xref: /openbmc/linux/net/core/flow_dissector.c (revision cd5d5810)
1 #include <linux/skbuff.h>
2 #include <linux/export.h>
3 #include <linux/ip.h>
4 #include <linux/ipv6.h>
5 #include <linux/if_vlan.h>
6 #include <net/ip.h>
7 #include <net/ipv6.h>
8 #include <linux/igmp.h>
9 #include <linux/icmp.h>
10 #include <linux/sctp.h>
11 #include <linux/dccp.h>
12 #include <linux/if_tunnel.h>
13 #include <linux/if_pppox.h>
14 #include <linux/ppp_defs.h>
15 #include <net/flow_keys.h>
16 
17 /* copy saddr & daddr, possibly using 64bit load/store
18  * Equivalent to :	flow->src = iph->saddr;
19  *			flow->dst = iph->daddr;
20  */
21 static void iph_to_flow_copy_addrs(struct flow_keys *flow, const struct iphdr *iph)
22 {
23 	BUILD_BUG_ON(offsetof(typeof(*flow), dst) !=
24 		     offsetof(typeof(*flow), src) + sizeof(flow->src));
25 	memcpy(&flow->src, &iph->saddr, sizeof(flow->src) + sizeof(flow->dst));
26 }
27 
28 bool skb_flow_dissect(const struct sk_buff *skb, struct flow_keys *flow)
29 {
30 	int poff, nhoff = skb_network_offset(skb);
31 	u8 ip_proto;
32 	__be16 proto = skb->protocol;
33 
34 	memset(flow, 0, sizeof(*flow));
35 
36 again:
37 	switch (proto) {
38 	case __constant_htons(ETH_P_IP): {
39 		const struct iphdr *iph;
40 		struct iphdr _iph;
41 ip:
42 		iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
43 		if (!iph)
44 			return false;
45 
46 		if (ip_is_fragment(iph))
47 			ip_proto = 0;
48 		else
49 			ip_proto = iph->protocol;
50 		iph_to_flow_copy_addrs(flow, iph);
51 		nhoff += iph->ihl * 4;
52 		break;
53 	}
54 	case __constant_htons(ETH_P_IPV6): {
55 		const struct ipv6hdr *iph;
56 		struct ipv6hdr _iph;
57 ipv6:
58 		iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
59 		if (!iph)
60 			return false;
61 
62 		ip_proto = iph->nexthdr;
63 		flow->src = (__force __be32)ipv6_addr_hash(&iph->saddr);
64 		flow->dst = (__force __be32)ipv6_addr_hash(&iph->daddr);
65 		nhoff += sizeof(struct ipv6hdr);
66 		break;
67 	}
68 	case __constant_htons(ETH_P_8021AD):
69 	case __constant_htons(ETH_P_8021Q): {
70 		const struct vlan_hdr *vlan;
71 		struct vlan_hdr _vlan;
72 
73 		vlan = skb_header_pointer(skb, nhoff, sizeof(_vlan), &_vlan);
74 		if (!vlan)
75 			return false;
76 
77 		proto = vlan->h_vlan_encapsulated_proto;
78 		nhoff += sizeof(*vlan);
79 		goto again;
80 	}
81 	case __constant_htons(ETH_P_PPP_SES): {
82 		struct {
83 			struct pppoe_hdr hdr;
84 			__be16 proto;
85 		} *hdr, _hdr;
86 		hdr = skb_header_pointer(skb, nhoff, sizeof(_hdr), &_hdr);
87 		if (!hdr)
88 			return false;
89 		proto = hdr->proto;
90 		nhoff += PPPOE_SES_HLEN;
91 		switch (proto) {
92 		case __constant_htons(PPP_IP):
93 			goto ip;
94 		case __constant_htons(PPP_IPV6):
95 			goto ipv6;
96 		default:
97 			return false;
98 		}
99 	}
100 	default:
101 		return false;
102 	}
103 
104 	switch (ip_proto) {
105 	case IPPROTO_GRE: {
106 		struct gre_hdr {
107 			__be16 flags;
108 			__be16 proto;
109 		} *hdr, _hdr;
110 
111 		hdr = skb_header_pointer(skb, nhoff, sizeof(_hdr), &_hdr);
112 		if (!hdr)
113 			return false;
114 		/*
115 		 * Only look inside GRE if version zero and no
116 		 * routing
117 		 */
118 		if (!(hdr->flags & (GRE_VERSION|GRE_ROUTING))) {
119 			proto = hdr->proto;
120 			nhoff += 4;
121 			if (hdr->flags & GRE_CSUM)
122 				nhoff += 4;
123 			if (hdr->flags & GRE_KEY)
124 				nhoff += 4;
125 			if (hdr->flags & GRE_SEQ)
126 				nhoff += 4;
127 			if (proto == htons(ETH_P_TEB)) {
128 				const struct ethhdr *eth;
129 				struct ethhdr _eth;
130 
131 				eth = skb_header_pointer(skb, nhoff,
132 							 sizeof(_eth), &_eth);
133 				if (!eth)
134 					return false;
135 				proto = eth->h_proto;
136 				nhoff += sizeof(*eth);
137 			}
138 			goto again;
139 		}
140 		break;
141 	}
142 	case IPPROTO_IPIP:
143 		proto = htons(ETH_P_IP);
144 		goto ip;
145 	case IPPROTO_IPV6:
146 		proto = htons(ETH_P_IPV6);
147 		goto ipv6;
148 	default:
149 		break;
150 	}
151 
152 	flow->ip_proto = ip_proto;
153 	poff = proto_ports_offset(ip_proto);
154 	if (poff >= 0) {
155 		__be32 *ports, _ports;
156 
157 		ports = skb_header_pointer(skb, nhoff + poff,
158 					   sizeof(_ports), &_ports);
159 		if (ports)
160 			flow->ports = *ports;
161 	}
162 
163 	flow->thoff = (u16) nhoff;
164 
165 	return true;
166 }
167 EXPORT_SYMBOL(skb_flow_dissect);
168 
169 static u32 hashrnd __read_mostly;
170 
171 /*
172  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
173  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
174  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
175  * if hash is a canonical 4-tuple hash over transport ports.
176  */
177 void __skb_get_rxhash(struct sk_buff *skb)
178 {
179 	struct flow_keys keys;
180 	u32 hash;
181 
182 	if (!skb_flow_dissect(skb, &keys))
183 		return;
184 
185 	if (keys.ports)
186 		skb->l4_rxhash = 1;
187 
188 	/* get a consistent hash (same value on both flow directions) */
189 	if (((__force u32)keys.dst < (__force u32)keys.src) ||
190 	    (((__force u32)keys.dst == (__force u32)keys.src) &&
191 	     ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
192 		swap(keys.dst, keys.src);
193 		swap(keys.port16[0], keys.port16[1]);
194 	}
195 
196 	hash = jhash_3words((__force u32)keys.dst,
197 			    (__force u32)keys.src,
198 			    (__force u32)keys.ports, hashrnd);
199 	if (!hash)
200 		hash = 1;
201 
202 	skb->rxhash = hash;
203 }
204 EXPORT_SYMBOL(__skb_get_rxhash);
205 
206 /*
207  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
208  * to be used as a distribution range.
209  */
210 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
211 		  unsigned int num_tx_queues)
212 {
213 	u32 hash;
214 	u16 qoffset = 0;
215 	u16 qcount = num_tx_queues;
216 
217 	if (skb_rx_queue_recorded(skb)) {
218 		hash = skb_get_rx_queue(skb);
219 		while (unlikely(hash >= num_tx_queues))
220 			hash -= num_tx_queues;
221 		return hash;
222 	}
223 
224 	if (dev->num_tc) {
225 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
226 		qoffset = dev->tc_to_txq[tc].offset;
227 		qcount = dev->tc_to_txq[tc].count;
228 	}
229 
230 	if (skb->sk && skb->sk->sk_hash)
231 		hash = skb->sk->sk_hash;
232 	else
233 		hash = (__force u16) skb->protocol;
234 	hash = jhash_1word(hash, hashrnd);
235 
236 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
237 }
238 EXPORT_SYMBOL(__skb_tx_hash);
239 
240 /* __skb_get_poff() returns the offset to the payload as far as it could
241  * be dissected. The main user is currently BPF, so that we can dynamically
242  * truncate packets without needing to push actual payload to the user
243  * space and can analyze headers only, instead.
244  */
245 u32 __skb_get_poff(const struct sk_buff *skb)
246 {
247 	struct flow_keys keys;
248 	u32 poff = 0;
249 
250 	if (!skb_flow_dissect(skb, &keys))
251 		return 0;
252 
253 	poff += keys.thoff;
254 	switch (keys.ip_proto) {
255 	case IPPROTO_TCP: {
256 		const struct tcphdr *tcph;
257 		struct tcphdr _tcph;
258 
259 		tcph = skb_header_pointer(skb, poff, sizeof(_tcph), &_tcph);
260 		if (!tcph)
261 			return poff;
262 
263 		poff += max_t(u32, sizeof(struct tcphdr), tcph->doff * 4);
264 		break;
265 	}
266 	case IPPROTO_UDP:
267 	case IPPROTO_UDPLITE:
268 		poff += sizeof(struct udphdr);
269 		break;
270 	/* For the rest, we do not really care about header
271 	 * extensions at this point for now.
272 	 */
273 	case IPPROTO_ICMP:
274 		poff += sizeof(struct icmphdr);
275 		break;
276 	case IPPROTO_ICMPV6:
277 		poff += sizeof(struct icmp6hdr);
278 		break;
279 	case IPPROTO_IGMP:
280 		poff += sizeof(struct igmphdr);
281 		break;
282 	case IPPROTO_DCCP:
283 		poff += sizeof(struct dccp_hdr);
284 		break;
285 	case IPPROTO_SCTP:
286 		poff += sizeof(struct sctphdr);
287 		break;
288 	}
289 
290 	return poff;
291 }
292 
293 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
294 {
295 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
296 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
297 				     dev->name, queue_index,
298 				     dev->real_num_tx_queues);
299 		return 0;
300 	}
301 	return queue_index;
302 }
303 
304 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
305 {
306 #ifdef CONFIG_XPS
307 	struct xps_dev_maps *dev_maps;
308 	struct xps_map *map;
309 	int queue_index = -1;
310 
311 	rcu_read_lock();
312 	dev_maps = rcu_dereference(dev->xps_maps);
313 	if (dev_maps) {
314 		map = rcu_dereference(
315 		    dev_maps->cpu_map[raw_smp_processor_id()]);
316 		if (map) {
317 			if (map->len == 1)
318 				queue_index = map->queues[0];
319 			else {
320 				u32 hash;
321 				if (skb->sk && skb->sk->sk_hash)
322 					hash = skb->sk->sk_hash;
323 				else
324 					hash = (__force u16) skb->protocol ^
325 					    skb->rxhash;
326 				hash = jhash_1word(hash, hashrnd);
327 				queue_index = map->queues[
328 				    ((u64)hash * map->len) >> 32];
329 			}
330 			if (unlikely(queue_index >= dev->real_num_tx_queues))
331 				queue_index = -1;
332 		}
333 	}
334 	rcu_read_unlock();
335 
336 	return queue_index;
337 #else
338 	return -1;
339 #endif
340 }
341 
342 u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
343 {
344 	struct sock *sk = skb->sk;
345 	int queue_index = sk_tx_queue_get(sk);
346 
347 	if (queue_index < 0 || skb->ooo_okay ||
348 	    queue_index >= dev->real_num_tx_queues) {
349 		int new_index = get_xps_queue(dev, skb);
350 		if (new_index < 0)
351 			new_index = skb_tx_hash(dev, skb);
352 
353 		if (queue_index != new_index && sk &&
354 		    rcu_access_pointer(sk->sk_dst_cache))
355 			sk_tx_queue_set(sk, new_index);
356 
357 		queue_index = new_index;
358 	}
359 
360 	return queue_index;
361 }
362 EXPORT_SYMBOL(__netdev_pick_tx);
363 
364 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
365 				    struct sk_buff *skb)
366 {
367 	int queue_index = 0;
368 
369 	if (dev->real_num_tx_queues != 1) {
370 		const struct net_device_ops *ops = dev->netdev_ops;
371 		if (ops->ndo_select_queue)
372 			queue_index = ops->ndo_select_queue(dev, skb);
373 		else
374 			queue_index = __netdev_pick_tx(dev, skb);
375 		queue_index = dev_cap_txqueue(dev, queue_index);
376 	}
377 
378 	skb_set_queue_mapping(skb, queue_index);
379 	return netdev_get_tx_queue(dev, queue_index);
380 }
381 
382 static int __init initialize_hashrnd(void)
383 {
384 	get_random_bytes(&hashrnd, sizeof(hashrnd));
385 	return 0;
386 }
387 
388 late_initcall_sync(initialize_hashrnd);
389