xref: /openbmc/linux/net/core/flow_dissector.c (revision b96fc2f3)
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <linux/igmp.h>
10 #include <linux/icmp.h>
11 #include <linux/sctp.h>
12 #include <linux/dccp.h>
13 #include <linux/if_tunnel.h>
14 #include <linux/if_pppox.h>
15 #include <linux/ppp_defs.h>
16 #include <linux/stddef.h>
17 #include <linux/if_ether.h>
18 #include <linux/mpls.h>
19 #include <net/flow_dissector.h>
20 #include <scsi/fc/fc_fcoe.h>
21 
22 static bool dissector_uses_key(const struct flow_dissector *flow_dissector,
23 			       enum flow_dissector_key_id key_id)
24 {
25 	return flow_dissector->used_keys & (1 << key_id);
26 }
27 
28 static void dissector_set_key(struct flow_dissector *flow_dissector,
29 			      enum flow_dissector_key_id key_id)
30 {
31 	flow_dissector->used_keys |= (1 << key_id);
32 }
33 
34 static void *skb_flow_dissector_target(struct flow_dissector *flow_dissector,
35 				       enum flow_dissector_key_id key_id,
36 				       void *target_container)
37 {
38 	return ((char *) target_container) + flow_dissector->offset[key_id];
39 }
40 
41 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
42 			     const struct flow_dissector_key *key,
43 			     unsigned int key_count)
44 {
45 	unsigned int i;
46 
47 	memset(flow_dissector, 0, sizeof(*flow_dissector));
48 
49 	for (i = 0; i < key_count; i++, key++) {
50 		/* User should make sure that every key target offset is withing
51 		 * boundaries of unsigned short.
52 		 */
53 		BUG_ON(key->offset > USHRT_MAX);
54 		BUG_ON(dissector_uses_key(flow_dissector,
55 					  key->key_id));
56 
57 		dissector_set_key(flow_dissector, key->key_id);
58 		flow_dissector->offset[key->key_id] = key->offset;
59 	}
60 
61 	/* Ensure that the dissector always includes control and basic key.
62 	 * That way we are able to avoid handling lack of these in fast path.
63 	 */
64 	BUG_ON(!dissector_uses_key(flow_dissector,
65 				   FLOW_DISSECTOR_KEY_CONTROL));
66 	BUG_ON(!dissector_uses_key(flow_dissector,
67 				   FLOW_DISSECTOR_KEY_BASIC));
68 }
69 EXPORT_SYMBOL(skb_flow_dissector_init);
70 
71 /**
72  * __skb_flow_get_ports - extract the upper layer ports and return them
73  * @skb: sk_buff to extract the ports from
74  * @thoff: transport header offset
75  * @ip_proto: protocol for which to get port offset
76  * @data: raw buffer pointer to the packet, if NULL use skb->data
77  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
78  *
79  * The function will try to retrieve the ports at offset thoff + poff where poff
80  * is the protocol port offset returned from proto_ports_offset
81  */
82 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
83 			    void *data, int hlen)
84 {
85 	int poff = proto_ports_offset(ip_proto);
86 
87 	if (!data) {
88 		data = skb->data;
89 		hlen = skb_headlen(skb);
90 	}
91 
92 	if (poff >= 0) {
93 		__be32 *ports, _ports;
94 
95 		ports = __skb_header_pointer(skb, thoff + poff,
96 					     sizeof(_ports), data, hlen, &_ports);
97 		if (ports)
98 			return *ports;
99 	}
100 
101 	return 0;
102 }
103 EXPORT_SYMBOL(__skb_flow_get_ports);
104 
105 /**
106  * __skb_flow_dissect - extract the flow_keys struct and return it
107  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
108  * @flow_dissector: list of keys to dissect
109  * @target_container: target structure to put dissected values into
110  * @data: raw buffer pointer to the packet, if NULL use skb->data
111  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
112  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
113  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
114  *
115  * The function will try to retrieve individual keys into target specified
116  * by flow_dissector from either the skbuff or a raw buffer specified by the
117  * rest parameters.
118  *
119  * Caller must take care of zeroing target container memory.
120  */
121 bool __skb_flow_dissect(const struct sk_buff *skb,
122 			struct flow_dissector *flow_dissector,
123 			void *target_container,
124 			void *data, __be16 proto, int nhoff, int hlen,
125 			unsigned int flags)
126 {
127 	struct flow_dissector_key_control *key_control;
128 	struct flow_dissector_key_basic *key_basic;
129 	struct flow_dissector_key_addrs *key_addrs;
130 	struct flow_dissector_key_ports *key_ports;
131 	struct flow_dissector_key_tags *key_tags;
132 	struct flow_dissector_key_keyid *key_keyid;
133 	u8 ip_proto = 0;
134 	bool ret = false;
135 
136 	if (!data) {
137 		data = skb->data;
138 		proto = skb->protocol;
139 		nhoff = skb_network_offset(skb);
140 		hlen = skb_headlen(skb);
141 	}
142 
143 	/* It is ensured by skb_flow_dissector_init() that control key will
144 	 * be always present.
145 	 */
146 	key_control = skb_flow_dissector_target(flow_dissector,
147 						FLOW_DISSECTOR_KEY_CONTROL,
148 						target_container);
149 
150 	/* It is ensured by skb_flow_dissector_init() that basic key will
151 	 * be always present.
152 	 */
153 	key_basic = skb_flow_dissector_target(flow_dissector,
154 					      FLOW_DISSECTOR_KEY_BASIC,
155 					      target_container);
156 
157 	if (dissector_uses_key(flow_dissector,
158 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
159 		struct ethhdr *eth = eth_hdr(skb);
160 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
161 
162 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
163 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
164 							  target_container);
165 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
166 	}
167 
168 again:
169 	switch (proto) {
170 	case htons(ETH_P_IP): {
171 		const struct iphdr *iph;
172 		struct iphdr _iph;
173 ip:
174 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
175 		if (!iph || iph->ihl < 5)
176 			goto out_bad;
177 		nhoff += iph->ihl * 4;
178 
179 		ip_proto = iph->protocol;
180 
181 		if (!dissector_uses_key(flow_dissector,
182 					FLOW_DISSECTOR_KEY_IPV4_ADDRS))
183 			break;
184 
185 		key_addrs = skb_flow_dissector_target(flow_dissector,
186 			      FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container);
187 		memcpy(&key_addrs->v4addrs, &iph->saddr,
188 		       sizeof(key_addrs->v4addrs));
189 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
190 
191 		if (ip_is_fragment(iph)) {
192 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
193 
194 			if (iph->frag_off & htons(IP_OFFSET)) {
195 				goto out_good;
196 			} else {
197 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
198 				if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
199 					goto out_good;
200 			}
201 		}
202 
203 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
204 			goto out_good;
205 
206 		break;
207 	}
208 	case htons(ETH_P_IPV6): {
209 		const struct ipv6hdr *iph;
210 		struct ipv6hdr _iph;
211 		__be32 flow_label;
212 
213 ipv6:
214 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
215 		if (!iph)
216 			goto out_bad;
217 
218 		ip_proto = iph->nexthdr;
219 		nhoff += sizeof(struct ipv6hdr);
220 
221 		if (dissector_uses_key(flow_dissector,
222 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
223 			struct flow_dissector_key_ipv6_addrs *key_ipv6_addrs;
224 
225 			key_ipv6_addrs = skb_flow_dissector_target(flow_dissector,
226 								   FLOW_DISSECTOR_KEY_IPV6_ADDRS,
227 								   target_container);
228 
229 			memcpy(key_ipv6_addrs, &iph->saddr, sizeof(*key_ipv6_addrs));
230 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
231 		}
232 
233 		flow_label = ip6_flowlabel(iph);
234 		if (flow_label) {
235 			if (dissector_uses_key(flow_dissector,
236 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
237 				key_tags = skb_flow_dissector_target(flow_dissector,
238 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
239 								     target_container);
240 				key_tags->flow_label = ntohl(flow_label);
241 			}
242 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
243 				goto out_good;
244 		}
245 
246 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
247 			goto out_good;
248 
249 		break;
250 	}
251 	case htons(ETH_P_8021AD):
252 	case htons(ETH_P_8021Q): {
253 		const struct vlan_hdr *vlan;
254 		struct vlan_hdr _vlan;
255 
256 		vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan);
257 		if (!vlan)
258 			goto out_bad;
259 
260 		if (dissector_uses_key(flow_dissector,
261 				       FLOW_DISSECTOR_KEY_VLANID)) {
262 			key_tags = skb_flow_dissector_target(flow_dissector,
263 							     FLOW_DISSECTOR_KEY_VLANID,
264 							     target_container);
265 
266 			key_tags->vlan_id = skb_vlan_tag_get_id(skb);
267 		}
268 
269 		proto = vlan->h_vlan_encapsulated_proto;
270 		nhoff += sizeof(*vlan);
271 		goto again;
272 	}
273 	case htons(ETH_P_PPP_SES): {
274 		struct {
275 			struct pppoe_hdr hdr;
276 			__be16 proto;
277 		} *hdr, _hdr;
278 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
279 		if (!hdr)
280 			goto out_bad;
281 		proto = hdr->proto;
282 		nhoff += PPPOE_SES_HLEN;
283 		switch (proto) {
284 		case htons(PPP_IP):
285 			goto ip;
286 		case htons(PPP_IPV6):
287 			goto ipv6;
288 		default:
289 			goto out_bad;
290 		}
291 	}
292 	case htons(ETH_P_TIPC): {
293 		struct {
294 			__be32 pre[3];
295 			__be32 srcnode;
296 		} *hdr, _hdr;
297 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
298 		if (!hdr)
299 			goto out_bad;
300 
301 		if (dissector_uses_key(flow_dissector,
302 				       FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
303 			key_addrs = skb_flow_dissector_target(flow_dissector,
304 							      FLOW_DISSECTOR_KEY_TIPC_ADDRS,
305 							      target_container);
306 			key_addrs->tipcaddrs.srcnode = hdr->srcnode;
307 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
308 		}
309 		goto out_good;
310 	}
311 
312 	case htons(ETH_P_MPLS_UC):
313 	case htons(ETH_P_MPLS_MC): {
314 		struct mpls_label *hdr, _hdr[2];
315 mpls:
316 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
317 					   hlen, &_hdr);
318 		if (!hdr)
319 			goto out_bad;
320 
321 		if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
322 		     MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
323 			if (dissector_uses_key(flow_dissector,
324 					       FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
325 				key_keyid = skb_flow_dissector_target(flow_dissector,
326 								      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
327 								      target_container);
328 				key_keyid->keyid = hdr[1].entry &
329 					htonl(MPLS_LS_LABEL_MASK);
330 			}
331 
332 			goto out_good;
333 		}
334 
335 		goto out_good;
336 	}
337 
338 	case htons(ETH_P_FCOE):
339 		key_control->thoff = (u16)(nhoff + FCOE_HEADER_LEN);
340 		/* fall through */
341 	default:
342 		goto out_bad;
343 	}
344 
345 ip_proto_again:
346 	switch (ip_proto) {
347 	case IPPROTO_GRE: {
348 		struct gre_hdr {
349 			__be16 flags;
350 			__be16 proto;
351 		} *hdr, _hdr;
352 
353 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
354 		if (!hdr)
355 			goto out_bad;
356 		/*
357 		 * Only look inside GRE if version zero and no
358 		 * routing
359 		 */
360 		if (hdr->flags & (GRE_VERSION | GRE_ROUTING))
361 			break;
362 
363 		proto = hdr->proto;
364 		nhoff += 4;
365 		if (hdr->flags & GRE_CSUM)
366 			nhoff += 4;
367 		if (hdr->flags & GRE_KEY) {
368 			const __be32 *keyid;
369 			__be32 _keyid;
370 
371 			keyid = __skb_header_pointer(skb, nhoff, sizeof(_keyid),
372 						     data, hlen, &_keyid);
373 
374 			if (!keyid)
375 				goto out_bad;
376 
377 			if (dissector_uses_key(flow_dissector,
378 					       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
379 				key_keyid = skb_flow_dissector_target(flow_dissector,
380 								      FLOW_DISSECTOR_KEY_GRE_KEYID,
381 								      target_container);
382 				key_keyid->keyid = *keyid;
383 			}
384 			nhoff += 4;
385 		}
386 		if (hdr->flags & GRE_SEQ)
387 			nhoff += 4;
388 		if (proto == htons(ETH_P_TEB)) {
389 			const struct ethhdr *eth;
390 			struct ethhdr _eth;
391 
392 			eth = __skb_header_pointer(skb, nhoff,
393 						   sizeof(_eth),
394 						   data, hlen, &_eth);
395 			if (!eth)
396 				goto out_bad;
397 			proto = eth->h_proto;
398 			nhoff += sizeof(*eth);
399 		}
400 
401 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
402 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
403 			goto out_good;
404 
405 		goto again;
406 	}
407 	case NEXTHDR_HOP:
408 	case NEXTHDR_ROUTING:
409 	case NEXTHDR_DEST: {
410 		u8 _opthdr[2], *opthdr;
411 
412 		if (proto != htons(ETH_P_IPV6))
413 			break;
414 
415 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
416 					      data, hlen, &_opthdr);
417 		if (!opthdr)
418 			goto out_bad;
419 
420 		ip_proto = opthdr[0];
421 		nhoff += (opthdr[1] + 1) << 3;
422 
423 		goto ip_proto_again;
424 	}
425 	case NEXTHDR_FRAGMENT: {
426 		struct frag_hdr _fh, *fh;
427 
428 		if (proto != htons(ETH_P_IPV6))
429 			break;
430 
431 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
432 					  data, hlen, &_fh);
433 
434 		if (!fh)
435 			goto out_bad;
436 
437 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
438 
439 		nhoff += sizeof(_fh);
440 
441 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
442 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
443 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
444 				ip_proto = fh->nexthdr;
445 				goto ip_proto_again;
446 			}
447 		}
448 		goto out_good;
449 	}
450 	case IPPROTO_IPIP:
451 		proto = htons(ETH_P_IP);
452 
453 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
454 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
455 			goto out_good;
456 
457 		goto ip;
458 	case IPPROTO_IPV6:
459 		proto = htons(ETH_P_IPV6);
460 
461 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
462 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
463 			goto out_good;
464 
465 		goto ipv6;
466 	case IPPROTO_MPLS:
467 		proto = htons(ETH_P_MPLS_UC);
468 		goto mpls;
469 	default:
470 		break;
471 	}
472 
473 	if (dissector_uses_key(flow_dissector,
474 			       FLOW_DISSECTOR_KEY_PORTS)) {
475 		key_ports = skb_flow_dissector_target(flow_dissector,
476 						      FLOW_DISSECTOR_KEY_PORTS,
477 						      target_container);
478 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
479 							data, hlen);
480 	}
481 
482 out_good:
483 	ret = true;
484 
485 out_bad:
486 	key_basic->n_proto = proto;
487 	key_basic->ip_proto = ip_proto;
488 	key_control->thoff = (u16)nhoff;
489 
490 	return ret;
491 }
492 EXPORT_SYMBOL(__skb_flow_dissect);
493 
494 static u32 hashrnd __read_mostly;
495 static __always_inline void __flow_hash_secret_init(void)
496 {
497 	net_get_random_once(&hashrnd, sizeof(hashrnd));
498 }
499 
500 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
501 					     u32 keyval)
502 {
503 	return jhash2(words, length, keyval);
504 }
505 
506 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
507 {
508 	const void *p = flow;
509 
510 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
511 	return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
512 }
513 
514 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
515 {
516 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
517 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
518 	BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
519 		     sizeof(*flow) - sizeof(flow->addrs));
520 
521 	switch (flow->control.addr_type) {
522 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
523 		diff -= sizeof(flow->addrs.v4addrs);
524 		break;
525 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
526 		diff -= sizeof(flow->addrs.v6addrs);
527 		break;
528 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
529 		diff -= sizeof(flow->addrs.tipcaddrs);
530 		break;
531 	}
532 	return (sizeof(*flow) - diff) / sizeof(u32);
533 }
534 
535 __be32 flow_get_u32_src(const struct flow_keys *flow)
536 {
537 	switch (flow->control.addr_type) {
538 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
539 		return flow->addrs.v4addrs.src;
540 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
541 		return (__force __be32)ipv6_addr_hash(
542 			&flow->addrs.v6addrs.src);
543 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
544 		return flow->addrs.tipcaddrs.srcnode;
545 	default:
546 		return 0;
547 	}
548 }
549 EXPORT_SYMBOL(flow_get_u32_src);
550 
551 __be32 flow_get_u32_dst(const struct flow_keys *flow)
552 {
553 	switch (flow->control.addr_type) {
554 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
555 		return flow->addrs.v4addrs.dst;
556 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
557 		return (__force __be32)ipv6_addr_hash(
558 			&flow->addrs.v6addrs.dst);
559 	default:
560 		return 0;
561 	}
562 }
563 EXPORT_SYMBOL(flow_get_u32_dst);
564 
565 static inline void __flow_hash_consistentify(struct flow_keys *keys)
566 {
567 	int addr_diff, i;
568 
569 	switch (keys->control.addr_type) {
570 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
571 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
572 			    (__force u32)keys->addrs.v4addrs.src;
573 		if ((addr_diff < 0) ||
574 		    (addr_diff == 0 &&
575 		     ((__force u16)keys->ports.dst <
576 		      (__force u16)keys->ports.src))) {
577 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
578 			swap(keys->ports.src, keys->ports.dst);
579 		}
580 		break;
581 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
582 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
583 				   &keys->addrs.v6addrs.src,
584 				   sizeof(keys->addrs.v6addrs.dst));
585 		if ((addr_diff < 0) ||
586 		    (addr_diff == 0 &&
587 		     ((__force u16)keys->ports.dst <
588 		      (__force u16)keys->ports.src))) {
589 			for (i = 0; i < 4; i++)
590 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
591 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
592 			swap(keys->ports.src, keys->ports.dst);
593 		}
594 		break;
595 	}
596 }
597 
598 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
599 {
600 	u32 hash;
601 
602 	__flow_hash_consistentify(keys);
603 
604 	hash = __flow_hash_words(flow_keys_hash_start(keys),
605 				 flow_keys_hash_length(keys), keyval);
606 	if (!hash)
607 		hash = 1;
608 
609 	return hash;
610 }
611 
612 u32 flow_hash_from_keys(struct flow_keys *keys)
613 {
614 	__flow_hash_secret_init();
615 	return __flow_hash_from_keys(keys, hashrnd);
616 }
617 EXPORT_SYMBOL(flow_hash_from_keys);
618 
619 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
620 				  struct flow_keys *keys, u32 keyval)
621 {
622 	skb_flow_dissect_flow_keys(skb, keys,
623 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
624 
625 	return __flow_hash_from_keys(keys, keyval);
626 }
627 
628 struct _flow_keys_digest_data {
629 	__be16	n_proto;
630 	u8	ip_proto;
631 	u8	padding;
632 	__be32	ports;
633 	__be32	src;
634 	__be32	dst;
635 };
636 
637 void make_flow_keys_digest(struct flow_keys_digest *digest,
638 			   const struct flow_keys *flow)
639 {
640 	struct _flow_keys_digest_data *data =
641 	    (struct _flow_keys_digest_data *)digest;
642 
643 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
644 
645 	memset(digest, 0, sizeof(*digest));
646 
647 	data->n_proto = flow->basic.n_proto;
648 	data->ip_proto = flow->basic.ip_proto;
649 	data->ports = flow->ports.ports;
650 	data->src = flow->addrs.v4addrs.src;
651 	data->dst = flow->addrs.v4addrs.dst;
652 }
653 EXPORT_SYMBOL(make_flow_keys_digest);
654 
655 /**
656  * __skb_get_hash: calculate a flow hash
657  * @skb: sk_buff to calculate flow hash from
658  *
659  * This function calculates a flow hash based on src/dst addresses
660  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
661  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
662  * if hash is a canonical 4-tuple hash over transport ports.
663  */
664 void __skb_get_hash(struct sk_buff *skb)
665 {
666 	struct flow_keys keys;
667 
668 	__flow_hash_secret_init();
669 
670 	__skb_set_sw_hash(skb, ___skb_get_hash(skb, &keys, hashrnd),
671 			  flow_keys_have_l4(&keys));
672 }
673 EXPORT_SYMBOL(__skb_get_hash);
674 
675 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
676 {
677 	struct flow_keys keys;
678 
679 	return ___skb_get_hash(skb, &keys, perturb);
680 }
681 EXPORT_SYMBOL(skb_get_hash_perturb);
682 
683 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
684 {
685 	struct flow_keys keys;
686 
687 	memset(&keys, 0, sizeof(keys));
688 
689 	memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
690 	       sizeof(keys.addrs.v6addrs.src));
691 	memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
692 	       sizeof(keys.addrs.v6addrs.dst));
693 	keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
694 	keys.ports.src = fl6->fl6_sport;
695 	keys.ports.dst = fl6->fl6_dport;
696 	keys.keyid.keyid = fl6->fl6_gre_key;
697 	keys.tags.flow_label = (__force u32)fl6->flowlabel;
698 	keys.basic.ip_proto = fl6->flowi6_proto;
699 
700 	__skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
701 			  flow_keys_have_l4(&keys));
702 
703 	return skb->hash;
704 }
705 EXPORT_SYMBOL(__skb_get_hash_flowi6);
706 
707 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
708 {
709 	struct flow_keys keys;
710 
711 	memset(&keys, 0, sizeof(keys));
712 
713 	keys.addrs.v4addrs.src = fl4->saddr;
714 	keys.addrs.v4addrs.dst = fl4->daddr;
715 	keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
716 	keys.ports.src = fl4->fl4_sport;
717 	keys.ports.dst = fl4->fl4_dport;
718 	keys.keyid.keyid = fl4->fl4_gre_key;
719 	keys.basic.ip_proto = fl4->flowi4_proto;
720 
721 	__skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
722 			  flow_keys_have_l4(&keys));
723 
724 	return skb->hash;
725 }
726 EXPORT_SYMBOL(__skb_get_hash_flowi4);
727 
728 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
729 		   const struct flow_keys *keys, int hlen)
730 {
731 	u32 poff = keys->control.thoff;
732 
733 	switch (keys->basic.ip_proto) {
734 	case IPPROTO_TCP: {
735 		/* access doff as u8 to avoid unaligned access */
736 		const u8 *doff;
737 		u8 _doff;
738 
739 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
740 					    data, hlen, &_doff);
741 		if (!doff)
742 			return poff;
743 
744 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
745 		break;
746 	}
747 	case IPPROTO_UDP:
748 	case IPPROTO_UDPLITE:
749 		poff += sizeof(struct udphdr);
750 		break;
751 	/* For the rest, we do not really care about header
752 	 * extensions at this point for now.
753 	 */
754 	case IPPROTO_ICMP:
755 		poff += sizeof(struct icmphdr);
756 		break;
757 	case IPPROTO_ICMPV6:
758 		poff += sizeof(struct icmp6hdr);
759 		break;
760 	case IPPROTO_IGMP:
761 		poff += sizeof(struct igmphdr);
762 		break;
763 	case IPPROTO_DCCP:
764 		poff += sizeof(struct dccp_hdr);
765 		break;
766 	case IPPROTO_SCTP:
767 		poff += sizeof(struct sctphdr);
768 		break;
769 	}
770 
771 	return poff;
772 }
773 
774 /**
775  * skb_get_poff - get the offset to the payload
776  * @skb: sk_buff to get the payload offset from
777  *
778  * The function will get the offset to the payload as far as it could
779  * be dissected.  The main user is currently BPF, so that we can dynamically
780  * truncate packets without needing to push actual payload to the user
781  * space and can analyze headers only, instead.
782  */
783 u32 skb_get_poff(const struct sk_buff *skb)
784 {
785 	struct flow_keys keys;
786 
787 	if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
788 		return 0;
789 
790 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
791 }
792 
793 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
794 {
795 	memset(keys, 0, sizeof(*keys));
796 
797 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
798 	    sizeof(keys->addrs.v6addrs.src));
799 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
800 	    sizeof(keys->addrs.v6addrs.dst));
801 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
802 	keys->ports.src = fl6->fl6_sport;
803 	keys->ports.dst = fl6->fl6_dport;
804 	keys->keyid.keyid = fl6->fl6_gre_key;
805 	keys->tags.flow_label = (__force u32)fl6->flowlabel;
806 	keys->basic.ip_proto = fl6->flowi6_proto;
807 
808 	return flow_hash_from_keys(keys);
809 }
810 EXPORT_SYMBOL(__get_hash_from_flowi6);
811 
812 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
813 {
814 	memset(keys, 0, sizeof(*keys));
815 
816 	keys->addrs.v4addrs.src = fl4->saddr;
817 	keys->addrs.v4addrs.dst = fl4->daddr;
818 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
819 	keys->ports.src = fl4->fl4_sport;
820 	keys->ports.dst = fl4->fl4_dport;
821 	keys->keyid.keyid = fl4->fl4_gre_key;
822 	keys->basic.ip_proto = fl4->flowi4_proto;
823 
824 	return flow_hash_from_keys(keys);
825 }
826 EXPORT_SYMBOL(__get_hash_from_flowi4);
827 
828 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
829 	{
830 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
831 		.offset = offsetof(struct flow_keys, control),
832 	},
833 	{
834 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
835 		.offset = offsetof(struct flow_keys, basic),
836 	},
837 	{
838 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
839 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
840 	},
841 	{
842 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
843 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
844 	},
845 	{
846 		.key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
847 		.offset = offsetof(struct flow_keys, addrs.tipcaddrs),
848 	},
849 	{
850 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
851 		.offset = offsetof(struct flow_keys, ports),
852 	},
853 	{
854 		.key_id = FLOW_DISSECTOR_KEY_VLANID,
855 		.offset = offsetof(struct flow_keys, tags),
856 	},
857 	{
858 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
859 		.offset = offsetof(struct flow_keys, tags),
860 	},
861 	{
862 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
863 		.offset = offsetof(struct flow_keys, keyid),
864 	},
865 };
866 
867 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
868 	{
869 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
870 		.offset = offsetof(struct flow_keys, control),
871 	},
872 	{
873 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
874 		.offset = offsetof(struct flow_keys, basic),
875 	},
876 };
877 
878 struct flow_dissector flow_keys_dissector __read_mostly;
879 EXPORT_SYMBOL(flow_keys_dissector);
880 
881 struct flow_dissector flow_keys_buf_dissector __read_mostly;
882 
883 static int __init init_default_flow_dissectors(void)
884 {
885 	skb_flow_dissector_init(&flow_keys_dissector,
886 				flow_keys_dissector_keys,
887 				ARRAY_SIZE(flow_keys_dissector_keys));
888 	skb_flow_dissector_init(&flow_keys_buf_dissector,
889 				flow_keys_buf_dissector_keys,
890 				ARRAY_SIZE(flow_keys_buf_dissector_keys));
891 	return 0;
892 }
893 
894 late_initcall_sync(init_default_flow_dissectors);
895