1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic address resolution entity 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 8 * 9 * Fixes: 10 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 11 * Harald Welte Add neighbour cache statistics like rtstat 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/slab.h> 17 #include <linux/kmemleak.h> 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/socket.h> 22 #include <linux/netdevice.h> 23 #include <linux/proc_fs.h> 24 #ifdef CONFIG_SYSCTL 25 #include <linux/sysctl.h> 26 #endif 27 #include <linux/times.h> 28 #include <net/net_namespace.h> 29 #include <net/neighbour.h> 30 #include <net/arp.h> 31 #include <net/dst.h> 32 #include <net/sock.h> 33 #include <net/netevent.h> 34 #include <net/netlink.h> 35 #include <linux/rtnetlink.h> 36 #include <linux/random.h> 37 #include <linux/string.h> 38 #include <linux/log2.h> 39 #include <linux/inetdevice.h> 40 #include <net/addrconf.h> 41 42 #include <trace/events/neigh.h> 43 44 #define NEIGH_DEBUG 1 45 #define neigh_dbg(level, fmt, ...) \ 46 do { \ 47 if (level <= NEIGH_DEBUG) \ 48 pr_debug(fmt, ##__VA_ARGS__); \ 49 } while (0) 50 51 #define PNEIGH_HASHMASK 0xF 52 53 static void neigh_timer_handler(struct timer_list *t); 54 static void __neigh_notify(struct neighbour *n, int type, int flags, 55 u32 pid); 56 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid); 57 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 58 struct net_device *dev); 59 60 #ifdef CONFIG_PROC_FS 61 static const struct seq_operations neigh_stat_seq_ops; 62 #endif 63 64 /* 65 Neighbour hash table buckets are protected with rwlock tbl->lock. 66 67 - All the scans/updates to hash buckets MUST be made under this lock. 68 - NOTHING clever should be made under this lock: no callbacks 69 to protocol backends, no attempts to send something to network. 70 It will result in deadlocks, if backend/driver wants to use neighbour 71 cache. 72 - If the entry requires some non-trivial actions, increase 73 its reference count and release table lock. 74 75 Neighbour entries are protected: 76 - with reference count. 77 - with rwlock neigh->lock 78 79 Reference count prevents destruction. 80 81 neigh->lock mainly serializes ll address data and its validity state. 82 However, the same lock is used to protect another entry fields: 83 - timer 84 - resolution queue 85 86 Again, nothing clever shall be made under neigh->lock, 87 the most complicated procedure, which we allow is dev->hard_header. 88 It is supposed, that dev->hard_header is simplistic and does 89 not make callbacks to neighbour tables. 90 */ 91 92 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) 93 { 94 kfree_skb(skb); 95 return -ENETDOWN; 96 } 97 98 static void neigh_cleanup_and_release(struct neighbour *neigh) 99 { 100 trace_neigh_cleanup_and_release(neigh, 0); 101 __neigh_notify(neigh, RTM_DELNEIGH, 0, 0); 102 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 103 neigh_release(neigh); 104 } 105 106 /* 107 * It is random distribution in the interval (1/2)*base...(3/2)*base. 108 * It corresponds to default IPv6 settings and is not overridable, 109 * because it is really reasonable choice. 110 */ 111 112 unsigned long neigh_rand_reach_time(unsigned long base) 113 { 114 return base ? (prandom_u32() % base) + (base >> 1) : 0; 115 } 116 EXPORT_SYMBOL(neigh_rand_reach_time); 117 118 static void neigh_mark_dead(struct neighbour *n) 119 { 120 n->dead = 1; 121 if (!list_empty(&n->gc_list)) { 122 list_del_init(&n->gc_list); 123 atomic_dec(&n->tbl->gc_entries); 124 } 125 } 126 127 static void neigh_update_gc_list(struct neighbour *n) 128 { 129 bool on_gc_list, exempt_from_gc; 130 131 write_lock_bh(&n->tbl->lock); 132 write_lock(&n->lock); 133 134 if (n->dead) 135 goto out; 136 137 /* remove from the gc list if new state is permanent or if neighbor 138 * is externally learned; otherwise entry should be on the gc list 139 */ 140 exempt_from_gc = n->nud_state & NUD_PERMANENT || 141 n->flags & NTF_EXT_LEARNED; 142 on_gc_list = !list_empty(&n->gc_list); 143 144 if (exempt_from_gc && on_gc_list) { 145 list_del_init(&n->gc_list); 146 atomic_dec(&n->tbl->gc_entries); 147 } else if (!exempt_from_gc && !on_gc_list) { 148 /* add entries to the tail; cleaning removes from the front */ 149 list_add_tail(&n->gc_list, &n->tbl->gc_list); 150 atomic_inc(&n->tbl->gc_entries); 151 } 152 153 out: 154 write_unlock(&n->lock); 155 write_unlock_bh(&n->tbl->lock); 156 } 157 158 static bool neigh_update_ext_learned(struct neighbour *neigh, u32 flags, 159 int *notify) 160 { 161 bool rc = false; 162 u8 ndm_flags; 163 164 if (!(flags & NEIGH_UPDATE_F_ADMIN)) 165 return rc; 166 167 ndm_flags = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0; 168 if ((neigh->flags ^ ndm_flags) & NTF_EXT_LEARNED) { 169 if (ndm_flags & NTF_EXT_LEARNED) 170 neigh->flags |= NTF_EXT_LEARNED; 171 else 172 neigh->flags &= ~NTF_EXT_LEARNED; 173 rc = true; 174 *notify = 1; 175 } 176 177 return rc; 178 } 179 180 static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np, 181 struct neigh_table *tbl) 182 { 183 bool retval = false; 184 185 write_lock(&n->lock); 186 if (refcount_read(&n->refcnt) == 1) { 187 struct neighbour *neigh; 188 189 neigh = rcu_dereference_protected(n->next, 190 lockdep_is_held(&tbl->lock)); 191 rcu_assign_pointer(*np, neigh); 192 neigh_mark_dead(n); 193 retval = true; 194 } 195 write_unlock(&n->lock); 196 if (retval) 197 neigh_cleanup_and_release(n); 198 return retval; 199 } 200 201 bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl) 202 { 203 struct neigh_hash_table *nht; 204 void *pkey = ndel->primary_key; 205 u32 hash_val; 206 struct neighbour *n; 207 struct neighbour __rcu **np; 208 209 nht = rcu_dereference_protected(tbl->nht, 210 lockdep_is_held(&tbl->lock)); 211 hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd); 212 hash_val = hash_val >> (32 - nht->hash_shift); 213 214 np = &nht->hash_buckets[hash_val]; 215 while ((n = rcu_dereference_protected(*np, 216 lockdep_is_held(&tbl->lock)))) { 217 if (n == ndel) 218 return neigh_del(n, np, tbl); 219 np = &n->next; 220 } 221 return false; 222 } 223 224 static int neigh_forced_gc(struct neigh_table *tbl) 225 { 226 int max_clean = atomic_read(&tbl->gc_entries) - tbl->gc_thresh2; 227 unsigned long tref = jiffies - 5 * HZ; 228 struct neighbour *n, *tmp; 229 int shrunk = 0; 230 231 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 232 233 write_lock_bh(&tbl->lock); 234 235 list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) { 236 if (refcount_read(&n->refcnt) == 1) { 237 bool remove = false; 238 239 write_lock(&n->lock); 240 if ((n->nud_state == NUD_FAILED) || 241 (n->nud_state == NUD_NOARP) || 242 (tbl->is_multicast && 243 tbl->is_multicast(n->primary_key)) || 244 time_after(tref, n->updated)) 245 remove = true; 246 write_unlock(&n->lock); 247 248 if (remove && neigh_remove_one(n, tbl)) 249 shrunk++; 250 if (shrunk >= max_clean) 251 break; 252 } 253 } 254 255 tbl->last_flush = jiffies; 256 257 write_unlock_bh(&tbl->lock); 258 259 return shrunk; 260 } 261 262 static void neigh_add_timer(struct neighbour *n, unsigned long when) 263 { 264 neigh_hold(n); 265 if (unlikely(mod_timer(&n->timer, when))) { 266 printk("NEIGH: BUG, double timer add, state is %x\n", 267 n->nud_state); 268 dump_stack(); 269 } 270 } 271 272 static int neigh_del_timer(struct neighbour *n) 273 { 274 if ((n->nud_state & NUD_IN_TIMER) && 275 del_timer(&n->timer)) { 276 neigh_release(n); 277 return 1; 278 } 279 return 0; 280 } 281 282 static void pneigh_queue_purge(struct sk_buff_head *list) 283 { 284 struct sk_buff *skb; 285 286 while ((skb = skb_dequeue(list)) != NULL) { 287 dev_put(skb->dev); 288 kfree_skb(skb); 289 } 290 } 291 292 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev, 293 bool skip_perm) 294 { 295 int i; 296 struct neigh_hash_table *nht; 297 298 nht = rcu_dereference_protected(tbl->nht, 299 lockdep_is_held(&tbl->lock)); 300 301 for (i = 0; i < (1 << nht->hash_shift); i++) { 302 struct neighbour *n; 303 struct neighbour __rcu **np = &nht->hash_buckets[i]; 304 305 while ((n = rcu_dereference_protected(*np, 306 lockdep_is_held(&tbl->lock))) != NULL) { 307 if (dev && n->dev != dev) { 308 np = &n->next; 309 continue; 310 } 311 if (skip_perm && n->nud_state & NUD_PERMANENT) { 312 np = &n->next; 313 continue; 314 } 315 rcu_assign_pointer(*np, 316 rcu_dereference_protected(n->next, 317 lockdep_is_held(&tbl->lock))); 318 write_lock(&n->lock); 319 neigh_del_timer(n); 320 neigh_mark_dead(n); 321 if (refcount_read(&n->refcnt) != 1) { 322 /* The most unpleasant situation. 323 We must destroy neighbour entry, 324 but someone still uses it. 325 326 The destroy will be delayed until 327 the last user releases us, but 328 we must kill timers etc. and move 329 it to safe state. 330 */ 331 __skb_queue_purge(&n->arp_queue); 332 n->arp_queue_len_bytes = 0; 333 n->output = neigh_blackhole; 334 if (n->nud_state & NUD_VALID) 335 n->nud_state = NUD_NOARP; 336 else 337 n->nud_state = NUD_NONE; 338 neigh_dbg(2, "neigh %p is stray\n", n); 339 } 340 write_unlock(&n->lock); 341 neigh_cleanup_and_release(n); 342 } 343 } 344 } 345 346 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 347 { 348 write_lock_bh(&tbl->lock); 349 neigh_flush_dev(tbl, dev, false); 350 write_unlock_bh(&tbl->lock); 351 } 352 EXPORT_SYMBOL(neigh_changeaddr); 353 354 static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev, 355 bool skip_perm) 356 { 357 write_lock_bh(&tbl->lock); 358 neigh_flush_dev(tbl, dev, skip_perm); 359 pneigh_ifdown_and_unlock(tbl, dev); 360 361 del_timer_sync(&tbl->proxy_timer); 362 pneigh_queue_purge(&tbl->proxy_queue); 363 return 0; 364 } 365 366 int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev) 367 { 368 __neigh_ifdown(tbl, dev, true); 369 return 0; 370 } 371 EXPORT_SYMBOL(neigh_carrier_down); 372 373 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 374 { 375 __neigh_ifdown(tbl, dev, false); 376 return 0; 377 } 378 EXPORT_SYMBOL(neigh_ifdown); 379 380 static struct neighbour *neigh_alloc(struct neigh_table *tbl, 381 struct net_device *dev, 382 bool exempt_from_gc) 383 { 384 struct neighbour *n = NULL; 385 unsigned long now = jiffies; 386 int entries; 387 388 if (exempt_from_gc) 389 goto do_alloc; 390 391 entries = atomic_inc_return(&tbl->gc_entries) - 1; 392 if (entries >= tbl->gc_thresh3 || 393 (entries >= tbl->gc_thresh2 && 394 time_after(now, tbl->last_flush + 5 * HZ))) { 395 if (!neigh_forced_gc(tbl) && 396 entries >= tbl->gc_thresh3) { 397 net_info_ratelimited("%s: neighbor table overflow!\n", 398 tbl->id); 399 NEIGH_CACHE_STAT_INC(tbl, table_fulls); 400 goto out_entries; 401 } 402 } 403 404 do_alloc: 405 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC); 406 if (!n) 407 goto out_entries; 408 409 __skb_queue_head_init(&n->arp_queue); 410 rwlock_init(&n->lock); 411 seqlock_init(&n->ha_lock); 412 n->updated = n->used = now; 413 n->nud_state = NUD_NONE; 414 n->output = neigh_blackhole; 415 seqlock_init(&n->hh.hh_lock); 416 n->parms = neigh_parms_clone(&tbl->parms); 417 timer_setup(&n->timer, neigh_timer_handler, 0); 418 419 NEIGH_CACHE_STAT_INC(tbl, allocs); 420 n->tbl = tbl; 421 refcount_set(&n->refcnt, 1); 422 n->dead = 1; 423 INIT_LIST_HEAD(&n->gc_list); 424 425 atomic_inc(&tbl->entries); 426 out: 427 return n; 428 429 out_entries: 430 if (!exempt_from_gc) 431 atomic_dec(&tbl->gc_entries); 432 goto out; 433 } 434 435 static void neigh_get_hash_rnd(u32 *x) 436 { 437 *x = get_random_u32() | 1; 438 } 439 440 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) 441 { 442 size_t size = (1 << shift) * sizeof(struct neighbour *); 443 struct neigh_hash_table *ret; 444 struct neighbour __rcu **buckets; 445 int i; 446 447 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 448 if (!ret) 449 return NULL; 450 if (size <= PAGE_SIZE) { 451 buckets = kzalloc(size, GFP_ATOMIC); 452 } else { 453 buckets = (struct neighbour __rcu **) 454 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 455 get_order(size)); 456 kmemleak_alloc(buckets, size, 1, GFP_ATOMIC); 457 } 458 if (!buckets) { 459 kfree(ret); 460 return NULL; 461 } 462 ret->hash_buckets = buckets; 463 ret->hash_shift = shift; 464 for (i = 0; i < NEIGH_NUM_HASH_RND; i++) 465 neigh_get_hash_rnd(&ret->hash_rnd[i]); 466 return ret; 467 } 468 469 static void neigh_hash_free_rcu(struct rcu_head *head) 470 { 471 struct neigh_hash_table *nht = container_of(head, 472 struct neigh_hash_table, 473 rcu); 474 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); 475 struct neighbour __rcu **buckets = nht->hash_buckets; 476 477 if (size <= PAGE_SIZE) { 478 kfree(buckets); 479 } else { 480 kmemleak_free(buckets); 481 free_pages((unsigned long)buckets, get_order(size)); 482 } 483 kfree(nht); 484 } 485 486 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, 487 unsigned long new_shift) 488 { 489 unsigned int i, hash; 490 struct neigh_hash_table *new_nht, *old_nht; 491 492 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 493 494 old_nht = rcu_dereference_protected(tbl->nht, 495 lockdep_is_held(&tbl->lock)); 496 new_nht = neigh_hash_alloc(new_shift); 497 if (!new_nht) 498 return old_nht; 499 500 for (i = 0; i < (1 << old_nht->hash_shift); i++) { 501 struct neighbour *n, *next; 502 503 for (n = rcu_dereference_protected(old_nht->hash_buckets[i], 504 lockdep_is_held(&tbl->lock)); 505 n != NULL; 506 n = next) { 507 hash = tbl->hash(n->primary_key, n->dev, 508 new_nht->hash_rnd); 509 510 hash >>= (32 - new_nht->hash_shift); 511 next = rcu_dereference_protected(n->next, 512 lockdep_is_held(&tbl->lock)); 513 514 rcu_assign_pointer(n->next, 515 rcu_dereference_protected( 516 new_nht->hash_buckets[hash], 517 lockdep_is_held(&tbl->lock))); 518 rcu_assign_pointer(new_nht->hash_buckets[hash], n); 519 } 520 } 521 522 rcu_assign_pointer(tbl->nht, new_nht); 523 call_rcu(&old_nht->rcu, neigh_hash_free_rcu); 524 return new_nht; 525 } 526 527 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 528 struct net_device *dev) 529 { 530 struct neighbour *n; 531 532 NEIGH_CACHE_STAT_INC(tbl, lookups); 533 534 rcu_read_lock_bh(); 535 n = __neigh_lookup_noref(tbl, pkey, dev); 536 if (n) { 537 if (!refcount_inc_not_zero(&n->refcnt)) 538 n = NULL; 539 NEIGH_CACHE_STAT_INC(tbl, hits); 540 } 541 542 rcu_read_unlock_bh(); 543 return n; 544 } 545 EXPORT_SYMBOL(neigh_lookup); 546 547 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 548 const void *pkey) 549 { 550 struct neighbour *n; 551 unsigned int key_len = tbl->key_len; 552 u32 hash_val; 553 struct neigh_hash_table *nht; 554 555 NEIGH_CACHE_STAT_INC(tbl, lookups); 556 557 rcu_read_lock_bh(); 558 nht = rcu_dereference_bh(tbl->nht); 559 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift); 560 561 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 562 n != NULL; 563 n = rcu_dereference_bh(n->next)) { 564 if (!memcmp(n->primary_key, pkey, key_len) && 565 net_eq(dev_net(n->dev), net)) { 566 if (!refcount_inc_not_zero(&n->refcnt)) 567 n = NULL; 568 NEIGH_CACHE_STAT_INC(tbl, hits); 569 break; 570 } 571 } 572 573 rcu_read_unlock_bh(); 574 return n; 575 } 576 EXPORT_SYMBOL(neigh_lookup_nodev); 577 578 static struct neighbour *___neigh_create(struct neigh_table *tbl, 579 const void *pkey, 580 struct net_device *dev, 581 bool exempt_from_gc, bool want_ref) 582 { 583 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev, exempt_from_gc); 584 u32 hash_val; 585 unsigned int key_len = tbl->key_len; 586 int error; 587 struct neigh_hash_table *nht; 588 589 trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc); 590 591 if (!n) { 592 rc = ERR_PTR(-ENOBUFS); 593 goto out; 594 } 595 596 memcpy(n->primary_key, pkey, key_len); 597 n->dev = dev; 598 dev_hold(dev); 599 600 /* Protocol specific setup. */ 601 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 602 rc = ERR_PTR(error); 603 goto out_neigh_release; 604 } 605 606 if (dev->netdev_ops->ndo_neigh_construct) { 607 error = dev->netdev_ops->ndo_neigh_construct(dev, n); 608 if (error < 0) { 609 rc = ERR_PTR(error); 610 goto out_neigh_release; 611 } 612 } 613 614 /* Device specific setup. */ 615 if (n->parms->neigh_setup && 616 (error = n->parms->neigh_setup(n)) < 0) { 617 rc = ERR_PTR(error); 618 goto out_neigh_release; 619 } 620 621 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1); 622 623 write_lock_bh(&tbl->lock); 624 nht = rcu_dereference_protected(tbl->nht, 625 lockdep_is_held(&tbl->lock)); 626 627 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) 628 nht = neigh_hash_grow(tbl, nht->hash_shift + 1); 629 630 hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 631 632 if (n->parms->dead) { 633 rc = ERR_PTR(-EINVAL); 634 goto out_tbl_unlock; 635 } 636 637 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], 638 lockdep_is_held(&tbl->lock)); 639 n1 != NULL; 640 n1 = rcu_dereference_protected(n1->next, 641 lockdep_is_held(&tbl->lock))) { 642 if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) { 643 if (want_ref) 644 neigh_hold(n1); 645 rc = n1; 646 goto out_tbl_unlock; 647 } 648 } 649 650 n->dead = 0; 651 if (!exempt_from_gc) 652 list_add_tail(&n->gc_list, &n->tbl->gc_list); 653 654 if (want_ref) 655 neigh_hold(n); 656 rcu_assign_pointer(n->next, 657 rcu_dereference_protected(nht->hash_buckets[hash_val], 658 lockdep_is_held(&tbl->lock))); 659 rcu_assign_pointer(nht->hash_buckets[hash_val], n); 660 write_unlock_bh(&tbl->lock); 661 neigh_dbg(2, "neigh %p is created\n", n); 662 rc = n; 663 out: 664 return rc; 665 out_tbl_unlock: 666 write_unlock_bh(&tbl->lock); 667 out_neigh_release: 668 if (!exempt_from_gc) 669 atomic_dec(&tbl->gc_entries); 670 neigh_release(n); 671 goto out; 672 } 673 674 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, 675 struct net_device *dev, bool want_ref) 676 { 677 return ___neigh_create(tbl, pkey, dev, false, want_ref); 678 } 679 EXPORT_SYMBOL(__neigh_create); 680 681 static u32 pneigh_hash(const void *pkey, unsigned int key_len) 682 { 683 u32 hash_val = *(u32 *)(pkey + key_len - 4); 684 hash_val ^= (hash_val >> 16); 685 hash_val ^= hash_val >> 8; 686 hash_val ^= hash_val >> 4; 687 hash_val &= PNEIGH_HASHMASK; 688 return hash_val; 689 } 690 691 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 692 struct net *net, 693 const void *pkey, 694 unsigned int key_len, 695 struct net_device *dev) 696 { 697 while (n) { 698 if (!memcmp(n->key, pkey, key_len) && 699 net_eq(pneigh_net(n), net) && 700 (n->dev == dev || !n->dev)) 701 return n; 702 n = n->next; 703 } 704 return NULL; 705 } 706 707 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 708 struct net *net, const void *pkey, struct net_device *dev) 709 { 710 unsigned int key_len = tbl->key_len; 711 u32 hash_val = pneigh_hash(pkey, key_len); 712 713 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 714 net, pkey, key_len, dev); 715 } 716 EXPORT_SYMBOL_GPL(__pneigh_lookup); 717 718 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 719 struct net *net, const void *pkey, 720 struct net_device *dev, int creat) 721 { 722 struct pneigh_entry *n; 723 unsigned int key_len = tbl->key_len; 724 u32 hash_val = pneigh_hash(pkey, key_len); 725 726 read_lock_bh(&tbl->lock); 727 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 728 net, pkey, key_len, dev); 729 read_unlock_bh(&tbl->lock); 730 731 if (n || !creat) 732 goto out; 733 734 ASSERT_RTNL(); 735 736 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 737 if (!n) 738 goto out; 739 740 n->protocol = 0; 741 write_pnet(&n->net, net); 742 memcpy(n->key, pkey, key_len); 743 n->dev = dev; 744 dev_hold(dev); 745 746 if (tbl->pconstructor && tbl->pconstructor(n)) { 747 dev_put(dev); 748 kfree(n); 749 n = NULL; 750 goto out; 751 } 752 753 write_lock_bh(&tbl->lock); 754 n->next = tbl->phash_buckets[hash_val]; 755 tbl->phash_buckets[hash_val] = n; 756 write_unlock_bh(&tbl->lock); 757 out: 758 return n; 759 } 760 EXPORT_SYMBOL(pneigh_lookup); 761 762 763 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 764 struct net_device *dev) 765 { 766 struct pneigh_entry *n, **np; 767 unsigned int key_len = tbl->key_len; 768 u32 hash_val = pneigh_hash(pkey, key_len); 769 770 write_lock_bh(&tbl->lock); 771 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 772 np = &n->next) { 773 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 774 net_eq(pneigh_net(n), net)) { 775 *np = n->next; 776 write_unlock_bh(&tbl->lock); 777 if (tbl->pdestructor) 778 tbl->pdestructor(n); 779 dev_put(n->dev); 780 kfree(n); 781 return 0; 782 } 783 } 784 write_unlock_bh(&tbl->lock); 785 return -ENOENT; 786 } 787 788 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 789 struct net_device *dev) 790 { 791 struct pneigh_entry *n, **np, *freelist = NULL; 792 u32 h; 793 794 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 795 np = &tbl->phash_buckets[h]; 796 while ((n = *np) != NULL) { 797 if (!dev || n->dev == dev) { 798 *np = n->next; 799 n->next = freelist; 800 freelist = n; 801 continue; 802 } 803 np = &n->next; 804 } 805 } 806 write_unlock_bh(&tbl->lock); 807 while ((n = freelist)) { 808 freelist = n->next; 809 n->next = NULL; 810 if (tbl->pdestructor) 811 tbl->pdestructor(n); 812 dev_put(n->dev); 813 kfree(n); 814 } 815 return -ENOENT; 816 } 817 818 static void neigh_parms_destroy(struct neigh_parms *parms); 819 820 static inline void neigh_parms_put(struct neigh_parms *parms) 821 { 822 if (refcount_dec_and_test(&parms->refcnt)) 823 neigh_parms_destroy(parms); 824 } 825 826 /* 827 * neighbour must already be out of the table; 828 * 829 */ 830 void neigh_destroy(struct neighbour *neigh) 831 { 832 struct net_device *dev = neigh->dev; 833 834 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 835 836 if (!neigh->dead) { 837 pr_warn("Destroying alive neighbour %p\n", neigh); 838 dump_stack(); 839 return; 840 } 841 842 if (neigh_del_timer(neigh)) 843 pr_warn("Impossible event\n"); 844 845 write_lock_bh(&neigh->lock); 846 __skb_queue_purge(&neigh->arp_queue); 847 write_unlock_bh(&neigh->lock); 848 neigh->arp_queue_len_bytes = 0; 849 850 if (dev->netdev_ops->ndo_neigh_destroy) 851 dev->netdev_ops->ndo_neigh_destroy(dev, neigh); 852 853 dev_put(dev); 854 neigh_parms_put(neigh->parms); 855 856 neigh_dbg(2, "neigh %p is destroyed\n", neigh); 857 858 atomic_dec(&neigh->tbl->entries); 859 kfree_rcu(neigh, rcu); 860 } 861 EXPORT_SYMBOL(neigh_destroy); 862 863 /* Neighbour state is suspicious; 864 disable fast path. 865 866 Called with write_locked neigh. 867 */ 868 static void neigh_suspect(struct neighbour *neigh) 869 { 870 neigh_dbg(2, "neigh %p is suspected\n", neigh); 871 872 neigh->output = neigh->ops->output; 873 } 874 875 /* Neighbour state is OK; 876 enable fast path. 877 878 Called with write_locked neigh. 879 */ 880 static void neigh_connect(struct neighbour *neigh) 881 { 882 neigh_dbg(2, "neigh %p is connected\n", neigh); 883 884 neigh->output = neigh->ops->connected_output; 885 } 886 887 static void neigh_periodic_work(struct work_struct *work) 888 { 889 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 890 struct neighbour *n; 891 struct neighbour __rcu **np; 892 unsigned int i; 893 struct neigh_hash_table *nht; 894 895 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 896 897 write_lock_bh(&tbl->lock); 898 nht = rcu_dereference_protected(tbl->nht, 899 lockdep_is_held(&tbl->lock)); 900 901 /* 902 * periodically recompute ReachableTime from random function 903 */ 904 905 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 906 struct neigh_parms *p; 907 tbl->last_rand = jiffies; 908 list_for_each_entry(p, &tbl->parms_list, list) 909 p->reachable_time = 910 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 911 } 912 913 if (atomic_read(&tbl->entries) < tbl->gc_thresh1) 914 goto out; 915 916 for (i = 0 ; i < (1 << nht->hash_shift); i++) { 917 np = &nht->hash_buckets[i]; 918 919 while ((n = rcu_dereference_protected(*np, 920 lockdep_is_held(&tbl->lock))) != NULL) { 921 unsigned int state; 922 923 write_lock(&n->lock); 924 925 state = n->nud_state; 926 if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) || 927 (n->flags & NTF_EXT_LEARNED)) { 928 write_unlock(&n->lock); 929 goto next_elt; 930 } 931 932 if (time_before(n->used, n->confirmed)) 933 n->used = n->confirmed; 934 935 if (refcount_read(&n->refcnt) == 1 && 936 (state == NUD_FAILED || 937 time_after(jiffies, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) { 938 *np = n->next; 939 neigh_mark_dead(n); 940 write_unlock(&n->lock); 941 neigh_cleanup_and_release(n); 942 continue; 943 } 944 write_unlock(&n->lock); 945 946 next_elt: 947 np = &n->next; 948 } 949 /* 950 * It's fine to release lock here, even if hash table 951 * grows while we are preempted. 952 */ 953 write_unlock_bh(&tbl->lock); 954 cond_resched(); 955 write_lock_bh(&tbl->lock); 956 nht = rcu_dereference_protected(tbl->nht, 957 lockdep_is_held(&tbl->lock)); 958 } 959 out: 960 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks. 961 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2 962 * BASE_REACHABLE_TIME. 963 */ 964 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 965 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1); 966 write_unlock_bh(&tbl->lock); 967 } 968 969 static __inline__ int neigh_max_probes(struct neighbour *n) 970 { 971 struct neigh_parms *p = n->parms; 972 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) + 973 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) : 974 NEIGH_VAR(p, MCAST_PROBES)); 975 } 976 977 static void neigh_invalidate(struct neighbour *neigh) 978 __releases(neigh->lock) 979 __acquires(neigh->lock) 980 { 981 struct sk_buff *skb; 982 983 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 984 neigh_dbg(2, "neigh %p is failed\n", neigh); 985 neigh->updated = jiffies; 986 987 /* It is very thin place. report_unreachable is very complicated 988 routine. Particularly, it can hit the same neighbour entry! 989 990 So that, we try to be accurate and avoid dead loop. --ANK 991 */ 992 while (neigh->nud_state == NUD_FAILED && 993 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 994 write_unlock(&neigh->lock); 995 neigh->ops->error_report(neigh, skb); 996 write_lock(&neigh->lock); 997 } 998 __skb_queue_purge(&neigh->arp_queue); 999 neigh->arp_queue_len_bytes = 0; 1000 } 1001 1002 static void neigh_probe(struct neighbour *neigh) 1003 __releases(neigh->lock) 1004 { 1005 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue); 1006 /* keep skb alive even if arp_queue overflows */ 1007 if (skb) 1008 skb = skb_clone(skb, GFP_ATOMIC); 1009 write_unlock(&neigh->lock); 1010 if (neigh->ops->solicit) 1011 neigh->ops->solicit(neigh, skb); 1012 atomic_inc(&neigh->probes); 1013 consume_skb(skb); 1014 } 1015 1016 /* Called when a timer expires for a neighbour entry. */ 1017 1018 static void neigh_timer_handler(struct timer_list *t) 1019 { 1020 unsigned long now, next; 1021 struct neighbour *neigh = from_timer(neigh, t, timer); 1022 unsigned int state; 1023 int notify = 0; 1024 1025 write_lock(&neigh->lock); 1026 1027 state = neigh->nud_state; 1028 now = jiffies; 1029 next = now + HZ; 1030 1031 if (!(state & NUD_IN_TIMER)) 1032 goto out; 1033 1034 if (state & NUD_REACHABLE) { 1035 if (time_before_eq(now, 1036 neigh->confirmed + neigh->parms->reachable_time)) { 1037 neigh_dbg(2, "neigh %p is still alive\n", neigh); 1038 next = neigh->confirmed + neigh->parms->reachable_time; 1039 } else if (time_before_eq(now, 1040 neigh->used + 1041 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1042 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1043 neigh->nud_state = NUD_DELAY; 1044 neigh->updated = jiffies; 1045 neigh_suspect(neigh); 1046 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME); 1047 } else { 1048 neigh_dbg(2, "neigh %p is suspected\n", neigh); 1049 neigh->nud_state = NUD_STALE; 1050 neigh->updated = jiffies; 1051 neigh_suspect(neigh); 1052 notify = 1; 1053 } 1054 } else if (state & NUD_DELAY) { 1055 if (time_before_eq(now, 1056 neigh->confirmed + 1057 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1058 neigh_dbg(2, "neigh %p is now reachable\n", neigh); 1059 neigh->nud_state = NUD_REACHABLE; 1060 neigh->updated = jiffies; 1061 neigh_connect(neigh); 1062 notify = 1; 1063 next = neigh->confirmed + neigh->parms->reachable_time; 1064 } else { 1065 neigh_dbg(2, "neigh %p is probed\n", neigh); 1066 neigh->nud_state = NUD_PROBE; 1067 neigh->updated = jiffies; 1068 atomic_set(&neigh->probes, 0); 1069 notify = 1; 1070 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1071 HZ/100); 1072 } 1073 } else { 1074 /* NUD_PROBE|NUD_INCOMPLETE */ 1075 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100); 1076 } 1077 1078 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 1079 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 1080 neigh->nud_state = NUD_FAILED; 1081 notify = 1; 1082 neigh_invalidate(neigh); 1083 goto out; 1084 } 1085 1086 if (neigh->nud_state & NUD_IN_TIMER) { 1087 if (time_before(next, jiffies + HZ/100)) 1088 next = jiffies + HZ/100; 1089 if (!mod_timer(&neigh->timer, next)) 1090 neigh_hold(neigh); 1091 } 1092 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 1093 neigh_probe(neigh); 1094 } else { 1095 out: 1096 write_unlock(&neigh->lock); 1097 } 1098 1099 if (notify) 1100 neigh_update_notify(neigh, 0); 1101 1102 trace_neigh_timer_handler(neigh, 0); 1103 1104 neigh_release(neigh); 1105 } 1106 1107 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 1108 { 1109 int rc; 1110 bool immediate_probe = false; 1111 1112 write_lock_bh(&neigh->lock); 1113 1114 rc = 0; 1115 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 1116 goto out_unlock_bh; 1117 if (neigh->dead) 1118 goto out_dead; 1119 1120 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 1121 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) + 1122 NEIGH_VAR(neigh->parms, APP_PROBES)) { 1123 unsigned long next, now = jiffies; 1124 1125 atomic_set(&neigh->probes, 1126 NEIGH_VAR(neigh->parms, UCAST_PROBES)); 1127 neigh_del_timer(neigh); 1128 neigh->nud_state = NUD_INCOMPLETE; 1129 neigh->updated = now; 1130 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1131 HZ/100); 1132 neigh_add_timer(neigh, next); 1133 immediate_probe = true; 1134 } else { 1135 neigh->nud_state = NUD_FAILED; 1136 neigh->updated = jiffies; 1137 write_unlock_bh(&neigh->lock); 1138 1139 kfree_skb(skb); 1140 return 1; 1141 } 1142 } else if (neigh->nud_state & NUD_STALE) { 1143 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1144 neigh_del_timer(neigh); 1145 neigh->nud_state = NUD_DELAY; 1146 neigh->updated = jiffies; 1147 neigh_add_timer(neigh, jiffies + 1148 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME)); 1149 } 1150 1151 if (neigh->nud_state == NUD_INCOMPLETE) { 1152 if (skb) { 1153 while (neigh->arp_queue_len_bytes + skb->truesize > 1154 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) { 1155 struct sk_buff *buff; 1156 1157 buff = __skb_dequeue(&neigh->arp_queue); 1158 if (!buff) 1159 break; 1160 neigh->arp_queue_len_bytes -= buff->truesize; 1161 kfree_skb(buff); 1162 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 1163 } 1164 skb_dst_force(skb); 1165 __skb_queue_tail(&neigh->arp_queue, skb); 1166 neigh->arp_queue_len_bytes += skb->truesize; 1167 } 1168 rc = 1; 1169 } 1170 out_unlock_bh: 1171 if (immediate_probe) 1172 neigh_probe(neigh); 1173 else 1174 write_unlock(&neigh->lock); 1175 local_bh_enable(); 1176 trace_neigh_event_send_done(neigh, rc); 1177 return rc; 1178 1179 out_dead: 1180 if (neigh->nud_state & NUD_STALE) 1181 goto out_unlock_bh; 1182 write_unlock_bh(&neigh->lock); 1183 kfree_skb(skb); 1184 trace_neigh_event_send_dead(neigh, 1); 1185 return 1; 1186 } 1187 EXPORT_SYMBOL(__neigh_event_send); 1188 1189 static void neigh_update_hhs(struct neighbour *neigh) 1190 { 1191 struct hh_cache *hh; 1192 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 1193 = NULL; 1194 1195 if (neigh->dev->header_ops) 1196 update = neigh->dev->header_ops->cache_update; 1197 1198 if (update) { 1199 hh = &neigh->hh; 1200 if (READ_ONCE(hh->hh_len)) { 1201 write_seqlock_bh(&hh->hh_lock); 1202 update(hh, neigh->dev, neigh->ha); 1203 write_sequnlock_bh(&hh->hh_lock); 1204 } 1205 } 1206 } 1207 1208 1209 1210 /* Generic update routine. 1211 -- lladdr is new lladdr or NULL, if it is not supplied. 1212 -- new is new state. 1213 -- flags 1214 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 1215 if it is different. 1216 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 1217 lladdr instead of overriding it 1218 if it is different. 1219 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 1220 1221 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 1222 NTF_ROUTER flag. 1223 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 1224 a router. 1225 1226 Caller MUST hold reference count on the entry. 1227 */ 1228 1229 static int __neigh_update(struct neighbour *neigh, const u8 *lladdr, 1230 u8 new, u32 flags, u32 nlmsg_pid, 1231 struct netlink_ext_ack *extack) 1232 { 1233 bool ext_learn_change = false; 1234 u8 old; 1235 int err; 1236 int notify = 0; 1237 struct net_device *dev; 1238 int update_isrouter = 0; 1239 1240 trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid); 1241 1242 write_lock_bh(&neigh->lock); 1243 1244 dev = neigh->dev; 1245 old = neigh->nud_state; 1246 err = -EPERM; 1247 1248 if (neigh->dead) { 1249 NL_SET_ERR_MSG(extack, "Neighbor entry is now dead"); 1250 new = old; 1251 goto out; 1252 } 1253 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 1254 (old & (NUD_NOARP | NUD_PERMANENT))) 1255 goto out; 1256 1257 ext_learn_change = neigh_update_ext_learned(neigh, flags, ¬ify); 1258 1259 if (!(new & NUD_VALID)) { 1260 neigh_del_timer(neigh); 1261 if (old & NUD_CONNECTED) 1262 neigh_suspect(neigh); 1263 neigh->nud_state = new; 1264 err = 0; 1265 notify = old & NUD_VALID; 1266 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1267 (new & NUD_FAILED)) { 1268 neigh_invalidate(neigh); 1269 notify = 1; 1270 } 1271 goto out; 1272 } 1273 1274 /* Compare new lladdr with cached one */ 1275 if (!dev->addr_len) { 1276 /* First case: device needs no address. */ 1277 lladdr = neigh->ha; 1278 } else if (lladdr) { 1279 /* The second case: if something is already cached 1280 and a new address is proposed: 1281 - compare new & old 1282 - if they are different, check override flag 1283 */ 1284 if ((old & NUD_VALID) && 1285 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1286 lladdr = neigh->ha; 1287 } else { 1288 /* No address is supplied; if we know something, 1289 use it, otherwise discard the request. 1290 */ 1291 err = -EINVAL; 1292 if (!(old & NUD_VALID)) { 1293 NL_SET_ERR_MSG(extack, "No link layer address given"); 1294 goto out; 1295 } 1296 lladdr = neigh->ha; 1297 } 1298 1299 /* Update confirmed timestamp for neighbour entry after we 1300 * received ARP packet even if it doesn't change IP to MAC binding. 1301 */ 1302 if (new & NUD_CONNECTED) 1303 neigh->confirmed = jiffies; 1304 1305 /* If entry was valid and address is not changed, 1306 do not change entry state, if new one is STALE. 1307 */ 1308 err = 0; 1309 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1310 if (old & NUD_VALID) { 1311 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1312 update_isrouter = 0; 1313 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1314 (old & NUD_CONNECTED)) { 1315 lladdr = neigh->ha; 1316 new = NUD_STALE; 1317 } else 1318 goto out; 1319 } else { 1320 if (lladdr == neigh->ha && new == NUD_STALE && 1321 !(flags & NEIGH_UPDATE_F_ADMIN)) 1322 new = old; 1323 } 1324 } 1325 1326 /* Update timestamp only once we know we will make a change to the 1327 * neighbour entry. Otherwise we risk to move the locktime window with 1328 * noop updates and ignore relevant ARP updates. 1329 */ 1330 if (new != old || lladdr != neigh->ha) 1331 neigh->updated = jiffies; 1332 1333 if (new != old) { 1334 neigh_del_timer(neigh); 1335 if (new & NUD_PROBE) 1336 atomic_set(&neigh->probes, 0); 1337 if (new & NUD_IN_TIMER) 1338 neigh_add_timer(neigh, (jiffies + 1339 ((new & NUD_REACHABLE) ? 1340 neigh->parms->reachable_time : 1341 0))); 1342 neigh->nud_state = new; 1343 notify = 1; 1344 } 1345 1346 if (lladdr != neigh->ha) { 1347 write_seqlock(&neigh->ha_lock); 1348 memcpy(&neigh->ha, lladdr, dev->addr_len); 1349 write_sequnlock(&neigh->ha_lock); 1350 neigh_update_hhs(neigh); 1351 if (!(new & NUD_CONNECTED)) 1352 neigh->confirmed = jiffies - 1353 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1); 1354 notify = 1; 1355 } 1356 if (new == old) 1357 goto out; 1358 if (new & NUD_CONNECTED) 1359 neigh_connect(neigh); 1360 else 1361 neigh_suspect(neigh); 1362 if (!(old & NUD_VALID)) { 1363 struct sk_buff *skb; 1364 1365 /* Again: avoid dead loop if something went wrong */ 1366 1367 while (neigh->nud_state & NUD_VALID && 1368 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1369 struct dst_entry *dst = skb_dst(skb); 1370 struct neighbour *n2, *n1 = neigh; 1371 write_unlock_bh(&neigh->lock); 1372 1373 rcu_read_lock(); 1374 1375 /* Why not just use 'neigh' as-is? The problem is that 1376 * things such as shaper, eql, and sch_teql can end up 1377 * using alternative, different, neigh objects to output 1378 * the packet in the output path. So what we need to do 1379 * here is re-lookup the top-level neigh in the path so 1380 * we can reinject the packet there. 1381 */ 1382 n2 = NULL; 1383 if (dst && dst->obsolete != DST_OBSOLETE_DEAD) { 1384 n2 = dst_neigh_lookup_skb(dst, skb); 1385 if (n2) 1386 n1 = n2; 1387 } 1388 n1->output(n1, skb); 1389 if (n2) 1390 neigh_release(n2); 1391 rcu_read_unlock(); 1392 1393 write_lock_bh(&neigh->lock); 1394 } 1395 __skb_queue_purge(&neigh->arp_queue); 1396 neigh->arp_queue_len_bytes = 0; 1397 } 1398 out: 1399 if (update_isrouter) 1400 neigh_update_is_router(neigh, flags, ¬ify); 1401 write_unlock_bh(&neigh->lock); 1402 1403 if (((new ^ old) & NUD_PERMANENT) || ext_learn_change) 1404 neigh_update_gc_list(neigh); 1405 1406 if (notify) 1407 neigh_update_notify(neigh, nlmsg_pid); 1408 1409 trace_neigh_update_done(neigh, err); 1410 1411 return err; 1412 } 1413 1414 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 1415 u32 flags, u32 nlmsg_pid) 1416 { 1417 return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL); 1418 } 1419 EXPORT_SYMBOL(neigh_update); 1420 1421 /* Update the neigh to listen temporarily for probe responses, even if it is 1422 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing. 1423 */ 1424 void __neigh_set_probe_once(struct neighbour *neigh) 1425 { 1426 if (neigh->dead) 1427 return; 1428 neigh->updated = jiffies; 1429 if (!(neigh->nud_state & NUD_FAILED)) 1430 return; 1431 neigh->nud_state = NUD_INCOMPLETE; 1432 atomic_set(&neigh->probes, neigh_max_probes(neigh)); 1433 neigh_add_timer(neigh, 1434 jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1435 HZ/100)); 1436 } 1437 EXPORT_SYMBOL(__neigh_set_probe_once); 1438 1439 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1440 u8 *lladdr, void *saddr, 1441 struct net_device *dev) 1442 { 1443 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1444 lladdr || !dev->addr_len); 1445 if (neigh) 1446 neigh_update(neigh, lladdr, NUD_STALE, 1447 NEIGH_UPDATE_F_OVERRIDE, 0); 1448 return neigh; 1449 } 1450 EXPORT_SYMBOL(neigh_event_ns); 1451 1452 /* called with read_lock_bh(&n->lock); */ 1453 static void neigh_hh_init(struct neighbour *n) 1454 { 1455 struct net_device *dev = n->dev; 1456 __be16 prot = n->tbl->protocol; 1457 struct hh_cache *hh = &n->hh; 1458 1459 write_lock_bh(&n->lock); 1460 1461 /* Only one thread can come in here and initialize the 1462 * hh_cache entry. 1463 */ 1464 if (!hh->hh_len) 1465 dev->header_ops->cache(n, hh, prot); 1466 1467 write_unlock_bh(&n->lock); 1468 } 1469 1470 /* Slow and careful. */ 1471 1472 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) 1473 { 1474 int rc = 0; 1475 1476 if (!neigh_event_send(neigh, skb)) { 1477 int err; 1478 struct net_device *dev = neigh->dev; 1479 unsigned int seq; 1480 1481 if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len)) 1482 neigh_hh_init(neigh); 1483 1484 do { 1485 __skb_pull(skb, skb_network_offset(skb)); 1486 seq = read_seqbegin(&neigh->ha_lock); 1487 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1488 neigh->ha, NULL, skb->len); 1489 } while (read_seqretry(&neigh->ha_lock, seq)); 1490 1491 if (err >= 0) 1492 rc = dev_queue_xmit(skb); 1493 else 1494 goto out_kfree_skb; 1495 } 1496 out: 1497 return rc; 1498 out_kfree_skb: 1499 rc = -EINVAL; 1500 kfree_skb(skb); 1501 goto out; 1502 } 1503 EXPORT_SYMBOL(neigh_resolve_output); 1504 1505 /* As fast as possible without hh cache */ 1506 1507 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) 1508 { 1509 struct net_device *dev = neigh->dev; 1510 unsigned int seq; 1511 int err; 1512 1513 do { 1514 __skb_pull(skb, skb_network_offset(skb)); 1515 seq = read_seqbegin(&neigh->ha_lock); 1516 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1517 neigh->ha, NULL, skb->len); 1518 } while (read_seqretry(&neigh->ha_lock, seq)); 1519 1520 if (err >= 0) 1521 err = dev_queue_xmit(skb); 1522 else { 1523 err = -EINVAL; 1524 kfree_skb(skb); 1525 } 1526 return err; 1527 } 1528 EXPORT_SYMBOL(neigh_connected_output); 1529 1530 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) 1531 { 1532 return dev_queue_xmit(skb); 1533 } 1534 EXPORT_SYMBOL(neigh_direct_output); 1535 1536 static void neigh_proxy_process(struct timer_list *t) 1537 { 1538 struct neigh_table *tbl = from_timer(tbl, t, proxy_timer); 1539 long sched_next = 0; 1540 unsigned long now = jiffies; 1541 struct sk_buff *skb, *n; 1542 1543 spin_lock(&tbl->proxy_queue.lock); 1544 1545 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1546 long tdif = NEIGH_CB(skb)->sched_next - now; 1547 1548 if (tdif <= 0) { 1549 struct net_device *dev = skb->dev; 1550 1551 __skb_unlink(skb, &tbl->proxy_queue); 1552 if (tbl->proxy_redo && netif_running(dev)) { 1553 rcu_read_lock(); 1554 tbl->proxy_redo(skb); 1555 rcu_read_unlock(); 1556 } else { 1557 kfree_skb(skb); 1558 } 1559 1560 dev_put(dev); 1561 } else if (!sched_next || tdif < sched_next) 1562 sched_next = tdif; 1563 } 1564 del_timer(&tbl->proxy_timer); 1565 if (sched_next) 1566 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1567 spin_unlock(&tbl->proxy_queue.lock); 1568 } 1569 1570 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1571 struct sk_buff *skb) 1572 { 1573 unsigned long sched_next = jiffies + 1574 prandom_u32_max(NEIGH_VAR(p, PROXY_DELAY)); 1575 1576 if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) { 1577 kfree_skb(skb); 1578 return; 1579 } 1580 1581 NEIGH_CB(skb)->sched_next = sched_next; 1582 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1583 1584 spin_lock(&tbl->proxy_queue.lock); 1585 if (del_timer(&tbl->proxy_timer)) { 1586 if (time_before(tbl->proxy_timer.expires, sched_next)) 1587 sched_next = tbl->proxy_timer.expires; 1588 } 1589 skb_dst_drop(skb); 1590 dev_hold(skb->dev); 1591 __skb_queue_tail(&tbl->proxy_queue, skb); 1592 mod_timer(&tbl->proxy_timer, sched_next); 1593 spin_unlock(&tbl->proxy_queue.lock); 1594 } 1595 EXPORT_SYMBOL(pneigh_enqueue); 1596 1597 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1598 struct net *net, int ifindex) 1599 { 1600 struct neigh_parms *p; 1601 1602 list_for_each_entry(p, &tbl->parms_list, list) { 1603 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1604 (!p->dev && !ifindex && net_eq(net, &init_net))) 1605 return p; 1606 } 1607 1608 return NULL; 1609 } 1610 1611 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1612 struct neigh_table *tbl) 1613 { 1614 struct neigh_parms *p; 1615 struct net *net = dev_net(dev); 1616 const struct net_device_ops *ops = dev->netdev_ops; 1617 1618 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL); 1619 if (p) { 1620 p->tbl = tbl; 1621 refcount_set(&p->refcnt, 1); 1622 p->reachable_time = 1623 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 1624 dev_hold(dev); 1625 p->dev = dev; 1626 write_pnet(&p->net, net); 1627 p->sysctl_table = NULL; 1628 1629 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1630 dev_put(dev); 1631 kfree(p); 1632 return NULL; 1633 } 1634 1635 write_lock_bh(&tbl->lock); 1636 list_add(&p->list, &tbl->parms.list); 1637 write_unlock_bh(&tbl->lock); 1638 1639 neigh_parms_data_state_cleanall(p); 1640 } 1641 return p; 1642 } 1643 EXPORT_SYMBOL(neigh_parms_alloc); 1644 1645 static void neigh_rcu_free_parms(struct rcu_head *head) 1646 { 1647 struct neigh_parms *parms = 1648 container_of(head, struct neigh_parms, rcu_head); 1649 1650 neigh_parms_put(parms); 1651 } 1652 1653 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1654 { 1655 if (!parms || parms == &tbl->parms) 1656 return; 1657 write_lock_bh(&tbl->lock); 1658 list_del(&parms->list); 1659 parms->dead = 1; 1660 write_unlock_bh(&tbl->lock); 1661 dev_put(parms->dev); 1662 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1663 } 1664 EXPORT_SYMBOL(neigh_parms_release); 1665 1666 static void neigh_parms_destroy(struct neigh_parms *parms) 1667 { 1668 kfree(parms); 1669 } 1670 1671 static struct lock_class_key neigh_table_proxy_queue_class; 1672 1673 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly; 1674 1675 void neigh_table_init(int index, struct neigh_table *tbl) 1676 { 1677 unsigned long now = jiffies; 1678 unsigned long phsize; 1679 1680 INIT_LIST_HEAD(&tbl->parms_list); 1681 INIT_LIST_HEAD(&tbl->gc_list); 1682 list_add(&tbl->parms.list, &tbl->parms_list); 1683 write_pnet(&tbl->parms.net, &init_net); 1684 refcount_set(&tbl->parms.refcnt, 1); 1685 tbl->parms.reachable_time = 1686 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME)); 1687 1688 tbl->stats = alloc_percpu(struct neigh_statistics); 1689 if (!tbl->stats) 1690 panic("cannot create neighbour cache statistics"); 1691 1692 #ifdef CONFIG_PROC_FS 1693 if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat, 1694 &neigh_stat_seq_ops, tbl)) 1695 panic("cannot create neighbour proc dir entry"); 1696 #endif 1697 1698 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); 1699 1700 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1701 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1702 1703 if (!tbl->nht || !tbl->phash_buckets) 1704 panic("cannot allocate neighbour cache hashes"); 1705 1706 if (!tbl->entry_size) 1707 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) + 1708 tbl->key_len, NEIGH_PRIV_ALIGN); 1709 else 1710 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN); 1711 1712 rwlock_init(&tbl->lock); 1713 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work); 1714 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 1715 tbl->parms.reachable_time); 1716 timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0); 1717 skb_queue_head_init_class(&tbl->proxy_queue, 1718 &neigh_table_proxy_queue_class); 1719 1720 tbl->last_flush = now; 1721 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1722 1723 neigh_tables[index] = tbl; 1724 } 1725 EXPORT_SYMBOL(neigh_table_init); 1726 1727 int neigh_table_clear(int index, struct neigh_table *tbl) 1728 { 1729 neigh_tables[index] = NULL; 1730 /* It is not clean... Fix it to unload IPv6 module safely */ 1731 cancel_delayed_work_sync(&tbl->gc_work); 1732 del_timer_sync(&tbl->proxy_timer); 1733 pneigh_queue_purge(&tbl->proxy_queue); 1734 neigh_ifdown(tbl, NULL); 1735 if (atomic_read(&tbl->entries)) 1736 pr_crit("neighbour leakage\n"); 1737 1738 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, 1739 neigh_hash_free_rcu); 1740 tbl->nht = NULL; 1741 1742 kfree(tbl->phash_buckets); 1743 tbl->phash_buckets = NULL; 1744 1745 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1746 1747 free_percpu(tbl->stats); 1748 tbl->stats = NULL; 1749 1750 return 0; 1751 } 1752 EXPORT_SYMBOL(neigh_table_clear); 1753 1754 static struct neigh_table *neigh_find_table(int family) 1755 { 1756 struct neigh_table *tbl = NULL; 1757 1758 switch (family) { 1759 case AF_INET: 1760 tbl = neigh_tables[NEIGH_ARP_TABLE]; 1761 break; 1762 case AF_INET6: 1763 tbl = neigh_tables[NEIGH_ND_TABLE]; 1764 break; 1765 case AF_DECnet: 1766 tbl = neigh_tables[NEIGH_DN_TABLE]; 1767 break; 1768 } 1769 1770 return tbl; 1771 } 1772 1773 const struct nla_policy nda_policy[NDA_MAX+1] = { 1774 [NDA_UNSPEC] = { .strict_start_type = NDA_NH_ID }, 1775 [NDA_DST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1776 [NDA_LLADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1777 [NDA_CACHEINFO] = { .len = sizeof(struct nda_cacheinfo) }, 1778 [NDA_PROBES] = { .type = NLA_U32 }, 1779 [NDA_VLAN] = { .type = NLA_U16 }, 1780 [NDA_PORT] = { .type = NLA_U16 }, 1781 [NDA_VNI] = { .type = NLA_U32 }, 1782 [NDA_IFINDEX] = { .type = NLA_U32 }, 1783 [NDA_MASTER] = { .type = NLA_U32 }, 1784 [NDA_PROTOCOL] = { .type = NLA_U8 }, 1785 [NDA_NH_ID] = { .type = NLA_U32 }, 1786 [NDA_FDB_EXT_ATTRS] = { .type = NLA_NESTED }, 1787 }; 1788 1789 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, 1790 struct netlink_ext_ack *extack) 1791 { 1792 struct net *net = sock_net(skb->sk); 1793 struct ndmsg *ndm; 1794 struct nlattr *dst_attr; 1795 struct neigh_table *tbl; 1796 struct neighbour *neigh; 1797 struct net_device *dev = NULL; 1798 int err = -EINVAL; 1799 1800 ASSERT_RTNL(); 1801 if (nlmsg_len(nlh) < sizeof(*ndm)) 1802 goto out; 1803 1804 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1805 if (!dst_attr) { 1806 NL_SET_ERR_MSG(extack, "Network address not specified"); 1807 goto out; 1808 } 1809 1810 ndm = nlmsg_data(nlh); 1811 if (ndm->ndm_ifindex) { 1812 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1813 if (dev == NULL) { 1814 err = -ENODEV; 1815 goto out; 1816 } 1817 } 1818 1819 tbl = neigh_find_table(ndm->ndm_family); 1820 if (tbl == NULL) 1821 return -EAFNOSUPPORT; 1822 1823 if (nla_len(dst_attr) < (int)tbl->key_len) { 1824 NL_SET_ERR_MSG(extack, "Invalid network address"); 1825 goto out; 1826 } 1827 1828 if (ndm->ndm_flags & NTF_PROXY) { 1829 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1830 goto out; 1831 } 1832 1833 if (dev == NULL) 1834 goto out; 1835 1836 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1837 if (neigh == NULL) { 1838 err = -ENOENT; 1839 goto out; 1840 } 1841 1842 err = __neigh_update(neigh, NULL, NUD_FAILED, 1843 NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN, 1844 NETLINK_CB(skb).portid, extack); 1845 write_lock_bh(&tbl->lock); 1846 neigh_release(neigh); 1847 neigh_remove_one(neigh, tbl); 1848 write_unlock_bh(&tbl->lock); 1849 1850 out: 1851 return err; 1852 } 1853 1854 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, 1855 struct netlink_ext_ack *extack) 1856 { 1857 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE | 1858 NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1859 struct net *net = sock_net(skb->sk); 1860 struct ndmsg *ndm; 1861 struct nlattr *tb[NDA_MAX+1]; 1862 struct neigh_table *tbl; 1863 struct net_device *dev = NULL; 1864 struct neighbour *neigh; 1865 void *dst, *lladdr; 1866 u8 protocol = 0; 1867 int err; 1868 1869 ASSERT_RTNL(); 1870 err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX, 1871 nda_policy, extack); 1872 if (err < 0) 1873 goto out; 1874 1875 err = -EINVAL; 1876 if (!tb[NDA_DST]) { 1877 NL_SET_ERR_MSG(extack, "Network address not specified"); 1878 goto out; 1879 } 1880 1881 ndm = nlmsg_data(nlh); 1882 if (ndm->ndm_ifindex) { 1883 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1884 if (dev == NULL) { 1885 err = -ENODEV; 1886 goto out; 1887 } 1888 1889 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) { 1890 NL_SET_ERR_MSG(extack, "Invalid link address"); 1891 goto out; 1892 } 1893 } 1894 1895 tbl = neigh_find_table(ndm->ndm_family); 1896 if (tbl == NULL) 1897 return -EAFNOSUPPORT; 1898 1899 if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) { 1900 NL_SET_ERR_MSG(extack, "Invalid network address"); 1901 goto out; 1902 } 1903 1904 dst = nla_data(tb[NDA_DST]); 1905 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1906 1907 if (tb[NDA_PROTOCOL]) 1908 protocol = nla_get_u8(tb[NDA_PROTOCOL]); 1909 1910 if (ndm->ndm_flags & NTF_PROXY) { 1911 struct pneigh_entry *pn; 1912 1913 err = -ENOBUFS; 1914 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1915 if (pn) { 1916 pn->flags = ndm->ndm_flags; 1917 if (protocol) 1918 pn->protocol = protocol; 1919 err = 0; 1920 } 1921 goto out; 1922 } 1923 1924 if (!dev) { 1925 NL_SET_ERR_MSG(extack, "Device not specified"); 1926 goto out; 1927 } 1928 1929 if (tbl->allow_add && !tbl->allow_add(dev, extack)) { 1930 err = -EINVAL; 1931 goto out; 1932 } 1933 1934 neigh = neigh_lookup(tbl, dst, dev); 1935 if (neigh == NULL) { 1936 bool exempt_from_gc; 1937 1938 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1939 err = -ENOENT; 1940 goto out; 1941 } 1942 1943 exempt_from_gc = ndm->ndm_state & NUD_PERMANENT || 1944 ndm->ndm_flags & NTF_EXT_LEARNED; 1945 neigh = ___neigh_create(tbl, dst, dev, exempt_from_gc, true); 1946 if (IS_ERR(neigh)) { 1947 err = PTR_ERR(neigh); 1948 goto out; 1949 } 1950 } else { 1951 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1952 err = -EEXIST; 1953 neigh_release(neigh); 1954 goto out; 1955 } 1956 1957 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1958 flags &= ~(NEIGH_UPDATE_F_OVERRIDE | 1959 NEIGH_UPDATE_F_OVERRIDE_ISROUTER); 1960 } 1961 1962 if (protocol) 1963 neigh->protocol = protocol; 1964 1965 if (ndm->ndm_flags & NTF_EXT_LEARNED) 1966 flags |= NEIGH_UPDATE_F_EXT_LEARNED; 1967 1968 if (ndm->ndm_flags & NTF_ROUTER) 1969 flags |= NEIGH_UPDATE_F_ISROUTER; 1970 1971 if (ndm->ndm_flags & NTF_USE) { 1972 neigh_event_send(neigh, NULL); 1973 err = 0; 1974 } else 1975 err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags, 1976 NETLINK_CB(skb).portid, extack); 1977 1978 neigh_release(neigh); 1979 1980 out: 1981 return err; 1982 } 1983 1984 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1985 { 1986 struct nlattr *nest; 1987 1988 nest = nla_nest_start_noflag(skb, NDTA_PARMS); 1989 if (nest == NULL) 1990 return -ENOBUFS; 1991 1992 if ((parms->dev && 1993 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) || 1994 nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) || 1995 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, 1996 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) || 1997 /* approximative value for deprecated QUEUE_LEN (in packets) */ 1998 nla_put_u32(skb, NDTPA_QUEUE_LEN, 1999 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) || 2000 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) || 2001 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) || 2002 nla_put_u32(skb, NDTPA_UCAST_PROBES, 2003 NEIGH_VAR(parms, UCAST_PROBES)) || 2004 nla_put_u32(skb, NDTPA_MCAST_PROBES, 2005 NEIGH_VAR(parms, MCAST_PROBES)) || 2006 nla_put_u32(skb, NDTPA_MCAST_REPROBES, 2007 NEIGH_VAR(parms, MCAST_REPROBES)) || 2008 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time, 2009 NDTPA_PAD) || 2010 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME, 2011 NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) || 2012 nla_put_msecs(skb, NDTPA_GC_STALETIME, 2013 NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) || 2014 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME, 2015 NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) || 2016 nla_put_msecs(skb, NDTPA_RETRANS_TIME, 2017 NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) || 2018 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, 2019 NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) || 2020 nla_put_msecs(skb, NDTPA_PROXY_DELAY, 2021 NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) || 2022 nla_put_msecs(skb, NDTPA_LOCKTIME, 2023 NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD)) 2024 goto nla_put_failure; 2025 return nla_nest_end(skb, nest); 2026 2027 nla_put_failure: 2028 nla_nest_cancel(skb, nest); 2029 return -EMSGSIZE; 2030 } 2031 2032 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 2033 u32 pid, u32 seq, int type, int flags) 2034 { 2035 struct nlmsghdr *nlh; 2036 struct ndtmsg *ndtmsg; 2037 2038 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2039 if (nlh == NULL) 2040 return -EMSGSIZE; 2041 2042 ndtmsg = nlmsg_data(nlh); 2043 2044 read_lock_bh(&tbl->lock); 2045 ndtmsg->ndtm_family = tbl->family; 2046 ndtmsg->ndtm_pad1 = 0; 2047 ndtmsg->ndtm_pad2 = 0; 2048 2049 if (nla_put_string(skb, NDTA_NAME, tbl->id) || 2050 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval, NDTA_PAD) || 2051 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) || 2052 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) || 2053 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3)) 2054 goto nla_put_failure; 2055 { 2056 unsigned long now = jiffies; 2057 long flush_delta = now - tbl->last_flush; 2058 long rand_delta = now - tbl->last_rand; 2059 struct neigh_hash_table *nht; 2060 struct ndt_config ndc = { 2061 .ndtc_key_len = tbl->key_len, 2062 .ndtc_entry_size = tbl->entry_size, 2063 .ndtc_entries = atomic_read(&tbl->entries), 2064 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 2065 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 2066 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 2067 }; 2068 2069 rcu_read_lock_bh(); 2070 nht = rcu_dereference_bh(tbl->nht); 2071 ndc.ndtc_hash_rnd = nht->hash_rnd[0]; 2072 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); 2073 rcu_read_unlock_bh(); 2074 2075 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc)) 2076 goto nla_put_failure; 2077 } 2078 2079 { 2080 int cpu; 2081 struct ndt_stats ndst; 2082 2083 memset(&ndst, 0, sizeof(ndst)); 2084 2085 for_each_possible_cpu(cpu) { 2086 struct neigh_statistics *st; 2087 2088 st = per_cpu_ptr(tbl->stats, cpu); 2089 ndst.ndts_allocs += st->allocs; 2090 ndst.ndts_destroys += st->destroys; 2091 ndst.ndts_hash_grows += st->hash_grows; 2092 ndst.ndts_res_failed += st->res_failed; 2093 ndst.ndts_lookups += st->lookups; 2094 ndst.ndts_hits += st->hits; 2095 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 2096 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 2097 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 2098 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 2099 ndst.ndts_table_fulls += st->table_fulls; 2100 } 2101 2102 if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst, 2103 NDTA_PAD)) 2104 goto nla_put_failure; 2105 } 2106 2107 BUG_ON(tbl->parms.dev); 2108 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 2109 goto nla_put_failure; 2110 2111 read_unlock_bh(&tbl->lock); 2112 nlmsg_end(skb, nlh); 2113 return 0; 2114 2115 nla_put_failure: 2116 read_unlock_bh(&tbl->lock); 2117 nlmsg_cancel(skb, nlh); 2118 return -EMSGSIZE; 2119 } 2120 2121 static int neightbl_fill_param_info(struct sk_buff *skb, 2122 struct neigh_table *tbl, 2123 struct neigh_parms *parms, 2124 u32 pid, u32 seq, int type, 2125 unsigned int flags) 2126 { 2127 struct ndtmsg *ndtmsg; 2128 struct nlmsghdr *nlh; 2129 2130 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2131 if (nlh == NULL) 2132 return -EMSGSIZE; 2133 2134 ndtmsg = nlmsg_data(nlh); 2135 2136 read_lock_bh(&tbl->lock); 2137 ndtmsg->ndtm_family = tbl->family; 2138 ndtmsg->ndtm_pad1 = 0; 2139 ndtmsg->ndtm_pad2 = 0; 2140 2141 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 2142 neightbl_fill_parms(skb, parms) < 0) 2143 goto errout; 2144 2145 read_unlock_bh(&tbl->lock); 2146 nlmsg_end(skb, nlh); 2147 return 0; 2148 errout: 2149 read_unlock_bh(&tbl->lock); 2150 nlmsg_cancel(skb, nlh); 2151 return -EMSGSIZE; 2152 } 2153 2154 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 2155 [NDTA_NAME] = { .type = NLA_STRING }, 2156 [NDTA_THRESH1] = { .type = NLA_U32 }, 2157 [NDTA_THRESH2] = { .type = NLA_U32 }, 2158 [NDTA_THRESH3] = { .type = NLA_U32 }, 2159 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 2160 [NDTA_PARMS] = { .type = NLA_NESTED }, 2161 }; 2162 2163 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 2164 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 2165 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 2166 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 2167 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 2168 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 2169 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 2170 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 }, 2171 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 2172 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 2173 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 2174 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 2175 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 2176 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 2177 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 2178 }; 2179 2180 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, 2181 struct netlink_ext_ack *extack) 2182 { 2183 struct net *net = sock_net(skb->sk); 2184 struct neigh_table *tbl; 2185 struct ndtmsg *ndtmsg; 2186 struct nlattr *tb[NDTA_MAX+1]; 2187 bool found = false; 2188 int err, tidx; 2189 2190 err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 2191 nl_neightbl_policy, extack); 2192 if (err < 0) 2193 goto errout; 2194 2195 if (tb[NDTA_NAME] == NULL) { 2196 err = -EINVAL; 2197 goto errout; 2198 } 2199 2200 ndtmsg = nlmsg_data(nlh); 2201 2202 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2203 tbl = neigh_tables[tidx]; 2204 if (!tbl) 2205 continue; 2206 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 2207 continue; 2208 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) { 2209 found = true; 2210 break; 2211 } 2212 } 2213 2214 if (!found) 2215 return -ENOENT; 2216 2217 /* 2218 * We acquire tbl->lock to be nice to the periodic timers and 2219 * make sure they always see a consistent set of values. 2220 */ 2221 write_lock_bh(&tbl->lock); 2222 2223 if (tb[NDTA_PARMS]) { 2224 struct nlattr *tbp[NDTPA_MAX+1]; 2225 struct neigh_parms *p; 2226 int i, ifindex = 0; 2227 2228 err = nla_parse_nested_deprecated(tbp, NDTPA_MAX, 2229 tb[NDTA_PARMS], 2230 nl_ntbl_parm_policy, extack); 2231 if (err < 0) 2232 goto errout_tbl_lock; 2233 2234 if (tbp[NDTPA_IFINDEX]) 2235 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 2236 2237 p = lookup_neigh_parms(tbl, net, ifindex); 2238 if (p == NULL) { 2239 err = -ENOENT; 2240 goto errout_tbl_lock; 2241 } 2242 2243 for (i = 1; i <= NDTPA_MAX; i++) { 2244 if (tbp[i] == NULL) 2245 continue; 2246 2247 switch (i) { 2248 case NDTPA_QUEUE_LEN: 2249 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2250 nla_get_u32(tbp[i]) * 2251 SKB_TRUESIZE(ETH_FRAME_LEN)); 2252 break; 2253 case NDTPA_QUEUE_LENBYTES: 2254 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2255 nla_get_u32(tbp[i])); 2256 break; 2257 case NDTPA_PROXY_QLEN: 2258 NEIGH_VAR_SET(p, PROXY_QLEN, 2259 nla_get_u32(tbp[i])); 2260 break; 2261 case NDTPA_APP_PROBES: 2262 NEIGH_VAR_SET(p, APP_PROBES, 2263 nla_get_u32(tbp[i])); 2264 break; 2265 case NDTPA_UCAST_PROBES: 2266 NEIGH_VAR_SET(p, UCAST_PROBES, 2267 nla_get_u32(tbp[i])); 2268 break; 2269 case NDTPA_MCAST_PROBES: 2270 NEIGH_VAR_SET(p, MCAST_PROBES, 2271 nla_get_u32(tbp[i])); 2272 break; 2273 case NDTPA_MCAST_REPROBES: 2274 NEIGH_VAR_SET(p, MCAST_REPROBES, 2275 nla_get_u32(tbp[i])); 2276 break; 2277 case NDTPA_BASE_REACHABLE_TIME: 2278 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME, 2279 nla_get_msecs(tbp[i])); 2280 /* update reachable_time as well, otherwise, the change will 2281 * only be effective after the next time neigh_periodic_work 2282 * decides to recompute it (can be multiple minutes) 2283 */ 2284 p->reachable_time = 2285 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 2286 break; 2287 case NDTPA_GC_STALETIME: 2288 NEIGH_VAR_SET(p, GC_STALETIME, 2289 nla_get_msecs(tbp[i])); 2290 break; 2291 case NDTPA_DELAY_PROBE_TIME: 2292 NEIGH_VAR_SET(p, DELAY_PROBE_TIME, 2293 nla_get_msecs(tbp[i])); 2294 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 2295 break; 2296 case NDTPA_RETRANS_TIME: 2297 NEIGH_VAR_SET(p, RETRANS_TIME, 2298 nla_get_msecs(tbp[i])); 2299 break; 2300 case NDTPA_ANYCAST_DELAY: 2301 NEIGH_VAR_SET(p, ANYCAST_DELAY, 2302 nla_get_msecs(tbp[i])); 2303 break; 2304 case NDTPA_PROXY_DELAY: 2305 NEIGH_VAR_SET(p, PROXY_DELAY, 2306 nla_get_msecs(tbp[i])); 2307 break; 2308 case NDTPA_LOCKTIME: 2309 NEIGH_VAR_SET(p, LOCKTIME, 2310 nla_get_msecs(tbp[i])); 2311 break; 2312 } 2313 } 2314 } 2315 2316 err = -ENOENT; 2317 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] || 2318 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) && 2319 !net_eq(net, &init_net)) 2320 goto errout_tbl_lock; 2321 2322 if (tb[NDTA_THRESH1]) 2323 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 2324 2325 if (tb[NDTA_THRESH2]) 2326 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 2327 2328 if (tb[NDTA_THRESH3]) 2329 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 2330 2331 if (tb[NDTA_GC_INTERVAL]) 2332 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 2333 2334 err = 0; 2335 2336 errout_tbl_lock: 2337 write_unlock_bh(&tbl->lock); 2338 errout: 2339 return err; 2340 } 2341 2342 static int neightbl_valid_dump_info(const struct nlmsghdr *nlh, 2343 struct netlink_ext_ack *extack) 2344 { 2345 struct ndtmsg *ndtm; 2346 2347 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) { 2348 NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request"); 2349 return -EINVAL; 2350 } 2351 2352 ndtm = nlmsg_data(nlh); 2353 if (ndtm->ndtm_pad1 || ndtm->ndtm_pad2) { 2354 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request"); 2355 return -EINVAL; 2356 } 2357 2358 if (nlmsg_attrlen(nlh, sizeof(*ndtm))) { 2359 NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request"); 2360 return -EINVAL; 2361 } 2362 2363 return 0; 2364 } 2365 2366 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2367 { 2368 const struct nlmsghdr *nlh = cb->nlh; 2369 struct net *net = sock_net(skb->sk); 2370 int family, tidx, nidx = 0; 2371 int tbl_skip = cb->args[0]; 2372 int neigh_skip = cb->args[1]; 2373 struct neigh_table *tbl; 2374 2375 if (cb->strict_check) { 2376 int err = neightbl_valid_dump_info(nlh, cb->extack); 2377 2378 if (err < 0) 2379 return err; 2380 } 2381 2382 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2383 2384 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2385 struct neigh_parms *p; 2386 2387 tbl = neigh_tables[tidx]; 2388 if (!tbl) 2389 continue; 2390 2391 if (tidx < tbl_skip || (family && tbl->family != family)) 2392 continue; 2393 2394 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid, 2395 nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2396 NLM_F_MULTI) < 0) 2397 break; 2398 2399 nidx = 0; 2400 p = list_next_entry(&tbl->parms, list); 2401 list_for_each_entry_from(p, &tbl->parms_list, list) { 2402 if (!net_eq(neigh_parms_net(p), net)) 2403 continue; 2404 2405 if (nidx < neigh_skip) 2406 goto next; 2407 2408 if (neightbl_fill_param_info(skb, tbl, p, 2409 NETLINK_CB(cb->skb).portid, 2410 nlh->nlmsg_seq, 2411 RTM_NEWNEIGHTBL, 2412 NLM_F_MULTI) < 0) 2413 goto out; 2414 next: 2415 nidx++; 2416 } 2417 2418 neigh_skip = 0; 2419 } 2420 out: 2421 cb->args[0] = tidx; 2422 cb->args[1] = nidx; 2423 2424 return skb->len; 2425 } 2426 2427 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2428 u32 pid, u32 seq, int type, unsigned int flags) 2429 { 2430 unsigned long now = jiffies; 2431 struct nda_cacheinfo ci; 2432 struct nlmsghdr *nlh; 2433 struct ndmsg *ndm; 2434 2435 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2436 if (nlh == NULL) 2437 return -EMSGSIZE; 2438 2439 ndm = nlmsg_data(nlh); 2440 ndm->ndm_family = neigh->ops->family; 2441 ndm->ndm_pad1 = 0; 2442 ndm->ndm_pad2 = 0; 2443 ndm->ndm_flags = neigh->flags; 2444 ndm->ndm_type = neigh->type; 2445 ndm->ndm_ifindex = neigh->dev->ifindex; 2446 2447 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key)) 2448 goto nla_put_failure; 2449 2450 read_lock_bh(&neigh->lock); 2451 ndm->ndm_state = neigh->nud_state; 2452 if (neigh->nud_state & NUD_VALID) { 2453 char haddr[MAX_ADDR_LEN]; 2454 2455 neigh_ha_snapshot(haddr, neigh, neigh->dev); 2456 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { 2457 read_unlock_bh(&neigh->lock); 2458 goto nla_put_failure; 2459 } 2460 } 2461 2462 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2463 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2464 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2465 ci.ndm_refcnt = refcount_read(&neigh->refcnt) - 1; 2466 read_unlock_bh(&neigh->lock); 2467 2468 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) || 2469 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci)) 2470 goto nla_put_failure; 2471 2472 if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol)) 2473 goto nla_put_failure; 2474 2475 nlmsg_end(skb, nlh); 2476 return 0; 2477 2478 nla_put_failure: 2479 nlmsg_cancel(skb, nlh); 2480 return -EMSGSIZE; 2481 } 2482 2483 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, 2484 u32 pid, u32 seq, int type, unsigned int flags, 2485 struct neigh_table *tbl) 2486 { 2487 struct nlmsghdr *nlh; 2488 struct ndmsg *ndm; 2489 2490 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2491 if (nlh == NULL) 2492 return -EMSGSIZE; 2493 2494 ndm = nlmsg_data(nlh); 2495 ndm->ndm_family = tbl->family; 2496 ndm->ndm_pad1 = 0; 2497 ndm->ndm_pad2 = 0; 2498 ndm->ndm_flags = pn->flags | NTF_PROXY; 2499 ndm->ndm_type = RTN_UNICAST; 2500 ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0; 2501 ndm->ndm_state = NUD_NONE; 2502 2503 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key)) 2504 goto nla_put_failure; 2505 2506 if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol)) 2507 goto nla_put_failure; 2508 2509 nlmsg_end(skb, nlh); 2510 return 0; 2511 2512 nla_put_failure: 2513 nlmsg_cancel(skb, nlh); 2514 return -EMSGSIZE; 2515 } 2516 2517 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid) 2518 { 2519 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2520 __neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid); 2521 } 2522 2523 static bool neigh_master_filtered(struct net_device *dev, int master_idx) 2524 { 2525 struct net_device *master; 2526 2527 if (!master_idx) 2528 return false; 2529 2530 master = dev ? netdev_master_upper_dev_get(dev) : NULL; 2531 if (!master || master->ifindex != master_idx) 2532 return true; 2533 2534 return false; 2535 } 2536 2537 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx) 2538 { 2539 if (filter_idx && (!dev || dev->ifindex != filter_idx)) 2540 return true; 2541 2542 return false; 2543 } 2544 2545 struct neigh_dump_filter { 2546 int master_idx; 2547 int dev_idx; 2548 }; 2549 2550 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2551 struct netlink_callback *cb, 2552 struct neigh_dump_filter *filter) 2553 { 2554 struct net *net = sock_net(skb->sk); 2555 struct neighbour *n; 2556 int rc, h, s_h = cb->args[1]; 2557 int idx, s_idx = idx = cb->args[2]; 2558 struct neigh_hash_table *nht; 2559 unsigned int flags = NLM_F_MULTI; 2560 2561 if (filter->dev_idx || filter->master_idx) 2562 flags |= NLM_F_DUMP_FILTERED; 2563 2564 rcu_read_lock_bh(); 2565 nht = rcu_dereference_bh(tbl->nht); 2566 2567 for (h = s_h; h < (1 << nht->hash_shift); h++) { 2568 if (h > s_h) 2569 s_idx = 0; 2570 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; 2571 n != NULL; 2572 n = rcu_dereference_bh(n->next)) { 2573 if (idx < s_idx || !net_eq(dev_net(n->dev), net)) 2574 goto next; 2575 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2576 neigh_master_filtered(n->dev, filter->master_idx)) 2577 goto next; 2578 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2579 cb->nlh->nlmsg_seq, 2580 RTM_NEWNEIGH, 2581 flags) < 0) { 2582 rc = -1; 2583 goto out; 2584 } 2585 next: 2586 idx++; 2587 } 2588 } 2589 rc = skb->len; 2590 out: 2591 rcu_read_unlock_bh(); 2592 cb->args[1] = h; 2593 cb->args[2] = idx; 2594 return rc; 2595 } 2596 2597 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2598 struct netlink_callback *cb, 2599 struct neigh_dump_filter *filter) 2600 { 2601 struct pneigh_entry *n; 2602 struct net *net = sock_net(skb->sk); 2603 int rc, h, s_h = cb->args[3]; 2604 int idx, s_idx = idx = cb->args[4]; 2605 unsigned int flags = NLM_F_MULTI; 2606 2607 if (filter->dev_idx || filter->master_idx) 2608 flags |= NLM_F_DUMP_FILTERED; 2609 2610 read_lock_bh(&tbl->lock); 2611 2612 for (h = s_h; h <= PNEIGH_HASHMASK; h++) { 2613 if (h > s_h) 2614 s_idx = 0; 2615 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { 2616 if (idx < s_idx || pneigh_net(n) != net) 2617 goto next; 2618 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2619 neigh_master_filtered(n->dev, filter->master_idx)) 2620 goto next; 2621 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2622 cb->nlh->nlmsg_seq, 2623 RTM_NEWNEIGH, flags, tbl) < 0) { 2624 read_unlock_bh(&tbl->lock); 2625 rc = -1; 2626 goto out; 2627 } 2628 next: 2629 idx++; 2630 } 2631 } 2632 2633 read_unlock_bh(&tbl->lock); 2634 rc = skb->len; 2635 out: 2636 cb->args[3] = h; 2637 cb->args[4] = idx; 2638 return rc; 2639 2640 } 2641 2642 static int neigh_valid_dump_req(const struct nlmsghdr *nlh, 2643 bool strict_check, 2644 struct neigh_dump_filter *filter, 2645 struct netlink_ext_ack *extack) 2646 { 2647 struct nlattr *tb[NDA_MAX + 1]; 2648 int err, i; 2649 2650 if (strict_check) { 2651 struct ndmsg *ndm; 2652 2653 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2654 NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request"); 2655 return -EINVAL; 2656 } 2657 2658 ndm = nlmsg_data(nlh); 2659 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_ifindex || 2660 ndm->ndm_state || ndm->ndm_type) { 2661 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request"); 2662 return -EINVAL; 2663 } 2664 2665 if (ndm->ndm_flags & ~NTF_PROXY) { 2666 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request"); 2667 return -EINVAL; 2668 } 2669 2670 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), 2671 tb, NDA_MAX, nda_policy, 2672 extack); 2673 } else { 2674 err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb, 2675 NDA_MAX, nda_policy, extack); 2676 } 2677 if (err < 0) 2678 return err; 2679 2680 for (i = 0; i <= NDA_MAX; ++i) { 2681 if (!tb[i]) 2682 continue; 2683 2684 /* all new attributes should require strict_check */ 2685 switch (i) { 2686 case NDA_IFINDEX: 2687 filter->dev_idx = nla_get_u32(tb[i]); 2688 break; 2689 case NDA_MASTER: 2690 filter->master_idx = nla_get_u32(tb[i]); 2691 break; 2692 default: 2693 if (strict_check) { 2694 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request"); 2695 return -EINVAL; 2696 } 2697 } 2698 } 2699 2700 return 0; 2701 } 2702 2703 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2704 { 2705 const struct nlmsghdr *nlh = cb->nlh; 2706 struct neigh_dump_filter filter = {}; 2707 struct neigh_table *tbl; 2708 int t, family, s_t; 2709 int proxy = 0; 2710 int err; 2711 2712 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2713 2714 /* check for full ndmsg structure presence, family member is 2715 * the same for both structures 2716 */ 2717 if (nlmsg_len(nlh) >= sizeof(struct ndmsg) && 2718 ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY) 2719 proxy = 1; 2720 2721 err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack); 2722 if (err < 0 && cb->strict_check) 2723 return err; 2724 2725 s_t = cb->args[0]; 2726 2727 for (t = 0; t < NEIGH_NR_TABLES; t++) { 2728 tbl = neigh_tables[t]; 2729 2730 if (!tbl) 2731 continue; 2732 if (t < s_t || (family && tbl->family != family)) 2733 continue; 2734 if (t > s_t) 2735 memset(&cb->args[1], 0, sizeof(cb->args) - 2736 sizeof(cb->args[0])); 2737 if (proxy) 2738 err = pneigh_dump_table(tbl, skb, cb, &filter); 2739 else 2740 err = neigh_dump_table(tbl, skb, cb, &filter); 2741 if (err < 0) 2742 break; 2743 } 2744 2745 cb->args[0] = t; 2746 return skb->len; 2747 } 2748 2749 static int neigh_valid_get_req(const struct nlmsghdr *nlh, 2750 struct neigh_table **tbl, 2751 void **dst, int *dev_idx, u8 *ndm_flags, 2752 struct netlink_ext_ack *extack) 2753 { 2754 struct nlattr *tb[NDA_MAX + 1]; 2755 struct ndmsg *ndm; 2756 int err, i; 2757 2758 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2759 NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request"); 2760 return -EINVAL; 2761 } 2762 2763 ndm = nlmsg_data(nlh); 2764 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_state || 2765 ndm->ndm_type) { 2766 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request"); 2767 return -EINVAL; 2768 } 2769 2770 if (ndm->ndm_flags & ~NTF_PROXY) { 2771 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request"); 2772 return -EINVAL; 2773 } 2774 2775 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb, 2776 NDA_MAX, nda_policy, extack); 2777 if (err < 0) 2778 return err; 2779 2780 *ndm_flags = ndm->ndm_flags; 2781 *dev_idx = ndm->ndm_ifindex; 2782 *tbl = neigh_find_table(ndm->ndm_family); 2783 if (*tbl == NULL) { 2784 NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request"); 2785 return -EAFNOSUPPORT; 2786 } 2787 2788 for (i = 0; i <= NDA_MAX; ++i) { 2789 if (!tb[i]) 2790 continue; 2791 2792 switch (i) { 2793 case NDA_DST: 2794 if (nla_len(tb[i]) != (int)(*tbl)->key_len) { 2795 NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request"); 2796 return -EINVAL; 2797 } 2798 *dst = nla_data(tb[i]); 2799 break; 2800 default: 2801 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request"); 2802 return -EINVAL; 2803 } 2804 } 2805 2806 return 0; 2807 } 2808 2809 static inline size_t neigh_nlmsg_size(void) 2810 { 2811 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2812 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2813 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2814 + nla_total_size(sizeof(struct nda_cacheinfo)) 2815 + nla_total_size(4) /* NDA_PROBES */ 2816 + nla_total_size(1); /* NDA_PROTOCOL */ 2817 } 2818 2819 static int neigh_get_reply(struct net *net, struct neighbour *neigh, 2820 u32 pid, u32 seq) 2821 { 2822 struct sk_buff *skb; 2823 int err = 0; 2824 2825 skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL); 2826 if (!skb) 2827 return -ENOBUFS; 2828 2829 err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0); 2830 if (err) { 2831 kfree_skb(skb); 2832 goto errout; 2833 } 2834 2835 err = rtnl_unicast(skb, net, pid); 2836 errout: 2837 return err; 2838 } 2839 2840 static inline size_t pneigh_nlmsg_size(void) 2841 { 2842 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2843 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2844 + nla_total_size(1); /* NDA_PROTOCOL */ 2845 } 2846 2847 static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh, 2848 u32 pid, u32 seq, struct neigh_table *tbl) 2849 { 2850 struct sk_buff *skb; 2851 int err = 0; 2852 2853 skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL); 2854 if (!skb) 2855 return -ENOBUFS; 2856 2857 err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl); 2858 if (err) { 2859 kfree_skb(skb); 2860 goto errout; 2861 } 2862 2863 err = rtnl_unicast(skb, net, pid); 2864 errout: 2865 return err; 2866 } 2867 2868 static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh, 2869 struct netlink_ext_ack *extack) 2870 { 2871 struct net *net = sock_net(in_skb->sk); 2872 struct net_device *dev = NULL; 2873 struct neigh_table *tbl = NULL; 2874 struct neighbour *neigh; 2875 void *dst = NULL; 2876 u8 ndm_flags = 0; 2877 int dev_idx = 0; 2878 int err; 2879 2880 err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags, 2881 extack); 2882 if (err < 0) 2883 return err; 2884 2885 if (dev_idx) { 2886 dev = __dev_get_by_index(net, dev_idx); 2887 if (!dev) { 2888 NL_SET_ERR_MSG(extack, "Unknown device ifindex"); 2889 return -ENODEV; 2890 } 2891 } 2892 2893 if (!dst) { 2894 NL_SET_ERR_MSG(extack, "Network address not specified"); 2895 return -EINVAL; 2896 } 2897 2898 if (ndm_flags & NTF_PROXY) { 2899 struct pneigh_entry *pn; 2900 2901 pn = pneigh_lookup(tbl, net, dst, dev, 0); 2902 if (!pn) { 2903 NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found"); 2904 return -ENOENT; 2905 } 2906 return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid, 2907 nlh->nlmsg_seq, tbl); 2908 } 2909 2910 if (!dev) { 2911 NL_SET_ERR_MSG(extack, "No device specified"); 2912 return -EINVAL; 2913 } 2914 2915 neigh = neigh_lookup(tbl, dst, dev); 2916 if (!neigh) { 2917 NL_SET_ERR_MSG(extack, "Neighbour entry not found"); 2918 return -ENOENT; 2919 } 2920 2921 err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid, 2922 nlh->nlmsg_seq); 2923 2924 neigh_release(neigh); 2925 2926 return err; 2927 } 2928 2929 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2930 { 2931 int chain; 2932 struct neigh_hash_table *nht; 2933 2934 rcu_read_lock_bh(); 2935 nht = rcu_dereference_bh(tbl->nht); 2936 2937 read_lock(&tbl->lock); /* avoid resizes */ 2938 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2939 struct neighbour *n; 2940 2941 for (n = rcu_dereference_bh(nht->hash_buckets[chain]); 2942 n != NULL; 2943 n = rcu_dereference_bh(n->next)) 2944 cb(n, cookie); 2945 } 2946 read_unlock(&tbl->lock); 2947 rcu_read_unlock_bh(); 2948 } 2949 EXPORT_SYMBOL(neigh_for_each); 2950 2951 /* The tbl->lock must be held as a writer and BH disabled. */ 2952 void __neigh_for_each_release(struct neigh_table *tbl, 2953 int (*cb)(struct neighbour *)) 2954 { 2955 int chain; 2956 struct neigh_hash_table *nht; 2957 2958 nht = rcu_dereference_protected(tbl->nht, 2959 lockdep_is_held(&tbl->lock)); 2960 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2961 struct neighbour *n; 2962 struct neighbour __rcu **np; 2963 2964 np = &nht->hash_buckets[chain]; 2965 while ((n = rcu_dereference_protected(*np, 2966 lockdep_is_held(&tbl->lock))) != NULL) { 2967 int release; 2968 2969 write_lock(&n->lock); 2970 release = cb(n); 2971 if (release) { 2972 rcu_assign_pointer(*np, 2973 rcu_dereference_protected(n->next, 2974 lockdep_is_held(&tbl->lock))); 2975 neigh_mark_dead(n); 2976 } else 2977 np = &n->next; 2978 write_unlock(&n->lock); 2979 if (release) 2980 neigh_cleanup_and_release(n); 2981 } 2982 } 2983 } 2984 EXPORT_SYMBOL(__neigh_for_each_release); 2985 2986 int neigh_xmit(int index, struct net_device *dev, 2987 const void *addr, struct sk_buff *skb) 2988 { 2989 int err = -EAFNOSUPPORT; 2990 if (likely(index < NEIGH_NR_TABLES)) { 2991 struct neigh_table *tbl; 2992 struct neighbour *neigh; 2993 2994 tbl = neigh_tables[index]; 2995 if (!tbl) 2996 goto out; 2997 rcu_read_lock_bh(); 2998 if (index == NEIGH_ARP_TABLE) { 2999 u32 key = *((u32 *)addr); 3000 3001 neigh = __ipv4_neigh_lookup_noref(dev, key); 3002 } else { 3003 neigh = __neigh_lookup_noref(tbl, addr, dev); 3004 } 3005 if (!neigh) 3006 neigh = __neigh_create(tbl, addr, dev, false); 3007 err = PTR_ERR(neigh); 3008 if (IS_ERR(neigh)) { 3009 rcu_read_unlock_bh(); 3010 goto out_kfree_skb; 3011 } 3012 err = neigh->output(neigh, skb); 3013 rcu_read_unlock_bh(); 3014 } 3015 else if (index == NEIGH_LINK_TABLE) { 3016 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 3017 addr, NULL, skb->len); 3018 if (err < 0) 3019 goto out_kfree_skb; 3020 err = dev_queue_xmit(skb); 3021 } 3022 out: 3023 return err; 3024 out_kfree_skb: 3025 kfree_skb(skb); 3026 goto out; 3027 } 3028 EXPORT_SYMBOL(neigh_xmit); 3029 3030 #ifdef CONFIG_PROC_FS 3031 3032 static struct neighbour *neigh_get_first(struct seq_file *seq) 3033 { 3034 struct neigh_seq_state *state = seq->private; 3035 struct net *net = seq_file_net(seq); 3036 struct neigh_hash_table *nht = state->nht; 3037 struct neighbour *n = NULL; 3038 int bucket; 3039 3040 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 3041 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { 3042 n = rcu_dereference_bh(nht->hash_buckets[bucket]); 3043 3044 while (n) { 3045 if (!net_eq(dev_net(n->dev), net)) 3046 goto next; 3047 if (state->neigh_sub_iter) { 3048 loff_t fakep = 0; 3049 void *v; 3050 3051 v = state->neigh_sub_iter(state, n, &fakep); 3052 if (!v) 3053 goto next; 3054 } 3055 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3056 break; 3057 if (n->nud_state & ~NUD_NOARP) 3058 break; 3059 next: 3060 n = rcu_dereference_bh(n->next); 3061 } 3062 3063 if (n) 3064 break; 3065 } 3066 state->bucket = bucket; 3067 3068 return n; 3069 } 3070 3071 static struct neighbour *neigh_get_next(struct seq_file *seq, 3072 struct neighbour *n, 3073 loff_t *pos) 3074 { 3075 struct neigh_seq_state *state = seq->private; 3076 struct net *net = seq_file_net(seq); 3077 struct neigh_hash_table *nht = state->nht; 3078 3079 if (state->neigh_sub_iter) { 3080 void *v = state->neigh_sub_iter(state, n, pos); 3081 if (v) 3082 return n; 3083 } 3084 n = rcu_dereference_bh(n->next); 3085 3086 while (1) { 3087 while (n) { 3088 if (!net_eq(dev_net(n->dev), net)) 3089 goto next; 3090 if (state->neigh_sub_iter) { 3091 void *v = state->neigh_sub_iter(state, n, pos); 3092 if (v) 3093 return n; 3094 goto next; 3095 } 3096 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3097 break; 3098 3099 if (n->nud_state & ~NUD_NOARP) 3100 break; 3101 next: 3102 n = rcu_dereference_bh(n->next); 3103 } 3104 3105 if (n) 3106 break; 3107 3108 if (++state->bucket >= (1 << nht->hash_shift)) 3109 break; 3110 3111 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); 3112 } 3113 3114 if (n && pos) 3115 --(*pos); 3116 return n; 3117 } 3118 3119 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 3120 { 3121 struct neighbour *n = neigh_get_first(seq); 3122 3123 if (n) { 3124 --(*pos); 3125 while (*pos) { 3126 n = neigh_get_next(seq, n, pos); 3127 if (!n) 3128 break; 3129 } 3130 } 3131 return *pos ? NULL : n; 3132 } 3133 3134 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 3135 { 3136 struct neigh_seq_state *state = seq->private; 3137 struct net *net = seq_file_net(seq); 3138 struct neigh_table *tbl = state->tbl; 3139 struct pneigh_entry *pn = NULL; 3140 int bucket; 3141 3142 state->flags |= NEIGH_SEQ_IS_PNEIGH; 3143 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 3144 pn = tbl->phash_buckets[bucket]; 3145 while (pn && !net_eq(pneigh_net(pn), net)) 3146 pn = pn->next; 3147 if (pn) 3148 break; 3149 } 3150 state->bucket = bucket; 3151 3152 return pn; 3153 } 3154 3155 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 3156 struct pneigh_entry *pn, 3157 loff_t *pos) 3158 { 3159 struct neigh_seq_state *state = seq->private; 3160 struct net *net = seq_file_net(seq); 3161 struct neigh_table *tbl = state->tbl; 3162 3163 do { 3164 pn = pn->next; 3165 } while (pn && !net_eq(pneigh_net(pn), net)); 3166 3167 while (!pn) { 3168 if (++state->bucket > PNEIGH_HASHMASK) 3169 break; 3170 pn = tbl->phash_buckets[state->bucket]; 3171 while (pn && !net_eq(pneigh_net(pn), net)) 3172 pn = pn->next; 3173 if (pn) 3174 break; 3175 } 3176 3177 if (pn && pos) 3178 --(*pos); 3179 3180 return pn; 3181 } 3182 3183 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 3184 { 3185 struct pneigh_entry *pn = pneigh_get_first(seq); 3186 3187 if (pn) { 3188 --(*pos); 3189 while (*pos) { 3190 pn = pneigh_get_next(seq, pn, pos); 3191 if (!pn) 3192 break; 3193 } 3194 } 3195 return *pos ? NULL : pn; 3196 } 3197 3198 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 3199 { 3200 struct neigh_seq_state *state = seq->private; 3201 void *rc; 3202 loff_t idxpos = *pos; 3203 3204 rc = neigh_get_idx(seq, &idxpos); 3205 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3206 rc = pneigh_get_idx(seq, &idxpos); 3207 3208 return rc; 3209 } 3210 3211 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 3212 __acquires(tbl->lock) 3213 __acquires(rcu_bh) 3214 { 3215 struct neigh_seq_state *state = seq->private; 3216 3217 state->tbl = tbl; 3218 state->bucket = 0; 3219 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 3220 3221 rcu_read_lock_bh(); 3222 state->nht = rcu_dereference_bh(tbl->nht); 3223 read_lock(&tbl->lock); 3224 3225 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 3226 } 3227 EXPORT_SYMBOL(neigh_seq_start); 3228 3229 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3230 { 3231 struct neigh_seq_state *state; 3232 void *rc; 3233 3234 if (v == SEQ_START_TOKEN) { 3235 rc = neigh_get_first(seq); 3236 goto out; 3237 } 3238 3239 state = seq->private; 3240 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 3241 rc = neigh_get_next(seq, v, NULL); 3242 if (rc) 3243 goto out; 3244 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3245 rc = pneigh_get_first(seq); 3246 } else { 3247 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 3248 rc = pneigh_get_next(seq, v, NULL); 3249 } 3250 out: 3251 ++(*pos); 3252 return rc; 3253 } 3254 EXPORT_SYMBOL(neigh_seq_next); 3255 3256 void neigh_seq_stop(struct seq_file *seq, void *v) 3257 __releases(tbl->lock) 3258 __releases(rcu_bh) 3259 { 3260 struct neigh_seq_state *state = seq->private; 3261 struct neigh_table *tbl = state->tbl; 3262 3263 read_unlock(&tbl->lock); 3264 rcu_read_unlock_bh(); 3265 } 3266 EXPORT_SYMBOL(neigh_seq_stop); 3267 3268 /* statistics via seq_file */ 3269 3270 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 3271 { 3272 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3273 int cpu; 3274 3275 if (*pos == 0) 3276 return SEQ_START_TOKEN; 3277 3278 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 3279 if (!cpu_possible(cpu)) 3280 continue; 3281 *pos = cpu+1; 3282 return per_cpu_ptr(tbl->stats, cpu); 3283 } 3284 return NULL; 3285 } 3286 3287 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3288 { 3289 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3290 int cpu; 3291 3292 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 3293 if (!cpu_possible(cpu)) 3294 continue; 3295 *pos = cpu+1; 3296 return per_cpu_ptr(tbl->stats, cpu); 3297 } 3298 (*pos)++; 3299 return NULL; 3300 } 3301 3302 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 3303 { 3304 3305 } 3306 3307 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 3308 { 3309 struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); 3310 struct neigh_statistics *st = v; 3311 3312 if (v == SEQ_START_TOKEN) { 3313 seq_puts(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n"); 3314 return 0; 3315 } 3316 3317 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 3318 "%08lx %08lx %08lx " 3319 "%08lx %08lx %08lx\n", 3320 atomic_read(&tbl->entries), 3321 3322 st->allocs, 3323 st->destroys, 3324 st->hash_grows, 3325 3326 st->lookups, 3327 st->hits, 3328 3329 st->res_failed, 3330 3331 st->rcv_probes_mcast, 3332 st->rcv_probes_ucast, 3333 3334 st->periodic_gc_runs, 3335 st->forced_gc_runs, 3336 st->unres_discards, 3337 st->table_fulls 3338 ); 3339 3340 return 0; 3341 } 3342 3343 static const struct seq_operations neigh_stat_seq_ops = { 3344 .start = neigh_stat_seq_start, 3345 .next = neigh_stat_seq_next, 3346 .stop = neigh_stat_seq_stop, 3347 .show = neigh_stat_seq_show, 3348 }; 3349 #endif /* CONFIG_PROC_FS */ 3350 3351 static void __neigh_notify(struct neighbour *n, int type, int flags, 3352 u32 pid) 3353 { 3354 struct net *net = dev_net(n->dev); 3355 struct sk_buff *skb; 3356 int err = -ENOBUFS; 3357 3358 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 3359 if (skb == NULL) 3360 goto errout; 3361 3362 err = neigh_fill_info(skb, n, pid, 0, type, flags); 3363 if (err < 0) { 3364 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 3365 WARN_ON(err == -EMSGSIZE); 3366 kfree_skb(skb); 3367 goto errout; 3368 } 3369 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 3370 return; 3371 errout: 3372 if (err < 0) 3373 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 3374 } 3375 3376 void neigh_app_ns(struct neighbour *n) 3377 { 3378 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0); 3379 } 3380 EXPORT_SYMBOL(neigh_app_ns); 3381 3382 #ifdef CONFIG_SYSCTL 3383 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN); 3384 3385 static int proc_unres_qlen(struct ctl_table *ctl, int write, 3386 void *buffer, size_t *lenp, loff_t *ppos) 3387 { 3388 int size, ret; 3389 struct ctl_table tmp = *ctl; 3390 3391 tmp.extra1 = SYSCTL_ZERO; 3392 tmp.extra2 = &unres_qlen_max; 3393 tmp.data = &size; 3394 3395 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN); 3396 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3397 3398 if (write && !ret) 3399 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); 3400 return ret; 3401 } 3402 3403 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev, 3404 int family) 3405 { 3406 switch (family) { 3407 case AF_INET: 3408 return __in_dev_arp_parms_get_rcu(dev); 3409 case AF_INET6: 3410 return __in6_dev_nd_parms_get_rcu(dev); 3411 } 3412 return NULL; 3413 } 3414 3415 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p, 3416 int index) 3417 { 3418 struct net_device *dev; 3419 int family = neigh_parms_family(p); 3420 3421 rcu_read_lock(); 3422 for_each_netdev_rcu(net, dev) { 3423 struct neigh_parms *dst_p = 3424 neigh_get_dev_parms_rcu(dev, family); 3425 3426 if (dst_p && !test_bit(index, dst_p->data_state)) 3427 dst_p->data[index] = p->data[index]; 3428 } 3429 rcu_read_unlock(); 3430 } 3431 3432 static void neigh_proc_update(struct ctl_table *ctl, int write) 3433 { 3434 struct net_device *dev = ctl->extra1; 3435 struct neigh_parms *p = ctl->extra2; 3436 struct net *net = neigh_parms_net(p); 3437 int index = (int *) ctl->data - p->data; 3438 3439 if (!write) 3440 return; 3441 3442 set_bit(index, p->data_state); 3443 if (index == NEIGH_VAR_DELAY_PROBE_TIME) 3444 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 3445 if (!dev) /* NULL dev means this is default value */ 3446 neigh_copy_dflt_parms(net, p, index); 3447 } 3448 3449 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write, 3450 void *buffer, size_t *lenp, 3451 loff_t *ppos) 3452 { 3453 struct ctl_table tmp = *ctl; 3454 int ret; 3455 3456 tmp.extra1 = SYSCTL_ZERO; 3457 tmp.extra2 = SYSCTL_INT_MAX; 3458 3459 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3460 neigh_proc_update(ctl, write); 3461 return ret; 3462 } 3463 3464 int neigh_proc_dointvec(struct ctl_table *ctl, int write, void *buffer, 3465 size_t *lenp, loff_t *ppos) 3466 { 3467 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 3468 3469 neigh_proc_update(ctl, write); 3470 return ret; 3471 } 3472 EXPORT_SYMBOL(neigh_proc_dointvec); 3473 3474 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, void *buffer, 3475 size_t *lenp, loff_t *ppos) 3476 { 3477 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3478 3479 neigh_proc_update(ctl, write); 3480 return ret; 3481 } 3482 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies); 3483 3484 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write, 3485 void *buffer, size_t *lenp, 3486 loff_t *ppos) 3487 { 3488 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos); 3489 3490 neigh_proc_update(ctl, write); 3491 return ret; 3492 } 3493 3494 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write, 3495 void *buffer, size_t *lenp, loff_t *ppos) 3496 { 3497 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3498 3499 neigh_proc_update(ctl, write); 3500 return ret; 3501 } 3502 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies); 3503 3504 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write, 3505 void *buffer, size_t *lenp, 3506 loff_t *ppos) 3507 { 3508 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos); 3509 3510 neigh_proc_update(ctl, write); 3511 return ret; 3512 } 3513 3514 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write, 3515 void *buffer, size_t *lenp, 3516 loff_t *ppos) 3517 { 3518 struct neigh_parms *p = ctl->extra2; 3519 int ret; 3520 3521 if (strcmp(ctl->procname, "base_reachable_time") == 0) 3522 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3523 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0) 3524 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3525 else 3526 ret = -1; 3527 3528 if (write && ret == 0) { 3529 /* update reachable_time as well, otherwise, the change will 3530 * only be effective after the next time neigh_periodic_work 3531 * decides to recompute it 3532 */ 3533 p->reachable_time = 3534 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 3535 } 3536 return ret; 3537 } 3538 3539 #define NEIGH_PARMS_DATA_OFFSET(index) \ 3540 (&((struct neigh_parms *) 0)->data[index]) 3541 3542 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \ 3543 [NEIGH_VAR_ ## attr] = { \ 3544 .procname = name, \ 3545 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \ 3546 .maxlen = sizeof(int), \ 3547 .mode = mval, \ 3548 .proc_handler = proc, \ 3549 } 3550 3551 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \ 3552 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax) 3553 3554 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \ 3555 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies) 3556 3557 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \ 3558 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies) 3559 3560 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \ 3561 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies) 3562 3563 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \ 3564 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen) 3565 3566 static struct neigh_sysctl_table { 3567 struct ctl_table_header *sysctl_header; 3568 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1]; 3569 } neigh_sysctl_template __read_mostly = { 3570 .neigh_vars = { 3571 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"), 3572 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"), 3573 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"), 3574 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"), 3575 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"), 3576 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"), 3577 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"), 3578 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"), 3579 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"), 3580 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"), 3581 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"), 3582 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"), 3583 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"), 3584 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"), 3585 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"), 3586 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"), 3587 [NEIGH_VAR_GC_INTERVAL] = { 3588 .procname = "gc_interval", 3589 .maxlen = sizeof(int), 3590 .mode = 0644, 3591 .proc_handler = proc_dointvec_jiffies, 3592 }, 3593 [NEIGH_VAR_GC_THRESH1] = { 3594 .procname = "gc_thresh1", 3595 .maxlen = sizeof(int), 3596 .mode = 0644, 3597 .extra1 = SYSCTL_ZERO, 3598 .extra2 = SYSCTL_INT_MAX, 3599 .proc_handler = proc_dointvec_minmax, 3600 }, 3601 [NEIGH_VAR_GC_THRESH2] = { 3602 .procname = "gc_thresh2", 3603 .maxlen = sizeof(int), 3604 .mode = 0644, 3605 .extra1 = SYSCTL_ZERO, 3606 .extra2 = SYSCTL_INT_MAX, 3607 .proc_handler = proc_dointvec_minmax, 3608 }, 3609 [NEIGH_VAR_GC_THRESH3] = { 3610 .procname = "gc_thresh3", 3611 .maxlen = sizeof(int), 3612 .mode = 0644, 3613 .extra1 = SYSCTL_ZERO, 3614 .extra2 = SYSCTL_INT_MAX, 3615 .proc_handler = proc_dointvec_minmax, 3616 }, 3617 {}, 3618 }, 3619 }; 3620 3621 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 3622 proc_handler *handler) 3623 { 3624 int i; 3625 struct neigh_sysctl_table *t; 3626 const char *dev_name_source; 3627 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ]; 3628 char *p_name; 3629 3630 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 3631 if (!t) 3632 goto err; 3633 3634 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) { 3635 t->neigh_vars[i].data += (long) p; 3636 t->neigh_vars[i].extra1 = dev; 3637 t->neigh_vars[i].extra2 = p; 3638 } 3639 3640 if (dev) { 3641 dev_name_source = dev->name; 3642 /* Terminate the table early */ 3643 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0, 3644 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL])); 3645 } else { 3646 struct neigh_table *tbl = p->tbl; 3647 dev_name_source = "default"; 3648 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval; 3649 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1; 3650 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2; 3651 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3; 3652 } 3653 3654 if (handler) { 3655 /* RetransTime */ 3656 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; 3657 /* ReachableTime */ 3658 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; 3659 /* RetransTime (in milliseconds)*/ 3660 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; 3661 /* ReachableTime (in milliseconds) */ 3662 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; 3663 } else { 3664 /* Those handlers will update p->reachable_time after 3665 * base_reachable_time(_ms) is set to ensure the new timer starts being 3666 * applied after the next neighbour update instead of waiting for 3667 * neigh_periodic_work to update its value (can be multiple minutes) 3668 * So any handler that replaces them should do this as well 3669 */ 3670 /* ReachableTime */ 3671 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = 3672 neigh_proc_base_reachable_time; 3673 /* ReachableTime (in milliseconds) */ 3674 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = 3675 neigh_proc_base_reachable_time; 3676 } 3677 3678 /* Don't export sysctls to unprivileged users */ 3679 if (neigh_parms_net(p)->user_ns != &init_user_ns) 3680 t->neigh_vars[0].procname = NULL; 3681 3682 switch (neigh_parms_family(p)) { 3683 case AF_INET: 3684 p_name = "ipv4"; 3685 break; 3686 case AF_INET6: 3687 p_name = "ipv6"; 3688 break; 3689 default: 3690 BUG(); 3691 } 3692 3693 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s", 3694 p_name, dev_name_source); 3695 t->sysctl_header = 3696 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars); 3697 if (!t->sysctl_header) 3698 goto free; 3699 3700 p->sysctl_table = t; 3701 return 0; 3702 3703 free: 3704 kfree(t); 3705 err: 3706 return -ENOBUFS; 3707 } 3708 EXPORT_SYMBOL(neigh_sysctl_register); 3709 3710 void neigh_sysctl_unregister(struct neigh_parms *p) 3711 { 3712 if (p->sysctl_table) { 3713 struct neigh_sysctl_table *t = p->sysctl_table; 3714 p->sysctl_table = NULL; 3715 unregister_net_sysctl_table(t->sysctl_header); 3716 kfree(t); 3717 } 3718 } 3719 EXPORT_SYMBOL(neigh_sysctl_unregister); 3720 3721 #endif /* CONFIG_SYSCTL */ 3722 3723 static int __init neigh_init(void) 3724 { 3725 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0); 3726 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0); 3727 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info, 0); 3728 3729 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, 3730 0); 3731 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0); 3732 3733 return 0; 3734 } 3735 3736 subsys_initcall(neigh_init); 3737