xref: /openbmc/linux/net/core/flow_dissector.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/skbuff.h>
4 #include <linux/export.h>
5 #include <linux/ip.h>
6 #include <linux/ipv6.h>
7 #include <linux/if_vlan.h>
8 #include <net/dsa.h>
9 #include <net/dst_metadata.h>
10 #include <net/ip.h>
11 #include <net/ipv6.h>
12 #include <net/gre.h>
13 #include <net/pptp.h>
14 #include <net/tipc.h>
15 #include <linux/igmp.h>
16 #include <linux/icmp.h>
17 #include <linux/sctp.h>
18 #include <linux/dccp.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/if_pppox.h>
21 #include <linux/ppp_defs.h>
22 #include <linux/stddef.h>
23 #include <linux/if_ether.h>
24 #include <linux/mpls.h>
25 #include <linux/tcp.h>
26 #include <net/flow_dissector.h>
27 #include <scsi/fc/fc_fcoe.h>
28 #include <uapi/linux/batadv_packet.h>
29 #include <linux/bpf.h>
30 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
31 #include <net/netfilter/nf_conntrack_core.h>
32 #include <net/netfilter/nf_conntrack_labels.h>
33 #endif
34 #include <linux/bpf-netns.h>
35 
36 static void dissector_set_key(struct flow_dissector *flow_dissector,
37 			      enum flow_dissector_key_id key_id)
38 {
39 	flow_dissector->used_keys |= (1 << key_id);
40 }
41 
42 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
43 			     const struct flow_dissector_key *key,
44 			     unsigned int key_count)
45 {
46 	unsigned int i;
47 
48 	memset(flow_dissector, 0, sizeof(*flow_dissector));
49 
50 	for (i = 0; i < key_count; i++, key++) {
51 		/* User should make sure that every key target offset is withing
52 		 * boundaries of unsigned short.
53 		 */
54 		BUG_ON(key->offset > USHRT_MAX);
55 		BUG_ON(dissector_uses_key(flow_dissector,
56 					  key->key_id));
57 
58 		dissector_set_key(flow_dissector, key->key_id);
59 		flow_dissector->offset[key->key_id] = key->offset;
60 	}
61 
62 	/* Ensure that the dissector always includes control and basic key.
63 	 * That way we are able to avoid handling lack of these in fast path.
64 	 */
65 	BUG_ON(!dissector_uses_key(flow_dissector,
66 				   FLOW_DISSECTOR_KEY_CONTROL));
67 	BUG_ON(!dissector_uses_key(flow_dissector,
68 				   FLOW_DISSECTOR_KEY_BASIC));
69 }
70 EXPORT_SYMBOL(skb_flow_dissector_init);
71 
72 #ifdef CONFIG_BPF_SYSCALL
73 int flow_dissector_bpf_prog_attach_check(struct net *net,
74 					 struct bpf_prog *prog)
75 {
76 	enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
77 
78 	if (net == &init_net) {
79 		/* BPF flow dissector in the root namespace overrides
80 		 * any per-net-namespace one. When attaching to root,
81 		 * make sure we don't have any BPF program attached
82 		 * to the non-root namespaces.
83 		 */
84 		struct net *ns;
85 
86 		for_each_net(ns) {
87 			if (ns == &init_net)
88 				continue;
89 			if (rcu_access_pointer(ns->bpf.run_array[type]))
90 				return -EEXIST;
91 		}
92 	} else {
93 		/* Make sure root flow dissector is not attached
94 		 * when attaching to the non-root namespace.
95 		 */
96 		if (rcu_access_pointer(init_net.bpf.run_array[type]))
97 			return -EEXIST;
98 	}
99 
100 	return 0;
101 }
102 #endif /* CONFIG_BPF_SYSCALL */
103 
104 /**
105  * __skb_flow_get_ports - extract the upper layer ports and return them
106  * @skb: sk_buff to extract the ports from
107  * @thoff: transport header offset
108  * @ip_proto: protocol for which to get port offset
109  * @data: raw buffer pointer to the packet, if NULL use skb->data
110  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
111  *
112  * The function will try to retrieve the ports at offset thoff + poff where poff
113  * is the protocol port offset returned from proto_ports_offset
114  */
115 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
116 			    void *data, int hlen)
117 {
118 	int poff = proto_ports_offset(ip_proto);
119 
120 	if (!data) {
121 		data = skb->data;
122 		hlen = skb_headlen(skb);
123 	}
124 
125 	if (poff >= 0) {
126 		__be32 *ports, _ports;
127 
128 		ports = __skb_header_pointer(skb, thoff + poff,
129 					     sizeof(_ports), data, hlen, &_ports);
130 		if (ports)
131 			return *ports;
132 	}
133 
134 	return 0;
135 }
136 EXPORT_SYMBOL(__skb_flow_get_ports);
137 
138 static bool icmp_has_id(u8 type)
139 {
140 	switch (type) {
141 	case ICMP_ECHO:
142 	case ICMP_ECHOREPLY:
143 	case ICMP_TIMESTAMP:
144 	case ICMP_TIMESTAMPREPLY:
145 	case ICMPV6_ECHO_REQUEST:
146 	case ICMPV6_ECHO_REPLY:
147 		return true;
148 	}
149 
150 	return false;
151 }
152 
153 /**
154  * skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
155  * @skb: sk_buff to extract from
156  * @key_icmp: struct flow_dissector_key_icmp to fill
157  * @data: raw buffer pointer to the packet
158  * @thoff: offset to extract at
159  * @hlen: packet header length
160  */
161 void skb_flow_get_icmp_tci(const struct sk_buff *skb,
162 			   struct flow_dissector_key_icmp *key_icmp,
163 			   void *data, int thoff, int hlen)
164 {
165 	struct icmphdr *ih, _ih;
166 
167 	ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
168 	if (!ih)
169 		return;
170 
171 	key_icmp->type = ih->type;
172 	key_icmp->code = ih->code;
173 
174 	/* As we use 0 to signal that the Id field is not present,
175 	 * avoid confusion with packets without such field
176 	 */
177 	if (icmp_has_id(ih->type))
178 		key_icmp->id = ih->un.echo.id ? : 1;
179 	else
180 		key_icmp->id = 0;
181 }
182 EXPORT_SYMBOL(skb_flow_get_icmp_tci);
183 
184 /* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
185  * using skb_flow_get_icmp_tci().
186  */
187 static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
188 				    struct flow_dissector *flow_dissector,
189 				    void *target_container,
190 				    void *data, int thoff, int hlen)
191 {
192 	struct flow_dissector_key_icmp *key_icmp;
193 
194 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
195 		return;
196 
197 	key_icmp = skb_flow_dissector_target(flow_dissector,
198 					     FLOW_DISSECTOR_KEY_ICMP,
199 					     target_container);
200 
201 	skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
202 }
203 
204 void skb_flow_dissect_meta(const struct sk_buff *skb,
205 			   struct flow_dissector *flow_dissector,
206 			   void *target_container)
207 {
208 	struct flow_dissector_key_meta *meta;
209 
210 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
211 		return;
212 
213 	meta = skb_flow_dissector_target(flow_dissector,
214 					 FLOW_DISSECTOR_KEY_META,
215 					 target_container);
216 	meta->ingress_ifindex = skb->skb_iif;
217 }
218 EXPORT_SYMBOL(skb_flow_dissect_meta);
219 
220 static void
221 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
222 				   struct flow_dissector *flow_dissector,
223 				   void *target_container)
224 {
225 	struct flow_dissector_key_control *ctrl;
226 
227 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
228 		return;
229 
230 	ctrl = skb_flow_dissector_target(flow_dissector,
231 					 FLOW_DISSECTOR_KEY_ENC_CONTROL,
232 					 target_container);
233 	ctrl->addr_type = type;
234 }
235 
236 void
237 skb_flow_dissect_ct(const struct sk_buff *skb,
238 		    struct flow_dissector *flow_dissector,
239 		    void *target_container,
240 		    u16 *ctinfo_map,
241 		    size_t mapsize)
242 {
243 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
244 	struct flow_dissector_key_ct *key;
245 	enum ip_conntrack_info ctinfo;
246 	struct nf_conn_labels *cl;
247 	struct nf_conn *ct;
248 
249 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
250 		return;
251 
252 	ct = nf_ct_get(skb, &ctinfo);
253 	if (!ct)
254 		return;
255 
256 	key = skb_flow_dissector_target(flow_dissector,
257 					FLOW_DISSECTOR_KEY_CT,
258 					target_container);
259 
260 	if (ctinfo < mapsize)
261 		key->ct_state = ctinfo_map[ctinfo];
262 #if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
263 	key->ct_zone = ct->zone.id;
264 #endif
265 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
266 	key->ct_mark = ct->mark;
267 #endif
268 
269 	cl = nf_ct_labels_find(ct);
270 	if (cl)
271 		memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
272 #endif /* CONFIG_NF_CONNTRACK */
273 }
274 EXPORT_SYMBOL(skb_flow_dissect_ct);
275 
276 void
277 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
278 			     struct flow_dissector *flow_dissector,
279 			     void *target_container)
280 {
281 	struct ip_tunnel_info *info;
282 	struct ip_tunnel_key *key;
283 
284 	/* A quick check to see if there might be something to do. */
285 	if (!dissector_uses_key(flow_dissector,
286 				FLOW_DISSECTOR_KEY_ENC_KEYID) &&
287 	    !dissector_uses_key(flow_dissector,
288 				FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
289 	    !dissector_uses_key(flow_dissector,
290 				FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
291 	    !dissector_uses_key(flow_dissector,
292 				FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
293 	    !dissector_uses_key(flow_dissector,
294 				FLOW_DISSECTOR_KEY_ENC_PORTS) &&
295 	    !dissector_uses_key(flow_dissector,
296 				FLOW_DISSECTOR_KEY_ENC_IP) &&
297 	    !dissector_uses_key(flow_dissector,
298 				FLOW_DISSECTOR_KEY_ENC_OPTS))
299 		return;
300 
301 	info = skb_tunnel_info(skb);
302 	if (!info)
303 		return;
304 
305 	key = &info->key;
306 
307 	switch (ip_tunnel_info_af(info)) {
308 	case AF_INET:
309 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
310 						   flow_dissector,
311 						   target_container);
312 		if (dissector_uses_key(flow_dissector,
313 				       FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
314 			struct flow_dissector_key_ipv4_addrs *ipv4;
315 
316 			ipv4 = skb_flow_dissector_target(flow_dissector,
317 							 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
318 							 target_container);
319 			ipv4->src = key->u.ipv4.src;
320 			ipv4->dst = key->u.ipv4.dst;
321 		}
322 		break;
323 	case AF_INET6:
324 		skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
325 						   flow_dissector,
326 						   target_container);
327 		if (dissector_uses_key(flow_dissector,
328 				       FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
329 			struct flow_dissector_key_ipv6_addrs *ipv6;
330 
331 			ipv6 = skb_flow_dissector_target(flow_dissector,
332 							 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
333 							 target_container);
334 			ipv6->src = key->u.ipv6.src;
335 			ipv6->dst = key->u.ipv6.dst;
336 		}
337 		break;
338 	}
339 
340 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
341 		struct flow_dissector_key_keyid *keyid;
342 
343 		keyid = skb_flow_dissector_target(flow_dissector,
344 						  FLOW_DISSECTOR_KEY_ENC_KEYID,
345 						  target_container);
346 		keyid->keyid = tunnel_id_to_key32(key->tun_id);
347 	}
348 
349 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
350 		struct flow_dissector_key_ports *tp;
351 
352 		tp = skb_flow_dissector_target(flow_dissector,
353 					       FLOW_DISSECTOR_KEY_ENC_PORTS,
354 					       target_container);
355 		tp->src = key->tp_src;
356 		tp->dst = key->tp_dst;
357 	}
358 
359 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
360 		struct flow_dissector_key_ip *ip;
361 
362 		ip = skb_flow_dissector_target(flow_dissector,
363 					       FLOW_DISSECTOR_KEY_ENC_IP,
364 					       target_container);
365 		ip->tos = key->tos;
366 		ip->ttl = key->ttl;
367 	}
368 
369 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
370 		struct flow_dissector_key_enc_opts *enc_opt;
371 
372 		enc_opt = skb_flow_dissector_target(flow_dissector,
373 						    FLOW_DISSECTOR_KEY_ENC_OPTS,
374 						    target_container);
375 
376 		if (info->options_len) {
377 			enc_opt->len = info->options_len;
378 			ip_tunnel_info_opts_get(enc_opt->data, info);
379 			enc_opt->dst_opt_type = info->key.tun_flags &
380 						TUNNEL_OPTIONS_PRESENT;
381 		}
382 	}
383 }
384 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
385 
386 void skb_flow_dissect_hash(const struct sk_buff *skb,
387 			   struct flow_dissector *flow_dissector,
388 			   void *target_container)
389 {
390 	struct flow_dissector_key_hash *key;
391 
392 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH))
393 		return;
394 
395 	key = skb_flow_dissector_target(flow_dissector,
396 					FLOW_DISSECTOR_KEY_HASH,
397 					target_container);
398 
399 	key->hash = skb_get_hash_raw(skb);
400 }
401 EXPORT_SYMBOL(skb_flow_dissect_hash);
402 
403 static enum flow_dissect_ret
404 __skb_flow_dissect_mpls(const struct sk_buff *skb,
405 			struct flow_dissector *flow_dissector,
406 			void *target_container, void *data, int nhoff, int hlen,
407 			int lse_index, bool *entropy_label)
408 {
409 	struct mpls_label *hdr, _hdr;
410 	u32 entry, label, bos;
411 
412 	if (!dissector_uses_key(flow_dissector,
413 				FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
414 	    !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
415 		return FLOW_DISSECT_RET_OUT_GOOD;
416 
417 	if (lse_index >= FLOW_DIS_MPLS_MAX)
418 		return FLOW_DISSECT_RET_OUT_GOOD;
419 
420 	hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
421 				   hlen, &_hdr);
422 	if (!hdr)
423 		return FLOW_DISSECT_RET_OUT_BAD;
424 
425 	entry = ntohl(hdr->entry);
426 	label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
427 	bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT;
428 
429 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
430 		struct flow_dissector_key_mpls *key_mpls;
431 		struct flow_dissector_mpls_lse *lse;
432 
433 		key_mpls = skb_flow_dissector_target(flow_dissector,
434 						     FLOW_DISSECTOR_KEY_MPLS,
435 						     target_container);
436 		lse = &key_mpls->ls[lse_index];
437 
438 		lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
439 		lse->mpls_bos = bos;
440 		lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT;
441 		lse->mpls_label = label;
442 		dissector_set_mpls_lse(key_mpls, lse_index);
443 	}
444 
445 	if (*entropy_label &&
446 	    dissector_uses_key(flow_dissector,
447 			       FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
448 		struct flow_dissector_key_keyid *key_keyid;
449 
450 		key_keyid = skb_flow_dissector_target(flow_dissector,
451 						      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
452 						      target_container);
453 		key_keyid->keyid = cpu_to_be32(label);
454 	}
455 
456 	*entropy_label = label == MPLS_LABEL_ENTROPY;
457 
458 	return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN;
459 }
460 
461 static enum flow_dissect_ret
462 __skb_flow_dissect_arp(const struct sk_buff *skb,
463 		       struct flow_dissector *flow_dissector,
464 		       void *target_container, void *data, int nhoff, int hlen)
465 {
466 	struct flow_dissector_key_arp *key_arp;
467 	struct {
468 		unsigned char ar_sha[ETH_ALEN];
469 		unsigned char ar_sip[4];
470 		unsigned char ar_tha[ETH_ALEN];
471 		unsigned char ar_tip[4];
472 	} *arp_eth, _arp_eth;
473 	const struct arphdr *arp;
474 	struct arphdr _arp;
475 
476 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
477 		return FLOW_DISSECT_RET_OUT_GOOD;
478 
479 	arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
480 				   hlen, &_arp);
481 	if (!arp)
482 		return FLOW_DISSECT_RET_OUT_BAD;
483 
484 	if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
485 	    arp->ar_pro != htons(ETH_P_IP) ||
486 	    arp->ar_hln != ETH_ALEN ||
487 	    arp->ar_pln != 4 ||
488 	    (arp->ar_op != htons(ARPOP_REPLY) &&
489 	     arp->ar_op != htons(ARPOP_REQUEST)))
490 		return FLOW_DISSECT_RET_OUT_BAD;
491 
492 	arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
493 				       sizeof(_arp_eth), data,
494 				       hlen, &_arp_eth);
495 	if (!arp_eth)
496 		return FLOW_DISSECT_RET_OUT_BAD;
497 
498 	key_arp = skb_flow_dissector_target(flow_dissector,
499 					    FLOW_DISSECTOR_KEY_ARP,
500 					    target_container);
501 
502 	memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
503 	memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
504 
505 	/* Only store the lower byte of the opcode;
506 	 * this covers ARPOP_REPLY and ARPOP_REQUEST.
507 	 */
508 	key_arp->op = ntohs(arp->ar_op) & 0xff;
509 
510 	ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
511 	ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
512 
513 	return FLOW_DISSECT_RET_OUT_GOOD;
514 }
515 
516 static enum flow_dissect_ret
517 __skb_flow_dissect_gre(const struct sk_buff *skb,
518 		       struct flow_dissector_key_control *key_control,
519 		       struct flow_dissector *flow_dissector,
520 		       void *target_container, void *data,
521 		       __be16 *p_proto, int *p_nhoff, int *p_hlen,
522 		       unsigned int flags)
523 {
524 	struct flow_dissector_key_keyid *key_keyid;
525 	struct gre_base_hdr *hdr, _hdr;
526 	int offset = 0;
527 	u16 gre_ver;
528 
529 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
530 				   data, *p_hlen, &_hdr);
531 	if (!hdr)
532 		return FLOW_DISSECT_RET_OUT_BAD;
533 
534 	/* Only look inside GRE without routing */
535 	if (hdr->flags & GRE_ROUTING)
536 		return FLOW_DISSECT_RET_OUT_GOOD;
537 
538 	/* Only look inside GRE for version 0 and 1 */
539 	gre_ver = ntohs(hdr->flags & GRE_VERSION);
540 	if (gre_ver > 1)
541 		return FLOW_DISSECT_RET_OUT_GOOD;
542 
543 	*p_proto = hdr->protocol;
544 	if (gre_ver) {
545 		/* Version1 must be PPTP, and check the flags */
546 		if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
547 			return FLOW_DISSECT_RET_OUT_GOOD;
548 	}
549 
550 	offset += sizeof(struct gre_base_hdr);
551 
552 	if (hdr->flags & GRE_CSUM)
553 		offset += sizeof_field(struct gre_full_hdr, csum) +
554 			  sizeof_field(struct gre_full_hdr, reserved1);
555 
556 	if (hdr->flags & GRE_KEY) {
557 		const __be32 *keyid;
558 		__be32 _keyid;
559 
560 		keyid = __skb_header_pointer(skb, *p_nhoff + offset,
561 					     sizeof(_keyid),
562 					     data, *p_hlen, &_keyid);
563 		if (!keyid)
564 			return FLOW_DISSECT_RET_OUT_BAD;
565 
566 		if (dissector_uses_key(flow_dissector,
567 				       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
568 			key_keyid = skb_flow_dissector_target(flow_dissector,
569 							      FLOW_DISSECTOR_KEY_GRE_KEYID,
570 							      target_container);
571 			if (gre_ver == 0)
572 				key_keyid->keyid = *keyid;
573 			else
574 				key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
575 		}
576 		offset += sizeof_field(struct gre_full_hdr, key);
577 	}
578 
579 	if (hdr->flags & GRE_SEQ)
580 		offset += sizeof_field(struct pptp_gre_header, seq);
581 
582 	if (gre_ver == 0) {
583 		if (*p_proto == htons(ETH_P_TEB)) {
584 			const struct ethhdr *eth;
585 			struct ethhdr _eth;
586 
587 			eth = __skb_header_pointer(skb, *p_nhoff + offset,
588 						   sizeof(_eth),
589 						   data, *p_hlen, &_eth);
590 			if (!eth)
591 				return FLOW_DISSECT_RET_OUT_BAD;
592 			*p_proto = eth->h_proto;
593 			offset += sizeof(*eth);
594 
595 			/* Cap headers that we access via pointers at the
596 			 * end of the Ethernet header as our maximum alignment
597 			 * at that point is only 2 bytes.
598 			 */
599 			if (NET_IP_ALIGN)
600 				*p_hlen = *p_nhoff + offset;
601 		}
602 	} else { /* version 1, must be PPTP */
603 		u8 _ppp_hdr[PPP_HDRLEN];
604 		u8 *ppp_hdr;
605 
606 		if (hdr->flags & GRE_ACK)
607 			offset += sizeof_field(struct pptp_gre_header, ack);
608 
609 		ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
610 					       sizeof(_ppp_hdr),
611 					       data, *p_hlen, _ppp_hdr);
612 		if (!ppp_hdr)
613 			return FLOW_DISSECT_RET_OUT_BAD;
614 
615 		switch (PPP_PROTOCOL(ppp_hdr)) {
616 		case PPP_IP:
617 			*p_proto = htons(ETH_P_IP);
618 			break;
619 		case PPP_IPV6:
620 			*p_proto = htons(ETH_P_IPV6);
621 			break;
622 		default:
623 			/* Could probably catch some more like MPLS */
624 			break;
625 		}
626 
627 		offset += PPP_HDRLEN;
628 	}
629 
630 	*p_nhoff += offset;
631 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
632 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
633 		return FLOW_DISSECT_RET_OUT_GOOD;
634 
635 	return FLOW_DISSECT_RET_PROTO_AGAIN;
636 }
637 
638 /**
639  * __skb_flow_dissect_batadv() - dissect batman-adv header
640  * @skb: sk_buff to with the batman-adv header
641  * @key_control: flow dissectors control key
642  * @data: raw buffer pointer to the packet, if NULL use skb->data
643  * @p_proto: pointer used to update the protocol to process next
644  * @p_nhoff: pointer used to update inner network header offset
645  * @hlen: packet header length
646  * @flags: any combination of FLOW_DISSECTOR_F_*
647  *
648  * ETH_P_BATMAN packets are tried to be dissected. Only
649  * &struct batadv_unicast packets are actually processed because they contain an
650  * inner ethernet header and are usually followed by actual network header. This
651  * allows the flow dissector to continue processing the packet.
652  *
653  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
654  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
655  *  otherwise FLOW_DISSECT_RET_OUT_BAD
656  */
657 static enum flow_dissect_ret
658 __skb_flow_dissect_batadv(const struct sk_buff *skb,
659 			  struct flow_dissector_key_control *key_control,
660 			  void *data, __be16 *p_proto, int *p_nhoff, int hlen,
661 			  unsigned int flags)
662 {
663 	struct {
664 		struct batadv_unicast_packet batadv_unicast;
665 		struct ethhdr eth;
666 	} *hdr, _hdr;
667 
668 	hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
669 				   &_hdr);
670 	if (!hdr)
671 		return FLOW_DISSECT_RET_OUT_BAD;
672 
673 	if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
674 		return FLOW_DISSECT_RET_OUT_BAD;
675 
676 	if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
677 		return FLOW_DISSECT_RET_OUT_BAD;
678 
679 	*p_proto = hdr->eth.h_proto;
680 	*p_nhoff += sizeof(*hdr);
681 
682 	key_control->flags |= FLOW_DIS_ENCAPSULATION;
683 	if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
684 		return FLOW_DISSECT_RET_OUT_GOOD;
685 
686 	return FLOW_DISSECT_RET_PROTO_AGAIN;
687 }
688 
689 static void
690 __skb_flow_dissect_tcp(const struct sk_buff *skb,
691 		       struct flow_dissector *flow_dissector,
692 		       void *target_container, void *data, int thoff, int hlen)
693 {
694 	struct flow_dissector_key_tcp *key_tcp;
695 	struct tcphdr *th, _th;
696 
697 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
698 		return;
699 
700 	th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
701 	if (!th)
702 		return;
703 
704 	if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
705 		return;
706 
707 	key_tcp = skb_flow_dissector_target(flow_dissector,
708 					    FLOW_DISSECTOR_KEY_TCP,
709 					    target_container);
710 	key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
711 }
712 
713 static void
714 __skb_flow_dissect_ports(const struct sk_buff *skb,
715 			 struct flow_dissector *flow_dissector,
716 			 void *target_container, void *data, int nhoff,
717 			 u8 ip_proto, int hlen)
718 {
719 	enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
720 	struct flow_dissector_key_ports *key_ports;
721 
722 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
723 		dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
724 	else if (dissector_uses_key(flow_dissector,
725 				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
726 		dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
727 
728 	if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
729 		return;
730 
731 	key_ports = skb_flow_dissector_target(flow_dissector,
732 					      dissector_ports,
733 					      target_container);
734 	key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
735 						data, hlen);
736 }
737 
738 static void
739 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
740 			struct flow_dissector *flow_dissector,
741 			void *target_container, void *data, const struct iphdr *iph)
742 {
743 	struct flow_dissector_key_ip *key_ip;
744 
745 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
746 		return;
747 
748 	key_ip = skb_flow_dissector_target(flow_dissector,
749 					   FLOW_DISSECTOR_KEY_IP,
750 					   target_container);
751 	key_ip->tos = iph->tos;
752 	key_ip->ttl = iph->ttl;
753 }
754 
755 static void
756 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
757 			struct flow_dissector *flow_dissector,
758 			void *target_container, void *data, const struct ipv6hdr *iph)
759 {
760 	struct flow_dissector_key_ip *key_ip;
761 
762 	if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
763 		return;
764 
765 	key_ip = skb_flow_dissector_target(flow_dissector,
766 					   FLOW_DISSECTOR_KEY_IP,
767 					   target_container);
768 	key_ip->tos = ipv6_get_dsfield(iph);
769 	key_ip->ttl = iph->hop_limit;
770 }
771 
772 /* Maximum number of protocol headers that can be parsed in
773  * __skb_flow_dissect
774  */
775 #define MAX_FLOW_DISSECT_HDRS	15
776 
777 static bool skb_flow_dissect_allowed(int *num_hdrs)
778 {
779 	++*num_hdrs;
780 
781 	return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
782 }
783 
784 static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
785 				     struct flow_dissector *flow_dissector,
786 				     void *target_container)
787 {
788 	struct flow_dissector_key_ports *key_ports = NULL;
789 	struct flow_dissector_key_control *key_control;
790 	struct flow_dissector_key_basic *key_basic;
791 	struct flow_dissector_key_addrs *key_addrs;
792 	struct flow_dissector_key_tags *key_tags;
793 
794 	key_control = skb_flow_dissector_target(flow_dissector,
795 						FLOW_DISSECTOR_KEY_CONTROL,
796 						target_container);
797 	key_control->thoff = flow_keys->thoff;
798 	if (flow_keys->is_frag)
799 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
800 	if (flow_keys->is_first_frag)
801 		key_control->flags |= FLOW_DIS_FIRST_FRAG;
802 	if (flow_keys->is_encap)
803 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
804 
805 	key_basic = skb_flow_dissector_target(flow_dissector,
806 					      FLOW_DISSECTOR_KEY_BASIC,
807 					      target_container);
808 	key_basic->n_proto = flow_keys->n_proto;
809 	key_basic->ip_proto = flow_keys->ip_proto;
810 
811 	if (flow_keys->addr_proto == ETH_P_IP &&
812 	    dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
813 		key_addrs = skb_flow_dissector_target(flow_dissector,
814 						      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
815 						      target_container);
816 		key_addrs->v4addrs.src = flow_keys->ipv4_src;
817 		key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
818 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
819 	} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
820 		   dissector_uses_key(flow_dissector,
821 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
822 		key_addrs = skb_flow_dissector_target(flow_dissector,
823 						      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
824 						      target_container);
825 		memcpy(&key_addrs->v6addrs, &flow_keys->ipv6_src,
826 		       sizeof(key_addrs->v6addrs));
827 		key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
828 	}
829 
830 	if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
831 		key_ports = skb_flow_dissector_target(flow_dissector,
832 						      FLOW_DISSECTOR_KEY_PORTS,
833 						      target_container);
834 	else if (dissector_uses_key(flow_dissector,
835 				    FLOW_DISSECTOR_KEY_PORTS_RANGE))
836 		key_ports = skb_flow_dissector_target(flow_dissector,
837 						      FLOW_DISSECTOR_KEY_PORTS_RANGE,
838 						      target_container);
839 
840 	if (key_ports) {
841 		key_ports->src = flow_keys->sport;
842 		key_ports->dst = flow_keys->dport;
843 	}
844 
845 	if (dissector_uses_key(flow_dissector,
846 			       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
847 		key_tags = skb_flow_dissector_target(flow_dissector,
848 						     FLOW_DISSECTOR_KEY_FLOW_LABEL,
849 						     target_container);
850 		key_tags->flow_label = ntohl(flow_keys->flow_label);
851 	}
852 }
853 
854 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
855 		      __be16 proto, int nhoff, int hlen, unsigned int flags)
856 {
857 	struct bpf_flow_keys *flow_keys = ctx->flow_keys;
858 	u32 result;
859 
860 	/* Pass parameters to the BPF program */
861 	memset(flow_keys, 0, sizeof(*flow_keys));
862 	flow_keys->n_proto = proto;
863 	flow_keys->nhoff = nhoff;
864 	flow_keys->thoff = flow_keys->nhoff;
865 
866 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
867 		     (int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
868 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
869 		     (int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
870 	BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
871 		     (int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
872 	flow_keys->flags = flags;
873 
874 	result = bpf_prog_run_pin_on_cpu(prog, ctx);
875 
876 	flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
877 	flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
878 				   flow_keys->nhoff, hlen);
879 
880 	return result == BPF_OK;
881 }
882 
883 /**
884  * __skb_flow_dissect - extract the flow_keys struct and return it
885  * @net: associated network namespace, derived from @skb if NULL
886  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
887  * @flow_dissector: list of keys to dissect
888  * @target_container: target structure to put dissected values into
889  * @data: raw buffer pointer to the packet, if NULL use skb->data
890  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
891  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
892  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
893  * @flags: flags that control the dissection process, e.g.
894  *         FLOW_DISSECTOR_F_STOP_AT_ENCAP.
895  *
896  * The function will try to retrieve individual keys into target specified
897  * by flow_dissector from either the skbuff or a raw buffer specified by the
898  * rest parameters.
899  *
900  * Caller must take care of zeroing target container memory.
901  */
902 bool __skb_flow_dissect(const struct net *net,
903 			const struct sk_buff *skb,
904 			struct flow_dissector *flow_dissector,
905 			void *target_container,
906 			void *data, __be16 proto, int nhoff, int hlen,
907 			unsigned int flags)
908 {
909 	struct flow_dissector_key_control *key_control;
910 	struct flow_dissector_key_basic *key_basic;
911 	struct flow_dissector_key_addrs *key_addrs;
912 	struct flow_dissector_key_tags *key_tags;
913 	struct flow_dissector_key_vlan *key_vlan;
914 	enum flow_dissect_ret fdret;
915 	enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
916 	bool mpls_el = false;
917 	int mpls_lse = 0;
918 	int num_hdrs = 0;
919 	u8 ip_proto = 0;
920 	bool ret;
921 
922 	if (!data) {
923 		data = skb->data;
924 		proto = skb_vlan_tag_present(skb) ?
925 			 skb->vlan_proto : skb->protocol;
926 		nhoff = skb_network_offset(skb);
927 		hlen = skb_headlen(skb);
928 #if IS_ENABLED(CONFIG_NET_DSA)
929 		if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
930 			     proto == htons(ETH_P_XDSA))) {
931 			const struct dsa_device_ops *ops;
932 			int offset = 0;
933 
934 			ops = skb->dev->dsa_ptr->tag_ops;
935 			if (ops->flow_dissect &&
936 			    !ops->flow_dissect(skb, &proto, &offset)) {
937 				hlen -= offset;
938 				nhoff += offset;
939 			}
940 		}
941 #endif
942 	}
943 
944 	/* It is ensured by skb_flow_dissector_init() that control key will
945 	 * be always present.
946 	 */
947 	key_control = skb_flow_dissector_target(flow_dissector,
948 						FLOW_DISSECTOR_KEY_CONTROL,
949 						target_container);
950 
951 	/* It is ensured by skb_flow_dissector_init() that basic key will
952 	 * be always present.
953 	 */
954 	key_basic = skb_flow_dissector_target(flow_dissector,
955 					      FLOW_DISSECTOR_KEY_BASIC,
956 					      target_container);
957 
958 	if (skb) {
959 		if (!net) {
960 			if (skb->dev)
961 				net = dev_net(skb->dev);
962 			else if (skb->sk)
963 				net = sock_net(skb->sk);
964 		}
965 	}
966 
967 	WARN_ON_ONCE(!net);
968 	if (net) {
969 		enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
970 		struct bpf_prog_array *run_array;
971 
972 		rcu_read_lock();
973 		run_array = rcu_dereference(init_net.bpf.run_array[type]);
974 		if (!run_array)
975 			run_array = rcu_dereference(net->bpf.run_array[type]);
976 
977 		if (run_array) {
978 			struct bpf_flow_keys flow_keys;
979 			struct bpf_flow_dissector ctx = {
980 				.flow_keys = &flow_keys,
981 				.data = data,
982 				.data_end = data + hlen,
983 			};
984 			__be16 n_proto = proto;
985 			struct bpf_prog *prog;
986 
987 			if (skb) {
988 				ctx.skb = skb;
989 				/* we can't use 'proto' in the skb case
990 				 * because it might be set to skb->vlan_proto
991 				 * which has been pulled from the data
992 				 */
993 				n_proto = skb->protocol;
994 			}
995 
996 			prog = READ_ONCE(run_array->items[0].prog);
997 			ret = bpf_flow_dissect(prog, &ctx, n_proto, nhoff,
998 					       hlen, flags);
999 			__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
1000 						 target_container);
1001 			rcu_read_unlock();
1002 			return ret;
1003 		}
1004 		rcu_read_unlock();
1005 	}
1006 
1007 	if (dissector_uses_key(flow_dissector,
1008 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1009 		struct ethhdr *eth = eth_hdr(skb);
1010 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
1011 
1012 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
1013 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
1014 							  target_container);
1015 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
1016 	}
1017 
1018 proto_again:
1019 	fdret = FLOW_DISSECT_RET_CONTINUE;
1020 
1021 	switch (proto) {
1022 	case htons(ETH_P_IP): {
1023 		const struct iphdr *iph;
1024 		struct iphdr _iph;
1025 
1026 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1027 		if (!iph || iph->ihl < 5) {
1028 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1029 			break;
1030 		}
1031 
1032 		nhoff += iph->ihl * 4;
1033 
1034 		ip_proto = iph->protocol;
1035 
1036 		if (dissector_uses_key(flow_dissector,
1037 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1038 			key_addrs = skb_flow_dissector_target(flow_dissector,
1039 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1040 							      target_container);
1041 
1042 			memcpy(&key_addrs->v4addrs, &iph->saddr,
1043 			       sizeof(key_addrs->v4addrs));
1044 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1045 		}
1046 
1047 		if (ip_is_fragment(iph)) {
1048 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1049 
1050 			if (iph->frag_off & htons(IP_OFFSET)) {
1051 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1052 				break;
1053 			} else {
1054 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
1055 				if (!(flags &
1056 				      FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
1057 					fdret = FLOW_DISSECT_RET_OUT_GOOD;
1058 					break;
1059 				}
1060 			}
1061 		}
1062 
1063 		__skb_flow_dissect_ipv4(skb, flow_dissector,
1064 					target_container, data, iph);
1065 
1066 		break;
1067 	}
1068 	case htons(ETH_P_IPV6): {
1069 		const struct ipv6hdr *iph;
1070 		struct ipv6hdr _iph;
1071 
1072 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
1073 		if (!iph) {
1074 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1075 			break;
1076 		}
1077 
1078 		ip_proto = iph->nexthdr;
1079 		nhoff += sizeof(struct ipv6hdr);
1080 
1081 		if (dissector_uses_key(flow_dissector,
1082 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1083 			key_addrs = skb_flow_dissector_target(flow_dissector,
1084 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1085 							      target_container);
1086 
1087 			memcpy(&key_addrs->v6addrs, &iph->saddr,
1088 			       sizeof(key_addrs->v6addrs));
1089 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1090 		}
1091 
1092 		if ((dissector_uses_key(flow_dissector,
1093 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
1094 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
1095 		    ip6_flowlabel(iph)) {
1096 			__be32 flow_label = ip6_flowlabel(iph);
1097 
1098 			if (dissector_uses_key(flow_dissector,
1099 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
1100 				key_tags = skb_flow_dissector_target(flow_dissector,
1101 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
1102 								     target_container);
1103 				key_tags->flow_label = ntohl(flow_label);
1104 			}
1105 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
1106 				fdret = FLOW_DISSECT_RET_OUT_GOOD;
1107 				break;
1108 			}
1109 		}
1110 
1111 		__skb_flow_dissect_ipv6(skb, flow_dissector,
1112 					target_container, data, iph);
1113 
1114 		break;
1115 	}
1116 	case htons(ETH_P_8021AD):
1117 	case htons(ETH_P_8021Q): {
1118 		const struct vlan_hdr *vlan = NULL;
1119 		struct vlan_hdr _vlan;
1120 		__be16 saved_vlan_tpid = proto;
1121 
1122 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
1123 		    skb && skb_vlan_tag_present(skb)) {
1124 			proto = skb->protocol;
1125 		} else {
1126 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
1127 						    data, hlen, &_vlan);
1128 			if (!vlan) {
1129 				fdret = FLOW_DISSECT_RET_OUT_BAD;
1130 				break;
1131 			}
1132 
1133 			proto = vlan->h_vlan_encapsulated_proto;
1134 			nhoff += sizeof(*vlan);
1135 		}
1136 
1137 		if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
1138 			dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
1139 		} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
1140 			dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
1141 		} else {
1142 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1143 			break;
1144 		}
1145 
1146 		if (dissector_uses_key(flow_dissector, dissector_vlan)) {
1147 			key_vlan = skb_flow_dissector_target(flow_dissector,
1148 							     dissector_vlan,
1149 							     target_container);
1150 
1151 			if (!vlan) {
1152 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
1153 				key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
1154 			} else {
1155 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
1156 					VLAN_VID_MASK;
1157 				key_vlan->vlan_priority =
1158 					(ntohs(vlan->h_vlan_TCI) &
1159 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1160 			}
1161 			key_vlan->vlan_tpid = saved_vlan_tpid;
1162 		}
1163 
1164 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1165 		break;
1166 	}
1167 	case htons(ETH_P_PPP_SES): {
1168 		struct {
1169 			struct pppoe_hdr hdr;
1170 			__be16 proto;
1171 		} *hdr, _hdr;
1172 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
1173 		if (!hdr) {
1174 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1175 			break;
1176 		}
1177 
1178 		proto = hdr->proto;
1179 		nhoff += PPPOE_SES_HLEN;
1180 		switch (proto) {
1181 		case htons(PPP_IP):
1182 			proto = htons(ETH_P_IP);
1183 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1184 			break;
1185 		case htons(PPP_IPV6):
1186 			proto = htons(ETH_P_IPV6);
1187 			fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1188 			break;
1189 		default:
1190 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1191 			break;
1192 		}
1193 		break;
1194 	}
1195 	case htons(ETH_P_TIPC): {
1196 		struct tipc_basic_hdr *hdr, _hdr;
1197 
1198 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
1199 					   data, hlen, &_hdr);
1200 		if (!hdr) {
1201 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1202 			break;
1203 		}
1204 
1205 		if (dissector_uses_key(flow_dissector,
1206 				       FLOW_DISSECTOR_KEY_TIPC)) {
1207 			key_addrs = skb_flow_dissector_target(flow_dissector,
1208 							      FLOW_DISSECTOR_KEY_TIPC,
1209 							      target_container);
1210 			key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
1211 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
1212 		}
1213 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1214 		break;
1215 	}
1216 
1217 	case htons(ETH_P_MPLS_UC):
1218 	case htons(ETH_P_MPLS_MC):
1219 		fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
1220 						target_container, data,
1221 						nhoff, hlen, mpls_lse,
1222 						&mpls_el);
1223 		nhoff += sizeof(struct mpls_label);
1224 		mpls_lse++;
1225 		break;
1226 	case htons(ETH_P_FCOE):
1227 		if ((hlen - nhoff) < FCOE_HEADER_LEN) {
1228 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1229 			break;
1230 		}
1231 
1232 		nhoff += FCOE_HEADER_LEN;
1233 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1234 		break;
1235 
1236 	case htons(ETH_P_ARP):
1237 	case htons(ETH_P_RARP):
1238 		fdret = __skb_flow_dissect_arp(skb, flow_dissector,
1239 					       target_container, data,
1240 					       nhoff, hlen);
1241 		break;
1242 
1243 	case htons(ETH_P_BATMAN):
1244 		fdret = __skb_flow_dissect_batadv(skb, key_control, data,
1245 						  &proto, &nhoff, hlen, flags);
1246 		break;
1247 
1248 	default:
1249 		fdret = FLOW_DISSECT_RET_OUT_BAD;
1250 		break;
1251 	}
1252 
1253 	/* Process result of proto processing */
1254 	switch (fdret) {
1255 	case FLOW_DISSECT_RET_OUT_GOOD:
1256 		goto out_good;
1257 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1258 		if (skb_flow_dissect_allowed(&num_hdrs))
1259 			goto proto_again;
1260 		goto out_good;
1261 	case FLOW_DISSECT_RET_CONTINUE:
1262 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1263 		break;
1264 	case FLOW_DISSECT_RET_OUT_BAD:
1265 	default:
1266 		goto out_bad;
1267 	}
1268 
1269 ip_proto_again:
1270 	fdret = FLOW_DISSECT_RET_CONTINUE;
1271 
1272 	switch (ip_proto) {
1273 	case IPPROTO_GRE:
1274 		fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
1275 					       target_container, data,
1276 					       &proto, &nhoff, &hlen, flags);
1277 		break;
1278 
1279 	case NEXTHDR_HOP:
1280 	case NEXTHDR_ROUTING:
1281 	case NEXTHDR_DEST: {
1282 		u8 _opthdr[2], *opthdr;
1283 
1284 		if (proto != htons(ETH_P_IPV6))
1285 			break;
1286 
1287 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
1288 					      data, hlen, &_opthdr);
1289 		if (!opthdr) {
1290 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1291 			break;
1292 		}
1293 
1294 		ip_proto = opthdr[0];
1295 		nhoff += (opthdr[1] + 1) << 3;
1296 
1297 		fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1298 		break;
1299 	}
1300 	case NEXTHDR_FRAGMENT: {
1301 		struct frag_hdr _fh, *fh;
1302 
1303 		if (proto != htons(ETH_P_IPV6))
1304 			break;
1305 
1306 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
1307 					  data, hlen, &_fh);
1308 
1309 		if (!fh) {
1310 			fdret = FLOW_DISSECT_RET_OUT_BAD;
1311 			break;
1312 		}
1313 
1314 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
1315 
1316 		nhoff += sizeof(_fh);
1317 		ip_proto = fh->nexthdr;
1318 
1319 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
1320 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
1321 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
1322 				fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
1323 				break;
1324 			}
1325 		}
1326 
1327 		fdret = FLOW_DISSECT_RET_OUT_GOOD;
1328 		break;
1329 	}
1330 	case IPPROTO_IPIP:
1331 		proto = htons(ETH_P_IP);
1332 
1333 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1334 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1335 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1336 			break;
1337 		}
1338 
1339 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1340 		break;
1341 
1342 	case IPPROTO_IPV6:
1343 		proto = htons(ETH_P_IPV6);
1344 
1345 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
1346 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1347 			fdret = FLOW_DISSECT_RET_OUT_GOOD;
1348 			break;
1349 		}
1350 
1351 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1352 		break;
1353 
1354 
1355 	case IPPROTO_MPLS:
1356 		proto = htons(ETH_P_MPLS_UC);
1357 		fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1358 		break;
1359 
1360 	case IPPROTO_TCP:
1361 		__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1362 				       data, nhoff, hlen);
1363 		break;
1364 
1365 	case IPPROTO_ICMP:
1366 	case IPPROTO_ICMPV6:
1367 		__skb_flow_dissect_icmp(skb, flow_dissector, target_container,
1368 					data, nhoff, hlen);
1369 		break;
1370 
1371 	default:
1372 		break;
1373 	}
1374 
1375 	if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
1376 		__skb_flow_dissect_ports(skb, flow_dissector, target_container,
1377 					 data, nhoff, ip_proto, hlen);
1378 
1379 	/* Process result of IP proto processing */
1380 	switch (fdret) {
1381 	case FLOW_DISSECT_RET_PROTO_AGAIN:
1382 		if (skb_flow_dissect_allowed(&num_hdrs))
1383 			goto proto_again;
1384 		break;
1385 	case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1386 		if (skb_flow_dissect_allowed(&num_hdrs))
1387 			goto ip_proto_again;
1388 		break;
1389 	case FLOW_DISSECT_RET_OUT_GOOD:
1390 	case FLOW_DISSECT_RET_CONTINUE:
1391 		break;
1392 	case FLOW_DISSECT_RET_OUT_BAD:
1393 	default:
1394 		goto out_bad;
1395 	}
1396 
1397 out_good:
1398 	ret = true;
1399 
1400 out:
1401 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1402 	key_basic->n_proto = proto;
1403 	key_basic->ip_proto = ip_proto;
1404 
1405 	return ret;
1406 
1407 out_bad:
1408 	ret = false;
1409 	goto out;
1410 }
1411 EXPORT_SYMBOL(__skb_flow_dissect);
1412 
1413 static siphash_key_t hashrnd __read_mostly;
1414 static __always_inline void __flow_hash_secret_init(void)
1415 {
1416 	net_get_random_once(&hashrnd, sizeof(hashrnd));
1417 }
1418 
1419 static const void *flow_keys_hash_start(const struct flow_keys *flow)
1420 {
1421 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1422 	return &flow->FLOW_KEYS_HASH_START_FIELD;
1423 }
1424 
1425 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1426 {
1427 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1428 
1429 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
1430 
1431 	switch (flow->control.addr_type) {
1432 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1433 		diff -= sizeof(flow->addrs.v4addrs);
1434 		break;
1435 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1436 		diff -= sizeof(flow->addrs.v6addrs);
1437 		break;
1438 	case FLOW_DISSECTOR_KEY_TIPC:
1439 		diff -= sizeof(flow->addrs.tipckey);
1440 		break;
1441 	}
1442 	return sizeof(*flow) - diff;
1443 }
1444 
1445 __be32 flow_get_u32_src(const struct flow_keys *flow)
1446 {
1447 	switch (flow->control.addr_type) {
1448 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1449 		return flow->addrs.v4addrs.src;
1450 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1451 		return (__force __be32)ipv6_addr_hash(
1452 			&flow->addrs.v6addrs.src);
1453 	case FLOW_DISSECTOR_KEY_TIPC:
1454 		return flow->addrs.tipckey.key;
1455 	default:
1456 		return 0;
1457 	}
1458 }
1459 EXPORT_SYMBOL(flow_get_u32_src);
1460 
1461 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1462 {
1463 	switch (flow->control.addr_type) {
1464 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1465 		return flow->addrs.v4addrs.dst;
1466 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1467 		return (__force __be32)ipv6_addr_hash(
1468 			&flow->addrs.v6addrs.dst);
1469 	default:
1470 		return 0;
1471 	}
1472 }
1473 EXPORT_SYMBOL(flow_get_u32_dst);
1474 
1475 /* Sort the source and destination IP (and the ports if the IP are the same),
1476  * to have consistent hash within the two directions
1477  */
1478 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1479 {
1480 	int addr_diff, i;
1481 
1482 	switch (keys->control.addr_type) {
1483 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1484 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1485 			    (__force u32)keys->addrs.v4addrs.src;
1486 		if ((addr_diff < 0) ||
1487 		    (addr_diff == 0 &&
1488 		     ((__force u16)keys->ports.dst <
1489 		      (__force u16)keys->ports.src))) {
1490 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1491 			swap(keys->ports.src, keys->ports.dst);
1492 		}
1493 		break;
1494 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1495 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1496 				   &keys->addrs.v6addrs.src,
1497 				   sizeof(keys->addrs.v6addrs.dst));
1498 		if ((addr_diff < 0) ||
1499 		    (addr_diff == 0 &&
1500 		     ((__force u16)keys->ports.dst <
1501 		      (__force u16)keys->ports.src))) {
1502 			for (i = 0; i < 4; i++)
1503 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
1504 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
1505 			swap(keys->ports.src, keys->ports.dst);
1506 		}
1507 		break;
1508 	}
1509 }
1510 
1511 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1512 					const siphash_key_t *keyval)
1513 {
1514 	u32 hash;
1515 
1516 	__flow_hash_consistentify(keys);
1517 
1518 	hash = siphash(flow_keys_hash_start(keys),
1519 		       flow_keys_hash_length(keys), keyval);
1520 	if (!hash)
1521 		hash = 1;
1522 
1523 	return hash;
1524 }
1525 
1526 u32 flow_hash_from_keys(struct flow_keys *keys)
1527 {
1528 	__flow_hash_secret_init();
1529 	return __flow_hash_from_keys(keys, &hashrnd);
1530 }
1531 EXPORT_SYMBOL(flow_hash_from_keys);
1532 
1533 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1534 				  struct flow_keys *keys,
1535 				  const siphash_key_t *keyval)
1536 {
1537 	skb_flow_dissect_flow_keys(skb, keys,
1538 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1539 
1540 	return __flow_hash_from_keys(keys, keyval);
1541 }
1542 
1543 struct _flow_keys_digest_data {
1544 	__be16	n_proto;
1545 	u8	ip_proto;
1546 	u8	padding;
1547 	__be32	ports;
1548 	__be32	src;
1549 	__be32	dst;
1550 };
1551 
1552 void make_flow_keys_digest(struct flow_keys_digest *digest,
1553 			   const struct flow_keys *flow)
1554 {
1555 	struct _flow_keys_digest_data *data =
1556 	    (struct _flow_keys_digest_data *)digest;
1557 
1558 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1559 
1560 	memset(digest, 0, sizeof(*digest));
1561 
1562 	data->n_proto = flow->basic.n_proto;
1563 	data->ip_proto = flow->basic.ip_proto;
1564 	data->ports = flow->ports.ports;
1565 	data->src = flow->addrs.v4addrs.src;
1566 	data->dst = flow->addrs.v4addrs.dst;
1567 }
1568 EXPORT_SYMBOL(make_flow_keys_digest);
1569 
1570 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1571 
1572 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1573 {
1574 	struct flow_keys keys;
1575 
1576 	__flow_hash_secret_init();
1577 
1578 	memset(&keys, 0, sizeof(keys));
1579 	__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
1580 			   &keys, NULL, 0, 0, 0,
1581 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1582 
1583 	return __flow_hash_from_keys(&keys, &hashrnd);
1584 }
1585 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1586 
1587 /**
1588  * __skb_get_hash: calculate a flow hash
1589  * @skb: sk_buff to calculate flow hash from
1590  *
1591  * This function calculates a flow hash based on src/dst addresses
1592  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1593  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1594  * if hash is a canonical 4-tuple hash over transport ports.
1595  */
1596 void __skb_get_hash(struct sk_buff *skb)
1597 {
1598 	struct flow_keys keys;
1599 	u32 hash;
1600 
1601 	__flow_hash_secret_init();
1602 
1603 	hash = ___skb_get_hash(skb, &keys, &hashrnd);
1604 
1605 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1606 }
1607 EXPORT_SYMBOL(__skb_get_hash);
1608 
1609 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1610 			   const siphash_key_t *perturb)
1611 {
1612 	struct flow_keys keys;
1613 
1614 	return ___skb_get_hash(skb, &keys, perturb);
1615 }
1616 EXPORT_SYMBOL(skb_get_hash_perturb);
1617 
1618 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1619 		   const struct flow_keys_basic *keys, int hlen)
1620 {
1621 	u32 poff = keys->control.thoff;
1622 
1623 	/* skip L4 headers for fragments after the first */
1624 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1625 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1626 		return poff;
1627 
1628 	switch (keys->basic.ip_proto) {
1629 	case IPPROTO_TCP: {
1630 		/* access doff as u8 to avoid unaligned access */
1631 		const u8 *doff;
1632 		u8 _doff;
1633 
1634 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1635 					    data, hlen, &_doff);
1636 		if (!doff)
1637 			return poff;
1638 
1639 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1640 		break;
1641 	}
1642 	case IPPROTO_UDP:
1643 	case IPPROTO_UDPLITE:
1644 		poff += sizeof(struct udphdr);
1645 		break;
1646 	/* For the rest, we do not really care about header
1647 	 * extensions at this point for now.
1648 	 */
1649 	case IPPROTO_ICMP:
1650 		poff += sizeof(struct icmphdr);
1651 		break;
1652 	case IPPROTO_ICMPV6:
1653 		poff += sizeof(struct icmp6hdr);
1654 		break;
1655 	case IPPROTO_IGMP:
1656 		poff += sizeof(struct igmphdr);
1657 		break;
1658 	case IPPROTO_DCCP:
1659 		poff += sizeof(struct dccp_hdr);
1660 		break;
1661 	case IPPROTO_SCTP:
1662 		poff += sizeof(struct sctphdr);
1663 		break;
1664 	}
1665 
1666 	return poff;
1667 }
1668 
1669 /**
1670  * skb_get_poff - get the offset to the payload
1671  * @skb: sk_buff to get the payload offset from
1672  *
1673  * The function will get the offset to the payload as far as it could
1674  * be dissected.  The main user is currently BPF, so that we can dynamically
1675  * truncate packets without needing to push actual payload to the user
1676  * space and can analyze headers only, instead.
1677  */
1678 u32 skb_get_poff(const struct sk_buff *skb)
1679 {
1680 	struct flow_keys_basic keys;
1681 
1682 	if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
1683 					      NULL, 0, 0, 0, 0))
1684 		return 0;
1685 
1686 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1687 }
1688 
1689 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1690 {
1691 	memset(keys, 0, sizeof(*keys));
1692 
1693 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1694 	    sizeof(keys->addrs.v6addrs.src));
1695 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1696 	    sizeof(keys->addrs.v6addrs.dst));
1697 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1698 	keys->ports.src = fl6->fl6_sport;
1699 	keys->ports.dst = fl6->fl6_dport;
1700 	keys->keyid.keyid = fl6->fl6_gre_key;
1701 	keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1702 	keys->basic.ip_proto = fl6->flowi6_proto;
1703 
1704 	return flow_hash_from_keys(keys);
1705 }
1706 EXPORT_SYMBOL(__get_hash_from_flowi6);
1707 
1708 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1709 	{
1710 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1711 		.offset = offsetof(struct flow_keys, control),
1712 	},
1713 	{
1714 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1715 		.offset = offsetof(struct flow_keys, basic),
1716 	},
1717 	{
1718 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1719 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1720 	},
1721 	{
1722 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1723 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1724 	},
1725 	{
1726 		.key_id = FLOW_DISSECTOR_KEY_TIPC,
1727 		.offset = offsetof(struct flow_keys, addrs.tipckey),
1728 	},
1729 	{
1730 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1731 		.offset = offsetof(struct flow_keys, ports),
1732 	},
1733 	{
1734 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
1735 		.offset = offsetof(struct flow_keys, vlan),
1736 	},
1737 	{
1738 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1739 		.offset = offsetof(struct flow_keys, tags),
1740 	},
1741 	{
1742 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1743 		.offset = offsetof(struct flow_keys, keyid),
1744 	},
1745 };
1746 
1747 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1748 	{
1749 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1750 		.offset = offsetof(struct flow_keys, control),
1751 	},
1752 	{
1753 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1754 		.offset = offsetof(struct flow_keys, basic),
1755 	},
1756 	{
1757 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1758 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
1759 	},
1760 	{
1761 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1762 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
1763 	},
1764 	{
1765 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
1766 		.offset = offsetof(struct flow_keys, ports),
1767 	},
1768 };
1769 
1770 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1771 	{
1772 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
1773 		.offset = offsetof(struct flow_keys, control),
1774 	},
1775 	{
1776 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
1777 		.offset = offsetof(struct flow_keys, basic),
1778 	},
1779 };
1780 
1781 struct flow_dissector flow_keys_dissector __read_mostly;
1782 EXPORT_SYMBOL(flow_keys_dissector);
1783 
1784 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1785 EXPORT_SYMBOL(flow_keys_basic_dissector);
1786 
1787 static int __init init_default_flow_dissectors(void)
1788 {
1789 	skb_flow_dissector_init(&flow_keys_dissector,
1790 				flow_keys_dissector_keys,
1791 				ARRAY_SIZE(flow_keys_dissector_keys));
1792 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1793 				flow_keys_dissector_symmetric_keys,
1794 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1795 	skb_flow_dissector_init(&flow_keys_basic_dissector,
1796 				flow_keys_basic_dissector_keys,
1797 				ARRAY_SIZE(flow_keys_basic_dissector_keys));
1798 	return 0;
1799 }
1800 core_initcall(init_default_flow_dissectors);
1801