xref: /openbmc/linux/net/core/flow_dissector.c (revision 9b93eb47)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <net/dsa.h>
9 #include <net/dst_metadata.h>
10 #include <net/ip.h>
11 #include <net/ipv6.h>
12 #include <net/gre.h>
13 #include <net/pptp.h>
14 #include <net/tipc.h>
15 #include <linux/igmp.h>
16 #include <linux/icmp.h>
17 #include <linux/sctp.h>
18 #include <linux/dccp.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/if_pppox.h>
21 #include <linux/ppp_defs.h>
22 #include <linux/stddef.h>
23 #include <linux/if_ether.h>
24 #include <linux/mpls.h>
25 #include <linux/tcp.h>
26 #include <net/flow_dissector.h>
27 #include <scsi/fc/fc_fcoe.h>
28 #include <uapi/linux/batadv_packet.h>
29 #include <linux/bpf.h>
30 
31 static DEFINE_MUTEX(flow_dissector_mutex);
32 
33 static void dissector_set_key(struct flow_dissector *flow_dissector,
34 			      enum flow_dissector_key_id key_id)
35 {
36 	flow_dissector->used_keys |= (1 << key_id);
37 }
38 
39 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
40 			     const struct flow_dissector_key *key,
41 			     unsigned int key_count)
42 {
43 	unsigned int i;
44 
45 	memset(flow_dissector, 0, sizeof(*flow_dissector));
46 
47 	for (i = 0; i < key_count; i++, key++) {
48 		/* User should make sure that every key target offset is withing
49 		 * boundaries of unsigned short.
50 		 */
51 		BUG_ON(key->offset > USHRT_MAX);
52 		BUG_ON(dissector_uses_key(flow_dissector,
53 					  key->key_id));
54 
55 		dissector_set_key(flow_dissector, key->key_id);
56 		flow_dissector->offset[key->key_id] = key->offset;
57 	}
58 
59 	/* Ensure that the dissector always includes control and basic key.
60 	 * That way we are able to avoid handling lack of these in fast path.
61 	 */
62 	BUG_ON(!dissector_uses_key(flow_dissector,
63 				   FLOW_DISSECTOR_KEY_CONTROL));
64 	BUG_ON(!dissector_uses_key(flow_dissector,
65 				   FLOW_DISSECTOR_KEY_BASIC));
66 }
67 EXPORT_SYMBOL(skb_flow_dissector_init);
68 
69 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
70 				  union bpf_attr __user *uattr)
71 {
72 	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
73 	u32 prog_id, prog_cnt = 0, flags = 0;
74 	struct bpf_prog *attached;
75 	struct net *net;
76 
77 	if (attr->query.query_flags)
78 		return -EINVAL;
79 
80 	net = get_net_ns_by_fd(attr->query.target_fd);
81 	if (IS_ERR(net))
82 		return PTR_ERR(net);
83 
84 	rcu_read_lock();
85 	attached = rcu_dereference(net->flow_dissector_prog);
86 	if (attached) {
87 		prog_cnt = 1;
88 		prog_id = attached->aux->id;
89 	}
90 	rcu_read_unlock();
91 
92 	put_net(net);
93 
94 	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
95 		return -EFAULT;
96 	if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt)))
97 		return -EFAULT;
98 
99 	if (!attr->query.prog_cnt || !prog_ids || !prog_cnt)
100 		return 0;
101 
102 	if (copy_to_user(prog_ids, &prog_id, sizeof(u32)))
103 		return -EFAULT;
104 
105 	return 0;
106 }
107 
108 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
109 				       struct bpf_prog *prog)
110 {
111 	struct bpf_prog *attached;
112 	struct net *net;
113 
114 	net = current->nsproxy->net_ns;
115 	mutex_lock(&flow_dissector_mutex);
116 	attached = rcu_dereference_protected(net->flow_dissector_prog,
117 					     lockdep_is_held(&flow_dissector_mutex));
118 	if (attached) {
119 		/* Only one BPF program can be attached at a time */
120 		mutex_unlock(&flow_dissector_mutex);
121 		return -EEXIST;
122 	}
123 	rcu_assign_pointer(net->flow_dissector_prog, prog);
124 	mutex_unlock(&flow_dissector_mutex);
125 	return 0;
126 }
127 
128 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
129 {
130 	struct bpf_prog *attached;
131 	struct net *net;
132 
133 	net = current->nsproxy->net_ns;
134 	mutex_lock(&flow_dissector_mutex);
135 	attached = rcu_dereference_protected(net->flow_dissector_prog,
136 					     lockdep_is_held(&flow_dissector_mutex));
137 	if (!attached) {
138 		mutex_unlock(&flow_dissector_mutex);
139 		return -ENOENT;
140 	}
141 	bpf_prog_put(attached);
142 	RCU_INIT_POINTER(net->flow_dissector_prog, NULL);
143 	mutex_unlock(&flow_dissector_mutex);
144 	return 0;
145 }
146 /**
147  * skb_flow_get_be16 - extract be16 entity
148  * @skb: sk_buff to extract from
149  * @poff: offset to extract at
150  * @data: raw buffer pointer to the packet
151  * @hlen: packet header length
152  *
153  * The function will try to retrieve a be32 entity at
154  * offset poff
155  */
156 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
157 				void *data, int hlen)
158 {
159 	__be16 *u, _u;
160 
161 	u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
162 	if (u)
163 		return *u;
164 
165 	return 0;
166 }
167 
168 /**
169  * __skb_flow_get_ports - extract the upper layer ports and return them
170  * @skb: sk_buff to extract the ports from
171  * @thoff: transport header offset
172  * @ip_proto: protocol for which to get port offset
173  * @data: raw buffer pointer to the packet, if NULL use skb->data
174  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
175  *
176  * The function will try to retrieve the ports at offset thoff + poff where poff
177  * is the protocol port offset returned from proto_ports_offset
178  */
179 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
180 			    void *data, int hlen)
181 {
182 	int poff = proto_ports_offset(ip_proto);
183 
184 	if (!data) {
185 		data = skb->data;
186 		hlen = skb_headlen(skb);
187 	}
188 
189 	if (poff >= 0) {
190 		__be32 *ports, _ports;
191 
192 		ports = __skb_header_pointer(skb, thoff + poff,
193 					     sizeof(_ports), data, hlen, &_ports);
194 		if (ports)
195 			return *ports;
196 	}
197 
198 	return 0;
199 }
200 EXPORT_SYMBOL(__skb_flow_get_ports);
201 
202 static void
203 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
204 				   struct flow_dissector *flow_dissector,
205 				   void *target_container)
206 {
207 	struct flow_dissector_key_control *ctrl;
208 
209 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
210 		return;
211 
212 	ctrl = skb_flow_dissector_target(flow_dissector,
213 					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
214 					 target_container);
215 	ctrl->addr_type = type;
216 }
217 
218 void
219 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
220 			     struct flow_dissector *flow_dissector,
221 			     void *target_container)
222 {
223 	struct ip_tunnel_info *info;
224 	struct ip_tunnel_key *key;
225 
226 	/* A quick check to see if there might be something to do. */
227 	if (!dissector_uses_key(flow_dissector,
228 				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
229 	    !dissector_uses_key(flow_dissector,
230 				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
231 	    !dissector_uses_key(flow_dissector,
232 				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
233 	    !dissector_uses_key(flow_dissector,
234 				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
235 	    !dissector_uses_key(flow_dissector,
236 				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
237 	    !dissector_uses_key(flow_dissector,
238 				FLOW_DISSECTOR_KEY_ENC_IP) &&
239 	    !dissector_uses_key(flow_dissector,
240 				FLOW_DISSECTOR_KEY_ENC_OPTS))
241 		return;
242 
243 	info = skb_tunnel_info(skb);
244 	if (!info)
245 		return;
246 
247 	key = &info->key;
248 
249 	switch (ip_tunnel_info_af(info)) {
250 	case AF_INET:
251 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
252 						   flow_dissector,
253 						   target_container);
254 		if (dissector_uses_key(flow_dissector,
255 				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
256 			struct flow_dissector_key_ipv4_addrs *ipv4;
257 
258 			ipv4 = skb_flow_dissector_target(flow_dissector,
259 							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
260 							 target_container);
261 			ipv4->src = key->u.ipv4.src;
262 			ipv4->dst = key->u.ipv4.dst;
263 		}
264 		break;
265 	case AF_INET6:
266 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
267 						   flow_dissector,
268 						   target_container);
269 		if (dissector_uses_key(flow_dissector,
270 				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
271 			struct flow_dissector_key_ipv6_addrs *ipv6;
272 
273 			ipv6 = skb_flow_dissector_target(flow_dissector,
274 							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
275 							 target_container);
276 			ipv6->src = key->u.ipv6.src;
277 			ipv6->dst = key->u.ipv6.dst;
278 		}
279 		break;
280 	}
281 
282 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
283 		struct flow_dissector_key_keyid *keyid;
284 
285 		keyid = skb_flow_dissector_target(flow_dissector,
286 						  FLOW_DISSECTOR_KEY_ENC_KEYID,
287 						  target_container);
288 		keyid->keyid = tunnel_id_to_key32(key->tun_id);
289 	}
290 
291 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
292 		struct flow_dissector_key_ports *tp;
293 
294 		tp = skb_flow_dissector_target(flow_dissector,
295 					       FLOW_DISSECTOR_KEY_ENC_PORTS,
296 					       target_container);
297 		tp->src = key->tp_src;
298 		tp->dst = key->tp_dst;
299 	}
300 
301 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
302 		struct flow_dissector_key_ip *ip;
303 
304 		ip = skb_flow_dissector_target(flow_dissector,
305 					       FLOW_DISSECTOR_KEY_ENC_IP,
306 					       target_container);
307 		ip->tos = key->tos;
308 		ip->ttl = key->ttl;
309 	}
310 
311 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
312 		struct flow_dissector_key_enc_opts *enc_opt;
313 
314 		enc_opt = skb_flow_dissector_target(flow_dissector,
315 						    FLOW_DISSECTOR_KEY_ENC_OPTS,
316 						    target_container);
317 
318 		if (info->options_len) {
319 			enc_opt->len = info->options_len;
320 			ip_tunnel_info_opts_get(enc_opt->data, info);
321 			enc_opt->dst_opt_type = info->key.tun_flags &
322 						TUNNEL_OPTIONS_PRESENT;
323 		}
324 	}
325 }
326 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
327 
328 static enum flow_dissect_ret
329 __skb_flow_dissect_mpls(const struct sk_buff *skb,
330 			struct flow_dissector *flow_dissector,
331 			void *target_container, void *data, int nhoff, int hlen)
332 {
333 	struct flow_dissector_key_keyid *key_keyid;
334 	struct mpls_label *hdr, _hdr[2];
335 	u32 entry, label;
336 
337 	if (!dissector_uses_key(flow_dissector,
338 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
339 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
340 		return FLOW_DISSECT_RET_OUT_GOOD;
341 
342 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
343 				   hlen, &_hdr);
344 	if (!hdr)
345 		return FLOW_DISSECT_RET_OUT_BAD;
346 
347 	entry = ntohl(hdr[0].entry);
348 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
349 
350 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
351 		struct flow_dissector_key_mpls *key_mpls;
352 
353 		key_mpls = skb_flow_dissector_target(flow_dissector,
354 						     FLOW_DISSECTOR_KEY_MPLS,
355 						     target_container);
356 		key_mpls->mpls_label = label;
357 		key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
358 					>> MPLS_LS_TTL_SHIFT;
359 		key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
360 					>> MPLS_LS_TC_SHIFT;
361 		key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
362 					>> MPLS_LS_S_SHIFT;
363 	}
364 
365 	if (label == MPLS_LABEL_ENTROPY) {
366 		key_keyid = skb_flow_dissector_target(flow_dissector,
367 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
368 						      target_container);
369 		key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
370 	}
371 	return FLOW_DISSECT_RET_OUT_GOOD;
372 }
373 
374 static enum flow_dissect_ret
375 __skb_flow_dissect_arp(const struct sk_buff *skb,
376 		       struct flow_dissector *flow_dissector,
377 		       void *target_container, void *data, int nhoff, int hlen)
378 {
379 	struct flow_dissector_key_arp *key_arp;
380 	struct {
381 		unsigned char ar_sha[ETH_ALEN];
382 		unsigned char ar_sip[4];
383 		unsigned char ar_tha[ETH_ALEN];
384 		unsigned char ar_tip[4];
385 	} *arp_eth, _arp_eth;
386 	const struct arphdr *arp;
387 	struct arphdr _arp;
388 
389 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
390 		return FLOW_DISSECT_RET_OUT_GOOD;
391 
392 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
393 				   hlen, &_arp);
394 	if (!arp)
395 		return FLOW_DISSECT_RET_OUT_BAD;
396 
397 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
398 	    arp->ar_pro != htons(ETH_P_IP) ||
399 	    arp->ar_hln != ETH_ALEN ||
400 	    arp->ar_pln != 4 ||
401 	    (arp->ar_op != htons(ARPOP_REPLY) &&
402 	     arp->ar_op != htons(ARPOP_REQUEST)))
403 		return FLOW_DISSECT_RET_OUT_BAD;
404 
405 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
406 				       sizeof(_arp_eth), data,
407 				       hlen, &_arp_eth);
408 	if (!arp_eth)
409 		return FLOW_DISSECT_RET_OUT_BAD;
410 
411 	key_arp = skb_flow_dissector_target(flow_dissector,
412 					    FLOW_DISSECTOR_KEY_ARP,
413 					    target_container);
414 
415 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
416 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
417 
418 	/* Only store the lower byte of the opcode;
419 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
420 	 */
421 	key_arp->op = ntohs(arp->ar_op) & 0xff;
422 
423 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
424 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
425 
426 	return FLOW_DISSECT_RET_OUT_GOOD;
427 }
428 
429 static enum flow_dissect_ret
430 __skb_flow_dissect_gre(const struct sk_buff *skb,
431 		       struct flow_dissector_key_control *key_control,
432 		       struct flow_dissector *flow_dissector,
433 		       void *target_container, void *data,
434 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
435 		       unsigned int flags)
436 {
437 	struct flow_dissector_key_keyid *key_keyid;
438 	struct gre_base_hdr *hdr, _hdr;
439 	int offset = 0;
440 	u16 gre_ver;
441 
442 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
443 				   data, *p_hlen, &_hdr);
444 	if (!hdr)
445 		return FLOW_DISSECT_RET_OUT_BAD;
446 
447 	/* Only look inside GRE without routing */
448 	if (hdr->flags & GRE_ROUTING)
449 		return FLOW_DISSECT_RET_OUT_GOOD;
450 
451 	/* Only look inside GRE for version 0 and 1 */
452 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
453 	if (gre_ver > 1)
454 		return FLOW_DISSECT_RET_OUT_GOOD;
455 
456 	*p_proto = hdr->protocol;
457 	if (gre_ver) {
458 		/* Version1 must be PPTP, and check the flags */
459 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
460 			return FLOW_DISSECT_RET_OUT_GOOD;
461 	}
462 
463 	offset += sizeof(struct gre_base_hdr);
464 
465 	if (hdr->flags & GRE_CSUM)
466 		offset += FIELD_SIZEOF(struct gre_full_hdr, csum) +
467 			  FIELD_SIZEOF(struct gre_full_hdr, reserved1);
468 
469 	if (hdr->flags & GRE_KEY) {
470 		const __be32 *keyid;
471 		__be32 _keyid;
472 
473 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
474 					     sizeof(_keyid),
475 					     data, *p_hlen, &_keyid);
476 		if (!keyid)
477 			return FLOW_DISSECT_RET_OUT_BAD;
478 
479 		if (dissector_uses_key(flow_dissector,
480 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
481 			key_keyid = skb_flow_dissector_target(flow_dissector,
482 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
483 							      target_container);
484 			if (gre_ver == 0)
485 				key_keyid->keyid = *keyid;
486 			else
487 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
488 		}
489 		offset += FIELD_SIZEOF(struct gre_full_hdr, key);
490 	}
491 
492 	if (hdr->flags & GRE_SEQ)
493 		offset += FIELD_SIZEOF(struct pptp_gre_header, seq);
494 
495 	if (gre_ver == 0) {
496 		if (*p_proto == htons(ETH_P_TEB)) {
497 			const struct ethhdr *eth;
498 			struct ethhdr _eth;
499 
500 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
501 						   sizeof(_eth),
502 						   data, *p_hlen, &_eth);
503 			if (!eth)
504 				return FLOW_DISSECT_RET_OUT_BAD;
505 			*p_proto = eth->h_proto;
506 			offset += sizeof(*eth);
507 
508 			/* Cap headers that we access via pointers at the
509 			 * end of the Ethernet header as our maximum alignment
510 			 * at that point is only 2 bytes.
511 			 */
512 			if (NET_IP_ALIGN)
513 				*p_hlen = *p_nhoff + offset;
514 		}
515 	} else { /* version 1, must be PPTP */
516 		u8 _ppp_hdr[PPP_HDRLEN];
517 		u8 *ppp_hdr;
518 
519 		if (hdr->flags & GRE_ACK)
520 			offset += FIELD_SIZEOF(struct pptp_gre_header, ack);
521 
522 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
523 					       sizeof(_ppp_hdr),
524 					       data, *p_hlen, _ppp_hdr);
525 		if (!ppp_hdr)
526 			return FLOW_DISSECT_RET_OUT_BAD;
527 
528 		switch (PPP_PROTOCOL(ppp_hdr)) {
529 		case PPP_IP:
530 			*p_proto = htons(ETH_P_IP);
531 			break;
532 		case PPP_IPV6:
533 			*p_proto = htons(ETH_P_IPV6);
534 			break;
535 		default:
536 			/* Could probably catch some more like MPLS */
537 			break;
538 		}
539 
540 		offset += PPP_HDRLEN;
541 	}
542 
543 	*p_nhoff += offset;
544 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
545 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
546 		return FLOW_DISSECT_RET_OUT_GOOD;
547 
548 	return FLOW_DISSECT_RET_PROTO_AGAIN;
549 }
550 
551 /**
552  * __skb_flow_dissect_batadv() - dissect batman-adv header
553  * @skb: sk_buff to with the batman-adv header
554  * @key_control: flow dissectors control key
555  * @data: raw buffer pointer to the packet, if NULL use skb->data
556  * @p_proto: pointer used to update the protocol to process next
557  * @p_nhoff: pointer used to update inner network header offset
558  * @hlen: packet header length
559  * @flags: any combination of FLOW_DISSECTOR_F_*
560  *
561  * ETH_P_BATMAN packets are tried to be dissected. Only
562  * &struct batadv_unicast packets are actually processed because they contain an
563  * inner ethernet header and are usually followed by actual network header. This
564  * allows the flow dissector to continue processing the packet.
565  *
566  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
567  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
568  *  otherwise FLOW_DISSECT_RET_OUT_BAD
569  */
570 static enum flow_dissect_ret
571 __skb_flow_dissect_batadv(const struct sk_buff *skb,
572 			  struct flow_dissector_key_control *key_control,
573 			  void *data, __be16 *p_proto, int *p_nhoff, int hlen,
574 			  unsigned int flags)
575 {
576 	struct {
577 		struct batadv_unicast_packet batadv_unicast;
578 		struct ethhdr eth;
579 	} *hdr, _hdr;
580 
581 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
582 				   &_hdr);
583 	if (!hdr)
584 		return FLOW_DISSECT_RET_OUT_BAD;
585 
586 	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
587 		return FLOW_DISSECT_RET_OUT_BAD;
588 
589 	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
590 		return FLOW_DISSECT_RET_OUT_BAD;
591 
592 	*p_proto = hdr->eth.h_proto;
593 	*p_nhoff += sizeof(*hdr);
594 
595 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
596 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
597 		return FLOW_DISSECT_RET_OUT_GOOD;
598 
599 	return FLOW_DISSECT_RET_PROTO_AGAIN;
600 }
601 
602 static void
603 __skb_flow_dissect_tcp(const struct sk_buff *skb,
604 		       struct flow_dissector *flow_dissector,
605 		       void *target_container, void *data, int thoff, int hlen)
606 {
607 	struct flow_dissector_key_tcp *key_tcp;
608 	struct tcphdr *th, _th;
609 
610 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
611 		return;
612 
613 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
614 	if (!th)
615 		return;
616 
617 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
618 		return;
619 
620 	key_tcp = skb_flow_dissector_target(flow_dissector,
621 					    FLOW_DISSECTOR_KEY_TCP,
622 					    target_container);
623 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
624 }
625 
626 static void
627 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
628 			struct flow_dissector *flow_dissector,
629 			void *target_container, void *data, const struct iphdr *iph)
630 {
631 	struct flow_dissector_key_ip *key_ip;
632 
633 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
634 		return;
635 
636 	key_ip = skb_flow_dissector_target(flow_dissector,
637 					   FLOW_DISSECTOR_KEY_IP,
638 					   target_container);
639 	key_ip->tos = iph->tos;
640 	key_ip->ttl = iph->ttl;
641 }
642 
643 static void
644 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
645 			struct flow_dissector *flow_dissector,
646 			void *target_container, void *data, const struct ipv6hdr *iph)
647 {
648 	struct flow_dissector_key_ip *key_ip;
649 
650 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
651 		return;
652 
653 	key_ip = skb_flow_dissector_target(flow_dissector,
654 					   FLOW_DISSECTOR_KEY_IP,
655 					   target_container);
656 	key_ip->tos = ipv6_get_dsfield(iph);
657 	key_ip->ttl = iph->hop_limit;
658 }
659 
660 /* Maximum number of protocol headers that can be parsed in
661  * __skb_flow_dissect
662  */
663 #define MAX_FLOW_DISSECT_HDRS	15
664 
665 static bool skb_flow_dissect_allowed(int *num_hdrs)
666 {
667 	++*num_hdrs;
668 
669 	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
670 }
671 
672 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
673 				     struct flow_dissector *flow_dissector,
674 				     void *target_container)
675 {
676 	struct flow_dissector_key_control *key_control;
677 	struct flow_dissector_key_basic *key_basic;
678 	struct flow_dissector_key_addrs *key_addrs;
679 	struct flow_dissector_key_ports *key_ports;
680 
681 	key_control = skb_flow_dissector_target(flow_dissector,
682 						FLOW_DISSECTOR_KEY_CONTROL,
683 						target_container);
684 	key_control->thoff = flow_keys->thoff;
685 	if (flow_keys->is_frag)
686 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
687 	if (flow_keys->is_first_frag)
688 		key_control->flags |= FLOW_DIS_FIRST_FRAG;
689 	if (flow_keys->is_encap)
690 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
691 
692 	key_basic = skb_flow_dissector_target(flow_dissector,
693 					      FLOW_DISSECTOR_KEY_BASIC,
694 					      target_container);
695 	key_basic->n_proto = flow_keys->n_proto;
696 	key_basic->ip_proto = flow_keys->ip_proto;
697 
698 	if (flow_keys->addr_proto == ETH_P_IP &&
699 	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
700 		key_addrs = skb_flow_dissector_target(flow_dissector,
701 						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
702 						      target_container);
703 		key_addrs->v4addrs.src = flow_keys->ipv4_src;
704 		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
705 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
706 	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
707 		   dissector_uses_key(flow_dissector,
708 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
709 		key_addrs = skb_flow_dissector_target(flow_dissector,
710 						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
711 						      target_container);
712 		memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
713 		       sizeof(key_addrs->v6addrs));
714 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
715 	}
716 
717 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) {
718 		key_ports = skb_flow_dissector_target(flow_dissector,
719 						      FLOW_DISSECTOR_KEY_PORTS,
720 						      target_container);
721 		key_ports->src = flow_keys->sport;
722 		key_ports->dst = flow_keys->dport;
723 	}
724 }
725 
726 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
727 		      __be16 proto, int nhoff, int hlen)
728 {
729 	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
730 	u32 result;
731 
732 	/* Pass parameters to the BPF program */
733 	memset(flow_keys, 0, sizeof(*flow_keys));
734 	flow_keys->n_proto = proto;
735 	flow_keys->nhoff = nhoff;
736 	flow_keys->thoff = flow_keys->nhoff;
737 
738 	preempt_disable();
739 	result = BPF_PROG_RUN(prog, ctx);
740 	preempt_enable();
741 
742 	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
743 	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
744 				   flow_keys->nhoff, hlen);
745 
746 	return result == BPF_OK;
747 }
748 
749 /**
750  * __skb_flow_dissect - extract the flow_keys struct and return it
751  * @net: associated network namespace, derived from @skb if NULL
752  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
753  * @flow_dissector: list of keys to dissect
754  * @target_container: target structure to put dissected values into
755  * @data: raw buffer pointer to the packet, if NULL use skb->data
756  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
757  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
758  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
759  * @flags: flags that control the dissection process, e.g.
760  *         FLOW_DISSECTOR_F_STOP_AT_L3.
761  *
762  * The function will try to retrieve individual keys into target specified
763  * by flow_dissector from either the skbuff or a raw buffer specified by the
764  * rest parameters.
765  *
766  * Caller must take care of zeroing target container memory.
767  */
768 bool __skb_flow_dissect(const struct net *net,
769 			const struct sk_buff *skb,
770 			struct flow_dissector *flow_dissector,
771 			void *target_container,
772 			void *data, __be16 proto, int nhoff, int hlen,
773 			unsigned int flags)
774 {
775 	struct flow_dissector_key_control *key_control;
776 	struct flow_dissector_key_basic *key_basic;
777 	struct flow_dissector_key_addrs *key_addrs;
778 	struct flow_dissector_key_ports *key_ports;
779 	struct flow_dissector_key_icmp *key_icmp;
780 	struct flow_dissector_key_tags *key_tags;
781 	struct flow_dissector_key_vlan *key_vlan;
782 	struct bpf_prog *attached = NULL;
783 	enum flow_dissect_ret fdret;
784 	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
785 	int num_hdrs = 0;
786 	u8 ip_proto = 0;
787 	bool ret;
788 
789 	if (!data) {
790 		data = skb->data;
791 		proto = skb_vlan_tag_present(skb) ?
792 			 skb->vlan_proto : skb->protocol;
793 		nhoff = skb_network_offset(skb);
794 		hlen = skb_headlen(skb);
795 #if IS_ENABLED(CONFIG_NET_DSA)
796 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
797 			const struct dsa_device_ops *ops;
798 			int offset;
799 
800 			ops = skb->dev->dsa_ptr->tag_ops;
801 			if (ops->flow_dissect &&
802 			    !ops->flow_dissect(skb, &proto, &offset)) {
803 				hlen -= offset;
804 				nhoff += offset;
805 			}
806 		}
807 #endif
808 	}
809 
810 	/* It is ensured by skb_flow_dissector_init() that control key will
811 	 * be always present.
812 	 */
813 	key_control = skb_flow_dissector_target(flow_dissector,
814 						FLOW_DISSECTOR_KEY_CONTROL,
815 						target_container);
816 
817 	/* It is ensured by skb_flow_dissector_init() that basic key will
818 	 * be always present.
819 	 */
820 	key_basic = skb_flow_dissector_target(flow_dissector,
821 					      FLOW_DISSECTOR_KEY_BASIC,
822 					      target_container);
823 
824 	if (skb) {
825 		if (!net) {
826 			if (skb->dev)
827 				net = dev_net(skb->dev);
828 			else if (skb->sk)
829 				net = sock_net(skb->sk);
830 		}
831 	}
832 
833 	WARN_ON_ONCE(!net);
834 	if (net) {
835 		rcu_read_lock();
836 		attached = rcu_dereference(net->flow_dissector_prog);
837 
838 		if (attached) {
839 			struct bpf_flow_keys flow_keys;
840 			struct bpf_flow_dissector ctx = {
841 				.flow_keys = &flow_keys,
842 				.data = data,
843 				.data_end = data + hlen,
844 			};
845 			__be16 n_proto = proto;
846 
847 			if (skb) {
848 				ctx.skb = skb;
849 				/* we can't use 'proto' in the skb case
850 				 * because it might be set to skb->vlan_proto
851 				 * which has been pulled from the data
852 				 */
853 				n_proto = skb->protocol;
854 			}
855 
856 			ret = bpf_flow_dissect(attached, &ctx, n_proto, nhoff,
857 					       hlen);
858 			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
859 						 target_container);
860 			rcu_read_unlock();
861 			return ret;
862 		}
863 		rcu_read_unlock();
864 	}
865 
866 	if (dissector_uses_key(flow_dissector,
867 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
868 		struct ethhdr *eth = eth_hdr(skb);
869 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
870 
871 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
872 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
873 							  target_container);
874 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
875 	}
876 
877 proto_again:
878 	fdret = FLOW_DISSECT_RET_CONTINUE;
879 
880 	switch (proto) {
881 	case htons(ETH_P_IP): {
882 		const struct iphdr *iph;
883 		struct iphdr _iph;
884 
885 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
886 		if (!iph || iph->ihl < 5) {
887 			fdret = FLOW_DISSECT_RET_OUT_BAD;
888 			break;
889 		}
890 
891 		nhoff += iph->ihl * 4;
892 
893 		ip_proto = iph->protocol;
894 
895 		if (dissector_uses_key(flow_dissector,
896 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
897 			key_addrs = skb_flow_dissector_target(flow_dissector,
898 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
899 							      target_container);
900 
901 			memcpy(&key_addrs->v4addrs, &iph->saddr,
902 			       sizeof(key_addrs->v4addrs));
903 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
904 		}
905 
906 		if (ip_is_fragment(iph)) {
907 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
908 
909 			if (iph->frag_off & htons(IP_OFFSET)) {
910 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
911 				break;
912 			} else {
913 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
914 				if (!(flags &
915 				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
916 					fdret = FLOW_DISSECT_RET_OUT_GOOD;
917 					break;
918 				}
919 			}
920 		}
921 
922 		__skb_flow_dissect_ipv4(skb, flow_dissector,
923 					target_container, data, iph);
924 
925 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) {
926 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
927 			break;
928 		}
929 
930 		break;
931 	}
932 	case htons(ETH_P_IPV6): {
933 		const struct ipv6hdr *iph;
934 		struct ipv6hdr _iph;
935 
936 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
937 		if (!iph) {
938 			fdret = FLOW_DISSECT_RET_OUT_BAD;
939 			break;
940 		}
941 
942 		ip_proto = iph->nexthdr;
943 		nhoff += sizeof(struct ipv6hdr);
944 
945 		if (dissector_uses_key(flow_dissector,
946 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
947 			key_addrs = skb_flow_dissector_target(flow_dissector,
948 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
949 							      target_container);
950 
951 			memcpy(&key_addrs->v6addrs, &iph->saddr,
952 			       sizeof(key_addrs->v6addrs));
953 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
954 		}
955 
956 		if ((dissector_uses_key(flow_dissector,
957 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
958 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
959 		    ip6_flowlabel(iph)) {
960 			__be32 flow_label = ip6_flowlabel(iph);
961 
962 			if (dissector_uses_key(flow_dissector,
963 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
964 				key_tags = skb_flow_dissector_target(flow_dissector,
965 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
966 								     target_container);
967 				key_tags->flow_label = ntohl(flow_label);
968 			}
969 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
970 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
971 				break;
972 			}
973 		}
974 
975 		__skb_flow_dissect_ipv6(skb, flow_dissector,
976 					target_container, data, iph);
977 
978 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
979 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
980 
981 		break;
982 	}
983 	case htons(ETH_P_8021AD):
984 	case htons(ETH_P_8021Q): {
985 		const struct vlan_hdr *vlan = NULL;
986 		struct vlan_hdr _vlan;
987 		__be16 saved_vlan_tpid = proto;
988 
989 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
990 		    skb && skb_vlan_tag_present(skb)) {
991 			proto = skb->protocol;
992 		} else {
993 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
994 						    data, hlen, &_vlan);
995 			if (!vlan) {
996 				fdret = FLOW_DISSECT_RET_OUT_BAD;
997 				break;
998 			}
999 
1000 			proto = vlan->h_vlan_encapsulated_proto;
1001 			nhoff += sizeof(*vlan);
1002 		}
1003 
1004 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1005 			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1006 		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1007 			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1008 		} else {
1009 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1010 			break;
1011 		}
1012 
1013 		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1014 			key_vlan = skb_flow_dissector_target(flow_dissector,
1015 							     dissector_vlan,
1016 							     target_container);
1017 
1018 			if (!vlan) {
1019 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1020 				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1021 			} else {
1022 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1023 					VLAN_VID_MASK;
1024 				key_vlan->vlan_priority =
1025 					(ntohs(vlan->h_vlan_TCI) &
1026 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1027 			}
1028 			key_vlan->vlan_tpid = saved_vlan_tpid;
1029 		}
1030 
1031 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1032 		break;
1033 	}
1034 	case htons(ETH_P_PPP_SES): {
1035 		struct {
1036 			struct pppoe_hdr hdr;
1037 			__be16 proto;
1038 		} *hdr, _hdr;
1039 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1040 		if (!hdr) {
1041 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1042 			break;
1043 		}
1044 
1045 		proto = hdr->proto;
1046 		nhoff += PPPOE_SES_HLEN;
1047 		switch (proto) {
1048 		case htons(PPP_IP):
1049 			proto = htons(ETH_P_IP);
1050 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1051 			break;
1052 		case htons(PPP_IPV6):
1053 			proto = htons(ETH_P_IPV6);
1054 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1055 			break;
1056 		default:
1057 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1058 			break;
1059 		}
1060 		break;
1061 	}
1062 	case htons(ETH_P_TIPC): {
1063 		struct tipc_basic_hdr *hdr, _hdr;
1064 
1065 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1066 					   data, hlen, &_hdr);
1067 		if (!hdr) {
1068 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1069 			break;
1070 		}
1071 
1072 		if (dissector_uses_key(flow_dissector,
1073 				       FLOW_DISSECTOR_KEY_TIPC)) {
1074 			key_addrs = skb_flow_dissector_target(flow_dissector,
1075 							      FLOW_DISSECTOR_KEY_TIPC,
1076 							      target_container);
1077 			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1078 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1079 		}
1080 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1081 		break;
1082 	}
1083 
1084 	case htons(ETH_P_MPLS_UC):
1085 	case htons(ETH_P_MPLS_MC):
1086 		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1087 						target_container, data,
1088 						nhoff, hlen);
1089 		break;
1090 	case htons(ETH_P_FCOE):
1091 		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1092 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1093 			break;
1094 		}
1095 
1096 		nhoff += FCOE_HEADER_LEN;
1097 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1098 		break;
1099 
1100 	case htons(ETH_P_ARP):
1101 	case htons(ETH_P_RARP):
1102 		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1103 					       target_container, data,
1104 					       nhoff, hlen);
1105 		break;
1106 
1107 	case htons(ETH_P_BATMAN):
1108 		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1109 						  &proto, &nhoff, hlen, flags);
1110 		break;
1111 
1112 	default:
1113 		fdret = FLOW_DISSECT_RET_OUT_BAD;
1114 		break;
1115 	}
1116 
1117 	/* Process result of proto processing */
1118 	switch (fdret) {
1119 	case FLOW_DISSECT_RET_OUT_GOOD:
1120 		goto out_good;
1121 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1122 		if (skb_flow_dissect_allowed(&num_hdrs))
1123 			goto proto_again;
1124 		goto out_good;
1125 	case FLOW_DISSECT_RET_CONTINUE:
1126 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1127 		break;
1128 	case FLOW_DISSECT_RET_OUT_BAD:
1129 	default:
1130 		goto out_bad;
1131 	}
1132 
1133 ip_proto_again:
1134 	fdret = FLOW_DISSECT_RET_CONTINUE;
1135 
1136 	switch (ip_proto) {
1137 	case IPPROTO_GRE:
1138 		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1139 					       target_container, data,
1140 					       &proto, &nhoff, &hlen, flags);
1141 		break;
1142 
1143 	case NEXTHDR_HOP:
1144 	case NEXTHDR_ROUTING:
1145 	case NEXTHDR_DEST: {
1146 		u8 _opthdr[2], *opthdr;
1147 
1148 		if (proto != htons(ETH_P_IPV6))
1149 			break;
1150 
1151 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1152 					      data, hlen, &_opthdr);
1153 		if (!opthdr) {
1154 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1155 			break;
1156 		}
1157 
1158 		ip_proto = opthdr[0];
1159 		nhoff += (opthdr[1] + 1) << 3;
1160 
1161 		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1162 		break;
1163 	}
1164 	case NEXTHDR_FRAGMENT: {
1165 		struct frag_hdr _fh, *fh;
1166 
1167 		if (proto != htons(ETH_P_IPV6))
1168 			break;
1169 
1170 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1171 					  data, hlen, &_fh);
1172 
1173 		if (!fh) {
1174 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1175 			break;
1176 		}
1177 
1178 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1179 
1180 		nhoff += sizeof(_fh);
1181 		ip_proto = fh->nexthdr;
1182 
1183 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1184 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1185 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1186 				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1187 				break;
1188 			}
1189 		}
1190 
1191 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1192 		break;
1193 	}
1194 	case IPPROTO_IPIP:
1195 		proto = htons(ETH_P_IP);
1196 
1197 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1198 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1199 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1200 			break;
1201 		}
1202 
1203 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1204 		break;
1205 
1206 	case IPPROTO_IPV6:
1207 		proto = htons(ETH_P_IPV6);
1208 
1209 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1210 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1211 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1212 			break;
1213 		}
1214 
1215 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1216 		break;
1217 
1218 
1219 	case IPPROTO_MPLS:
1220 		proto = htons(ETH_P_MPLS_UC);
1221 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1222 		break;
1223 
1224 	case IPPROTO_TCP:
1225 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1226 				       data, nhoff, hlen);
1227 		break;
1228 
1229 	default:
1230 		break;
1231 	}
1232 
1233 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS) &&
1234 	    !(key_control->flags & FLOW_DIS_IS_FRAGMENT)) {
1235 		key_ports = skb_flow_dissector_target(flow_dissector,
1236 						      FLOW_DISSECTOR_KEY_PORTS,
1237 						      target_container);
1238 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
1239 							data, hlen);
1240 	}
1241 
1242 	if (dissector_uses_key(flow_dissector,
1243 			       FLOW_DISSECTOR_KEY_ICMP)) {
1244 		key_icmp = skb_flow_dissector_target(flow_dissector,
1245 						     FLOW_DISSECTOR_KEY_ICMP,
1246 						     target_container);
1247 		key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
1248 	}
1249 
1250 	/* Process result of IP proto processing */
1251 	switch (fdret) {
1252 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1253 		if (skb_flow_dissect_allowed(&num_hdrs))
1254 			goto proto_again;
1255 		break;
1256 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1257 		if (skb_flow_dissect_allowed(&num_hdrs))
1258 			goto ip_proto_again;
1259 		break;
1260 	case FLOW_DISSECT_RET_OUT_GOOD:
1261 	case FLOW_DISSECT_RET_CONTINUE:
1262 		break;
1263 	case FLOW_DISSECT_RET_OUT_BAD:
1264 	default:
1265 		goto out_bad;
1266 	}
1267 
1268 out_good:
1269 	ret = true;
1270 
1271 out:
1272 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1273 	key_basic->n_proto = proto;
1274 	key_basic->ip_proto = ip_proto;
1275 
1276 	return ret;
1277 
1278 out_bad:
1279 	ret = false;
1280 	goto out;
1281 }
1282 EXPORT_SYMBOL(__skb_flow_dissect);
1283 
1284 static u32 hashrnd __read_mostly;
1285 static __always_inline void __flow_hash_secret_init(void)
1286 {
1287 	net_get_random_once(&hashrnd, sizeof(hashrnd));
1288 }
1289 
1290 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
1291 					     u32 keyval)
1292 {
1293 	return jhash2(words, length, keyval);
1294 }
1295 
1296 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
1297 {
1298 	const void *p = flow;
1299 
1300 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
1301 	return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
1302 }
1303 
1304 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1305 {
1306 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1307 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1308 	BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
1309 		     sizeof(*flow) - sizeof(flow->addrs));
1310 
1311 	switch (flow->control.addr_type) {
1312 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1313 		diff -= sizeof(flow->addrs.v4addrs);
1314 		break;
1315 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1316 		diff -= sizeof(flow->addrs.v6addrs);
1317 		break;
1318 	case FLOW_DISSECTOR_KEY_TIPC:
1319 		diff -= sizeof(flow->addrs.tipckey);
1320 		break;
1321 	}
1322 	return (sizeof(*flow) - diff) / sizeof(u32);
1323 }
1324 
1325 __be32 flow_get_u32_src(const struct flow_keys *flow)
1326 {
1327 	switch (flow->control.addr_type) {
1328 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1329 		return flow->addrs.v4addrs.src;
1330 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1331 		return (__force __be32)ipv6_addr_hash(
1332 			&flow->addrs.v6addrs.src);
1333 	case FLOW_DISSECTOR_KEY_TIPC:
1334 		return flow->addrs.tipckey.key;
1335 	default:
1336 		return 0;
1337 	}
1338 }
1339 EXPORT_SYMBOL(flow_get_u32_src);
1340 
1341 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1342 {
1343 	switch (flow->control.addr_type) {
1344 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1345 		return flow->addrs.v4addrs.dst;
1346 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1347 		return (__force __be32)ipv6_addr_hash(
1348 			&flow->addrs.v6addrs.dst);
1349 	default:
1350 		return 0;
1351 	}
1352 }
1353 EXPORT_SYMBOL(flow_get_u32_dst);
1354 
1355 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1356 {
1357 	int addr_diff, i;
1358 
1359 	switch (keys->control.addr_type) {
1360 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1361 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1362 			    (__force u32)keys->addrs.v4addrs.src;
1363 		if ((addr_diff < 0) ||
1364 		    (addr_diff == 0 &&
1365 		     ((__force u16)keys->ports.dst <
1366 		      (__force u16)keys->ports.src))) {
1367 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1368 			swap(keys->ports.src, keys->ports.dst);
1369 		}
1370 		break;
1371 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1372 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1373 				   &keys->addrs.v6addrs.src,
1374 				   sizeof(keys->addrs.v6addrs.dst));
1375 		if ((addr_diff < 0) ||
1376 		    (addr_diff == 0 &&
1377 		     ((__force u16)keys->ports.dst <
1378 		      (__force u16)keys->ports.src))) {
1379 			for (i = 0; i < 4; i++)
1380 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1381 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1382 			swap(keys->ports.src, keys->ports.dst);
1383 		}
1384 		break;
1385 	}
1386 }
1387 
1388 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
1389 {
1390 	u32 hash;
1391 
1392 	__flow_hash_consistentify(keys);
1393 
1394 	hash = __flow_hash_words(flow_keys_hash_start(keys),
1395 				 flow_keys_hash_length(keys), keyval);
1396 	if (!hash)
1397 		hash = 1;
1398 
1399 	return hash;
1400 }
1401 
1402 u32 flow_hash_from_keys(struct flow_keys *keys)
1403 {
1404 	__flow_hash_secret_init();
1405 	return __flow_hash_from_keys(keys, hashrnd);
1406 }
1407 EXPORT_SYMBOL(flow_hash_from_keys);
1408 
1409 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1410 				  struct flow_keys *keys, u32 keyval)
1411 {
1412 	skb_flow_dissect_flow_keys(skb, keys,
1413 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1414 
1415 	return __flow_hash_from_keys(keys, keyval);
1416 }
1417 
1418 struct _flow_keys_digest_data {
1419 	__be16	n_proto;
1420 	u8	ip_proto;
1421 	u8	padding;
1422 	__be32	ports;
1423 	__be32	src;
1424 	__be32	dst;
1425 };
1426 
1427 void make_flow_keys_digest(struct flow_keys_digest *digest,
1428 			   const struct flow_keys *flow)
1429 {
1430 	struct _flow_keys_digest_data *data =
1431 	    (struct _flow_keys_digest_data *)digest;
1432 
1433 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1434 
1435 	memset(digest, 0, sizeof(*digest));
1436 
1437 	data->n_proto = flow->basic.n_proto;
1438 	data->ip_proto = flow->basic.ip_proto;
1439 	data->ports = flow->ports.ports;
1440 	data->src = flow->addrs.v4addrs.src;
1441 	data->dst = flow->addrs.v4addrs.dst;
1442 }
1443 EXPORT_SYMBOL(make_flow_keys_digest);
1444 
1445 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1446 
1447 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1448 {
1449 	struct flow_keys keys;
1450 
1451 	__flow_hash_secret_init();
1452 
1453 	memset(&keys, 0, sizeof(keys));
1454 	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1455 			   &keys, NULL, 0, 0, 0,
1456 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1457 
1458 	return __flow_hash_from_keys(&keys, hashrnd);
1459 }
1460 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1461 
1462 /**
1463  * __skb_get_hash: calculate a flow hash
1464  * @skb: sk_buff to calculate flow hash from
1465  *
1466  * This function calculates a flow hash based on src/dst addresses
1467  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1468  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1469  * if hash is a canonical 4-tuple hash over transport ports.
1470  */
1471 void __skb_get_hash(struct sk_buff *skb)
1472 {
1473 	struct flow_keys keys;
1474 	u32 hash;
1475 
1476 	__flow_hash_secret_init();
1477 
1478 	hash = ___skb_get_hash(skb, &keys, hashrnd);
1479 
1480 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1481 }
1482 EXPORT_SYMBOL(__skb_get_hash);
1483 
1484 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
1485 {
1486 	struct flow_keys keys;
1487 
1488 	return ___skb_get_hash(skb, &keys, perturb);
1489 }
1490 EXPORT_SYMBOL(skb_get_hash_perturb);
1491 
1492 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1493 		   const struct flow_keys_basic *keys, int hlen)
1494 {
1495 	u32 poff = keys->control.thoff;
1496 
1497 	/* skip L4 headers for fragments after the first */
1498 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1499 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1500 		return poff;
1501 
1502 	switch (keys->basic.ip_proto) {
1503 	case IPPROTO_TCP: {
1504 		/* access doff as u8 to avoid unaligned access */
1505 		const u8 *doff;
1506 		u8 _doff;
1507 
1508 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1509 					    data, hlen, &_doff);
1510 		if (!doff)
1511 			return poff;
1512 
1513 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1514 		break;
1515 	}
1516 	case IPPROTO_UDP:
1517 	case IPPROTO_UDPLITE:
1518 		poff += sizeof(struct udphdr);
1519 		break;
1520 	/* For the rest, we do not really care about header
1521 	 * extensions at this point for now.
1522 	 */
1523 	case IPPROTO_ICMP:
1524 		poff += sizeof(struct icmphdr);
1525 		break;
1526 	case IPPROTO_ICMPV6:
1527 		poff += sizeof(struct icmp6hdr);
1528 		break;
1529 	case IPPROTO_IGMP:
1530 		poff += sizeof(struct igmphdr);
1531 		break;
1532 	case IPPROTO_DCCP:
1533 		poff += sizeof(struct dccp_hdr);
1534 		break;
1535 	case IPPROTO_SCTP:
1536 		poff += sizeof(struct sctphdr);
1537 		break;
1538 	}
1539 
1540 	return poff;
1541 }
1542 
1543 /**
1544  * skb_get_poff - get the offset to the payload
1545  * @skb: sk_buff to get the payload offset from
1546  *
1547  * The function will get the offset to the payload as far as it could
1548  * be dissected.  The main user is currently BPF, so that we can dynamically
1549  * truncate packets without needing to push actual payload to the user
1550  * space and can analyze headers only, instead.
1551  */
1552 u32 skb_get_poff(const struct sk_buff *skb)
1553 {
1554 	struct flow_keys_basic keys;
1555 
1556 	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1557 					      NULL, 0, 0, 0, 0))
1558 		return 0;
1559 
1560 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1561 }
1562 
1563 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1564 {
1565 	memset(keys, 0, sizeof(*keys));
1566 
1567 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1568 	    sizeof(keys->addrs.v6addrs.src));
1569 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1570 	    sizeof(keys->addrs.v6addrs.dst));
1571 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1572 	keys->ports.src = fl6->fl6_sport;
1573 	keys->ports.dst = fl6->fl6_dport;
1574 	keys->keyid.keyid = fl6->fl6_gre_key;
1575 	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1576 	keys->basic.ip_proto = fl6->flowi6_proto;
1577 
1578 	return flow_hash_from_keys(keys);
1579 }
1580 EXPORT_SYMBOL(__get_hash_from_flowi6);
1581 
1582 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1583 	{
1584 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1585 		.offset = offsetof(struct flow_keys, control),
1586 	},
1587 	{
1588 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1589 		.offset = offsetof(struct flow_keys, basic),
1590 	},
1591 	{
1592 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1593 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1594 	},
1595 	{
1596 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1597 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1598 	},
1599 	{
1600 		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1601 		.offset = offsetof(struct flow_keys, addrs.tipckey),
1602 	},
1603 	{
1604 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1605 		.offset = offsetof(struct flow_keys, ports),
1606 	},
1607 	{
1608 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1609 		.offset = offsetof(struct flow_keys, vlan),
1610 	},
1611 	{
1612 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1613 		.offset = offsetof(struct flow_keys, tags),
1614 	},
1615 	{
1616 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1617 		.offset = offsetof(struct flow_keys, keyid),
1618 	},
1619 };
1620 
1621 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1622 	{
1623 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1624 		.offset = offsetof(struct flow_keys, control),
1625 	},
1626 	{
1627 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1628 		.offset = offsetof(struct flow_keys, basic),
1629 	},
1630 	{
1631 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1632 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1633 	},
1634 	{
1635 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1636 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1637 	},
1638 	{
1639 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1640 		.offset = offsetof(struct flow_keys, ports),
1641 	},
1642 };
1643 
1644 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1645 	{
1646 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1647 		.offset = offsetof(struct flow_keys, control),
1648 	},
1649 	{
1650 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1651 		.offset = offsetof(struct flow_keys, basic),
1652 	},
1653 };
1654 
1655 struct flow_dissector flow_keys_dissector __read_mostly;
1656 EXPORT_SYMBOL(flow_keys_dissector);
1657 
1658 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1659 EXPORT_SYMBOL(flow_keys_basic_dissector);
1660 
1661 static int __init init_default_flow_dissectors(void)
1662 {
1663 	skb_flow_dissector_init(&flow_keys_dissector,
1664 				flow_keys_dissector_keys,
1665 				ARRAY_SIZE(flow_keys_dissector_keys));
1666 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1667 				flow_keys_dissector_symmetric_keys,
1668 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1669 	skb_flow_dissector_init(&flow_keys_basic_dissector,
1670 				flow_keys_basic_dissector_keys,
1671 				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1672 	return 0;
1673 }
1674 
1675 core_initcall(init_default_flow_dissectors);
1676