xref: /openbmc/linux/net/core/flow_dissector.c (revision 7a2eb736)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <net/dsa.h>
9 #include <net/dst_metadata.h>
10 #include <net/ip.h>
11 #include <net/ipv6.h>
12 #include <net/gre.h>
13 #include <net/pptp.h>
14 #include <net/tipc.h>
15 #include <linux/igmp.h>
16 #include <linux/icmp.h>
17 #include <linux/sctp.h>
18 #include <linux/dccp.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/if_pppox.h>
21 #include <linux/ppp_defs.h>
22 #include <linux/stddef.h>
23 #include <linux/if_ether.h>
24 #include <linux/mpls.h>
25 #include <linux/tcp.h>
26 #include <net/flow_dissector.h>
27 #include <scsi/fc/fc_fcoe.h>
28 #include <uapi/linux/batadv_packet.h>
29 #include <linux/bpf.h>
30 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
31 #include <net/netfilter/nf_conntrack_core.h>
32 #include <net/netfilter/nf_conntrack_labels.h>
33 #endif
34 
35 static DEFINE_MUTEX(flow_dissector_mutex);
36 
37 static void dissector_set_key(struct flow_dissector *flow_dissector,
38 			      enum flow_dissector_key_id key_id)
39 {
40 	flow_dissector->used_keys |= (1 << key_id);
41 }
42 
43 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
44 			     const struct flow_dissector_key *key,
45 			     unsigned int key_count)
46 {
47 	unsigned int i;
48 
49 	memset(flow_dissector, 0, sizeof(*flow_dissector));
50 
51 	for (i = 0; i < key_count; i++, key++) {
52 		/* User should make sure that every key target offset is withing
53 		 * boundaries of unsigned short.
54 		 */
55 		BUG_ON(key->offset > USHRT_MAX);
56 		BUG_ON(dissector_uses_key(flow_dissector,
57 					  key->key_id));
58 
59 		dissector_set_key(flow_dissector, key->key_id);
60 		flow_dissector->offset[key->key_id] = key->offset;
61 	}
62 
63 	/* Ensure that the dissector always includes control and basic key.
64 	 * That way we are able to avoid handling lack of these in fast path.
65 	 */
66 	BUG_ON(!dissector_uses_key(flow_dissector,
67 				   FLOW_DISSECTOR_KEY_CONTROL));
68 	BUG_ON(!dissector_uses_key(flow_dissector,
69 				   FLOW_DISSECTOR_KEY_BASIC));
70 }
71 EXPORT_SYMBOL(skb_flow_dissector_init);
72 
73 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
74 				  union bpf_attr __user *uattr)
75 {
76 	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
77 	u32 prog_id, prog_cnt = 0, flags = 0;
78 	struct bpf_prog *attached;
79 	struct net *net;
80 
81 	if (attr->query.query_flags)
82 		return -EINVAL;
83 
84 	net = get_net_ns_by_fd(attr->query.target_fd);
85 	if (IS_ERR(net))
86 		return PTR_ERR(net);
87 
88 	rcu_read_lock();
89 	attached = rcu_dereference(net->flow_dissector_prog);
90 	if (attached) {
91 		prog_cnt = 1;
92 		prog_id = attached->aux->id;
93 	}
94 	rcu_read_unlock();
95 
96 	put_net(net);
97 
98 	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
99 		return -EFAULT;
100 	if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt)))
101 		return -EFAULT;
102 
103 	if (!attr->query.prog_cnt || !prog_ids || !prog_cnt)
104 		return 0;
105 
106 	if (copy_to_user(prog_ids, &prog_id, sizeof(u32)))
107 		return -EFAULT;
108 
109 	return 0;
110 }
111 
112 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
113 				       struct bpf_prog *prog)
114 {
115 	struct bpf_prog *attached;
116 	struct net *net;
117 
118 	net = current->nsproxy->net_ns;
119 	mutex_lock(&flow_dissector_mutex);
120 	attached = rcu_dereference_protected(net->flow_dissector_prog,
121 					     lockdep_is_held(&flow_dissector_mutex));
122 	if (attached) {
123 		/* Only one BPF program can be attached at a time */
124 		mutex_unlock(&flow_dissector_mutex);
125 		return -EEXIST;
126 	}
127 	rcu_assign_pointer(net->flow_dissector_prog, prog);
128 	mutex_unlock(&flow_dissector_mutex);
129 	return 0;
130 }
131 
132 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
133 {
134 	struct bpf_prog *attached;
135 	struct net *net;
136 
137 	net = current->nsproxy->net_ns;
138 	mutex_lock(&flow_dissector_mutex);
139 	attached = rcu_dereference_protected(net->flow_dissector_prog,
140 					     lockdep_is_held(&flow_dissector_mutex));
141 	if (!attached) {
142 		mutex_unlock(&flow_dissector_mutex);
143 		return -ENOENT;
144 	}
145 	RCU_INIT_POINTER(net->flow_dissector_prog, NULL);
146 	bpf_prog_put(attached);
147 	mutex_unlock(&flow_dissector_mutex);
148 	return 0;
149 }
150 /**
151  * skb_flow_get_be16 - extract be16 entity
152  * @skb: sk_buff to extract from
153  * @poff: offset to extract at
154  * @data: raw buffer pointer to the packet
155  * @hlen: packet header length
156  *
157  * The function will try to retrieve a be32 entity at
158  * offset poff
159  */
160 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
161 				void *data, int hlen)
162 {
163 	__be16 *u, _u;
164 
165 	u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
166 	if (u)
167 		return *u;
168 
169 	return 0;
170 }
171 
172 /**
173  * __skb_flow_get_ports - extract the upper layer ports and return them
174  * @skb: sk_buff to extract the ports from
175  * @thoff: transport header offset
176  * @ip_proto: protocol for which to get port offset
177  * @data: raw buffer pointer to the packet, if NULL use skb->data
178  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
179  *
180  * The function will try to retrieve the ports at offset thoff + poff where poff
181  * is the protocol port offset returned from proto_ports_offset
182  */
183 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
184 			    void *data, int hlen)
185 {
186 	int poff = proto_ports_offset(ip_proto);
187 
188 	if (!data) {
189 		data = skb->data;
190 		hlen = skb_headlen(skb);
191 	}
192 
193 	if (poff >= 0) {
194 		__be32 *ports, _ports;
195 
196 		ports = __skb_header_pointer(skb, thoff + poff,
197 					     sizeof(_ports), data, hlen, &_ports);
198 		if (ports)
199 			return *ports;
200 	}
201 
202 	return 0;
203 }
204 EXPORT_SYMBOL(__skb_flow_get_ports);
205 
206 void skb_flow_dissect_meta(const struct sk_buff *skb,
207 			   struct flow_dissector *flow_dissector,
208 			   void *target_container)
209 {
210 	struct flow_dissector_key_meta *meta;
211 
212 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
213 		return;
214 
215 	meta = skb_flow_dissector_target(flow_dissector,
216 					 FLOW_DISSECTOR_KEY_META,
217 					 target_container);
218 	meta->ingress_ifindex = skb->skb_iif;
219 }
220 EXPORT_SYMBOL(skb_flow_dissect_meta);
221 
222 static void
223 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
224 				   struct flow_dissector *flow_dissector,
225 				   void *target_container)
226 {
227 	struct flow_dissector_key_control *ctrl;
228 
229 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
230 		return;
231 
232 	ctrl = skb_flow_dissector_target(flow_dissector,
233 					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
234 					 target_container);
235 	ctrl->addr_type = type;
236 }
237 
238 void
239 skb_flow_dissect_ct(const struct sk_buff *skb,
240 		    struct flow_dissector *flow_dissector,
241 		    void *target_container,
242 		    u16 *ctinfo_map,
243 		    size_t mapsize)
244 {
245 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
246 	struct flow_dissector_key_ct *key;
247 	enum ip_conntrack_info ctinfo;
248 	struct nf_conn_labels *cl;
249 	struct nf_conn *ct;
250 
251 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
252 		return;
253 
254 	ct = nf_ct_get(skb, &ctinfo);
255 	if (!ct)
256 		return;
257 
258 	key = skb_flow_dissector_target(flow_dissector,
259 					FLOW_DISSECTOR_KEY_CT,
260 					target_container);
261 
262 	if (ctinfo < mapsize)
263 		key->ct_state = ctinfo_map[ctinfo];
264 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
265 	key->ct_zone = ct->zone.id;
266 #endif
267 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
268 	key->ct_mark = ct->mark;
269 #endif
270 
271 	cl = nf_ct_labels_find(ct);
272 	if (cl)
273 		memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
274 #endif /* CONFIG_NF_CONNTRACK */
275 }
276 EXPORT_SYMBOL(skb_flow_dissect_ct);
277 
278 void
279 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
280 			     struct flow_dissector *flow_dissector,
281 			     void *target_container)
282 {
283 	struct ip_tunnel_info *info;
284 	struct ip_tunnel_key *key;
285 
286 	/* A quick check to see if there might be something to do. */
287 	if (!dissector_uses_key(flow_dissector,
288 				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
289 	    !dissector_uses_key(flow_dissector,
290 				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
291 	    !dissector_uses_key(flow_dissector,
292 				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
293 	    !dissector_uses_key(flow_dissector,
294 				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
295 	    !dissector_uses_key(flow_dissector,
296 				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
297 	    !dissector_uses_key(flow_dissector,
298 				FLOW_DISSECTOR_KEY_ENC_IP) &&
299 	    !dissector_uses_key(flow_dissector,
300 				FLOW_DISSECTOR_KEY_ENC_OPTS))
301 		return;
302 
303 	info = skb_tunnel_info(skb);
304 	if (!info)
305 		return;
306 
307 	key = &info->key;
308 
309 	switch (ip_tunnel_info_af(info)) {
310 	case AF_INET:
311 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
312 						   flow_dissector,
313 						   target_container);
314 		if (dissector_uses_key(flow_dissector,
315 				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
316 			struct flow_dissector_key_ipv4_addrs *ipv4;
317 
318 			ipv4 = skb_flow_dissector_target(flow_dissector,
319 							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
320 							 target_container);
321 			ipv4->src = key->u.ipv4.src;
322 			ipv4->dst = key->u.ipv4.dst;
323 		}
324 		break;
325 	case AF_INET6:
326 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
327 						   flow_dissector,
328 						   target_container);
329 		if (dissector_uses_key(flow_dissector,
330 				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
331 			struct flow_dissector_key_ipv6_addrs *ipv6;
332 
333 			ipv6 = skb_flow_dissector_target(flow_dissector,
334 							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
335 							 target_container);
336 			ipv6->src = key->u.ipv6.src;
337 			ipv6->dst = key->u.ipv6.dst;
338 		}
339 		break;
340 	}
341 
342 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
343 		struct flow_dissector_key_keyid *keyid;
344 
345 		keyid = skb_flow_dissector_target(flow_dissector,
346 						  FLOW_DISSECTOR_KEY_ENC_KEYID,
347 						  target_container);
348 		keyid->keyid = tunnel_id_to_key32(key->tun_id);
349 	}
350 
351 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
352 		struct flow_dissector_key_ports *tp;
353 
354 		tp = skb_flow_dissector_target(flow_dissector,
355 					       FLOW_DISSECTOR_KEY_ENC_PORTS,
356 					       target_container);
357 		tp->src = key->tp_src;
358 		tp->dst = key->tp_dst;
359 	}
360 
361 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
362 		struct flow_dissector_key_ip *ip;
363 
364 		ip = skb_flow_dissector_target(flow_dissector,
365 					       FLOW_DISSECTOR_KEY_ENC_IP,
366 					       target_container);
367 		ip->tos = key->tos;
368 		ip->ttl = key->ttl;
369 	}
370 
371 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
372 		struct flow_dissector_key_enc_opts *enc_opt;
373 
374 		enc_opt = skb_flow_dissector_target(flow_dissector,
375 						    FLOW_DISSECTOR_KEY_ENC_OPTS,
376 						    target_container);
377 
378 		if (info->options_len) {
379 			enc_opt->len = info->options_len;
380 			ip_tunnel_info_opts_get(enc_opt->data, info);
381 			enc_opt->dst_opt_type = info->key.tun_flags &
382 						TUNNEL_OPTIONS_PRESENT;
383 		}
384 	}
385 }
386 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
387 
388 static enum flow_dissect_ret
389 __skb_flow_dissect_mpls(const struct sk_buff *skb,
390 			struct flow_dissector *flow_dissector,
391 			void *target_container, void *data, int nhoff, int hlen)
392 {
393 	struct flow_dissector_key_keyid *key_keyid;
394 	struct mpls_label *hdr, _hdr[2];
395 	u32 entry, label;
396 
397 	if (!dissector_uses_key(flow_dissector,
398 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
399 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
400 		return FLOW_DISSECT_RET_OUT_GOOD;
401 
402 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
403 				   hlen, &_hdr);
404 	if (!hdr)
405 		return FLOW_DISSECT_RET_OUT_BAD;
406 
407 	entry = ntohl(hdr[0].entry);
408 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
409 
410 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
411 		struct flow_dissector_key_mpls *key_mpls;
412 
413 		key_mpls = skb_flow_dissector_target(flow_dissector,
414 						     FLOW_DISSECTOR_KEY_MPLS,
415 						     target_container);
416 		key_mpls->mpls_label = label;
417 		key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
418 					>> MPLS_LS_TTL_SHIFT;
419 		key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
420 					>> MPLS_LS_TC_SHIFT;
421 		key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
422 					>> MPLS_LS_S_SHIFT;
423 	}
424 
425 	if (label == MPLS_LABEL_ENTROPY) {
426 		key_keyid = skb_flow_dissector_target(flow_dissector,
427 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
428 						      target_container);
429 		key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
430 	}
431 	return FLOW_DISSECT_RET_OUT_GOOD;
432 }
433 
434 static enum flow_dissect_ret
435 __skb_flow_dissect_arp(const struct sk_buff *skb,
436 		       struct flow_dissector *flow_dissector,
437 		       void *target_container, void *data, int nhoff, int hlen)
438 {
439 	struct flow_dissector_key_arp *key_arp;
440 	struct {
441 		unsigned char ar_sha[ETH_ALEN];
442 		unsigned char ar_sip[4];
443 		unsigned char ar_tha[ETH_ALEN];
444 		unsigned char ar_tip[4];
445 	} *arp_eth, _arp_eth;
446 	const struct arphdr *arp;
447 	struct arphdr _arp;
448 
449 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
450 		return FLOW_DISSECT_RET_OUT_GOOD;
451 
452 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
453 				   hlen, &_arp);
454 	if (!arp)
455 		return FLOW_DISSECT_RET_OUT_BAD;
456 
457 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
458 	    arp->ar_pro != htons(ETH_P_IP) ||
459 	    arp->ar_hln != ETH_ALEN ||
460 	    arp->ar_pln != 4 ||
461 	    (arp->ar_op != htons(ARPOP_REPLY) &&
462 	     arp->ar_op != htons(ARPOP_REQUEST)))
463 		return FLOW_DISSECT_RET_OUT_BAD;
464 
465 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
466 				       sizeof(_arp_eth), data,
467 				       hlen, &_arp_eth);
468 	if (!arp_eth)
469 		return FLOW_DISSECT_RET_OUT_BAD;
470 
471 	key_arp = skb_flow_dissector_target(flow_dissector,
472 					    FLOW_DISSECTOR_KEY_ARP,
473 					    target_container);
474 
475 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
476 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
477 
478 	/* Only store the lower byte of the opcode;
479 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
480 	 */
481 	key_arp->op = ntohs(arp->ar_op) & 0xff;
482 
483 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
484 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
485 
486 	return FLOW_DISSECT_RET_OUT_GOOD;
487 }
488 
489 static enum flow_dissect_ret
490 __skb_flow_dissect_gre(const struct sk_buff *skb,
491 		       struct flow_dissector_key_control *key_control,
492 		       struct flow_dissector *flow_dissector,
493 		       void *target_container, void *data,
494 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
495 		       unsigned int flags)
496 {
497 	struct flow_dissector_key_keyid *key_keyid;
498 	struct gre_base_hdr *hdr, _hdr;
499 	int offset = 0;
500 	u16 gre_ver;
501 
502 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
503 				   data, *p_hlen, &_hdr);
504 	if (!hdr)
505 		return FLOW_DISSECT_RET_OUT_BAD;
506 
507 	/* Only look inside GRE without routing */
508 	if (hdr->flags & GRE_ROUTING)
509 		return FLOW_DISSECT_RET_OUT_GOOD;
510 
511 	/* Only look inside GRE for version 0 and 1 */
512 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
513 	if (gre_ver > 1)
514 		return FLOW_DISSECT_RET_OUT_GOOD;
515 
516 	*p_proto = hdr->protocol;
517 	if (gre_ver) {
518 		/* Version1 must be PPTP, and check the flags */
519 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
520 			return FLOW_DISSECT_RET_OUT_GOOD;
521 	}
522 
523 	offset += sizeof(struct gre_base_hdr);
524 
525 	if (hdr->flags & GRE_CSUM)
526 		offset += FIELD_SIZEOF(struct gre_full_hdr, csum) +
527 			  FIELD_SIZEOF(struct gre_full_hdr, reserved1);
528 
529 	if (hdr->flags & GRE_KEY) {
530 		const __be32 *keyid;
531 		__be32 _keyid;
532 
533 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
534 					     sizeof(_keyid),
535 					     data, *p_hlen, &_keyid);
536 		if (!keyid)
537 			return FLOW_DISSECT_RET_OUT_BAD;
538 
539 		if (dissector_uses_key(flow_dissector,
540 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
541 			key_keyid = skb_flow_dissector_target(flow_dissector,
542 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
543 							      target_container);
544 			if (gre_ver == 0)
545 				key_keyid->keyid = *keyid;
546 			else
547 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
548 		}
549 		offset += FIELD_SIZEOF(struct gre_full_hdr, key);
550 	}
551 
552 	if (hdr->flags & GRE_SEQ)
553 		offset += FIELD_SIZEOF(struct pptp_gre_header, seq);
554 
555 	if (gre_ver == 0) {
556 		if (*p_proto == htons(ETH_P_TEB)) {
557 			const struct ethhdr *eth;
558 			struct ethhdr _eth;
559 
560 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
561 						   sizeof(_eth),
562 						   data, *p_hlen, &_eth);
563 			if (!eth)
564 				return FLOW_DISSECT_RET_OUT_BAD;
565 			*p_proto = eth->h_proto;
566 			offset += sizeof(*eth);
567 
568 			/* Cap headers that we access via pointers at the
569 			 * end of the Ethernet header as our maximum alignment
570 			 * at that point is only 2 bytes.
571 			 */
572 			if (NET_IP_ALIGN)
573 				*p_hlen = *p_nhoff + offset;
574 		}
575 	} else { /* version 1, must be PPTP */
576 		u8 _ppp_hdr[PPP_HDRLEN];
577 		u8 *ppp_hdr;
578 
579 		if (hdr->flags & GRE_ACK)
580 			offset += FIELD_SIZEOF(struct pptp_gre_header, ack);
581 
582 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
583 					       sizeof(_ppp_hdr),
584 					       data, *p_hlen, _ppp_hdr);
585 		if (!ppp_hdr)
586 			return FLOW_DISSECT_RET_OUT_BAD;
587 
588 		switch (PPP_PROTOCOL(ppp_hdr)) {
589 		case PPP_IP:
590 			*p_proto = htons(ETH_P_IP);
591 			break;
592 		case PPP_IPV6:
593 			*p_proto = htons(ETH_P_IPV6);
594 			break;
595 		default:
596 			/* Could probably catch some more like MPLS */
597 			break;
598 		}
599 
600 		offset += PPP_HDRLEN;
601 	}
602 
603 	*p_nhoff += offset;
604 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
605 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
606 		return FLOW_DISSECT_RET_OUT_GOOD;
607 
608 	return FLOW_DISSECT_RET_PROTO_AGAIN;
609 }
610 
611 /**
612  * __skb_flow_dissect_batadv() - dissect batman-adv header
613  * @skb: sk_buff to with the batman-adv header
614  * @key_control: flow dissectors control key
615  * @data: raw buffer pointer to the packet, if NULL use skb->data
616  * @p_proto: pointer used to update the protocol to process next
617  * @p_nhoff: pointer used to update inner network header offset
618  * @hlen: packet header length
619  * @flags: any combination of FLOW_DISSECTOR_F_*
620  *
621  * ETH_P_BATMAN packets are tried to be dissected. Only
622  * &struct batadv_unicast packets are actually processed because they contain an
623  * inner ethernet header and are usually followed by actual network header. This
624  * allows the flow dissector to continue processing the packet.
625  *
626  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
627  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
628  *  otherwise FLOW_DISSECT_RET_OUT_BAD
629  */
630 static enum flow_dissect_ret
631 __skb_flow_dissect_batadv(const struct sk_buff *skb,
632 			  struct flow_dissector_key_control *key_control,
633 			  void *data, __be16 *p_proto, int *p_nhoff, int hlen,
634 			  unsigned int flags)
635 {
636 	struct {
637 		struct batadv_unicast_packet batadv_unicast;
638 		struct ethhdr eth;
639 	} *hdr, _hdr;
640 
641 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
642 				   &_hdr);
643 	if (!hdr)
644 		return FLOW_DISSECT_RET_OUT_BAD;
645 
646 	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
647 		return FLOW_DISSECT_RET_OUT_BAD;
648 
649 	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
650 		return FLOW_DISSECT_RET_OUT_BAD;
651 
652 	*p_proto = hdr->eth.h_proto;
653 	*p_nhoff += sizeof(*hdr);
654 
655 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
656 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
657 		return FLOW_DISSECT_RET_OUT_GOOD;
658 
659 	return FLOW_DISSECT_RET_PROTO_AGAIN;
660 }
661 
662 static void
663 __skb_flow_dissect_tcp(const struct sk_buff *skb,
664 		       struct flow_dissector *flow_dissector,
665 		       void *target_container, void *data, int thoff, int hlen)
666 {
667 	struct flow_dissector_key_tcp *key_tcp;
668 	struct tcphdr *th, _th;
669 
670 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
671 		return;
672 
673 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
674 	if (!th)
675 		return;
676 
677 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
678 		return;
679 
680 	key_tcp = skb_flow_dissector_target(flow_dissector,
681 					    FLOW_DISSECTOR_KEY_TCP,
682 					    target_container);
683 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
684 }
685 
686 static void
687 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
688 			struct flow_dissector *flow_dissector,
689 			void *target_container, void *data, const struct iphdr *iph)
690 {
691 	struct flow_dissector_key_ip *key_ip;
692 
693 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
694 		return;
695 
696 	key_ip = skb_flow_dissector_target(flow_dissector,
697 					   FLOW_DISSECTOR_KEY_IP,
698 					   target_container);
699 	key_ip->tos = iph->tos;
700 	key_ip->ttl = iph->ttl;
701 }
702 
703 static void
704 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
705 			struct flow_dissector *flow_dissector,
706 			void *target_container, void *data, const struct ipv6hdr *iph)
707 {
708 	struct flow_dissector_key_ip *key_ip;
709 
710 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
711 		return;
712 
713 	key_ip = skb_flow_dissector_target(flow_dissector,
714 					   FLOW_DISSECTOR_KEY_IP,
715 					   target_container);
716 	key_ip->tos = ipv6_get_dsfield(iph);
717 	key_ip->ttl = iph->hop_limit;
718 }
719 
720 /* Maximum number of protocol headers that can be parsed in
721  * __skb_flow_dissect
722  */
723 #define MAX_FLOW_DISSECT_HDRS	15
724 
725 static bool skb_flow_dissect_allowed(int *num_hdrs)
726 {
727 	++*num_hdrs;
728 
729 	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
730 }
731 
732 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
733 				     struct flow_dissector *flow_dissector,
734 				     void *target_container)
735 {
736 	struct flow_dissector_key_control *key_control;
737 	struct flow_dissector_key_basic *key_basic;
738 	struct flow_dissector_key_addrs *key_addrs;
739 	struct flow_dissector_key_ports *key_ports;
740 	struct flow_dissector_key_tags *key_tags;
741 
742 	key_control = skb_flow_dissector_target(flow_dissector,
743 						FLOW_DISSECTOR_KEY_CONTROL,
744 						target_container);
745 	key_control->thoff = flow_keys->thoff;
746 	if (flow_keys->is_frag)
747 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
748 	if (flow_keys->is_first_frag)
749 		key_control->flags |= FLOW_DIS_FIRST_FRAG;
750 	if (flow_keys->is_encap)
751 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
752 
753 	key_basic = skb_flow_dissector_target(flow_dissector,
754 					      FLOW_DISSECTOR_KEY_BASIC,
755 					      target_container);
756 	key_basic->n_proto = flow_keys->n_proto;
757 	key_basic->ip_proto = flow_keys->ip_proto;
758 
759 	if (flow_keys->addr_proto == ETH_P_IP &&
760 	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
761 		key_addrs = skb_flow_dissector_target(flow_dissector,
762 						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
763 						      target_container);
764 		key_addrs->v4addrs.src = flow_keys->ipv4_src;
765 		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
766 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
767 	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
768 		   dissector_uses_key(flow_dissector,
769 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
770 		key_addrs = skb_flow_dissector_target(flow_dissector,
771 						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
772 						      target_container);
773 		memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
774 		       sizeof(key_addrs->v6addrs));
775 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
776 	}
777 
778 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) {
779 		key_ports = skb_flow_dissector_target(flow_dissector,
780 						      FLOW_DISSECTOR_KEY_PORTS,
781 						      target_container);
782 		key_ports->src = flow_keys->sport;
783 		key_ports->dst = flow_keys->dport;
784 	}
785 
786 	if (dissector_uses_key(flow_dissector,
787 			       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
788 		key_tags = skb_flow_dissector_target(flow_dissector,
789 						     FLOW_DISSECTOR_KEY_FLOW_LABEL,
790 						     target_container);
791 		key_tags->flow_label = ntohl(flow_keys->flow_label);
792 	}
793 }
794 
795 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
796 		      __be16 proto, int nhoff, int hlen, unsigned int flags)
797 {
798 	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
799 	u32 result;
800 
801 	/* Pass parameters to the BPF program */
802 	memset(flow_keys, 0, sizeof(*flow_keys));
803 	flow_keys->n_proto = proto;
804 	flow_keys->nhoff = nhoff;
805 	flow_keys->thoff = flow_keys->nhoff;
806 
807 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
808 		     (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
809 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
810 		     (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
811 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
812 		     (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
813 	flow_keys->flags = flags;
814 
815 	preempt_disable();
816 	result = BPF_PROG_RUN(prog, ctx);
817 	preempt_enable();
818 
819 	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
820 	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
821 				   flow_keys->nhoff, hlen);
822 
823 	return result == BPF_OK;
824 }
825 
826 /**
827  * __skb_flow_dissect - extract the flow_keys struct and return it
828  * @net: associated network namespace, derived from @skb if NULL
829  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
830  * @flow_dissector: list of keys to dissect
831  * @target_container: target structure to put dissected values into
832  * @data: raw buffer pointer to the packet, if NULL use skb->data
833  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
834  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
835  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
836  * @flags: flags that control the dissection process, e.g.
837  *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
838  *
839  * The function will try to retrieve individual keys into target specified
840  * by flow_dissector from either the skbuff or a raw buffer specified by the
841  * rest parameters.
842  *
843  * Caller must take care of zeroing target container memory.
844  */
845 bool __skb_flow_dissect(const struct net *net,
846 			const struct sk_buff *skb,
847 			struct flow_dissector *flow_dissector,
848 			void *target_container,
849 			void *data, __be16 proto, int nhoff, int hlen,
850 			unsigned int flags)
851 {
852 	struct flow_dissector_key_control *key_control;
853 	struct flow_dissector_key_basic *key_basic;
854 	struct flow_dissector_key_addrs *key_addrs;
855 	struct flow_dissector_key_ports *key_ports;
856 	struct flow_dissector_key_icmp *key_icmp;
857 	struct flow_dissector_key_tags *key_tags;
858 	struct flow_dissector_key_vlan *key_vlan;
859 	struct bpf_prog *attached = NULL;
860 	enum flow_dissect_ret fdret;
861 	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
862 	int num_hdrs = 0;
863 	u8 ip_proto = 0;
864 	bool ret;
865 
866 	if (!data) {
867 		data = skb->data;
868 		proto = skb_vlan_tag_present(skb) ?
869 			 skb->vlan_proto : skb->protocol;
870 		nhoff = skb_network_offset(skb);
871 		hlen = skb_headlen(skb);
872 #if IS_ENABLED(CONFIG_NET_DSA)
873 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
874 			const struct dsa_device_ops *ops;
875 			int offset;
876 
877 			ops = skb->dev->dsa_ptr->tag_ops;
878 			if (ops->flow_dissect &&
879 			    !ops->flow_dissect(skb, &proto, &offset)) {
880 				hlen -= offset;
881 				nhoff += offset;
882 			}
883 		}
884 #endif
885 	}
886 
887 	/* It is ensured by skb_flow_dissector_init() that control key will
888 	 * be always present.
889 	 */
890 	key_control = skb_flow_dissector_target(flow_dissector,
891 						FLOW_DISSECTOR_KEY_CONTROL,
892 						target_container);
893 
894 	/* It is ensured by skb_flow_dissector_init() that basic key will
895 	 * be always present.
896 	 */
897 	key_basic = skb_flow_dissector_target(flow_dissector,
898 					      FLOW_DISSECTOR_KEY_BASIC,
899 					      target_container);
900 
901 	if (skb) {
902 		if (!net) {
903 			if (skb->dev)
904 				net = dev_net(skb->dev);
905 			else if (skb->sk)
906 				net = sock_net(skb->sk);
907 		}
908 	}
909 
910 	WARN_ON_ONCE(!net);
911 	if (net) {
912 		rcu_read_lock();
913 		attached = rcu_dereference(net->flow_dissector_prog);
914 
915 		if (attached) {
916 			struct bpf_flow_keys flow_keys;
917 			struct bpf_flow_dissector ctx = {
918 				.flow_keys = &flow_keys,
919 				.data = data,
920 				.data_end = data + hlen,
921 			};
922 			__be16 n_proto = proto;
923 
924 			if (skb) {
925 				ctx.skb = skb;
926 				/* we can't use 'proto' in the skb case
927 				 * because it might be set to skb->vlan_proto
928 				 * which has been pulled from the data
929 				 */
930 				n_proto = skb->protocol;
931 			}
932 
933 			ret = bpf_flow_dissect(attached, &ctx, n_proto, nhoff,
934 					       hlen, flags);
935 			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
936 						 target_container);
937 			rcu_read_unlock();
938 			return ret;
939 		}
940 		rcu_read_unlock();
941 	}
942 
943 	if (dissector_uses_key(flow_dissector,
944 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
945 		struct ethhdr *eth = eth_hdr(skb);
946 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
947 
948 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
949 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
950 							  target_container);
951 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
952 	}
953 
954 proto_again:
955 	fdret = FLOW_DISSECT_RET_CONTINUE;
956 
957 	switch (proto) {
958 	case htons(ETH_P_IP): {
959 		const struct iphdr *iph;
960 		struct iphdr _iph;
961 
962 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
963 		if (!iph || iph->ihl < 5) {
964 			fdret = FLOW_DISSECT_RET_OUT_BAD;
965 			break;
966 		}
967 
968 		nhoff += iph->ihl * 4;
969 
970 		ip_proto = iph->protocol;
971 
972 		if (dissector_uses_key(flow_dissector,
973 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
974 			key_addrs = skb_flow_dissector_target(flow_dissector,
975 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
976 							      target_container);
977 
978 			memcpy(&key_addrs->v4addrs, &iph->saddr,
979 			       sizeof(key_addrs->v4addrs));
980 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
981 		}
982 
983 		if (ip_is_fragment(iph)) {
984 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
985 
986 			if (iph->frag_off & htons(IP_OFFSET)) {
987 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
988 				break;
989 			} else {
990 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
991 				if (!(flags &
992 				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
993 					fdret = FLOW_DISSECT_RET_OUT_GOOD;
994 					break;
995 				}
996 			}
997 		}
998 
999 		__skb_flow_dissect_ipv4(skb, flow_dissector,
1000 					target_container, data, iph);
1001 
1002 		break;
1003 	}
1004 	case htons(ETH_P_IPV6): {
1005 		const struct ipv6hdr *iph;
1006 		struct ipv6hdr _iph;
1007 
1008 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1009 		if (!iph) {
1010 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1011 			break;
1012 		}
1013 
1014 		ip_proto = iph->nexthdr;
1015 		nhoff += sizeof(struct ipv6hdr);
1016 
1017 		if (dissector_uses_key(flow_dissector,
1018 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1019 			key_addrs = skb_flow_dissector_target(flow_dissector,
1020 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1021 							      target_container);
1022 
1023 			memcpy(&key_addrs->v6addrs, &iph->saddr,
1024 			       sizeof(key_addrs->v6addrs));
1025 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1026 		}
1027 
1028 		if ((dissector_uses_key(flow_dissector,
1029 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1030 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1031 		    ip6_flowlabel(iph)) {
1032 			__be32 flow_label = ip6_flowlabel(iph);
1033 
1034 			if (dissector_uses_key(flow_dissector,
1035 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1036 				key_tags = skb_flow_dissector_target(flow_dissector,
1037 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
1038 								     target_container);
1039 				key_tags->flow_label = ntohl(flow_label);
1040 			}
1041 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1042 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1043 				break;
1044 			}
1045 		}
1046 
1047 		__skb_flow_dissect_ipv6(skb, flow_dissector,
1048 					target_container, data, iph);
1049 
1050 		break;
1051 	}
1052 	case htons(ETH_P_8021AD):
1053 	case htons(ETH_P_8021Q): {
1054 		const struct vlan_hdr *vlan = NULL;
1055 		struct vlan_hdr _vlan;
1056 		__be16 saved_vlan_tpid = proto;
1057 
1058 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1059 		    skb && skb_vlan_tag_present(skb)) {
1060 			proto = skb->protocol;
1061 		} else {
1062 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1063 						    data, hlen, &_vlan);
1064 			if (!vlan) {
1065 				fdret = FLOW_DISSECT_RET_OUT_BAD;
1066 				break;
1067 			}
1068 
1069 			proto = vlan->h_vlan_encapsulated_proto;
1070 			nhoff += sizeof(*vlan);
1071 		}
1072 
1073 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1074 			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1075 		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1076 			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1077 		} else {
1078 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1079 			break;
1080 		}
1081 
1082 		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1083 			key_vlan = skb_flow_dissector_target(flow_dissector,
1084 							     dissector_vlan,
1085 							     target_container);
1086 
1087 			if (!vlan) {
1088 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1089 				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1090 			} else {
1091 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1092 					VLAN_VID_MASK;
1093 				key_vlan->vlan_priority =
1094 					(ntohs(vlan->h_vlan_TCI) &
1095 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1096 			}
1097 			key_vlan->vlan_tpid = saved_vlan_tpid;
1098 		}
1099 
1100 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1101 		break;
1102 	}
1103 	case htons(ETH_P_PPP_SES): {
1104 		struct {
1105 			struct pppoe_hdr hdr;
1106 			__be16 proto;
1107 		} *hdr, _hdr;
1108 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1109 		if (!hdr) {
1110 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1111 			break;
1112 		}
1113 
1114 		proto = hdr->proto;
1115 		nhoff += PPPOE_SES_HLEN;
1116 		switch (proto) {
1117 		case htons(PPP_IP):
1118 			proto = htons(ETH_P_IP);
1119 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1120 			break;
1121 		case htons(PPP_IPV6):
1122 			proto = htons(ETH_P_IPV6);
1123 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1124 			break;
1125 		default:
1126 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1127 			break;
1128 		}
1129 		break;
1130 	}
1131 	case htons(ETH_P_TIPC): {
1132 		struct tipc_basic_hdr *hdr, _hdr;
1133 
1134 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1135 					   data, hlen, &_hdr);
1136 		if (!hdr) {
1137 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1138 			break;
1139 		}
1140 
1141 		if (dissector_uses_key(flow_dissector,
1142 				       FLOW_DISSECTOR_KEY_TIPC)) {
1143 			key_addrs = skb_flow_dissector_target(flow_dissector,
1144 							      FLOW_DISSECTOR_KEY_TIPC,
1145 							      target_container);
1146 			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1147 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1148 		}
1149 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1150 		break;
1151 	}
1152 
1153 	case htons(ETH_P_MPLS_UC):
1154 	case htons(ETH_P_MPLS_MC):
1155 		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1156 						target_container, data,
1157 						nhoff, hlen);
1158 		break;
1159 	case htons(ETH_P_FCOE):
1160 		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1161 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1162 			break;
1163 		}
1164 
1165 		nhoff += FCOE_HEADER_LEN;
1166 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1167 		break;
1168 
1169 	case htons(ETH_P_ARP):
1170 	case htons(ETH_P_RARP):
1171 		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1172 					       target_container, data,
1173 					       nhoff, hlen);
1174 		break;
1175 
1176 	case htons(ETH_P_BATMAN):
1177 		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1178 						  &proto, &nhoff, hlen, flags);
1179 		break;
1180 
1181 	default:
1182 		fdret = FLOW_DISSECT_RET_OUT_BAD;
1183 		break;
1184 	}
1185 
1186 	/* Process result of proto processing */
1187 	switch (fdret) {
1188 	case FLOW_DISSECT_RET_OUT_GOOD:
1189 		goto out_good;
1190 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1191 		if (skb_flow_dissect_allowed(&num_hdrs))
1192 			goto proto_again;
1193 		goto out_good;
1194 	case FLOW_DISSECT_RET_CONTINUE:
1195 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1196 		break;
1197 	case FLOW_DISSECT_RET_OUT_BAD:
1198 	default:
1199 		goto out_bad;
1200 	}
1201 
1202 ip_proto_again:
1203 	fdret = FLOW_DISSECT_RET_CONTINUE;
1204 
1205 	switch (ip_proto) {
1206 	case IPPROTO_GRE:
1207 		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1208 					       target_container, data,
1209 					       &proto, &nhoff, &hlen, flags);
1210 		break;
1211 
1212 	case NEXTHDR_HOP:
1213 	case NEXTHDR_ROUTING:
1214 	case NEXTHDR_DEST: {
1215 		u8 _opthdr[2], *opthdr;
1216 
1217 		if (proto != htons(ETH_P_IPV6))
1218 			break;
1219 
1220 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1221 					      data, hlen, &_opthdr);
1222 		if (!opthdr) {
1223 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1224 			break;
1225 		}
1226 
1227 		ip_proto = opthdr[0];
1228 		nhoff += (opthdr[1] + 1) << 3;
1229 
1230 		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1231 		break;
1232 	}
1233 	case NEXTHDR_FRAGMENT: {
1234 		struct frag_hdr _fh, *fh;
1235 
1236 		if (proto != htons(ETH_P_IPV6))
1237 			break;
1238 
1239 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1240 					  data, hlen, &_fh);
1241 
1242 		if (!fh) {
1243 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1244 			break;
1245 		}
1246 
1247 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1248 
1249 		nhoff += sizeof(_fh);
1250 		ip_proto = fh->nexthdr;
1251 
1252 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1253 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1254 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1255 				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1256 				break;
1257 			}
1258 		}
1259 
1260 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1261 		break;
1262 	}
1263 	case IPPROTO_IPIP:
1264 		proto = htons(ETH_P_IP);
1265 
1266 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1267 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1268 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1269 			break;
1270 		}
1271 
1272 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1273 		break;
1274 
1275 	case IPPROTO_IPV6:
1276 		proto = htons(ETH_P_IPV6);
1277 
1278 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1279 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1280 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1281 			break;
1282 		}
1283 
1284 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1285 		break;
1286 
1287 
1288 	case IPPROTO_MPLS:
1289 		proto = htons(ETH_P_MPLS_UC);
1290 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1291 		break;
1292 
1293 	case IPPROTO_TCP:
1294 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1295 				       data, nhoff, hlen);
1296 		break;
1297 
1298 	default:
1299 		break;
1300 	}
1301 
1302 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS) &&
1303 	    !(key_control->flags & FLOW_DIS_IS_FRAGMENT)) {
1304 		key_ports = skb_flow_dissector_target(flow_dissector,
1305 						      FLOW_DISSECTOR_KEY_PORTS,
1306 						      target_container);
1307 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
1308 							data, hlen);
1309 	}
1310 
1311 	if (dissector_uses_key(flow_dissector,
1312 			       FLOW_DISSECTOR_KEY_ICMP)) {
1313 		key_icmp = skb_flow_dissector_target(flow_dissector,
1314 						     FLOW_DISSECTOR_KEY_ICMP,
1315 						     target_container);
1316 		key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
1317 	}
1318 
1319 	/* Process result of IP proto processing */
1320 	switch (fdret) {
1321 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1322 		if (skb_flow_dissect_allowed(&num_hdrs))
1323 			goto proto_again;
1324 		break;
1325 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1326 		if (skb_flow_dissect_allowed(&num_hdrs))
1327 			goto ip_proto_again;
1328 		break;
1329 	case FLOW_DISSECT_RET_OUT_GOOD:
1330 	case FLOW_DISSECT_RET_CONTINUE:
1331 		break;
1332 	case FLOW_DISSECT_RET_OUT_BAD:
1333 	default:
1334 		goto out_bad;
1335 	}
1336 
1337 out_good:
1338 	ret = true;
1339 
1340 out:
1341 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1342 	key_basic->n_proto = proto;
1343 	key_basic->ip_proto = ip_proto;
1344 
1345 	return ret;
1346 
1347 out_bad:
1348 	ret = false;
1349 	goto out;
1350 }
1351 EXPORT_SYMBOL(__skb_flow_dissect);
1352 
1353 static u32 hashrnd __read_mostly;
1354 static __always_inline void __flow_hash_secret_init(void)
1355 {
1356 	net_get_random_once(&hashrnd, sizeof(hashrnd));
1357 }
1358 
1359 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
1360 					     u32 keyval)
1361 {
1362 	return jhash2(words, length, keyval);
1363 }
1364 
1365 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
1366 {
1367 	const void *p = flow;
1368 
1369 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
1370 	return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
1371 }
1372 
1373 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1374 {
1375 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1376 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1377 	BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
1378 		     sizeof(*flow) - sizeof(flow->addrs));
1379 
1380 	switch (flow->control.addr_type) {
1381 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1382 		diff -= sizeof(flow->addrs.v4addrs);
1383 		break;
1384 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1385 		diff -= sizeof(flow->addrs.v6addrs);
1386 		break;
1387 	case FLOW_DISSECTOR_KEY_TIPC:
1388 		diff -= sizeof(flow->addrs.tipckey);
1389 		break;
1390 	}
1391 	return (sizeof(*flow) - diff) / sizeof(u32);
1392 }
1393 
1394 __be32 flow_get_u32_src(const struct flow_keys *flow)
1395 {
1396 	switch (flow->control.addr_type) {
1397 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1398 		return flow->addrs.v4addrs.src;
1399 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1400 		return (__force __be32)ipv6_addr_hash(
1401 			&flow->addrs.v6addrs.src);
1402 	case FLOW_DISSECTOR_KEY_TIPC:
1403 		return flow->addrs.tipckey.key;
1404 	default:
1405 		return 0;
1406 	}
1407 }
1408 EXPORT_SYMBOL(flow_get_u32_src);
1409 
1410 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1411 {
1412 	switch (flow->control.addr_type) {
1413 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1414 		return flow->addrs.v4addrs.dst;
1415 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1416 		return (__force __be32)ipv6_addr_hash(
1417 			&flow->addrs.v6addrs.dst);
1418 	default:
1419 		return 0;
1420 	}
1421 }
1422 EXPORT_SYMBOL(flow_get_u32_dst);
1423 
1424 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1425 {
1426 	int addr_diff, i;
1427 
1428 	switch (keys->control.addr_type) {
1429 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1430 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1431 			    (__force u32)keys->addrs.v4addrs.src;
1432 		if ((addr_diff < 0) ||
1433 		    (addr_diff == 0 &&
1434 		     ((__force u16)keys->ports.dst <
1435 		      (__force u16)keys->ports.src))) {
1436 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1437 			swap(keys->ports.src, keys->ports.dst);
1438 		}
1439 		break;
1440 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1441 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1442 				   &keys->addrs.v6addrs.src,
1443 				   sizeof(keys->addrs.v6addrs.dst));
1444 		if ((addr_diff < 0) ||
1445 		    (addr_diff == 0 &&
1446 		     ((__force u16)keys->ports.dst <
1447 		      (__force u16)keys->ports.src))) {
1448 			for (i = 0; i < 4; i++)
1449 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1450 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1451 			swap(keys->ports.src, keys->ports.dst);
1452 		}
1453 		break;
1454 	}
1455 }
1456 
1457 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
1458 {
1459 	u32 hash;
1460 
1461 	__flow_hash_consistentify(keys);
1462 
1463 	hash = __flow_hash_words(flow_keys_hash_start(keys),
1464 				 flow_keys_hash_length(keys), keyval);
1465 	if (!hash)
1466 		hash = 1;
1467 
1468 	return hash;
1469 }
1470 
1471 u32 flow_hash_from_keys(struct flow_keys *keys)
1472 {
1473 	__flow_hash_secret_init();
1474 	return __flow_hash_from_keys(keys, hashrnd);
1475 }
1476 EXPORT_SYMBOL(flow_hash_from_keys);
1477 
1478 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1479 				  struct flow_keys *keys, u32 keyval)
1480 {
1481 	skb_flow_dissect_flow_keys(skb, keys,
1482 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1483 
1484 	return __flow_hash_from_keys(keys, keyval);
1485 }
1486 
1487 struct _flow_keys_digest_data {
1488 	__be16	n_proto;
1489 	u8	ip_proto;
1490 	u8	padding;
1491 	__be32	ports;
1492 	__be32	src;
1493 	__be32	dst;
1494 };
1495 
1496 void make_flow_keys_digest(struct flow_keys_digest *digest,
1497 			   const struct flow_keys *flow)
1498 {
1499 	struct _flow_keys_digest_data *data =
1500 	    (struct _flow_keys_digest_data *)digest;
1501 
1502 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1503 
1504 	memset(digest, 0, sizeof(*digest));
1505 
1506 	data->n_proto = flow->basic.n_proto;
1507 	data->ip_proto = flow->basic.ip_proto;
1508 	data->ports = flow->ports.ports;
1509 	data->src = flow->addrs.v4addrs.src;
1510 	data->dst = flow->addrs.v4addrs.dst;
1511 }
1512 EXPORT_SYMBOL(make_flow_keys_digest);
1513 
1514 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1515 
1516 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1517 {
1518 	struct flow_keys keys;
1519 
1520 	__flow_hash_secret_init();
1521 
1522 	memset(&keys, 0, sizeof(keys));
1523 	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1524 			   &keys, NULL, 0, 0, 0,
1525 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1526 
1527 	return __flow_hash_from_keys(&keys, hashrnd);
1528 }
1529 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1530 
1531 /**
1532  * __skb_get_hash: calculate a flow hash
1533  * @skb: sk_buff to calculate flow hash from
1534  *
1535  * This function calculates a flow hash based on src/dst addresses
1536  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1537  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1538  * if hash is a canonical 4-tuple hash over transport ports.
1539  */
1540 void __skb_get_hash(struct sk_buff *skb)
1541 {
1542 	struct flow_keys keys;
1543 	u32 hash;
1544 
1545 	__flow_hash_secret_init();
1546 
1547 	hash = ___skb_get_hash(skb, &keys, hashrnd);
1548 
1549 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1550 }
1551 EXPORT_SYMBOL(__skb_get_hash);
1552 
1553 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
1554 {
1555 	struct flow_keys keys;
1556 
1557 	return ___skb_get_hash(skb, &keys, perturb);
1558 }
1559 EXPORT_SYMBOL(skb_get_hash_perturb);
1560 
1561 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1562 		   const struct flow_keys_basic *keys, int hlen)
1563 {
1564 	u32 poff = keys->control.thoff;
1565 
1566 	/* skip L4 headers for fragments after the first */
1567 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1568 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1569 		return poff;
1570 
1571 	switch (keys->basic.ip_proto) {
1572 	case IPPROTO_TCP: {
1573 		/* access doff as u8 to avoid unaligned access */
1574 		const u8 *doff;
1575 		u8 _doff;
1576 
1577 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1578 					    data, hlen, &_doff);
1579 		if (!doff)
1580 			return poff;
1581 
1582 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1583 		break;
1584 	}
1585 	case IPPROTO_UDP:
1586 	case IPPROTO_UDPLITE:
1587 		poff += sizeof(struct udphdr);
1588 		break;
1589 	/* For the rest, we do not really care about header
1590 	 * extensions at this point for now.
1591 	 */
1592 	case IPPROTO_ICMP:
1593 		poff += sizeof(struct icmphdr);
1594 		break;
1595 	case IPPROTO_ICMPV6:
1596 		poff += sizeof(struct icmp6hdr);
1597 		break;
1598 	case IPPROTO_IGMP:
1599 		poff += sizeof(struct igmphdr);
1600 		break;
1601 	case IPPROTO_DCCP:
1602 		poff += sizeof(struct dccp_hdr);
1603 		break;
1604 	case IPPROTO_SCTP:
1605 		poff += sizeof(struct sctphdr);
1606 		break;
1607 	}
1608 
1609 	return poff;
1610 }
1611 
1612 /**
1613  * skb_get_poff - get the offset to the payload
1614  * @skb: sk_buff to get the payload offset from
1615  *
1616  * The function will get the offset to the payload as far as it could
1617  * be dissected.  The main user is currently BPF, so that we can dynamically
1618  * truncate packets without needing to push actual payload to the user
1619  * space and can analyze headers only, instead.
1620  */
1621 u32 skb_get_poff(const struct sk_buff *skb)
1622 {
1623 	struct flow_keys_basic keys;
1624 
1625 	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1626 					      NULL, 0, 0, 0, 0))
1627 		return 0;
1628 
1629 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1630 }
1631 
1632 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1633 {
1634 	memset(keys, 0, sizeof(*keys));
1635 
1636 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1637 	    sizeof(keys->addrs.v6addrs.src));
1638 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1639 	    sizeof(keys->addrs.v6addrs.dst));
1640 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1641 	keys->ports.src = fl6->fl6_sport;
1642 	keys->ports.dst = fl6->fl6_dport;
1643 	keys->keyid.keyid = fl6->fl6_gre_key;
1644 	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1645 	keys->basic.ip_proto = fl6->flowi6_proto;
1646 
1647 	return flow_hash_from_keys(keys);
1648 }
1649 EXPORT_SYMBOL(__get_hash_from_flowi6);
1650 
1651 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1652 	{
1653 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1654 		.offset = offsetof(struct flow_keys, control),
1655 	},
1656 	{
1657 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1658 		.offset = offsetof(struct flow_keys, basic),
1659 	},
1660 	{
1661 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1662 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1663 	},
1664 	{
1665 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1666 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1667 	},
1668 	{
1669 		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1670 		.offset = offsetof(struct flow_keys, addrs.tipckey),
1671 	},
1672 	{
1673 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1674 		.offset = offsetof(struct flow_keys, ports),
1675 	},
1676 	{
1677 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1678 		.offset = offsetof(struct flow_keys, vlan),
1679 	},
1680 	{
1681 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1682 		.offset = offsetof(struct flow_keys, tags),
1683 	},
1684 	{
1685 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1686 		.offset = offsetof(struct flow_keys, keyid),
1687 	},
1688 };
1689 
1690 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1691 	{
1692 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1693 		.offset = offsetof(struct flow_keys, control),
1694 	},
1695 	{
1696 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1697 		.offset = offsetof(struct flow_keys, basic),
1698 	},
1699 	{
1700 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1701 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1702 	},
1703 	{
1704 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1705 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1706 	},
1707 	{
1708 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1709 		.offset = offsetof(struct flow_keys, ports),
1710 	},
1711 };
1712 
1713 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1714 	{
1715 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1716 		.offset = offsetof(struct flow_keys, control),
1717 	},
1718 	{
1719 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1720 		.offset = offsetof(struct flow_keys, basic),
1721 	},
1722 };
1723 
1724 struct flow_dissector flow_keys_dissector __read_mostly;
1725 EXPORT_SYMBOL(flow_keys_dissector);
1726 
1727 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1728 EXPORT_SYMBOL(flow_keys_basic_dissector);
1729 
1730 static int __init init_default_flow_dissectors(void)
1731 {
1732 	skb_flow_dissector_init(&flow_keys_dissector,
1733 				flow_keys_dissector_keys,
1734 				ARRAY_SIZE(flow_keys_dissector_keys));
1735 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1736 				flow_keys_dissector_symmetric_keys,
1737 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1738 	skb_flow_dissector_init(&flow_keys_basic_dissector,
1739 				flow_keys_basic_dissector_keys,
1740 				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1741 	return 0;
1742 }
1743 
1744 core_initcall(init_default_flow_dissectors);
1745