xref: /openbmc/linux/net/core/flow_dissector.c (revision f4356947f0297b0962fdd197672db7edf9f58be6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <linux/filter.h>
9 #include <net/dsa.h>
10 #include <net/dst_metadata.h>
11 #include <net/ip.h>
12 #include <net/ipv6.h>
13 #include <net/gre.h>
14 #include <net/pptp.h>
15 #include <net/tipc.h>
16 #include <linux/igmp.h>
17 #include <linux/icmp.h>
18 #include <linux/sctp.h>
19 #include <linux/dccp.h>
20 #include <linux/if_tunnel.h>
21 #include <linux/if_pppox.h>
22 #include <linux/ppp_defs.h>
23 #include <linux/stddef.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_hsr.h>
26 #include <linux/mpls.h>
27 #include <linux/tcp.h>
28 #include <linux/ptp_classify.h>
29 #include <net/flow_dissector.h>
30 #include <net/pkt_cls.h>
31 #include <scsi/fc/fc_fcoe.h>
32 #include <uapi/linux/batadv_packet.h>
33 #include <linux/bpf.h>
34 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
35 #include <net/netfilter/nf_conntrack_core.h>
36 #include <net/netfilter/nf_conntrack_labels.h>
37 #endif
38 #include <linux/bpf-netns.h>
39 
40 static void dissector_set_key(struct flow_dissector *flow_dissector,
41 			      enum flow_dissector_key_id key_id)
42 {
43 	flow_dissector->used_keys |= (1 << key_id);
44 }
45 
46 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
47 			     const struct flow_dissector_key *key,
48 			     unsigned int key_count)
49 {
50 	unsigned int i;
51 
52 	memset(flow_dissector, 0, sizeof(*flow_dissector));
53 
54 	for (i = 0; i < key_count; i++, key++) {
55 		/* User should make sure that every key target offset is within
56 		 * boundaries of unsigned short.
57 		 */
58 		BUG_ON(key->offset > USHRT_MAX);
59 		BUG_ON(dissector_uses_key(flow_dissector,
60 					  key->key_id));
61 
62 		dissector_set_key(flow_dissector, key->key_id);
63 		flow_dissector->offset[key->key_id] = key->offset;
64 	}
65 
66 	/* Ensure that the dissector always includes control and basic key.
67 	 * That way we are able to avoid handling lack of these in fast path.
68 	 */
69 	BUG_ON(!dissector_uses_key(flow_dissector,
70 				   FLOW_DISSECTOR_KEY_CONTROL));
71 	BUG_ON(!dissector_uses_key(flow_dissector,
72 				   FLOW_DISSECTOR_KEY_BASIC));
73 }
74 EXPORT_SYMBOL(skb_flow_dissector_init);
75 
76 #ifdef CONFIG_BPF_SYSCALL
77 int flow_dissector_bpf_prog_attach_check(struct net *net,
78 					 struct bpf_prog *prog)
79 {
80 	enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
81 
82 	if (net == &init_net) {
83 		/* BPF flow dissector in the root namespace overrides
84 		 * any per-net-namespace one. When attaching to root,
85 		 * make sure we don't have any BPF program attached
86 		 * to the non-root namespaces.
87 		 */
88 		struct net *ns;
89 
90 		for_each_net(ns) {
91 			if (ns == &init_net)
92 				continue;
93 			if (rcu_access_pointer(ns->bpf.run_array[type]))
94 				return -EEXIST;
95 		}
96 	} else {
97 		/* Make sure root flow dissector is not attached
98 		 * when attaching to the non-root namespace.
99 		 */
100 		if (rcu_access_pointer(init_net.bpf.run_array[type]))
101 			return -EEXIST;
102 	}
103 
104 	return 0;
105 }
106 #endif /* CONFIG_BPF_SYSCALL */
107 
108 /**
109  * __skb_flow_get_ports - extract the upper layer ports and return them
110  * @skb: sk_buff to extract the ports from
111  * @thoff: transport header offset
112  * @ip_proto: protocol for which to get port offset
113  * @data: raw buffer pointer to the packet, if NULL use skb->data
114  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
115  *
116  * The function will try to retrieve the ports at offset thoff + poff where poff
117  * is the protocol port offset returned from proto_ports_offset
118  */
119 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
120 			    const void *data, int hlen)
121 {
122 	int poff = proto_ports_offset(ip_proto);
123 
124 	if (!data) {
125 		data = skb->data;
126 		hlen = skb_headlen(skb);
127 	}
128 
129 	if (poff >= 0) {
130 		__be32 *ports, _ports;
131 
132 		ports = __skb_header_pointer(skb, thoff + poff,
133 					     sizeof(_ports), data, hlen, &_ports);
134 		if (ports)
135 			return *ports;
136 	}
137 
138 	return 0;
139 }
140 EXPORT_SYMBOL(__skb_flow_get_ports);
141 
142 static bool icmp_has_id(u8 type)
143 {
144 	switch (type) {
145 	case ICMP_ECHO:
146 	case ICMP_ECHOREPLY:
147 	case ICMP_TIMESTAMP:
148 	case ICMP_TIMESTAMPREPLY:
149 	case ICMPV6_ECHO_REQUEST:
150 	case ICMPV6_ECHO_REPLY:
151 		return true;
152 	}
153 
154 	return false;
155 }
156 
157 /**
158  * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
159  * @skb: sk_buff to extract from
160  * @key_icmp: struct flow_dissector_key_icmp to fill
161  * @data: raw buffer pointer to the packet
162  * @thoff: offset to extract at
163  * @hlen: packet header length
164  */
165 void skb_flow_get_icmp_tci(const struct sk_buff *skb,
166 			   struct flow_dissector_key_icmp *key_icmp,
167 			   const void *data, int thoff, int hlen)
168 {
169 	struct icmphdr *ih, _ih;
170 
171 	ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
172 	if (!ih)
173 		return;
174 
175 	key_icmp->type = ih->type;
176 	key_icmp->code = ih->code;
177 
178 	/* As we use 0 to signal that the Id field is not present,
179 	 * avoid confusion with packets without such field
180 	 */
181 	if (icmp_has_id(ih->type))
182 		key_icmp->id = ih->un.echo.id ? ntohs(ih->un.echo.id) : 1;
183 	else
184 		key_icmp->id = 0;
185 }
186 EXPORT_SYMBOL(skb_flow_get_icmp_tci);
187 
188 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
189  * using skb_flow_get_icmp_tci().
190  */
191 static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
192 				    struct flow_dissector *flow_dissector,
193 				    void *target_container, const void *data,
194 				    int thoff, int hlen)
195 {
196 	struct flow_dissector_key_icmp *key_icmp;
197 
198 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
199 		return;
200 
201 	key_icmp = skb_flow_dissector_target(flow_dissector,
202 					     FLOW_DISSECTOR_KEY_ICMP,
203 					     target_container);
204 
205 	skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
206 }
207 
208 static void __skb_flow_dissect_l2tpv3(const struct sk_buff *skb,
209 				      struct flow_dissector *flow_dissector,
210 				      void *target_container, const void *data,
211 				      int nhoff, int hlen)
212 {
213 	struct flow_dissector_key_l2tpv3 *key_l2tpv3;
214 	struct {
215 		__be32 session_id;
216 	} *hdr, _hdr;
217 
218 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_L2TPV3))
219 		return;
220 
221 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
222 	if (!hdr)
223 		return;
224 
225 	key_l2tpv3 = skb_flow_dissector_target(flow_dissector,
226 					       FLOW_DISSECTOR_KEY_L2TPV3,
227 					       target_container);
228 
229 	key_l2tpv3->session_id = hdr->session_id;
230 }
231 
232 void skb_flow_dissect_meta(const struct sk_buff *skb,
233 			   struct flow_dissector *flow_dissector,
234 			   void *target_container)
235 {
236 	struct flow_dissector_key_meta *meta;
237 
238 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
239 		return;
240 
241 	meta = skb_flow_dissector_target(flow_dissector,
242 					 FLOW_DISSECTOR_KEY_META,
243 					 target_container);
244 	meta->ingress_ifindex = skb->skb_iif;
245 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
246 	if (tc_skb_ext_tc_enabled()) {
247 		struct tc_skb_ext *ext;
248 
249 		ext = skb_ext_find(skb, TC_SKB_EXT);
250 		if (ext)
251 			meta->l2_miss = ext->l2_miss;
252 	}
253 #endif
254 }
255 EXPORT_SYMBOL(skb_flow_dissect_meta);
256 
257 static void
258 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
259 				   struct flow_dissector *flow_dissector,
260 				   void *target_container)
261 {
262 	struct flow_dissector_key_control *ctrl;
263 
264 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
265 		return;
266 
267 	ctrl = skb_flow_dissector_target(flow_dissector,
268 					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
269 					 target_container);
270 	ctrl->addr_type = type;
271 }
272 
273 void
274 skb_flow_dissect_ct(const struct sk_buff *skb,
275 		    struct flow_dissector *flow_dissector,
276 		    void *target_container, u16 *ctinfo_map,
277 		    size_t mapsize, bool post_ct, u16 zone)
278 {
279 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
280 	struct flow_dissector_key_ct *key;
281 	enum ip_conntrack_info ctinfo;
282 	struct nf_conn_labels *cl;
283 	struct nf_conn *ct;
284 
285 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
286 		return;
287 
288 	ct = nf_ct_get(skb, &ctinfo);
289 	if (!ct && !post_ct)
290 		return;
291 
292 	key = skb_flow_dissector_target(flow_dissector,
293 					FLOW_DISSECTOR_KEY_CT,
294 					target_container);
295 
296 	if (!ct) {
297 		key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
298 				TCA_FLOWER_KEY_CT_FLAGS_INVALID;
299 		key->ct_zone = zone;
300 		return;
301 	}
302 
303 	if (ctinfo < mapsize)
304 		key->ct_state = ctinfo_map[ctinfo];
305 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
306 	key->ct_zone = ct->zone.id;
307 #endif
308 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
309 	key->ct_mark = READ_ONCE(ct->mark);
310 #endif
311 
312 	cl = nf_ct_labels_find(ct);
313 	if (cl)
314 		memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
315 #endif /* CONFIG_NF_CONNTRACK */
316 }
317 EXPORT_SYMBOL(skb_flow_dissect_ct);
318 
319 void
320 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
321 			     struct flow_dissector *flow_dissector,
322 			     void *target_container)
323 {
324 	struct ip_tunnel_info *info;
325 	struct ip_tunnel_key *key;
326 
327 	/* A quick check to see if there might be something to do. */
328 	if (!dissector_uses_key(flow_dissector,
329 				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
330 	    !dissector_uses_key(flow_dissector,
331 				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
332 	    !dissector_uses_key(flow_dissector,
333 				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
334 	    !dissector_uses_key(flow_dissector,
335 				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
336 	    !dissector_uses_key(flow_dissector,
337 				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
338 	    !dissector_uses_key(flow_dissector,
339 				FLOW_DISSECTOR_KEY_ENC_IP) &&
340 	    !dissector_uses_key(flow_dissector,
341 				FLOW_DISSECTOR_KEY_ENC_OPTS))
342 		return;
343 
344 	info = skb_tunnel_info(skb);
345 	if (!info)
346 		return;
347 
348 	key = &info->key;
349 
350 	switch (ip_tunnel_info_af(info)) {
351 	case AF_INET:
352 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
353 						   flow_dissector,
354 						   target_container);
355 		if (dissector_uses_key(flow_dissector,
356 				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
357 			struct flow_dissector_key_ipv4_addrs *ipv4;
358 
359 			ipv4 = skb_flow_dissector_target(flow_dissector,
360 							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
361 							 target_container);
362 			ipv4->src = key->u.ipv4.src;
363 			ipv4->dst = key->u.ipv4.dst;
364 		}
365 		break;
366 	case AF_INET6:
367 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
368 						   flow_dissector,
369 						   target_container);
370 		if (dissector_uses_key(flow_dissector,
371 				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
372 			struct flow_dissector_key_ipv6_addrs *ipv6;
373 
374 			ipv6 = skb_flow_dissector_target(flow_dissector,
375 							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
376 							 target_container);
377 			ipv6->src = key->u.ipv6.src;
378 			ipv6->dst = key->u.ipv6.dst;
379 		}
380 		break;
381 	}
382 
383 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
384 		struct flow_dissector_key_keyid *keyid;
385 
386 		keyid = skb_flow_dissector_target(flow_dissector,
387 						  FLOW_DISSECTOR_KEY_ENC_KEYID,
388 						  target_container);
389 		keyid->keyid = tunnel_id_to_key32(key->tun_id);
390 	}
391 
392 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
393 		struct flow_dissector_key_ports *tp;
394 
395 		tp = skb_flow_dissector_target(flow_dissector,
396 					       FLOW_DISSECTOR_KEY_ENC_PORTS,
397 					       target_container);
398 		tp->src = key->tp_src;
399 		tp->dst = key->tp_dst;
400 	}
401 
402 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
403 		struct flow_dissector_key_ip *ip;
404 
405 		ip = skb_flow_dissector_target(flow_dissector,
406 					       FLOW_DISSECTOR_KEY_ENC_IP,
407 					       target_container);
408 		ip->tos = key->tos;
409 		ip->ttl = key->ttl;
410 	}
411 
412 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
413 		struct flow_dissector_key_enc_opts *enc_opt;
414 
415 		enc_opt = skb_flow_dissector_target(flow_dissector,
416 						    FLOW_DISSECTOR_KEY_ENC_OPTS,
417 						    target_container);
418 
419 		if (info->options_len) {
420 			enc_opt->len = info->options_len;
421 			ip_tunnel_info_opts_get(enc_opt->data, info);
422 			enc_opt->dst_opt_type = info->key.tun_flags &
423 						TUNNEL_OPTIONS_PRESENT;
424 		}
425 	}
426 }
427 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
428 
429 void skb_flow_dissect_hash(const struct sk_buff *skb,
430 			   struct flow_dissector *flow_dissector,
431 			   void *target_container)
432 {
433 	struct flow_dissector_key_hash *key;
434 
435 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH))
436 		return;
437 
438 	key = skb_flow_dissector_target(flow_dissector,
439 					FLOW_DISSECTOR_KEY_HASH,
440 					target_container);
441 
442 	key->hash = skb_get_hash_raw(skb);
443 }
444 EXPORT_SYMBOL(skb_flow_dissect_hash);
445 
446 static enum flow_dissect_ret
447 __skb_flow_dissect_mpls(const struct sk_buff *skb,
448 			struct flow_dissector *flow_dissector,
449 			void *target_container, const void *data, int nhoff,
450 			int hlen, int lse_index, bool *entropy_label)
451 {
452 	struct mpls_label *hdr, _hdr;
453 	u32 entry, label, bos;
454 
455 	if (!dissector_uses_key(flow_dissector,
456 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
457 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
458 		return FLOW_DISSECT_RET_OUT_GOOD;
459 
460 	if (lse_index >= FLOW_DIS_MPLS_MAX)
461 		return FLOW_DISSECT_RET_OUT_GOOD;
462 
463 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
464 				   hlen, &_hdr);
465 	if (!hdr)
466 		return FLOW_DISSECT_RET_OUT_BAD;
467 
468 	entry = ntohl(hdr->entry);
469 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
470 	bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT;
471 
472 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
473 		struct flow_dissector_key_mpls *key_mpls;
474 		struct flow_dissector_mpls_lse *lse;
475 
476 		key_mpls = skb_flow_dissector_target(flow_dissector,
477 						     FLOW_DISSECTOR_KEY_MPLS,
478 						     target_container);
479 		lse = &key_mpls->ls[lse_index];
480 
481 		lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
482 		lse->mpls_bos = bos;
483 		lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT;
484 		lse->mpls_label = label;
485 		dissector_set_mpls_lse(key_mpls, lse_index);
486 	}
487 
488 	if (*entropy_label &&
489 	    dissector_uses_key(flow_dissector,
490 			       FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
491 		struct flow_dissector_key_keyid *key_keyid;
492 
493 		key_keyid = skb_flow_dissector_target(flow_dissector,
494 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
495 						      target_container);
496 		key_keyid->keyid = cpu_to_be32(label);
497 	}
498 
499 	*entropy_label = label == MPLS_LABEL_ENTROPY;
500 
501 	return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN;
502 }
503 
504 static enum flow_dissect_ret
505 __skb_flow_dissect_arp(const struct sk_buff *skb,
506 		       struct flow_dissector *flow_dissector,
507 		       void *target_container, const void *data,
508 		       int nhoff, int hlen)
509 {
510 	struct flow_dissector_key_arp *key_arp;
511 	struct {
512 		unsigned char ar_sha[ETH_ALEN];
513 		unsigned char ar_sip[4];
514 		unsigned char ar_tha[ETH_ALEN];
515 		unsigned char ar_tip[4];
516 	} *arp_eth, _arp_eth;
517 	const struct arphdr *arp;
518 	struct arphdr _arp;
519 
520 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
521 		return FLOW_DISSECT_RET_OUT_GOOD;
522 
523 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
524 				   hlen, &_arp);
525 	if (!arp)
526 		return FLOW_DISSECT_RET_OUT_BAD;
527 
528 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
529 	    arp->ar_pro != htons(ETH_P_IP) ||
530 	    arp->ar_hln != ETH_ALEN ||
531 	    arp->ar_pln != 4 ||
532 	    (arp->ar_op != htons(ARPOP_REPLY) &&
533 	     arp->ar_op != htons(ARPOP_REQUEST)))
534 		return FLOW_DISSECT_RET_OUT_BAD;
535 
536 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
537 				       sizeof(_arp_eth), data,
538 				       hlen, &_arp_eth);
539 	if (!arp_eth)
540 		return FLOW_DISSECT_RET_OUT_BAD;
541 
542 	key_arp = skb_flow_dissector_target(flow_dissector,
543 					    FLOW_DISSECTOR_KEY_ARP,
544 					    target_container);
545 
546 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
547 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
548 
549 	/* Only store the lower byte of the opcode;
550 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
551 	 */
552 	key_arp->op = ntohs(arp->ar_op) & 0xff;
553 
554 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
555 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
556 
557 	return FLOW_DISSECT_RET_OUT_GOOD;
558 }
559 
560 static enum flow_dissect_ret
561 __skb_flow_dissect_gre(const struct sk_buff *skb,
562 		       struct flow_dissector_key_control *key_control,
563 		       struct flow_dissector *flow_dissector,
564 		       void *target_container, const void *data,
565 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
566 		       unsigned int flags)
567 {
568 	struct flow_dissector_key_keyid *key_keyid;
569 	struct gre_base_hdr *hdr, _hdr;
570 	int offset = 0;
571 	u16 gre_ver;
572 
573 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
574 				   data, *p_hlen, &_hdr);
575 	if (!hdr)
576 		return FLOW_DISSECT_RET_OUT_BAD;
577 
578 	/* Only look inside GRE without routing */
579 	if (hdr->flags & GRE_ROUTING)
580 		return FLOW_DISSECT_RET_OUT_GOOD;
581 
582 	/* Only look inside GRE for version 0 and 1 */
583 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
584 	if (gre_ver > 1)
585 		return FLOW_DISSECT_RET_OUT_GOOD;
586 
587 	*p_proto = hdr->protocol;
588 	if (gre_ver) {
589 		/* Version1 must be PPTP, and check the flags */
590 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
591 			return FLOW_DISSECT_RET_OUT_GOOD;
592 	}
593 
594 	offset += sizeof(struct gre_base_hdr);
595 
596 	if (hdr->flags & GRE_CSUM)
597 		offset += sizeof_field(struct gre_full_hdr, csum) +
598 			  sizeof_field(struct gre_full_hdr, reserved1);
599 
600 	if (hdr->flags & GRE_KEY) {
601 		const __be32 *keyid;
602 		__be32 _keyid;
603 
604 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
605 					     sizeof(_keyid),
606 					     data, *p_hlen, &_keyid);
607 		if (!keyid)
608 			return FLOW_DISSECT_RET_OUT_BAD;
609 
610 		if (dissector_uses_key(flow_dissector,
611 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
612 			key_keyid = skb_flow_dissector_target(flow_dissector,
613 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
614 							      target_container);
615 			if (gre_ver == 0)
616 				key_keyid->keyid = *keyid;
617 			else
618 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
619 		}
620 		offset += sizeof_field(struct gre_full_hdr, key);
621 	}
622 
623 	if (hdr->flags & GRE_SEQ)
624 		offset += sizeof_field(struct pptp_gre_header, seq);
625 
626 	if (gre_ver == 0) {
627 		if (*p_proto == htons(ETH_P_TEB)) {
628 			const struct ethhdr *eth;
629 			struct ethhdr _eth;
630 
631 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
632 						   sizeof(_eth),
633 						   data, *p_hlen, &_eth);
634 			if (!eth)
635 				return FLOW_DISSECT_RET_OUT_BAD;
636 			*p_proto = eth->h_proto;
637 			offset += sizeof(*eth);
638 
639 			/* Cap headers that we access via pointers at the
640 			 * end of the Ethernet header as our maximum alignment
641 			 * at that point is only 2 bytes.
642 			 */
643 			if (NET_IP_ALIGN)
644 				*p_hlen = *p_nhoff + offset;
645 		}
646 	} else { /* version 1, must be PPTP */
647 		u8 _ppp_hdr[PPP_HDRLEN];
648 		u8 *ppp_hdr;
649 
650 		if (hdr->flags & GRE_ACK)
651 			offset += sizeof_field(struct pptp_gre_header, ack);
652 
653 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
654 					       sizeof(_ppp_hdr),
655 					       data, *p_hlen, _ppp_hdr);
656 		if (!ppp_hdr)
657 			return FLOW_DISSECT_RET_OUT_BAD;
658 
659 		switch (PPP_PROTOCOL(ppp_hdr)) {
660 		case PPP_IP:
661 			*p_proto = htons(ETH_P_IP);
662 			break;
663 		case PPP_IPV6:
664 			*p_proto = htons(ETH_P_IPV6);
665 			break;
666 		default:
667 			/* Could probably catch some more like MPLS */
668 			break;
669 		}
670 
671 		offset += PPP_HDRLEN;
672 	}
673 
674 	*p_nhoff += offset;
675 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
676 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
677 		return FLOW_DISSECT_RET_OUT_GOOD;
678 
679 	return FLOW_DISSECT_RET_PROTO_AGAIN;
680 }
681 
682 /**
683  * __skb_flow_dissect_batadv() - dissect batman-adv header
684  * @skb: sk_buff to with the batman-adv header
685  * @key_control: flow dissectors control key
686  * @data: raw buffer pointer to the packet, if NULL use skb->data
687  * @p_proto: pointer used to update the protocol to process next
688  * @p_nhoff: pointer used to update inner network header offset
689  * @hlen: packet header length
690  * @flags: any combination of FLOW_DISSECTOR_F_*
691  *
692  * ETH_P_BATMAN packets are tried to be dissected. Only
693  * &struct batadv_unicast packets are actually processed because they contain an
694  * inner ethernet header and are usually followed by actual network header. This
695  * allows the flow dissector to continue processing the packet.
696  *
697  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
698  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
699  *  otherwise FLOW_DISSECT_RET_OUT_BAD
700  */
701 static enum flow_dissect_ret
702 __skb_flow_dissect_batadv(const struct sk_buff *skb,
703 			  struct flow_dissector_key_control *key_control,
704 			  const void *data, __be16 *p_proto, int *p_nhoff,
705 			  int hlen, unsigned int flags)
706 {
707 	struct {
708 		struct batadv_unicast_packet batadv_unicast;
709 		struct ethhdr eth;
710 	} *hdr, _hdr;
711 
712 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
713 				   &_hdr);
714 	if (!hdr)
715 		return FLOW_DISSECT_RET_OUT_BAD;
716 
717 	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
718 		return FLOW_DISSECT_RET_OUT_BAD;
719 
720 	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
721 		return FLOW_DISSECT_RET_OUT_BAD;
722 
723 	*p_proto = hdr->eth.h_proto;
724 	*p_nhoff += sizeof(*hdr);
725 
726 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
727 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
728 		return FLOW_DISSECT_RET_OUT_GOOD;
729 
730 	return FLOW_DISSECT_RET_PROTO_AGAIN;
731 }
732 
733 static void
734 __skb_flow_dissect_tcp(const struct sk_buff *skb,
735 		       struct flow_dissector *flow_dissector,
736 		       void *target_container, const void *data,
737 		       int thoff, int hlen)
738 {
739 	struct flow_dissector_key_tcp *key_tcp;
740 	struct tcphdr *th, _th;
741 
742 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
743 		return;
744 
745 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
746 	if (!th)
747 		return;
748 
749 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
750 		return;
751 
752 	key_tcp = skb_flow_dissector_target(flow_dissector,
753 					    FLOW_DISSECTOR_KEY_TCP,
754 					    target_container);
755 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
756 }
757 
758 static void
759 __skb_flow_dissect_ports(const struct sk_buff *skb,
760 			 struct flow_dissector *flow_dissector,
761 			 void *target_container, const void *data,
762 			 int nhoff, u8 ip_proto, int hlen)
763 {
764 	enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
765 	struct flow_dissector_key_ports *key_ports;
766 
767 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
768 		dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
769 	else if (dissector_uses_key(flow_dissector,
770 				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
771 		dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
772 
773 	if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
774 		return;
775 
776 	key_ports = skb_flow_dissector_target(flow_dissector,
777 					      dissector_ports,
778 					      target_container);
779 	key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
780 						data, hlen);
781 }
782 
783 static void
784 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
785 			struct flow_dissector *flow_dissector,
786 			void *target_container, const void *data,
787 			const struct iphdr *iph)
788 {
789 	struct flow_dissector_key_ip *key_ip;
790 
791 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
792 		return;
793 
794 	key_ip = skb_flow_dissector_target(flow_dissector,
795 					   FLOW_DISSECTOR_KEY_IP,
796 					   target_container);
797 	key_ip->tos = iph->tos;
798 	key_ip->ttl = iph->ttl;
799 }
800 
801 static void
802 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
803 			struct flow_dissector *flow_dissector,
804 			void *target_container, const void *data,
805 			const struct ipv6hdr *iph)
806 {
807 	struct flow_dissector_key_ip *key_ip;
808 
809 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
810 		return;
811 
812 	key_ip = skb_flow_dissector_target(flow_dissector,
813 					   FLOW_DISSECTOR_KEY_IP,
814 					   target_container);
815 	key_ip->tos = ipv6_get_dsfield(iph);
816 	key_ip->ttl = iph->hop_limit;
817 }
818 
819 /* Maximum number of protocol headers that can be parsed in
820  * __skb_flow_dissect
821  */
822 #define MAX_FLOW_DISSECT_HDRS	15
823 
824 static bool skb_flow_dissect_allowed(int *num_hdrs)
825 {
826 	++*num_hdrs;
827 
828 	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
829 }
830 
831 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
832 				     struct flow_dissector *flow_dissector,
833 				     void *target_container)
834 {
835 	struct flow_dissector_key_ports *key_ports = NULL;
836 	struct flow_dissector_key_control *key_control;
837 	struct flow_dissector_key_basic *key_basic;
838 	struct flow_dissector_key_addrs *key_addrs;
839 	struct flow_dissector_key_tags *key_tags;
840 
841 	key_control = skb_flow_dissector_target(flow_dissector,
842 						FLOW_DISSECTOR_KEY_CONTROL,
843 						target_container);
844 	key_control->thoff = flow_keys->thoff;
845 	if (flow_keys->is_frag)
846 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
847 	if (flow_keys->is_first_frag)
848 		key_control->flags |= FLOW_DIS_FIRST_FRAG;
849 	if (flow_keys->is_encap)
850 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
851 
852 	key_basic = skb_flow_dissector_target(flow_dissector,
853 					      FLOW_DISSECTOR_KEY_BASIC,
854 					      target_container);
855 	key_basic->n_proto = flow_keys->n_proto;
856 	key_basic->ip_proto = flow_keys->ip_proto;
857 
858 	if (flow_keys->addr_proto == ETH_P_IP &&
859 	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
860 		key_addrs = skb_flow_dissector_target(flow_dissector,
861 						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
862 						      target_container);
863 		key_addrs->v4addrs.src = flow_keys->ipv4_src;
864 		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
865 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
866 	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
867 		   dissector_uses_key(flow_dissector,
868 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
869 		key_addrs = skb_flow_dissector_target(flow_dissector,
870 						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
871 						      target_container);
872 		memcpy(&key_addrs->v6addrs.src, &flow_keys->ipv6_src,
873 		       sizeof(key_addrs->v6addrs.src));
874 		memcpy(&key_addrs->v6addrs.dst, &flow_keys->ipv6_dst,
875 		       sizeof(key_addrs->v6addrs.dst));
876 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
877 	}
878 
879 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
880 		key_ports = skb_flow_dissector_target(flow_dissector,
881 						      FLOW_DISSECTOR_KEY_PORTS,
882 						      target_container);
883 	else if (dissector_uses_key(flow_dissector,
884 				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
885 		key_ports = skb_flow_dissector_target(flow_dissector,
886 						      FLOW_DISSECTOR_KEY_PORTS_RANGE,
887 						      target_container);
888 
889 	if (key_ports) {
890 		key_ports->src = flow_keys->sport;
891 		key_ports->dst = flow_keys->dport;
892 	}
893 
894 	if (dissector_uses_key(flow_dissector,
895 			       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
896 		key_tags = skb_flow_dissector_target(flow_dissector,
897 						     FLOW_DISSECTOR_KEY_FLOW_LABEL,
898 						     target_container);
899 		key_tags->flow_label = ntohl(flow_keys->flow_label);
900 	}
901 }
902 
903 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
904 		     __be16 proto, int nhoff, int hlen, unsigned int flags)
905 {
906 	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
907 	u32 result;
908 
909 	/* Pass parameters to the BPF program */
910 	memset(flow_keys, 0, sizeof(*flow_keys));
911 	flow_keys->n_proto = proto;
912 	flow_keys->nhoff = nhoff;
913 	flow_keys->thoff = flow_keys->nhoff;
914 
915 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
916 		     (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
917 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
918 		     (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
919 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
920 		     (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
921 	flow_keys->flags = flags;
922 
923 	result = bpf_prog_run_pin_on_cpu(prog, ctx);
924 
925 	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
926 	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
927 				   flow_keys->nhoff, hlen);
928 
929 	return result;
930 }
931 
932 static bool is_pppoe_ses_hdr_valid(const struct pppoe_hdr *hdr)
933 {
934 	return hdr->ver == 1 && hdr->type == 1 && hdr->code == 0;
935 }
936 
937 /**
938  * __skb_flow_dissect - extract the flow_keys struct and return it
939  * @net: associated network namespace, derived from @skb if NULL
940  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
941  * @flow_dissector: list of keys to dissect
942  * @target_container: target structure to put dissected values into
943  * @data: raw buffer pointer to the packet, if NULL use skb->data
944  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
945  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
946  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
947  * @flags: flags that control the dissection process, e.g.
948  *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
949  *
950  * The function will try to retrieve individual keys into target specified
951  * by flow_dissector from either the skbuff or a raw buffer specified by the
952  * rest parameters.
953  *
954  * Caller must take care of zeroing target container memory.
955  */
956 bool __skb_flow_dissect(const struct net *net,
957 			const struct sk_buff *skb,
958 			struct flow_dissector *flow_dissector,
959 			void *target_container, const void *data,
960 			__be16 proto, int nhoff, int hlen, unsigned int flags)
961 {
962 	struct flow_dissector_key_control *key_control;
963 	struct flow_dissector_key_basic *key_basic;
964 	struct flow_dissector_key_addrs *key_addrs;
965 	struct flow_dissector_key_tags *key_tags;
966 	struct flow_dissector_key_vlan *key_vlan;
967 	enum flow_dissect_ret fdret;
968 	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
969 	bool mpls_el = false;
970 	int mpls_lse = 0;
971 	int num_hdrs = 0;
972 	u8 ip_proto = 0;
973 	bool ret;
974 
975 	if (!data) {
976 		data = skb->data;
977 		proto = skb_vlan_tag_present(skb) ?
978 			 skb->vlan_proto : skb->protocol;
979 		nhoff = skb_network_offset(skb);
980 		hlen = skb_headlen(skb);
981 #if IS_ENABLED(CONFIG_NET_DSA)
982 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
983 			     proto == htons(ETH_P_XDSA))) {
984 			struct metadata_dst *md_dst = skb_metadata_dst(skb);
985 			const struct dsa_device_ops *ops;
986 			int offset = 0;
987 
988 			ops = skb->dev->dsa_ptr->tag_ops;
989 			/* Only DSA header taggers break flow dissection */
990 			if (ops->needed_headroom &&
991 			    (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)) {
992 				if (ops->flow_dissect)
993 					ops->flow_dissect(skb, &proto, &offset);
994 				else
995 					dsa_tag_generic_flow_dissect(skb,
996 								     &proto,
997 								     &offset);
998 				hlen -= offset;
999 				nhoff += offset;
1000 			}
1001 		}
1002 #endif
1003 	}
1004 
1005 	/* It is ensured by skb_flow_dissector_init() that control key will
1006 	 * be always present.
1007 	 */
1008 	key_control = skb_flow_dissector_target(flow_dissector,
1009 						FLOW_DISSECTOR_KEY_CONTROL,
1010 						target_container);
1011 
1012 	/* It is ensured by skb_flow_dissector_init() that basic key will
1013 	 * be always present.
1014 	 */
1015 	key_basic = skb_flow_dissector_target(flow_dissector,
1016 					      FLOW_DISSECTOR_KEY_BASIC,
1017 					      target_container);
1018 
1019 	if (skb) {
1020 		if (!net) {
1021 			if (skb->dev)
1022 				net = dev_net(skb->dev);
1023 			else if (skb->sk)
1024 				net = sock_net(skb->sk);
1025 		}
1026 	}
1027 
1028 	WARN_ON_ONCE(!net);
1029 	if (net) {
1030 		enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
1031 		struct bpf_prog_array *run_array;
1032 
1033 		rcu_read_lock();
1034 		run_array = rcu_dereference(init_net.bpf.run_array[type]);
1035 		if (!run_array)
1036 			run_array = rcu_dereference(net->bpf.run_array[type]);
1037 
1038 		if (run_array) {
1039 			struct bpf_flow_keys flow_keys;
1040 			struct bpf_flow_dissector ctx = {
1041 				.flow_keys = &flow_keys,
1042 				.data = data,
1043 				.data_end = data + hlen,
1044 			};
1045 			__be16 n_proto = proto;
1046 			struct bpf_prog *prog;
1047 			u32 result;
1048 
1049 			if (skb) {
1050 				ctx.skb = skb;
1051 				/* we can't use 'proto' in the skb case
1052 				 * because it might be set to skb->vlan_proto
1053 				 * which has been pulled from the data
1054 				 */
1055 				n_proto = skb->protocol;
1056 			}
1057 
1058 			prog = READ_ONCE(run_array->items[0].prog);
1059 			result = bpf_flow_dissect(prog, &ctx, n_proto, nhoff,
1060 						  hlen, flags);
1061 			if (result == BPF_FLOW_DISSECTOR_CONTINUE)
1062 				goto dissect_continue;
1063 			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
1064 						 target_container);
1065 			rcu_read_unlock();
1066 			return result == BPF_OK;
1067 		}
1068 dissect_continue:
1069 		rcu_read_unlock();
1070 	}
1071 
1072 	if (dissector_uses_key(flow_dissector,
1073 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1074 		struct ethhdr *eth = eth_hdr(skb);
1075 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
1076 
1077 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
1078 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
1079 							  target_container);
1080 		memcpy(key_eth_addrs, eth, sizeof(*key_eth_addrs));
1081 	}
1082 
1083 	if (dissector_uses_key(flow_dissector,
1084 			       FLOW_DISSECTOR_KEY_NUM_OF_VLANS)) {
1085 		struct flow_dissector_key_num_of_vlans *key_num_of_vlans;
1086 
1087 		key_num_of_vlans = skb_flow_dissector_target(flow_dissector,
1088 							     FLOW_DISSECTOR_KEY_NUM_OF_VLANS,
1089 							     target_container);
1090 		key_num_of_vlans->num_of_vlans = 0;
1091 	}
1092 
1093 proto_again:
1094 	fdret = FLOW_DISSECT_RET_CONTINUE;
1095 
1096 	switch (proto) {
1097 	case htons(ETH_P_IP): {
1098 		const struct iphdr *iph;
1099 		struct iphdr _iph;
1100 
1101 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1102 		if (!iph || iph->ihl < 5) {
1103 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1104 			break;
1105 		}
1106 
1107 		nhoff += iph->ihl * 4;
1108 
1109 		ip_proto = iph->protocol;
1110 
1111 		if (dissector_uses_key(flow_dissector,
1112 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1113 			key_addrs = skb_flow_dissector_target(flow_dissector,
1114 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1115 							      target_container);
1116 
1117 			memcpy(&key_addrs->v4addrs.src, &iph->saddr,
1118 			       sizeof(key_addrs->v4addrs.src));
1119 			memcpy(&key_addrs->v4addrs.dst, &iph->daddr,
1120 			       sizeof(key_addrs->v4addrs.dst));
1121 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1122 		}
1123 
1124 		__skb_flow_dissect_ipv4(skb, flow_dissector,
1125 					target_container, data, iph);
1126 
1127 		if (ip_is_fragment(iph)) {
1128 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1129 
1130 			if (iph->frag_off & htons(IP_OFFSET)) {
1131 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1132 				break;
1133 			} else {
1134 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
1135 				if (!(flags &
1136 				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1137 					fdret = FLOW_DISSECT_RET_OUT_GOOD;
1138 					break;
1139 				}
1140 			}
1141 		}
1142 
1143 		break;
1144 	}
1145 	case htons(ETH_P_IPV6): {
1146 		const struct ipv6hdr *iph;
1147 		struct ipv6hdr _iph;
1148 
1149 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1150 		if (!iph) {
1151 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1152 			break;
1153 		}
1154 
1155 		ip_proto = iph->nexthdr;
1156 		nhoff += sizeof(struct ipv6hdr);
1157 
1158 		if (dissector_uses_key(flow_dissector,
1159 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1160 			key_addrs = skb_flow_dissector_target(flow_dissector,
1161 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1162 							      target_container);
1163 
1164 			memcpy(&key_addrs->v6addrs.src, &iph->saddr,
1165 			       sizeof(key_addrs->v6addrs.src));
1166 			memcpy(&key_addrs->v6addrs.dst, &iph->daddr,
1167 			       sizeof(key_addrs->v6addrs.dst));
1168 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1169 		}
1170 
1171 		if ((dissector_uses_key(flow_dissector,
1172 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1173 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1174 		    ip6_flowlabel(iph)) {
1175 			__be32 flow_label = ip6_flowlabel(iph);
1176 
1177 			if (dissector_uses_key(flow_dissector,
1178 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1179 				key_tags = skb_flow_dissector_target(flow_dissector,
1180 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
1181 								     target_container);
1182 				key_tags->flow_label = ntohl(flow_label);
1183 			}
1184 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1185 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1186 				break;
1187 			}
1188 		}
1189 
1190 		__skb_flow_dissect_ipv6(skb, flow_dissector,
1191 					target_container, data, iph);
1192 
1193 		break;
1194 	}
1195 	case htons(ETH_P_8021AD):
1196 	case htons(ETH_P_8021Q): {
1197 		const struct vlan_hdr *vlan = NULL;
1198 		struct vlan_hdr _vlan;
1199 		__be16 saved_vlan_tpid = proto;
1200 
1201 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1202 		    skb && skb_vlan_tag_present(skb)) {
1203 			proto = skb->protocol;
1204 		} else {
1205 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1206 						    data, hlen, &_vlan);
1207 			if (!vlan) {
1208 				fdret = FLOW_DISSECT_RET_OUT_BAD;
1209 				break;
1210 			}
1211 
1212 			proto = vlan->h_vlan_encapsulated_proto;
1213 			nhoff += sizeof(*vlan);
1214 		}
1215 
1216 		if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_NUM_OF_VLANS) &&
1217 		    !(key_control->flags & FLOW_DIS_ENCAPSULATION)) {
1218 			struct flow_dissector_key_num_of_vlans *key_nvs;
1219 
1220 			key_nvs = skb_flow_dissector_target(flow_dissector,
1221 							    FLOW_DISSECTOR_KEY_NUM_OF_VLANS,
1222 							    target_container);
1223 			key_nvs->num_of_vlans++;
1224 		}
1225 
1226 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1227 			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1228 		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1229 			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1230 		} else {
1231 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1232 			break;
1233 		}
1234 
1235 		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1236 			key_vlan = skb_flow_dissector_target(flow_dissector,
1237 							     dissector_vlan,
1238 							     target_container);
1239 
1240 			if (!vlan) {
1241 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1242 				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1243 			} else {
1244 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1245 					VLAN_VID_MASK;
1246 				key_vlan->vlan_priority =
1247 					(ntohs(vlan->h_vlan_TCI) &
1248 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1249 			}
1250 			key_vlan->vlan_tpid = saved_vlan_tpid;
1251 			key_vlan->vlan_eth_type = proto;
1252 		}
1253 
1254 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1255 		break;
1256 	}
1257 	case htons(ETH_P_PPP_SES): {
1258 		struct {
1259 			struct pppoe_hdr hdr;
1260 			__be16 proto;
1261 		} *hdr, _hdr;
1262 		u16 ppp_proto;
1263 
1264 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1265 		if (!hdr) {
1266 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1267 			break;
1268 		}
1269 
1270 		if (!is_pppoe_ses_hdr_valid(&hdr->hdr)) {
1271 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1272 			break;
1273 		}
1274 
1275 		/* least significant bit of the most significant octet
1276 		 * indicates if protocol field was compressed
1277 		 */
1278 		ppp_proto = ntohs(hdr->proto);
1279 		if (ppp_proto & 0x0100) {
1280 			ppp_proto = ppp_proto >> 8;
1281 			nhoff += PPPOE_SES_HLEN - 1;
1282 		} else {
1283 			nhoff += PPPOE_SES_HLEN;
1284 		}
1285 
1286 		if (ppp_proto == PPP_IP) {
1287 			proto = htons(ETH_P_IP);
1288 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1289 		} else if (ppp_proto == PPP_IPV6) {
1290 			proto = htons(ETH_P_IPV6);
1291 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1292 		} else if (ppp_proto == PPP_MPLS_UC) {
1293 			proto = htons(ETH_P_MPLS_UC);
1294 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1295 		} else if (ppp_proto == PPP_MPLS_MC) {
1296 			proto = htons(ETH_P_MPLS_MC);
1297 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1298 		} else if (ppp_proto_is_valid(ppp_proto)) {
1299 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1300 		} else {
1301 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1302 			break;
1303 		}
1304 
1305 		if (dissector_uses_key(flow_dissector,
1306 				       FLOW_DISSECTOR_KEY_PPPOE)) {
1307 			struct flow_dissector_key_pppoe *key_pppoe;
1308 
1309 			key_pppoe = skb_flow_dissector_target(flow_dissector,
1310 							      FLOW_DISSECTOR_KEY_PPPOE,
1311 							      target_container);
1312 			key_pppoe->session_id = hdr->hdr.sid;
1313 			key_pppoe->ppp_proto = htons(ppp_proto);
1314 			key_pppoe->type = htons(ETH_P_PPP_SES);
1315 		}
1316 		break;
1317 	}
1318 	case htons(ETH_P_TIPC): {
1319 		struct tipc_basic_hdr *hdr, _hdr;
1320 
1321 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1322 					   data, hlen, &_hdr);
1323 		if (!hdr) {
1324 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1325 			break;
1326 		}
1327 
1328 		if (dissector_uses_key(flow_dissector,
1329 				       FLOW_DISSECTOR_KEY_TIPC)) {
1330 			key_addrs = skb_flow_dissector_target(flow_dissector,
1331 							      FLOW_DISSECTOR_KEY_TIPC,
1332 							      target_container);
1333 			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1334 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1335 		}
1336 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1337 		break;
1338 	}
1339 
1340 	case htons(ETH_P_MPLS_UC):
1341 	case htons(ETH_P_MPLS_MC):
1342 		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1343 						target_container, data,
1344 						nhoff, hlen, mpls_lse,
1345 						&mpls_el);
1346 		nhoff += sizeof(struct mpls_label);
1347 		mpls_lse++;
1348 		break;
1349 	case htons(ETH_P_FCOE):
1350 		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1351 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1352 			break;
1353 		}
1354 
1355 		nhoff += FCOE_HEADER_LEN;
1356 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1357 		break;
1358 
1359 	case htons(ETH_P_ARP):
1360 	case htons(ETH_P_RARP):
1361 		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1362 					       target_container, data,
1363 					       nhoff, hlen);
1364 		break;
1365 
1366 	case htons(ETH_P_BATMAN):
1367 		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1368 						  &proto, &nhoff, hlen, flags);
1369 		break;
1370 
1371 	case htons(ETH_P_1588): {
1372 		struct ptp_header *hdr, _hdr;
1373 
1374 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
1375 					   hlen, &_hdr);
1376 		if (!hdr) {
1377 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1378 			break;
1379 		}
1380 
1381 		nhoff += ntohs(hdr->message_length);
1382 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1383 		break;
1384 	}
1385 
1386 	case htons(ETH_P_PRP):
1387 	case htons(ETH_P_HSR): {
1388 		struct hsr_tag *hdr, _hdr;
1389 
1390 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen,
1391 					   &_hdr);
1392 		if (!hdr) {
1393 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1394 			break;
1395 		}
1396 
1397 		proto = hdr->encap_proto;
1398 		nhoff += HSR_HLEN;
1399 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1400 		break;
1401 	}
1402 
1403 	default:
1404 		fdret = FLOW_DISSECT_RET_OUT_BAD;
1405 		break;
1406 	}
1407 
1408 	/* Process result of proto processing */
1409 	switch (fdret) {
1410 	case FLOW_DISSECT_RET_OUT_GOOD:
1411 		goto out_good;
1412 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1413 		if (skb_flow_dissect_allowed(&num_hdrs))
1414 			goto proto_again;
1415 		goto out_good;
1416 	case FLOW_DISSECT_RET_CONTINUE:
1417 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1418 		break;
1419 	case FLOW_DISSECT_RET_OUT_BAD:
1420 	default:
1421 		goto out_bad;
1422 	}
1423 
1424 ip_proto_again:
1425 	fdret = FLOW_DISSECT_RET_CONTINUE;
1426 
1427 	switch (ip_proto) {
1428 	case IPPROTO_GRE:
1429 		if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
1430 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1431 			break;
1432 		}
1433 
1434 		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1435 					       target_container, data,
1436 					       &proto, &nhoff, &hlen, flags);
1437 		break;
1438 
1439 	case NEXTHDR_HOP:
1440 	case NEXTHDR_ROUTING:
1441 	case NEXTHDR_DEST: {
1442 		u8 _opthdr[2], *opthdr;
1443 
1444 		if (proto != htons(ETH_P_IPV6))
1445 			break;
1446 
1447 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1448 					      data, hlen, &_opthdr);
1449 		if (!opthdr) {
1450 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1451 			break;
1452 		}
1453 
1454 		ip_proto = opthdr[0];
1455 		nhoff += (opthdr[1] + 1) << 3;
1456 
1457 		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1458 		break;
1459 	}
1460 	case NEXTHDR_FRAGMENT: {
1461 		struct frag_hdr _fh, *fh;
1462 
1463 		if (proto != htons(ETH_P_IPV6))
1464 			break;
1465 
1466 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1467 					  data, hlen, &_fh);
1468 
1469 		if (!fh) {
1470 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1471 			break;
1472 		}
1473 
1474 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1475 
1476 		nhoff += sizeof(_fh);
1477 		ip_proto = fh->nexthdr;
1478 
1479 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1480 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1481 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1482 				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1483 				break;
1484 			}
1485 		}
1486 
1487 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1488 		break;
1489 	}
1490 	case IPPROTO_IPIP:
1491 		if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
1492 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1493 			break;
1494 		}
1495 
1496 		proto = htons(ETH_P_IP);
1497 
1498 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1499 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1500 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1501 			break;
1502 		}
1503 
1504 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1505 		break;
1506 
1507 	case IPPROTO_IPV6:
1508 		if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
1509 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1510 			break;
1511 		}
1512 
1513 		proto = htons(ETH_P_IPV6);
1514 
1515 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1516 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1517 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1518 			break;
1519 		}
1520 
1521 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1522 		break;
1523 
1524 
1525 	case IPPROTO_MPLS:
1526 		proto = htons(ETH_P_MPLS_UC);
1527 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1528 		break;
1529 
1530 	case IPPROTO_TCP:
1531 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1532 				       data, nhoff, hlen);
1533 		break;
1534 
1535 	case IPPROTO_ICMP:
1536 	case IPPROTO_ICMPV6:
1537 		__skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1538 					data, nhoff, hlen);
1539 		break;
1540 	case IPPROTO_L2TP:
1541 		__skb_flow_dissect_l2tpv3(skb, flow_dissector, target_container,
1542 					  data, nhoff, hlen);
1543 		break;
1544 
1545 	default:
1546 		break;
1547 	}
1548 
1549 	if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
1550 		__skb_flow_dissect_ports(skb, flow_dissector, target_container,
1551 					 data, nhoff, ip_proto, hlen);
1552 
1553 	/* Process result of IP proto processing */
1554 	switch (fdret) {
1555 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1556 		if (skb_flow_dissect_allowed(&num_hdrs))
1557 			goto proto_again;
1558 		break;
1559 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1560 		if (skb_flow_dissect_allowed(&num_hdrs))
1561 			goto ip_proto_again;
1562 		break;
1563 	case FLOW_DISSECT_RET_OUT_GOOD:
1564 	case FLOW_DISSECT_RET_CONTINUE:
1565 		break;
1566 	case FLOW_DISSECT_RET_OUT_BAD:
1567 	default:
1568 		goto out_bad;
1569 	}
1570 
1571 out_good:
1572 	ret = true;
1573 
1574 out:
1575 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1576 	key_basic->n_proto = proto;
1577 	key_basic->ip_proto = ip_proto;
1578 
1579 	return ret;
1580 
1581 out_bad:
1582 	ret = false;
1583 	goto out;
1584 }
1585 EXPORT_SYMBOL(__skb_flow_dissect);
1586 
1587 static siphash_aligned_key_t hashrnd;
1588 static __always_inline void __flow_hash_secret_init(void)
1589 {
1590 	net_get_random_once(&hashrnd, sizeof(hashrnd));
1591 }
1592 
1593 static const void *flow_keys_hash_start(const struct flow_keys *flow)
1594 {
1595 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1596 	return &flow->FLOW_KEYS_HASH_START_FIELD;
1597 }
1598 
1599 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1600 {
1601 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1602 
1603 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1604 
1605 	switch (flow->control.addr_type) {
1606 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1607 		diff -= sizeof(flow->addrs.v4addrs);
1608 		break;
1609 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1610 		diff -= sizeof(flow->addrs.v6addrs);
1611 		break;
1612 	case FLOW_DISSECTOR_KEY_TIPC:
1613 		diff -= sizeof(flow->addrs.tipckey);
1614 		break;
1615 	}
1616 	return sizeof(*flow) - diff;
1617 }
1618 
1619 __be32 flow_get_u32_src(const struct flow_keys *flow)
1620 {
1621 	switch (flow->control.addr_type) {
1622 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1623 		return flow->addrs.v4addrs.src;
1624 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1625 		return (__force __be32)ipv6_addr_hash(
1626 			&flow->addrs.v6addrs.src);
1627 	case FLOW_DISSECTOR_KEY_TIPC:
1628 		return flow->addrs.tipckey.key;
1629 	default:
1630 		return 0;
1631 	}
1632 }
1633 EXPORT_SYMBOL(flow_get_u32_src);
1634 
1635 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1636 {
1637 	switch (flow->control.addr_type) {
1638 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1639 		return flow->addrs.v4addrs.dst;
1640 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1641 		return (__force __be32)ipv6_addr_hash(
1642 			&flow->addrs.v6addrs.dst);
1643 	default:
1644 		return 0;
1645 	}
1646 }
1647 EXPORT_SYMBOL(flow_get_u32_dst);
1648 
1649 /* Sort the source and destination IP and the ports,
1650  * to have consistent hash within the two directions
1651  */
1652 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1653 {
1654 	int addr_diff, i;
1655 
1656 	switch (keys->control.addr_type) {
1657 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1658 		if ((__force u32)keys->addrs.v4addrs.dst <
1659 		    (__force u32)keys->addrs.v4addrs.src)
1660 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1661 
1662 		if ((__force u16)keys->ports.dst <
1663 		    (__force u16)keys->ports.src) {
1664 			swap(keys->ports.src, keys->ports.dst);
1665 		}
1666 		break;
1667 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1668 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1669 				   &keys->addrs.v6addrs.src,
1670 				   sizeof(keys->addrs.v6addrs.dst));
1671 		if (addr_diff < 0) {
1672 			for (i = 0; i < 4; i++)
1673 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1674 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1675 		}
1676 		if ((__force u16)keys->ports.dst <
1677 		    (__force u16)keys->ports.src) {
1678 			swap(keys->ports.src, keys->ports.dst);
1679 		}
1680 		break;
1681 	}
1682 }
1683 
1684 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1685 					const siphash_key_t *keyval)
1686 {
1687 	u32 hash;
1688 
1689 	__flow_hash_consistentify(keys);
1690 
1691 	hash = siphash(flow_keys_hash_start(keys),
1692 		       flow_keys_hash_length(keys), keyval);
1693 	if (!hash)
1694 		hash = 1;
1695 
1696 	return hash;
1697 }
1698 
1699 u32 flow_hash_from_keys(struct flow_keys *keys)
1700 {
1701 	__flow_hash_secret_init();
1702 	return __flow_hash_from_keys(keys, &hashrnd);
1703 }
1704 EXPORT_SYMBOL(flow_hash_from_keys);
1705 
1706 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1707 				  struct flow_keys *keys,
1708 				  const siphash_key_t *keyval)
1709 {
1710 	skb_flow_dissect_flow_keys(skb, keys,
1711 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1712 
1713 	return __flow_hash_from_keys(keys, keyval);
1714 }
1715 
1716 struct _flow_keys_digest_data {
1717 	__be16	n_proto;
1718 	u8	ip_proto;
1719 	u8	padding;
1720 	__be32	ports;
1721 	__be32	src;
1722 	__be32	dst;
1723 };
1724 
1725 void make_flow_keys_digest(struct flow_keys_digest *digest,
1726 			   const struct flow_keys *flow)
1727 {
1728 	struct _flow_keys_digest_data *data =
1729 	    (struct _flow_keys_digest_data *)digest;
1730 
1731 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1732 
1733 	memset(digest, 0, sizeof(*digest));
1734 
1735 	data->n_proto = flow->basic.n_proto;
1736 	data->ip_proto = flow->basic.ip_proto;
1737 	data->ports = flow->ports.ports;
1738 	data->src = flow->addrs.v4addrs.src;
1739 	data->dst = flow->addrs.v4addrs.dst;
1740 }
1741 EXPORT_SYMBOL(make_flow_keys_digest);
1742 
1743 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1744 
1745 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1746 {
1747 	struct flow_keys keys;
1748 
1749 	__flow_hash_secret_init();
1750 
1751 	memset(&keys, 0, sizeof(keys));
1752 	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1753 			   &keys, NULL, 0, 0, 0,
1754 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1755 
1756 	return __flow_hash_from_keys(&keys, &hashrnd);
1757 }
1758 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1759 
1760 /**
1761  * __skb_get_hash: calculate a flow hash
1762  * @skb: sk_buff to calculate flow hash from
1763  *
1764  * This function calculates a flow hash based on src/dst addresses
1765  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1766  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1767  * if hash is a canonical 4-tuple hash over transport ports.
1768  */
1769 void __skb_get_hash(struct sk_buff *skb)
1770 {
1771 	struct flow_keys keys;
1772 	u32 hash;
1773 
1774 	__flow_hash_secret_init();
1775 
1776 	hash = ___skb_get_hash(skb, &keys, &hashrnd);
1777 
1778 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1779 }
1780 EXPORT_SYMBOL(__skb_get_hash);
1781 
1782 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1783 			   const siphash_key_t *perturb)
1784 {
1785 	struct flow_keys keys;
1786 
1787 	return ___skb_get_hash(skb, &keys, perturb);
1788 }
1789 EXPORT_SYMBOL(skb_get_hash_perturb);
1790 
1791 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1792 		   const struct flow_keys_basic *keys, int hlen)
1793 {
1794 	u32 poff = keys->control.thoff;
1795 
1796 	/* skip L4 headers for fragments after the first */
1797 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1798 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1799 		return poff;
1800 
1801 	switch (keys->basic.ip_proto) {
1802 	case IPPROTO_TCP: {
1803 		/* access doff as u8 to avoid unaligned access */
1804 		const u8 *doff;
1805 		u8 _doff;
1806 
1807 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1808 					    data, hlen, &_doff);
1809 		if (!doff)
1810 			return poff;
1811 
1812 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1813 		break;
1814 	}
1815 	case IPPROTO_UDP:
1816 	case IPPROTO_UDPLITE:
1817 		poff += sizeof(struct udphdr);
1818 		break;
1819 	/* For the rest, we do not really care about header
1820 	 * extensions at this point for now.
1821 	 */
1822 	case IPPROTO_ICMP:
1823 		poff += sizeof(struct icmphdr);
1824 		break;
1825 	case IPPROTO_ICMPV6:
1826 		poff += sizeof(struct icmp6hdr);
1827 		break;
1828 	case IPPROTO_IGMP:
1829 		poff += sizeof(struct igmphdr);
1830 		break;
1831 	case IPPROTO_DCCP:
1832 		poff += sizeof(struct dccp_hdr);
1833 		break;
1834 	case IPPROTO_SCTP:
1835 		poff += sizeof(struct sctphdr);
1836 		break;
1837 	}
1838 
1839 	return poff;
1840 }
1841 
1842 /**
1843  * skb_get_poff - get the offset to the payload
1844  * @skb: sk_buff to get the payload offset from
1845  *
1846  * The function will get the offset to the payload as far as it could
1847  * be dissected.  The main user is currently BPF, so that we can dynamically
1848  * truncate packets without needing to push actual payload to the user
1849  * space and can analyze headers only, instead.
1850  */
1851 u32 skb_get_poff(const struct sk_buff *skb)
1852 {
1853 	struct flow_keys_basic keys;
1854 
1855 	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1856 					      NULL, 0, 0, 0, 0))
1857 		return 0;
1858 
1859 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1860 }
1861 
1862 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1863 {
1864 	memset(keys, 0, sizeof(*keys));
1865 
1866 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1867 	    sizeof(keys->addrs.v6addrs.src));
1868 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1869 	    sizeof(keys->addrs.v6addrs.dst));
1870 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1871 	keys->ports.src = fl6->fl6_sport;
1872 	keys->ports.dst = fl6->fl6_dport;
1873 	keys->keyid.keyid = fl6->fl6_gre_key;
1874 	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1875 	keys->basic.ip_proto = fl6->flowi6_proto;
1876 
1877 	return flow_hash_from_keys(keys);
1878 }
1879 EXPORT_SYMBOL(__get_hash_from_flowi6);
1880 
1881 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1882 	{
1883 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1884 		.offset = offsetof(struct flow_keys, control),
1885 	},
1886 	{
1887 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1888 		.offset = offsetof(struct flow_keys, basic),
1889 	},
1890 	{
1891 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1892 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1893 	},
1894 	{
1895 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1896 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1897 	},
1898 	{
1899 		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1900 		.offset = offsetof(struct flow_keys, addrs.tipckey),
1901 	},
1902 	{
1903 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1904 		.offset = offsetof(struct flow_keys, ports),
1905 	},
1906 	{
1907 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1908 		.offset = offsetof(struct flow_keys, vlan),
1909 	},
1910 	{
1911 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1912 		.offset = offsetof(struct flow_keys, tags),
1913 	},
1914 	{
1915 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1916 		.offset = offsetof(struct flow_keys, keyid),
1917 	},
1918 };
1919 
1920 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1921 	{
1922 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1923 		.offset = offsetof(struct flow_keys, control),
1924 	},
1925 	{
1926 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1927 		.offset = offsetof(struct flow_keys, basic),
1928 	},
1929 	{
1930 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1931 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1932 	},
1933 	{
1934 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1935 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1936 	},
1937 	{
1938 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1939 		.offset = offsetof(struct flow_keys, ports),
1940 	},
1941 };
1942 
1943 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1944 	{
1945 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1946 		.offset = offsetof(struct flow_keys, control),
1947 	},
1948 	{
1949 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1950 		.offset = offsetof(struct flow_keys, basic),
1951 	},
1952 };
1953 
1954 struct flow_dissector flow_keys_dissector __read_mostly;
1955 EXPORT_SYMBOL(flow_keys_dissector);
1956 
1957 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1958 EXPORT_SYMBOL(flow_keys_basic_dissector);
1959 
1960 static int __init init_default_flow_dissectors(void)
1961 {
1962 	skb_flow_dissector_init(&flow_keys_dissector,
1963 				flow_keys_dissector_keys,
1964 				ARRAY_SIZE(flow_keys_dissector_keys));
1965 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1966 				flow_keys_dissector_symmetric_keys,
1967 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1968 	skb_flow_dissector_init(&flow_keys_basic_dissector,
1969 				flow_keys_basic_dissector_keys,
1970 				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1971 	return 0;
1972 }
1973 core_initcall(init_default_flow_dissectors);
1974