1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/skbuff.h> 4 #include <linux/export.h> 5 #include <linux/ip.h> 6 #include <linux/ipv6.h> 7 #include <linux/if_vlan.h> 8 #include <net/dsa.h> 9 #include <net/dst_metadata.h> 10 #include <net/ip.h> 11 #include <net/ipv6.h> 12 #include <net/gre.h> 13 #include <net/pptp.h> 14 #include <net/tipc.h> 15 #include <linux/igmp.h> 16 #include <linux/icmp.h> 17 #include <linux/sctp.h> 18 #include <linux/dccp.h> 19 #include <linux/if_tunnel.h> 20 #include <linux/if_pppox.h> 21 #include <linux/ppp_defs.h> 22 #include <linux/stddef.h> 23 #include <linux/if_ether.h> 24 #include <linux/mpls.h> 25 #include <linux/tcp.h> 26 #include <linux/ptp_classify.h> 27 #include <net/flow_dissector.h> 28 #include <scsi/fc/fc_fcoe.h> 29 #include <uapi/linux/batadv_packet.h> 30 #include <linux/bpf.h> 31 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 32 #include <net/netfilter/nf_conntrack_core.h> 33 #include <net/netfilter/nf_conntrack_labels.h> 34 #endif 35 #include <linux/bpf-netns.h> 36 37 static void dissector_set_key(struct flow_dissector *flow_dissector, 38 enum flow_dissector_key_id key_id) 39 { 40 flow_dissector->used_keys |= (1 << key_id); 41 } 42 43 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 44 const struct flow_dissector_key *key, 45 unsigned int key_count) 46 { 47 unsigned int i; 48 49 memset(flow_dissector, 0, sizeof(*flow_dissector)); 50 51 for (i = 0; i < key_count; i++, key++) { 52 /* User should make sure that every key target offset is within 53 * boundaries of unsigned short. 54 */ 55 BUG_ON(key->offset > USHRT_MAX); 56 BUG_ON(dissector_uses_key(flow_dissector, 57 key->key_id)); 58 59 dissector_set_key(flow_dissector, key->key_id); 60 flow_dissector->offset[key->key_id] = key->offset; 61 } 62 63 /* Ensure that the dissector always includes control and basic key. 64 * That way we are able to avoid handling lack of these in fast path. 65 */ 66 BUG_ON(!dissector_uses_key(flow_dissector, 67 FLOW_DISSECTOR_KEY_CONTROL)); 68 BUG_ON(!dissector_uses_key(flow_dissector, 69 FLOW_DISSECTOR_KEY_BASIC)); 70 } 71 EXPORT_SYMBOL(skb_flow_dissector_init); 72 73 #ifdef CONFIG_BPF_SYSCALL 74 int flow_dissector_bpf_prog_attach_check(struct net *net, 75 struct bpf_prog *prog) 76 { 77 enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR; 78 79 if (net == &init_net) { 80 /* BPF flow dissector in the root namespace overrides 81 * any per-net-namespace one. When attaching to root, 82 * make sure we don't have any BPF program attached 83 * to the non-root namespaces. 84 */ 85 struct net *ns; 86 87 for_each_net(ns) { 88 if (ns == &init_net) 89 continue; 90 if (rcu_access_pointer(ns->bpf.run_array[type])) 91 return -EEXIST; 92 } 93 } else { 94 /* Make sure root flow dissector is not attached 95 * when attaching to the non-root namespace. 96 */ 97 if (rcu_access_pointer(init_net.bpf.run_array[type])) 98 return -EEXIST; 99 } 100 101 return 0; 102 } 103 #endif /* CONFIG_BPF_SYSCALL */ 104 105 /** 106 * __skb_flow_get_ports - extract the upper layer ports and return them 107 * @skb: sk_buff to extract the ports from 108 * @thoff: transport header offset 109 * @ip_proto: protocol for which to get port offset 110 * @data: raw buffer pointer to the packet, if NULL use skb->data 111 * @hlen: packet header length, if @data is NULL use skb_headlen(skb) 112 * 113 * The function will try to retrieve the ports at offset thoff + poff where poff 114 * is the protocol port offset returned from proto_ports_offset 115 */ 116 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 117 const void *data, int hlen) 118 { 119 int poff = proto_ports_offset(ip_proto); 120 121 if (!data) { 122 data = skb->data; 123 hlen = skb_headlen(skb); 124 } 125 126 if (poff >= 0) { 127 __be32 *ports, _ports; 128 129 ports = __skb_header_pointer(skb, thoff + poff, 130 sizeof(_ports), data, hlen, &_ports); 131 if (ports) 132 return *ports; 133 } 134 135 return 0; 136 } 137 EXPORT_SYMBOL(__skb_flow_get_ports); 138 139 static bool icmp_has_id(u8 type) 140 { 141 switch (type) { 142 case ICMP_ECHO: 143 case ICMP_ECHOREPLY: 144 case ICMP_TIMESTAMP: 145 case ICMP_TIMESTAMPREPLY: 146 case ICMPV6_ECHO_REQUEST: 147 case ICMPV6_ECHO_REPLY: 148 return true; 149 } 150 151 return false; 152 } 153 154 /** 155 * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields 156 * @skb: sk_buff to extract from 157 * @key_icmp: struct flow_dissector_key_icmp to fill 158 * @data: raw buffer pointer to the packet 159 * @thoff: offset to extract at 160 * @hlen: packet header length 161 */ 162 void skb_flow_get_icmp_tci(const struct sk_buff *skb, 163 struct flow_dissector_key_icmp *key_icmp, 164 const void *data, int thoff, int hlen) 165 { 166 struct icmphdr *ih, _ih; 167 168 ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih); 169 if (!ih) 170 return; 171 172 key_icmp->type = ih->type; 173 key_icmp->code = ih->code; 174 175 /* As we use 0 to signal that the Id field is not present, 176 * avoid confusion with packets without such field 177 */ 178 if (icmp_has_id(ih->type)) 179 key_icmp->id = ih->un.echo.id ? ntohs(ih->un.echo.id) : 1; 180 else 181 key_icmp->id = 0; 182 } 183 EXPORT_SYMBOL(skb_flow_get_icmp_tci); 184 185 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet 186 * using skb_flow_get_icmp_tci(). 187 */ 188 static void __skb_flow_dissect_icmp(const struct sk_buff *skb, 189 struct flow_dissector *flow_dissector, 190 void *target_container, const void *data, 191 int thoff, int hlen) 192 { 193 struct flow_dissector_key_icmp *key_icmp; 194 195 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP)) 196 return; 197 198 key_icmp = skb_flow_dissector_target(flow_dissector, 199 FLOW_DISSECTOR_KEY_ICMP, 200 target_container); 201 202 skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen); 203 } 204 205 void skb_flow_dissect_meta(const struct sk_buff *skb, 206 struct flow_dissector *flow_dissector, 207 void *target_container) 208 { 209 struct flow_dissector_key_meta *meta; 210 211 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META)) 212 return; 213 214 meta = skb_flow_dissector_target(flow_dissector, 215 FLOW_DISSECTOR_KEY_META, 216 target_container); 217 meta->ingress_ifindex = skb->skb_iif; 218 } 219 EXPORT_SYMBOL(skb_flow_dissect_meta); 220 221 static void 222 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type, 223 struct flow_dissector *flow_dissector, 224 void *target_container) 225 { 226 struct flow_dissector_key_control *ctrl; 227 228 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL)) 229 return; 230 231 ctrl = skb_flow_dissector_target(flow_dissector, 232 FLOW_DISSECTOR_KEY_ENC_CONTROL, 233 target_container); 234 ctrl->addr_type = type; 235 } 236 237 void 238 skb_flow_dissect_ct(const struct sk_buff *skb, 239 struct flow_dissector *flow_dissector, 240 void *target_container, u16 *ctinfo_map, 241 size_t mapsize, bool post_ct, u16 zone) 242 { 243 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 244 struct flow_dissector_key_ct *key; 245 enum ip_conntrack_info ctinfo; 246 struct nf_conn_labels *cl; 247 struct nf_conn *ct; 248 249 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT)) 250 return; 251 252 ct = nf_ct_get(skb, &ctinfo); 253 if (!ct && !post_ct) 254 return; 255 256 key = skb_flow_dissector_target(flow_dissector, 257 FLOW_DISSECTOR_KEY_CT, 258 target_container); 259 260 if (!ct) { 261 key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED | 262 TCA_FLOWER_KEY_CT_FLAGS_INVALID; 263 key->ct_zone = zone; 264 return; 265 } 266 267 if (ctinfo < mapsize) 268 key->ct_state = ctinfo_map[ctinfo]; 269 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) 270 key->ct_zone = ct->zone.id; 271 #endif 272 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 273 key->ct_mark = ct->mark; 274 #endif 275 276 cl = nf_ct_labels_find(ct); 277 if (cl) 278 memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels)); 279 #endif /* CONFIG_NF_CONNTRACK */ 280 } 281 EXPORT_SYMBOL(skb_flow_dissect_ct); 282 283 void 284 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 285 struct flow_dissector *flow_dissector, 286 void *target_container) 287 { 288 struct ip_tunnel_info *info; 289 struct ip_tunnel_key *key; 290 291 /* A quick check to see if there might be something to do. */ 292 if (!dissector_uses_key(flow_dissector, 293 FLOW_DISSECTOR_KEY_ENC_KEYID) && 294 !dissector_uses_key(flow_dissector, 295 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) && 296 !dissector_uses_key(flow_dissector, 297 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) && 298 !dissector_uses_key(flow_dissector, 299 FLOW_DISSECTOR_KEY_ENC_CONTROL) && 300 !dissector_uses_key(flow_dissector, 301 FLOW_DISSECTOR_KEY_ENC_PORTS) && 302 !dissector_uses_key(flow_dissector, 303 FLOW_DISSECTOR_KEY_ENC_IP) && 304 !dissector_uses_key(flow_dissector, 305 FLOW_DISSECTOR_KEY_ENC_OPTS)) 306 return; 307 308 info = skb_tunnel_info(skb); 309 if (!info) 310 return; 311 312 key = &info->key; 313 314 switch (ip_tunnel_info_af(info)) { 315 case AF_INET: 316 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS, 317 flow_dissector, 318 target_container); 319 if (dissector_uses_key(flow_dissector, 320 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) { 321 struct flow_dissector_key_ipv4_addrs *ipv4; 322 323 ipv4 = skb_flow_dissector_target(flow_dissector, 324 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, 325 target_container); 326 ipv4->src = key->u.ipv4.src; 327 ipv4->dst = key->u.ipv4.dst; 328 } 329 break; 330 case AF_INET6: 331 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS, 332 flow_dissector, 333 target_container); 334 if (dissector_uses_key(flow_dissector, 335 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) { 336 struct flow_dissector_key_ipv6_addrs *ipv6; 337 338 ipv6 = skb_flow_dissector_target(flow_dissector, 339 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, 340 target_container); 341 ipv6->src = key->u.ipv6.src; 342 ipv6->dst = key->u.ipv6.dst; 343 } 344 break; 345 } 346 347 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 348 struct flow_dissector_key_keyid *keyid; 349 350 keyid = skb_flow_dissector_target(flow_dissector, 351 FLOW_DISSECTOR_KEY_ENC_KEYID, 352 target_container); 353 keyid->keyid = tunnel_id_to_key32(key->tun_id); 354 } 355 356 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) { 357 struct flow_dissector_key_ports *tp; 358 359 tp = skb_flow_dissector_target(flow_dissector, 360 FLOW_DISSECTOR_KEY_ENC_PORTS, 361 target_container); 362 tp->src = key->tp_src; 363 tp->dst = key->tp_dst; 364 } 365 366 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) { 367 struct flow_dissector_key_ip *ip; 368 369 ip = skb_flow_dissector_target(flow_dissector, 370 FLOW_DISSECTOR_KEY_ENC_IP, 371 target_container); 372 ip->tos = key->tos; 373 ip->ttl = key->ttl; 374 } 375 376 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) { 377 struct flow_dissector_key_enc_opts *enc_opt; 378 379 enc_opt = skb_flow_dissector_target(flow_dissector, 380 FLOW_DISSECTOR_KEY_ENC_OPTS, 381 target_container); 382 383 if (info->options_len) { 384 enc_opt->len = info->options_len; 385 ip_tunnel_info_opts_get(enc_opt->data, info); 386 enc_opt->dst_opt_type = info->key.tun_flags & 387 TUNNEL_OPTIONS_PRESENT; 388 } 389 } 390 } 391 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info); 392 393 void skb_flow_dissect_hash(const struct sk_buff *skb, 394 struct flow_dissector *flow_dissector, 395 void *target_container) 396 { 397 struct flow_dissector_key_hash *key; 398 399 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH)) 400 return; 401 402 key = skb_flow_dissector_target(flow_dissector, 403 FLOW_DISSECTOR_KEY_HASH, 404 target_container); 405 406 key->hash = skb_get_hash_raw(skb); 407 } 408 EXPORT_SYMBOL(skb_flow_dissect_hash); 409 410 static enum flow_dissect_ret 411 __skb_flow_dissect_mpls(const struct sk_buff *skb, 412 struct flow_dissector *flow_dissector, 413 void *target_container, const void *data, int nhoff, 414 int hlen, int lse_index, bool *entropy_label) 415 { 416 struct mpls_label *hdr, _hdr; 417 u32 entry, label, bos; 418 419 if (!dissector_uses_key(flow_dissector, 420 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) && 421 !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) 422 return FLOW_DISSECT_RET_OUT_GOOD; 423 424 if (lse_index >= FLOW_DIS_MPLS_MAX) 425 return FLOW_DISSECT_RET_OUT_GOOD; 426 427 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, 428 hlen, &_hdr); 429 if (!hdr) 430 return FLOW_DISSECT_RET_OUT_BAD; 431 432 entry = ntohl(hdr->entry); 433 label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT; 434 bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT; 435 436 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) { 437 struct flow_dissector_key_mpls *key_mpls; 438 struct flow_dissector_mpls_lse *lse; 439 440 key_mpls = skb_flow_dissector_target(flow_dissector, 441 FLOW_DISSECTOR_KEY_MPLS, 442 target_container); 443 lse = &key_mpls->ls[lse_index]; 444 445 lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 446 lse->mpls_bos = bos; 447 lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT; 448 lse->mpls_label = label; 449 dissector_set_mpls_lse(key_mpls, lse_index); 450 } 451 452 if (*entropy_label && 453 dissector_uses_key(flow_dissector, 454 FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) { 455 struct flow_dissector_key_keyid *key_keyid; 456 457 key_keyid = skb_flow_dissector_target(flow_dissector, 458 FLOW_DISSECTOR_KEY_MPLS_ENTROPY, 459 target_container); 460 key_keyid->keyid = cpu_to_be32(label); 461 } 462 463 *entropy_label = label == MPLS_LABEL_ENTROPY; 464 465 return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN; 466 } 467 468 static enum flow_dissect_ret 469 __skb_flow_dissect_arp(const struct sk_buff *skb, 470 struct flow_dissector *flow_dissector, 471 void *target_container, const void *data, 472 int nhoff, int hlen) 473 { 474 struct flow_dissector_key_arp *key_arp; 475 struct { 476 unsigned char ar_sha[ETH_ALEN]; 477 unsigned char ar_sip[4]; 478 unsigned char ar_tha[ETH_ALEN]; 479 unsigned char ar_tip[4]; 480 } *arp_eth, _arp_eth; 481 const struct arphdr *arp; 482 struct arphdr _arp; 483 484 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP)) 485 return FLOW_DISSECT_RET_OUT_GOOD; 486 487 arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data, 488 hlen, &_arp); 489 if (!arp) 490 return FLOW_DISSECT_RET_OUT_BAD; 491 492 if (arp->ar_hrd != htons(ARPHRD_ETHER) || 493 arp->ar_pro != htons(ETH_P_IP) || 494 arp->ar_hln != ETH_ALEN || 495 arp->ar_pln != 4 || 496 (arp->ar_op != htons(ARPOP_REPLY) && 497 arp->ar_op != htons(ARPOP_REQUEST))) 498 return FLOW_DISSECT_RET_OUT_BAD; 499 500 arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp), 501 sizeof(_arp_eth), data, 502 hlen, &_arp_eth); 503 if (!arp_eth) 504 return FLOW_DISSECT_RET_OUT_BAD; 505 506 key_arp = skb_flow_dissector_target(flow_dissector, 507 FLOW_DISSECTOR_KEY_ARP, 508 target_container); 509 510 memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip)); 511 memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip)); 512 513 /* Only store the lower byte of the opcode; 514 * this covers ARPOP_REPLY and ARPOP_REQUEST. 515 */ 516 key_arp->op = ntohs(arp->ar_op) & 0xff; 517 518 ether_addr_copy(key_arp->sha, arp_eth->ar_sha); 519 ether_addr_copy(key_arp->tha, arp_eth->ar_tha); 520 521 return FLOW_DISSECT_RET_OUT_GOOD; 522 } 523 524 static enum flow_dissect_ret 525 __skb_flow_dissect_gre(const struct sk_buff *skb, 526 struct flow_dissector_key_control *key_control, 527 struct flow_dissector *flow_dissector, 528 void *target_container, const void *data, 529 __be16 *p_proto, int *p_nhoff, int *p_hlen, 530 unsigned int flags) 531 { 532 struct flow_dissector_key_keyid *key_keyid; 533 struct gre_base_hdr *hdr, _hdr; 534 int offset = 0; 535 u16 gre_ver; 536 537 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), 538 data, *p_hlen, &_hdr); 539 if (!hdr) 540 return FLOW_DISSECT_RET_OUT_BAD; 541 542 /* Only look inside GRE without routing */ 543 if (hdr->flags & GRE_ROUTING) 544 return FLOW_DISSECT_RET_OUT_GOOD; 545 546 /* Only look inside GRE for version 0 and 1 */ 547 gre_ver = ntohs(hdr->flags & GRE_VERSION); 548 if (gre_ver > 1) 549 return FLOW_DISSECT_RET_OUT_GOOD; 550 551 *p_proto = hdr->protocol; 552 if (gre_ver) { 553 /* Version1 must be PPTP, and check the flags */ 554 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY))) 555 return FLOW_DISSECT_RET_OUT_GOOD; 556 } 557 558 offset += sizeof(struct gre_base_hdr); 559 560 if (hdr->flags & GRE_CSUM) 561 offset += sizeof_field(struct gre_full_hdr, csum) + 562 sizeof_field(struct gre_full_hdr, reserved1); 563 564 if (hdr->flags & GRE_KEY) { 565 const __be32 *keyid; 566 __be32 _keyid; 567 568 keyid = __skb_header_pointer(skb, *p_nhoff + offset, 569 sizeof(_keyid), 570 data, *p_hlen, &_keyid); 571 if (!keyid) 572 return FLOW_DISSECT_RET_OUT_BAD; 573 574 if (dissector_uses_key(flow_dissector, 575 FLOW_DISSECTOR_KEY_GRE_KEYID)) { 576 key_keyid = skb_flow_dissector_target(flow_dissector, 577 FLOW_DISSECTOR_KEY_GRE_KEYID, 578 target_container); 579 if (gre_ver == 0) 580 key_keyid->keyid = *keyid; 581 else 582 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK; 583 } 584 offset += sizeof_field(struct gre_full_hdr, key); 585 } 586 587 if (hdr->flags & GRE_SEQ) 588 offset += sizeof_field(struct pptp_gre_header, seq); 589 590 if (gre_ver == 0) { 591 if (*p_proto == htons(ETH_P_TEB)) { 592 const struct ethhdr *eth; 593 struct ethhdr _eth; 594 595 eth = __skb_header_pointer(skb, *p_nhoff + offset, 596 sizeof(_eth), 597 data, *p_hlen, &_eth); 598 if (!eth) 599 return FLOW_DISSECT_RET_OUT_BAD; 600 *p_proto = eth->h_proto; 601 offset += sizeof(*eth); 602 603 /* Cap headers that we access via pointers at the 604 * end of the Ethernet header as our maximum alignment 605 * at that point is only 2 bytes. 606 */ 607 if (NET_IP_ALIGN) 608 *p_hlen = *p_nhoff + offset; 609 } 610 } else { /* version 1, must be PPTP */ 611 u8 _ppp_hdr[PPP_HDRLEN]; 612 u8 *ppp_hdr; 613 614 if (hdr->flags & GRE_ACK) 615 offset += sizeof_field(struct pptp_gre_header, ack); 616 617 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset, 618 sizeof(_ppp_hdr), 619 data, *p_hlen, _ppp_hdr); 620 if (!ppp_hdr) 621 return FLOW_DISSECT_RET_OUT_BAD; 622 623 switch (PPP_PROTOCOL(ppp_hdr)) { 624 case PPP_IP: 625 *p_proto = htons(ETH_P_IP); 626 break; 627 case PPP_IPV6: 628 *p_proto = htons(ETH_P_IPV6); 629 break; 630 default: 631 /* Could probably catch some more like MPLS */ 632 break; 633 } 634 635 offset += PPP_HDRLEN; 636 } 637 638 *p_nhoff += offset; 639 key_control->flags |= FLOW_DIS_ENCAPSULATION; 640 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) 641 return FLOW_DISSECT_RET_OUT_GOOD; 642 643 return FLOW_DISSECT_RET_PROTO_AGAIN; 644 } 645 646 /** 647 * __skb_flow_dissect_batadv() - dissect batman-adv header 648 * @skb: sk_buff to with the batman-adv header 649 * @key_control: flow dissectors control key 650 * @data: raw buffer pointer to the packet, if NULL use skb->data 651 * @p_proto: pointer used to update the protocol to process next 652 * @p_nhoff: pointer used to update inner network header offset 653 * @hlen: packet header length 654 * @flags: any combination of FLOW_DISSECTOR_F_* 655 * 656 * ETH_P_BATMAN packets are tried to be dissected. Only 657 * &struct batadv_unicast packets are actually processed because they contain an 658 * inner ethernet header and are usually followed by actual network header. This 659 * allows the flow dissector to continue processing the packet. 660 * 661 * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found, 662 * FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation, 663 * otherwise FLOW_DISSECT_RET_OUT_BAD 664 */ 665 static enum flow_dissect_ret 666 __skb_flow_dissect_batadv(const struct sk_buff *skb, 667 struct flow_dissector_key_control *key_control, 668 const void *data, __be16 *p_proto, int *p_nhoff, 669 int hlen, unsigned int flags) 670 { 671 struct { 672 struct batadv_unicast_packet batadv_unicast; 673 struct ethhdr eth; 674 } *hdr, _hdr; 675 676 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen, 677 &_hdr); 678 if (!hdr) 679 return FLOW_DISSECT_RET_OUT_BAD; 680 681 if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION) 682 return FLOW_DISSECT_RET_OUT_BAD; 683 684 if (hdr->batadv_unicast.packet_type != BATADV_UNICAST) 685 return FLOW_DISSECT_RET_OUT_BAD; 686 687 *p_proto = hdr->eth.h_proto; 688 *p_nhoff += sizeof(*hdr); 689 690 key_control->flags |= FLOW_DIS_ENCAPSULATION; 691 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) 692 return FLOW_DISSECT_RET_OUT_GOOD; 693 694 return FLOW_DISSECT_RET_PROTO_AGAIN; 695 } 696 697 static void 698 __skb_flow_dissect_tcp(const struct sk_buff *skb, 699 struct flow_dissector *flow_dissector, 700 void *target_container, const void *data, 701 int thoff, int hlen) 702 { 703 struct flow_dissector_key_tcp *key_tcp; 704 struct tcphdr *th, _th; 705 706 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP)) 707 return; 708 709 th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th); 710 if (!th) 711 return; 712 713 if (unlikely(__tcp_hdrlen(th) < sizeof(_th))) 714 return; 715 716 key_tcp = skb_flow_dissector_target(flow_dissector, 717 FLOW_DISSECTOR_KEY_TCP, 718 target_container); 719 key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF)); 720 } 721 722 static void 723 __skb_flow_dissect_ports(const struct sk_buff *skb, 724 struct flow_dissector *flow_dissector, 725 void *target_container, const void *data, 726 int nhoff, u8 ip_proto, int hlen) 727 { 728 enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX; 729 struct flow_dissector_key_ports *key_ports; 730 731 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) 732 dissector_ports = FLOW_DISSECTOR_KEY_PORTS; 733 else if (dissector_uses_key(flow_dissector, 734 FLOW_DISSECTOR_KEY_PORTS_RANGE)) 735 dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE; 736 737 if (dissector_ports == FLOW_DISSECTOR_KEY_MAX) 738 return; 739 740 key_ports = skb_flow_dissector_target(flow_dissector, 741 dissector_ports, 742 target_container); 743 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto, 744 data, hlen); 745 } 746 747 static void 748 __skb_flow_dissect_ipv4(const struct sk_buff *skb, 749 struct flow_dissector *flow_dissector, 750 void *target_container, const void *data, 751 const struct iphdr *iph) 752 { 753 struct flow_dissector_key_ip *key_ip; 754 755 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP)) 756 return; 757 758 key_ip = skb_flow_dissector_target(flow_dissector, 759 FLOW_DISSECTOR_KEY_IP, 760 target_container); 761 key_ip->tos = iph->tos; 762 key_ip->ttl = iph->ttl; 763 } 764 765 static void 766 __skb_flow_dissect_ipv6(const struct sk_buff *skb, 767 struct flow_dissector *flow_dissector, 768 void *target_container, const void *data, 769 const struct ipv6hdr *iph) 770 { 771 struct flow_dissector_key_ip *key_ip; 772 773 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP)) 774 return; 775 776 key_ip = skb_flow_dissector_target(flow_dissector, 777 FLOW_DISSECTOR_KEY_IP, 778 target_container); 779 key_ip->tos = ipv6_get_dsfield(iph); 780 key_ip->ttl = iph->hop_limit; 781 } 782 783 /* Maximum number of protocol headers that can be parsed in 784 * __skb_flow_dissect 785 */ 786 #define MAX_FLOW_DISSECT_HDRS 15 787 788 static bool skb_flow_dissect_allowed(int *num_hdrs) 789 { 790 ++*num_hdrs; 791 792 return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS); 793 } 794 795 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys, 796 struct flow_dissector *flow_dissector, 797 void *target_container) 798 { 799 struct flow_dissector_key_ports *key_ports = NULL; 800 struct flow_dissector_key_control *key_control; 801 struct flow_dissector_key_basic *key_basic; 802 struct flow_dissector_key_addrs *key_addrs; 803 struct flow_dissector_key_tags *key_tags; 804 805 key_control = skb_flow_dissector_target(flow_dissector, 806 FLOW_DISSECTOR_KEY_CONTROL, 807 target_container); 808 key_control->thoff = flow_keys->thoff; 809 if (flow_keys->is_frag) 810 key_control->flags |= FLOW_DIS_IS_FRAGMENT; 811 if (flow_keys->is_first_frag) 812 key_control->flags |= FLOW_DIS_FIRST_FRAG; 813 if (flow_keys->is_encap) 814 key_control->flags |= FLOW_DIS_ENCAPSULATION; 815 816 key_basic = skb_flow_dissector_target(flow_dissector, 817 FLOW_DISSECTOR_KEY_BASIC, 818 target_container); 819 key_basic->n_proto = flow_keys->n_proto; 820 key_basic->ip_proto = flow_keys->ip_proto; 821 822 if (flow_keys->addr_proto == ETH_P_IP && 823 dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { 824 key_addrs = skb_flow_dissector_target(flow_dissector, 825 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 826 target_container); 827 key_addrs->v4addrs.src = flow_keys->ipv4_src; 828 key_addrs->v4addrs.dst = flow_keys->ipv4_dst; 829 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 830 } else if (flow_keys->addr_proto == ETH_P_IPV6 && 831 dissector_uses_key(flow_dissector, 832 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { 833 key_addrs = skb_flow_dissector_target(flow_dissector, 834 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 835 target_container); 836 memcpy(&key_addrs->v6addrs.src, &flow_keys->ipv6_src, 837 sizeof(key_addrs->v6addrs.src)); 838 memcpy(&key_addrs->v6addrs.dst, &flow_keys->ipv6_dst, 839 sizeof(key_addrs->v6addrs.dst)); 840 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 841 } 842 843 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) 844 key_ports = skb_flow_dissector_target(flow_dissector, 845 FLOW_DISSECTOR_KEY_PORTS, 846 target_container); 847 else if (dissector_uses_key(flow_dissector, 848 FLOW_DISSECTOR_KEY_PORTS_RANGE)) 849 key_ports = skb_flow_dissector_target(flow_dissector, 850 FLOW_DISSECTOR_KEY_PORTS_RANGE, 851 target_container); 852 853 if (key_ports) { 854 key_ports->src = flow_keys->sport; 855 key_ports->dst = flow_keys->dport; 856 } 857 858 if (dissector_uses_key(flow_dissector, 859 FLOW_DISSECTOR_KEY_FLOW_LABEL)) { 860 key_tags = skb_flow_dissector_target(flow_dissector, 861 FLOW_DISSECTOR_KEY_FLOW_LABEL, 862 target_container); 863 key_tags->flow_label = ntohl(flow_keys->flow_label); 864 } 865 } 866 867 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 868 __be16 proto, int nhoff, int hlen, unsigned int flags) 869 { 870 struct bpf_flow_keys *flow_keys = ctx->flow_keys; 871 u32 result; 872 873 /* Pass parameters to the BPF program */ 874 memset(flow_keys, 0, sizeof(*flow_keys)); 875 flow_keys->n_proto = proto; 876 flow_keys->nhoff = nhoff; 877 flow_keys->thoff = flow_keys->nhoff; 878 879 BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG != 880 (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG); 881 BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL != 882 (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); 883 BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP != 884 (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP); 885 flow_keys->flags = flags; 886 887 result = bpf_prog_run_pin_on_cpu(prog, ctx); 888 889 flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen); 890 flow_keys->thoff = clamp_t(u16, flow_keys->thoff, 891 flow_keys->nhoff, hlen); 892 893 return result == BPF_OK; 894 } 895 896 /** 897 * __skb_flow_dissect - extract the flow_keys struct and return it 898 * @net: associated network namespace, derived from @skb if NULL 899 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified 900 * @flow_dissector: list of keys to dissect 901 * @target_container: target structure to put dissected values into 902 * @data: raw buffer pointer to the packet, if NULL use skb->data 903 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol 904 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb) 905 * @hlen: packet header length, if @data is NULL use skb_headlen(skb) 906 * @flags: flags that control the dissection process, e.g. 907 * FLOW_DISSECTOR_F_STOP_AT_ENCAP. 908 * 909 * The function will try to retrieve individual keys into target specified 910 * by flow_dissector from either the skbuff or a raw buffer specified by the 911 * rest parameters. 912 * 913 * Caller must take care of zeroing target container memory. 914 */ 915 bool __skb_flow_dissect(const struct net *net, 916 const struct sk_buff *skb, 917 struct flow_dissector *flow_dissector, 918 void *target_container, const void *data, 919 __be16 proto, int nhoff, int hlen, unsigned int flags) 920 { 921 struct flow_dissector_key_control *key_control; 922 struct flow_dissector_key_basic *key_basic; 923 struct flow_dissector_key_addrs *key_addrs; 924 struct flow_dissector_key_tags *key_tags; 925 struct flow_dissector_key_vlan *key_vlan; 926 enum flow_dissect_ret fdret; 927 enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX; 928 bool mpls_el = false; 929 int mpls_lse = 0; 930 int num_hdrs = 0; 931 u8 ip_proto = 0; 932 bool ret; 933 934 if (!data) { 935 data = skb->data; 936 proto = skb_vlan_tag_present(skb) ? 937 skb->vlan_proto : skb->protocol; 938 nhoff = skb_network_offset(skb); 939 hlen = skb_headlen(skb); 940 #if IS_ENABLED(CONFIG_NET_DSA) 941 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) && 942 proto == htons(ETH_P_XDSA))) { 943 const struct dsa_device_ops *ops; 944 int offset = 0; 945 946 ops = skb->dev->dsa_ptr->tag_ops; 947 /* Only DSA header taggers break flow dissection */ 948 if (ops->needed_headroom) { 949 if (ops->flow_dissect) 950 ops->flow_dissect(skb, &proto, &offset); 951 else 952 dsa_tag_generic_flow_dissect(skb, 953 &proto, 954 &offset); 955 hlen -= offset; 956 nhoff += offset; 957 } 958 } 959 #endif 960 } 961 962 /* It is ensured by skb_flow_dissector_init() that control key will 963 * be always present. 964 */ 965 key_control = skb_flow_dissector_target(flow_dissector, 966 FLOW_DISSECTOR_KEY_CONTROL, 967 target_container); 968 969 /* It is ensured by skb_flow_dissector_init() that basic key will 970 * be always present. 971 */ 972 key_basic = skb_flow_dissector_target(flow_dissector, 973 FLOW_DISSECTOR_KEY_BASIC, 974 target_container); 975 976 if (skb) { 977 if (!net) { 978 if (skb->dev) 979 net = dev_net(skb->dev); 980 else if (skb->sk) 981 net = sock_net(skb->sk); 982 } 983 } 984 985 WARN_ON_ONCE(!net); 986 if (net) { 987 enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR; 988 struct bpf_prog_array *run_array; 989 990 rcu_read_lock(); 991 run_array = rcu_dereference(init_net.bpf.run_array[type]); 992 if (!run_array) 993 run_array = rcu_dereference(net->bpf.run_array[type]); 994 995 if (run_array) { 996 struct bpf_flow_keys flow_keys; 997 struct bpf_flow_dissector ctx = { 998 .flow_keys = &flow_keys, 999 .data = data, 1000 .data_end = data + hlen, 1001 }; 1002 __be16 n_proto = proto; 1003 struct bpf_prog *prog; 1004 1005 if (skb) { 1006 ctx.skb = skb; 1007 /* we can't use 'proto' in the skb case 1008 * because it might be set to skb->vlan_proto 1009 * which has been pulled from the data 1010 */ 1011 n_proto = skb->protocol; 1012 } 1013 1014 prog = READ_ONCE(run_array->items[0].prog); 1015 ret = bpf_flow_dissect(prog, &ctx, n_proto, nhoff, 1016 hlen, flags); 1017 __skb_flow_bpf_to_target(&flow_keys, flow_dissector, 1018 target_container); 1019 rcu_read_unlock(); 1020 return ret; 1021 } 1022 rcu_read_unlock(); 1023 } 1024 1025 if (dissector_uses_key(flow_dissector, 1026 FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 1027 struct ethhdr *eth = eth_hdr(skb); 1028 struct flow_dissector_key_eth_addrs *key_eth_addrs; 1029 1030 key_eth_addrs = skb_flow_dissector_target(flow_dissector, 1031 FLOW_DISSECTOR_KEY_ETH_ADDRS, 1032 target_container); 1033 memcpy(key_eth_addrs, ð->h_dest, sizeof(*key_eth_addrs)); 1034 } 1035 1036 proto_again: 1037 fdret = FLOW_DISSECT_RET_CONTINUE; 1038 1039 switch (proto) { 1040 case htons(ETH_P_IP): { 1041 const struct iphdr *iph; 1042 struct iphdr _iph; 1043 1044 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); 1045 if (!iph || iph->ihl < 5) { 1046 fdret = FLOW_DISSECT_RET_OUT_BAD; 1047 break; 1048 } 1049 1050 nhoff += iph->ihl * 4; 1051 1052 ip_proto = iph->protocol; 1053 1054 if (dissector_uses_key(flow_dissector, 1055 FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { 1056 key_addrs = skb_flow_dissector_target(flow_dissector, 1057 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 1058 target_container); 1059 1060 memcpy(&key_addrs->v4addrs.src, &iph->saddr, 1061 sizeof(key_addrs->v4addrs.src)); 1062 memcpy(&key_addrs->v4addrs.dst, &iph->daddr, 1063 sizeof(key_addrs->v4addrs.dst)); 1064 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 1065 } 1066 1067 __skb_flow_dissect_ipv4(skb, flow_dissector, 1068 target_container, data, iph); 1069 1070 if (ip_is_fragment(iph)) { 1071 key_control->flags |= FLOW_DIS_IS_FRAGMENT; 1072 1073 if (iph->frag_off & htons(IP_OFFSET)) { 1074 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1075 break; 1076 } else { 1077 key_control->flags |= FLOW_DIS_FIRST_FRAG; 1078 if (!(flags & 1079 FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) { 1080 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1081 break; 1082 } 1083 } 1084 } 1085 1086 break; 1087 } 1088 case htons(ETH_P_IPV6): { 1089 const struct ipv6hdr *iph; 1090 struct ipv6hdr _iph; 1091 1092 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); 1093 if (!iph) { 1094 fdret = FLOW_DISSECT_RET_OUT_BAD; 1095 break; 1096 } 1097 1098 ip_proto = iph->nexthdr; 1099 nhoff += sizeof(struct ipv6hdr); 1100 1101 if (dissector_uses_key(flow_dissector, 1102 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { 1103 key_addrs = skb_flow_dissector_target(flow_dissector, 1104 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 1105 target_container); 1106 1107 memcpy(&key_addrs->v6addrs.src, &iph->saddr, 1108 sizeof(key_addrs->v6addrs.src)); 1109 memcpy(&key_addrs->v6addrs.dst, &iph->daddr, 1110 sizeof(key_addrs->v6addrs.dst)); 1111 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 1112 } 1113 1114 if ((dissector_uses_key(flow_dissector, 1115 FLOW_DISSECTOR_KEY_FLOW_LABEL) || 1116 (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) && 1117 ip6_flowlabel(iph)) { 1118 __be32 flow_label = ip6_flowlabel(iph); 1119 1120 if (dissector_uses_key(flow_dissector, 1121 FLOW_DISSECTOR_KEY_FLOW_LABEL)) { 1122 key_tags = skb_flow_dissector_target(flow_dissector, 1123 FLOW_DISSECTOR_KEY_FLOW_LABEL, 1124 target_container); 1125 key_tags->flow_label = ntohl(flow_label); 1126 } 1127 if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) { 1128 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1129 break; 1130 } 1131 } 1132 1133 __skb_flow_dissect_ipv6(skb, flow_dissector, 1134 target_container, data, iph); 1135 1136 break; 1137 } 1138 case htons(ETH_P_8021AD): 1139 case htons(ETH_P_8021Q): { 1140 const struct vlan_hdr *vlan = NULL; 1141 struct vlan_hdr _vlan; 1142 __be16 saved_vlan_tpid = proto; 1143 1144 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX && 1145 skb && skb_vlan_tag_present(skb)) { 1146 proto = skb->protocol; 1147 } else { 1148 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), 1149 data, hlen, &_vlan); 1150 if (!vlan) { 1151 fdret = FLOW_DISSECT_RET_OUT_BAD; 1152 break; 1153 } 1154 1155 proto = vlan->h_vlan_encapsulated_proto; 1156 nhoff += sizeof(*vlan); 1157 } 1158 1159 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) { 1160 dissector_vlan = FLOW_DISSECTOR_KEY_VLAN; 1161 } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) { 1162 dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN; 1163 } else { 1164 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1165 break; 1166 } 1167 1168 if (dissector_uses_key(flow_dissector, dissector_vlan)) { 1169 key_vlan = skb_flow_dissector_target(flow_dissector, 1170 dissector_vlan, 1171 target_container); 1172 1173 if (!vlan) { 1174 key_vlan->vlan_id = skb_vlan_tag_get_id(skb); 1175 key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb); 1176 } else { 1177 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) & 1178 VLAN_VID_MASK; 1179 key_vlan->vlan_priority = 1180 (ntohs(vlan->h_vlan_TCI) & 1181 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1182 } 1183 key_vlan->vlan_tpid = saved_vlan_tpid; 1184 } 1185 1186 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1187 break; 1188 } 1189 case htons(ETH_P_PPP_SES): { 1190 struct { 1191 struct pppoe_hdr hdr; 1192 __be16 proto; 1193 } *hdr, _hdr; 1194 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); 1195 if (!hdr) { 1196 fdret = FLOW_DISSECT_RET_OUT_BAD; 1197 break; 1198 } 1199 1200 nhoff += PPPOE_SES_HLEN; 1201 switch (hdr->proto) { 1202 case htons(PPP_IP): 1203 proto = htons(ETH_P_IP); 1204 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1205 break; 1206 case htons(PPP_IPV6): 1207 proto = htons(ETH_P_IPV6); 1208 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1209 break; 1210 default: 1211 fdret = FLOW_DISSECT_RET_OUT_BAD; 1212 break; 1213 } 1214 break; 1215 } 1216 case htons(ETH_P_TIPC): { 1217 struct tipc_basic_hdr *hdr, _hdr; 1218 1219 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), 1220 data, hlen, &_hdr); 1221 if (!hdr) { 1222 fdret = FLOW_DISSECT_RET_OUT_BAD; 1223 break; 1224 } 1225 1226 if (dissector_uses_key(flow_dissector, 1227 FLOW_DISSECTOR_KEY_TIPC)) { 1228 key_addrs = skb_flow_dissector_target(flow_dissector, 1229 FLOW_DISSECTOR_KEY_TIPC, 1230 target_container); 1231 key_addrs->tipckey.key = tipc_hdr_rps_key(hdr); 1232 key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC; 1233 } 1234 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1235 break; 1236 } 1237 1238 case htons(ETH_P_MPLS_UC): 1239 case htons(ETH_P_MPLS_MC): 1240 fdret = __skb_flow_dissect_mpls(skb, flow_dissector, 1241 target_container, data, 1242 nhoff, hlen, mpls_lse, 1243 &mpls_el); 1244 nhoff += sizeof(struct mpls_label); 1245 mpls_lse++; 1246 break; 1247 case htons(ETH_P_FCOE): 1248 if ((hlen - nhoff) < FCOE_HEADER_LEN) { 1249 fdret = FLOW_DISSECT_RET_OUT_BAD; 1250 break; 1251 } 1252 1253 nhoff += FCOE_HEADER_LEN; 1254 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1255 break; 1256 1257 case htons(ETH_P_ARP): 1258 case htons(ETH_P_RARP): 1259 fdret = __skb_flow_dissect_arp(skb, flow_dissector, 1260 target_container, data, 1261 nhoff, hlen); 1262 break; 1263 1264 case htons(ETH_P_BATMAN): 1265 fdret = __skb_flow_dissect_batadv(skb, key_control, data, 1266 &proto, &nhoff, hlen, flags); 1267 break; 1268 1269 case htons(ETH_P_1588): { 1270 struct ptp_header *hdr, _hdr; 1271 1272 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, 1273 hlen, &_hdr); 1274 if (!hdr) { 1275 fdret = FLOW_DISSECT_RET_OUT_BAD; 1276 break; 1277 } 1278 1279 nhoff += ntohs(hdr->message_length); 1280 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1281 break; 1282 } 1283 1284 default: 1285 fdret = FLOW_DISSECT_RET_OUT_BAD; 1286 break; 1287 } 1288 1289 /* Process result of proto processing */ 1290 switch (fdret) { 1291 case FLOW_DISSECT_RET_OUT_GOOD: 1292 goto out_good; 1293 case FLOW_DISSECT_RET_PROTO_AGAIN: 1294 if (skb_flow_dissect_allowed(&num_hdrs)) 1295 goto proto_again; 1296 goto out_good; 1297 case FLOW_DISSECT_RET_CONTINUE: 1298 case FLOW_DISSECT_RET_IPPROTO_AGAIN: 1299 break; 1300 case FLOW_DISSECT_RET_OUT_BAD: 1301 default: 1302 goto out_bad; 1303 } 1304 1305 ip_proto_again: 1306 fdret = FLOW_DISSECT_RET_CONTINUE; 1307 1308 switch (ip_proto) { 1309 case IPPROTO_GRE: 1310 if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) { 1311 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1312 break; 1313 } 1314 1315 fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector, 1316 target_container, data, 1317 &proto, &nhoff, &hlen, flags); 1318 break; 1319 1320 case NEXTHDR_HOP: 1321 case NEXTHDR_ROUTING: 1322 case NEXTHDR_DEST: { 1323 u8 _opthdr[2], *opthdr; 1324 1325 if (proto != htons(ETH_P_IPV6)) 1326 break; 1327 1328 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr), 1329 data, hlen, &_opthdr); 1330 if (!opthdr) { 1331 fdret = FLOW_DISSECT_RET_OUT_BAD; 1332 break; 1333 } 1334 1335 ip_proto = opthdr[0]; 1336 nhoff += (opthdr[1] + 1) << 3; 1337 1338 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN; 1339 break; 1340 } 1341 case NEXTHDR_FRAGMENT: { 1342 struct frag_hdr _fh, *fh; 1343 1344 if (proto != htons(ETH_P_IPV6)) 1345 break; 1346 1347 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh), 1348 data, hlen, &_fh); 1349 1350 if (!fh) { 1351 fdret = FLOW_DISSECT_RET_OUT_BAD; 1352 break; 1353 } 1354 1355 key_control->flags |= FLOW_DIS_IS_FRAGMENT; 1356 1357 nhoff += sizeof(_fh); 1358 ip_proto = fh->nexthdr; 1359 1360 if (!(fh->frag_off & htons(IP6_OFFSET))) { 1361 key_control->flags |= FLOW_DIS_FIRST_FRAG; 1362 if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) { 1363 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN; 1364 break; 1365 } 1366 } 1367 1368 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1369 break; 1370 } 1371 case IPPROTO_IPIP: 1372 if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) { 1373 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1374 break; 1375 } 1376 1377 proto = htons(ETH_P_IP); 1378 1379 key_control->flags |= FLOW_DIS_ENCAPSULATION; 1380 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) { 1381 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1382 break; 1383 } 1384 1385 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1386 break; 1387 1388 case IPPROTO_IPV6: 1389 if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) { 1390 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1391 break; 1392 } 1393 1394 proto = htons(ETH_P_IPV6); 1395 1396 key_control->flags |= FLOW_DIS_ENCAPSULATION; 1397 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) { 1398 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1399 break; 1400 } 1401 1402 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1403 break; 1404 1405 1406 case IPPROTO_MPLS: 1407 proto = htons(ETH_P_MPLS_UC); 1408 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1409 break; 1410 1411 case IPPROTO_TCP: 1412 __skb_flow_dissect_tcp(skb, flow_dissector, target_container, 1413 data, nhoff, hlen); 1414 break; 1415 1416 case IPPROTO_ICMP: 1417 case IPPROTO_ICMPV6: 1418 __skb_flow_dissect_icmp(skb, flow_dissector, target_container, 1419 data, nhoff, hlen); 1420 break; 1421 1422 default: 1423 break; 1424 } 1425 1426 if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT)) 1427 __skb_flow_dissect_ports(skb, flow_dissector, target_container, 1428 data, nhoff, ip_proto, hlen); 1429 1430 /* Process result of IP proto processing */ 1431 switch (fdret) { 1432 case FLOW_DISSECT_RET_PROTO_AGAIN: 1433 if (skb_flow_dissect_allowed(&num_hdrs)) 1434 goto proto_again; 1435 break; 1436 case FLOW_DISSECT_RET_IPPROTO_AGAIN: 1437 if (skb_flow_dissect_allowed(&num_hdrs)) 1438 goto ip_proto_again; 1439 break; 1440 case FLOW_DISSECT_RET_OUT_GOOD: 1441 case FLOW_DISSECT_RET_CONTINUE: 1442 break; 1443 case FLOW_DISSECT_RET_OUT_BAD: 1444 default: 1445 goto out_bad; 1446 } 1447 1448 out_good: 1449 ret = true; 1450 1451 out: 1452 key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen); 1453 key_basic->n_proto = proto; 1454 key_basic->ip_proto = ip_proto; 1455 1456 return ret; 1457 1458 out_bad: 1459 ret = false; 1460 goto out; 1461 } 1462 EXPORT_SYMBOL(__skb_flow_dissect); 1463 1464 static siphash_key_t hashrnd __read_mostly; 1465 static __always_inline void __flow_hash_secret_init(void) 1466 { 1467 net_get_random_once(&hashrnd, sizeof(hashrnd)); 1468 } 1469 1470 static const void *flow_keys_hash_start(const struct flow_keys *flow) 1471 { 1472 BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT); 1473 return &flow->FLOW_KEYS_HASH_START_FIELD; 1474 } 1475 1476 static inline size_t flow_keys_hash_length(const struct flow_keys *flow) 1477 { 1478 size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs); 1479 1480 BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32)); 1481 1482 switch (flow->control.addr_type) { 1483 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1484 diff -= sizeof(flow->addrs.v4addrs); 1485 break; 1486 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1487 diff -= sizeof(flow->addrs.v6addrs); 1488 break; 1489 case FLOW_DISSECTOR_KEY_TIPC: 1490 diff -= sizeof(flow->addrs.tipckey); 1491 break; 1492 } 1493 return sizeof(*flow) - diff; 1494 } 1495 1496 __be32 flow_get_u32_src(const struct flow_keys *flow) 1497 { 1498 switch (flow->control.addr_type) { 1499 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1500 return flow->addrs.v4addrs.src; 1501 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1502 return (__force __be32)ipv6_addr_hash( 1503 &flow->addrs.v6addrs.src); 1504 case FLOW_DISSECTOR_KEY_TIPC: 1505 return flow->addrs.tipckey.key; 1506 default: 1507 return 0; 1508 } 1509 } 1510 EXPORT_SYMBOL(flow_get_u32_src); 1511 1512 __be32 flow_get_u32_dst(const struct flow_keys *flow) 1513 { 1514 switch (flow->control.addr_type) { 1515 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1516 return flow->addrs.v4addrs.dst; 1517 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1518 return (__force __be32)ipv6_addr_hash( 1519 &flow->addrs.v6addrs.dst); 1520 default: 1521 return 0; 1522 } 1523 } 1524 EXPORT_SYMBOL(flow_get_u32_dst); 1525 1526 /* Sort the source and destination IP and the ports, 1527 * to have consistent hash within the two directions 1528 */ 1529 static inline void __flow_hash_consistentify(struct flow_keys *keys) 1530 { 1531 int addr_diff, i; 1532 1533 switch (keys->control.addr_type) { 1534 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1535 addr_diff = (__force u32)keys->addrs.v4addrs.dst - 1536 (__force u32)keys->addrs.v4addrs.src; 1537 if (addr_diff < 0) 1538 swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst); 1539 1540 if ((__force u16)keys->ports.dst < 1541 (__force u16)keys->ports.src) { 1542 swap(keys->ports.src, keys->ports.dst); 1543 } 1544 break; 1545 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1546 addr_diff = memcmp(&keys->addrs.v6addrs.dst, 1547 &keys->addrs.v6addrs.src, 1548 sizeof(keys->addrs.v6addrs.dst)); 1549 if (addr_diff < 0) { 1550 for (i = 0; i < 4; i++) 1551 swap(keys->addrs.v6addrs.src.s6_addr32[i], 1552 keys->addrs.v6addrs.dst.s6_addr32[i]); 1553 } 1554 if ((__force u16)keys->ports.dst < 1555 (__force u16)keys->ports.src) { 1556 swap(keys->ports.src, keys->ports.dst); 1557 } 1558 break; 1559 } 1560 } 1561 1562 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, 1563 const siphash_key_t *keyval) 1564 { 1565 u32 hash; 1566 1567 __flow_hash_consistentify(keys); 1568 1569 hash = siphash(flow_keys_hash_start(keys), 1570 flow_keys_hash_length(keys), keyval); 1571 if (!hash) 1572 hash = 1; 1573 1574 return hash; 1575 } 1576 1577 u32 flow_hash_from_keys(struct flow_keys *keys) 1578 { 1579 __flow_hash_secret_init(); 1580 return __flow_hash_from_keys(keys, &hashrnd); 1581 } 1582 EXPORT_SYMBOL(flow_hash_from_keys); 1583 1584 static inline u32 ___skb_get_hash(const struct sk_buff *skb, 1585 struct flow_keys *keys, 1586 const siphash_key_t *keyval) 1587 { 1588 skb_flow_dissect_flow_keys(skb, keys, 1589 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); 1590 1591 return __flow_hash_from_keys(keys, keyval); 1592 } 1593 1594 struct _flow_keys_digest_data { 1595 __be16 n_proto; 1596 u8 ip_proto; 1597 u8 padding; 1598 __be32 ports; 1599 __be32 src; 1600 __be32 dst; 1601 }; 1602 1603 void make_flow_keys_digest(struct flow_keys_digest *digest, 1604 const struct flow_keys *flow) 1605 { 1606 struct _flow_keys_digest_data *data = 1607 (struct _flow_keys_digest_data *)digest; 1608 1609 BUILD_BUG_ON(sizeof(*data) > sizeof(*digest)); 1610 1611 memset(digest, 0, sizeof(*digest)); 1612 1613 data->n_proto = flow->basic.n_proto; 1614 data->ip_proto = flow->basic.ip_proto; 1615 data->ports = flow->ports.ports; 1616 data->src = flow->addrs.v4addrs.src; 1617 data->dst = flow->addrs.v4addrs.dst; 1618 } 1619 EXPORT_SYMBOL(make_flow_keys_digest); 1620 1621 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly; 1622 1623 u32 __skb_get_hash_symmetric(const struct sk_buff *skb) 1624 { 1625 struct flow_keys keys; 1626 1627 __flow_hash_secret_init(); 1628 1629 memset(&keys, 0, sizeof(keys)); 1630 __skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric, 1631 &keys, NULL, 0, 0, 0, 1632 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); 1633 1634 return __flow_hash_from_keys(&keys, &hashrnd); 1635 } 1636 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric); 1637 1638 /** 1639 * __skb_get_hash: calculate a flow hash 1640 * @skb: sk_buff to calculate flow hash from 1641 * 1642 * This function calculates a flow hash based on src/dst addresses 1643 * and src/dst port numbers. Sets hash in skb to non-zero hash value 1644 * on success, zero indicates no valid hash. Also, sets l4_hash in skb 1645 * if hash is a canonical 4-tuple hash over transport ports. 1646 */ 1647 void __skb_get_hash(struct sk_buff *skb) 1648 { 1649 struct flow_keys keys; 1650 u32 hash; 1651 1652 __flow_hash_secret_init(); 1653 1654 hash = ___skb_get_hash(skb, &keys, &hashrnd); 1655 1656 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1657 } 1658 EXPORT_SYMBOL(__skb_get_hash); 1659 1660 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1661 const siphash_key_t *perturb) 1662 { 1663 struct flow_keys keys; 1664 1665 return ___skb_get_hash(skb, &keys, perturb); 1666 } 1667 EXPORT_SYMBOL(skb_get_hash_perturb); 1668 1669 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1670 const struct flow_keys_basic *keys, int hlen) 1671 { 1672 u32 poff = keys->control.thoff; 1673 1674 /* skip L4 headers for fragments after the first */ 1675 if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) && 1676 !(keys->control.flags & FLOW_DIS_FIRST_FRAG)) 1677 return poff; 1678 1679 switch (keys->basic.ip_proto) { 1680 case IPPROTO_TCP: { 1681 /* access doff as u8 to avoid unaligned access */ 1682 const u8 *doff; 1683 u8 _doff; 1684 1685 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff), 1686 data, hlen, &_doff); 1687 if (!doff) 1688 return poff; 1689 1690 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2); 1691 break; 1692 } 1693 case IPPROTO_UDP: 1694 case IPPROTO_UDPLITE: 1695 poff += sizeof(struct udphdr); 1696 break; 1697 /* For the rest, we do not really care about header 1698 * extensions at this point for now. 1699 */ 1700 case IPPROTO_ICMP: 1701 poff += sizeof(struct icmphdr); 1702 break; 1703 case IPPROTO_ICMPV6: 1704 poff += sizeof(struct icmp6hdr); 1705 break; 1706 case IPPROTO_IGMP: 1707 poff += sizeof(struct igmphdr); 1708 break; 1709 case IPPROTO_DCCP: 1710 poff += sizeof(struct dccp_hdr); 1711 break; 1712 case IPPROTO_SCTP: 1713 poff += sizeof(struct sctphdr); 1714 break; 1715 } 1716 1717 return poff; 1718 } 1719 1720 /** 1721 * skb_get_poff - get the offset to the payload 1722 * @skb: sk_buff to get the payload offset from 1723 * 1724 * The function will get the offset to the payload as far as it could 1725 * be dissected. The main user is currently BPF, so that we can dynamically 1726 * truncate packets without needing to push actual payload to the user 1727 * space and can analyze headers only, instead. 1728 */ 1729 u32 skb_get_poff(const struct sk_buff *skb) 1730 { 1731 struct flow_keys_basic keys; 1732 1733 if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 1734 NULL, 0, 0, 0, 0)) 1735 return 0; 1736 1737 return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb)); 1738 } 1739 1740 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys) 1741 { 1742 memset(keys, 0, sizeof(*keys)); 1743 1744 memcpy(&keys->addrs.v6addrs.src, &fl6->saddr, 1745 sizeof(keys->addrs.v6addrs.src)); 1746 memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr, 1747 sizeof(keys->addrs.v6addrs.dst)); 1748 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 1749 keys->ports.src = fl6->fl6_sport; 1750 keys->ports.dst = fl6->fl6_dport; 1751 keys->keyid.keyid = fl6->fl6_gre_key; 1752 keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 1753 keys->basic.ip_proto = fl6->flowi6_proto; 1754 1755 return flow_hash_from_keys(keys); 1756 } 1757 EXPORT_SYMBOL(__get_hash_from_flowi6); 1758 1759 static const struct flow_dissector_key flow_keys_dissector_keys[] = { 1760 { 1761 .key_id = FLOW_DISSECTOR_KEY_CONTROL, 1762 .offset = offsetof(struct flow_keys, control), 1763 }, 1764 { 1765 .key_id = FLOW_DISSECTOR_KEY_BASIC, 1766 .offset = offsetof(struct flow_keys, basic), 1767 }, 1768 { 1769 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS, 1770 .offset = offsetof(struct flow_keys, addrs.v4addrs), 1771 }, 1772 { 1773 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS, 1774 .offset = offsetof(struct flow_keys, addrs.v6addrs), 1775 }, 1776 { 1777 .key_id = FLOW_DISSECTOR_KEY_TIPC, 1778 .offset = offsetof(struct flow_keys, addrs.tipckey), 1779 }, 1780 { 1781 .key_id = FLOW_DISSECTOR_KEY_PORTS, 1782 .offset = offsetof(struct flow_keys, ports), 1783 }, 1784 { 1785 .key_id = FLOW_DISSECTOR_KEY_VLAN, 1786 .offset = offsetof(struct flow_keys, vlan), 1787 }, 1788 { 1789 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL, 1790 .offset = offsetof(struct flow_keys, tags), 1791 }, 1792 { 1793 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID, 1794 .offset = offsetof(struct flow_keys, keyid), 1795 }, 1796 }; 1797 1798 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = { 1799 { 1800 .key_id = FLOW_DISSECTOR_KEY_CONTROL, 1801 .offset = offsetof(struct flow_keys, control), 1802 }, 1803 { 1804 .key_id = FLOW_DISSECTOR_KEY_BASIC, 1805 .offset = offsetof(struct flow_keys, basic), 1806 }, 1807 { 1808 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS, 1809 .offset = offsetof(struct flow_keys, addrs.v4addrs), 1810 }, 1811 { 1812 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS, 1813 .offset = offsetof(struct flow_keys, addrs.v6addrs), 1814 }, 1815 { 1816 .key_id = FLOW_DISSECTOR_KEY_PORTS, 1817 .offset = offsetof(struct flow_keys, ports), 1818 }, 1819 }; 1820 1821 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = { 1822 { 1823 .key_id = FLOW_DISSECTOR_KEY_CONTROL, 1824 .offset = offsetof(struct flow_keys, control), 1825 }, 1826 { 1827 .key_id = FLOW_DISSECTOR_KEY_BASIC, 1828 .offset = offsetof(struct flow_keys, basic), 1829 }, 1830 }; 1831 1832 struct flow_dissector flow_keys_dissector __read_mostly; 1833 EXPORT_SYMBOL(flow_keys_dissector); 1834 1835 struct flow_dissector flow_keys_basic_dissector __read_mostly; 1836 EXPORT_SYMBOL(flow_keys_basic_dissector); 1837 1838 static int __init init_default_flow_dissectors(void) 1839 { 1840 skb_flow_dissector_init(&flow_keys_dissector, 1841 flow_keys_dissector_keys, 1842 ARRAY_SIZE(flow_keys_dissector_keys)); 1843 skb_flow_dissector_init(&flow_keys_dissector_symmetric, 1844 flow_keys_dissector_symmetric_keys, 1845 ARRAY_SIZE(flow_keys_dissector_symmetric_keys)); 1846 skb_flow_dissector_init(&flow_keys_basic_dissector, 1847 flow_keys_basic_dissector_keys, 1848 ARRAY_SIZE(flow_keys_basic_dissector_keys)); 1849 return 0; 1850 } 1851 core_initcall(init_default_flow_dissectors); 1852