1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/skbuff.h> 4 #include <linux/export.h> 5 #include <linux/ip.h> 6 #include <linux/ipv6.h> 7 #include <linux/if_vlan.h> 8 #include <linux/filter.h> 9 #include <net/dsa.h> 10 #include <net/dst_metadata.h> 11 #include <net/ip.h> 12 #include <net/ipv6.h> 13 #include <net/gre.h> 14 #include <net/pptp.h> 15 #include <net/tipc.h> 16 #include <linux/igmp.h> 17 #include <linux/icmp.h> 18 #include <linux/sctp.h> 19 #include <linux/dccp.h> 20 #include <linux/if_tunnel.h> 21 #include <linux/if_pppox.h> 22 #include <linux/ppp_defs.h> 23 #include <linux/stddef.h> 24 #include <linux/if_ether.h> 25 #include <linux/if_hsr.h> 26 #include <linux/mpls.h> 27 #include <linux/tcp.h> 28 #include <linux/ptp_classify.h> 29 #include <net/flow_dissector.h> 30 #include <scsi/fc/fc_fcoe.h> 31 #include <uapi/linux/batadv_packet.h> 32 #include <linux/bpf.h> 33 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 34 #include <net/netfilter/nf_conntrack_core.h> 35 #include <net/netfilter/nf_conntrack_labels.h> 36 #endif 37 #include <linux/bpf-netns.h> 38 39 static void dissector_set_key(struct flow_dissector *flow_dissector, 40 enum flow_dissector_key_id key_id) 41 { 42 flow_dissector->used_keys |= (1 << key_id); 43 } 44 45 void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 46 const struct flow_dissector_key *key, 47 unsigned int key_count) 48 { 49 unsigned int i; 50 51 memset(flow_dissector, 0, sizeof(*flow_dissector)); 52 53 for (i = 0; i < key_count; i++, key++) { 54 /* User should make sure that every key target offset is within 55 * boundaries of unsigned short. 56 */ 57 BUG_ON(key->offset > USHRT_MAX); 58 BUG_ON(dissector_uses_key(flow_dissector, 59 key->key_id)); 60 61 dissector_set_key(flow_dissector, key->key_id); 62 flow_dissector->offset[key->key_id] = key->offset; 63 } 64 65 /* Ensure that the dissector always includes control and basic key. 66 * That way we are able to avoid handling lack of these in fast path. 67 */ 68 BUG_ON(!dissector_uses_key(flow_dissector, 69 FLOW_DISSECTOR_KEY_CONTROL)); 70 BUG_ON(!dissector_uses_key(flow_dissector, 71 FLOW_DISSECTOR_KEY_BASIC)); 72 } 73 EXPORT_SYMBOL(skb_flow_dissector_init); 74 75 #ifdef CONFIG_BPF_SYSCALL 76 int flow_dissector_bpf_prog_attach_check(struct net *net, 77 struct bpf_prog *prog) 78 { 79 enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR; 80 81 if (net == &init_net) { 82 /* BPF flow dissector in the root namespace overrides 83 * any per-net-namespace one. When attaching to root, 84 * make sure we don't have any BPF program attached 85 * to the non-root namespaces. 86 */ 87 struct net *ns; 88 89 for_each_net(ns) { 90 if (ns == &init_net) 91 continue; 92 if (rcu_access_pointer(ns->bpf.run_array[type])) 93 return -EEXIST; 94 } 95 } else { 96 /* Make sure root flow dissector is not attached 97 * when attaching to the non-root namespace. 98 */ 99 if (rcu_access_pointer(init_net.bpf.run_array[type])) 100 return -EEXIST; 101 } 102 103 return 0; 104 } 105 #endif /* CONFIG_BPF_SYSCALL */ 106 107 /** 108 * __skb_flow_get_ports - extract the upper layer ports and return them 109 * @skb: sk_buff to extract the ports from 110 * @thoff: transport header offset 111 * @ip_proto: protocol for which to get port offset 112 * @data: raw buffer pointer to the packet, if NULL use skb->data 113 * @hlen: packet header length, if @data is NULL use skb_headlen(skb) 114 * 115 * The function will try to retrieve the ports at offset thoff + poff where poff 116 * is the protocol port offset returned from proto_ports_offset 117 */ 118 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 119 const void *data, int hlen) 120 { 121 int poff = proto_ports_offset(ip_proto); 122 123 if (!data) { 124 data = skb->data; 125 hlen = skb_headlen(skb); 126 } 127 128 if (poff >= 0) { 129 __be32 *ports, _ports; 130 131 ports = __skb_header_pointer(skb, thoff + poff, 132 sizeof(_ports), data, hlen, &_ports); 133 if (ports) 134 return *ports; 135 } 136 137 return 0; 138 } 139 EXPORT_SYMBOL(__skb_flow_get_ports); 140 141 static bool icmp_has_id(u8 type) 142 { 143 switch (type) { 144 case ICMP_ECHO: 145 case ICMP_ECHOREPLY: 146 case ICMP_TIMESTAMP: 147 case ICMP_TIMESTAMPREPLY: 148 case ICMPV6_ECHO_REQUEST: 149 case ICMPV6_ECHO_REPLY: 150 return true; 151 } 152 153 return false; 154 } 155 156 /** 157 * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields 158 * @skb: sk_buff to extract from 159 * @key_icmp: struct flow_dissector_key_icmp to fill 160 * @data: raw buffer pointer to the packet 161 * @thoff: offset to extract at 162 * @hlen: packet header length 163 */ 164 void skb_flow_get_icmp_tci(const struct sk_buff *skb, 165 struct flow_dissector_key_icmp *key_icmp, 166 const void *data, int thoff, int hlen) 167 { 168 struct icmphdr *ih, _ih; 169 170 ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih); 171 if (!ih) 172 return; 173 174 key_icmp->type = ih->type; 175 key_icmp->code = ih->code; 176 177 /* As we use 0 to signal that the Id field is not present, 178 * avoid confusion with packets without such field 179 */ 180 if (icmp_has_id(ih->type)) 181 key_icmp->id = ih->un.echo.id ? ntohs(ih->un.echo.id) : 1; 182 else 183 key_icmp->id = 0; 184 } 185 EXPORT_SYMBOL(skb_flow_get_icmp_tci); 186 187 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet 188 * using skb_flow_get_icmp_tci(). 189 */ 190 static void __skb_flow_dissect_icmp(const struct sk_buff *skb, 191 struct flow_dissector *flow_dissector, 192 void *target_container, const void *data, 193 int thoff, int hlen) 194 { 195 struct flow_dissector_key_icmp *key_icmp; 196 197 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP)) 198 return; 199 200 key_icmp = skb_flow_dissector_target(flow_dissector, 201 FLOW_DISSECTOR_KEY_ICMP, 202 target_container); 203 204 skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen); 205 } 206 207 void skb_flow_dissect_meta(const struct sk_buff *skb, 208 struct flow_dissector *flow_dissector, 209 void *target_container) 210 { 211 struct flow_dissector_key_meta *meta; 212 213 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META)) 214 return; 215 216 meta = skb_flow_dissector_target(flow_dissector, 217 FLOW_DISSECTOR_KEY_META, 218 target_container); 219 meta->ingress_ifindex = skb->skb_iif; 220 } 221 EXPORT_SYMBOL(skb_flow_dissect_meta); 222 223 static void 224 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type, 225 struct flow_dissector *flow_dissector, 226 void *target_container) 227 { 228 struct flow_dissector_key_control *ctrl; 229 230 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL)) 231 return; 232 233 ctrl = skb_flow_dissector_target(flow_dissector, 234 FLOW_DISSECTOR_KEY_ENC_CONTROL, 235 target_container); 236 ctrl->addr_type = type; 237 } 238 239 void 240 skb_flow_dissect_ct(const struct sk_buff *skb, 241 struct flow_dissector *flow_dissector, 242 void *target_container, u16 *ctinfo_map, 243 size_t mapsize, bool post_ct, u16 zone) 244 { 245 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 246 struct flow_dissector_key_ct *key; 247 enum ip_conntrack_info ctinfo; 248 struct nf_conn_labels *cl; 249 struct nf_conn *ct; 250 251 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT)) 252 return; 253 254 ct = nf_ct_get(skb, &ctinfo); 255 if (!ct && !post_ct) 256 return; 257 258 key = skb_flow_dissector_target(flow_dissector, 259 FLOW_DISSECTOR_KEY_CT, 260 target_container); 261 262 if (!ct) { 263 key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED | 264 TCA_FLOWER_KEY_CT_FLAGS_INVALID; 265 key->ct_zone = zone; 266 return; 267 } 268 269 if (ctinfo < mapsize) 270 key->ct_state = ctinfo_map[ctinfo]; 271 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) 272 key->ct_zone = ct->zone.id; 273 #endif 274 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 275 key->ct_mark = ct->mark; 276 #endif 277 278 cl = nf_ct_labels_find(ct); 279 if (cl) 280 memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels)); 281 #endif /* CONFIG_NF_CONNTRACK */ 282 } 283 EXPORT_SYMBOL(skb_flow_dissect_ct); 284 285 void 286 skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 287 struct flow_dissector *flow_dissector, 288 void *target_container) 289 { 290 struct ip_tunnel_info *info; 291 struct ip_tunnel_key *key; 292 293 /* A quick check to see if there might be something to do. */ 294 if (!dissector_uses_key(flow_dissector, 295 FLOW_DISSECTOR_KEY_ENC_KEYID) && 296 !dissector_uses_key(flow_dissector, 297 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) && 298 !dissector_uses_key(flow_dissector, 299 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) && 300 !dissector_uses_key(flow_dissector, 301 FLOW_DISSECTOR_KEY_ENC_CONTROL) && 302 !dissector_uses_key(flow_dissector, 303 FLOW_DISSECTOR_KEY_ENC_PORTS) && 304 !dissector_uses_key(flow_dissector, 305 FLOW_DISSECTOR_KEY_ENC_IP) && 306 !dissector_uses_key(flow_dissector, 307 FLOW_DISSECTOR_KEY_ENC_OPTS)) 308 return; 309 310 info = skb_tunnel_info(skb); 311 if (!info) 312 return; 313 314 key = &info->key; 315 316 switch (ip_tunnel_info_af(info)) { 317 case AF_INET: 318 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS, 319 flow_dissector, 320 target_container); 321 if (dissector_uses_key(flow_dissector, 322 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) { 323 struct flow_dissector_key_ipv4_addrs *ipv4; 324 325 ipv4 = skb_flow_dissector_target(flow_dissector, 326 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, 327 target_container); 328 ipv4->src = key->u.ipv4.src; 329 ipv4->dst = key->u.ipv4.dst; 330 } 331 break; 332 case AF_INET6: 333 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS, 334 flow_dissector, 335 target_container); 336 if (dissector_uses_key(flow_dissector, 337 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) { 338 struct flow_dissector_key_ipv6_addrs *ipv6; 339 340 ipv6 = skb_flow_dissector_target(flow_dissector, 341 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, 342 target_container); 343 ipv6->src = key->u.ipv6.src; 344 ipv6->dst = key->u.ipv6.dst; 345 } 346 break; 347 } 348 349 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) { 350 struct flow_dissector_key_keyid *keyid; 351 352 keyid = skb_flow_dissector_target(flow_dissector, 353 FLOW_DISSECTOR_KEY_ENC_KEYID, 354 target_container); 355 keyid->keyid = tunnel_id_to_key32(key->tun_id); 356 } 357 358 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) { 359 struct flow_dissector_key_ports *tp; 360 361 tp = skb_flow_dissector_target(flow_dissector, 362 FLOW_DISSECTOR_KEY_ENC_PORTS, 363 target_container); 364 tp->src = key->tp_src; 365 tp->dst = key->tp_dst; 366 } 367 368 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) { 369 struct flow_dissector_key_ip *ip; 370 371 ip = skb_flow_dissector_target(flow_dissector, 372 FLOW_DISSECTOR_KEY_ENC_IP, 373 target_container); 374 ip->tos = key->tos; 375 ip->ttl = key->ttl; 376 } 377 378 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) { 379 struct flow_dissector_key_enc_opts *enc_opt; 380 381 enc_opt = skb_flow_dissector_target(flow_dissector, 382 FLOW_DISSECTOR_KEY_ENC_OPTS, 383 target_container); 384 385 if (info->options_len) { 386 enc_opt->len = info->options_len; 387 ip_tunnel_info_opts_get(enc_opt->data, info); 388 enc_opt->dst_opt_type = info->key.tun_flags & 389 TUNNEL_OPTIONS_PRESENT; 390 } 391 } 392 } 393 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info); 394 395 void skb_flow_dissect_hash(const struct sk_buff *skb, 396 struct flow_dissector *flow_dissector, 397 void *target_container) 398 { 399 struct flow_dissector_key_hash *key; 400 401 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH)) 402 return; 403 404 key = skb_flow_dissector_target(flow_dissector, 405 FLOW_DISSECTOR_KEY_HASH, 406 target_container); 407 408 key->hash = skb_get_hash_raw(skb); 409 } 410 EXPORT_SYMBOL(skb_flow_dissect_hash); 411 412 static enum flow_dissect_ret 413 __skb_flow_dissect_mpls(const struct sk_buff *skb, 414 struct flow_dissector *flow_dissector, 415 void *target_container, const void *data, int nhoff, 416 int hlen, int lse_index, bool *entropy_label) 417 { 418 struct mpls_label *hdr, _hdr; 419 u32 entry, label, bos; 420 421 if (!dissector_uses_key(flow_dissector, 422 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) && 423 !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) 424 return FLOW_DISSECT_RET_OUT_GOOD; 425 426 if (lse_index >= FLOW_DIS_MPLS_MAX) 427 return FLOW_DISSECT_RET_OUT_GOOD; 428 429 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, 430 hlen, &_hdr); 431 if (!hdr) 432 return FLOW_DISSECT_RET_OUT_BAD; 433 434 entry = ntohl(hdr->entry); 435 label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT; 436 bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT; 437 438 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) { 439 struct flow_dissector_key_mpls *key_mpls; 440 struct flow_dissector_mpls_lse *lse; 441 442 key_mpls = skb_flow_dissector_target(flow_dissector, 443 FLOW_DISSECTOR_KEY_MPLS, 444 target_container); 445 lse = &key_mpls->ls[lse_index]; 446 447 lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 448 lse->mpls_bos = bos; 449 lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT; 450 lse->mpls_label = label; 451 dissector_set_mpls_lse(key_mpls, lse_index); 452 } 453 454 if (*entropy_label && 455 dissector_uses_key(flow_dissector, 456 FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) { 457 struct flow_dissector_key_keyid *key_keyid; 458 459 key_keyid = skb_flow_dissector_target(flow_dissector, 460 FLOW_DISSECTOR_KEY_MPLS_ENTROPY, 461 target_container); 462 key_keyid->keyid = cpu_to_be32(label); 463 } 464 465 *entropy_label = label == MPLS_LABEL_ENTROPY; 466 467 return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN; 468 } 469 470 static enum flow_dissect_ret 471 __skb_flow_dissect_arp(const struct sk_buff *skb, 472 struct flow_dissector *flow_dissector, 473 void *target_container, const void *data, 474 int nhoff, int hlen) 475 { 476 struct flow_dissector_key_arp *key_arp; 477 struct { 478 unsigned char ar_sha[ETH_ALEN]; 479 unsigned char ar_sip[4]; 480 unsigned char ar_tha[ETH_ALEN]; 481 unsigned char ar_tip[4]; 482 } *arp_eth, _arp_eth; 483 const struct arphdr *arp; 484 struct arphdr _arp; 485 486 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP)) 487 return FLOW_DISSECT_RET_OUT_GOOD; 488 489 arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data, 490 hlen, &_arp); 491 if (!arp) 492 return FLOW_DISSECT_RET_OUT_BAD; 493 494 if (arp->ar_hrd != htons(ARPHRD_ETHER) || 495 arp->ar_pro != htons(ETH_P_IP) || 496 arp->ar_hln != ETH_ALEN || 497 arp->ar_pln != 4 || 498 (arp->ar_op != htons(ARPOP_REPLY) && 499 arp->ar_op != htons(ARPOP_REQUEST))) 500 return FLOW_DISSECT_RET_OUT_BAD; 501 502 arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp), 503 sizeof(_arp_eth), data, 504 hlen, &_arp_eth); 505 if (!arp_eth) 506 return FLOW_DISSECT_RET_OUT_BAD; 507 508 key_arp = skb_flow_dissector_target(flow_dissector, 509 FLOW_DISSECTOR_KEY_ARP, 510 target_container); 511 512 memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip)); 513 memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip)); 514 515 /* Only store the lower byte of the opcode; 516 * this covers ARPOP_REPLY and ARPOP_REQUEST. 517 */ 518 key_arp->op = ntohs(arp->ar_op) & 0xff; 519 520 ether_addr_copy(key_arp->sha, arp_eth->ar_sha); 521 ether_addr_copy(key_arp->tha, arp_eth->ar_tha); 522 523 return FLOW_DISSECT_RET_OUT_GOOD; 524 } 525 526 static enum flow_dissect_ret 527 __skb_flow_dissect_gre(const struct sk_buff *skb, 528 struct flow_dissector_key_control *key_control, 529 struct flow_dissector *flow_dissector, 530 void *target_container, const void *data, 531 __be16 *p_proto, int *p_nhoff, int *p_hlen, 532 unsigned int flags) 533 { 534 struct flow_dissector_key_keyid *key_keyid; 535 struct gre_base_hdr *hdr, _hdr; 536 int offset = 0; 537 u16 gre_ver; 538 539 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), 540 data, *p_hlen, &_hdr); 541 if (!hdr) 542 return FLOW_DISSECT_RET_OUT_BAD; 543 544 /* Only look inside GRE without routing */ 545 if (hdr->flags & GRE_ROUTING) 546 return FLOW_DISSECT_RET_OUT_GOOD; 547 548 /* Only look inside GRE for version 0 and 1 */ 549 gre_ver = ntohs(hdr->flags & GRE_VERSION); 550 if (gre_ver > 1) 551 return FLOW_DISSECT_RET_OUT_GOOD; 552 553 *p_proto = hdr->protocol; 554 if (gre_ver) { 555 /* Version1 must be PPTP, and check the flags */ 556 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY))) 557 return FLOW_DISSECT_RET_OUT_GOOD; 558 } 559 560 offset += sizeof(struct gre_base_hdr); 561 562 if (hdr->flags & GRE_CSUM) 563 offset += sizeof_field(struct gre_full_hdr, csum) + 564 sizeof_field(struct gre_full_hdr, reserved1); 565 566 if (hdr->flags & GRE_KEY) { 567 const __be32 *keyid; 568 __be32 _keyid; 569 570 keyid = __skb_header_pointer(skb, *p_nhoff + offset, 571 sizeof(_keyid), 572 data, *p_hlen, &_keyid); 573 if (!keyid) 574 return FLOW_DISSECT_RET_OUT_BAD; 575 576 if (dissector_uses_key(flow_dissector, 577 FLOW_DISSECTOR_KEY_GRE_KEYID)) { 578 key_keyid = skb_flow_dissector_target(flow_dissector, 579 FLOW_DISSECTOR_KEY_GRE_KEYID, 580 target_container); 581 if (gre_ver == 0) 582 key_keyid->keyid = *keyid; 583 else 584 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK; 585 } 586 offset += sizeof_field(struct gre_full_hdr, key); 587 } 588 589 if (hdr->flags & GRE_SEQ) 590 offset += sizeof_field(struct pptp_gre_header, seq); 591 592 if (gre_ver == 0) { 593 if (*p_proto == htons(ETH_P_TEB)) { 594 const struct ethhdr *eth; 595 struct ethhdr _eth; 596 597 eth = __skb_header_pointer(skb, *p_nhoff + offset, 598 sizeof(_eth), 599 data, *p_hlen, &_eth); 600 if (!eth) 601 return FLOW_DISSECT_RET_OUT_BAD; 602 *p_proto = eth->h_proto; 603 offset += sizeof(*eth); 604 605 /* Cap headers that we access via pointers at the 606 * end of the Ethernet header as our maximum alignment 607 * at that point is only 2 bytes. 608 */ 609 if (NET_IP_ALIGN) 610 *p_hlen = *p_nhoff + offset; 611 } 612 } else { /* version 1, must be PPTP */ 613 u8 _ppp_hdr[PPP_HDRLEN]; 614 u8 *ppp_hdr; 615 616 if (hdr->flags & GRE_ACK) 617 offset += sizeof_field(struct pptp_gre_header, ack); 618 619 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset, 620 sizeof(_ppp_hdr), 621 data, *p_hlen, _ppp_hdr); 622 if (!ppp_hdr) 623 return FLOW_DISSECT_RET_OUT_BAD; 624 625 switch (PPP_PROTOCOL(ppp_hdr)) { 626 case PPP_IP: 627 *p_proto = htons(ETH_P_IP); 628 break; 629 case PPP_IPV6: 630 *p_proto = htons(ETH_P_IPV6); 631 break; 632 default: 633 /* Could probably catch some more like MPLS */ 634 break; 635 } 636 637 offset += PPP_HDRLEN; 638 } 639 640 *p_nhoff += offset; 641 key_control->flags |= FLOW_DIS_ENCAPSULATION; 642 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) 643 return FLOW_DISSECT_RET_OUT_GOOD; 644 645 return FLOW_DISSECT_RET_PROTO_AGAIN; 646 } 647 648 /** 649 * __skb_flow_dissect_batadv() - dissect batman-adv header 650 * @skb: sk_buff to with the batman-adv header 651 * @key_control: flow dissectors control key 652 * @data: raw buffer pointer to the packet, if NULL use skb->data 653 * @p_proto: pointer used to update the protocol to process next 654 * @p_nhoff: pointer used to update inner network header offset 655 * @hlen: packet header length 656 * @flags: any combination of FLOW_DISSECTOR_F_* 657 * 658 * ETH_P_BATMAN packets are tried to be dissected. Only 659 * &struct batadv_unicast packets are actually processed because they contain an 660 * inner ethernet header and are usually followed by actual network header. This 661 * allows the flow dissector to continue processing the packet. 662 * 663 * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found, 664 * FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation, 665 * otherwise FLOW_DISSECT_RET_OUT_BAD 666 */ 667 static enum flow_dissect_ret 668 __skb_flow_dissect_batadv(const struct sk_buff *skb, 669 struct flow_dissector_key_control *key_control, 670 const void *data, __be16 *p_proto, int *p_nhoff, 671 int hlen, unsigned int flags) 672 { 673 struct { 674 struct batadv_unicast_packet batadv_unicast; 675 struct ethhdr eth; 676 } *hdr, _hdr; 677 678 hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen, 679 &_hdr); 680 if (!hdr) 681 return FLOW_DISSECT_RET_OUT_BAD; 682 683 if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION) 684 return FLOW_DISSECT_RET_OUT_BAD; 685 686 if (hdr->batadv_unicast.packet_type != BATADV_UNICAST) 687 return FLOW_DISSECT_RET_OUT_BAD; 688 689 *p_proto = hdr->eth.h_proto; 690 *p_nhoff += sizeof(*hdr); 691 692 key_control->flags |= FLOW_DIS_ENCAPSULATION; 693 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) 694 return FLOW_DISSECT_RET_OUT_GOOD; 695 696 return FLOW_DISSECT_RET_PROTO_AGAIN; 697 } 698 699 static void 700 __skb_flow_dissect_tcp(const struct sk_buff *skb, 701 struct flow_dissector *flow_dissector, 702 void *target_container, const void *data, 703 int thoff, int hlen) 704 { 705 struct flow_dissector_key_tcp *key_tcp; 706 struct tcphdr *th, _th; 707 708 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP)) 709 return; 710 711 th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th); 712 if (!th) 713 return; 714 715 if (unlikely(__tcp_hdrlen(th) < sizeof(_th))) 716 return; 717 718 key_tcp = skb_flow_dissector_target(flow_dissector, 719 FLOW_DISSECTOR_KEY_TCP, 720 target_container); 721 key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF)); 722 } 723 724 static void 725 __skb_flow_dissect_ports(const struct sk_buff *skb, 726 struct flow_dissector *flow_dissector, 727 void *target_container, const void *data, 728 int nhoff, u8 ip_proto, int hlen) 729 { 730 enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX; 731 struct flow_dissector_key_ports *key_ports; 732 733 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) 734 dissector_ports = FLOW_DISSECTOR_KEY_PORTS; 735 else if (dissector_uses_key(flow_dissector, 736 FLOW_DISSECTOR_KEY_PORTS_RANGE)) 737 dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE; 738 739 if (dissector_ports == FLOW_DISSECTOR_KEY_MAX) 740 return; 741 742 key_ports = skb_flow_dissector_target(flow_dissector, 743 dissector_ports, 744 target_container); 745 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto, 746 data, hlen); 747 } 748 749 static void 750 __skb_flow_dissect_ipv4(const struct sk_buff *skb, 751 struct flow_dissector *flow_dissector, 752 void *target_container, const void *data, 753 const struct iphdr *iph) 754 { 755 struct flow_dissector_key_ip *key_ip; 756 757 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP)) 758 return; 759 760 key_ip = skb_flow_dissector_target(flow_dissector, 761 FLOW_DISSECTOR_KEY_IP, 762 target_container); 763 key_ip->tos = iph->tos; 764 key_ip->ttl = iph->ttl; 765 } 766 767 static void 768 __skb_flow_dissect_ipv6(const struct sk_buff *skb, 769 struct flow_dissector *flow_dissector, 770 void *target_container, const void *data, 771 const struct ipv6hdr *iph) 772 { 773 struct flow_dissector_key_ip *key_ip; 774 775 if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP)) 776 return; 777 778 key_ip = skb_flow_dissector_target(flow_dissector, 779 FLOW_DISSECTOR_KEY_IP, 780 target_container); 781 key_ip->tos = ipv6_get_dsfield(iph); 782 key_ip->ttl = iph->hop_limit; 783 } 784 785 /* Maximum number of protocol headers that can be parsed in 786 * __skb_flow_dissect 787 */ 788 #define MAX_FLOW_DISSECT_HDRS 15 789 790 static bool skb_flow_dissect_allowed(int *num_hdrs) 791 { 792 ++*num_hdrs; 793 794 return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS); 795 } 796 797 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys, 798 struct flow_dissector *flow_dissector, 799 void *target_container) 800 { 801 struct flow_dissector_key_ports *key_ports = NULL; 802 struct flow_dissector_key_control *key_control; 803 struct flow_dissector_key_basic *key_basic; 804 struct flow_dissector_key_addrs *key_addrs; 805 struct flow_dissector_key_tags *key_tags; 806 807 key_control = skb_flow_dissector_target(flow_dissector, 808 FLOW_DISSECTOR_KEY_CONTROL, 809 target_container); 810 key_control->thoff = flow_keys->thoff; 811 if (flow_keys->is_frag) 812 key_control->flags |= FLOW_DIS_IS_FRAGMENT; 813 if (flow_keys->is_first_frag) 814 key_control->flags |= FLOW_DIS_FIRST_FRAG; 815 if (flow_keys->is_encap) 816 key_control->flags |= FLOW_DIS_ENCAPSULATION; 817 818 key_basic = skb_flow_dissector_target(flow_dissector, 819 FLOW_DISSECTOR_KEY_BASIC, 820 target_container); 821 key_basic->n_proto = flow_keys->n_proto; 822 key_basic->ip_proto = flow_keys->ip_proto; 823 824 if (flow_keys->addr_proto == ETH_P_IP && 825 dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { 826 key_addrs = skb_flow_dissector_target(flow_dissector, 827 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 828 target_container); 829 key_addrs->v4addrs.src = flow_keys->ipv4_src; 830 key_addrs->v4addrs.dst = flow_keys->ipv4_dst; 831 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 832 } else if (flow_keys->addr_proto == ETH_P_IPV6 && 833 dissector_uses_key(flow_dissector, 834 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { 835 key_addrs = skb_flow_dissector_target(flow_dissector, 836 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 837 target_container); 838 memcpy(&key_addrs->v6addrs.src, &flow_keys->ipv6_src, 839 sizeof(key_addrs->v6addrs.src)); 840 memcpy(&key_addrs->v6addrs.dst, &flow_keys->ipv6_dst, 841 sizeof(key_addrs->v6addrs.dst)); 842 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 843 } 844 845 if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) 846 key_ports = skb_flow_dissector_target(flow_dissector, 847 FLOW_DISSECTOR_KEY_PORTS, 848 target_container); 849 else if (dissector_uses_key(flow_dissector, 850 FLOW_DISSECTOR_KEY_PORTS_RANGE)) 851 key_ports = skb_flow_dissector_target(flow_dissector, 852 FLOW_DISSECTOR_KEY_PORTS_RANGE, 853 target_container); 854 855 if (key_ports) { 856 key_ports->src = flow_keys->sport; 857 key_ports->dst = flow_keys->dport; 858 } 859 860 if (dissector_uses_key(flow_dissector, 861 FLOW_DISSECTOR_KEY_FLOW_LABEL)) { 862 key_tags = skb_flow_dissector_target(flow_dissector, 863 FLOW_DISSECTOR_KEY_FLOW_LABEL, 864 target_container); 865 key_tags->flow_label = ntohl(flow_keys->flow_label); 866 } 867 } 868 869 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 870 __be16 proto, int nhoff, int hlen, unsigned int flags) 871 { 872 struct bpf_flow_keys *flow_keys = ctx->flow_keys; 873 u32 result; 874 875 /* Pass parameters to the BPF program */ 876 memset(flow_keys, 0, sizeof(*flow_keys)); 877 flow_keys->n_proto = proto; 878 flow_keys->nhoff = nhoff; 879 flow_keys->thoff = flow_keys->nhoff; 880 881 BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG != 882 (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG); 883 BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL != 884 (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); 885 BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP != 886 (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP); 887 flow_keys->flags = flags; 888 889 result = bpf_prog_run_pin_on_cpu(prog, ctx); 890 891 flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen); 892 flow_keys->thoff = clamp_t(u16, flow_keys->thoff, 893 flow_keys->nhoff, hlen); 894 895 return result == BPF_OK; 896 } 897 898 /** 899 * __skb_flow_dissect - extract the flow_keys struct and return it 900 * @net: associated network namespace, derived from @skb if NULL 901 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified 902 * @flow_dissector: list of keys to dissect 903 * @target_container: target structure to put dissected values into 904 * @data: raw buffer pointer to the packet, if NULL use skb->data 905 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol 906 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb) 907 * @hlen: packet header length, if @data is NULL use skb_headlen(skb) 908 * @flags: flags that control the dissection process, e.g. 909 * FLOW_DISSECTOR_F_STOP_AT_ENCAP. 910 * 911 * The function will try to retrieve individual keys into target specified 912 * by flow_dissector from either the skbuff or a raw buffer specified by the 913 * rest parameters. 914 * 915 * Caller must take care of zeroing target container memory. 916 */ 917 bool __skb_flow_dissect(const struct net *net, 918 const struct sk_buff *skb, 919 struct flow_dissector *flow_dissector, 920 void *target_container, const void *data, 921 __be16 proto, int nhoff, int hlen, unsigned int flags) 922 { 923 struct flow_dissector_key_control *key_control; 924 struct flow_dissector_key_basic *key_basic; 925 struct flow_dissector_key_addrs *key_addrs; 926 struct flow_dissector_key_tags *key_tags; 927 struct flow_dissector_key_vlan *key_vlan; 928 enum flow_dissect_ret fdret; 929 enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX; 930 bool mpls_el = false; 931 int mpls_lse = 0; 932 int num_hdrs = 0; 933 u8 ip_proto = 0; 934 bool ret; 935 936 if (!data) { 937 data = skb->data; 938 proto = skb_vlan_tag_present(skb) ? 939 skb->vlan_proto : skb->protocol; 940 nhoff = skb_network_offset(skb); 941 hlen = skb_headlen(skb); 942 #if IS_ENABLED(CONFIG_NET_DSA) 943 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) && 944 proto == htons(ETH_P_XDSA))) { 945 const struct dsa_device_ops *ops; 946 int offset = 0; 947 948 ops = skb->dev->dsa_ptr->tag_ops; 949 /* Only DSA header taggers break flow dissection */ 950 if (ops->needed_headroom) { 951 if (ops->flow_dissect) 952 ops->flow_dissect(skb, &proto, &offset); 953 else 954 dsa_tag_generic_flow_dissect(skb, 955 &proto, 956 &offset); 957 hlen -= offset; 958 nhoff += offset; 959 } 960 } 961 #endif 962 } 963 964 /* It is ensured by skb_flow_dissector_init() that control key will 965 * be always present. 966 */ 967 key_control = skb_flow_dissector_target(flow_dissector, 968 FLOW_DISSECTOR_KEY_CONTROL, 969 target_container); 970 971 /* It is ensured by skb_flow_dissector_init() that basic key will 972 * be always present. 973 */ 974 key_basic = skb_flow_dissector_target(flow_dissector, 975 FLOW_DISSECTOR_KEY_BASIC, 976 target_container); 977 978 if (skb) { 979 if (!net) { 980 if (skb->dev) 981 net = dev_net(skb->dev); 982 else if (skb->sk) 983 net = sock_net(skb->sk); 984 } 985 } 986 987 WARN_ON_ONCE(!net); 988 if (net) { 989 enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR; 990 struct bpf_prog_array *run_array; 991 992 rcu_read_lock(); 993 run_array = rcu_dereference(init_net.bpf.run_array[type]); 994 if (!run_array) 995 run_array = rcu_dereference(net->bpf.run_array[type]); 996 997 if (run_array) { 998 struct bpf_flow_keys flow_keys; 999 struct bpf_flow_dissector ctx = { 1000 .flow_keys = &flow_keys, 1001 .data = data, 1002 .data_end = data + hlen, 1003 }; 1004 __be16 n_proto = proto; 1005 struct bpf_prog *prog; 1006 1007 if (skb) { 1008 ctx.skb = skb; 1009 /* we can't use 'proto' in the skb case 1010 * because it might be set to skb->vlan_proto 1011 * which has been pulled from the data 1012 */ 1013 n_proto = skb->protocol; 1014 } 1015 1016 prog = READ_ONCE(run_array->items[0].prog); 1017 ret = bpf_flow_dissect(prog, &ctx, n_proto, nhoff, 1018 hlen, flags); 1019 __skb_flow_bpf_to_target(&flow_keys, flow_dissector, 1020 target_container); 1021 rcu_read_unlock(); 1022 return ret; 1023 } 1024 rcu_read_unlock(); 1025 } 1026 1027 if (dissector_uses_key(flow_dissector, 1028 FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 1029 struct ethhdr *eth = eth_hdr(skb); 1030 struct flow_dissector_key_eth_addrs *key_eth_addrs; 1031 1032 key_eth_addrs = skb_flow_dissector_target(flow_dissector, 1033 FLOW_DISSECTOR_KEY_ETH_ADDRS, 1034 target_container); 1035 memcpy(key_eth_addrs, ð->h_dest, sizeof(*key_eth_addrs)); 1036 } 1037 1038 proto_again: 1039 fdret = FLOW_DISSECT_RET_CONTINUE; 1040 1041 switch (proto) { 1042 case htons(ETH_P_IP): { 1043 const struct iphdr *iph; 1044 struct iphdr _iph; 1045 1046 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); 1047 if (!iph || iph->ihl < 5) { 1048 fdret = FLOW_DISSECT_RET_OUT_BAD; 1049 break; 1050 } 1051 1052 nhoff += iph->ihl * 4; 1053 1054 ip_proto = iph->protocol; 1055 1056 if (dissector_uses_key(flow_dissector, 1057 FLOW_DISSECTOR_KEY_IPV4_ADDRS)) { 1058 key_addrs = skb_flow_dissector_target(flow_dissector, 1059 FLOW_DISSECTOR_KEY_IPV4_ADDRS, 1060 target_container); 1061 1062 memcpy(&key_addrs->v4addrs.src, &iph->saddr, 1063 sizeof(key_addrs->v4addrs.src)); 1064 memcpy(&key_addrs->v4addrs.dst, &iph->daddr, 1065 sizeof(key_addrs->v4addrs.dst)); 1066 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 1067 } 1068 1069 __skb_flow_dissect_ipv4(skb, flow_dissector, 1070 target_container, data, iph); 1071 1072 if (ip_is_fragment(iph)) { 1073 key_control->flags |= FLOW_DIS_IS_FRAGMENT; 1074 1075 if (iph->frag_off & htons(IP_OFFSET)) { 1076 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1077 break; 1078 } else { 1079 key_control->flags |= FLOW_DIS_FIRST_FRAG; 1080 if (!(flags & 1081 FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) { 1082 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1083 break; 1084 } 1085 } 1086 } 1087 1088 break; 1089 } 1090 case htons(ETH_P_IPV6): { 1091 const struct ipv6hdr *iph; 1092 struct ipv6hdr _iph; 1093 1094 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); 1095 if (!iph) { 1096 fdret = FLOW_DISSECT_RET_OUT_BAD; 1097 break; 1098 } 1099 1100 ip_proto = iph->nexthdr; 1101 nhoff += sizeof(struct ipv6hdr); 1102 1103 if (dissector_uses_key(flow_dissector, 1104 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { 1105 key_addrs = skb_flow_dissector_target(flow_dissector, 1106 FLOW_DISSECTOR_KEY_IPV6_ADDRS, 1107 target_container); 1108 1109 memcpy(&key_addrs->v6addrs.src, &iph->saddr, 1110 sizeof(key_addrs->v6addrs.src)); 1111 memcpy(&key_addrs->v6addrs.dst, &iph->daddr, 1112 sizeof(key_addrs->v6addrs.dst)); 1113 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 1114 } 1115 1116 if ((dissector_uses_key(flow_dissector, 1117 FLOW_DISSECTOR_KEY_FLOW_LABEL) || 1118 (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) && 1119 ip6_flowlabel(iph)) { 1120 __be32 flow_label = ip6_flowlabel(iph); 1121 1122 if (dissector_uses_key(flow_dissector, 1123 FLOW_DISSECTOR_KEY_FLOW_LABEL)) { 1124 key_tags = skb_flow_dissector_target(flow_dissector, 1125 FLOW_DISSECTOR_KEY_FLOW_LABEL, 1126 target_container); 1127 key_tags->flow_label = ntohl(flow_label); 1128 } 1129 if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) { 1130 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1131 break; 1132 } 1133 } 1134 1135 __skb_flow_dissect_ipv6(skb, flow_dissector, 1136 target_container, data, iph); 1137 1138 break; 1139 } 1140 case htons(ETH_P_8021AD): 1141 case htons(ETH_P_8021Q): { 1142 const struct vlan_hdr *vlan = NULL; 1143 struct vlan_hdr _vlan; 1144 __be16 saved_vlan_tpid = proto; 1145 1146 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX && 1147 skb && skb_vlan_tag_present(skb)) { 1148 proto = skb->protocol; 1149 } else { 1150 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), 1151 data, hlen, &_vlan); 1152 if (!vlan) { 1153 fdret = FLOW_DISSECT_RET_OUT_BAD; 1154 break; 1155 } 1156 1157 proto = vlan->h_vlan_encapsulated_proto; 1158 nhoff += sizeof(*vlan); 1159 } 1160 1161 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) { 1162 dissector_vlan = FLOW_DISSECTOR_KEY_VLAN; 1163 } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) { 1164 dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN; 1165 } else { 1166 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1167 break; 1168 } 1169 1170 if (dissector_uses_key(flow_dissector, dissector_vlan)) { 1171 key_vlan = skb_flow_dissector_target(flow_dissector, 1172 dissector_vlan, 1173 target_container); 1174 1175 if (!vlan) { 1176 key_vlan->vlan_id = skb_vlan_tag_get_id(skb); 1177 key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb); 1178 } else { 1179 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) & 1180 VLAN_VID_MASK; 1181 key_vlan->vlan_priority = 1182 (ntohs(vlan->h_vlan_TCI) & 1183 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1184 } 1185 key_vlan->vlan_tpid = saved_vlan_tpid; 1186 } 1187 1188 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1189 break; 1190 } 1191 case htons(ETH_P_PPP_SES): { 1192 struct { 1193 struct pppoe_hdr hdr; 1194 __be16 proto; 1195 } *hdr, _hdr; 1196 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); 1197 if (!hdr) { 1198 fdret = FLOW_DISSECT_RET_OUT_BAD; 1199 break; 1200 } 1201 1202 nhoff += PPPOE_SES_HLEN; 1203 switch (hdr->proto) { 1204 case htons(PPP_IP): 1205 proto = htons(ETH_P_IP); 1206 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1207 break; 1208 case htons(PPP_IPV6): 1209 proto = htons(ETH_P_IPV6); 1210 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1211 break; 1212 default: 1213 fdret = FLOW_DISSECT_RET_OUT_BAD; 1214 break; 1215 } 1216 break; 1217 } 1218 case htons(ETH_P_TIPC): { 1219 struct tipc_basic_hdr *hdr, _hdr; 1220 1221 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), 1222 data, hlen, &_hdr); 1223 if (!hdr) { 1224 fdret = FLOW_DISSECT_RET_OUT_BAD; 1225 break; 1226 } 1227 1228 if (dissector_uses_key(flow_dissector, 1229 FLOW_DISSECTOR_KEY_TIPC)) { 1230 key_addrs = skb_flow_dissector_target(flow_dissector, 1231 FLOW_DISSECTOR_KEY_TIPC, 1232 target_container); 1233 key_addrs->tipckey.key = tipc_hdr_rps_key(hdr); 1234 key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC; 1235 } 1236 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1237 break; 1238 } 1239 1240 case htons(ETH_P_MPLS_UC): 1241 case htons(ETH_P_MPLS_MC): 1242 fdret = __skb_flow_dissect_mpls(skb, flow_dissector, 1243 target_container, data, 1244 nhoff, hlen, mpls_lse, 1245 &mpls_el); 1246 nhoff += sizeof(struct mpls_label); 1247 mpls_lse++; 1248 break; 1249 case htons(ETH_P_FCOE): 1250 if ((hlen - nhoff) < FCOE_HEADER_LEN) { 1251 fdret = FLOW_DISSECT_RET_OUT_BAD; 1252 break; 1253 } 1254 1255 nhoff += FCOE_HEADER_LEN; 1256 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1257 break; 1258 1259 case htons(ETH_P_ARP): 1260 case htons(ETH_P_RARP): 1261 fdret = __skb_flow_dissect_arp(skb, flow_dissector, 1262 target_container, data, 1263 nhoff, hlen); 1264 break; 1265 1266 case htons(ETH_P_BATMAN): 1267 fdret = __skb_flow_dissect_batadv(skb, key_control, data, 1268 &proto, &nhoff, hlen, flags); 1269 break; 1270 1271 case htons(ETH_P_1588): { 1272 struct ptp_header *hdr, _hdr; 1273 1274 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, 1275 hlen, &_hdr); 1276 if (!hdr) { 1277 fdret = FLOW_DISSECT_RET_OUT_BAD; 1278 break; 1279 } 1280 1281 nhoff += ntohs(hdr->message_length); 1282 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1283 break; 1284 } 1285 1286 case htons(ETH_P_PRP): 1287 case htons(ETH_P_HSR): { 1288 struct hsr_tag *hdr, _hdr; 1289 1290 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, 1291 &_hdr); 1292 if (!hdr) { 1293 fdret = FLOW_DISSECT_RET_OUT_BAD; 1294 break; 1295 } 1296 1297 proto = hdr->encap_proto; 1298 nhoff += HSR_HLEN; 1299 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1300 break; 1301 } 1302 1303 default: 1304 fdret = FLOW_DISSECT_RET_OUT_BAD; 1305 break; 1306 } 1307 1308 /* Process result of proto processing */ 1309 switch (fdret) { 1310 case FLOW_DISSECT_RET_OUT_GOOD: 1311 goto out_good; 1312 case FLOW_DISSECT_RET_PROTO_AGAIN: 1313 if (skb_flow_dissect_allowed(&num_hdrs)) 1314 goto proto_again; 1315 goto out_good; 1316 case FLOW_DISSECT_RET_CONTINUE: 1317 case FLOW_DISSECT_RET_IPPROTO_AGAIN: 1318 break; 1319 case FLOW_DISSECT_RET_OUT_BAD: 1320 default: 1321 goto out_bad; 1322 } 1323 1324 ip_proto_again: 1325 fdret = FLOW_DISSECT_RET_CONTINUE; 1326 1327 switch (ip_proto) { 1328 case IPPROTO_GRE: 1329 if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) { 1330 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1331 break; 1332 } 1333 1334 fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector, 1335 target_container, data, 1336 &proto, &nhoff, &hlen, flags); 1337 break; 1338 1339 case NEXTHDR_HOP: 1340 case NEXTHDR_ROUTING: 1341 case NEXTHDR_DEST: { 1342 u8 _opthdr[2], *opthdr; 1343 1344 if (proto != htons(ETH_P_IPV6)) 1345 break; 1346 1347 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr), 1348 data, hlen, &_opthdr); 1349 if (!opthdr) { 1350 fdret = FLOW_DISSECT_RET_OUT_BAD; 1351 break; 1352 } 1353 1354 ip_proto = opthdr[0]; 1355 nhoff += (opthdr[1] + 1) << 3; 1356 1357 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN; 1358 break; 1359 } 1360 case NEXTHDR_FRAGMENT: { 1361 struct frag_hdr _fh, *fh; 1362 1363 if (proto != htons(ETH_P_IPV6)) 1364 break; 1365 1366 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh), 1367 data, hlen, &_fh); 1368 1369 if (!fh) { 1370 fdret = FLOW_DISSECT_RET_OUT_BAD; 1371 break; 1372 } 1373 1374 key_control->flags |= FLOW_DIS_IS_FRAGMENT; 1375 1376 nhoff += sizeof(_fh); 1377 ip_proto = fh->nexthdr; 1378 1379 if (!(fh->frag_off & htons(IP6_OFFSET))) { 1380 key_control->flags |= FLOW_DIS_FIRST_FRAG; 1381 if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) { 1382 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN; 1383 break; 1384 } 1385 } 1386 1387 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1388 break; 1389 } 1390 case IPPROTO_IPIP: 1391 if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) { 1392 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1393 break; 1394 } 1395 1396 proto = htons(ETH_P_IP); 1397 1398 key_control->flags |= FLOW_DIS_ENCAPSULATION; 1399 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) { 1400 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1401 break; 1402 } 1403 1404 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1405 break; 1406 1407 case IPPROTO_IPV6: 1408 if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) { 1409 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1410 break; 1411 } 1412 1413 proto = htons(ETH_P_IPV6); 1414 1415 key_control->flags |= FLOW_DIS_ENCAPSULATION; 1416 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) { 1417 fdret = FLOW_DISSECT_RET_OUT_GOOD; 1418 break; 1419 } 1420 1421 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1422 break; 1423 1424 1425 case IPPROTO_MPLS: 1426 proto = htons(ETH_P_MPLS_UC); 1427 fdret = FLOW_DISSECT_RET_PROTO_AGAIN; 1428 break; 1429 1430 case IPPROTO_TCP: 1431 __skb_flow_dissect_tcp(skb, flow_dissector, target_container, 1432 data, nhoff, hlen); 1433 break; 1434 1435 case IPPROTO_ICMP: 1436 case IPPROTO_ICMPV6: 1437 __skb_flow_dissect_icmp(skb, flow_dissector, target_container, 1438 data, nhoff, hlen); 1439 break; 1440 1441 default: 1442 break; 1443 } 1444 1445 if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT)) 1446 __skb_flow_dissect_ports(skb, flow_dissector, target_container, 1447 data, nhoff, ip_proto, hlen); 1448 1449 /* Process result of IP proto processing */ 1450 switch (fdret) { 1451 case FLOW_DISSECT_RET_PROTO_AGAIN: 1452 if (skb_flow_dissect_allowed(&num_hdrs)) 1453 goto proto_again; 1454 break; 1455 case FLOW_DISSECT_RET_IPPROTO_AGAIN: 1456 if (skb_flow_dissect_allowed(&num_hdrs)) 1457 goto ip_proto_again; 1458 break; 1459 case FLOW_DISSECT_RET_OUT_GOOD: 1460 case FLOW_DISSECT_RET_CONTINUE: 1461 break; 1462 case FLOW_DISSECT_RET_OUT_BAD: 1463 default: 1464 goto out_bad; 1465 } 1466 1467 out_good: 1468 ret = true; 1469 1470 out: 1471 key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen); 1472 key_basic->n_proto = proto; 1473 key_basic->ip_proto = ip_proto; 1474 1475 return ret; 1476 1477 out_bad: 1478 ret = false; 1479 goto out; 1480 } 1481 EXPORT_SYMBOL(__skb_flow_dissect); 1482 1483 static siphash_aligned_key_t hashrnd; 1484 static __always_inline void __flow_hash_secret_init(void) 1485 { 1486 net_get_random_once(&hashrnd, sizeof(hashrnd)); 1487 } 1488 1489 static const void *flow_keys_hash_start(const struct flow_keys *flow) 1490 { 1491 BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT); 1492 return &flow->FLOW_KEYS_HASH_START_FIELD; 1493 } 1494 1495 static inline size_t flow_keys_hash_length(const struct flow_keys *flow) 1496 { 1497 size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs); 1498 1499 BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32)); 1500 1501 switch (flow->control.addr_type) { 1502 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1503 diff -= sizeof(flow->addrs.v4addrs); 1504 break; 1505 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1506 diff -= sizeof(flow->addrs.v6addrs); 1507 break; 1508 case FLOW_DISSECTOR_KEY_TIPC: 1509 diff -= sizeof(flow->addrs.tipckey); 1510 break; 1511 } 1512 return sizeof(*flow) - diff; 1513 } 1514 1515 __be32 flow_get_u32_src(const struct flow_keys *flow) 1516 { 1517 switch (flow->control.addr_type) { 1518 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1519 return flow->addrs.v4addrs.src; 1520 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1521 return (__force __be32)ipv6_addr_hash( 1522 &flow->addrs.v6addrs.src); 1523 case FLOW_DISSECTOR_KEY_TIPC: 1524 return flow->addrs.tipckey.key; 1525 default: 1526 return 0; 1527 } 1528 } 1529 EXPORT_SYMBOL(flow_get_u32_src); 1530 1531 __be32 flow_get_u32_dst(const struct flow_keys *flow) 1532 { 1533 switch (flow->control.addr_type) { 1534 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1535 return flow->addrs.v4addrs.dst; 1536 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1537 return (__force __be32)ipv6_addr_hash( 1538 &flow->addrs.v6addrs.dst); 1539 default: 1540 return 0; 1541 } 1542 } 1543 EXPORT_SYMBOL(flow_get_u32_dst); 1544 1545 /* Sort the source and destination IP and the ports, 1546 * to have consistent hash within the two directions 1547 */ 1548 static inline void __flow_hash_consistentify(struct flow_keys *keys) 1549 { 1550 int addr_diff, i; 1551 1552 switch (keys->control.addr_type) { 1553 case FLOW_DISSECTOR_KEY_IPV4_ADDRS: 1554 addr_diff = (__force u32)keys->addrs.v4addrs.dst - 1555 (__force u32)keys->addrs.v4addrs.src; 1556 if (addr_diff < 0) 1557 swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst); 1558 1559 if ((__force u16)keys->ports.dst < 1560 (__force u16)keys->ports.src) { 1561 swap(keys->ports.src, keys->ports.dst); 1562 } 1563 break; 1564 case FLOW_DISSECTOR_KEY_IPV6_ADDRS: 1565 addr_diff = memcmp(&keys->addrs.v6addrs.dst, 1566 &keys->addrs.v6addrs.src, 1567 sizeof(keys->addrs.v6addrs.dst)); 1568 if (addr_diff < 0) { 1569 for (i = 0; i < 4; i++) 1570 swap(keys->addrs.v6addrs.src.s6_addr32[i], 1571 keys->addrs.v6addrs.dst.s6_addr32[i]); 1572 } 1573 if ((__force u16)keys->ports.dst < 1574 (__force u16)keys->ports.src) { 1575 swap(keys->ports.src, keys->ports.dst); 1576 } 1577 break; 1578 } 1579 } 1580 1581 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, 1582 const siphash_key_t *keyval) 1583 { 1584 u32 hash; 1585 1586 __flow_hash_consistentify(keys); 1587 1588 hash = siphash(flow_keys_hash_start(keys), 1589 flow_keys_hash_length(keys), keyval); 1590 if (!hash) 1591 hash = 1; 1592 1593 return hash; 1594 } 1595 1596 u32 flow_hash_from_keys(struct flow_keys *keys) 1597 { 1598 __flow_hash_secret_init(); 1599 return __flow_hash_from_keys(keys, &hashrnd); 1600 } 1601 EXPORT_SYMBOL(flow_hash_from_keys); 1602 1603 static inline u32 ___skb_get_hash(const struct sk_buff *skb, 1604 struct flow_keys *keys, 1605 const siphash_key_t *keyval) 1606 { 1607 skb_flow_dissect_flow_keys(skb, keys, 1608 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); 1609 1610 return __flow_hash_from_keys(keys, keyval); 1611 } 1612 1613 struct _flow_keys_digest_data { 1614 __be16 n_proto; 1615 u8 ip_proto; 1616 u8 padding; 1617 __be32 ports; 1618 __be32 src; 1619 __be32 dst; 1620 }; 1621 1622 void make_flow_keys_digest(struct flow_keys_digest *digest, 1623 const struct flow_keys *flow) 1624 { 1625 struct _flow_keys_digest_data *data = 1626 (struct _flow_keys_digest_data *)digest; 1627 1628 BUILD_BUG_ON(sizeof(*data) > sizeof(*digest)); 1629 1630 memset(digest, 0, sizeof(*digest)); 1631 1632 data->n_proto = flow->basic.n_proto; 1633 data->ip_proto = flow->basic.ip_proto; 1634 data->ports = flow->ports.ports; 1635 data->src = flow->addrs.v4addrs.src; 1636 data->dst = flow->addrs.v4addrs.dst; 1637 } 1638 EXPORT_SYMBOL(make_flow_keys_digest); 1639 1640 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly; 1641 1642 u32 __skb_get_hash_symmetric(const struct sk_buff *skb) 1643 { 1644 struct flow_keys keys; 1645 1646 __flow_hash_secret_init(); 1647 1648 memset(&keys, 0, sizeof(keys)); 1649 __skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric, 1650 &keys, NULL, 0, 0, 0, 1651 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL); 1652 1653 return __flow_hash_from_keys(&keys, &hashrnd); 1654 } 1655 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric); 1656 1657 /** 1658 * __skb_get_hash: calculate a flow hash 1659 * @skb: sk_buff to calculate flow hash from 1660 * 1661 * This function calculates a flow hash based on src/dst addresses 1662 * and src/dst port numbers. Sets hash in skb to non-zero hash value 1663 * on success, zero indicates no valid hash. Also, sets l4_hash in skb 1664 * if hash is a canonical 4-tuple hash over transport ports. 1665 */ 1666 void __skb_get_hash(struct sk_buff *skb) 1667 { 1668 struct flow_keys keys; 1669 u32 hash; 1670 1671 __flow_hash_secret_init(); 1672 1673 hash = ___skb_get_hash(skb, &keys, &hashrnd); 1674 1675 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1676 } 1677 EXPORT_SYMBOL(__skb_get_hash); 1678 1679 __u32 skb_get_hash_perturb(const struct sk_buff *skb, 1680 const siphash_key_t *perturb) 1681 { 1682 struct flow_keys keys; 1683 1684 return ___skb_get_hash(skb, &keys, perturb); 1685 } 1686 EXPORT_SYMBOL(skb_get_hash_perturb); 1687 1688 u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1689 const struct flow_keys_basic *keys, int hlen) 1690 { 1691 u32 poff = keys->control.thoff; 1692 1693 /* skip L4 headers for fragments after the first */ 1694 if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) && 1695 !(keys->control.flags & FLOW_DIS_FIRST_FRAG)) 1696 return poff; 1697 1698 switch (keys->basic.ip_proto) { 1699 case IPPROTO_TCP: { 1700 /* access doff as u8 to avoid unaligned access */ 1701 const u8 *doff; 1702 u8 _doff; 1703 1704 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff), 1705 data, hlen, &_doff); 1706 if (!doff) 1707 return poff; 1708 1709 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2); 1710 break; 1711 } 1712 case IPPROTO_UDP: 1713 case IPPROTO_UDPLITE: 1714 poff += sizeof(struct udphdr); 1715 break; 1716 /* For the rest, we do not really care about header 1717 * extensions at this point for now. 1718 */ 1719 case IPPROTO_ICMP: 1720 poff += sizeof(struct icmphdr); 1721 break; 1722 case IPPROTO_ICMPV6: 1723 poff += sizeof(struct icmp6hdr); 1724 break; 1725 case IPPROTO_IGMP: 1726 poff += sizeof(struct igmphdr); 1727 break; 1728 case IPPROTO_DCCP: 1729 poff += sizeof(struct dccp_hdr); 1730 break; 1731 case IPPROTO_SCTP: 1732 poff += sizeof(struct sctphdr); 1733 break; 1734 } 1735 1736 return poff; 1737 } 1738 1739 /** 1740 * skb_get_poff - get the offset to the payload 1741 * @skb: sk_buff to get the payload offset from 1742 * 1743 * The function will get the offset to the payload as far as it could 1744 * be dissected. The main user is currently BPF, so that we can dynamically 1745 * truncate packets without needing to push actual payload to the user 1746 * space and can analyze headers only, instead. 1747 */ 1748 u32 skb_get_poff(const struct sk_buff *skb) 1749 { 1750 struct flow_keys_basic keys; 1751 1752 if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 1753 NULL, 0, 0, 0, 0)) 1754 return 0; 1755 1756 return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb)); 1757 } 1758 1759 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys) 1760 { 1761 memset(keys, 0, sizeof(*keys)); 1762 1763 memcpy(&keys->addrs.v6addrs.src, &fl6->saddr, 1764 sizeof(keys->addrs.v6addrs.src)); 1765 memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr, 1766 sizeof(keys->addrs.v6addrs.dst)); 1767 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 1768 keys->ports.src = fl6->fl6_sport; 1769 keys->ports.dst = fl6->fl6_dport; 1770 keys->keyid.keyid = fl6->fl6_gre_key; 1771 keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 1772 keys->basic.ip_proto = fl6->flowi6_proto; 1773 1774 return flow_hash_from_keys(keys); 1775 } 1776 EXPORT_SYMBOL(__get_hash_from_flowi6); 1777 1778 static const struct flow_dissector_key flow_keys_dissector_keys[] = { 1779 { 1780 .key_id = FLOW_DISSECTOR_KEY_CONTROL, 1781 .offset = offsetof(struct flow_keys, control), 1782 }, 1783 { 1784 .key_id = FLOW_DISSECTOR_KEY_BASIC, 1785 .offset = offsetof(struct flow_keys, basic), 1786 }, 1787 { 1788 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS, 1789 .offset = offsetof(struct flow_keys, addrs.v4addrs), 1790 }, 1791 { 1792 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS, 1793 .offset = offsetof(struct flow_keys, addrs.v6addrs), 1794 }, 1795 { 1796 .key_id = FLOW_DISSECTOR_KEY_TIPC, 1797 .offset = offsetof(struct flow_keys, addrs.tipckey), 1798 }, 1799 { 1800 .key_id = FLOW_DISSECTOR_KEY_PORTS, 1801 .offset = offsetof(struct flow_keys, ports), 1802 }, 1803 { 1804 .key_id = FLOW_DISSECTOR_KEY_VLAN, 1805 .offset = offsetof(struct flow_keys, vlan), 1806 }, 1807 { 1808 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL, 1809 .offset = offsetof(struct flow_keys, tags), 1810 }, 1811 { 1812 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID, 1813 .offset = offsetof(struct flow_keys, keyid), 1814 }, 1815 }; 1816 1817 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = { 1818 { 1819 .key_id = FLOW_DISSECTOR_KEY_CONTROL, 1820 .offset = offsetof(struct flow_keys, control), 1821 }, 1822 { 1823 .key_id = FLOW_DISSECTOR_KEY_BASIC, 1824 .offset = offsetof(struct flow_keys, basic), 1825 }, 1826 { 1827 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS, 1828 .offset = offsetof(struct flow_keys, addrs.v4addrs), 1829 }, 1830 { 1831 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS, 1832 .offset = offsetof(struct flow_keys, addrs.v6addrs), 1833 }, 1834 { 1835 .key_id = FLOW_DISSECTOR_KEY_PORTS, 1836 .offset = offsetof(struct flow_keys, ports), 1837 }, 1838 }; 1839 1840 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = { 1841 { 1842 .key_id = FLOW_DISSECTOR_KEY_CONTROL, 1843 .offset = offsetof(struct flow_keys, control), 1844 }, 1845 { 1846 .key_id = FLOW_DISSECTOR_KEY_BASIC, 1847 .offset = offsetof(struct flow_keys, basic), 1848 }, 1849 }; 1850 1851 struct flow_dissector flow_keys_dissector __read_mostly; 1852 EXPORT_SYMBOL(flow_keys_dissector); 1853 1854 struct flow_dissector flow_keys_basic_dissector __read_mostly; 1855 EXPORT_SYMBOL(flow_keys_basic_dissector); 1856 1857 static int __init init_default_flow_dissectors(void) 1858 { 1859 skb_flow_dissector_init(&flow_keys_dissector, 1860 flow_keys_dissector_keys, 1861 ARRAY_SIZE(flow_keys_dissector_keys)); 1862 skb_flow_dissector_init(&flow_keys_dissector_symmetric, 1863 flow_keys_dissector_symmetric_keys, 1864 ARRAY_SIZE(flow_keys_dissector_symmetric_keys)); 1865 skb_flow_dissector_init(&flow_keys_basic_dissector, 1866 flow_keys_basic_dissector_keys, 1867 ARRAY_SIZE(flow_keys_basic_dissector_keys)); 1868 return 0; 1869 } 1870 core_initcall(init_default_flow_dissectors); 1871