 		},
2157 		{
2158 			.ctl_name	= NET_NEIGH_GC_THRESH1,
2159 			.procname	= "gc_thresh1",
2160 			.maxlen		= sizeof(int),
2161 			.mode		= 0644,
2162 			.proc_handler	= &proc_dointvec,
2163 		},
2164 		{
2165 			.ctl_name	= NET_NEIGH_GC_THRESH2,
2166 			.procname	= "gc_thresh2",
2167 			.maxlen		= sizeof(int),
2168 			.mode		= 0644,
2169 			.proc_handler	= &proc_dointvec,
2170 		},
2171 		{
2172 			.ctl_name	= NET_NEIGH_GC_THRESH3,
2173 			.procname	= "gc_thresh3",
2174 			.maxlen		= sizeof(int),
2175 			.mode		= 0644,
2176 			.proc_handler	= &proc_dointvec,
2177 		},
2178 		{
2179 			.ctl_name	= NET_NEIGH_RETRANS_TIME_MS,
2180 			.procname	= "retrans_time_ms",
2181 			.maxlen		= sizeof(int),
2182 			.mode		= 0644,
2183 			.proc_handler	= &proc_dointvec_ms_jiffies,
2184 			.strategy	= &sysctl_ms_jiffies,
2185 		},
2186 		{
2187 			.ctl_name	= NET_NEIGH_REACHABLE_TIME_MS,
2188 			.procname	= "base_reachable_time_ms",
2189 			.maxlen		= sizeof(int),
2190 			.mode		= 0644,
2191 			.proc_handler	= &proc_dointvec_ms_jiffies,
2192 			.strategy	= &sysctl_ms_jiffies,
2193 		},
2194 	},
2195 	.neigh_dev = {
2196 		{
2197 			.ctl_name	= NET_PROTO_CONF_DEFAULT,
2198 			.procname	= "default",
2199 			.mode		= 0555,
2200 		},
2201 	},
2202 	.neigh_neigh_dir = {
2203 		{
2204 			.procname	= "neigh",
2205 			.mode		= 0555,
2206 		},
2207 	},
2208 	.neigh_proto_dir = {
2209 		{
2210 			.mode		= 0555,
2211 		},
2212 	},
2213 	.neigh_root_dir = {
2214 		{
2215 			.ctl_name	= CTL_NET,
2216 			.procname	= "net",
2217 			.mode		= 0555,
2218 		},
2219 	},
2220 };
2221 
2222 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2223 			  int p_id, int pdev_id, char *p_name,
2224 			  proc_handler *handler, ctl_handler *strategy)
2225 {
2226 	struct neigh_sysctl_table *t = kmalloc(sizeof(*t), GFP_KERNEL);
2227 	const char *dev_name_source = NULL;
2228 	char *dev_name = NULL;
2229 	int err = 0;
2230 
2231 	if (!t)
2232 		return -ENOBUFS;
2233 	memcpy(t, &neigh_sysctl_template, sizeof(*t));
2234 	t->neigh_vars[0].data  = &p->mcast_probes;
2235 	t->neigh_vars[1].data  = &p->ucast_probes;
2236 	t->neigh_vars[2].data  = &p->app_probes;
2237 	t->neigh_vars[3].data  = &p->retrans_time;
2238 	t->neigh_vars[4].data  = &p->base_reachable_time;
2239 	t->neigh_vars[5].data  = &p->delay_probe_time;
2240 	t->neigh_vars[6].data  = &p->gc_staletime;
2241 	t->neigh_vars[7].data  = &p->queue_len;
2242 	t->neigh_vars[8].data  = &p->proxy_qlen;
2243 	t->neigh_vars[9].data  = &p->anycast_delay;
2244 	t->neigh_vars[10].data = &p->proxy_delay;
2245 	t->neigh_vars[11].data = &p->locktime;
2246 
2247 	if (dev) {
2248 		dev_name_source = dev->name;
2249 		t->neigh_dev[0].ctl_name = dev->ifindex;
2250 		t->neigh_vars[12].procname = NULL;
2251 		t->neigh_vars[13].procname = NULL;
2252 		t->neigh_vars[14].procname = NULL;
2253 		t->neigh_vars[15].procname = NULL;
2254 	} else {
2255  		dev_name_source = t->neigh_dev[0].procname;
2256 		t->neigh_vars[12].data = (int *)(p + 1);
2257 		t->neigh_vars[13].data = (int *)(p + 1) + 1;
2258 		t->neigh_vars[14].data = (int *)(p + 1) + 2;
2259 		t->neigh_vars[15].data = (int *)(p + 1) + 3;
2260 	}
2261 
2262 	t->neigh_vars[16].data  = &p->retrans_time;
2263 	t->neigh_vars[17].data  = &p->base_reachable_time;
2264 
2265 	if (handler || strategy) {
2266 		/* RetransTime */
2267 		t->neigh_vars[3].proc_handler = handler;
2268 		t->neigh_vars[3].strategy = strategy;
2269 		t->neigh_vars[3].extra1 = dev;
2270 		/* ReachableTime */
2271 		t->neigh_vars[4].proc_handler = handler;
2272 		t->neigh_vars[4].strategy = strategy;
2273 		t->neigh_vars[4].extra1 = dev;
2274 		/* RetransTime (in milliseconds)*/
2275 		t->neigh_vars[16].proc_handler = handler;
2276 		t->neigh_vars[16].strategy = strategy;
2277 		t->neigh_vars[16].extra1 = dev;
2278 		/* ReachableTime (in milliseconds) */
2279 		t->neigh_vars[17].proc_handler = handler;
2280 		t->neigh_vars[17].strategy = strategy;
2281 		t->neigh_vars[17].extra1 = dev;
2282 	}
2283 
2284 	dev_name = net_sysctl_strdup(dev_name_source);
2285 	if (!dev_name) {
2286 		err = -ENOBUFS;
2287 		goto free;
2288 	}
2289 
2290  	t->neigh_dev[0].procname = dev_name;
2291 
2292 	t->neigh_neigh_dir[0].ctl_name = pdev_id;
2293 
2294 	t->neigh_proto_dir[0].procname = p_name;
2295 	t->neigh_proto_dir[0].ctl_name = p_id;
2296 
2297 	t->neigh_dev[0].child	       = t->neigh_vars;
2298 	t->neigh_neigh_dir[0].child    = t->neigh_dev;
2299 	t->neigh_proto_dir[0].child    = t->neigh_neigh_dir;
2300 	t->neigh_root_dir[0].child     = t->neigh_proto_dir;
2301 
2302 	t->sysctl_header = register_sysctl_table(t->neigh_root_dir, 0);
2303 	if (!t->sysctl_header) {
2304 		err = -ENOBUFS;
2305 		goto free_procname;
2306 	}
2307 	p->sysctl_table = t;
2308 	return 0;
2309 
2310 	/* error path */
2311  free_procname:
2312 	kfree(dev_name);
2313  free:
2314 	kfree(t);
2315 
2316 	return err;
2317 }
2318 
2319 void neigh_sysctl_unregister(struct neigh_parms *p)
2320 {
2321 	if (p->sysctl_table) {
2322 		struct neigh_sysctl_table *t = p->sysctl_table;
2323 		p->sysctl_table = NULL;
2324 		unregister_sysctl_table(t->sysctl_header);
2325 		kfree(t->neigh_dev[0].procname);
2326 		kfree(t);
2327 	}
2328 }
2329 
2330 #endif	/* CONFIG_SYSCTL */
2331 
2332 EXPORT_SYMBOL(__neigh_event_send);
2333 EXPORT_SYMBOL(neigh_add);
2334 EXPORT_SYMBOL(neigh_changeaddr);
2335 EXPORT_SYMBOL(neigh_compat_output);
2336 EXPORT_SYMBOL(neigh_connected_output);
2337 EXPORT_SYMBOL(neigh_create);
2338 EXPORT_SYMBOL(neigh_delete);
2339 EXPORT_SYMBOL(neigh_destroy);
2340 EXPORT_SYMBOL(neigh_dump_info);
2341 EXPORT_SYMBOL(neigh_event_ns);
2342 EXPORT_SYMBOL(neigh_ifdown);
2343 EXPORT_SYMBOL(neigh_lookup);
2344 EXPORT_SYMBOL(neigh_lookup_nodev);
2345 EXPORT_SYMBOL(neigh_parms_alloc);
2346 EXPORT_SYMBOL(neigh_parms_release);
2347 EXPORT_SYMBOL(neigh_rand_reach_time);
2348 EXPORT_SYMBOL(neigh_resolve_output);
2349 EXPORT_SYMBOL(neigh_table_clear);
2350 EXPORT_SYMBOL(neigh_table_init);
2351 EXPORT_SYMBOL(neigh_update);
2352 EXPORT_SYMBOL(neigh_update_hhs);
2353 EXPORT_SYMBOL(pneigh_enqueue);
2354 EXPORT_SYMBOL(pneigh_lookup);
2355 
2356 #ifdef CONFIG_ARPD
2357 EXPORT_SYMBOL(neigh_app_ns);
2358 #endif
2359 #ifdef CONFIG_SYSCTL
2360 EXPORT_SYMBOL(neigh_sysctl_register);
2361 EXPORT_SYMBOL(neigh_sysctl_unregister);
2362 #endif
2363