xref: /openbmc/linux/net/core/flow_dissector.c (revision 2eb3ed33e55d003d721d4d1a5e72fe323c12b4c0)
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/dsa.h>
8 #include <net/dst_metadata.h>
9 #include <net/ip.h>
10 #include <net/ipv6.h>
11 #include <net/gre.h>
12 #include <net/pptp.h>
13 #include <linux/igmp.h>
14 #include <linux/icmp.h>
15 #include <linux/sctp.h>
16 #include <linux/dccp.h>
17 #include <linux/if_tunnel.h>
18 #include <linux/if_pppox.h>
19 #include <linux/ppp_defs.h>
20 #include <linux/stddef.h>
21 #include <linux/if_ether.h>
22 #include <linux/mpls.h>
23 #include <linux/tcp.h>
24 #include <net/flow_dissector.h>
25 #include <scsi/fc/fc_fcoe.h>
26 
27 static void dissector_set_key(struct flow_dissector *flow_dissector,
28 			      enum flow_dissector_key_id key_id)
29 {
30 	flow_dissector->used_keys |= (1 << key_id);
31 }
32 
33 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
34 			     const struct flow_dissector_key *key,
35 			     unsigned int key_count)
36 {
37 	unsigned int i;
38 
39 	memset(flow_dissector, 0, sizeof(*flow_dissector));
40 
41 	for (i = 0; i < key_count; i++, key++) {
42 		/* User should make sure that every key target offset is withing
43 		 * boundaries of unsigned short.
44 		 */
45 		BUG_ON(key->offset > USHRT_MAX);
46 		BUG_ON(dissector_uses_key(flow_dissector,
47 					  key->key_id));
48 
49 		dissector_set_key(flow_dissector, key->key_id);
50 		flow_dissector->offset[key->key_id] = key->offset;
51 	}
52 
53 	/* Ensure that the dissector always includes control and basic key.
54 	 * That way we are able to avoid handling lack of these in fast path.
55 	 */
56 	BUG_ON(!dissector_uses_key(flow_dissector,
57 				   FLOW_DISSECTOR_KEY_CONTROL));
58 	BUG_ON(!dissector_uses_key(flow_dissector,
59 				   FLOW_DISSECTOR_KEY_BASIC));
60 }
61 EXPORT_SYMBOL(skb_flow_dissector_init);
62 
63 /**
64  * skb_flow_get_be16 - extract be16 entity
65  * @skb: sk_buff to extract from
66  * @poff: offset to extract at
67  * @data: raw buffer pointer to the packet
68  * @hlen: packet header length
69  *
70  * The function will try to retrieve a be32 entity at
71  * offset poff
72  */
73 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
74 				void *data, int hlen)
75 {
76 	__be16 *u, _u;
77 
78 	u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
79 	if (u)
80 		return *u;
81 
82 	return 0;
83 }
84 
85 /**
86  * __skb_flow_get_ports - extract the upper layer ports and return them
87  * @skb: sk_buff to extract the ports from
88  * @thoff: transport header offset
89  * @ip_proto: protocol for which to get port offset
90  * @data: raw buffer pointer to the packet, if NULL use skb->data
91  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
92  *
93  * The function will try to retrieve the ports at offset thoff + poff where poff
94  * is the protocol port offset returned from proto_ports_offset
95  */
96 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
97 			    void *data, int hlen)
98 {
99 	int poff = proto_ports_offset(ip_proto);
100 
101 	if (!data) {
102 		data = skb->data;
103 		hlen = skb_headlen(skb);
104 	}
105 
106 	if (poff >= 0) {
107 		__be32 *ports, _ports;
108 
109 		ports = __skb_header_pointer(skb, thoff + poff,
110 					     sizeof(_ports), data, hlen, &_ports);
111 		if (ports)
112 			return *ports;
113 	}
114 
115 	return 0;
116 }
117 EXPORT_SYMBOL(__skb_flow_get_ports);
118 
119 static void
120 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
121 				   struct flow_dissector *flow_dissector,
122 				   void *target_container)
123 {
124 	struct flow_dissector_key_control *ctrl;
125 
126 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
127 		return;
128 
129 	ctrl = skb_flow_dissector_target(flow_dissector,
130 					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
131 					 target_container);
132 	ctrl->addr_type = type;
133 }
134 
135 static void
136 __skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
137 			       struct flow_dissector *flow_dissector,
138 			       void *target_container)
139 {
140 	struct ip_tunnel_info *info;
141 	struct ip_tunnel_key *key;
142 
143 	/* A quick check to see if there might be something to do. */
144 	if (!dissector_uses_key(flow_dissector,
145 				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
146 	    !dissector_uses_key(flow_dissector,
147 				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
148 	    !dissector_uses_key(flow_dissector,
149 				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
150 	    !dissector_uses_key(flow_dissector,
151 				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
152 	    !dissector_uses_key(flow_dissector,
153 				FLOW_DISSECTOR_KEY_ENC_PORTS))
154 		return;
155 
156 	info = skb_tunnel_info(skb);
157 	if (!info)
158 		return;
159 
160 	key = &info->key;
161 
162 	switch (ip_tunnel_info_af(info)) {
163 	case AF_INET:
164 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
165 						   flow_dissector,
166 						   target_container);
167 		if (dissector_uses_key(flow_dissector,
168 				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
169 			struct flow_dissector_key_ipv4_addrs *ipv4;
170 
171 			ipv4 = skb_flow_dissector_target(flow_dissector,
172 							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
173 							 target_container);
174 			ipv4->src = key->u.ipv4.src;
175 			ipv4->dst = key->u.ipv4.dst;
176 		}
177 		break;
178 	case AF_INET6:
179 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
180 						   flow_dissector,
181 						   target_container);
182 		if (dissector_uses_key(flow_dissector,
183 				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
184 			struct flow_dissector_key_ipv6_addrs *ipv6;
185 
186 			ipv6 = skb_flow_dissector_target(flow_dissector,
187 							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
188 							 target_container);
189 			ipv6->src = key->u.ipv6.src;
190 			ipv6->dst = key->u.ipv6.dst;
191 		}
192 		break;
193 	}
194 
195 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
196 		struct flow_dissector_key_keyid *keyid;
197 
198 		keyid = skb_flow_dissector_target(flow_dissector,
199 						  FLOW_DISSECTOR_KEY_ENC_KEYID,
200 						  target_container);
201 		keyid->keyid = tunnel_id_to_key32(key->tun_id);
202 	}
203 
204 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
205 		struct flow_dissector_key_ports *tp;
206 
207 		tp = skb_flow_dissector_target(flow_dissector,
208 					       FLOW_DISSECTOR_KEY_ENC_PORTS,
209 					       target_container);
210 		tp->src = key->tp_src;
211 		tp->dst = key->tp_dst;
212 	}
213 }
214 
215 static enum flow_dissect_ret
216 __skb_flow_dissect_mpls(const struct sk_buff *skb,
217 			struct flow_dissector *flow_dissector,
218 			void *target_container, void *data, int nhoff, int hlen)
219 {
220 	struct flow_dissector_key_keyid *key_keyid;
221 	struct mpls_label *hdr, _hdr[2];
222 	u32 entry, label;
223 
224 	if (!dissector_uses_key(flow_dissector,
225 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
226 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
227 		return FLOW_DISSECT_RET_OUT_GOOD;
228 
229 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
230 				   hlen, &_hdr);
231 	if (!hdr)
232 		return FLOW_DISSECT_RET_OUT_BAD;
233 
234 	entry = ntohl(hdr[0].entry);
235 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
236 
237 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
238 		struct flow_dissector_key_mpls *key_mpls;
239 
240 		key_mpls = skb_flow_dissector_target(flow_dissector,
241 						     FLOW_DISSECTOR_KEY_MPLS,
242 						     target_container);
243 		key_mpls->mpls_label = label;
244 		key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
245 					>> MPLS_LS_TTL_SHIFT;
246 		key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
247 					>> MPLS_LS_TC_SHIFT;
248 		key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
249 					>> MPLS_LS_S_SHIFT;
250 	}
251 
252 	if (label == MPLS_LABEL_ENTROPY) {
253 		key_keyid = skb_flow_dissector_target(flow_dissector,
254 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
255 						      target_container);
256 		key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
257 	}
258 	return FLOW_DISSECT_RET_OUT_GOOD;
259 }
260 
261 static enum flow_dissect_ret
262 __skb_flow_dissect_arp(const struct sk_buff *skb,
263 		       struct flow_dissector *flow_dissector,
264 		       void *target_container, void *data, int nhoff, int hlen)
265 {
266 	struct flow_dissector_key_arp *key_arp;
267 	struct {
268 		unsigned char ar_sha[ETH_ALEN];
269 		unsigned char ar_sip[4];
270 		unsigned char ar_tha[ETH_ALEN];
271 		unsigned char ar_tip[4];
272 	} *arp_eth, _arp_eth;
273 	const struct arphdr *arp;
274 	struct arphdr _arp;
275 
276 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
277 		return FLOW_DISSECT_RET_OUT_GOOD;
278 
279 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
280 				   hlen, &_arp);
281 	if (!arp)
282 		return FLOW_DISSECT_RET_OUT_BAD;
283 
284 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
285 	    arp->ar_pro != htons(ETH_P_IP) ||
286 	    arp->ar_hln != ETH_ALEN ||
287 	    arp->ar_pln != 4 ||
288 	    (arp->ar_op != htons(ARPOP_REPLY) &&
289 	     arp->ar_op != htons(ARPOP_REQUEST)))
290 		return FLOW_DISSECT_RET_OUT_BAD;
291 
292 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
293 				       sizeof(_arp_eth), data,
294 				       hlen, &_arp_eth);
295 	if (!arp_eth)
296 		return FLOW_DISSECT_RET_OUT_BAD;
297 
298 	key_arp = skb_flow_dissector_target(flow_dissector,
299 					    FLOW_DISSECTOR_KEY_ARP,
300 					    target_container);
301 
302 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
303 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
304 
305 	/* Only store the lower byte of the opcode;
306 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
307 	 */
308 	key_arp->op = ntohs(arp->ar_op) & 0xff;
309 
310 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
311 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
312 
313 	return FLOW_DISSECT_RET_OUT_GOOD;
314 }
315 
316 static enum flow_dissect_ret
317 __skb_flow_dissect_gre(const struct sk_buff *skb,
318 		       struct flow_dissector_key_control *key_control,
319 		       struct flow_dissector *flow_dissector,
320 		       void *target_container, void *data,
321 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
322 		       unsigned int flags)
323 {
324 	struct flow_dissector_key_keyid *key_keyid;
325 	struct gre_base_hdr *hdr, _hdr;
326 	int offset = 0;
327 	u16 gre_ver;
328 
329 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
330 				   data, *p_hlen, &_hdr);
331 	if (!hdr)
332 		return FLOW_DISSECT_RET_OUT_BAD;
333 
334 	/* Only look inside GRE without routing */
335 	if (hdr->flags & GRE_ROUTING)
336 		return FLOW_DISSECT_RET_OUT_GOOD;
337 
338 	/* Only look inside GRE for version 0 and 1 */
339 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
340 	if (gre_ver > 1)
341 		return FLOW_DISSECT_RET_OUT_GOOD;
342 
343 	*p_proto = hdr->protocol;
344 	if (gre_ver) {
345 		/* Version1 must be PPTP, and check the flags */
346 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
347 			return FLOW_DISSECT_RET_OUT_GOOD;
348 	}
349 
350 	offset += sizeof(struct gre_base_hdr);
351 
352 	if (hdr->flags & GRE_CSUM)
353 		offset += sizeof(((struct gre_full_hdr *) 0)->csum) +
354 			  sizeof(((struct gre_full_hdr *) 0)->reserved1);
355 
356 	if (hdr->flags & GRE_KEY) {
357 		const __be32 *keyid;
358 		__be32 _keyid;
359 
360 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
361 					     sizeof(_keyid),
362 					     data, *p_hlen, &_keyid);
363 		if (!keyid)
364 			return FLOW_DISSECT_RET_OUT_BAD;
365 
366 		if (dissector_uses_key(flow_dissector,
367 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
368 			key_keyid = skb_flow_dissector_target(flow_dissector,
369 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
370 							      target_container);
371 			if (gre_ver == 0)
372 				key_keyid->keyid = *keyid;
373 			else
374 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
375 		}
376 		offset += sizeof(((struct gre_full_hdr *) 0)->key);
377 	}
378 
379 	if (hdr->flags & GRE_SEQ)
380 		offset += sizeof(((struct pptp_gre_header *) 0)->seq);
381 
382 	if (gre_ver == 0) {
383 		if (*p_proto == htons(ETH_P_TEB)) {
384 			const struct ethhdr *eth;
385 			struct ethhdr _eth;
386 
387 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
388 						   sizeof(_eth),
389 						   data, *p_hlen, &_eth);
390 			if (!eth)
391 				return FLOW_DISSECT_RET_OUT_BAD;
392 			*p_proto = eth->h_proto;
393 			offset += sizeof(*eth);
394 
395 			/* Cap headers that we access via pointers at the
396 			 * end of the Ethernet header as our maximum alignment
397 			 * at that point is only 2 bytes.
398 			 */
399 			if (NET_IP_ALIGN)
400 				*p_hlen = *p_nhoff + offset;
401 		}
402 	} else { /* version 1, must be PPTP */
403 		u8 _ppp_hdr[PPP_HDRLEN];
404 		u8 *ppp_hdr;
405 
406 		if (hdr->flags & GRE_ACK)
407 			offset += sizeof(((struct pptp_gre_header *) 0)->ack);
408 
409 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
410 					       sizeof(_ppp_hdr),
411 					       data, *p_hlen, _ppp_hdr);
412 		if (!ppp_hdr)
413 			return FLOW_DISSECT_RET_OUT_BAD;
414 
415 		switch (PPP_PROTOCOL(ppp_hdr)) {
416 		case PPP_IP:
417 			*p_proto = htons(ETH_P_IP);
418 			break;
419 		case PPP_IPV6:
420 			*p_proto = htons(ETH_P_IPV6);
421 			break;
422 		default:
423 			/* Could probably catch some more like MPLS */
424 			break;
425 		}
426 
427 		offset += PPP_HDRLEN;
428 	}
429 
430 	*p_nhoff += offset;
431 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
432 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
433 		return FLOW_DISSECT_RET_OUT_GOOD;
434 
435 	return FLOW_DISSECT_RET_PROTO_AGAIN;
436 }
437 
438 static void
439 __skb_flow_dissect_tcp(const struct sk_buff *skb,
440 		       struct flow_dissector *flow_dissector,
441 		       void *target_container, void *data, int thoff, int hlen)
442 {
443 	struct flow_dissector_key_tcp *key_tcp;
444 	struct tcphdr *th, _th;
445 
446 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
447 		return;
448 
449 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
450 	if (!th)
451 		return;
452 
453 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
454 		return;
455 
456 	key_tcp = skb_flow_dissector_target(flow_dissector,
457 					    FLOW_DISSECTOR_KEY_TCP,
458 					    target_container);
459 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
460 }
461 
462 static void
463 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
464 			struct flow_dissector *flow_dissector,
465 			void *target_container, void *data, const struct iphdr *iph)
466 {
467 	struct flow_dissector_key_ip *key_ip;
468 
469 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
470 		return;
471 
472 	key_ip = skb_flow_dissector_target(flow_dissector,
473 					   FLOW_DISSECTOR_KEY_IP,
474 					   target_container);
475 	key_ip->tos = iph->tos;
476 	key_ip->ttl = iph->ttl;
477 }
478 
479 static void
480 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
481 			struct flow_dissector *flow_dissector,
482 			void *target_container, void *data, const struct ipv6hdr *iph)
483 {
484 	struct flow_dissector_key_ip *key_ip;
485 
486 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
487 		return;
488 
489 	key_ip = skb_flow_dissector_target(flow_dissector,
490 					   FLOW_DISSECTOR_KEY_IP,
491 					   target_container);
492 	key_ip->tos = ipv6_get_dsfield(iph);
493 	key_ip->ttl = iph->hop_limit;
494 }
495 
496 /* Maximum number of protocol headers that can be parsed in
497  * __skb_flow_dissect
498  */
499 #define MAX_FLOW_DISSECT_HDRS	15
500 
501 static bool skb_flow_dissect_allowed(int *num_hdrs)
502 {
503 	++*num_hdrs;
504 
505 	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
506 }
507 
508 /**
509  * __skb_flow_dissect - extract the flow_keys struct and return it
510  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
511  * @flow_dissector: list of keys to dissect
512  * @target_container: target structure to put dissected values into
513  * @data: raw buffer pointer to the packet, if NULL use skb->data
514  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
515  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
516  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
517  *
518  * The function will try to retrieve individual keys into target specified
519  * by flow_dissector from either the skbuff or a raw buffer specified by the
520  * rest parameters.
521  *
522  * Caller must take care of zeroing target container memory.
523  */
524 bool __skb_flow_dissect(const struct sk_buff *skb,
525 			struct flow_dissector *flow_dissector,
526 			void *target_container,
527 			void *data, __be16 proto, int nhoff, int hlen,
528 			unsigned int flags)
529 {
530 	struct flow_dissector_key_control *key_control;
531 	struct flow_dissector_key_basic *key_basic;
532 	struct flow_dissector_key_addrs *key_addrs;
533 	struct flow_dissector_key_ports *key_ports;
534 	struct flow_dissector_key_icmp *key_icmp;
535 	struct flow_dissector_key_tags *key_tags;
536 	struct flow_dissector_key_vlan *key_vlan;
537 	enum flow_dissect_ret fdret;
538 	bool skip_vlan = false;
539 	int num_hdrs = 0;
540 	u8 ip_proto = 0;
541 	bool ret;
542 
543 	if (!data) {
544 		data = skb->data;
545 		proto = skb_vlan_tag_present(skb) ?
546 			 skb->vlan_proto : skb->protocol;
547 		nhoff = skb_network_offset(skb);
548 		hlen = skb_headlen(skb);
549 #if IS_ENABLED(CONFIG_NET_DSA)
550 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
551 			const struct dsa_device_ops *ops;
552 			int offset;
553 
554 			ops = skb->dev->dsa_ptr->tag_ops;
555 			if (ops->flow_dissect &&
556 			    !ops->flow_dissect(skb, &proto, &offset)) {
557 				hlen -= offset;
558 				nhoff += offset;
559 			}
560 		}
561 #endif
562 	}
563 
564 	/* It is ensured by skb_flow_dissector_init() that control key will
565 	 * be always present.
566 	 */
567 	key_control = skb_flow_dissector_target(flow_dissector,
568 						FLOW_DISSECTOR_KEY_CONTROL,
569 						target_container);
570 
571 	/* It is ensured by skb_flow_dissector_init() that basic key will
572 	 * be always present.
573 	 */
574 	key_basic = skb_flow_dissector_target(flow_dissector,
575 					      FLOW_DISSECTOR_KEY_BASIC,
576 					      target_container);
577 
578 	__skb_flow_dissect_tunnel_info(skb, flow_dissector,
579 				       target_container);
580 
581 	if (dissector_uses_key(flow_dissector,
582 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
583 		struct ethhdr *eth = eth_hdr(skb);
584 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
585 
586 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
587 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
588 							  target_container);
589 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
590 	}
591 
592 proto_again:
593 	fdret = FLOW_DISSECT_RET_CONTINUE;
594 
595 	switch (proto) {
596 	case htons(ETH_P_IP): {
597 		const struct iphdr *iph;
598 		struct iphdr _iph;
599 
600 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
601 		if (!iph || iph->ihl < 5) {
602 			fdret = FLOW_DISSECT_RET_OUT_BAD;
603 			break;
604 		}
605 
606 		nhoff += iph->ihl * 4;
607 
608 		ip_proto = iph->protocol;
609 
610 		if (dissector_uses_key(flow_dissector,
611 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
612 			key_addrs = skb_flow_dissector_target(flow_dissector,
613 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
614 							      target_container);
615 
616 			memcpy(&key_addrs->v4addrs, &iph->saddr,
617 			       sizeof(key_addrs->v4addrs));
618 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
619 		}
620 
621 		if (ip_is_fragment(iph)) {
622 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
623 
624 			if (iph->frag_off & htons(IP_OFFSET)) {
625 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
626 				break;
627 			} else {
628 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
629 				if (!(flags &
630 				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
631 					fdret = FLOW_DISSECT_RET_OUT_GOOD;
632 					break;
633 				}
634 			}
635 		}
636 
637 		__skb_flow_dissect_ipv4(skb, flow_dissector,
638 					target_container, data, iph);
639 
640 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) {
641 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
642 			break;
643 		}
644 
645 		break;
646 	}
647 	case htons(ETH_P_IPV6): {
648 		const struct ipv6hdr *iph;
649 		struct ipv6hdr _iph;
650 
651 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
652 		if (!iph) {
653 			fdret = FLOW_DISSECT_RET_OUT_BAD;
654 			break;
655 		}
656 
657 		ip_proto = iph->nexthdr;
658 		nhoff += sizeof(struct ipv6hdr);
659 
660 		if (dissector_uses_key(flow_dissector,
661 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
662 			key_addrs = skb_flow_dissector_target(flow_dissector,
663 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
664 							      target_container);
665 
666 			memcpy(&key_addrs->v6addrs, &iph->saddr,
667 			       sizeof(key_addrs->v6addrs));
668 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
669 		}
670 
671 		if ((dissector_uses_key(flow_dissector,
672 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
673 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
674 		    ip6_flowlabel(iph)) {
675 			__be32 flow_label = ip6_flowlabel(iph);
676 
677 			if (dissector_uses_key(flow_dissector,
678 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
679 				key_tags = skb_flow_dissector_target(flow_dissector,
680 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
681 								     target_container);
682 				key_tags->flow_label = ntohl(flow_label);
683 			}
684 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
685 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
686 				break;
687 			}
688 		}
689 
690 		__skb_flow_dissect_ipv6(skb, flow_dissector,
691 					target_container, data, iph);
692 
693 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
694 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
695 
696 		break;
697 	}
698 	case htons(ETH_P_8021AD):
699 	case htons(ETH_P_8021Q): {
700 		const struct vlan_hdr *vlan;
701 		struct vlan_hdr _vlan;
702 		bool vlan_tag_present = skb && skb_vlan_tag_present(skb);
703 
704 		if (vlan_tag_present)
705 			proto = skb->protocol;
706 
707 		if (!vlan_tag_present || eth_type_vlan(skb->protocol)) {
708 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
709 						    data, hlen, &_vlan);
710 			if (!vlan) {
711 				fdret = FLOW_DISSECT_RET_OUT_BAD;
712 				break;
713 			}
714 
715 			proto = vlan->h_vlan_encapsulated_proto;
716 			nhoff += sizeof(*vlan);
717 			if (skip_vlan) {
718 				fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
719 				break;
720 			}
721 		}
722 
723 		skip_vlan = true;
724 		if (dissector_uses_key(flow_dissector,
725 				       FLOW_DISSECTOR_KEY_VLAN)) {
726 			key_vlan = skb_flow_dissector_target(flow_dissector,
727 							     FLOW_DISSECTOR_KEY_VLAN,
728 							     target_container);
729 
730 			if (vlan_tag_present) {
731 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
732 				key_vlan->vlan_priority =
733 					(skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
734 			} else {
735 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
736 					VLAN_VID_MASK;
737 				key_vlan->vlan_priority =
738 					(ntohs(vlan->h_vlan_TCI) &
739 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
740 			}
741 		}
742 
743 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
744 		break;
745 	}
746 	case htons(ETH_P_PPP_SES): {
747 		struct {
748 			struct pppoe_hdr hdr;
749 			__be16 proto;
750 		} *hdr, _hdr;
751 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
752 		if (!hdr) {
753 			fdret = FLOW_DISSECT_RET_OUT_BAD;
754 			break;
755 		}
756 
757 		proto = hdr->proto;
758 		nhoff += PPPOE_SES_HLEN;
759 		switch (proto) {
760 		case htons(PPP_IP):
761 			proto = htons(ETH_P_IP);
762 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
763 			break;
764 		case htons(PPP_IPV6):
765 			proto = htons(ETH_P_IPV6);
766 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
767 			break;
768 		default:
769 			fdret = FLOW_DISSECT_RET_OUT_BAD;
770 			break;
771 		}
772 		break;
773 	}
774 	case htons(ETH_P_TIPC): {
775 		struct {
776 			__be32 pre[3];
777 			__be32 srcnode;
778 		} *hdr, _hdr;
779 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
780 		if (!hdr) {
781 			fdret = FLOW_DISSECT_RET_OUT_BAD;
782 			break;
783 		}
784 
785 		if (dissector_uses_key(flow_dissector,
786 				       FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
787 			key_addrs = skb_flow_dissector_target(flow_dissector,
788 							      FLOW_DISSECTOR_KEY_TIPC_ADDRS,
789 							      target_container);
790 			key_addrs->tipcaddrs.srcnode = hdr->srcnode;
791 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
792 		}
793 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
794 		break;
795 	}
796 
797 	case htons(ETH_P_MPLS_UC):
798 	case htons(ETH_P_MPLS_MC):
799 		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
800 						target_container, data,
801 						nhoff, hlen);
802 		break;
803 	case htons(ETH_P_FCOE):
804 		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
805 			fdret = FLOW_DISSECT_RET_OUT_BAD;
806 			break;
807 		}
808 
809 		nhoff += FCOE_HEADER_LEN;
810 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
811 		break;
812 
813 	case htons(ETH_P_ARP):
814 	case htons(ETH_P_RARP):
815 		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
816 					       target_container, data,
817 					       nhoff, hlen);
818 		break;
819 
820 	default:
821 		fdret = FLOW_DISSECT_RET_OUT_BAD;
822 		break;
823 	}
824 
825 	/* Process result of proto processing */
826 	switch (fdret) {
827 	case FLOW_DISSECT_RET_OUT_GOOD:
828 		goto out_good;
829 	case FLOW_DISSECT_RET_PROTO_AGAIN:
830 		if (skb_flow_dissect_allowed(&num_hdrs))
831 			goto proto_again;
832 		goto out_good;
833 	case FLOW_DISSECT_RET_CONTINUE:
834 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
835 		break;
836 	case FLOW_DISSECT_RET_OUT_BAD:
837 	default:
838 		goto out_bad;
839 	}
840 
841 ip_proto_again:
842 	fdret = FLOW_DISSECT_RET_CONTINUE;
843 
844 	switch (ip_proto) {
845 	case IPPROTO_GRE:
846 		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
847 					       target_container, data,
848 					       &proto, &nhoff, &hlen, flags);
849 		break;
850 
851 	case NEXTHDR_HOP:
852 	case NEXTHDR_ROUTING:
853 	case NEXTHDR_DEST: {
854 		u8 _opthdr[2], *opthdr;
855 
856 		if (proto != htons(ETH_P_IPV6))
857 			break;
858 
859 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
860 					      data, hlen, &_opthdr);
861 		if (!opthdr) {
862 			fdret = FLOW_DISSECT_RET_OUT_BAD;
863 			break;
864 		}
865 
866 		ip_proto = opthdr[0];
867 		nhoff += (opthdr[1] + 1) << 3;
868 
869 		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
870 		break;
871 	}
872 	case NEXTHDR_FRAGMENT: {
873 		struct frag_hdr _fh, *fh;
874 
875 		if (proto != htons(ETH_P_IPV6))
876 			break;
877 
878 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
879 					  data, hlen, &_fh);
880 
881 		if (!fh) {
882 			fdret = FLOW_DISSECT_RET_OUT_BAD;
883 			break;
884 		}
885 
886 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
887 
888 		nhoff += sizeof(_fh);
889 		ip_proto = fh->nexthdr;
890 
891 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
892 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
893 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
894 				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
895 				break;
896 			}
897 		}
898 
899 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
900 		break;
901 	}
902 	case IPPROTO_IPIP:
903 		proto = htons(ETH_P_IP);
904 
905 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
906 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
907 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
908 			break;
909 		}
910 
911 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
912 		break;
913 
914 	case IPPROTO_IPV6:
915 		proto = htons(ETH_P_IPV6);
916 
917 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
918 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
919 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
920 			break;
921 		}
922 
923 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
924 		break;
925 
926 
927 	case IPPROTO_MPLS:
928 		proto = htons(ETH_P_MPLS_UC);
929 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
930 		break;
931 
932 	case IPPROTO_TCP:
933 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
934 				       data, nhoff, hlen);
935 		break;
936 
937 	default:
938 		break;
939 	}
940 
941 	if (dissector_uses_key(flow_dissector,
942 			       FLOW_DISSECTOR_KEY_PORTS)) {
943 		key_ports = skb_flow_dissector_target(flow_dissector,
944 						      FLOW_DISSECTOR_KEY_PORTS,
945 						      target_container);
946 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
947 							data, hlen);
948 	}
949 
950 	if (dissector_uses_key(flow_dissector,
951 			       FLOW_DISSECTOR_KEY_ICMP)) {
952 		key_icmp = skb_flow_dissector_target(flow_dissector,
953 						     FLOW_DISSECTOR_KEY_ICMP,
954 						     target_container);
955 		key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
956 	}
957 
958 	/* Process result of IP proto processing */
959 	switch (fdret) {
960 	case FLOW_DISSECT_RET_PROTO_AGAIN:
961 		if (skb_flow_dissect_allowed(&num_hdrs))
962 			goto proto_again;
963 		break;
964 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
965 		if (skb_flow_dissect_allowed(&num_hdrs))
966 			goto ip_proto_again;
967 		break;
968 	case FLOW_DISSECT_RET_OUT_GOOD:
969 	case FLOW_DISSECT_RET_CONTINUE:
970 		break;
971 	case FLOW_DISSECT_RET_OUT_BAD:
972 	default:
973 		goto out_bad;
974 	}
975 
976 out_good:
977 	ret = true;
978 
979 	key_control->thoff = (u16)nhoff;
980 out:
981 	key_basic->n_proto = proto;
982 	key_basic->ip_proto = ip_proto;
983 
984 	return ret;
985 
986 out_bad:
987 	ret = false;
988 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
989 	goto out;
990 }
991 EXPORT_SYMBOL(__skb_flow_dissect);
992 
993 static u32 hashrnd __read_mostly;
994 static __always_inline void __flow_hash_secret_init(void)
995 {
996 	net_get_random_once(&hashrnd, sizeof(hashrnd));
997 }
998 
999 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
1000 					     u32 keyval)
1001 {
1002 	return jhash2(words, length, keyval);
1003 }
1004 
1005 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
1006 {
1007 	const void *p = flow;
1008 
1009 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
1010 	return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
1011 }
1012 
1013 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1014 {
1015 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1016 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1017 	BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
1018 		     sizeof(*flow) - sizeof(flow->addrs));
1019 
1020 	switch (flow->control.addr_type) {
1021 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1022 		diff -= sizeof(flow->addrs.v4addrs);
1023 		break;
1024 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1025 		diff -= sizeof(flow->addrs.v6addrs);
1026 		break;
1027 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
1028 		diff -= sizeof(flow->addrs.tipcaddrs);
1029 		break;
1030 	}
1031 	return (sizeof(*flow) - diff) / sizeof(u32);
1032 }
1033 
1034 __be32 flow_get_u32_src(const struct flow_keys *flow)
1035 {
1036 	switch (flow->control.addr_type) {
1037 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1038 		return flow->addrs.v4addrs.src;
1039 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1040 		return (__force __be32)ipv6_addr_hash(
1041 			&flow->addrs.v6addrs.src);
1042 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
1043 		return flow->addrs.tipcaddrs.srcnode;
1044 	default:
1045 		return 0;
1046 	}
1047 }
1048 EXPORT_SYMBOL(flow_get_u32_src);
1049 
1050 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1051 {
1052 	switch (flow->control.addr_type) {
1053 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1054 		return flow->addrs.v4addrs.dst;
1055 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1056 		return (__force __be32)ipv6_addr_hash(
1057 			&flow->addrs.v6addrs.dst);
1058 	default:
1059 		return 0;
1060 	}
1061 }
1062 EXPORT_SYMBOL(flow_get_u32_dst);
1063 
1064 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1065 {
1066 	int addr_diff, i;
1067 
1068 	switch (keys->control.addr_type) {
1069 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1070 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1071 			    (__force u32)keys->addrs.v4addrs.src;
1072 		if ((addr_diff < 0) ||
1073 		    (addr_diff == 0 &&
1074 		     ((__force u16)keys->ports.dst <
1075 		      (__force u16)keys->ports.src))) {
1076 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1077 			swap(keys->ports.src, keys->ports.dst);
1078 		}
1079 		break;
1080 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1081 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1082 				   &keys->addrs.v6addrs.src,
1083 				   sizeof(keys->addrs.v6addrs.dst));
1084 		if ((addr_diff < 0) ||
1085 		    (addr_diff == 0 &&
1086 		     ((__force u16)keys->ports.dst <
1087 		      (__force u16)keys->ports.src))) {
1088 			for (i = 0; i < 4; i++)
1089 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1090 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1091 			swap(keys->ports.src, keys->ports.dst);
1092 		}
1093 		break;
1094 	}
1095 }
1096 
1097 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
1098 {
1099 	u32 hash;
1100 
1101 	__flow_hash_consistentify(keys);
1102 
1103 	hash = __flow_hash_words(flow_keys_hash_start(keys),
1104 				 flow_keys_hash_length(keys), keyval);
1105 	if (!hash)
1106 		hash = 1;
1107 
1108 	return hash;
1109 }
1110 
1111 u32 flow_hash_from_keys(struct flow_keys *keys)
1112 {
1113 	__flow_hash_secret_init();
1114 	return __flow_hash_from_keys(keys, hashrnd);
1115 }
1116 EXPORT_SYMBOL(flow_hash_from_keys);
1117 
1118 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1119 				  struct flow_keys *keys, u32 keyval)
1120 {
1121 	skb_flow_dissect_flow_keys(skb, keys,
1122 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1123 
1124 	return __flow_hash_from_keys(keys, keyval);
1125 }
1126 
1127 struct _flow_keys_digest_data {
1128 	__be16	n_proto;
1129 	u8	ip_proto;
1130 	u8	padding;
1131 	__be32	ports;
1132 	__be32	src;
1133 	__be32	dst;
1134 };
1135 
1136 void make_flow_keys_digest(struct flow_keys_digest *digest,
1137 			   const struct flow_keys *flow)
1138 {
1139 	struct _flow_keys_digest_data *data =
1140 	    (struct _flow_keys_digest_data *)digest;
1141 
1142 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1143 
1144 	memset(digest, 0, sizeof(*digest));
1145 
1146 	data->n_proto = flow->basic.n_proto;
1147 	data->ip_proto = flow->basic.ip_proto;
1148 	data->ports = flow->ports.ports;
1149 	data->src = flow->addrs.v4addrs.src;
1150 	data->dst = flow->addrs.v4addrs.dst;
1151 }
1152 EXPORT_SYMBOL(make_flow_keys_digest);
1153 
1154 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1155 
1156 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1157 {
1158 	struct flow_keys keys;
1159 
1160 	__flow_hash_secret_init();
1161 
1162 	memset(&keys, 0, sizeof(keys));
1163 	__skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
1164 			   NULL, 0, 0, 0,
1165 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1166 
1167 	return __flow_hash_from_keys(&keys, hashrnd);
1168 }
1169 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1170 
1171 /**
1172  * __skb_get_hash: calculate a flow hash
1173  * @skb: sk_buff to calculate flow hash from
1174  *
1175  * This function calculates a flow hash based on src/dst addresses
1176  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1177  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1178  * if hash is a canonical 4-tuple hash over transport ports.
1179  */
1180 void __skb_get_hash(struct sk_buff *skb)
1181 {
1182 	struct flow_keys keys;
1183 	u32 hash;
1184 
1185 	__flow_hash_secret_init();
1186 
1187 	hash = ___skb_get_hash(skb, &keys, hashrnd);
1188 
1189 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1190 }
1191 EXPORT_SYMBOL(__skb_get_hash);
1192 
1193 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
1194 {
1195 	struct flow_keys keys;
1196 
1197 	return ___skb_get_hash(skb, &keys, perturb);
1198 }
1199 EXPORT_SYMBOL(skb_get_hash_perturb);
1200 
1201 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1202 		   const struct flow_keys *keys, int hlen)
1203 {
1204 	u32 poff = keys->control.thoff;
1205 
1206 	/* skip L4 headers for fragments after the first */
1207 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1208 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1209 		return poff;
1210 
1211 	switch (keys->basic.ip_proto) {
1212 	case IPPROTO_TCP: {
1213 		/* access doff as u8 to avoid unaligned access */
1214 		const u8 *doff;
1215 		u8 _doff;
1216 
1217 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1218 					    data, hlen, &_doff);
1219 		if (!doff)
1220 			return poff;
1221 
1222 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1223 		break;
1224 	}
1225 	case IPPROTO_UDP:
1226 	case IPPROTO_UDPLITE:
1227 		poff += sizeof(struct udphdr);
1228 		break;
1229 	/* For the rest, we do not really care about header
1230 	 * extensions at this point for now.
1231 	 */
1232 	case IPPROTO_ICMP:
1233 		poff += sizeof(struct icmphdr);
1234 		break;
1235 	case IPPROTO_ICMPV6:
1236 		poff += sizeof(struct icmp6hdr);
1237 		break;
1238 	case IPPROTO_IGMP:
1239 		poff += sizeof(struct igmphdr);
1240 		break;
1241 	case IPPROTO_DCCP:
1242 		poff += sizeof(struct dccp_hdr);
1243 		break;
1244 	case IPPROTO_SCTP:
1245 		poff += sizeof(struct sctphdr);
1246 		break;
1247 	}
1248 
1249 	return poff;
1250 }
1251 
1252 /**
1253  * skb_get_poff - get the offset to the payload
1254  * @skb: sk_buff to get the payload offset from
1255  *
1256  * The function will get the offset to the payload as far as it could
1257  * be dissected.  The main user is currently BPF, so that we can dynamically
1258  * truncate packets without needing to push actual payload to the user
1259  * space and can analyze headers only, instead.
1260  */
1261 u32 skb_get_poff(const struct sk_buff *skb)
1262 {
1263 	struct flow_keys keys;
1264 
1265 	if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
1266 		return 0;
1267 
1268 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1269 }
1270 
1271 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1272 {
1273 	memset(keys, 0, sizeof(*keys));
1274 
1275 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1276 	    sizeof(keys->addrs.v6addrs.src));
1277 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1278 	    sizeof(keys->addrs.v6addrs.dst));
1279 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1280 	keys->ports.src = fl6->fl6_sport;
1281 	keys->ports.dst = fl6->fl6_dport;
1282 	keys->keyid.keyid = fl6->fl6_gre_key;
1283 	keys->tags.flow_label = (__force u32)fl6->flowlabel;
1284 	keys->basic.ip_proto = fl6->flowi6_proto;
1285 
1286 	return flow_hash_from_keys(keys);
1287 }
1288 EXPORT_SYMBOL(__get_hash_from_flowi6);
1289 
1290 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
1291 {
1292 	memset(keys, 0, sizeof(*keys));
1293 
1294 	keys->addrs.v4addrs.src = fl4->saddr;
1295 	keys->addrs.v4addrs.dst = fl4->daddr;
1296 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1297 	keys->ports.src = fl4->fl4_sport;
1298 	keys->ports.dst = fl4->fl4_dport;
1299 	keys->keyid.keyid = fl4->fl4_gre_key;
1300 	keys->basic.ip_proto = fl4->flowi4_proto;
1301 
1302 	return flow_hash_from_keys(keys);
1303 }
1304 EXPORT_SYMBOL(__get_hash_from_flowi4);
1305 
1306 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1307 	{
1308 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1309 		.offset = offsetof(struct flow_keys, control),
1310 	},
1311 	{
1312 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1313 		.offset = offsetof(struct flow_keys, basic),
1314 	},
1315 	{
1316 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1317 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1318 	},
1319 	{
1320 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1321 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1322 	},
1323 	{
1324 		.key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
1325 		.offset = offsetof(struct flow_keys, addrs.tipcaddrs),
1326 	},
1327 	{
1328 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1329 		.offset = offsetof(struct flow_keys, ports),
1330 	},
1331 	{
1332 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1333 		.offset = offsetof(struct flow_keys, vlan),
1334 	},
1335 	{
1336 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1337 		.offset = offsetof(struct flow_keys, tags),
1338 	},
1339 	{
1340 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1341 		.offset = offsetof(struct flow_keys, keyid),
1342 	},
1343 };
1344 
1345 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1346 	{
1347 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1348 		.offset = offsetof(struct flow_keys, control),
1349 	},
1350 	{
1351 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1352 		.offset = offsetof(struct flow_keys, basic),
1353 	},
1354 	{
1355 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1356 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1357 	},
1358 	{
1359 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1360 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1361 	},
1362 	{
1363 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1364 		.offset = offsetof(struct flow_keys, ports),
1365 	},
1366 };
1367 
1368 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
1369 	{
1370 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1371 		.offset = offsetof(struct flow_keys, control),
1372 	},
1373 	{
1374 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1375 		.offset = offsetof(struct flow_keys, basic),
1376 	},
1377 };
1378 
1379 struct flow_dissector flow_keys_dissector __read_mostly;
1380 EXPORT_SYMBOL(flow_keys_dissector);
1381 
1382 struct flow_dissector flow_keys_buf_dissector __read_mostly;
1383 
1384 static int __init init_default_flow_dissectors(void)
1385 {
1386 	skb_flow_dissector_init(&flow_keys_dissector,
1387 				flow_keys_dissector_keys,
1388 				ARRAY_SIZE(flow_keys_dissector_keys));
1389 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1390 				flow_keys_dissector_symmetric_keys,
1391 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1392 	skb_flow_dissector_init(&flow_keys_buf_dissector,
1393 				flow_keys_buf_dissector_keys,
1394 				ARRAY_SIZE(flow_keys_buf_dissector_keys));
1395 	return 0;
1396 }
1397 
1398 core_initcall(init_default_flow_dissectors);
1399