xref: /openbmc/linux/net/core/flow_dissector.c (revision f2682a8fe9b0429eef9fb3cc96e33c4b136a15bb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <net/dsa.h>
9 #include <net/dst_metadata.h>
10 #include <net/ip.h>
11 #include <net/ipv6.h>
12 #include <net/gre.h>
13 #include <net/pptp.h>
14 #include <net/tipc.h>
15 #include <linux/igmp.h>
16 #include <linux/icmp.h>
17 #include <linux/sctp.h>
18 #include <linux/dccp.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/if_pppox.h>
21 #include <linux/ppp_defs.h>
22 #include <linux/stddef.h>
23 #include <linux/if_ether.h>
24 #include <linux/mpls.h>
25 #include <linux/tcp.h>
26 #include <net/flow_dissector.h>
27 #include <scsi/fc/fc_fcoe.h>
28 #include <uapi/linux/batadv_packet.h>
29 #include <linux/bpf.h>
30 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
31 #include <net/netfilter/nf_conntrack_core.h>
32 #include <net/netfilter/nf_conntrack_labels.h>
33 #endif
34 
35 static DEFINE_MUTEX(flow_dissector_mutex);
36 
37 static void dissector_set_key(struct flow_dissector *flow_dissector,
38 			      enum flow_dissector_key_id key_id)
39 {
40 	flow_dissector->used_keys |= (1 << key_id);
41 }
42 
43 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
44 			     const struct flow_dissector_key *key,
45 			     unsigned int key_count)
46 {
47 	unsigned int i;
48 
49 	memset(flow_dissector, 0, sizeof(*flow_dissector));
50 
51 	for (i = 0; i < key_count; i++, key++) {
52 		/* User should make sure that every key target offset is withing
53 		 * boundaries of unsigned short.
54 		 */
55 		BUG_ON(key->offset > USHRT_MAX);
56 		BUG_ON(dissector_uses_key(flow_dissector,
57 					  key->key_id));
58 
59 		dissector_set_key(flow_dissector, key->key_id);
60 		flow_dissector->offset[key->key_id] = key->offset;
61 	}
62 
63 	/* Ensure that the dissector always includes control and basic key.
64 	 * That way we are able to avoid handling lack of these in fast path.
65 	 */
66 	BUG_ON(!dissector_uses_key(flow_dissector,
67 				   FLOW_DISSECTOR_KEY_CONTROL));
68 	BUG_ON(!dissector_uses_key(flow_dissector,
69 				   FLOW_DISSECTOR_KEY_BASIC));
70 }
71 EXPORT_SYMBOL(skb_flow_dissector_init);
72 
73 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
74 				  union bpf_attr __user *uattr)
75 {
76 	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
77 	u32 prog_id, prog_cnt = 0, flags = 0;
78 	struct bpf_prog *attached;
79 	struct net *net;
80 
81 	if (attr->query.query_flags)
82 		return -EINVAL;
83 
84 	net = get_net_ns_by_fd(attr->query.target_fd);
85 	if (IS_ERR(net))
86 		return PTR_ERR(net);
87 
88 	rcu_read_lock();
89 	attached = rcu_dereference(net->flow_dissector_prog);
90 	if (attached) {
91 		prog_cnt = 1;
92 		prog_id = attached->aux->id;
93 	}
94 	rcu_read_unlock();
95 
96 	put_net(net);
97 
98 	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
99 		return -EFAULT;
100 	if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt)))
101 		return -EFAULT;
102 
103 	if (!attr->query.prog_cnt || !prog_ids || !prog_cnt)
104 		return 0;
105 
106 	if (copy_to_user(prog_ids, &prog_id, sizeof(u32)))
107 		return -EFAULT;
108 
109 	return 0;
110 }
111 
112 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
113 				       struct bpf_prog *prog)
114 {
115 	struct bpf_prog *attached;
116 	struct net *net;
117 	int ret = 0;
118 
119 	net = current->nsproxy->net_ns;
120 	mutex_lock(&flow_dissector_mutex);
121 
122 	if (net == &init_net) {
123 		/* BPF flow dissector in the root namespace overrides
124 		 * any per-net-namespace one. When attaching to root,
125 		 * make sure we don't have any BPF program attached
126 		 * to the non-root namespaces.
127 		 */
128 		struct net *ns;
129 
130 		for_each_net(ns) {
131 			if (ns == &init_net)
132 				continue;
133 			if (rcu_access_pointer(ns->flow_dissector_prog)) {
134 				ret = -EEXIST;
135 				goto out;
136 			}
137 		}
138 	} else {
139 		/* Make sure root flow dissector is not attached
140 		 * when attaching to the non-root namespace.
141 		 */
142 		if (rcu_access_pointer(init_net.flow_dissector_prog)) {
143 			ret = -EEXIST;
144 			goto out;
145 		}
146 	}
147 
148 	attached = rcu_dereference_protected(net->flow_dissector_prog,
149 					     lockdep_is_held(&flow_dissector_mutex));
150 	if (attached == prog) {
151 		/* The same program cannot be attached twice */
152 		ret = -EINVAL;
153 		goto out;
154 	}
155 	rcu_assign_pointer(net->flow_dissector_prog, prog);
156 	if (attached)
157 		bpf_prog_put(attached);
158 out:
159 	mutex_unlock(&flow_dissector_mutex);
160 	return ret;
161 }
162 
163 static int flow_dissector_bpf_prog_detach(struct net *net)
164 {
165 	struct bpf_prog *attached;
166 
167 	mutex_lock(&flow_dissector_mutex);
168 	attached = rcu_dereference_protected(net->flow_dissector_prog,
169 					     lockdep_is_held(&flow_dissector_mutex));
170 	if (!attached) {
171 		mutex_unlock(&flow_dissector_mutex);
172 		return -ENOENT;
173 	}
174 	RCU_INIT_POINTER(net->flow_dissector_prog, NULL);
175 	bpf_prog_put(attached);
176 	mutex_unlock(&flow_dissector_mutex);
177 	return 0;
178 }
179 
180 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
181 {
182 	return flow_dissector_bpf_prog_detach(current->nsproxy->net_ns);
183 }
184 
185 static void __net_exit flow_dissector_pernet_pre_exit(struct net *net)
186 {
187 	/* We're not racing with attach/detach because there are no
188 	 * references to netns left when pre_exit gets called.
189 	 */
190 	if (rcu_access_pointer(net->flow_dissector_prog))
191 		flow_dissector_bpf_prog_detach(net);
192 }
193 
194 static struct pernet_operations flow_dissector_pernet_ops __net_initdata = {
195 	.pre_exit = flow_dissector_pernet_pre_exit,
196 };
197 
198 /**
199  * __skb_flow_get_ports - extract the upper layer ports and return them
200  * @skb: sk_buff to extract the ports from
201  * @thoff: transport header offset
202  * @ip_proto: protocol for which to get port offset
203  * @data: raw buffer pointer to the packet, if NULL use skb->data
204  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
205  *
206  * The function will try to retrieve the ports at offset thoff + poff where poff
207  * is the protocol port offset returned from proto_ports_offset
208  */
209 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
210 			    void *data, int hlen)
211 {
212 	int poff = proto_ports_offset(ip_proto);
213 
214 	if (!data) {
215 		data = skb->data;
216 		hlen = skb_headlen(skb);
217 	}
218 
219 	if (poff >= 0) {
220 		__be32 *ports, _ports;
221 
222 		ports = __skb_header_pointer(skb, thoff + poff,
223 					     sizeof(_ports), data, hlen, &_ports);
224 		if (ports)
225 			return *ports;
226 	}
227 
228 	return 0;
229 }
230 EXPORT_SYMBOL(__skb_flow_get_ports);
231 
232 static bool icmp_has_id(u8 type)
233 {
234 	switch (type) {
235 	case ICMP_ECHO:
236 	case ICMP_ECHOREPLY:
237 	case ICMP_TIMESTAMP:
238 	case ICMP_TIMESTAMPREPLY:
239 	case ICMPV6_ECHO_REQUEST:
240 	case ICMPV6_ECHO_REPLY:
241 		return true;
242 	}
243 
244 	return false;
245 }
246 
247 /**
248  * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
249  * @skb: sk_buff to extract from
250  * @key_icmp: struct flow_dissector_key_icmp to fill
251  * @data: raw buffer pointer to the packet
252  * @thoff: offset to extract at
253  * @hlen: packet header length
254  */
255 void skb_flow_get_icmp_tci(const struct sk_buff *skb,
256 			   struct flow_dissector_key_icmp *key_icmp,
257 			   void *data, int thoff, int hlen)
258 {
259 	struct icmphdr *ih, _ih;
260 
261 	ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
262 	if (!ih)
263 		return;
264 
265 	key_icmp->type = ih->type;
266 	key_icmp->code = ih->code;
267 
268 	/* As we use 0 to signal that the Id field is not present,
269 	 * avoid confusion with packets without such field
270 	 */
271 	if (icmp_has_id(ih->type))
272 		key_icmp->id = ih->un.echo.id ? : 1;
273 	else
274 		key_icmp->id = 0;
275 }
276 EXPORT_SYMBOL(skb_flow_get_icmp_tci);
277 
278 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
279  * using skb_flow_get_icmp_tci().
280  */
281 static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
282 				    struct flow_dissector *flow_dissector,
283 				    void *target_container,
284 				    void *data, int thoff, int hlen)
285 {
286 	struct flow_dissector_key_icmp *key_icmp;
287 
288 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
289 		return;
290 
291 	key_icmp = skb_flow_dissector_target(flow_dissector,
292 					     FLOW_DISSECTOR_KEY_ICMP,
293 					     target_container);
294 
295 	skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
296 }
297 
298 void skb_flow_dissect_meta(const struct sk_buff *skb,
299 			   struct flow_dissector *flow_dissector,
300 			   void *target_container)
301 {
302 	struct flow_dissector_key_meta *meta;
303 
304 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
305 		return;
306 
307 	meta = skb_flow_dissector_target(flow_dissector,
308 					 FLOW_DISSECTOR_KEY_META,
309 					 target_container);
310 	meta->ingress_ifindex = skb->skb_iif;
311 }
312 EXPORT_SYMBOL(skb_flow_dissect_meta);
313 
314 static void
315 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
316 				   struct flow_dissector *flow_dissector,
317 				   void *target_container)
318 {
319 	struct flow_dissector_key_control *ctrl;
320 
321 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
322 		return;
323 
324 	ctrl = skb_flow_dissector_target(flow_dissector,
325 					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
326 					 target_container);
327 	ctrl->addr_type = type;
328 }
329 
330 void
331 skb_flow_dissect_ct(const struct sk_buff *skb,
332 		    struct flow_dissector *flow_dissector,
333 		    void *target_container,
334 		    u16 *ctinfo_map,
335 		    size_t mapsize)
336 {
337 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
338 	struct flow_dissector_key_ct *key;
339 	enum ip_conntrack_info ctinfo;
340 	struct nf_conn_labels *cl;
341 	struct nf_conn *ct;
342 
343 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
344 		return;
345 
346 	ct = nf_ct_get(skb, &ctinfo);
347 	if (!ct)
348 		return;
349 
350 	key = skb_flow_dissector_target(flow_dissector,
351 					FLOW_DISSECTOR_KEY_CT,
352 					target_container);
353 
354 	if (ctinfo < mapsize)
355 		key->ct_state = ctinfo_map[ctinfo];
356 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
357 	key->ct_zone = ct->zone.id;
358 #endif
359 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
360 	key->ct_mark = ct->mark;
361 #endif
362 
363 	cl = nf_ct_labels_find(ct);
364 	if (cl)
365 		memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
366 #endif /* CONFIG_NF_CONNTRACK */
367 }
368 EXPORT_SYMBOL(skb_flow_dissect_ct);
369 
370 void
371 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
372 			     struct flow_dissector *flow_dissector,
373 			     void *target_container)
374 {
375 	struct ip_tunnel_info *info;
376 	struct ip_tunnel_key *key;
377 
378 	/* A quick check to see if there might be something to do. */
379 	if (!dissector_uses_key(flow_dissector,
380 				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
381 	    !dissector_uses_key(flow_dissector,
382 				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
383 	    !dissector_uses_key(flow_dissector,
384 				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
385 	    !dissector_uses_key(flow_dissector,
386 				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
387 	    !dissector_uses_key(flow_dissector,
388 				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
389 	    !dissector_uses_key(flow_dissector,
390 				FLOW_DISSECTOR_KEY_ENC_IP) &&
391 	    !dissector_uses_key(flow_dissector,
392 				FLOW_DISSECTOR_KEY_ENC_OPTS))
393 		return;
394 
395 	info = skb_tunnel_info(skb);
396 	if (!info)
397 		return;
398 
399 	key = &info->key;
400 
401 	switch (ip_tunnel_info_af(info)) {
402 	case AF_INET:
403 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
404 						   flow_dissector,
405 						   target_container);
406 		if (dissector_uses_key(flow_dissector,
407 				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
408 			struct flow_dissector_key_ipv4_addrs *ipv4;
409 
410 			ipv4 = skb_flow_dissector_target(flow_dissector,
411 							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
412 							 target_container);
413 			ipv4->src = key->u.ipv4.src;
414 			ipv4->dst = key->u.ipv4.dst;
415 		}
416 		break;
417 	case AF_INET6:
418 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
419 						   flow_dissector,
420 						   target_container);
421 		if (dissector_uses_key(flow_dissector,
422 				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
423 			struct flow_dissector_key_ipv6_addrs *ipv6;
424 
425 			ipv6 = skb_flow_dissector_target(flow_dissector,
426 							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
427 							 target_container);
428 			ipv6->src = key->u.ipv6.src;
429 			ipv6->dst = key->u.ipv6.dst;
430 		}
431 		break;
432 	}
433 
434 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
435 		struct flow_dissector_key_keyid *keyid;
436 
437 		keyid = skb_flow_dissector_target(flow_dissector,
438 						  FLOW_DISSECTOR_KEY_ENC_KEYID,
439 						  target_container);
440 		keyid->keyid = tunnel_id_to_key32(key->tun_id);
441 	}
442 
443 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
444 		struct flow_dissector_key_ports *tp;
445 
446 		tp = skb_flow_dissector_target(flow_dissector,
447 					       FLOW_DISSECTOR_KEY_ENC_PORTS,
448 					       target_container);
449 		tp->src = key->tp_src;
450 		tp->dst = key->tp_dst;
451 	}
452 
453 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
454 		struct flow_dissector_key_ip *ip;
455 
456 		ip = skb_flow_dissector_target(flow_dissector,
457 					       FLOW_DISSECTOR_KEY_ENC_IP,
458 					       target_container);
459 		ip->tos = key->tos;
460 		ip->ttl = key->ttl;
461 	}
462 
463 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
464 		struct flow_dissector_key_enc_opts *enc_opt;
465 
466 		enc_opt = skb_flow_dissector_target(flow_dissector,
467 						    FLOW_DISSECTOR_KEY_ENC_OPTS,
468 						    target_container);
469 
470 		if (info->options_len) {
471 			enc_opt->len = info->options_len;
472 			ip_tunnel_info_opts_get(enc_opt->data, info);
473 			enc_opt->dst_opt_type = info->key.tun_flags &
474 						TUNNEL_OPTIONS_PRESENT;
475 		}
476 	}
477 }
478 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
479 
480 static enum flow_dissect_ret
481 __skb_flow_dissect_mpls(const struct sk_buff *skb,
482 			struct flow_dissector *flow_dissector,
483 			void *target_container, void *data, int nhoff, int hlen)
484 {
485 	struct flow_dissector_key_keyid *key_keyid;
486 	struct mpls_label *hdr, _hdr[2];
487 	u32 entry, label;
488 
489 	if (!dissector_uses_key(flow_dissector,
490 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
491 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
492 		return FLOW_DISSECT_RET_OUT_GOOD;
493 
494 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
495 				   hlen, &_hdr);
496 	if (!hdr)
497 		return FLOW_DISSECT_RET_OUT_BAD;
498 
499 	entry = ntohl(hdr[0].entry);
500 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
501 
502 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
503 		struct flow_dissector_key_mpls *key_mpls;
504 
505 		key_mpls = skb_flow_dissector_target(flow_dissector,
506 						     FLOW_DISSECTOR_KEY_MPLS,
507 						     target_container);
508 		key_mpls->mpls_label = label;
509 		key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
510 					>> MPLS_LS_TTL_SHIFT;
511 		key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
512 					>> MPLS_LS_TC_SHIFT;
513 		key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
514 					>> MPLS_LS_S_SHIFT;
515 	}
516 
517 	if (label == MPLS_LABEL_ENTROPY) {
518 		key_keyid = skb_flow_dissector_target(flow_dissector,
519 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
520 						      target_container);
521 		key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
522 	}
523 	return FLOW_DISSECT_RET_OUT_GOOD;
524 }
525 
526 static enum flow_dissect_ret
527 __skb_flow_dissect_arp(const struct sk_buff *skb,
528 		       struct flow_dissector *flow_dissector,
529 		       void *target_container, void *data, int nhoff, int hlen)
530 {
531 	struct flow_dissector_key_arp *key_arp;
532 	struct {
533 		unsigned char ar_sha[ETH_ALEN];
534 		unsigned char ar_sip[4];
535 		unsigned char ar_tha[ETH_ALEN];
536 		unsigned char ar_tip[4];
537 	} *arp_eth, _arp_eth;
538 	const struct arphdr *arp;
539 	struct arphdr _arp;
540 
541 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
542 		return FLOW_DISSECT_RET_OUT_GOOD;
543 
544 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
545 				   hlen, &_arp);
546 	if (!arp)
547 		return FLOW_DISSECT_RET_OUT_BAD;
548 
549 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
550 	    arp->ar_pro != htons(ETH_P_IP) ||
551 	    arp->ar_hln != ETH_ALEN ||
552 	    arp->ar_pln != 4 ||
553 	    (arp->ar_op != htons(ARPOP_REPLY) &&
554 	     arp->ar_op != htons(ARPOP_REQUEST)))
555 		return FLOW_DISSECT_RET_OUT_BAD;
556 
557 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
558 				       sizeof(_arp_eth), data,
559 				       hlen, &_arp_eth);
560 	if (!arp_eth)
561 		return FLOW_DISSECT_RET_OUT_BAD;
562 
563 	key_arp = skb_flow_dissector_target(flow_dissector,
564 					    FLOW_DISSECTOR_KEY_ARP,
565 					    target_container);
566 
567 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
568 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
569 
570 	/* Only store the lower byte of the opcode;
571 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
572 	 */
573 	key_arp->op = ntohs(arp->ar_op) & 0xff;
574 
575 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
576 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
577 
578 	return FLOW_DISSECT_RET_OUT_GOOD;
579 }
580 
581 static enum flow_dissect_ret
582 __skb_flow_dissect_gre(const struct sk_buff *skb,
583 		       struct flow_dissector_key_control *key_control,
584 		       struct flow_dissector *flow_dissector,
585 		       void *target_container, void *data,
586 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
587 		       unsigned int flags)
588 {
589 	struct flow_dissector_key_keyid *key_keyid;
590 	struct gre_base_hdr *hdr, _hdr;
591 	int offset = 0;
592 	u16 gre_ver;
593 
594 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
595 				   data, *p_hlen, &_hdr);
596 	if (!hdr)
597 		return FLOW_DISSECT_RET_OUT_BAD;
598 
599 	/* Only look inside GRE without routing */
600 	if (hdr->flags & GRE_ROUTING)
601 		return FLOW_DISSECT_RET_OUT_GOOD;
602 
603 	/* Only look inside GRE for version 0 and 1 */
604 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
605 	if (gre_ver > 1)
606 		return FLOW_DISSECT_RET_OUT_GOOD;
607 
608 	*p_proto = hdr->protocol;
609 	if (gre_ver) {
610 		/* Version1 must be PPTP, and check the flags */
611 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
612 			return FLOW_DISSECT_RET_OUT_GOOD;
613 	}
614 
615 	offset += sizeof(struct gre_base_hdr);
616 
617 	if (hdr->flags & GRE_CSUM)
618 		offset += sizeof_field(struct gre_full_hdr, csum) +
619 			  sizeof_field(struct gre_full_hdr, reserved1);
620 
621 	if (hdr->flags & GRE_KEY) {
622 		const __be32 *keyid;
623 		__be32 _keyid;
624 
625 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
626 					     sizeof(_keyid),
627 					     data, *p_hlen, &_keyid);
628 		if (!keyid)
629 			return FLOW_DISSECT_RET_OUT_BAD;
630 
631 		if (dissector_uses_key(flow_dissector,
632 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
633 			key_keyid = skb_flow_dissector_target(flow_dissector,
634 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
635 							      target_container);
636 			if (gre_ver == 0)
637 				key_keyid->keyid = *keyid;
638 			else
639 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
640 		}
641 		offset += sizeof_field(struct gre_full_hdr, key);
642 	}
643 
644 	if (hdr->flags & GRE_SEQ)
645 		offset += sizeof_field(struct pptp_gre_header, seq);
646 
647 	if (gre_ver == 0) {
648 		if (*p_proto == htons(ETH_P_TEB)) {
649 			const struct ethhdr *eth;
650 			struct ethhdr _eth;
651 
652 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
653 						   sizeof(_eth),
654 						   data, *p_hlen, &_eth);
655 			if (!eth)
656 				return FLOW_DISSECT_RET_OUT_BAD;
657 			*p_proto = eth->h_proto;
658 			offset += sizeof(*eth);
659 
660 			/* Cap headers that we access via pointers at the
661 			 * end of the Ethernet header as our maximum alignment
662 			 * at that point is only 2 bytes.
663 			 */
664 			if (NET_IP_ALIGN)
665 				*p_hlen = *p_nhoff + offset;
666 		}
667 	} else { /* version 1, must be PPTP */
668 		u8 _ppp_hdr[PPP_HDRLEN];
669 		u8 *ppp_hdr;
670 
671 		if (hdr->flags & GRE_ACK)
672 			offset += sizeof_field(struct pptp_gre_header, ack);
673 
674 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
675 					       sizeof(_ppp_hdr),
676 					       data, *p_hlen, _ppp_hdr);
677 		if (!ppp_hdr)
678 			return FLOW_DISSECT_RET_OUT_BAD;
679 
680 		switch (PPP_PROTOCOL(ppp_hdr)) {
681 		case PPP_IP:
682 			*p_proto = htons(ETH_P_IP);
683 			break;
684 		case PPP_IPV6:
685 			*p_proto = htons(ETH_P_IPV6);
686 			break;
687 		default:
688 			/* Could probably catch some more like MPLS */
689 			break;
690 		}
691 
692 		offset += PPP_HDRLEN;
693 	}
694 
695 	*p_nhoff += offset;
696 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
697 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
698 		return FLOW_DISSECT_RET_OUT_GOOD;
699 
700 	return FLOW_DISSECT_RET_PROTO_AGAIN;
701 }
702 
703 /**
704  * __skb_flow_dissect_batadv() - dissect batman-adv header
705  * @skb: sk_buff to with the batman-adv header
706  * @key_control: flow dissectors control key
707  * @data: raw buffer pointer to the packet, if NULL use skb->data
708  * @p_proto: pointer used to update the protocol to process next
709  * @p_nhoff: pointer used to update inner network header offset
710  * @hlen: packet header length
711  * @flags: any combination of FLOW_DISSECTOR_F_*
712  *
713  * ETH_P_BATMAN packets are tried to be dissected. Only
714  * &struct batadv_unicast packets are actually processed because they contain an
715  * inner ethernet header and are usually followed by actual network header. This
716  * allows the flow dissector to continue processing the packet.
717  *
718  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
719  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
720  *  otherwise FLOW_DISSECT_RET_OUT_BAD
721  */
722 static enum flow_dissect_ret
723 __skb_flow_dissect_batadv(const struct sk_buff *skb,
724 			  struct flow_dissector_key_control *key_control,
725 			  void *data, __be16 *p_proto, int *p_nhoff, int hlen,
726 			  unsigned int flags)
727 {
728 	struct {
729 		struct batadv_unicast_packet batadv_unicast;
730 		struct ethhdr eth;
731 	} *hdr, _hdr;
732 
733 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
734 				   &_hdr);
735 	if (!hdr)
736 		return FLOW_DISSECT_RET_OUT_BAD;
737 
738 	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
739 		return FLOW_DISSECT_RET_OUT_BAD;
740 
741 	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
742 		return FLOW_DISSECT_RET_OUT_BAD;
743 
744 	*p_proto = hdr->eth.h_proto;
745 	*p_nhoff += sizeof(*hdr);
746 
747 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
748 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
749 		return FLOW_DISSECT_RET_OUT_GOOD;
750 
751 	return FLOW_DISSECT_RET_PROTO_AGAIN;
752 }
753 
754 static void
755 __skb_flow_dissect_tcp(const struct sk_buff *skb,
756 		       struct flow_dissector *flow_dissector,
757 		       void *target_container, void *data, int thoff, int hlen)
758 {
759 	struct flow_dissector_key_tcp *key_tcp;
760 	struct tcphdr *th, _th;
761 
762 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
763 		return;
764 
765 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
766 	if (!th)
767 		return;
768 
769 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
770 		return;
771 
772 	key_tcp = skb_flow_dissector_target(flow_dissector,
773 					    FLOW_DISSECTOR_KEY_TCP,
774 					    target_container);
775 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
776 }
777 
778 static void
779 __skb_flow_dissect_ports(const struct sk_buff *skb,
780 			 struct flow_dissector *flow_dissector,
781 			 void *target_container, void *data, int nhoff,
782 			 u8 ip_proto, int hlen)
783 {
784 	enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
785 	struct flow_dissector_key_ports *key_ports;
786 
787 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
788 		dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
789 	else if (dissector_uses_key(flow_dissector,
790 				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
791 		dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
792 
793 	if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
794 		return;
795 
796 	key_ports = skb_flow_dissector_target(flow_dissector,
797 					      dissector_ports,
798 					      target_container);
799 	key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
800 						data, hlen);
801 }
802 
803 static void
804 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
805 			struct flow_dissector *flow_dissector,
806 			void *target_container, void *data, const struct iphdr *iph)
807 {
808 	struct flow_dissector_key_ip *key_ip;
809 
810 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
811 		return;
812 
813 	key_ip = skb_flow_dissector_target(flow_dissector,
814 					   FLOW_DISSECTOR_KEY_IP,
815 					   target_container);
816 	key_ip->tos = iph->tos;
817 	key_ip->ttl = iph->ttl;
818 }
819 
820 static void
821 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
822 			struct flow_dissector *flow_dissector,
823 			void *target_container, void *data, const struct ipv6hdr *iph)
824 {
825 	struct flow_dissector_key_ip *key_ip;
826 
827 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
828 		return;
829 
830 	key_ip = skb_flow_dissector_target(flow_dissector,
831 					   FLOW_DISSECTOR_KEY_IP,
832 					   target_container);
833 	key_ip->tos = ipv6_get_dsfield(iph);
834 	key_ip->ttl = iph->hop_limit;
835 }
836 
837 /* Maximum number of protocol headers that can be parsed in
838  * __skb_flow_dissect
839  */
840 #define MAX_FLOW_DISSECT_HDRS	15
841 
842 static bool skb_flow_dissect_allowed(int *num_hdrs)
843 {
844 	++*num_hdrs;
845 
846 	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
847 }
848 
849 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
850 				     struct flow_dissector *flow_dissector,
851 				     void *target_container)
852 {
853 	struct flow_dissector_key_ports *key_ports = NULL;
854 	struct flow_dissector_key_control *key_control;
855 	struct flow_dissector_key_basic *key_basic;
856 	struct flow_dissector_key_addrs *key_addrs;
857 	struct flow_dissector_key_tags *key_tags;
858 
859 	key_control = skb_flow_dissector_target(flow_dissector,
860 						FLOW_DISSECTOR_KEY_CONTROL,
861 						target_container);
862 	key_control->thoff = flow_keys->thoff;
863 	if (flow_keys->is_frag)
864 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
865 	if (flow_keys->is_first_frag)
866 		key_control->flags |= FLOW_DIS_FIRST_FRAG;
867 	if (flow_keys->is_encap)
868 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
869 
870 	key_basic = skb_flow_dissector_target(flow_dissector,
871 					      FLOW_DISSECTOR_KEY_BASIC,
872 					      target_container);
873 	key_basic->n_proto = flow_keys->n_proto;
874 	key_basic->ip_proto = flow_keys->ip_proto;
875 
876 	if (flow_keys->addr_proto == ETH_P_IP &&
877 	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
878 		key_addrs = skb_flow_dissector_target(flow_dissector,
879 						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
880 						      target_container);
881 		key_addrs->v4addrs.src = flow_keys->ipv4_src;
882 		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
883 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
884 	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
885 		   dissector_uses_key(flow_dissector,
886 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
887 		key_addrs = skb_flow_dissector_target(flow_dissector,
888 						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
889 						      target_container);
890 		memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
891 		       sizeof(key_addrs->v6addrs));
892 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
893 	}
894 
895 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
896 		key_ports = skb_flow_dissector_target(flow_dissector,
897 						      FLOW_DISSECTOR_KEY_PORTS,
898 						      target_container);
899 	else if (dissector_uses_key(flow_dissector,
900 				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
901 		key_ports = skb_flow_dissector_target(flow_dissector,
902 						      FLOW_DISSECTOR_KEY_PORTS_RANGE,
903 						      target_container);
904 
905 	if (key_ports) {
906 		key_ports->src = flow_keys->sport;
907 		key_ports->dst = flow_keys->dport;
908 	}
909 
910 	if (dissector_uses_key(flow_dissector,
911 			       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
912 		key_tags = skb_flow_dissector_target(flow_dissector,
913 						     FLOW_DISSECTOR_KEY_FLOW_LABEL,
914 						     target_container);
915 		key_tags->flow_label = ntohl(flow_keys->flow_label);
916 	}
917 }
918 
919 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
920 		      __be16 proto, int nhoff, int hlen, unsigned int flags)
921 {
922 	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
923 	u32 result;
924 
925 	/* Pass parameters to the BPF program */
926 	memset(flow_keys, 0, sizeof(*flow_keys));
927 	flow_keys->n_proto = proto;
928 	flow_keys->nhoff = nhoff;
929 	flow_keys->thoff = flow_keys->nhoff;
930 
931 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
932 		     (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
933 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
934 		     (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
935 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
936 		     (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
937 	flow_keys->flags = flags;
938 
939 	result = bpf_prog_run_pin_on_cpu(prog, ctx);
940 
941 	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
942 	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
943 				   flow_keys->nhoff, hlen);
944 
945 	return result == BPF_OK;
946 }
947 
948 /**
949  * __skb_flow_dissect - extract the flow_keys struct and return it
950  * @net: associated network namespace, derived from @skb if NULL
951  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
952  * @flow_dissector: list of keys to dissect
953  * @target_container: target structure to put dissected values into
954  * @data: raw buffer pointer to the packet, if NULL use skb->data
955  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
956  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
957  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
958  * @flags: flags that control the dissection process, e.g.
959  *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
960  *
961  * The function will try to retrieve individual keys into target specified
962  * by flow_dissector from either the skbuff or a raw buffer specified by the
963  * rest parameters.
964  *
965  * Caller must take care of zeroing target container memory.
966  */
967 bool __skb_flow_dissect(const struct net *net,
968 			const struct sk_buff *skb,
969 			struct flow_dissector *flow_dissector,
970 			void *target_container,
971 			void *data, __be16 proto, int nhoff, int hlen,
972 			unsigned int flags)
973 {
974 	struct flow_dissector_key_control *key_control;
975 	struct flow_dissector_key_basic *key_basic;
976 	struct flow_dissector_key_addrs *key_addrs;
977 	struct flow_dissector_key_tags *key_tags;
978 	struct flow_dissector_key_vlan *key_vlan;
979 	struct bpf_prog *attached = NULL;
980 	enum flow_dissect_ret fdret;
981 	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
982 	int num_hdrs = 0;
983 	u8 ip_proto = 0;
984 	bool ret;
985 
986 	if (!data) {
987 		data = skb->data;
988 		proto = skb_vlan_tag_present(skb) ?
989 			 skb->vlan_proto : skb->protocol;
990 		nhoff = skb_network_offset(skb);
991 		hlen = skb_headlen(skb);
992 #if IS_ENABLED(CONFIG_NET_DSA)
993 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
994 			     proto == htons(ETH_P_XDSA))) {
995 			const struct dsa_device_ops *ops;
996 			int offset = 0;
997 
998 			ops = skb->dev->dsa_ptr->tag_ops;
999 			if (ops->flow_dissect &&
1000 			    !ops->flow_dissect(skb, &proto, &offset)) {
1001 				hlen -= offset;
1002 				nhoff += offset;
1003 			}
1004 		}
1005 #endif
1006 	}
1007 
1008 	/* It is ensured by skb_flow_dissector_init() that control key will
1009 	 * be always present.
1010 	 */
1011 	key_control = skb_flow_dissector_target(flow_dissector,
1012 						FLOW_DISSECTOR_KEY_CONTROL,
1013 						target_container);
1014 
1015 	/* It is ensured by skb_flow_dissector_init() that basic key will
1016 	 * be always present.
1017 	 */
1018 	key_basic = skb_flow_dissector_target(flow_dissector,
1019 					      FLOW_DISSECTOR_KEY_BASIC,
1020 					      target_container);
1021 
1022 	if (skb) {
1023 		if (!net) {
1024 			if (skb->dev)
1025 				net = dev_net(skb->dev);
1026 			else if (skb->sk)
1027 				net = sock_net(skb->sk);
1028 		}
1029 	}
1030 
1031 	WARN_ON_ONCE(!net);
1032 	if (net) {
1033 		rcu_read_lock();
1034 		attached = rcu_dereference(init_net.flow_dissector_prog);
1035 
1036 		if (!attached)
1037 			attached = rcu_dereference(net->flow_dissector_prog);
1038 
1039 		if (attached) {
1040 			struct bpf_flow_keys flow_keys;
1041 			struct bpf_flow_dissector ctx = {
1042 				.flow_keys = &flow_keys,
1043 				.data = data,
1044 				.data_end = data + hlen,
1045 			};
1046 			__be16 n_proto = proto;
1047 
1048 			if (skb) {
1049 				ctx.skb = skb;
1050 				/* we can't use 'proto' in the skb case
1051 				 * because it might be set to skb->vlan_proto
1052 				 * which has been pulled from the data
1053 				 */
1054 				n_proto = skb->protocol;
1055 			}
1056 
1057 			ret = bpf_flow_dissect(attached, &ctx, n_proto, nhoff,
1058 					       hlen, flags);
1059 			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
1060 						 target_container);
1061 			rcu_read_unlock();
1062 			return ret;
1063 		}
1064 		rcu_read_unlock();
1065 	}
1066 
1067 	if (dissector_uses_key(flow_dissector,
1068 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1069 		struct ethhdr *eth = eth_hdr(skb);
1070 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
1071 
1072 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
1073 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
1074 							  target_container);
1075 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
1076 	}
1077 
1078 proto_again:
1079 	fdret = FLOW_DISSECT_RET_CONTINUE;
1080 
1081 	switch (proto) {
1082 	case htons(ETH_P_IP): {
1083 		const struct iphdr *iph;
1084 		struct iphdr _iph;
1085 
1086 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1087 		if (!iph || iph->ihl < 5) {
1088 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1089 			break;
1090 		}
1091 
1092 		nhoff += iph->ihl * 4;
1093 
1094 		ip_proto = iph->protocol;
1095 
1096 		if (dissector_uses_key(flow_dissector,
1097 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1098 			key_addrs = skb_flow_dissector_target(flow_dissector,
1099 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1100 							      target_container);
1101 
1102 			memcpy(&key_addrs->v4addrs, &iph->saddr,
1103 			       sizeof(key_addrs->v4addrs));
1104 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1105 		}
1106 
1107 		if (ip_is_fragment(iph)) {
1108 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1109 
1110 			if (iph->frag_off & htons(IP_OFFSET)) {
1111 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1112 				break;
1113 			} else {
1114 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
1115 				if (!(flags &
1116 				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1117 					fdret = FLOW_DISSECT_RET_OUT_GOOD;
1118 					break;
1119 				}
1120 			}
1121 		}
1122 
1123 		__skb_flow_dissect_ipv4(skb, flow_dissector,
1124 					target_container, data, iph);
1125 
1126 		break;
1127 	}
1128 	case htons(ETH_P_IPV6): {
1129 		const struct ipv6hdr *iph;
1130 		struct ipv6hdr _iph;
1131 
1132 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1133 		if (!iph) {
1134 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1135 			break;
1136 		}
1137 
1138 		ip_proto = iph->nexthdr;
1139 		nhoff += sizeof(struct ipv6hdr);
1140 
1141 		if (dissector_uses_key(flow_dissector,
1142 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1143 			key_addrs = skb_flow_dissector_target(flow_dissector,
1144 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1145 							      target_container);
1146 
1147 			memcpy(&key_addrs->v6addrs, &iph->saddr,
1148 			       sizeof(key_addrs->v6addrs));
1149 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1150 		}
1151 
1152 		if ((dissector_uses_key(flow_dissector,
1153 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1154 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1155 		    ip6_flowlabel(iph)) {
1156 			__be32 flow_label = ip6_flowlabel(iph);
1157 
1158 			if (dissector_uses_key(flow_dissector,
1159 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1160 				key_tags = skb_flow_dissector_target(flow_dissector,
1161 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
1162 								     target_container);
1163 				key_tags->flow_label = ntohl(flow_label);
1164 			}
1165 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1166 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1167 				break;
1168 			}
1169 		}
1170 
1171 		__skb_flow_dissect_ipv6(skb, flow_dissector,
1172 					target_container, data, iph);
1173 
1174 		break;
1175 	}
1176 	case htons(ETH_P_8021AD):
1177 	case htons(ETH_P_8021Q): {
1178 		const struct vlan_hdr *vlan = NULL;
1179 		struct vlan_hdr _vlan;
1180 		__be16 saved_vlan_tpid = proto;
1181 
1182 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1183 		    skb && skb_vlan_tag_present(skb)) {
1184 			proto = skb->protocol;
1185 		} else {
1186 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1187 						    data, hlen, &_vlan);
1188 			if (!vlan) {
1189 				fdret = FLOW_DISSECT_RET_OUT_BAD;
1190 				break;
1191 			}
1192 
1193 			proto = vlan->h_vlan_encapsulated_proto;
1194 			nhoff += sizeof(*vlan);
1195 		}
1196 
1197 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1198 			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1199 		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1200 			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1201 		} else {
1202 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1203 			break;
1204 		}
1205 
1206 		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1207 			key_vlan = skb_flow_dissector_target(flow_dissector,
1208 							     dissector_vlan,
1209 							     target_container);
1210 
1211 			if (!vlan) {
1212 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1213 				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1214 			} else {
1215 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1216 					VLAN_VID_MASK;
1217 				key_vlan->vlan_priority =
1218 					(ntohs(vlan->h_vlan_TCI) &
1219 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1220 			}
1221 			key_vlan->vlan_tpid = saved_vlan_tpid;
1222 		}
1223 
1224 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1225 		break;
1226 	}
1227 	case htons(ETH_P_PPP_SES): {
1228 		struct {
1229 			struct pppoe_hdr hdr;
1230 			__be16 proto;
1231 		} *hdr, _hdr;
1232 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1233 		if (!hdr) {
1234 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1235 			break;
1236 		}
1237 
1238 		proto = hdr->proto;
1239 		nhoff += PPPOE_SES_HLEN;
1240 		switch (proto) {
1241 		case htons(PPP_IP):
1242 			proto = htons(ETH_P_IP);
1243 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1244 			break;
1245 		case htons(PPP_IPV6):
1246 			proto = htons(ETH_P_IPV6);
1247 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1248 			break;
1249 		default:
1250 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1251 			break;
1252 		}
1253 		break;
1254 	}
1255 	case htons(ETH_P_TIPC): {
1256 		struct tipc_basic_hdr *hdr, _hdr;
1257 
1258 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1259 					   data, hlen, &_hdr);
1260 		if (!hdr) {
1261 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1262 			break;
1263 		}
1264 
1265 		if (dissector_uses_key(flow_dissector,
1266 				       FLOW_DISSECTOR_KEY_TIPC)) {
1267 			key_addrs = skb_flow_dissector_target(flow_dissector,
1268 							      FLOW_DISSECTOR_KEY_TIPC,
1269 							      target_container);
1270 			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1271 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1272 		}
1273 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1274 		break;
1275 	}
1276 
1277 	case htons(ETH_P_MPLS_UC):
1278 	case htons(ETH_P_MPLS_MC):
1279 		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1280 						target_container, data,
1281 						nhoff, hlen);
1282 		break;
1283 	case htons(ETH_P_FCOE):
1284 		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1285 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1286 			break;
1287 		}
1288 
1289 		nhoff += FCOE_HEADER_LEN;
1290 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1291 		break;
1292 
1293 	case htons(ETH_P_ARP):
1294 	case htons(ETH_P_RARP):
1295 		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1296 					       target_container, data,
1297 					       nhoff, hlen);
1298 		break;
1299 
1300 	case htons(ETH_P_BATMAN):
1301 		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1302 						  &proto, &nhoff, hlen, flags);
1303 		break;
1304 
1305 	default:
1306 		fdret = FLOW_DISSECT_RET_OUT_BAD;
1307 		break;
1308 	}
1309 
1310 	/* Process result of proto processing */
1311 	switch (fdret) {
1312 	case FLOW_DISSECT_RET_OUT_GOOD:
1313 		goto out_good;
1314 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1315 		if (skb_flow_dissect_allowed(&num_hdrs))
1316 			goto proto_again;
1317 		goto out_good;
1318 	case FLOW_DISSECT_RET_CONTINUE:
1319 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1320 		break;
1321 	case FLOW_DISSECT_RET_OUT_BAD:
1322 	default:
1323 		goto out_bad;
1324 	}
1325 
1326 ip_proto_again:
1327 	fdret = FLOW_DISSECT_RET_CONTINUE;
1328 
1329 	switch (ip_proto) {
1330 	case IPPROTO_GRE:
1331 		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1332 					       target_container, data,
1333 					       &proto, &nhoff, &hlen, flags);
1334 		break;
1335 
1336 	case NEXTHDR_HOP:
1337 	case NEXTHDR_ROUTING:
1338 	case NEXTHDR_DEST: {
1339 		u8 _opthdr[2], *opthdr;
1340 
1341 		if (proto != htons(ETH_P_IPV6))
1342 			break;
1343 
1344 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1345 					      data, hlen, &_opthdr);
1346 		if (!opthdr) {
1347 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1348 			break;
1349 		}
1350 
1351 		ip_proto = opthdr[0];
1352 		nhoff += (opthdr[1] + 1) << 3;
1353 
1354 		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1355 		break;
1356 	}
1357 	case NEXTHDR_FRAGMENT: {
1358 		struct frag_hdr _fh, *fh;
1359 
1360 		if (proto != htons(ETH_P_IPV6))
1361 			break;
1362 
1363 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1364 					  data, hlen, &_fh);
1365 
1366 		if (!fh) {
1367 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1368 			break;
1369 		}
1370 
1371 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1372 
1373 		nhoff += sizeof(_fh);
1374 		ip_proto = fh->nexthdr;
1375 
1376 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1377 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1378 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1379 				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1380 				break;
1381 			}
1382 		}
1383 
1384 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1385 		break;
1386 	}
1387 	case IPPROTO_IPIP:
1388 		proto = htons(ETH_P_IP);
1389 
1390 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1391 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1392 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1393 			break;
1394 		}
1395 
1396 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1397 		break;
1398 
1399 	case IPPROTO_IPV6:
1400 		proto = htons(ETH_P_IPV6);
1401 
1402 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1403 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1404 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1405 			break;
1406 		}
1407 
1408 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1409 		break;
1410 
1411 
1412 	case IPPROTO_MPLS:
1413 		proto = htons(ETH_P_MPLS_UC);
1414 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1415 		break;
1416 
1417 	case IPPROTO_TCP:
1418 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1419 				       data, nhoff, hlen);
1420 		break;
1421 
1422 	case IPPROTO_ICMP:
1423 	case IPPROTO_ICMPV6:
1424 		__skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1425 					data, nhoff, hlen);
1426 		break;
1427 
1428 	default:
1429 		break;
1430 	}
1431 
1432 	if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
1433 		__skb_flow_dissect_ports(skb, flow_dissector, target_container,
1434 					 data, nhoff, ip_proto, hlen);
1435 
1436 	/* Process result of IP proto processing */
1437 	switch (fdret) {
1438 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1439 		if (skb_flow_dissect_allowed(&num_hdrs))
1440 			goto proto_again;
1441 		break;
1442 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1443 		if (skb_flow_dissect_allowed(&num_hdrs))
1444 			goto ip_proto_again;
1445 		break;
1446 	case FLOW_DISSECT_RET_OUT_GOOD:
1447 	case FLOW_DISSECT_RET_CONTINUE:
1448 		break;
1449 	case FLOW_DISSECT_RET_OUT_BAD:
1450 	default:
1451 		goto out_bad;
1452 	}
1453 
1454 out_good:
1455 	ret = true;
1456 
1457 out:
1458 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1459 	key_basic->n_proto = proto;
1460 	key_basic->ip_proto = ip_proto;
1461 
1462 	return ret;
1463 
1464 out_bad:
1465 	ret = false;
1466 	goto out;
1467 }
1468 EXPORT_SYMBOL(__skb_flow_dissect);
1469 
1470 static siphash_key_t hashrnd __read_mostly;
1471 static __always_inline void __flow_hash_secret_init(void)
1472 {
1473 	net_get_random_once(&hashrnd, sizeof(hashrnd));
1474 }
1475 
1476 static const void *flow_keys_hash_start(const struct flow_keys *flow)
1477 {
1478 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1479 	return &flow->FLOW_KEYS_HASH_START_FIELD;
1480 }
1481 
1482 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1483 {
1484 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1485 
1486 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1487 
1488 	switch (flow->control.addr_type) {
1489 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1490 		diff -= sizeof(flow->addrs.v4addrs);
1491 		break;
1492 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1493 		diff -= sizeof(flow->addrs.v6addrs);
1494 		break;
1495 	case FLOW_DISSECTOR_KEY_TIPC:
1496 		diff -= sizeof(flow->addrs.tipckey);
1497 		break;
1498 	}
1499 	return sizeof(*flow) - diff;
1500 }
1501 
1502 __be32 flow_get_u32_src(const struct flow_keys *flow)
1503 {
1504 	switch (flow->control.addr_type) {
1505 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1506 		return flow->addrs.v4addrs.src;
1507 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1508 		return (__force __be32)ipv6_addr_hash(
1509 			&flow->addrs.v6addrs.src);
1510 	case FLOW_DISSECTOR_KEY_TIPC:
1511 		return flow->addrs.tipckey.key;
1512 	default:
1513 		return 0;
1514 	}
1515 }
1516 EXPORT_SYMBOL(flow_get_u32_src);
1517 
1518 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1519 {
1520 	switch (flow->control.addr_type) {
1521 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1522 		return flow->addrs.v4addrs.dst;
1523 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1524 		return (__force __be32)ipv6_addr_hash(
1525 			&flow->addrs.v6addrs.dst);
1526 	default:
1527 		return 0;
1528 	}
1529 }
1530 EXPORT_SYMBOL(flow_get_u32_dst);
1531 
1532 /* Sort the source and destination IP (and the ports if the IP are the same),
1533  * to have consistent hash within the two directions
1534  */
1535 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1536 {
1537 	int addr_diff, i;
1538 
1539 	switch (keys->control.addr_type) {
1540 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1541 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1542 			    (__force u32)keys->addrs.v4addrs.src;
1543 		if ((addr_diff < 0) ||
1544 		    (addr_diff == 0 &&
1545 		     ((__force u16)keys->ports.dst <
1546 		      (__force u16)keys->ports.src))) {
1547 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1548 			swap(keys->ports.src, keys->ports.dst);
1549 		}
1550 		break;
1551 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1552 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1553 				   &keys->addrs.v6addrs.src,
1554 				   sizeof(keys->addrs.v6addrs.dst));
1555 		if ((addr_diff < 0) ||
1556 		    (addr_diff == 0 &&
1557 		     ((__force u16)keys->ports.dst <
1558 		      (__force u16)keys->ports.src))) {
1559 			for (i = 0; i < 4; i++)
1560 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1561 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1562 			swap(keys->ports.src, keys->ports.dst);
1563 		}
1564 		break;
1565 	}
1566 }
1567 
1568 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1569 					const siphash_key_t *keyval)
1570 {
1571 	u32 hash;
1572 
1573 	__flow_hash_consistentify(keys);
1574 
1575 	hash = siphash(flow_keys_hash_start(keys),
1576 		       flow_keys_hash_length(keys), keyval);
1577 	if (!hash)
1578 		hash = 1;
1579 
1580 	return hash;
1581 }
1582 
1583 u32 flow_hash_from_keys(struct flow_keys *keys)
1584 {
1585 	__flow_hash_secret_init();
1586 	return __flow_hash_from_keys(keys, &hashrnd);
1587 }
1588 EXPORT_SYMBOL(flow_hash_from_keys);
1589 
1590 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1591 				  struct flow_keys *keys,
1592 				  const siphash_key_t *keyval)
1593 {
1594 	skb_flow_dissect_flow_keys(skb, keys,
1595 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1596 
1597 	return __flow_hash_from_keys(keys, keyval);
1598 }
1599 
1600 struct _flow_keys_digest_data {
1601 	__be16	n_proto;
1602 	u8	ip_proto;
1603 	u8	padding;
1604 	__be32	ports;
1605 	__be32	src;
1606 	__be32	dst;
1607 };
1608 
1609 void make_flow_keys_digest(struct flow_keys_digest *digest,
1610 			   const struct flow_keys *flow)
1611 {
1612 	struct _flow_keys_digest_data *data =
1613 	    (struct _flow_keys_digest_data *)digest;
1614 
1615 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1616 
1617 	memset(digest, 0, sizeof(*digest));
1618 
1619 	data->n_proto = flow->basic.n_proto;
1620 	data->ip_proto = flow->basic.ip_proto;
1621 	data->ports = flow->ports.ports;
1622 	data->src = flow->addrs.v4addrs.src;
1623 	data->dst = flow->addrs.v4addrs.dst;
1624 }
1625 EXPORT_SYMBOL(make_flow_keys_digest);
1626 
1627 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1628 
1629 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1630 {
1631 	struct flow_keys keys;
1632 
1633 	__flow_hash_secret_init();
1634 
1635 	memset(&keys, 0, sizeof(keys));
1636 	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1637 			   &keys, NULL, 0, 0, 0,
1638 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1639 
1640 	return __flow_hash_from_keys(&keys, &hashrnd);
1641 }
1642 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1643 
1644 /**
1645  * __skb_get_hash: calculate a flow hash
1646  * @skb: sk_buff to calculate flow hash from
1647  *
1648  * This function calculates a flow hash based on src/dst addresses
1649  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1650  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1651  * if hash is a canonical 4-tuple hash over transport ports.
1652  */
1653 void __skb_get_hash(struct sk_buff *skb)
1654 {
1655 	struct flow_keys keys;
1656 	u32 hash;
1657 
1658 	__flow_hash_secret_init();
1659 
1660 	hash = ___skb_get_hash(skb, &keys, &hashrnd);
1661 
1662 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1663 }
1664 EXPORT_SYMBOL(__skb_get_hash);
1665 
1666 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1667 			   const siphash_key_t *perturb)
1668 {
1669 	struct flow_keys keys;
1670 
1671 	return ___skb_get_hash(skb, &keys, perturb);
1672 }
1673 EXPORT_SYMBOL(skb_get_hash_perturb);
1674 
1675 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1676 		   const struct flow_keys_basic *keys, int hlen)
1677 {
1678 	u32 poff = keys->control.thoff;
1679 
1680 	/* skip L4 headers for fragments after the first */
1681 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1682 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1683 		return poff;
1684 
1685 	switch (keys->basic.ip_proto) {
1686 	case IPPROTO_TCP: {
1687 		/* access doff as u8 to avoid unaligned access */
1688 		const u8 *doff;
1689 		u8 _doff;
1690 
1691 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1692 					    data, hlen, &_doff);
1693 		if (!doff)
1694 			return poff;
1695 
1696 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1697 		break;
1698 	}
1699 	case IPPROTO_UDP:
1700 	case IPPROTO_UDPLITE:
1701 		poff += sizeof(struct udphdr);
1702 		break;
1703 	/* For the rest, we do not really care about header
1704 	 * extensions at this point for now.
1705 	 */
1706 	case IPPROTO_ICMP:
1707 		poff += sizeof(struct icmphdr);
1708 		break;
1709 	case IPPROTO_ICMPV6:
1710 		poff += sizeof(struct icmp6hdr);
1711 		break;
1712 	case IPPROTO_IGMP:
1713 		poff += sizeof(struct igmphdr);
1714 		break;
1715 	case IPPROTO_DCCP:
1716 		poff += sizeof(struct dccp_hdr);
1717 		break;
1718 	case IPPROTO_SCTP:
1719 		poff += sizeof(struct sctphdr);
1720 		break;
1721 	}
1722 
1723 	return poff;
1724 }
1725 
1726 /**
1727  * skb_get_poff - get the offset to the payload
1728  * @skb: sk_buff to get the payload offset from
1729  *
1730  * The function will get the offset to the payload as far as it could
1731  * be dissected.  The main user is currently BPF, so that we can dynamically
1732  * truncate packets without needing to push actual payload to the user
1733  * space and can analyze headers only, instead.
1734  */
1735 u32 skb_get_poff(const struct sk_buff *skb)
1736 {
1737 	struct flow_keys_basic keys;
1738 
1739 	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1740 					      NULL, 0, 0, 0, 0))
1741 		return 0;
1742 
1743 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1744 }
1745 
1746 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1747 {
1748 	memset(keys, 0, sizeof(*keys));
1749 
1750 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1751 	    sizeof(keys->addrs.v6addrs.src));
1752 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1753 	    sizeof(keys->addrs.v6addrs.dst));
1754 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1755 	keys->ports.src = fl6->fl6_sport;
1756 	keys->ports.dst = fl6->fl6_dport;
1757 	keys->keyid.keyid = fl6->fl6_gre_key;
1758 	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1759 	keys->basic.ip_proto = fl6->flowi6_proto;
1760 
1761 	return flow_hash_from_keys(keys);
1762 }
1763 EXPORT_SYMBOL(__get_hash_from_flowi6);
1764 
1765 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1766 	{
1767 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1768 		.offset = offsetof(struct flow_keys, control),
1769 	},
1770 	{
1771 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1772 		.offset = offsetof(struct flow_keys, basic),
1773 	},
1774 	{
1775 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1776 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1777 	},
1778 	{
1779 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1780 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1781 	},
1782 	{
1783 		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1784 		.offset = offsetof(struct flow_keys, addrs.tipckey),
1785 	},
1786 	{
1787 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1788 		.offset = offsetof(struct flow_keys, ports),
1789 	},
1790 	{
1791 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1792 		.offset = offsetof(struct flow_keys, vlan),
1793 	},
1794 	{
1795 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1796 		.offset = offsetof(struct flow_keys, tags),
1797 	},
1798 	{
1799 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1800 		.offset = offsetof(struct flow_keys, keyid),
1801 	},
1802 };
1803 
1804 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1805 	{
1806 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1807 		.offset = offsetof(struct flow_keys, control),
1808 	},
1809 	{
1810 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1811 		.offset = offsetof(struct flow_keys, basic),
1812 	},
1813 	{
1814 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1815 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1816 	},
1817 	{
1818 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1819 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1820 	},
1821 	{
1822 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1823 		.offset = offsetof(struct flow_keys, ports),
1824 	},
1825 };
1826 
1827 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1828 	{
1829 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1830 		.offset = offsetof(struct flow_keys, control),
1831 	},
1832 	{
1833 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1834 		.offset = offsetof(struct flow_keys, basic),
1835 	},
1836 };
1837 
1838 struct flow_dissector flow_keys_dissector __read_mostly;
1839 EXPORT_SYMBOL(flow_keys_dissector);
1840 
1841 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1842 EXPORT_SYMBOL(flow_keys_basic_dissector);
1843 
1844 static int __init init_default_flow_dissectors(void)
1845 {
1846 	skb_flow_dissector_init(&flow_keys_dissector,
1847 				flow_keys_dissector_keys,
1848 				ARRAY_SIZE(flow_keys_dissector_keys));
1849 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1850 				flow_keys_dissector_symmetric_keys,
1851 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1852 	skb_flow_dissector_init(&flow_keys_basic_dissector,
1853 				flow_keys_basic_dissector_keys,
1854 				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1855 
1856 	return register_pernet_subsys(&flow_dissector_pernet_ops);
1857 }
1858 core_initcall(init_default_flow_dissectors);
1859