xref: /openbmc/linux/net/core/flow_dissector.c (revision 323dd2c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <net/dsa.h>
9 #include <net/dst_metadata.h>
10 #include <net/ip.h>
11 #include <net/ipv6.h>
12 #include <net/gre.h>
13 #include <net/pptp.h>
14 #include <net/tipc.h>
15 #include <linux/igmp.h>
16 #include <linux/icmp.h>
17 #include <linux/sctp.h>
18 #include <linux/dccp.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/if_pppox.h>
21 #include <linux/ppp_defs.h>
22 #include <linux/stddef.h>
23 #include <linux/if_ether.h>
24 #include <linux/mpls.h>
25 #include <linux/tcp.h>
26 #include <net/flow_dissector.h>
27 #include <scsi/fc/fc_fcoe.h>
28 #include <uapi/linux/batadv_packet.h>
29 #include <linux/bpf.h>
30 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
31 #include <net/netfilter/nf_conntrack_core.h>
32 #include <net/netfilter/nf_conntrack_labels.h>
33 #endif
34 
35 static DEFINE_MUTEX(flow_dissector_mutex);
36 
37 static void dissector_set_key(struct flow_dissector *flow_dissector,
38 			      enum flow_dissector_key_id key_id)
39 {
40 	flow_dissector->used_keys |= (1 << key_id);
41 }
42 
43 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
44 			     const struct flow_dissector_key *key,
45 			     unsigned int key_count)
46 {
47 	unsigned int i;
48 
49 	memset(flow_dissector, 0, sizeof(*flow_dissector));
50 
51 	for (i = 0; i < key_count; i++, key++) {
52 		/* User should make sure that every key target offset is withing
53 		 * boundaries of unsigned short.
54 		 */
55 		BUG_ON(key->offset > USHRT_MAX);
56 		BUG_ON(dissector_uses_key(flow_dissector,
57 					  key->key_id));
58 
59 		dissector_set_key(flow_dissector, key->key_id);
60 		flow_dissector->offset[key->key_id] = key->offset;
61 	}
62 
63 	/* Ensure that the dissector always includes control and basic key.
64 	 * That way we are able to avoid handling lack of these in fast path.
65 	 */
66 	BUG_ON(!dissector_uses_key(flow_dissector,
67 				   FLOW_DISSECTOR_KEY_CONTROL));
68 	BUG_ON(!dissector_uses_key(flow_dissector,
69 				   FLOW_DISSECTOR_KEY_BASIC));
70 }
71 EXPORT_SYMBOL(skb_flow_dissector_init);
72 
73 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
74 				  union bpf_attr __user *uattr)
75 {
76 	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
77 	u32 prog_id, prog_cnt = 0, flags = 0;
78 	struct bpf_prog *attached;
79 	struct net *net;
80 
81 	if (attr->query.query_flags)
82 		return -EINVAL;
83 
84 	net = get_net_ns_by_fd(attr->query.target_fd);
85 	if (IS_ERR(net))
86 		return PTR_ERR(net);
87 
88 	rcu_read_lock();
89 	attached = rcu_dereference(net->flow_dissector_prog);
90 	if (attached) {
91 		prog_cnt = 1;
92 		prog_id = attached->aux->id;
93 	}
94 	rcu_read_unlock();
95 
96 	put_net(net);
97 
98 	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
99 		return -EFAULT;
100 	if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt)))
101 		return -EFAULT;
102 
103 	if (!attr->query.prog_cnt || !prog_ids || !prog_cnt)
104 		return 0;
105 
106 	if (copy_to_user(prog_ids, &prog_id, sizeof(u32)))
107 		return -EFAULT;
108 
109 	return 0;
110 }
111 
112 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
113 				       struct bpf_prog *prog)
114 {
115 	struct bpf_prog *attached;
116 	struct net *net;
117 	int ret = 0;
118 
119 	net = current->nsproxy->net_ns;
120 	mutex_lock(&flow_dissector_mutex);
121 
122 	if (net == &init_net) {
123 		/* BPF flow dissector in the root namespace overrides
124 		 * any per-net-namespace one. When attaching to root,
125 		 * make sure we don't have any BPF program attached
126 		 * to the non-root namespaces.
127 		 */
128 		struct net *ns;
129 
130 		for_each_net(ns) {
131 			if (ns == &init_net)
132 				continue;
133 			if (rcu_access_pointer(ns->flow_dissector_prog)) {
134 				ret = -EEXIST;
135 				goto out;
136 			}
137 		}
138 	} else {
139 		/* Make sure root flow dissector is not attached
140 		 * when attaching to the non-root namespace.
141 		 */
142 		if (rcu_access_pointer(init_net.flow_dissector_prog)) {
143 			ret = -EEXIST;
144 			goto out;
145 		}
146 	}
147 
148 	attached = rcu_dereference_protected(net->flow_dissector_prog,
149 					     lockdep_is_held(&flow_dissector_mutex));
150 	if (attached == prog) {
151 		/* The same program cannot be attached twice */
152 		ret = -EINVAL;
153 		goto out;
154 	}
155 	rcu_assign_pointer(net->flow_dissector_prog, prog);
156 	if (attached)
157 		bpf_prog_put(attached);
158 out:
159 	mutex_unlock(&flow_dissector_mutex);
160 	return ret;
161 }
162 
163 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
164 {
165 	struct bpf_prog *attached;
166 	struct net *net;
167 
168 	net = current->nsproxy->net_ns;
169 	mutex_lock(&flow_dissector_mutex);
170 	attached = rcu_dereference_protected(net->flow_dissector_prog,
171 					     lockdep_is_held(&flow_dissector_mutex));
172 	if (!attached) {
173 		mutex_unlock(&flow_dissector_mutex);
174 		return -ENOENT;
175 	}
176 	RCU_INIT_POINTER(net->flow_dissector_prog, NULL);
177 	bpf_prog_put(attached);
178 	mutex_unlock(&flow_dissector_mutex);
179 	return 0;
180 }
181 
182 /**
183  * __skb_flow_get_ports - extract the upper layer ports and return them
184  * @skb: sk_buff to extract the ports from
185  * @thoff: transport header offset
186  * @ip_proto: protocol for which to get port offset
187  * @data: raw buffer pointer to the packet, if NULL use skb->data
188  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
189  *
190  * The function will try to retrieve the ports at offset thoff + poff where poff
191  * is the protocol port offset returned from proto_ports_offset
192  */
193 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
194 			    void *data, int hlen)
195 {
196 	int poff = proto_ports_offset(ip_proto);
197 
198 	if (!data) {
199 		data = skb->data;
200 		hlen = skb_headlen(skb);
201 	}
202 
203 	if (poff >= 0) {
204 		__be32 *ports, _ports;
205 
206 		ports = __skb_header_pointer(skb, thoff + poff,
207 					     sizeof(_ports), data, hlen, &_ports);
208 		if (ports)
209 			return *ports;
210 	}
211 
212 	return 0;
213 }
214 EXPORT_SYMBOL(__skb_flow_get_ports);
215 
216 static bool icmp_has_id(u8 type)
217 {
218 	switch (type) {
219 	case ICMP_ECHO:
220 	case ICMP_ECHOREPLY:
221 	case ICMP_TIMESTAMP:
222 	case ICMP_TIMESTAMPREPLY:
223 	case ICMPV6_ECHO_REQUEST:
224 	case ICMPV6_ECHO_REPLY:
225 		return true;
226 	}
227 
228 	return false;
229 }
230 
231 /**
232  * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
233  * @skb: sk_buff to extract from
234  * @key_icmp: struct flow_dissector_key_icmp to fill
235  * @data: raw buffer pointer to the packet
236  * @toff: offset to extract at
237  * @hlen: packet header length
238  */
239 void skb_flow_get_icmp_tci(const struct sk_buff *skb,
240 			   struct flow_dissector_key_icmp *key_icmp,
241 			   void *data, int thoff, int hlen)
242 {
243 	struct icmphdr *ih, _ih;
244 
245 	ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
246 	if (!ih)
247 		return;
248 
249 	key_icmp->type = ih->type;
250 	key_icmp->code = ih->code;
251 
252 	/* As we use 0 to signal that the Id field is not present,
253 	 * avoid confusion with packets without such field
254 	 */
255 	if (icmp_has_id(ih->type))
256 		key_icmp->id = ih->un.echo.id ? : 1;
257 	else
258 		key_icmp->id = 0;
259 }
260 EXPORT_SYMBOL(skb_flow_get_icmp_tci);
261 
262 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
263  * using skb_flow_get_icmp_tci().
264  */
265 static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
266 				    struct flow_dissector *flow_dissector,
267 				    void *target_container,
268 				    void *data, int thoff, int hlen)
269 {
270 	struct flow_dissector_key_icmp *key_icmp;
271 
272 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
273 		return;
274 
275 	key_icmp = skb_flow_dissector_target(flow_dissector,
276 					     FLOW_DISSECTOR_KEY_ICMP,
277 					     target_container);
278 
279 	skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
280 }
281 
282 void skb_flow_dissect_meta(const struct sk_buff *skb,
283 			   struct flow_dissector *flow_dissector,
284 			   void *target_container)
285 {
286 	struct flow_dissector_key_meta *meta;
287 
288 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
289 		return;
290 
291 	meta = skb_flow_dissector_target(flow_dissector,
292 					 FLOW_DISSECTOR_KEY_META,
293 					 target_container);
294 	meta->ingress_ifindex = skb->skb_iif;
295 }
296 EXPORT_SYMBOL(skb_flow_dissect_meta);
297 
298 static void
299 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
300 				   struct flow_dissector *flow_dissector,
301 				   void *target_container)
302 {
303 	struct flow_dissector_key_control *ctrl;
304 
305 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
306 		return;
307 
308 	ctrl = skb_flow_dissector_target(flow_dissector,
309 					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
310 					 target_container);
311 	ctrl->addr_type = type;
312 }
313 
314 void
315 skb_flow_dissect_ct(const struct sk_buff *skb,
316 		    struct flow_dissector *flow_dissector,
317 		    void *target_container,
318 		    u16 *ctinfo_map,
319 		    size_t mapsize)
320 {
321 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
322 	struct flow_dissector_key_ct *key;
323 	enum ip_conntrack_info ctinfo;
324 	struct nf_conn_labels *cl;
325 	struct nf_conn *ct;
326 
327 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
328 		return;
329 
330 	ct = nf_ct_get(skb, &ctinfo);
331 	if (!ct)
332 		return;
333 
334 	key = skb_flow_dissector_target(flow_dissector,
335 					FLOW_DISSECTOR_KEY_CT,
336 					target_container);
337 
338 	if (ctinfo < mapsize)
339 		key->ct_state = ctinfo_map[ctinfo];
340 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
341 	key->ct_zone = ct->zone.id;
342 #endif
343 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
344 	key->ct_mark = ct->mark;
345 #endif
346 
347 	cl = nf_ct_labels_find(ct);
348 	if (cl)
349 		memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
350 #endif /* CONFIG_NF_CONNTRACK */
351 }
352 EXPORT_SYMBOL(skb_flow_dissect_ct);
353 
354 void
355 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
356 			     struct flow_dissector *flow_dissector,
357 			     void *target_container)
358 {
359 	struct ip_tunnel_info *info;
360 	struct ip_tunnel_key *key;
361 
362 	/* A quick check to see if there might be something to do. */
363 	if (!dissector_uses_key(flow_dissector,
364 				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
365 	    !dissector_uses_key(flow_dissector,
366 				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
367 	    !dissector_uses_key(flow_dissector,
368 				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
369 	    !dissector_uses_key(flow_dissector,
370 				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
371 	    !dissector_uses_key(flow_dissector,
372 				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
373 	    !dissector_uses_key(flow_dissector,
374 				FLOW_DISSECTOR_KEY_ENC_IP) &&
375 	    !dissector_uses_key(flow_dissector,
376 				FLOW_DISSECTOR_KEY_ENC_OPTS))
377 		return;
378 
379 	info = skb_tunnel_info(skb);
380 	if (!info)
381 		return;
382 
383 	key = &info->key;
384 
385 	switch (ip_tunnel_info_af(info)) {
386 	case AF_INET:
387 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
388 						   flow_dissector,
389 						   target_container);
390 		if (dissector_uses_key(flow_dissector,
391 				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
392 			struct flow_dissector_key_ipv4_addrs *ipv4;
393 
394 			ipv4 = skb_flow_dissector_target(flow_dissector,
395 							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
396 							 target_container);
397 			ipv4->src = key->u.ipv4.src;
398 			ipv4->dst = key->u.ipv4.dst;
399 		}
400 		break;
401 	case AF_INET6:
402 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
403 						   flow_dissector,
404 						   target_container);
405 		if (dissector_uses_key(flow_dissector,
406 				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
407 			struct flow_dissector_key_ipv6_addrs *ipv6;
408 
409 			ipv6 = skb_flow_dissector_target(flow_dissector,
410 							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
411 							 target_container);
412 			ipv6->src = key->u.ipv6.src;
413 			ipv6->dst = key->u.ipv6.dst;
414 		}
415 		break;
416 	}
417 
418 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
419 		struct flow_dissector_key_keyid *keyid;
420 
421 		keyid = skb_flow_dissector_target(flow_dissector,
422 						  FLOW_DISSECTOR_KEY_ENC_KEYID,
423 						  target_container);
424 		keyid->keyid = tunnel_id_to_key32(key->tun_id);
425 	}
426 
427 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
428 		struct flow_dissector_key_ports *tp;
429 
430 		tp = skb_flow_dissector_target(flow_dissector,
431 					       FLOW_DISSECTOR_KEY_ENC_PORTS,
432 					       target_container);
433 		tp->src = key->tp_src;
434 		tp->dst = key->tp_dst;
435 	}
436 
437 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
438 		struct flow_dissector_key_ip *ip;
439 
440 		ip = skb_flow_dissector_target(flow_dissector,
441 					       FLOW_DISSECTOR_KEY_ENC_IP,
442 					       target_container);
443 		ip->tos = key->tos;
444 		ip->ttl = key->ttl;
445 	}
446 
447 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
448 		struct flow_dissector_key_enc_opts *enc_opt;
449 
450 		enc_opt = skb_flow_dissector_target(flow_dissector,
451 						    FLOW_DISSECTOR_KEY_ENC_OPTS,
452 						    target_container);
453 
454 		if (info->options_len) {
455 			enc_opt->len = info->options_len;
456 			ip_tunnel_info_opts_get(enc_opt->data, info);
457 			enc_opt->dst_opt_type = info->key.tun_flags &
458 						TUNNEL_OPTIONS_PRESENT;
459 		}
460 	}
461 }
462 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
463 
464 static enum flow_dissect_ret
465 __skb_flow_dissect_mpls(const struct sk_buff *skb,
466 			struct flow_dissector *flow_dissector,
467 			void *target_container, void *data, int nhoff, int hlen)
468 {
469 	struct flow_dissector_key_keyid *key_keyid;
470 	struct mpls_label *hdr, _hdr[2];
471 	u32 entry, label;
472 
473 	if (!dissector_uses_key(flow_dissector,
474 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
475 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
476 		return FLOW_DISSECT_RET_OUT_GOOD;
477 
478 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
479 				   hlen, &_hdr);
480 	if (!hdr)
481 		return FLOW_DISSECT_RET_OUT_BAD;
482 
483 	entry = ntohl(hdr[0].entry);
484 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
485 
486 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
487 		struct flow_dissector_key_mpls *key_mpls;
488 
489 		key_mpls = skb_flow_dissector_target(flow_dissector,
490 						     FLOW_DISSECTOR_KEY_MPLS,
491 						     target_container);
492 		key_mpls->mpls_label = label;
493 		key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
494 					>> MPLS_LS_TTL_SHIFT;
495 		key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
496 					>> MPLS_LS_TC_SHIFT;
497 		key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
498 					>> MPLS_LS_S_SHIFT;
499 	}
500 
501 	if (label == MPLS_LABEL_ENTROPY) {
502 		key_keyid = skb_flow_dissector_target(flow_dissector,
503 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
504 						      target_container);
505 		key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
506 	}
507 	return FLOW_DISSECT_RET_OUT_GOOD;
508 }
509 
510 static enum flow_dissect_ret
511 __skb_flow_dissect_arp(const struct sk_buff *skb,
512 		       struct flow_dissector *flow_dissector,
513 		       void *target_container, void *data, int nhoff, int hlen)
514 {
515 	struct flow_dissector_key_arp *key_arp;
516 	struct {
517 		unsigned char ar_sha[ETH_ALEN];
518 		unsigned char ar_sip[4];
519 		unsigned char ar_tha[ETH_ALEN];
520 		unsigned char ar_tip[4];
521 	} *arp_eth, _arp_eth;
522 	const struct arphdr *arp;
523 	struct arphdr _arp;
524 
525 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
526 		return FLOW_DISSECT_RET_OUT_GOOD;
527 
528 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
529 				   hlen, &_arp);
530 	if (!arp)
531 		return FLOW_DISSECT_RET_OUT_BAD;
532 
533 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
534 	    arp->ar_pro != htons(ETH_P_IP) ||
535 	    arp->ar_hln != ETH_ALEN ||
536 	    arp->ar_pln != 4 ||
537 	    (arp->ar_op != htons(ARPOP_REPLY) &&
538 	     arp->ar_op != htons(ARPOP_REQUEST)))
539 		return FLOW_DISSECT_RET_OUT_BAD;
540 
541 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
542 				       sizeof(_arp_eth), data,
543 				       hlen, &_arp_eth);
544 	if (!arp_eth)
545 		return FLOW_DISSECT_RET_OUT_BAD;
546 
547 	key_arp = skb_flow_dissector_target(flow_dissector,
548 					    FLOW_DISSECTOR_KEY_ARP,
549 					    target_container);
550 
551 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
552 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
553 
554 	/* Only store the lower byte of the opcode;
555 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
556 	 */
557 	key_arp->op = ntohs(arp->ar_op) & 0xff;
558 
559 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
560 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
561 
562 	return FLOW_DISSECT_RET_OUT_GOOD;
563 }
564 
565 static enum flow_dissect_ret
566 __skb_flow_dissect_gre(const struct sk_buff *skb,
567 		       struct flow_dissector_key_control *key_control,
568 		       struct flow_dissector *flow_dissector,
569 		       void *target_container, void *data,
570 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
571 		       unsigned int flags)
572 {
573 	struct flow_dissector_key_keyid *key_keyid;
574 	struct gre_base_hdr *hdr, _hdr;
575 	int offset = 0;
576 	u16 gre_ver;
577 
578 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
579 				   data, *p_hlen, &_hdr);
580 	if (!hdr)
581 		return FLOW_DISSECT_RET_OUT_BAD;
582 
583 	/* Only look inside GRE without routing */
584 	if (hdr->flags & GRE_ROUTING)
585 		return FLOW_DISSECT_RET_OUT_GOOD;
586 
587 	/* Only look inside GRE for version 0 and 1 */
588 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
589 	if (gre_ver > 1)
590 		return FLOW_DISSECT_RET_OUT_GOOD;
591 
592 	*p_proto = hdr->protocol;
593 	if (gre_ver) {
594 		/* Version1 must be PPTP, and check the flags */
595 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
596 			return FLOW_DISSECT_RET_OUT_GOOD;
597 	}
598 
599 	offset += sizeof(struct gre_base_hdr);
600 
601 	if (hdr->flags & GRE_CSUM)
602 		offset += FIELD_SIZEOF(struct gre_full_hdr, csum) +
603 			  FIELD_SIZEOF(struct gre_full_hdr, reserved1);
604 
605 	if (hdr->flags & GRE_KEY) {
606 		const __be32 *keyid;
607 		__be32 _keyid;
608 
609 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
610 					     sizeof(_keyid),
611 					     data, *p_hlen, &_keyid);
612 		if (!keyid)
613 			return FLOW_DISSECT_RET_OUT_BAD;
614 
615 		if (dissector_uses_key(flow_dissector,
616 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
617 			key_keyid = skb_flow_dissector_target(flow_dissector,
618 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
619 							      target_container);
620 			if (gre_ver == 0)
621 				key_keyid->keyid = *keyid;
622 			else
623 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
624 		}
625 		offset += FIELD_SIZEOF(struct gre_full_hdr, key);
626 	}
627 
628 	if (hdr->flags & GRE_SEQ)
629 		offset += FIELD_SIZEOF(struct pptp_gre_header, seq);
630 
631 	if (gre_ver == 0) {
632 		if (*p_proto == htons(ETH_P_TEB)) {
633 			const struct ethhdr *eth;
634 			struct ethhdr _eth;
635 
636 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
637 						   sizeof(_eth),
638 						   data, *p_hlen, &_eth);
639 			if (!eth)
640 				return FLOW_DISSECT_RET_OUT_BAD;
641 			*p_proto = eth->h_proto;
642 			offset += sizeof(*eth);
643 
644 			/* Cap headers that we access via pointers at the
645 			 * end of the Ethernet header as our maximum alignment
646 			 * at that point is only 2 bytes.
647 			 */
648 			if (NET_IP_ALIGN)
649 				*p_hlen = *p_nhoff + offset;
650 		}
651 	} else { /* version 1, must be PPTP */
652 		u8 _ppp_hdr[PPP_HDRLEN];
653 		u8 *ppp_hdr;
654 
655 		if (hdr->flags & GRE_ACK)
656 			offset += FIELD_SIZEOF(struct pptp_gre_header, ack);
657 
658 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
659 					       sizeof(_ppp_hdr),
660 					       data, *p_hlen, _ppp_hdr);
661 		if (!ppp_hdr)
662 			return FLOW_DISSECT_RET_OUT_BAD;
663 
664 		switch (PPP_PROTOCOL(ppp_hdr)) {
665 		case PPP_IP:
666 			*p_proto = htons(ETH_P_IP);
667 			break;
668 		case PPP_IPV6:
669 			*p_proto = htons(ETH_P_IPV6);
670 			break;
671 		default:
672 			/* Could probably catch some more like MPLS */
673 			break;
674 		}
675 
676 		offset += PPP_HDRLEN;
677 	}
678 
679 	*p_nhoff += offset;
680 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
681 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
682 		return FLOW_DISSECT_RET_OUT_GOOD;
683 
684 	return FLOW_DISSECT_RET_PROTO_AGAIN;
685 }
686 
687 /**
688  * __skb_flow_dissect_batadv() - dissect batman-adv header
689  * @skb: sk_buff to with the batman-adv header
690  * @key_control: flow dissectors control key
691  * @data: raw buffer pointer to the packet, if NULL use skb->data
692  * @p_proto: pointer used to update the protocol to process next
693  * @p_nhoff: pointer used to update inner network header offset
694  * @hlen: packet header length
695  * @flags: any combination of FLOW_DISSECTOR_F_*
696  *
697  * ETH_P_BATMAN packets are tried to be dissected. Only
698  * &struct batadv_unicast packets are actually processed because they contain an
699  * inner ethernet header and are usually followed by actual network header. This
700  * allows the flow dissector to continue processing the packet.
701  *
702  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
703  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
704  *  otherwise FLOW_DISSECT_RET_OUT_BAD
705  */
706 static enum flow_dissect_ret
707 __skb_flow_dissect_batadv(const struct sk_buff *skb,
708 			  struct flow_dissector_key_control *key_control,
709 			  void *data, __be16 *p_proto, int *p_nhoff, int hlen,
710 			  unsigned int flags)
711 {
712 	struct {
713 		struct batadv_unicast_packet batadv_unicast;
714 		struct ethhdr eth;
715 	} *hdr, _hdr;
716 
717 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
718 				   &_hdr);
719 	if (!hdr)
720 		return FLOW_DISSECT_RET_OUT_BAD;
721 
722 	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
723 		return FLOW_DISSECT_RET_OUT_BAD;
724 
725 	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
726 		return FLOW_DISSECT_RET_OUT_BAD;
727 
728 	*p_proto = hdr->eth.h_proto;
729 	*p_nhoff += sizeof(*hdr);
730 
731 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
732 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
733 		return FLOW_DISSECT_RET_OUT_GOOD;
734 
735 	return FLOW_DISSECT_RET_PROTO_AGAIN;
736 }
737 
738 static void
739 __skb_flow_dissect_tcp(const struct sk_buff *skb,
740 		       struct flow_dissector *flow_dissector,
741 		       void *target_container, void *data, int thoff, int hlen)
742 {
743 	struct flow_dissector_key_tcp *key_tcp;
744 	struct tcphdr *th, _th;
745 
746 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
747 		return;
748 
749 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
750 	if (!th)
751 		return;
752 
753 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
754 		return;
755 
756 	key_tcp = skb_flow_dissector_target(flow_dissector,
757 					    FLOW_DISSECTOR_KEY_TCP,
758 					    target_container);
759 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
760 }
761 
762 static void
763 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
764 			struct flow_dissector *flow_dissector,
765 			void *target_container, void *data, const struct iphdr *iph)
766 {
767 	struct flow_dissector_key_ip *key_ip;
768 
769 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
770 		return;
771 
772 	key_ip = skb_flow_dissector_target(flow_dissector,
773 					   FLOW_DISSECTOR_KEY_IP,
774 					   target_container);
775 	key_ip->tos = iph->tos;
776 	key_ip->ttl = iph->ttl;
777 }
778 
779 static void
780 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
781 			struct flow_dissector *flow_dissector,
782 			void *target_container, void *data, const struct ipv6hdr *iph)
783 {
784 	struct flow_dissector_key_ip *key_ip;
785 
786 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
787 		return;
788 
789 	key_ip = skb_flow_dissector_target(flow_dissector,
790 					   FLOW_DISSECTOR_KEY_IP,
791 					   target_container);
792 	key_ip->tos = ipv6_get_dsfield(iph);
793 	key_ip->ttl = iph->hop_limit;
794 }
795 
796 /* Maximum number of protocol headers that can be parsed in
797  * __skb_flow_dissect
798  */
799 #define MAX_FLOW_DISSECT_HDRS	15
800 
801 static bool skb_flow_dissect_allowed(int *num_hdrs)
802 {
803 	++*num_hdrs;
804 
805 	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
806 }
807 
808 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
809 				     struct flow_dissector *flow_dissector,
810 				     void *target_container)
811 {
812 	struct flow_dissector_key_control *key_control;
813 	struct flow_dissector_key_basic *key_basic;
814 	struct flow_dissector_key_addrs *key_addrs;
815 	struct flow_dissector_key_ports *key_ports;
816 	struct flow_dissector_key_tags *key_tags;
817 
818 	key_control = skb_flow_dissector_target(flow_dissector,
819 						FLOW_DISSECTOR_KEY_CONTROL,
820 						target_container);
821 	key_control->thoff = flow_keys->thoff;
822 	if (flow_keys->is_frag)
823 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
824 	if (flow_keys->is_first_frag)
825 		key_control->flags |= FLOW_DIS_FIRST_FRAG;
826 	if (flow_keys->is_encap)
827 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
828 
829 	key_basic = skb_flow_dissector_target(flow_dissector,
830 					      FLOW_DISSECTOR_KEY_BASIC,
831 					      target_container);
832 	key_basic->n_proto = flow_keys->n_proto;
833 	key_basic->ip_proto = flow_keys->ip_proto;
834 
835 	if (flow_keys->addr_proto == ETH_P_IP &&
836 	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
837 		key_addrs = skb_flow_dissector_target(flow_dissector,
838 						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
839 						      target_container);
840 		key_addrs->v4addrs.src = flow_keys->ipv4_src;
841 		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
842 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
843 	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
844 		   dissector_uses_key(flow_dissector,
845 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
846 		key_addrs = skb_flow_dissector_target(flow_dissector,
847 						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
848 						      target_container);
849 		memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
850 		       sizeof(key_addrs->v6addrs));
851 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
852 	}
853 
854 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) {
855 		key_ports = skb_flow_dissector_target(flow_dissector,
856 						      FLOW_DISSECTOR_KEY_PORTS,
857 						      target_container);
858 		key_ports->src = flow_keys->sport;
859 		key_ports->dst = flow_keys->dport;
860 	}
861 
862 	if (dissector_uses_key(flow_dissector,
863 			       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
864 		key_tags = skb_flow_dissector_target(flow_dissector,
865 						     FLOW_DISSECTOR_KEY_FLOW_LABEL,
866 						     target_container);
867 		key_tags->flow_label = ntohl(flow_keys->flow_label);
868 	}
869 }
870 
871 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
872 		      __be16 proto, int nhoff, int hlen, unsigned int flags)
873 {
874 	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
875 	u32 result;
876 
877 	/* Pass parameters to the BPF program */
878 	memset(flow_keys, 0, sizeof(*flow_keys));
879 	flow_keys->n_proto = proto;
880 	flow_keys->nhoff = nhoff;
881 	flow_keys->thoff = flow_keys->nhoff;
882 
883 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
884 		     (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
885 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
886 		     (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
887 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
888 		     (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
889 	flow_keys->flags = flags;
890 
891 	preempt_disable();
892 	result = BPF_PROG_RUN(prog, ctx);
893 	preempt_enable();
894 
895 	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
896 	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
897 				   flow_keys->nhoff, hlen);
898 
899 	return result == BPF_OK;
900 }
901 
902 /**
903  * __skb_flow_dissect - extract the flow_keys struct and return it
904  * @net: associated network namespace, derived from @skb if NULL
905  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
906  * @flow_dissector: list of keys to dissect
907  * @target_container: target structure to put dissected values into
908  * @data: raw buffer pointer to the packet, if NULL use skb->data
909  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
910  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
911  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
912  * @flags: flags that control the dissection process, e.g.
913  *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
914  *
915  * The function will try to retrieve individual keys into target specified
916  * by flow_dissector from either the skbuff or a raw buffer specified by the
917  * rest parameters.
918  *
919  * Caller must take care of zeroing target container memory.
920  */
921 bool __skb_flow_dissect(const struct net *net,
922 			const struct sk_buff *skb,
923 			struct flow_dissector *flow_dissector,
924 			void *target_container,
925 			void *data, __be16 proto, int nhoff, int hlen,
926 			unsigned int flags)
927 {
928 	struct flow_dissector_key_control *key_control;
929 	struct flow_dissector_key_basic *key_basic;
930 	struct flow_dissector_key_addrs *key_addrs;
931 	struct flow_dissector_key_ports *key_ports;
932 	struct flow_dissector_key_tags *key_tags;
933 	struct flow_dissector_key_vlan *key_vlan;
934 	struct bpf_prog *attached = NULL;
935 	enum flow_dissect_ret fdret;
936 	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
937 	int num_hdrs = 0;
938 	u8 ip_proto = 0;
939 	bool ret;
940 
941 	if (!data) {
942 		data = skb->data;
943 		proto = skb_vlan_tag_present(skb) ?
944 			 skb->vlan_proto : skb->protocol;
945 		nhoff = skb_network_offset(skb);
946 		hlen = skb_headlen(skb);
947 #if IS_ENABLED(CONFIG_NET_DSA)
948 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
949 			const struct dsa_device_ops *ops;
950 			int offset;
951 
952 			ops = skb->dev->dsa_ptr->tag_ops;
953 			if (ops->flow_dissect &&
954 			    !ops->flow_dissect(skb, &proto, &offset)) {
955 				hlen -= offset;
956 				nhoff += offset;
957 			}
958 		}
959 #endif
960 	}
961 
962 	/* It is ensured by skb_flow_dissector_init() that control key will
963 	 * be always present.
964 	 */
965 	key_control = skb_flow_dissector_target(flow_dissector,
966 						FLOW_DISSECTOR_KEY_CONTROL,
967 						target_container);
968 
969 	/* It is ensured by skb_flow_dissector_init() that basic key will
970 	 * be always present.
971 	 */
972 	key_basic = skb_flow_dissector_target(flow_dissector,
973 					      FLOW_DISSECTOR_KEY_BASIC,
974 					      target_container);
975 
976 	if (skb) {
977 		if (!net) {
978 			if (skb->dev)
979 				net = dev_net(skb->dev);
980 			else if (skb->sk)
981 				net = sock_net(skb->sk);
982 		}
983 	}
984 
985 	WARN_ON_ONCE(!net);
986 	if (net) {
987 		rcu_read_lock();
988 		attached = rcu_dereference(init_net.flow_dissector_prog);
989 
990 		if (!attached)
991 			attached = rcu_dereference(net->flow_dissector_prog);
992 
993 		if (attached) {
994 			struct bpf_flow_keys flow_keys;
995 			struct bpf_flow_dissector ctx = {
996 				.flow_keys = &flow_keys,
997 				.data = data,
998 				.data_end = data + hlen,
999 			};
1000 			__be16 n_proto = proto;
1001 
1002 			if (skb) {
1003 				ctx.skb = skb;
1004 				/* we can't use 'proto' in the skb case
1005 				 * because it might be set to skb->vlan_proto
1006 				 * which has been pulled from the data
1007 				 */
1008 				n_proto = skb->protocol;
1009 			}
1010 
1011 			ret = bpf_flow_dissect(attached, &ctx, n_proto, nhoff,
1012 					       hlen, flags);
1013 			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
1014 						 target_container);
1015 			rcu_read_unlock();
1016 			return ret;
1017 		}
1018 		rcu_read_unlock();
1019 	}
1020 
1021 	if (dissector_uses_key(flow_dissector,
1022 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1023 		struct ethhdr *eth = eth_hdr(skb);
1024 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
1025 
1026 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
1027 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
1028 							  target_container);
1029 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
1030 	}
1031 
1032 proto_again:
1033 	fdret = FLOW_DISSECT_RET_CONTINUE;
1034 
1035 	switch (proto) {
1036 	case htons(ETH_P_IP): {
1037 		const struct iphdr *iph;
1038 		struct iphdr _iph;
1039 
1040 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1041 		if (!iph || iph->ihl < 5) {
1042 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1043 			break;
1044 		}
1045 
1046 		nhoff += iph->ihl * 4;
1047 
1048 		ip_proto = iph->protocol;
1049 
1050 		if (dissector_uses_key(flow_dissector,
1051 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1052 			key_addrs = skb_flow_dissector_target(flow_dissector,
1053 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1054 							      target_container);
1055 
1056 			memcpy(&key_addrs->v4addrs, &iph->saddr,
1057 			       sizeof(key_addrs->v4addrs));
1058 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1059 		}
1060 
1061 		if (ip_is_fragment(iph)) {
1062 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1063 
1064 			if (iph->frag_off & htons(IP_OFFSET)) {
1065 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1066 				break;
1067 			} else {
1068 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
1069 				if (!(flags &
1070 				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1071 					fdret = FLOW_DISSECT_RET_OUT_GOOD;
1072 					break;
1073 				}
1074 			}
1075 		}
1076 
1077 		__skb_flow_dissect_ipv4(skb, flow_dissector,
1078 					target_container, data, iph);
1079 
1080 		break;
1081 	}
1082 	case htons(ETH_P_IPV6): {
1083 		const struct ipv6hdr *iph;
1084 		struct ipv6hdr _iph;
1085 
1086 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1087 		if (!iph) {
1088 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1089 			break;
1090 		}
1091 
1092 		ip_proto = iph->nexthdr;
1093 		nhoff += sizeof(struct ipv6hdr);
1094 
1095 		if (dissector_uses_key(flow_dissector,
1096 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1097 			key_addrs = skb_flow_dissector_target(flow_dissector,
1098 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1099 							      target_container);
1100 
1101 			memcpy(&key_addrs->v6addrs, &iph->saddr,
1102 			       sizeof(key_addrs->v6addrs));
1103 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1104 		}
1105 
1106 		if ((dissector_uses_key(flow_dissector,
1107 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1108 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1109 		    ip6_flowlabel(iph)) {
1110 			__be32 flow_label = ip6_flowlabel(iph);
1111 
1112 			if (dissector_uses_key(flow_dissector,
1113 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1114 				key_tags = skb_flow_dissector_target(flow_dissector,
1115 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
1116 								     target_container);
1117 				key_tags->flow_label = ntohl(flow_label);
1118 			}
1119 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1120 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1121 				break;
1122 			}
1123 		}
1124 
1125 		__skb_flow_dissect_ipv6(skb, flow_dissector,
1126 					target_container, data, iph);
1127 
1128 		break;
1129 	}
1130 	case htons(ETH_P_8021AD):
1131 	case htons(ETH_P_8021Q): {
1132 		const struct vlan_hdr *vlan = NULL;
1133 		struct vlan_hdr _vlan;
1134 		__be16 saved_vlan_tpid = proto;
1135 
1136 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1137 		    skb && skb_vlan_tag_present(skb)) {
1138 			proto = skb->protocol;
1139 		} else {
1140 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1141 						    data, hlen, &_vlan);
1142 			if (!vlan) {
1143 				fdret = FLOW_DISSECT_RET_OUT_BAD;
1144 				break;
1145 			}
1146 
1147 			proto = vlan->h_vlan_encapsulated_proto;
1148 			nhoff += sizeof(*vlan);
1149 		}
1150 
1151 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1152 			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1153 		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1154 			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1155 		} else {
1156 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1157 			break;
1158 		}
1159 
1160 		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1161 			key_vlan = skb_flow_dissector_target(flow_dissector,
1162 							     dissector_vlan,
1163 							     target_container);
1164 
1165 			if (!vlan) {
1166 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1167 				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1168 			} else {
1169 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1170 					VLAN_VID_MASK;
1171 				key_vlan->vlan_priority =
1172 					(ntohs(vlan->h_vlan_TCI) &
1173 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1174 			}
1175 			key_vlan->vlan_tpid = saved_vlan_tpid;
1176 		}
1177 
1178 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1179 		break;
1180 	}
1181 	case htons(ETH_P_PPP_SES): {
1182 		struct {
1183 			struct pppoe_hdr hdr;
1184 			__be16 proto;
1185 		} *hdr, _hdr;
1186 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1187 		if (!hdr) {
1188 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1189 			break;
1190 		}
1191 
1192 		proto = hdr->proto;
1193 		nhoff += PPPOE_SES_HLEN;
1194 		switch (proto) {
1195 		case htons(PPP_IP):
1196 			proto = htons(ETH_P_IP);
1197 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1198 			break;
1199 		case htons(PPP_IPV6):
1200 			proto = htons(ETH_P_IPV6);
1201 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1202 			break;
1203 		default:
1204 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1205 			break;
1206 		}
1207 		break;
1208 	}
1209 	case htons(ETH_P_TIPC): {
1210 		struct tipc_basic_hdr *hdr, _hdr;
1211 
1212 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1213 					   data, hlen, &_hdr);
1214 		if (!hdr) {
1215 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1216 			break;
1217 		}
1218 
1219 		if (dissector_uses_key(flow_dissector,
1220 				       FLOW_DISSECTOR_KEY_TIPC)) {
1221 			key_addrs = skb_flow_dissector_target(flow_dissector,
1222 							      FLOW_DISSECTOR_KEY_TIPC,
1223 							      target_container);
1224 			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1225 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1226 		}
1227 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1228 		break;
1229 	}
1230 
1231 	case htons(ETH_P_MPLS_UC):
1232 	case htons(ETH_P_MPLS_MC):
1233 		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1234 						target_container, data,
1235 						nhoff, hlen);
1236 		break;
1237 	case htons(ETH_P_FCOE):
1238 		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1239 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1240 			break;
1241 		}
1242 
1243 		nhoff += FCOE_HEADER_LEN;
1244 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1245 		break;
1246 
1247 	case htons(ETH_P_ARP):
1248 	case htons(ETH_P_RARP):
1249 		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1250 					       target_container, data,
1251 					       nhoff, hlen);
1252 		break;
1253 
1254 	case htons(ETH_P_BATMAN):
1255 		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1256 						  &proto, &nhoff, hlen, flags);
1257 		break;
1258 
1259 	default:
1260 		fdret = FLOW_DISSECT_RET_OUT_BAD;
1261 		break;
1262 	}
1263 
1264 	/* Process result of proto processing */
1265 	switch (fdret) {
1266 	case FLOW_DISSECT_RET_OUT_GOOD:
1267 		goto out_good;
1268 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1269 		if (skb_flow_dissect_allowed(&num_hdrs))
1270 			goto proto_again;
1271 		goto out_good;
1272 	case FLOW_DISSECT_RET_CONTINUE:
1273 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1274 		break;
1275 	case FLOW_DISSECT_RET_OUT_BAD:
1276 	default:
1277 		goto out_bad;
1278 	}
1279 
1280 ip_proto_again:
1281 	fdret = FLOW_DISSECT_RET_CONTINUE;
1282 
1283 	switch (ip_proto) {
1284 	case IPPROTO_GRE:
1285 		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1286 					       target_container, data,
1287 					       &proto, &nhoff, &hlen, flags);
1288 		break;
1289 
1290 	case NEXTHDR_HOP:
1291 	case NEXTHDR_ROUTING:
1292 	case NEXTHDR_DEST: {
1293 		u8 _opthdr[2], *opthdr;
1294 
1295 		if (proto != htons(ETH_P_IPV6))
1296 			break;
1297 
1298 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1299 					      data, hlen, &_opthdr);
1300 		if (!opthdr) {
1301 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1302 			break;
1303 		}
1304 
1305 		ip_proto = opthdr[0];
1306 		nhoff += (opthdr[1] + 1) << 3;
1307 
1308 		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1309 		break;
1310 	}
1311 	case NEXTHDR_FRAGMENT: {
1312 		struct frag_hdr _fh, *fh;
1313 
1314 		if (proto != htons(ETH_P_IPV6))
1315 			break;
1316 
1317 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1318 					  data, hlen, &_fh);
1319 
1320 		if (!fh) {
1321 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1322 			break;
1323 		}
1324 
1325 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1326 
1327 		nhoff += sizeof(_fh);
1328 		ip_proto = fh->nexthdr;
1329 
1330 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1331 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1332 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1333 				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1334 				break;
1335 			}
1336 		}
1337 
1338 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1339 		break;
1340 	}
1341 	case IPPROTO_IPIP:
1342 		proto = htons(ETH_P_IP);
1343 
1344 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1345 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1346 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1347 			break;
1348 		}
1349 
1350 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1351 		break;
1352 
1353 	case IPPROTO_IPV6:
1354 		proto = htons(ETH_P_IPV6);
1355 
1356 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1357 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1358 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1359 			break;
1360 		}
1361 
1362 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1363 		break;
1364 
1365 
1366 	case IPPROTO_MPLS:
1367 		proto = htons(ETH_P_MPLS_UC);
1368 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1369 		break;
1370 
1371 	case IPPROTO_TCP:
1372 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1373 				       data, nhoff, hlen);
1374 		break;
1375 
1376 	case IPPROTO_ICMP:
1377 	case IPPROTO_ICMPV6:
1378 		__skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1379 					data, nhoff, hlen);
1380 		break;
1381 
1382 	default:
1383 		break;
1384 	}
1385 
1386 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS) &&
1387 	    !(key_control->flags & FLOW_DIS_IS_FRAGMENT)) {
1388 		key_ports = skb_flow_dissector_target(flow_dissector,
1389 						      FLOW_DISSECTOR_KEY_PORTS,
1390 						      target_container);
1391 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
1392 							data, hlen);
1393 	}
1394 
1395 	/* Process result of IP proto processing */
1396 	switch (fdret) {
1397 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1398 		if (skb_flow_dissect_allowed(&num_hdrs))
1399 			goto proto_again;
1400 		break;
1401 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1402 		if (skb_flow_dissect_allowed(&num_hdrs))
1403 			goto ip_proto_again;
1404 		break;
1405 	case FLOW_DISSECT_RET_OUT_GOOD:
1406 	case FLOW_DISSECT_RET_CONTINUE:
1407 		break;
1408 	case FLOW_DISSECT_RET_OUT_BAD:
1409 	default:
1410 		goto out_bad;
1411 	}
1412 
1413 out_good:
1414 	ret = true;
1415 
1416 out:
1417 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1418 	key_basic->n_proto = proto;
1419 	key_basic->ip_proto = ip_proto;
1420 
1421 	return ret;
1422 
1423 out_bad:
1424 	ret = false;
1425 	goto out;
1426 }
1427 EXPORT_SYMBOL(__skb_flow_dissect);
1428 
1429 static siphash_key_t hashrnd __read_mostly;
1430 static __always_inline void __flow_hash_secret_init(void)
1431 {
1432 	net_get_random_once(&hashrnd, sizeof(hashrnd));
1433 }
1434 
1435 static const void *flow_keys_hash_start(const struct flow_keys *flow)
1436 {
1437 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1438 	return &flow->FLOW_KEYS_HASH_START_FIELD;
1439 }
1440 
1441 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1442 {
1443 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1444 
1445 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1446 
1447 	switch (flow->control.addr_type) {
1448 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1449 		diff -= sizeof(flow->addrs.v4addrs);
1450 		break;
1451 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1452 		diff -= sizeof(flow->addrs.v6addrs);
1453 		break;
1454 	case FLOW_DISSECTOR_KEY_TIPC:
1455 		diff -= sizeof(flow->addrs.tipckey);
1456 		break;
1457 	}
1458 	return sizeof(*flow) - diff;
1459 }
1460 
1461 __be32 flow_get_u32_src(const struct flow_keys *flow)
1462 {
1463 	switch (flow->control.addr_type) {
1464 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1465 		return flow->addrs.v4addrs.src;
1466 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1467 		return (__force __be32)ipv6_addr_hash(
1468 			&flow->addrs.v6addrs.src);
1469 	case FLOW_DISSECTOR_KEY_TIPC:
1470 		return flow->addrs.tipckey.key;
1471 	default:
1472 		return 0;
1473 	}
1474 }
1475 EXPORT_SYMBOL(flow_get_u32_src);
1476 
1477 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1478 {
1479 	switch (flow->control.addr_type) {
1480 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1481 		return flow->addrs.v4addrs.dst;
1482 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1483 		return (__force __be32)ipv6_addr_hash(
1484 			&flow->addrs.v6addrs.dst);
1485 	default:
1486 		return 0;
1487 	}
1488 }
1489 EXPORT_SYMBOL(flow_get_u32_dst);
1490 
1491 /* Sort the source and destination IP (and the ports if the IP are the same),
1492  * to have consistent hash within the two directions
1493  */
1494 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1495 {
1496 	int addr_diff, i;
1497 
1498 	switch (keys->control.addr_type) {
1499 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1500 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1501 			    (__force u32)keys->addrs.v4addrs.src;
1502 		if ((addr_diff < 0) ||
1503 		    (addr_diff == 0 &&
1504 		     ((__force u16)keys->ports.dst <
1505 		      (__force u16)keys->ports.src))) {
1506 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1507 			swap(keys->ports.src, keys->ports.dst);
1508 		}
1509 		break;
1510 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1511 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1512 				   &keys->addrs.v6addrs.src,
1513 				   sizeof(keys->addrs.v6addrs.dst));
1514 		if ((addr_diff < 0) ||
1515 		    (addr_diff == 0 &&
1516 		     ((__force u16)keys->ports.dst <
1517 		      (__force u16)keys->ports.src))) {
1518 			for (i = 0; i < 4; i++)
1519 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1520 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1521 			swap(keys->ports.src, keys->ports.dst);
1522 		}
1523 		break;
1524 	}
1525 }
1526 
1527 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1528 					const siphash_key_t *keyval)
1529 {
1530 	u32 hash;
1531 
1532 	__flow_hash_consistentify(keys);
1533 
1534 	hash = siphash(flow_keys_hash_start(keys),
1535 		       flow_keys_hash_length(keys), keyval);
1536 	if (!hash)
1537 		hash = 1;
1538 
1539 	return hash;
1540 }
1541 
1542 u32 flow_hash_from_keys(struct flow_keys *keys)
1543 {
1544 	__flow_hash_secret_init();
1545 	return __flow_hash_from_keys(keys, &hashrnd);
1546 }
1547 EXPORT_SYMBOL(flow_hash_from_keys);
1548 
1549 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1550 				  struct flow_keys *keys,
1551 				  const siphash_key_t *keyval)
1552 {
1553 	skb_flow_dissect_flow_keys(skb, keys,
1554 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1555 
1556 	return __flow_hash_from_keys(keys, keyval);
1557 }
1558 
1559 struct _flow_keys_digest_data {
1560 	__be16	n_proto;
1561 	u8	ip_proto;
1562 	u8	padding;
1563 	__be32	ports;
1564 	__be32	src;
1565 	__be32	dst;
1566 };
1567 
1568 void make_flow_keys_digest(struct flow_keys_digest *digest,
1569 			   const struct flow_keys *flow)
1570 {
1571 	struct _flow_keys_digest_data *data =
1572 	    (struct _flow_keys_digest_data *)digest;
1573 
1574 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1575 
1576 	memset(digest, 0, sizeof(*digest));
1577 
1578 	data->n_proto = flow->basic.n_proto;
1579 	data->ip_proto = flow->basic.ip_proto;
1580 	data->ports = flow->ports.ports;
1581 	data->src = flow->addrs.v4addrs.src;
1582 	data->dst = flow->addrs.v4addrs.dst;
1583 }
1584 EXPORT_SYMBOL(make_flow_keys_digest);
1585 
1586 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1587 
1588 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1589 {
1590 	struct flow_keys keys;
1591 
1592 	__flow_hash_secret_init();
1593 
1594 	memset(&keys, 0, sizeof(keys));
1595 	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1596 			   &keys, NULL, 0, 0, 0,
1597 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1598 
1599 	return __flow_hash_from_keys(&keys, &hashrnd);
1600 }
1601 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1602 
1603 /**
1604  * __skb_get_hash: calculate a flow hash
1605  * @skb: sk_buff to calculate flow hash from
1606  *
1607  * This function calculates a flow hash based on src/dst addresses
1608  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1609  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1610  * if hash is a canonical 4-tuple hash over transport ports.
1611  */
1612 void __skb_get_hash(struct sk_buff *skb)
1613 {
1614 	struct flow_keys keys;
1615 	u32 hash;
1616 
1617 	__flow_hash_secret_init();
1618 
1619 	hash = ___skb_get_hash(skb, &keys, &hashrnd);
1620 
1621 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1622 }
1623 EXPORT_SYMBOL(__skb_get_hash);
1624 
1625 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1626 			   const siphash_key_t *perturb)
1627 {
1628 	struct flow_keys keys;
1629 
1630 	return ___skb_get_hash(skb, &keys, perturb);
1631 }
1632 EXPORT_SYMBOL(skb_get_hash_perturb);
1633 
1634 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1635 		   const struct flow_keys_basic *keys, int hlen)
1636 {
1637 	u32 poff = keys->control.thoff;
1638 
1639 	/* skip L4 headers for fragments after the first */
1640 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1641 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1642 		return poff;
1643 
1644 	switch (keys->basic.ip_proto) {
1645 	case IPPROTO_TCP: {
1646 		/* access doff as u8 to avoid unaligned access */
1647 		const u8 *doff;
1648 		u8 _doff;
1649 
1650 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1651 					    data, hlen, &_doff);
1652 		if (!doff)
1653 			return poff;
1654 
1655 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1656 		break;
1657 	}
1658 	case IPPROTO_UDP:
1659 	case IPPROTO_UDPLITE:
1660 		poff += sizeof(struct udphdr);
1661 		break;
1662 	/* For the rest, we do not really care about header
1663 	 * extensions at this point for now.
1664 	 */
1665 	case IPPROTO_ICMP:
1666 		poff += sizeof(struct icmphdr);
1667 		break;
1668 	case IPPROTO_ICMPV6:
1669 		poff += sizeof(struct icmp6hdr);
1670 		break;
1671 	case IPPROTO_IGMP:
1672 		poff += sizeof(struct igmphdr);
1673 		break;
1674 	case IPPROTO_DCCP:
1675 		poff += sizeof(struct dccp_hdr);
1676 		break;
1677 	case IPPROTO_SCTP:
1678 		poff += sizeof(struct sctphdr);
1679 		break;
1680 	}
1681 
1682 	return poff;
1683 }
1684 
1685 /**
1686  * skb_get_poff - get the offset to the payload
1687  * @skb: sk_buff to get the payload offset from
1688  *
1689  * The function will get the offset to the payload as far as it could
1690  * be dissected.  The main user is currently BPF, so that we can dynamically
1691  * truncate packets without needing to push actual payload to the user
1692  * space and can analyze headers only, instead.
1693  */
1694 u32 skb_get_poff(const struct sk_buff *skb)
1695 {
1696 	struct flow_keys_basic keys;
1697 
1698 	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1699 					      NULL, 0, 0, 0, 0))
1700 		return 0;
1701 
1702 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1703 }
1704 
1705 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1706 {
1707 	memset(keys, 0, sizeof(*keys));
1708 
1709 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1710 	    sizeof(keys->addrs.v6addrs.src));
1711 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1712 	    sizeof(keys->addrs.v6addrs.dst));
1713 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1714 	keys->ports.src = fl6->fl6_sport;
1715 	keys->ports.dst = fl6->fl6_dport;
1716 	keys->keyid.keyid = fl6->fl6_gre_key;
1717 	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1718 	keys->basic.ip_proto = fl6->flowi6_proto;
1719 
1720 	return flow_hash_from_keys(keys);
1721 }
1722 EXPORT_SYMBOL(__get_hash_from_flowi6);
1723 
1724 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1725 	{
1726 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1727 		.offset = offsetof(struct flow_keys, control),
1728 	},
1729 	{
1730 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1731 		.offset = offsetof(struct flow_keys, basic),
1732 	},
1733 	{
1734 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1735 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1736 	},
1737 	{
1738 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1739 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1740 	},
1741 	{
1742 		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1743 		.offset = offsetof(struct flow_keys, addrs.tipckey),
1744 	},
1745 	{
1746 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1747 		.offset = offsetof(struct flow_keys, ports),
1748 	},
1749 	{
1750 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1751 		.offset = offsetof(struct flow_keys, vlan),
1752 	},
1753 	{
1754 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1755 		.offset = offsetof(struct flow_keys, tags),
1756 	},
1757 	{
1758 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1759 		.offset = offsetof(struct flow_keys, keyid),
1760 	},
1761 };
1762 
1763 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1764 	{
1765 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1766 		.offset = offsetof(struct flow_keys, control),
1767 	},
1768 	{
1769 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1770 		.offset = offsetof(struct flow_keys, basic),
1771 	},
1772 	{
1773 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1774 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1775 	},
1776 	{
1777 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1778 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1779 	},
1780 	{
1781 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1782 		.offset = offsetof(struct flow_keys, ports),
1783 	},
1784 };
1785 
1786 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1787 	{
1788 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1789 		.offset = offsetof(struct flow_keys, control),
1790 	},
1791 	{
1792 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1793 		.offset = offsetof(struct flow_keys, basic),
1794 	},
1795 };
1796 
1797 struct flow_dissector flow_keys_dissector __read_mostly;
1798 EXPORT_SYMBOL(flow_keys_dissector);
1799 
1800 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1801 EXPORT_SYMBOL(flow_keys_basic_dissector);
1802 
1803 static int __init init_default_flow_dissectors(void)
1804 {
1805 	skb_flow_dissector_init(&flow_keys_dissector,
1806 				flow_keys_dissector_keys,
1807 				ARRAY_SIZE(flow_keys_dissector_keys));
1808 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1809 				flow_keys_dissector_symmetric_keys,
1810 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1811 	skb_flow_dissector_init(&flow_keys_basic_dissector,
1812 				flow_keys_basic_dissector_keys,
1813 				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1814 	return 0;
1815 }
1816 
1817 core_initcall(init_default_flow_dissectors);
1818