xref: /openbmc/linux/net/core/flow_dissector.c (revision 2c64e9cb)
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/dsa.h>
8 #include <net/dst_metadata.h>
9 #include <net/ip.h>
10 #include <net/ipv6.h>
11 #include <net/gre.h>
12 #include <net/pptp.h>
13 #include <net/tipc.h>
14 #include <linux/igmp.h>
15 #include <linux/icmp.h>
16 #include <linux/sctp.h>
17 #include <linux/dccp.h>
18 #include <linux/if_tunnel.h>
19 #include <linux/if_pppox.h>
20 #include <linux/ppp_defs.h>
21 #include <linux/stddef.h>
22 #include <linux/if_ether.h>
23 #include <linux/mpls.h>
24 #include <linux/tcp.h>
25 #include <net/flow_dissector.h>
26 #include <scsi/fc/fc_fcoe.h>
27 #include <uapi/linux/batadv_packet.h>
28 #include <linux/bpf.h>
29 
30 static DEFINE_MUTEX(flow_dissector_mutex);
31 
32 static void dissector_set_key(struct flow_dissector *flow_dissector,
33 			      enum flow_dissector_key_id key_id)
34 {
35 	flow_dissector->used_keys |= (1 << key_id);
36 }
37 
38 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
39 			     const struct flow_dissector_key *key,
40 			     unsigned int key_count)
41 {
42 	unsigned int i;
43 
44 	memset(flow_dissector, 0, sizeof(*flow_dissector));
45 
46 	for (i = 0; i < key_count; i++, key++) {
47 		/* User should make sure that every key target offset is withing
48 		 * boundaries of unsigned short.
49 		 */
50 		BUG_ON(key->offset > USHRT_MAX);
51 		BUG_ON(dissector_uses_key(flow_dissector,
52 					  key->key_id));
53 
54 		dissector_set_key(flow_dissector, key->key_id);
55 		flow_dissector->offset[key->key_id] = key->offset;
56 	}
57 
58 	/* Ensure that the dissector always includes control and basic key.
59 	 * That way we are able to avoid handling lack of these in fast path.
60 	 */
61 	BUG_ON(!dissector_uses_key(flow_dissector,
62 				   FLOW_DISSECTOR_KEY_CONTROL));
63 	BUG_ON(!dissector_uses_key(flow_dissector,
64 				   FLOW_DISSECTOR_KEY_BASIC));
65 }
66 EXPORT_SYMBOL(skb_flow_dissector_init);
67 
68 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
69 				  union bpf_attr __user *uattr)
70 {
71 	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
72 	u32 prog_id, prog_cnt = 0, flags = 0;
73 	struct bpf_prog *attached;
74 	struct net *net;
75 
76 	if (attr->query.query_flags)
77 		return -EINVAL;
78 
79 	net = get_net_ns_by_fd(attr->query.target_fd);
80 	if (IS_ERR(net))
81 		return PTR_ERR(net);
82 
83 	rcu_read_lock();
84 	attached = rcu_dereference(net->flow_dissector_prog);
85 	if (attached) {
86 		prog_cnt = 1;
87 		prog_id = attached->aux->id;
88 	}
89 	rcu_read_unlock();
90 
91 	put_net(net);
92 
93 	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
94 		return -EFAULT;
95 	if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt)))
96 		return -EFAULT;
97 
98 	if (!attr->query.prog_cnt || !prog_ids || !prog_cnt)
99 		return 0;
100 
101 	if (copy_to_user(prog_ids, &prog_id, sizeof(u32)))
102 		return -EFAULT;
103 
104 	return 0;
105 }
106 
107 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
108 				       struct bpf_prog *prog)
109 {
110 	struct bpf_prog *attached;
111 	struct net *net;
112 
113 	net = current->nsproxy->net_ns;
114 	mutex_lock(&flow_dissector_mutex);
115 	attached = rcu_dereference_protected(net->flow_dissector_prog,
116 					     lockdep_is_held(&flow_dissector_mutex));
117 	if (attached) {
118 		/* Only one BPF program can be attached at a time */
119 		mutex_unlock(&flow_dissector_mutex);
120 		return -EEXIST;
121 	}
122 	rcu_assign_pointer(net->flow_dissector_prog, prog);
123 	mutex_unlock(&flow_dissector_mutex);
124 	return 0;
125 }
126 
127 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
128 {
129 	struct bpf_prog *attached;
130 	struct net *net;
131 
132 	net = current->nsproxy->net_ns;
133 	mutex_lock(&flow_dissector_mutex);
134 	attached = rcu_dereference_protected(net->flow_dissector_prog,
135 					     lockdep_is_held(&flow_dissector_mutex));
136 	if (!attached) {
137 		mutex_unlock(&flow_dissector_mutex);
138 		return -ENOENT;
139 	}
140 	bpf_prog_put(attached);
141 	RCU_INIT_POINTER(net->flow_dissector_prog, NULL);
142 	mutex_unlock(&flow_dissector_mutex);
143 	return 0;
144 }
145 /**
146  * skb_flow_get_be16 - extract be16 entity
147  * @skb: sk_buff to extract from
148  * @poff: offset to extract at
149  * @data: raw buffer pointer to the packet
150  * @hlen: packet header length
151  *
152  * The function will try to retrieve a be32 entity at
153  * offset poff
154  */
155 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
156 				void *data, int hlen)
157 {
158 	__be16 *u, _u;
159 
160 	u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
161 	if (u)
162 		return *u;
163 
164 	return 0;
165 }
166 
167 /**
168  * __skb_flow_get_ports - extract the upper layer ports and return them
169  * @skb: sk_buff to extract the ports from
170  * @thoff: transport header offset
171  * @ip_proto: protocol for which to get port offset
172  * @data: raw buffer pointer to the packet, if NULL use skb->data
173  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
174  *
175  * The function will try to retrieve the ports at offset thoff + poff where poff
176  * is the protocol port offset returned from proto_ports_offset
177  */
178 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
179 			    void *data, int hlen)
180 {
181 	int poff = proto_ports_offset(ip_proto);
182 
183 	if (!data) {
184 		data = skb->data;
185 		hlen = skb_headlen(skb);
186 	}
187 
188 	if (poff >= 0) {
189 		__be32 *ports, _ports;
190 
191 		ports = __skb_header_pointer(skb, thoff + poff,
192 					     sizeof(_ports), data, hlen, &_ports);
193 		if (ports)
194 			return *ports;
195 	}
196 
197 	return 0;
198 }
199 EXPORT_SYMBOL(__skb_flow_get_ports);
200 
201 static void
202 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
203 				   struct flow_dissector *flow_dissector,
204 				   void *target_container)
205 {
206 	struct flow_dissector_key_control *ctrl;
207 
208 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
209 		return;
210 
211 	ctrl = skb_flow_dissector_target(flow_dissector,
212 					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
213 					 target_container);
214 	ctrl->addr_type = type;
215 }
216 
217 void
218 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
219 			     struct flow_dissector *flow_dissector,
220 			     void *target_container)
221 {
222 	struct ip_tunnel_info *info;
223 	struct ip_tunnel_key *key;
224 
225 	/* A quick check to see if there might be something to do. */
226 	if (!dissector_uses_key(flow_dissector,
227 				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
228 	    !dissector_uses_key(flow_dissector,
229 				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
230 	    !dissector_uses_key(flow_dissector,
231 				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
232 	    !dissector_uses_key(flow_dissector,
233 				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
234 	    !dissector_uses_key(flow_dissector,
235 				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
236 	    !dissector_uses_key(flow_dissector,
237 				FLOW_DISSECTOR_KEY_ENC_IP) &&
238 	    !dissector_uses_key(flow_dissector,
239 				FLOW_DISSECTOR_KEY_ENC_OPTS))
240 		return;
241 
242 	info = skb_tunnel_info(skb);
243 	if (!info)
244 		return;
245 
246 	key = &info->key;
247 
248 	switch (ip_tunnel_info_af(info)) {
249 	case AF_INET:
250 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
251 						   flow_dissector,
252 						   target_container);
253 		if (dissector_uses_key(flow_dissector,
254 				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
255 			struct flow_dissector_key_ipv4_addrs *ipv4;
256 
257 			ipv4 = skb_flow_dissector_target(flow_dissector,
258 							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
259 							 target_container);
260 			ipv4->src = key->u.ipv4.src;
261 			ipv4->dst = key->u.ipv4.dst;
262 		}
263 		break;
264 	case AF_INET6:
265 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
266 						   flow_dissector,
267 						   target_container);
268 		if (dissector_uses_key(flow_dissector,
269 				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
270 			struct flow_dissector_key_ipv6_addrs *ipv6;
271 
272 			ipv6 = skb_flow_dissector_target(flow_dissector,
273 							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
274 							 target_container);
275 			ipv6->src = key->u.ipv6.src;
276 			ipv6->dst = key->u.ipv6.dst;
277 		}
278 		break;
279 	}
280 
281 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
282 		struct flow_dissector_key_keyid *keyid;
283 
284 		keyid = skb_flow_dissector_target(flow_dissector,
285 						  FLOW_DISSECTOR_KEY_ENC_KEYID,
286 						  target_container);
287 		keyid->keyid = tunnel_id_to_key32(key->tun_id);
288 	}
289 
290 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
291 		struct flow_dissector_key_ports *tp;
292 
293 		tp = skb_flow_dissector_target(flow_dissector,
294 					       FLOW_DISSECTOR_KEY_ENC_PORTS,
295 					       target_container);
296 		tp->src = key->tp_src;
297 		tp->dst = key->tp_dst;
298 	}
299 
300 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
301 		struct flow_dissector_key_ip *ip;
302 
303 		ip = skb_flow_dissector_target(flow_dissector,
304 					       FLOW_DISSECTOR_KEY_ENC_IP,
305 					       target_container);
306 		ip->tos = key->tos;
307 		ip->ttl = key->ttl;
308 	}
309 
310 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
311 		struct flow_dissector_key_enc_opts *enc_opt;
312 
313 		enc_opt = skb_flow_dissector_target(flow_dissector,
314 						    FLOW_DISSECTOR_KEY_ENC_OPTS,
315 						    target_container);
316 
317 		if (info->options_len) {
318 			enc_opt->len = info->options_len;
319 			ip_tunnel_info_opts_get(enc_opt->data, info);
320 			enc_opt->dst_opt_type = info->key.tun_flags &
321 						TUNNEL_OPTIONS_PRESENT;
322 		}
323 	}
324 }
325 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
326 
327 static enum flow_dissect_ret
328 __skb_flow_dissect_mpls(const struct sk_buff *skb,
329 			struct flow_dissector *flow_dissector,
330 			void *target_container, void *data, int nhoff, int hlen)
331 {
332 	struct flow_dissector_key_keyid *key_keyid;
333 	struct mpls_label *hdr, _hdr[2];
334 	u32 entry, label;
335 
336 	if (!dissector_uses_key(flow_dissector,
337 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
338 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
339 		return FLOW_DISSECT_RET_OUT_GOOD;
340 
341 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
342 				   hlen, &_hdr);
343 	if (!hdr)
344 		return FLOW_DISSECT_RET_OUT_BAD;
345 
346 	entry = ntohl(hdr[0].entry);
347 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
348 
349 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
350 		struct flow_dissector_key_mpls *key_mpls;
351 
352 		key_mpls = skb_flow_dissector_target(flow_dissector,
353 						     FLOW_DISSECTOR_KEY_MPLS,
354 						     target_container);
355 		key_mpls->mpls_label = label;
356 		key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
357 					>> MPLS_LS_TTL_SHIFT;
358 		key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
359 					>> MPLS_LS_TC_SHIFT;
360 		key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
361 					>> MPLS_LS_S_SHIFT;
362 	}
363 
364 	if (label == MPLS_LABEL_ENTROPY) {
365 		key_keyid = skb_flow_dissector_target(flow_dissector,
366 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
367 						      target_container);
368 		key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
369 	}
370 	return FLOW_DISSECT_RET_OUT_GOOD;
371 }
372 
373 static enum flow_dissect_ret
374 __skb_flow_dissect_arp(const struct sk_buff *skb,
375 		       struct flow_dissector *flow_dissector,
376 		       void *target_container, void *data, int nhoff, int hlen)
377 {
378 	struct flow_dissector_key_arp *key_arp;
379 	struct {
380 		unsigned char ar_sha[ETH_ALEN];
381 		unsigned char ar_sip[4];
382 		unsigned char ar_tha[ETH_ALEN];
383 		unsigned char ar_tip[4];
384 	} *arp_eth, _arp_eth;
385 	const struct arphdr *arp;
386 	struct arphdr _arp;
387 
388 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
389 		return FLOW_DISSECT_RET_OUT_GOOD;
390 
391 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
392 				   hlen, &_arp);
393 	if (!arp)
394 		return FLOW_DISSECT_RET_OUT_BAD;
395 
396 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
397 	    arp->ar_pro != htons(ETH_P_IP) ||
398 	    arp->ar_hln != ETH_ALEN ||
399 	    arp->ar_pln != 4 ||
400 	    (arp->ar_op != htons(ARPOP_REPLY) &&
401 	     arp->ar_op != htons(ARPOP_REQUEST)))
402 		return FLOW_DISSECT_RET_OUT_BAD;
403 
404 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
405 				       sizeof(_arp_eth), data,
406 				       hlen, &_arp_eth);
407 	if (!arp_eth)
408 		return FLOW_DISSECT_RET_OUT_BAD;
409 
410 	key_arp = skb_flow_dissector_target(flow_dissector,
411 					    FLOW_DISSECTOR_KEY_ARP,
412 					    target_container);
413 
414 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
415 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
416 
417 	/* Only store the lower byte of the opcode;
418 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
419 	 */
420 	key_arp->op = ntohs(arp->ar_op) & 0xff;
421 
422 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
423 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
424 
425 	return FLOW_DISSECT_RET_OUT_GOOD;
426 }
427 
428 static enum flow_dissect_ret
429 __skb_flow_dissect_gre(const struct sk_buff *skb,
430 		       struct flow_dissector_key_control *key_control,
431 		       struct flow_dissector *flow_dissector,
432 		       void *target_container, void *data,
433 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
434 		       unsigned int flags)
435 {
436 	struct flow_dissector_key_keyid *key_keyid;
437 	struct gre_base_hdr *hdr, _hdr;
438 	int offset = 0;
439 	u16 gre_ver;
440 
441 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
442 				   data, *p_hlen, &_hdr);
443 	if (!hdr)
444 		return FLOW_DISSECT_RET_OUT_BAD;
445 
446 	/* Only look inside GRE without routing */
447 	if (hdr->flags & GRE_ROUTING)
448 		return FLOW_DISSECT_RET_OUT_GOOD;
449 
450 	/* Only look inside GRE for version 0 and 1 */
451 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
452 	if (gre_ver > 1)
453 		return FLOW_DISSECT_RET_OUT_GOOD;
454 
455 	*p_proto = hdr->protocol;
456 	if (gre_ver) {
457 		/* Version1 must be PPTP, and check the flags */
458 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
459 			return FLOW_DISSECT_RET_OUT_GOOD;
460 	}
461 
462 	offset += sizeof(struct gre_base_hdr);
463 
464 	if (hdr->flags & GRE_CSUM)
465 		offset += FIELD_SIZEOF(struct gre_full_hdr, csum) +
466 			  FIELD_SIZEOF(struct gre_full_hdr, reserved1);
467 
468 	if (hdr->flags & GRE_KEY) {
469 		const __be32 *keyid;
470 		__be32 _keyid;
471 
472 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
473 					     sizeof(_keyid),
474 					     data, *p_hlen, &_keyid);
475 		if (!keyid)
476 			return FLOW_DISSECT_RET_OUT_BAD;
477 
478 		if (dissector_uses_key(flow_dissector,
479 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
480 			key_keyid = skb_flow_dissector_target(flow_dissector,
481 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
482 							      target_container);
483 			if (gre_ver == 0)
484 				key_keyid->keyid = *keyid;
485 			else
486 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
487 		}
488 		offset += FIELD_SIZEOF(struct gre_full_hdr, key);
489 	}
490 
491 	if (hdr->flags & GRE_SEQ)
492 		offset += FIELD_SIZEOF(struct pptp_gre_header, seq);
493 
494 	if (gre_ver == 0) {
495 		if (*p_proto == htons(ETH_P_TEB)) {
496 			const struct ethhdr *eth;
497 			struct ethhdr _eth;
498 
499 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
500 						   sizeof(_eth),
501 						   data, *p_hlen, &_eth);
502 			if (!eth)
503 				return FLOW_DISSECT_RET_OUT_BAD;
504 			*p_proto = eth->h_proto;
505 			offset += sizeof(*eth);
506 
507 			/* Cap headers that we access via pointers at the
508 			 * end of the Ethernet header as our maximum alignment
509 			 * at that point is only 2 bytes.
510 			 */
511 			if (NET_IP_ALIGN)
512 				*p_hlen = *p_nhoff + offset;
513 		}
514 	} else { /* version 1, must be PPTP */
515 		u8 _ppp_hdr[PPP_HDRLEN];
516 		u8 *ppp_hdr;
517 
518 		if (hdr->flags & GRE_ACK)
519 			offset += FIELD_SIZEOF(struct pptp_gre_header, ack);
520 
521 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
522 					       sizeof(_ppp_hdr),
523 					       data, *p_hlen, _ppp_hdr);
524 		if (!ppp_hdr)
525 			return FLOW_DISSECT_RET_OUT_BAD;
526 
527 		switch (PPP_PROTOCOL(ppp_hdr)) {
528 		case PPP_IP:
529 			*p_proto = htons(ETH_P_IP);
530 			break;
531 		case PPP_IPV6:
532 			*p_proto = htons(ETH_P_IPV6);
533 			break;
534 		default:
535 			/* Could probably catch some more like MPLS */
536 			break;
537 		}
538 
539 		offset += PPP_HDRLEN;
540 	}
541 
542 	*p_nhoff += offset;
543 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
544 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
545 		return FLOW_DISSECT_RET_OUT_GOOD;
546 
547 	return FLOW_DISSECT_RET_PROTO_AGAIN;
548 }
549 
550 /**
551  * __skb_flow_dissect_batadv() - dissect batman-adv header
552  * @skb: sk_buff to with the batman-adv header
553  * @key_control: flow dissectors control key
554  * @data: raw buffer pointer to the packet, if NULL use skb->data
555  * @p_proto: pointer used to update the protocol to process next
556  * @p_nhoff: pointer used to update inner network header offset
557  * @hlen: packet header length
558  * @flags: any combination of FLOW_DISSECTOR_F_*
559  *
560  * ETH_P_BATMAN packets are tried to be dissected. Only
561  * &struct batadv_unicast packets are actually processed because they contain an
562  * inner ethernet header and are usually followed by actual network header. This
563  * allows the flow dissector to continue processing the packet.
564  *
565  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
566  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
567  *  otherwise FLOW_DISSECT_RET_OUT_BAD
568  */
569 static enum flow_dissect_ret
570 __skb_flow_dissect_batadv(const struct sk_buff *skb,
571 			  struct flow_dissector_key_control *key_control,
572 			  void *data, __be16 *p_proto, int *p_nhoff, int hlen,
573 			  unsigned int flags)
574 {
575 	struct {
576 		struct batadv_unicast_packet batadv_unicast;
577 		struct ethhdr eth;
578 	} *hdr, _hdr;
579 
580 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
581 				   &_hdr);
582 	if (!hdr)
583 		return FLOW_DISSECT_RET_OUT_BAD;
584 
585 	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
586 		return FLOW_DISSECT_RET_OUT_BAD;
587 
588 	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
589 		return FLOW_DISSECT_RET_OUT_BAD;
590 
591 	*p_proto = hdr->eth.h_proto;
592 	*p_nhoff += sizeof(*hdr);
593 
594 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
595 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
596 		return FLOW_DISSECT_RET_OUT_GOOD;
597 
598 	return FLOW_DISSECT_RET_PROTO_AGAIN;
599 }
600 
601 static void
602 __skb_flow_dissect_tcp(const struct sk_buff *skb,
603 		       struct flow_dissector *flow_dissector,
604 		       void *target_container, void *data, int thoff, int hlen)
605 {
606 	struct flow_dissector_key_tcp *key_tcp;
607 	struct tcphdr *th, _th;
608 
609 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
610 		return;
611 
612 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
613 	if (!th)
614 		return;
615 
616 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
617 		return;
618 
619 	key_tcp = skb_flow_dissector_target(flow_dissector,
620 					    FLOW_DISSECTOR_KEY_TCP,
621 					    target_container);
622 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
623 }
624 
625 static void
626 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
627 			struct flow_dissector *flow_dissector,
628 			void *target_container, void *data, const struct iphdr *iph)
629 {
630 	struct flow_dissector_key_ip *key_ip;
631 
632 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
633 		return;
634 
635 	key_ip = skb_flow_dissector_target(flow_dissector,
636 					   FLOW_DISSECTOR_KEY_IP,
637 					   target_container);
638 	key_ip->tos = iph->tos;
639 	key_ip->ttl = iph->ttl;
640 }
641 
642 static void
643 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
644 			struct flow_dissector *flow_dissector,
645 			void *target_container, void *data, const struct ipv6hdr *iph)
646 {
647 	struct flow_dissector_key_ip *key_ip;
648 
649 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
650 		return;
651 
652 	key_ip = skb_flow_dissector_target(flow_dissector,
653 					   FLOW_DISSECTOR_KEY_IP,
654 					   target_container);
655 	key_ip->tos = ipv6_get_dsfield(iph);
656 	key_ip->ttl = iph->hop_limit;
657 }
658 
659 /* Maximum number of protocol headers that can be parsed in
660  * __skb_flow_dissect
661  */
662 #define MAX_FLOW_DISSECT_HDRS	15
663 
664 static bool skb_flow_dissect_allowed(int *num_hdrs)
665 {
666 	++*num_hdrs;
667 
668 	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
669 }
670 
671 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
672 				     struct flow_dissector *flow_dissector,
673 				     void *target_container)
674 {
675 	struct flow_dissector_key_control *key_control;
676 	struct flow_dissector_key_basic *key_basic;
677 	struct flow_dissector_key_addrs *key_addrs;
678 	struct flow_dissector_key_ports *key_ports;
679 
680 	key_control = skb_flow_dissector_target(flow_dissector,
681 						FLOW_DISSECTOR_KEY_CONTROL,
682 						target_container);
683 	key_control->thoff = flow_keys->thoff;
684 	if (flow_keys->is_frag)
685 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
686 	if (flow_keys->is_first_frag)
687 		key_control->flags |= FLOW_DIS_FIRST_FRAG;
688 	if (flow_keys->is_encap)
689 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
690 
691 	key_basic = skb_flow_dissector_target(flow_dissector,
692 					      FLOW_DISSECTOR_KEY_BASIC,
693 					      target_container);
694 	key_basic->n_proto = flow_keys->n_proto;
695 	key_basic->ip_proto = flow_keys->ip_proto;
696 
697 	if (flow_keys->addr_proto == ETH_P_IP &&
698 	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
699 		key_addrs = skb_flow_dissector_target(flow_dissector,
700 						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
701 						      target_container);
702 		key_addrs->v4addrs.src = flow_keys->ipv4_src;
703 		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
704 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
705 	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
706 		   dissector_uses_key(flow_dissector,
707 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
708 		key_addrs = skb_flow_dissector_target(flow_dissector,
709 						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
710 						      target_container);
711 		memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
712 		       sizeof(key_addrs->v6addrs));
713 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
714 	}
715 
716 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) {
717 		key_ports = skb_flow_dissector_target(flow_dissector,
718 						      FLOW_DISSECTOR_KEY_PORTS,
719 						      target_container);
720 		key_ports->src = flow_keys->sport;
721 		key_ports->dst = flow_keys->dport;
722 	}
723 }
724 
725 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
726 		      __be16 proto, int nhoff, int hlen)
727 {
728 	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
729 	u32 result;
730 
731 	/* Pass parameters to the BPF program */
732 	memset(flow_keys, 0, sizeof(*flow_keys));
733 	flow_keys->n_proto = proto;
734 	flow_keys->nhoff = nhoff;
735 	flow_keys->thoff = flow_keys->nhoff;
736 
737 	preempt_disable();
738 	result = BPF_PROG_RUN(prog, ctx);
739 	preempt_enable();
740 
741 	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
742 	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
743 				   flow_keys->nhoff, hlen);
744 
745 	return result == BPF_OK;
746 }
747 
748 /**
749  * __skb_flow_dissect - extract the flow_keys struct and return it
750  * @net: associated network namespace, derived from @skb if NULL
751  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
752  * @flow_dissector: list of keys to dissect
753  * @target_container: target structure to put dissected values into
754  * @data: raw buffer pointer to the packet, if NULL use skb->data
755  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
756  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
757  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
758  * @flags: flags that control the dissection process, e.g.
759  *         FLOW_DISSECTOR_F_STOP_AT_L3.
760  *
761  * The function will try to retrieve individual keys into target specified
762  * by flow_dissector from either the skbuff or a raw buffer specified by the
763  * rest parameters.
764  *
765  * Caller must take care of zeroing target container memory.
766  */
767 bool __skb_flow_dissect(const struct net *net,
768 			const struct sk_buff *skb,
769 			struct flow_dissector *flow_dissector,
770 			void *target_container,
771 			void *data, __be16 proto, int nhoff, int hlen,
772 			unsigned int flags)
773 {
774 	struct flow_dissector_key_control *key_control;
775 	struct flow_dissector_key_basic *key_basic;
776 	struct flow_dissector_key_addrs *key_addrs;
777 	struct flow_dissector_key_ports *key_ports;
778 	struct flow_dissector_key_icmp *key_icmp;
779 	struct flow_dissector_key_tags *key_tags;
780 	struct flow_dissector_key_vlan *key_vlan;
781 	struct bpf_prog *attached = NULL;
782 	enum flow_dissect_ret fdret;
783 	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
784 	int num_hdrs = 0;
785 	u8 ip_proto = 0;
786 	bool ret;
787 
788 	if (!data) {
789 		data = skb->data;
790 		proto = skb_vlan_tag_present(skb) ?
791 			 skb->vlan_proto : skb->protocol;
792 		nhoff = skb_network_offset(skb);
793 		hlen = skb_headlen(skb);
794 #if IS_ENABLED(CONFIG_NET_DSA)
795 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
796 			const struct dsa_device_ops *ops;
797 			int offset;
798 
799 			ops = skb->dev->dsa_ptr->tag_ops;
800 			if (ops->flow_dissect &&
801 			    !ops->flow_dissect(skb, &proto, &offset)) {
802 				hlen -= offset;
803 				nhoff += offset;
804 			}
805 		}
806 #endif
807 	}
808 
809 	/* It is ensured by skb_flow_dissector_init() that control key will
810 	 * be always present.
811 	 */
812 	key_control = skb_flow_dissector_target(flow_dissector,
813 						FLOW_DISSECTOR_KEY_CONTROL,
814 						target_container);
815 
816 	/* It is ensured by skb_flow_dissector_init() that basic key will
817 	 * be always present.
818 	 */
819 	key_basic = skb_flow_dissector_target(flow_dissector,
820 					      FLOW_DISSECTOR_KEY_BASIC,
821 					      target_container);
822 
823 	if (skb) {
824 		if (!net) {
825 			if (skb->dev)
826 				net = dev_net(skb->dev);
827 			else if (skb->sk)
828 				net = sock_net(skb->sk);
829 		}
830 	}
831 
832 	WARN_ON_ONCE(!net);
833 	if (net) {
834 		rcu_read_lock();
835 		attached = rcu_dereference(net->flow_dissector_prog);
836 
837 		if (attached) {
838 			struct bpf_flow_keys flow_keys;
839 			struct bpf_flow_dissector ctx = {
840 				.flow_keys = &flow_keys,
841 				.data = data,
842 				.data_end = data + hlen,
843 			};
844 			__be16 n_proto = proto;
845 
846 			if (skb) {
847 				ctx.skb = skb;
848 				/* we can't use 'proto' in the skb case
849 				 * because it might be set to skb->vlan_proto
850 				 * which has been pulled from the data
851 				 */
852 				n_proto = skb->protocol;
853 			}
854 
855 			ret = bpf_flow_dissect(attached, &ctx, n_proto, nhoff,
856 					       hlen);
857 			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
858 						 target_container);
859 			rcu_read_unlock();
860 			return ret;
861 		}
862 		rcu_read_unlock();
863 	}
864 
865 	if (dissector_uses_key(flow_dissector,
866 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
867 		struct ethhdr *eth = eth_hdr(skb);
868 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
869 
870 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
871 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
872 							  target_container);
873 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
874 	}
875 
876 proto_again:
877 	fdret = FLOW_DISSECT_RET_CONTINUE;
878 
879 	switch (proto) {
880 	case htons(ETH_P_IP): {
881 		const struct iphdr *iph;
882 		struct iphdr _iph;
883 
884 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
885 		if (!iph || iph->ihl < 5) {
886 			fdret = FLOW_DISSECT_RET_OUT_BAD;
887 			break;
888 		}
889 
890 		nhoff += iph->ihl * 4;
891 
892 		ip_proto = iph->protocol;
893 
894 		if (dissector_uses_key(flow_dissector,
895 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
896 			key_addrs = skb_flow_dissector_target(flow_dissector,
897 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
898 							      target_container);
899 
900 			memcpy(&key_addrs->v4addrs, &iph->saddr,
901 			       sizeof(key_addrs->v4addrs));
902 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
903 		}
904 
905 		if (ip_is_fragment(iph)) {
906 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
907 
908 			if (iph->frag_off & htons(IP_OFFSET)) {
909 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
910 				break;
911 			} else {
912 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
913 				if (!(flags &
914 				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
915 					fdret = FLOW_DISSECT_RET_OUT_GOOD;
916 					break;
917 				}
918 			}
919 		}
920 
921 		__skb_flow_dissect_ipv4(skb, flow_dissector,
922 					target_container, data, iph);
923 
924 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) {
925 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
926 			break;
927 		}
928 
929 		break;
930 	}
931 	case htons(ETH_P_IPV6): {
932 		const struct ipv6hdr *iph;
933 		struct ipv6hdr _iph;
934 
935 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
936 		if (!iph) {
937 			fdret = FLOW_DISSECT_RET_OUT_BAD;
938 			break;
939 		}
940 
941 		ip_proto = iph->nexthdr;
942 		nhoff += sizeof(struct ipv6hdr);
943 
944 		if (dissector_uses_key(flow_dissector,
945 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
946 			key_addrs = skb_flow_dissector_target(flow_dissector,
947 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
948 							      target_container);
949 
950 			memcpy(&key_addrs->v6addrs, &iph->saddr,
951 			       sizeof(key_addrs->v6addrs));
952 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
953 		}
954 
955 		if ((dissector_uses_key(flow_dissector,
956 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
957 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
958 		    ip6_flowlabel(iph)) {
959 			__be32 flow_label = ip6_flowlabel(iph);
960 
961 			if (dissector_uses_key(flow_dissector,
962 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
963 				key_tags = skb_flow_dissector_target(flow_dissector,
964 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
965 								     target_container);
966 				key_tags->flow_label = ntohl(flow_label);
967 			}
968 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
969 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
970 				break;
971 			}
972 		}
973 
974 		__skb_flow_dissect_ipv6(skb, flow_dissector,
975 					target_container, data, iph);
976 
977 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
978 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
979 
980 		break;
981 	}
982 	case htons(ETH_P_8021AD):
983 	case htons(ETH_P_8021Q): {
984 		const struct vlan_hdr *vlan = NULL;
985 		struct vlan_hdr _vlan;
986 		__be16 saved_vlan_tpid = proto;
987 
988 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
989 		    skb && skb_vlan_tag_present(skb)) {
990 			proto = skb->protocol;
991 		} else {
992 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
993 						    data, hlen, &_vlan);
994 			if (!vlan) {
995 				fdret = FLOW_DISSECT_RET_OUT_BAD;
996 				break;
997 			}
998 
999 			proto = vlan->h_vlan_encapsulated_proto;
1000 			nhoff += sizeof(*vlan);
1001 		}
1002 
1003 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1004 			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1005 		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1006 			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1007 		} else {
1008 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1009 			break;
1010 		}
1011 
1012 		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1013 			key_vlan = skb_flow_dissector_target(flow_dissector,
1014 							     dissector_vlan,
1015 							     target_container);
1016 
1017 			if (!vlan) {
1018 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1019 				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1020 			} else {
1021 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1022 					VLAN_VID_MASK;
1023 				key_vlan->vlan_priority =
1024 					(ntohs(vlan->h_vlan_TCI) &
1025 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1026 			}
1027 			key_vlan->vlan_tpid = saved_vlan_tpid;
1028 		}
1029 
1030 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1031 		break;
1032 	}
1033 	case htons(ETH_P_PPP_SES): {
1034 		struct {
1035 			struct pppoe_hdr hdr;
1036 			__be16 proto;
1037 		} *hdr, _hdr;
1038 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1039 		if (!hdr) {
1040 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1041 			break;
1042 		}
1043 
1044 		proto = hdr->proto;
1045 		nhoff += PPPOE_SES_HLEN;
1046 		switch (proto) {
1047 		case htons(PPP_IP):
1048 			proto = htons(ETH_P_IP);
1049 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1050 			break;
1051 		case htons(PPP_IPV6):
1052 			proto = htons(ETH_P_IPV6);
1053 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1054 			break;
1055 		default:
1056 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1057 			break;
1058 		}
1059 		break;
1060 	}
1061 	case htons(ETH_P_TIPC): {
1062 		struct tipc_basic_hdr *hdr, _hdr;
1063 
1064 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1065 					   data, hlen, &_hdr);
1066 		if (!hdr) {
1067 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1068 			break;
1069 		}
1070 
1071 		if (dissector_uses_key(flow_dissector,
1072 				       FLOW_DISSECTOR_KEY_TIPC)) {
1073 			key_addrs = skb_flow_dissector_target(flow_dissector,
1074 							      FLOW_DISSECTOR_KEY_TIPC,
1075 							      target_container);
1076 			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1077 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1078 		}
1079 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1080 		break;
1081 	}
1082 
1083 	case htons(ETH_P_MPLS_UC):
1084 	case htons(ETH_P_MPLS_MC):
1085 		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1086 						target_container, data,
1087 						nhoff, hlen);
1088 		break;
1089 	case htons(ETH_P_FCOE):
1090 		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1091 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1092 			break;
1093 		}
1094 
1095 		nhoff += FCOE_HEADER_LEN;
1096 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1097 		break;
1098 
1099 	case htons(ETH_P_ARP):
1100 	case htons(ETH_P_RARP):
1101 		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1102 					       target_container, data,
1103 					       nhoff, hlen);
1104 		break;
1105 
1106 	case htons(ETH_P_BATMAN):
1107 		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1108 						  &proto, &nhoff, hlen, flags);
1109 		break;
1110 
1111 	default:
1112 		fdret = FLOW_DISSECT_RET_OUT_BAD;
1113 		break;
1114 	}
1115 
1116 	/* Process result of proto processing */
1117 	switch (fdret) {
1118 	case FLOW_DISSECT_RET_OUT_GOOD:
1119 		goto out_good;
1120 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1121 		if (skb_flow_dissect_allowed(&num_hdrs))
1122 			goto proto_again;
1123 		goto out_good;
1124 	case FLOW_DISSECT_RET_CONTINUE:
1125 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1126 		break;
1127 	case FLOW_DISSECT_RET_OUT_BAD:
1128 	default:
1129 		goto out_bad;
1130 	}
1131 
1132 ip_proto_again:
1133 	fdret = FLOW_DISSECT_RET_CONTINUE;
1134 
1135 	switch (ip_proto) {
1136 	case IPPROTO_GRE:
1137 		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1138 					       target_container, data,
1139 					       &proto, &nhoff, &hlen, flags);
1140 		break;
1141 
1142 	case NEXTHDR_HOP:
1143 	case NEXTHDR_ROUTING:
1144 	case NEXTHDR_DEST: {
1145 		u8 _opthdr[2], *opthdr;
1146 
1147 		if (proto != htons(ETH_P_IPV6))
1148 			break;
1149 
1150 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1151 					      data, hlen, &_opthdr);
1152 		if (!opthdr) {
1153 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1154 			break;
1155 		}
1156 
1157 		ip_proto = opthdr[0];
1158 		nhoff += (opthdr[1] + 1) << 3;
1159 
1160 		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1161 		break;
1162 	}
1163 	case NEXTHDR_FRAGMENT: {
1164 		struct frag_hdr _fh, *fh;
1165 
1166 		if (proto != htons(ETH_P_IPV6))
1167 			break;
1168 
1169 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1170 					  data, hlen, &_fh);
1171 
1172 		if (!fh) {
1173 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1174 			break;
1175 		}
1176 
1177 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1178 
1179 		nhoff += sizeof(_fh);
1180 		ip_proto = fh->nexthdr;
1181 
1182 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1183 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1184 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1185 				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1186 				break;
1187 			}
1188 		}
1189 
1190 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1191 		break;
1192 	}
1193 	case IPPROTO_IPIP:
1194 		proto = htons(ETH_P_IP);
1195 
1196 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1197 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1198 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1199 			break;
1200 		}
1201 
1202 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1203 		break;
1204 
1205 	case IPPROTO_IPV6:
1206 		proto = htons(ETH_P_IPV6);
1207 
1208 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1209 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1210 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1211 			break;
1212 		}
1213 
1214 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1215 		break;
1216 
1217 
1218 	case IPPROTO_MPLS:
1219 		proto = htons(ETH_P_MPLS_UC);
1220 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1221 		break;
1222 
1223 	case IPPROTO_TCP:
1224 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1225 				       data, nhoff, hlen);
1226 		break;
1227 
1228 	default:
1229 		break;
1230 	}
1231 
1232 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS) &&
1233 	    !(key_control->flags & FLOW_DIS_IS_FRAGMENT)) {
1234 		key_ports = skb_flow_dissector_target(flow_dissector,
1235 						      FLOW_DISSECTOR_KEY_PORTS,
1236 						      target_container);
1237 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
1238 							data, hlen);
1239 	}
1240 
1241 	if (dissector_uses_key(flow_dissector,
1242 			       FLOW_DISSECTOR_KEY_ICMP)) {
1243 		key_icmp = skb_flow_dissector_target(flow_dissector,
1244 						     FLOW_DISSECTOR_KEY_ICMP,
1245 						     target_container);
1246 		key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
1247 	}
1248 
1249 	/* Process result of IP proto processing */
1250 	switch (fdret) {
1251 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1252 		if (skb_flow_dissect_allowed(&num_hdrs))
1253 			goto proto_again;
1254 		break;
1255 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1256 		if (skb_flow_dissect_allowed(&num_hdrs))
1257 			goto ip_proto_again;
1258 		break;
1259 	case FLOW_DISSECT_RET_OUT_GOOD:
1260 	case FLOW_DISSECT_RET_CONTINUE:
1261 		break;
1262 	case FLOW_DISSECT_RET_OUT_BAD:
1263 	default:
1264 		goto out_bad;
1265 	}
1266 
1267 out_good:
1268 	ret = true;
1269 
1270 out:
1271 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1272 	key_basic->n_proto = proto;
1273 	key_basic->ip_proto = ip_proto;
1274 
1275 	return ret;
1276 
1277 out_bad:
1278 	ret = false;
1279 	goto out;
1280 }
1281 EXPORT_SYMBOL(__skb_flow_dissect);
1282 
1283 static u32 hashrnd __read_mostly;
1284 static __always_inline void __flow_hash_secret_init(void)
1285 {
1286 	net_get_random_once(&hashrnd, sizeof(hashrnd));
1287 }
1288 
1289 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
1290 					     u32 keyval)
1291 {
1292 	return jhash2(words, length, keyval);
1293 }
1294 
1295 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
1296 {
1297 	const void *p = flow;
1298 
1299 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
1300 	return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
1301 }
1302 
1303 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1304 {
1305 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1306 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1307 	BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
1308 		     sizeof(*flow) - sizeof(flow->addrs));
1309 
1310 	switch (flow->control.addr_type) {
1311 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1312 		diff -= sizeof(flow->addrs.v4addrs);
1313 		break;
1314 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1315 		diff -= sizeof(flow->addrs.v6addrs);
1316 		break;
1317 	case FLOW_DISSECTOR_KEY_TIPC:
1318 		diff -= sizeof(flow->addrs.tipckey);
1319 		break;
1320 	}
1321 	return (sizeof(*flow) - diff) / sizeof(u32);
1322 }
1323 
1324 __be32 flow_get_u32_src(const struct flow_keys *flow)
1325 {
1326 	switch (flow->control.addr_type) {
1327 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1328 		return flow->addrs.v4addrs.src;
1329 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1330 		return (__force __be32)ipv6_addr_hash(
1331 			&flow->addrs.v6addrs.src);
1332 	case FLOW_DISSECTOR_KEY_TIPC:
1333 		return flow->addrs.tipckey.key;
1334 	default:
1335 		return 0;
1336 	}
1337 }
1338 EXPORT_SYMBOL(flow_get_u32_src);
1339 
1340 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1341 {
1342 	switch (flow->control.addr_type) {
1343 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1344 		return flow->addrs.v4addrs.dst;
1345 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1346 		return (__force __be32)ipv6_addr_hash(
1347 			&flow->addrs.v6addrs.dst);
1348 	default:
1349 		return 0;
1350 	}
1351 }
1352 EXPORT_SYMBOL(flow_get_u32_dst);
1353 
1354 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1355 {
1356 	int addr_diff, i;
1357 
1358 	switch (keys->control.addr_type) {
1359 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1360 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1361 			    (__force u32)keys->addrs.v4addrs.src;
1362 		if ((addr_diff < 0) ||
1363 		    (addr_diff == 0 &&
1364 		     ((__force u16)keys->ports.dst <
1365 		      (__force u16)keys->ports.src))) {
1366 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1367 			swap(keys->ports.src, keys->ports.dst);
1368 		}
1369 		break;
1370 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1371 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1372 				   &keys->addrs.v6addrs.src,
1373 				   sizeof(keys->addrs.v6addrs.dst));
1374 		if ((addr_diff < 0) ||
1375 		    (addr_diff == 0 &&
1376 		     ((__force u16)keys->ports.dst <
1377 		      (__force u16)keys->ports.src))) {
1378 			for (i = 0; i < 4; i++)
1379 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1380 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1381 			swap(keys->ports.src, keys->ports.dst);
1382 		}
1383 		break;
1384 	}
1385 }
1386 
1387 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
1388 {
1389 	u32 hash;
1390 
1391 	__flow_hash_consistentify(keys);
1392 
1393 	hash = __flow_hash_words(flow_keys_hash_start(keys),
1394 				 flow_keys_hash_length(keys), keyval);
1395 	if (!hash)
1396 		hash = 1;
1397 
1398 	return hash;
1399 }
1400 
1401 u32 flow_hash_from_keys(struct flow_keys *keys)
1402 {
1403 	__flow_hash_secret_init();
1404 	return __flow_hash_from_keys(keys, hashrnd);
1405 }
1406 EXPORT_SYMBOL(flow_hash_from_keys);
1407 
1408 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1409 				  struct flow_keys *keys, u32 keyval)
1410 {
1411 	skb_flow_dissect_flow_keys(skb, keys,
1412 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1413 
1414 	return __flow_hash_from_keys(keys, keyval);
1415 }
1416 
1417 struct _flow_keys_digest_data {
1418 	__be16	n_proto;
1419 	u8	ip_proto;
1420 	u8	padding;
1421 	__be32	ports;
1422 	__be32	src;
1423 	__be32	dst;
1424 };
1425 
1426 void make_flow_keys_digest(struct flow_keys_digest *digest,
1427 			   const struct flow_keys *flow)
1428 {
1429 	struct _flow_keys_digest_data *data =
1430 	    (struct _flow_keys_digest_data *)digest;
1431 
1432 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1433 
1434 	memset(digest, 0, sizeof(*digest));
1435 
1436 	data->n_proto = flow->basic.n_proto;
1437 	data->ip_proto = flow->basic.ip_proto;
1438 	data->ports = flow->ports.ports;
1439 	data->src = flow->addrs.v4addrs.src;
1440 	data->dst = flow->addrs.v4addrs.dst;
1441 }
1442 EXPORT_SYMBOL(make_flow_keys_digest);
1443 
1444 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1445 
1446 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1447 {
1448 	struct flow_keys keys;
1449 
1450 	__flow_hash_secret_init();
1451 
1452 	memset(&keys, 0, sizeof(keys));
1453 	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1454 			   &keys, NULL, 0, 0, 0,
1455 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1456 
1457 	return __flow_hash_from_keys(&keys, hashrnd);
1458 }
1459 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1460 
1461 /**
1462  * __skb_get_hash: calculate a flow hash
1463  * @skb: sk_buff to calculate flow hash from
1464  *
1465  * This function calculates a flow hash based on src/dst addresses
1466  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1467  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1468  * if hash is a canonical 4-tuple hash over transport ports.
1469  */
1470 void __skb_get_hash(struct sk_buff *skb)
1471 {
1472 	struct flow_keys keys;
1473 	u32 hash;
1474 
1475 	__flow_hash_secret_init();
1476 
1477 	hash = ___skb_get_hash(skb, &keys, hashrnd);
1478 
1479 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1480 }
1481 EXPORT_SYMBOL(__skb_get_hash);
1482 
1483 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
1484 {
1485 	struct flow_keys keys;
1486 
1487 	return ___skb_get_hash(skb, &keys, perturb);
1488 }
1489 EXPORT_SYMBOL(skb_get_hash_perturb);
1490 
1491 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1492 		   const struct flow_keys_basic *keys, int hlen)
1493 {
1494 	u32 poff = keys->control.thoff;
1495 
1496 	/* skip L4 headers for fragments after the first */
1497 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1498 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1499 		return poff;
1500 
1501 	switch (keys->basic.ip_proto) {
1502 	case IPPROTO_TCP: {
1503 		/* access doff as u8 to avoid unaligned access */
1504 		const u8 *doff;
1505 		u8 _doff;
1506 
1507 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1508 					    data, hlen, &_doff);
1509 		if (!doff)
1510 			return poff;
1511 
1512 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1513 		break;
1514 	}
1515 	case IPPROTO_UDP:
1516 	case IPPROTO_UDPLITE:
1517 		poff += sizeof(struct udphdr);
1518 		break;
1519 	/* For the rest, we do not really care about header
1520 	 * extensions at this point for now.
1521 	 */
1522 	case IPPROTO_ICMP:
1523 		poff += sizeof(struct icmphdr);
1524 		break;
1525 	case IPPROTO_ICMPV6:
1526 		poff += sizeof(struct icmp6hdr);
1527 		break;
1528 	case IPPROTO_IGMP:
1529 		poff += sizeof(struct igmphdr);
1530 		break;
1531 	case IPPROTO_DCCP:
1532 		poff += sizeof(struct dccp_hdr);
1533 		break;
1534 	case IPPROTO_SCTP:
1535 		poff += sizeof(struct sctphdr);
1536 		break;
1537 	}
1538 
1539 	return poff;
1540 }
1541 
1542 /**
1543  * skb_get_poff - get the offset to the payload
1544  * @skb: sk_buff to get the payload offset from
1545  *
1546  * The function will get the offset to the payload as far as it could
1547  * be dissected.  The main user is currently BPF, so that we can dynamically
1548  * truncate packets without needing to push actual payload to the user
1549  * space and can analyze headers only, instead.
1550  */
1551 u32 skb_get_poff(const struct sk_buff *skb)
1552 {
1553 	struct flow_keys_basic keys;
1554 
1555 	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1556 					      NULL, 0, 0, 0, 0))
1557 		return 0;
1558 
1559 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1560 }
1561 
1562 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1563 {
1564 	memset(keys, 0, sizeof(*keys));
1565 
1566 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1567 	    sizeof(keys->addrs.v6addrs.src));
1568 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1569 	    sizeof(keys->addrs.v6addrs.dst));
1570 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1571 	keys->ports.src = fl6->fl6_sport;
1572 	keys->ports.dst = fl6->fl6_dport;
1573 	keys->keyid.keyid = fl6->fl6_gre_key;
1574 	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1575 	keys->basic.ip_proto = fl6->flowi6_proto;
1576 
1577 	return flow_hash_from_keys(keys);
1578 }
1579 EXPORT_SYMBOL(__get_hash_from_flowi6);
1580 
1581 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1582 	{
1583 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1584 		.offset = offsetof(struct flow_keys, control),
1585 	},
1586 	{
1587 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1588 		.offset = offsetof(struct flow_keys, basic),
1589 	},
1590 	{
1591 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1592 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1593 	},
1594 	{
1595 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1596 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1597 	},
1598 	{
1599 		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1600 		.offset = offsetof(struct flow_keys, addrs.tipckey),
1601 	},
1602 	{
1603 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1604 		.offset = offsetof(struct flow_keys, ports),
1605 	},
1606 	{
1607 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1608 		.offset = offsetof(struct flow_keys, vlan),
1609 	},
1610 	{
1611 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1612 		.offset = offsetof(struct flow_keys, tags),
1613 	},
1614 	{
1615 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1616 		.offset = offsetof(struct flow_keys, keyid),
1617 	},
1618 };
1619 
1620 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1621 	{
1622 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1623 		.offset = offsetof(struct flow_keys, control),
1624 	},
1625 	{
1626 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1627 		.offset = offsetof(struct flow_keys, basic),
1628 	},
1629 	{
1630 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1631 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1632 	},
1633 	{
1634 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1635 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1636 	},
1637 	{
1638 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1639 		.offset = offsetof(struct flow_keys, ports),
1640 	},
1641 };
1642 
1643 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1644 	{
1645 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1646 		.offset = offsetof(struct flow_keys, control),
1647 	},
1648 	{
1649 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1650 		.offset = offsetof(struct flow_keys, basic),
1651 	},
1652 };
1653 
1654 struct flow_dissector flow_keys_dissector __read_mostly;
1655 EXPORT_SYMBOL(flow_keys_dissector);
1656 
1657 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1658 EXPORT_SYMBOL(flow_keys_basic_dissector);
1659 
1660 static int __init init_default_flow_dissectors(void)
1661 {
1662 	skb_flow_dissector_init(&flow_keys_dissector,
1663 				flow_keys_dissector_keys,
1664 				ARRAY_SIZE(flow_keys_dissector_keys));
1665 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1666 				flow_keys_dissector_symmetric_keys,
1667 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1668 	skb_flow_dissector_init(&flow_keys_basic_dissector,
1669 				flow_keys_basic_dissector_keys,
1670 				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1671 	return 0;
1672 }
1673 
1674 core_initcall(init_default_flow_dissectors);
1675