xref: /openbmc/linux/net/core/flow_dissector.c (revision 7bcae826)
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <net/gre.h>
10 #include <net/pptp.h>
11 #include <linux/igmp.h>
12 #include <linux/icmp.h>
13 #include <linux/sctp.h>
14 #include <linux/dccp.h>
15 #include <linux/if_tunnel.h>
16 #include <linux/if_pppox.h>
17 #include <linux/ppp_defs.h>
18 #include <linux/stddef.h>
19 #include <linux/if_ether.h>
20 #include <linux/mpls.h>
21 #include <net/flow_dissector.h>
22 #include <scsi/fc/fc_fcoe.h>
23 
24 static void dissector_set_key(struct flow_dissector *flow_dissector,
25 			      enum flow_dissector_key_id key_id)
26 {
27 	flow_dissector->used_keys |= (1 << key_id);
28 }
29 
30 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
31 			     const struct flow_dissector_key *key,
32 			     unsigned int key_count)
33 {
34 	unsigned int i;
35 
36 	memset(flow_dissector, 0, sizeof(*flow_dissector));
37 
38 	for (i = 0; i < key_count; i++, key++) {
39 		/* User should make sure that every key target offset is withing
40 		 * boundaries of unsigned short.
41 		 */
42 		BUG_ON(key->offset > USHRT_MAX);
43 		BUG_ON(dissector_uses_key(flow_dissector,
44 					  key->key_id));
45 
46 		dissector_set_key(flow_dissector, key->key_id);
47 		flow_dissector->offset[key->key_id] = key->offset;
48 	}
49 
50 	/* Ensure that the dissector always includes control and basic key.
51 	 * That way we are able to avoid handling lack of these in fast path.
52 	 */
53 	BUG_ON(!dissector_uses_key(flow_dissector,
54 				   FLOW_DISSECTOR_KEY_CONTROL));
55 	BUG_ON(!dissector_uses_key(flow_dissector,
56 				   FLOW_DISSECTOR_KEY_BASIC));
57 }
58 EXPORT_SYMBOL(skb_flow_dissector_init);
59 
60 /**
61  * skb_flow_get_be16 - extract be16 entity
62  * @skb: sk_buff to extract from
63  * @poff: offset to extract at
64  * @data: raw buffer pointer to the packet
65  * @hlen: packet header length
66  *
67  * The function will try to retrieve a be32 entity at
68  * offset poff
69  */
70 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
71 				void *data, int hlen)
72 {
73 	__be16 *u, _u;
74 
75 	u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
76 	if (u)
77 		return *u;
78 
79 	return 0;
80 }
81 
82 /**
83  * __skb_flow_get_ports - extract the upper layer ports and return them
84  * @skb: sk_buff to extract the ports from
85  * @thoff: transport header offset
86  * @ip_proto: protocol for which to get port offset
87  * @data: raw buffer pointer to the packet, if NULL use skb->data
88  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
89  *
90  * The function will try to retrieve the ports at offset thoff + poff where poff
91  * is the protocol port offset returned from proto_ports_offset
92  */
93 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
94 			    void *data, int hlen)
95 {
96 	int poff = proto_ports_offset(ip_proto);
97 
98 	if (!data) {
99 		data = skb->data;
100 		hlen = skb_headlen(skb);
101 	}
102 
103 	if (poff >= 0) {
104 		__be32 *ports, _ports;
105 
106 		ports = __skb_header_pointer(skb, thoff + poff,
107 					     sizeof(_ports), data, hlen, &_ports);
108 		if (ports)
109 			return *ports;
110 	}
111 
112 	return 0;
113 }
114 EXPORT_SYMBOL(__skb_flow_get_ports);
115 
116 /**
117  * __skb_flow_dissect - extract the flow_keys struct and return it
118  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
119  * @flow_dissector: list of keys to dissect
120  * @target_container: target structure to put dissected values into
121  * @data: raw buffer pointer to the packet, if NULL use skb->data
122  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
123  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
124  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
125  *
126  * The function will try to retrieve individual keys into target specified
127  * by flow_dissector from either the skbuff or a raw buffer specified by the
128  * rest parameters.
129  *
130  * Caller must take care of zeroing target container memory.
131  */
132 bool __skb_flow_dissect(const struct sk_buff *skb,
133 			struct flow_dissector *flow_dissector,
134 			void *target_container,
135 			void *data, __be16 proto, int nhoff, int hlen,
136 			unsigned int flags)
137 {
138 	struct flow_dissector_key_control *key_control;
139 	struct flow_dissector_key_basic *key_basic;
140 	struct flow_dissector_key_addrs *key_addrs;
141 	struct flow_dissector_key_arp *key_arp;
142 	struct flow_dissector_key_ports *key_ports;
143 	struct flow_dissector_key_icmp *key_icmp;
144 	struct flow_dissector_key_tags *key_tags;
145 	struct flow_dissector_key_vlan *key_vlan;
146 	struct flow_dissector_key_keyid *key_keyid;
147 	bool skip_vlan = false;
148 	u8 ip_proto = 0;
149 	bool ret;
150 
151 	if (!data) {
152 		data = skb->data;
153 		proto = skb_vlan_tag_present(skb) ?
154 			 skb->vlan_proto : skb->protocol;
155 		nhoff = skb_network_offset(skb);
156 		hlen = skb_headlen(skb);
157 	}
158 
159 	/* It is ensured by skb_flow_dissector_init() that control key will
160 	 * be always present.
161 	 */
162 	key_control = skb_flow_dissector_target(flow_dissector,
163 						FLOW_DISSECTOR_KEY_CONTROL,
164 						target_container);
165 
166 	/* It is ensured by skb_flow_dissector_init() that basic key will
167 	 * be always present.
168 	 */
169 	key_basic = skb_flow_dissector_target(flow_dissector,
170 					      FLOW_DISSECTOR_KEY_BASIC,
171 					      target_container);
172 
173 	if (dissector_uses_key(flow_dissector,
174 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
175 		struct ethhdr *eth = eth_hdr(skb);
176 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
177 
178 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
179 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
180 							  target_container);
181 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
182 	}
183 
184 again:
185 	switch (proto) {
186 	case htons(ETH_P_IP): {
187 		const struct iphdr *iph;
188 		struct iphdr _iph;
189 ip:
190 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
191 		if (!iph || iph->ihl < 5)
192 			goto out_bad;
193 		nhoff += iph->ihl * 4;
194 
195 		ip_proto = iph->protocol;
196 
197 		if (dissector_uses_key(flow_dissector,
198 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
199 			key_addrs = skb_flow_dissector_target(flow_dissector,
200 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
201 							      target_container);
202 
203 			memcpy(&key_addrs->v4addrs, &iph->saddr,
204 			       sizeof(key_addrs->v4addrs));
205 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
206 		}
207 
208 		if (ip_is_fragment(iph)) {
209 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
210 
211 			if (iph->frag_off & htons(IP_OFFSET)) {
212 				goto out_good;
213 			} else {
214 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
215 				if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
216 					goto out_good;
217 			}
218 		}
219 
220 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
221 			goto out_good;
222 
223 		break;
224 	}
225 	case htons(ETH_P_IPV6): {
226 		const struct ipv6hdr *iph;
227 		struct ipv6hdr _iph;
228 
229 ipv6:
230 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
231 		if (!iph)
232 			goto out_bad;
233 
234 		ip_proto = iph->nexthdr;
235 		nhoff += sizeof(struct ipv6hdr);
236 
237 		if (dissector_uses_key(flow_dissector,
238 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
239 			key_addrs = skb_flow_dissector_target(flow_dissector,
240 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
241 							      target_container);
242 
243 			memcpy(&key_addrs->v6addrs, &iph->saddr,
244 			       sizeof(key_addrs->v6addrs));
245 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
246 		}
247 
248 		if ((dissector_uses_key(flow_dissector,
249 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
250 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
251 		    ip6_flowlabel(iph)) {
252 			__be32 flow_label = ip6_flowlabel(iph);
253 
254 			if (dissector_uses_key(flow_dissector,
255 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
256 				key_tags = skb_flow_dissector_target(flow_dissector,
257 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
258 								     target_container);
259 				key_tags->flow_label = ntohl(flow_label);
260 			}
261 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
262 				goto out_good;
263 		}
264 
265 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
266 			goto out_good;
267 
268 		break;
269 	}
270 	case htons(ETH_P_8021AD):
271 	case htons(ETH_P_8021Q): {
272 		const struct vlan_hdr *vlan;
273 		struct vlan_hdr _vlan;
274 		bool vlan_tag_present = skb && skb_vlan_tag_present(skb);
275 
276 		if (vlan_tag_present)
277 			proto = skb->protocol;
278 
279 		if (!vlan_tag_present || eth_type_vlan(skb->protocol)) {
280 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
281 						    data, hlen, &_vlan);
282 			if (!vlan)
283 				goto out_bad;
284 			proto = vlan->h_vlan_encapsulated_proto;
285 			nhoff += sizeof(*vlan);
286 			if (skip_vlan)
287 				goto again;
288 		}
289 
290 		skip_vlan = true;
291 		if (dissector_uses_key(flow_dissector,
292 				       FLOW_DISSECTOR_KEY_VLAN)) {
293 			key_vlan = skb_flow_dissector_target(flow_dissector,
294 							     FLOW_DISSECTOR_KEY_VLAN,
295 							     target_container);
296 
297 			if (vlan_tag_present) {
298 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
299 				key_vlan->vlan_priority =
300 					(skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
301 			} else {
302 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
303 					VLAN_VID_MASK;
304 				key_vlan->vlan_priority =
305 					(ntohs(vlan->h_vlan_TCI) &
306 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
307 			}
308 		}
309 
310 		goto again;
311 	}
312 	case htons(ETH_P_PPP_SES): {
313 		struct {
314 			struct pppoe_hdr hdr;
315 			__be16 proto;
316 		} *hdr, _hdr;
317 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
318 		if (!hdr)
319 			goto out_bad;
320 		proto = hdr->proto;
321 		nhoff += PPPOE_SES_HLEN;
322 		switch (proto) {
323 		case htons(PPP_IP):
324 			goto ip;
325 		case htons(PPP_IPV6):
326 			goto ipv6;
327 		default:
328 			goto out_bad;
329 		}
330 	}
331 	case htons(ETH_P_TIPC): {
332 		struct {
333 			__be32 pre[3];
334 			__be32 srcnode;
335 		} *hdr, _hdr;
336 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
337 		if (!hdr)
338 			goto out_bad;
339 
340 		if (dissector_uses_key(flow_dissector,
341 				       FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
342 			key_addrs = skb_flow_dissector_target(flow_dissector,
343 							      FLOW_DISSECTOR_KEY_TIPC_ADDRS,
344 							      target_container);
345 			key_addrs->tipcaddrs.srcnode = hdr->srcnode;
346 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
347 		}
348 		goto out_good;
349 	}
350 
351 	case htons(ETH_P_MPLS_UC):
352 	case htons(ETH_P_MPLS_MC): {
353 		struct mpls_label *hdr, _hdr[2];
354 mpls:
355 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
356 					   hlen, &_hdr);
357 		if (!hdr)
358 			goto out_bad;
359 
360 		if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
361 		     MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
362 			if (dissector_uses_key(flow_dissector,
363 					       FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
364 				key_keyid = skb_flow_dissector_target(flow_dissector,
365 								      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
366 								      target_container);
367 				key_keyid->keyid = hdr[1].entry &
368 					htonl(MPLS_LS_LABEL_MASK);
369 			}
370 
371 			goto out_good;
372 		}
373 
374 		goto out_good;
375 	}
376 
377 	case htons(ETH_P_FCOE):
378 		if ((hlen - nhoff) < FCOE_HEADER_LEN)
379 			goto out_bad;
380 
381 		nhoff += FCOE_HEADER_LEN;
382 		goto out_good;
383 
384 	case htons(ETH_P_ARP):
385 	case htons(ETH_P_RARP): {
386 		struct {
387 			unsigned char ar_sha[ETH_ALEN];
388 			unsigned char ar_sip[4];
389 			unsigned char ar_tha[ETH_ALEN];
390 			unsigned char ar_tip[4];
391 		} *arp_eth, _arp_eth;
392 		const struct arphdr *arp;
393 		struct arphdr *_arp;
394 
395 		arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
396 					   hlen, &_arp);
397 		if (!arp)
398 			goto out_bad;
399 
400 		if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
401 		    arp->ar_pro != htons(ETH_P_IP) ||
402 		    arp->ar_hln != ETH_ALEN ||
403 		    arp->ar_pln != 4 ||
404 		    (arp->ar_op != htons(ARPOP_REPLY) &&
405 		     arp->ar_op != htons(ARPOP_REQUEST)))
406 			goto out_bad;
407 
408 		arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
409 					       sizeof(_arp_eth), data,
410 					       hlen,
411 					       &_arp_eth);
412 		if (!arp_eth)
413 			goto out_bad;
414 
415 		if (dissector_uses_key(flow_dissector,
416 				       FLOW_DISSECTOR_KEY_ARP)) {
417 
418 			key_arp = skb_flow_dissector_target(flow_dissector,
419 							    FLOW_DISSECTOR_KEY_ARP,
420 							    target_container);
421 
422 			memcpy(&key_arp->sip, arp_eth->ar_sip,
423 			       sizeof(key_arp->sip));
424 			memcpy(&key_arp->tip, arp_eth->ar_tip,
425 			       sizeof(key_arp->tip));
426 
427 			/* Only store the lower byte of the opcode;
428 			 * this covers ARPOP_REPLY and ARPOP_REQUEST.
429 			 */
430 			key_arp->op = ntohs(arp->ar_op) & 0xff;
431 
432 			ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
433 			ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
434 		}
435 
436 		goto out_good;
437 	}
438 
439 	default:
440 		goto out_bad;
441 	}
442 
443 ip_proto_again:
444 	switch (ip_proto) {
445 	case IPPROTO_GRE: {
446 		struct gre_base_hdr *hdr, _hdr;
447 		u16 gre_ver;
448 		int offset = 0;
449 
450 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
451 		if (!hdr)
452 			goto out_bad;
453 
454 		/* Only look inside GRE without routing */
455 		if (hdr->flags & GRE_ROUTING)
456 			break;
457 
458 		/* Only look inside GRE for version 0 and 1 */
459 		gre_ver = ntohs(hdr->flags & GRE_VERSION);
460 		if (gre_ver > 1)
461 			break;
462 
463 		proto = hdr->protocol;
464 		if (gre_ver) {
465 			/* Version1 must be PPTP, and check the flags */
466 			if (!(proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
467 				break;
468 		}
469 
470 		offset += sizeof(struct gre_base_hdr);
471 
472 		if (hdr->flags & GRE_CSUM)
473 			offset += sizeof(((struct gre_full_hdr *)0)->csum) +
474 				  sizeof(((struct gre_full_hdr *)0)->reserved1);
475 
476 		if (hdr->flags & GRE_KEY) {
477 			const __be32 *keyid;
478 			__be32 _keyid;
479 
480 			keyid = __skb_header_pointer(skb, nhoff + offset, sizeof(_keyid),
481 						     data, hlen, &_keyid);
482 			if (!keyid)
483 				goto out_bad;
484 
485 			if (dissector_uses_key(flow_dissector,
486 					       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
487 				key_keyid = skb_flow_dissector_target(flow_dissector,
488 								      FLOW_DISSECTOR_KEY_GRE_KEYID,
489 								      target_container);
490 				if (gre_ver == 0)
491 					key_keyid->keyid = *keyid;
492 				else
493 					key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
494 			}
495 			offset += sizeof(((struct gre_full_hdr *)0)->key);
496 		}
497 
498 		if (hdr->flags & GRE_SEQ)
499 			offset += sizeof(((struct pptp_gre_header *)0)->seq);
500 
501 		if (gre_ver == 0) {
502 			if (proto == htons(ETH_P_TEB)) {
503 				const struct ethhdr *eth;
504 				struct ethhdr _eth;
505 
506 				eth = __skb_header_pointer(skb, nhoff + offset,
507 							   sizeof(_eth),
508 							   data, hlen, &_eth);
509 				if (!eth)
510 					goto out_bad;
511 				proto = eth->h_proto;
512 				offset += sizeof(*eth);
513 
514 				/* Cap headers that we access via pointers at the
515 				 * end of the Ethernet header as our maximum alignment
516 				 * at that point is only 2 bytes.
517 				 */
518 				if (NET_IP_ALIGN)
519 					hlen = (nhoff + offset);
520 			}
521 		} else { /* version 1, must be PPTP */
522 			u8 _ppp_hdr[PPP_HDRLEN];
523 			u8 *ppp_hdr;
524 
525 			if (hdr->flags & GRE_ACK)
526 				offset += sizeof(((struct pptp_gre_header *)0)->ack);
527 
528 			ppp_hdr = __skb_header_pointer(skb, nhoff + offset,
529 						     sizeof(_ppp_hdr),
530 						     data, hlen, _ppp_hdr);
531 			if (!ppp_hdr)
532 				goto out_bad;
533 
534 			switch (PPP_PROTOCOL(ppp_hdr)) {
535 			case PPP_IP:
536 				proto = htons(ETH_P_IP);
537 				break;
538 			case PPP_IPV6:
539 				proto = htons(ETH_P_IPV6);
540 				break;
541 			default:
542 				/* Could probably catch some more like MPLS */
543 				break;
544 			}
545 
546 			offset += PPP_HDRLEN;
547 		}
548 
549 		nhoff += offset;
550 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
551 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
552 			goto out_good;
553 
554 		goto again;
555 	}
556 	case NEXTHDR_HOP:
557 	case NEXTHDR_ROUTING:
558 	case NEXTHDR_DEST: {
559 		u8 _opthdr[2], *opthdr;
560 
561 		if (proto != htons(ETH_P_IPV6))
562 			break;
563 
564 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
565 					      data, hlen, &_opthdr);
566 		if (!opthdr)
567 			goto out_bad;
568 
569 		ip_proto = opthdr[0];
570 		nhoff += (opthdr[1] + 1) << 3;
571 
572 		goto ip_proto_again;
573 	}
574 	case NEXTHDR_FRAGMENT: {
575 		struct frag_hdr _fh, *fh;
576 
577 		if (proto != htons(ETH_P_IPV6))
578 			break;
579 
580 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
581 					  data, hlen, &_fh);
582 
583 		if (!fh)
584 			goto out_bad;
585 
586 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
587 
588 		nhoff += sizeof(_fh);
589 		ip_proto = fh->nexthdr;
590 
591 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
592 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
593 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)
594 				goto ip_proto_again;
595 		}
596 		goto out_good;
597 	}
598 	case IPPROTO_IPIP:
599 		proto = htons(ETH_P_IP);
600 
601 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
602 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
603 			goto out_good;
604 
605 		goto ip;
606 	case IPPROTO_IPV6:
607 		proto = htons(ETH_P_IPV6);
608 
609 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
610 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
611 			goto out_good;
612 
613 		goto ipv6;
614 	case IPPROTO_MPLS:
615 		proto = htons(ETH_P_MPLS_UC);
616 		goto mpls;
617 	default:
618 		break;
619 	}
620 
621 	if (dissector_uses_key(flow_dissector,
622 			       FLOW_DISSECTOR_KEY_PORTS)) {
623 		key_ports = skb_flow_dissector_target(flow_dissector,
624 						      FLOW_DISSECTOR_KEY_PORTS,
625 						      target_container);
626 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
627 							data, hlen);
628 	}
629 
630 	if (dissector_uses_key(flow_dissector,
631 			       FLOW_DISSECTOR_KEY_ICMP)) {
632 		key_icmp = skb_flow_dissector_target(flow_dissector,
633 						     FLOW_DISSECTOR_KEY_ICMP,
634 						     target_container);
635 		key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
636 	}
637 
638 out_good:
639 	ret = true;
640 
641 	key_control->thoff = (u16)nhoff;
642 out:
643 	key_basic->n_proto = proto;
644 	key_basic->ip_proto = ip_proto;
645 
646 	return ret;
647 
648 out_bad:
649 	ret = false;
650 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
651 	goto out;
652 }
653 EXPORT_SYMBOL(__skb_flow_dissect);
654 
655 static u32 hashrnd __read_mostly;
656 static __always_inline void __flow_hash_secret_init(void)
657 {
658 	net_get_random_once(&hashrnd, sizeof(hashrnd));
659 }
660 
661 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
662 					     u32 keyval)
663 {
664 	return jhash2(words, length, keyval);
665 }
666 
667 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
668 {
669 	const void *p = flow;
670 
671 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
672 	return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
673 }
674 
675 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
676 {
677 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
678 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
679 	BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
680 		     sizeof(*flow) - sizeof(flow->addrs));
681 
682 	switch (flow->control.addr_type) {
683 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
684 		diff -= sizeof(flow->addrs.v4addrs);
685 		break;
686 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
687 		diff -= sizeof(flow->addrs.v6addrs);
688 		break;
689 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
690 		diff -= sizeof(flow->addrs.tipcaddrs);
691 		break;
692 	}
693 	return (sizeof(*flow) - diff) / sizeof(u32);
694 }
695 
696 __be32 flow_get_u32_src(const struct flow_keys *flow)
697 {
698 	switch (flow->control.addr_type) {
699 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
700 		return flow->addrs.v4addrs.src;
701 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
702 		return (__force __be32)ipv6_addr_hash(
703 			&flow->addrs.v6addrs.src);
704 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
705 		return flow->addrs.tipcaddrs.srcnode;
706 	default:
707 		return 0;
708 	}
709 }
710 EXPORT_SYMBOL(flow_get_u32_src);
711 
712 __be32 flow_get_u32_dst(const struct flow_keys *flow)
713 {
714 	switch (flow->control.addr_type) {
715 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
716 		return flow->addrs.v4addrs.dst;
717 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
718 		return (__force __be32)ipv6_addr_hash(
719 			&flow->addrs.v6addrs.dst);
720 	default:
721 		return 0;
722 	}
723 }
724 EXPORT_SYMBOL(flow_get_u32_dst);
725 
726 static inline void __flow_hash_consistentify(struct flow_keys *keys)
727 {
728 	int addr_diff, i;
729 
730 	switch (keys->control.addr_type) {
731 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
732 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
733 			    (__force u32)keys->addrs.v4addrs.src;
734 		if ((addr_diff < 0) ||
735 		    (addr_diff == 0 &&
736 		     ((__force u16)keys->ports.dst <
737 		      (__force u16)keys->ports.src))) {
738 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
739 			swap(keys->ports.src, keys->ports.dst);
740 		}
741 		break;
742 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
743 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
744 				   &keys->addrs.v6addrs.src,
745 				   sizeof(keys->addrs.v6addrs.dst));
746 		if ((addr_diff < 0) ||
747 		    (addr_diff == 0 &&
748 		     ((__force u16)keys->ports.dst <
749 		      (__force u16)keys->ports.src))) {
750 			for (i = 0; i < 4; i++)
751 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
752 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
753 			swap(keys->ports.src, keys->ports.dst);
754 		}
755 		break;
756 	}
757 }
758 
759 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
760 {
761 	u32 hash;
762 
763 	__flow_hash_consistentify(keys);
764 
765 	hash = __flow_hash_words(flow_keys_hash_start(keys),
766 				 flow_keys_hash_length(keys), keyval);
767 	if (!hash)
768 		hash = 1;
769 
770 	return hash;
771 }
772 
773 u32 flow_hash_from_keys(struct flow_keys *keys)
774 {
775 	__flow_hash_secret_init();
776 	return __flow_hash_from_keys(keys, hashrnd);
777 }
778 EXPORT_SYMBOL(flow_hash_from_keys);
779 
780 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
781 				  struct flow_keys *keys, u32 keyval)
782 {
783 	skb_flow_dissect_flow_keys(skb, keys,
784 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
785 
786 	return __flow_hash_from_keys(keys, keyval);
787 }
788 
789 struct _flow_keys_digest_data {
790 	__be16	n_proto;
791 	u8	ip_proto;
792 	u8	padding;
793 	__be32	ports;
794 	__be32	src;
795 	__be32	dst;
796 };
797 
798 void make_flow_keys_digest(struct flow_keys_digest *digest,
799 			   const struct flow_keys *flow)
800 {
801 	struct _flow_keys_digest_data *data =
802 	    (struct _flow_keys_digest_data *)digest;
803 
804 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
805 
806 	memset(digest, 0, sizeof(*digest));
807 
808 	data->n_proto = flow->basic.n_proto;
809 	data->ip_proto = flow->basic.ip_proto;
810 	data->ports = flow->ports.ports;
811 	data->src = flow->addrs.v4addrs.src;
812 	data->dst = flow->addrs.v4addrs.dst;
813 }
814 EXPORT_SYMBOL(make_flow_keys_digest);
815 
816 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
817 
818 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
819 {
820 	struct flow_keys keys;
821 
822 	__flow_hash_secret_init();
823 
824 	memset(&keys, 0, sizeof(keys));
825 	__skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
826 			   NULL, 0, 0, 0,
827 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
828 
829 	return __flow_hash_from_keys(&keys, hashrnd);
830 }
831 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
832 
833 /**
834  * __skb_get_hash: calculate a flow hash
835  * @skb: sk_buff to calculate flow hash from
836  *
837  * This function calculates a flow hash based on src/dst addresses
838  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
839  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
840  * if hash is a canonical 4-tuple hash over transport ports.
841  */
842 void __skb_get_hash(struct sk_buff *skb)
843 {
844 	struct flow_keys keys;
845 	u32 hash;
846 
847 	__flow_hash_secret_init();
848 
849 	hash = ___skb_get_hash(skb, &keys, hashrnd);
850 
851 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
852 }
853 EXPORT_SYMBOL(__skb_get_hash);
854 
855 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
856 {
857 	struct flow_keys keys;
858 
859 	return ___skb_get_hash(skb, &keys, perturb);
860 }
861 EXPORT_SYMBOL(skb_get_hash_perturb);
862 
863 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
864 {
865 	struct flow_keys keys;
866 
867 	memset(&keys, 0, sizeof(keys));
868 
869 	memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
870 	       sizeof(keys.addrs.v6addrs.src));
871 	memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
872 	       sizeof(keys.addrs.v6addrs.dst));
873 	keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
874 	keys.ports.src = fl6->fl6_sport;
875 	keys.ports.dst = fl6->fl6_dport;
876 	keys.keyid.keyid = fl6->fl6_gre_key;
877 	keys.tags.flow_label = (__force u32)fl6->flowlabel;
878 	keys.basic.ip_proto = fl6->flowi6_proto;
879 
880 	__skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
881 			  flow_keys_have_l4(&keys));
882 
883 	return skb->hash;
884 }
885 EXPORT_SYMBOL(__skb_get_hash_flowi6);
886 
887 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
888 {
889 	struct flow_keys keys;
890 
891 	memset(&keys, 0, sizeof(keys));
892 
893 	keys.addrs.v4addrs.src = fl4->saddr;
894 	keys.addrs.v4addrs.dst = fl4->daddr;
895 	keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
896 	keys.ports.src = fl4->fl4_sport;
897 	keys.ports.dst = fl4->fl4_dport;
898 	keys.keyid.keyid = fl4->fl4_gre_key;
899 	keys.basic.ip_proto = fl4->flowi4_proto;
900 
901 	__skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
902 			  flow_keys_have_l4(&keys));
903 
904 	return skb->hash;
905 }
906 EXPORT_SYMBOL(__skb_get_hash_flowi4);
907 
908 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
909 		   const struct flow_keys *keys, int hlen)
910 {
911 	u32 poff = keys->control.thoff;
912 
913 	/* skip L4 headers for fragments after the first */
914 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
915 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
916 		return poff;
917 
918 	switch (keys->basic.ip_proto) {
919 	case IPPROTO_TCP: {
920 		/* access doff as u8 to avoid unaligned access */
921 		const u8 *doff;
922 		u8 _doff;
923 
924 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
925 					    data, hlen, &_doff);
926 		if (!doff)
927 			return poff;
928 
929 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
930 		break;
931 	}
932 	case IPPROTO_UDP:
933 	case IPPROTO_UDPLITE:
934 		poff += sizeof(struct udphdr);
935 		break;
936 	/* For the rest, we do not really care about header
937 	 * extensions at this point for now.
938 	 */
939 	case IPPROTO_ICMP:
940 		poff += sizeof(struct icmphdr);
941 		break;
942 	case IPPROTO_ICMPV6:
943 		poff += sizeof(struct icmp6hdr);
944 		break;
945 	case IPPROTO_IGMP:
946 		poff += sizeof(struct igmphdr);
947 		break;
948 	case IPPROTO_DCCP:
949 		poff += sizeof(struct dccp_hdr);
950 		break;
951 	case IPPROTO_SCTP:
952 		poff += sizeof(struct sctphdr);
953 		break;
954 	}
955 
956 	return poff;
957 }
958 
959 /**
960  * skb_get_poff - get the offset to the payload
961  * @skb: sk_buff to get the payload offset from
962  *
963  * The function will get the offset to the payload as far as it could
964  * be dissected.  The main user is currently BPF, so that we can dynamically
965  * truncate packets without needing to push actual payload to the user
966  * space and can analyze headers only, instead.
967  */
968 u32 skb_get_poff(const struct sk_buff *skb)
969 {
970 	struct flow_keys keys;
971 
972 	if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
973 		return 0;
974 
975 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
976 }
977 
978 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
979 {
980 	memset(keys, 0, sizeof(*keys));
981 
982 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
983 	    sizeof(keys->addrs.v6addrs.src));
984 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
985 	    sizeof(keys->addrs.v6addrs.dst));
986 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
987 	keys->ports.src = fl6->fl6_sport;
988 	keys->ports.dst = fl6->fl6_dport;
989 	keys->keyid.keyid = fl6->fl6_gre_key;
990 	keys->tags.flow_label = (__force u32)fl6->flowlabel;
991 	keys->basic.ip_proto = fl6->flowi6_proto;
992 
993 	return flow_hash_from_keys(keys);
994 }
995 EXPORT_SYMBOL(__get_hash_from_flowi6);
996 
997 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
998 {
999 	memset(keys, 0, sizeof(*keys));
1000 
1001 	keys->addrs.v4addrs.src = fl4->saddr;
1002 	keys->addrs.v4addrs.dst = fl4->daddr;
1003 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1004 	keys->ports.src = fl4->fl4_sport;
1005 	keys->ports.dst = fl4->fl4_dport;
1006 	keys->keyid.keyid = fl4->fl4_gre_key;
1007 	keys->basic.ip_proto = fl4->flowi4_proto;
1008 
1009 	return flow_hash_from_keys(keys);
1010 }
1011 EXPORT_SYMBOL(__get_hash_from_flowi4);
1012 
1013 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1014 	{
1015 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1016 		.offset = offsetof(struct flow_keys, control),
1017 	},
1018 	{
1019 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1020 		.offset = offsetof(struct flow_keys, basic),
1021 	},
1022 	{
1023 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1024 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1025 	},
1026 	{
1027 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1028 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1029 	},
1030 	{
1031 		.key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
1032 		.offset = offsetof(struct flow_keys, addrs.tipcaddrs),
1033 	},
1034 	{
1035 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1036 		.offset = offsetof(struct flow_keys, ports),
1037 	},
1038 	{
1039 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1040 		.offset = offsetof(struct flow_keys, vlan),
1041 	},
1042 	{
1043 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1044 		.offset = offsetof(struct flow_keys, tags),
1045 	},
1046 	{
1047 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1048 		.offset = offsetof(struct flow_keys, keyid),
1049 	},
1050 };
1051 
1052 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1053 	{
1054 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1055 		.offset = offsetof(struct flow_keys, control),
1056 	},
1057 	{
1058 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1059 		.offset = offsetof(struct flow_keys, basic),
1060 	},
1061 	{
1062 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1063 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1064 	},
1065 	{
1066 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1067 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1068 	},
1069 	{
1070 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1071 		.offset = offsetof(struct flow_keys, ports),
1072 	},
1073 };
1074 
1075 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
1076 	{
1077 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1078 		.offset = offsetof(struct flow_keys, control),
1079 	},
1080 	{
1081 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1082 		.offset = offsetof(struct flow_keys, basic),
1083 	},
1084 };
1085 
1086 struct flow_dissector flow_keys_dissector __read_mostly;
1087 EXPORT_SYMBOL(flow_keys_dissector);
1088 
1089 struct flow_dissector flow_keys_buf_dissector __read_mostly;
1090 
1091 static int __init init_default_flow_dissectors(void)
1092 {
1093 	skb_flow_dissector_init(&flow_keys_dissector,
1094 				flow_keys_dissector_keys,
1095 				ARRAY_SIZE(flow_keys_dissector_keys));
1096 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1097 				flow_keys_dissector_symmetric_keys,
1098 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1099 	skb_flow_dissector_init(&flow_keys_buf_dissector,
1100 				flow_keys_buf_dissector_keys,
1101 				ARRAY_SIZE(flow_keys_buf_dissector_keys));
1102 	return 0;
1103 }
1104 
1105 core_initcall(init_default_flow_dissectors);
1106