xref: /openbmc/linux/net/core/flow_dissector.c (revision ee8a99bd)
1 #include <linux/skbuff.h>
2 #include <linux/export.h>
3 #include <linux/ip.h>
4 #include <linux/ipv6.h>
5 #include <linux/if_vlan.h>
6 #include <net/ip.h>
7 #include <net/ipv6.h>
8 #include <linux/igmp.h>
9 #include <linux/icmp.h>
10 #include <linux/sctp.h>
11 #include <linux/dccp.h>
12 #include <linux/if_tunnel.h>
13 #include <linux/if_pppox.h>
14 #include <linux/ppp_defs.h>
15 #include <net/flow_keys.h>
16 
17 /* copy saddr & daddr, possibly using 64bit load/store
18  * Equivalent to :	flow->src = iph->saddr;
19  *			flow->dst = iph->daddr;
20  */
21 static void iph_to_flow_copy_addrs(struct flow_keys *flow, const struct iphdr *iph)
22 {
23 	BUILD_BUG_ON(offsetof(typeof(*flow), dst) !=
24 		     offsetof(typeof(*flow), src) + sizeof(flow->src));
25 	memcpy(&flow->src, &iph->saddr, sizeof(flow->src) + sizeof(flow->dst));
26 }
27 
28 bool skb_flow_dissect(const struct sk_buff *skb, struct flow_keys *flow)
29 {
30 	int poff, nhoff = skb_network_offset(skb);
31 	u8 ip_proto;
32 	__be16 proto = skb->protocol;
33 
34 	memset(flow, 0, sizeof(*flow));
35 
36 again:
37 	switch (proto) {
38 	case __constant_htons(ETH_P_IP): {
39 		const struct iphdr *iph;
40 		struct iphdr _iph;
41 ip:
42 		iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
43 		if (!iph)
44 			return false;
45 
46 		if (ip_is_fragment(iph))
47 			ip_proto = 0;
48 		else
49 			ip_proto = iph->protocol;
50 		iph_to_flow_copy_addrs(flow, iph);
51 		nhoff += iph->ihl * 4;
52 		break;
53 	}
54 	case __constant_htons(ETH_P_IPV6): {
55 		const struct ipv6hdr *iph;
56 		struct ipv6hdr _iph;
57 ipv6:
58 		iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
59 		if (!iph)
60 			return false;
61 
62 		ip_proto = iph->nexthdr;
63 		flow->src = (__force __be32)ipv6_addr_hash(&iph->saddr);
64 		flow->dst = (__force __be32)ipv6_addr_hash(&iph->daddr);
65 		nhoff += sizeof(struct ipv6hdr);
66 		break;
67 	}
68 	case __constant_htons(ETH_P_8021AD):
69 	case __constant_htons(ETH_P_8021Q): {
70 		const struct vlan_hdr *vlan;
71 		struct vlan_hdr _vlan;
72 
73 		vlan = skb_header_pointer(skb, nhoff, sizeof(_vlan), &_vlan);
74 		if (!vlan)
75 			return false;
76 
77 		proto = vlan->h_vlan_encapsulated_proto;
78 		nhoff += sizeof(*vlan);
79 		goto again;
80 	}
81 	case __constant_htons(ETH_P_PPP_SES): {
82 		struct {
83 			struct pppoe_hdr hdr;
84 			__be16 proto;
85 		} *hdr, _hdr;
86 		hdr = skb_header_pointer(skb, nhoff, sizeof(_hdr), &_hdr);
87 		if (!hdr)
88 			return false;
89 		proto = hdr->proto;
90 		nhoff += PPPOE_SES_HLEN;
91 		switch (proto) {
92 		case __constant_htons(PPP_IP):
93 			goto ip;
94 		case __constant_htons(PPP_IPV6):
95 			goto ipv6;
96 		default:
97 			return false;
98 		}
99 	}
100 	default:
101 		return false;
102 	}
103 
104 	switch (ip_proto) {
105 	case IPPROTO_GRE: {
106 		struct gre_hdr {
107 			__be16 flags;
108 			__be16 proto;
109 		} *hdr, _hdr;
110 
111 		hdr = skb_header_pointer(skb, nhoff, sizeof(_hdr), &_hdr);
112 		if (!hdr)
113 			return false;
114 		/*
115 		 * Only look inside GRE if version zero and no
116 		 * routing
117 		 */
118 		if (!(hdr->flags & (GRE_VERSION|GRE_ROUTING))) {
119 			proto = hdr->proto;
120 			nhoff += 4;
121 			if (hdr->flags & GRE_CSUM)
122 				nhoff += 4;
123 			if (hdr->flags & GRE_KEY)
124 				nhoff += 4;
125 			if (hdr->flags & GRE_SEQ)
126 				nhoff += 4;
127 			if (proto == htons(ETH_P_TEB)) {
128 				const struct ethhdr *eth;
129 				struct ethhdr _eth;
130 
131 				eth = skb_header_pointer(skb, nhoff,
132 							 sizeof(_eth), &_eth);
133 				if (!eth)
134 					return false;
135 				proto = eth->h_proto;
136 				nhoff += sizeof(*eth);
137 			}
138 			goto again;
139 		}
140 		break;
141 	}
142 	case IPPROTO_IPIP:
143 		goto again;
144 	default:
145 		break;
146 	}
147 
148 	flow->ip_proto = ip_proto;
149 	poff = proto_ports_offset(ip_proto);
150 	if (poff >= 0) {
151 		__be32 *ports, _ports;
152 
153 		nhoff += poff;
154 		ports = skb_header_pointer(skb, nhoff, sizeof(_ports), &_ports);
155 		if (ports)
156 			flow->ports = *ports;
157 	}
158 
159 	flow->thoff = (u16) nhoff;
160 
161 	return true;
162 }
163 EXPORT_SYMBOL(skb_flow_dissect);
164 
165 static u32 hashrnd __read_mostly;
166 
167 /*
168  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
169  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
170  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
171  * if hash is a canonical 4-tuple hash over transport ports.
172  */
173 void __skb_get_rxhash(struct sk_buff *skb)
174 {
175 	struct flow_keys keys;
176 	u32 hash;
177 
178 	if (!skb_flow_dissect(skb, &keys))
179 		return;
180 
181 	if (keys.ports)
182 		skb->l4_rxhash = 1;
183 
184 	/* get a consistent hash (same value on both flow directions) */
185 	if (((__force u32)keys.dst < (__force u32)keys.src) ||
186 	    (((__force u32)keys.dst == (__force u32)keys.src) &&
187 	     ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
188 		swap(keys.dst, keys.src);
189 		swap(keys.port16[0], keys.port16[1]);
190 	}
191 
192 	hash = jhash_3words((__force u32)keys.dst,
193 			    (__force u32)keys.src,
194 			    (__force u32)keys.ports, hashrnd);
195 	if (!hash)
196 		hash = 1;
197 
198 	skb->rxhash = hash;
199 }
200 EXPORT_SYMBOL(__skb_get_rxhash);
201 
202 /*
203  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
204  * to be used as a distribution range.
205  */
206 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
207 		  unsigned int num_tx_queues)
208 {
209 	u32 hash;
210 	u16 qoffset = 0;
211 	u16 qcount = num_tx_queues;
212 
213 	if (skb_rx_queue_recorded(skb)) {
214 		hash = skb_get_rx_queue(skb);
215 		while (unlikely(hash >= num_tx_queues))
216 			hash -= num_tx_queues;
217 		return hash;
218 	}
219 
220 	if (dev->num_tc) {
221 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
222 		qoffset = dev->tc_to_txq[tc].offset;
223 		qcount = dev->tc_to_txq[tc].count;
224 	}
225 
226 	if (skb->sk && skb->sk->sk_hash)
227 		hash = skb->sk->sk_hash;
228 	else
229 		hash = (__force u16) skb->protocol;
230 	hash = jhash_1word(hash, hashrnd);
231 
232 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
233 }
234 EXPORT_SYMBOL(__skb_tx_hash);
235 
236 /* __skb_get_poff() returns the offset to the payload as far as it could
237  * be dissected. The main user is currently BPF, so that we can dynamically
238  * truncate packets without needing to push actual payload to the user
239  * space and can analyze headers only, instead.
240  */
241 u32 __skb_get_poff(const struct sk_buff *skb)
242 {
243 	struct flow_keys keys;
244 	u32 poff = 0;
245 
246 	if (!skb_flow_dissect(skb, &keys))
247 		return 0;
248 
249 	poff += keys.thoff;
250 	switch (keys.ip_proto) {
251 	case IPPROTO_TCP: {
252 		const struct tcphdr *tcph;
253 		struct tcphdr _tcph;
254 
255 		tcph = skb_header_pointer(skb, poff, sizeof(_tcph), &_tcph);
256 		if (!tcph)
257 			return poff;
258 
259 		poff += max_t(u32, sizeof(struct tcphdr), tcph->doff * 4);
260 		break;
261 	}
262 	case IPPROTO_UDP:
263 	case IPPROTO_UDPLITE:
264 		poff += sizeof(struct udphdr);
265 		break;
266 	/* For the rest, we do not really care about header
267 	 * extensions at this point for now.
268 	 */
269 	case IPPROTO_ICMP:
270 		poff += sizeof(struct icmphdr);
271 		break;
272 	case IPPROTO_ICMPV6:
273 		poff += sizeof(struct icmp6hdr);
274 		break;
275 	case IPPROTO_IGMP:
276 		poff += sizeof(struct igmphdr);
277 		break;
278 	case IPPROTO_DCCP:
279 		poff += sizeof(struct dccp_hdr);
280 		break;
281 	case IPPROTO_SCTP:
282 		poff += sizeof(struct sctphdr);
283 		break;
284 	}
285 
286 	return poff;
287 }
288 
289 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
290 {
291 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
292 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
293 				     dev->name, queue_index,
294 				     dev->real_num_tx_queues);
295 		return 0;
296 	}
297 	return queue_index;
298 }
299 
300 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
301 {
302 #ifdef CONFIG_XPS
303 	struct xps_dev_maps *dev_maps;
304 	struct xps_map *map;
305 	int queue_index = -1;
306 
307 	rcu_read_lock();
308 	dev_maps = rcu_dereference(dev->xps_maps);
309 	if (dev_maps) {
310 		map = rcu_dereference(
311 		    dev_maps->cpu_map[raw_smp_processor_id()]);
312 		if (map) {
313 			if (map->len == 1)
314 				queue_index = map->queues[0];
315 			else {
316 				u32 hash;
317 				if (skb->sk && skb->sk->sk_hash)
318 					hash = skb->sk->sk_hash;
319 				else
320 					hash = (__force u16) skb->protocol ^
321 					    skb->rxhash;
322 				hash = jhash_1word(hash, hashrnd);
323 				queue_index = map->queues[
324 				    ((u64)hash * map->len) >> 32];
325 			}
326 			if (unlikely(queue_index >= dev->real_num_tx_queues))
327 				queue_index = -1;
328 		}
329 	}
330 	rcu_read_unlock();
331 
332 	return queue_index;
333 #else
334 	return -1;
335 #endif
336 }
337 
338 u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
339 {
340 	struct sock *sk = skb->sk;
341 	int queue_index = sk_tx_queue_get(sk);
342 
343 	if (queue_index < 0 || skb->ooo_okay ||
344 	    queue_index >= dev->real_num_tx_queues) {
345 		int new_index = get_xps_queue(dev, skb);
346 		if (new_index < 0)
347 			new_index = skb_tx_hash(dev, skb);
348 
349 		if (queue_index != new_index && sk) {
350 			struct dst_entry *dst =
351 				    rcu_dereference_check(sk->sk_dst_cache, 1);
352 
353 			if (dst && skb_dst(skb) == dst)
354 				sk_tx_queue_set(sk, queue_index);
355 
356 		}
357 
358 		queue_index = new_index;
359 	}
360 
361 	return queue_index;
362 }
363 EXPORT_SYMBOL(__netdev_pick_tx);
364 
365 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
366 				    struct sk_buff *skb)
367 {
368 	int queue_index = 0;
369 
370 	if (dev->real_num_tx_queues != 1) {
371 		const struct net_device_ops *ops = dev->netdev_ops;
372 		if (ops->ndo_select_queue)
373 			queue_index = ops->ndo_select_queue(dev, skb);
374 		else
375 			queue_index = __netdev_pick_tx(dev, skb);
376 		queue_index = dev_cap_txqueue(dev, queue_index);
377 	}
378 
379 	skb_set_queue_mapping(skb, queue_index);
380 	return netdev_get_tx_queue(dev, queue_index);
381 }
382 
383 static int __init initialize_hashrnd(void)
384 {
385 	get_random_bytes(&hashrnd, sizeof(hashrnd));
386 	return 0;
387 }
388 
389 late_initcall_sync(initialize_hashrnd);
390