xref: /openbmc/linux/net/core/filter.c (revision e825b29a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81 
82 static const struct bpf_func_proto *
83 bpf_sk_base_func_proto(enum bpf_func_id func_id);
84 
85 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
86 {
87 	if (in_compat_syscall()) {
88 		struct compat_sock_fprog f32;
89 
90 		if (len != sizeof(f32))
91 			return -EINVAL;
92 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
93 			return -EFAULT;
94 		memset(dst, 0, sizeof(*dst));
95 		dst->len = f32.len;
96 		dst->filter = compat_ptr(f32.filter);
97 	} else {
98 		if (len != sizeof(*dst))
99 			return -EINVAL;
100 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
101 			return -EFAULT;
102 	}
103 
104 	return 0;
105 }
106 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
107 
108 /**
109  *	sk_filter_trim_cap - run a packet through a socket filter
110  *	@sk: sock associated with &sk_buff
111  *	@skb: buffer to filter
112  *	@cap: limit on how short the eBPF program may trim the packet
113  *
114  * Run the eBPF program and then cut skb->data to correct size returned by
115  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
116  * than pkt_len we keep whole skb->data. This is the socket level
117  * wrapper to bpf_prog_run. It returns 0 if the packet should
118  * be accepted or -EPERM if the packet should be tossed.
119  *
120  */
121 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
122 {
123 	int err;
124 	struct sk_filter *filter;
125 
126 	/*
127 	 * If the skb was allocated from pfmemalloc reserves, only
128 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
129 	 * helping free memory
130 	 */
131 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
132 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
133 		return -ENOMEM;
134 	}
135 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
136 	if (err)
137 		return err;
138 
139 	err = security_sock_rcv_skb(sk, skb);
140 	if (err)
141 		return err;
142 
143 	rcu_read_lock();
144 	filter = rcu_dereference(sk->sk_filter);
145 	if (filter) {
146 		struct sock *save_sk = skb->sk;
147 		unsigned int pkt_len;
148 
149 		skb->sk = sk;
150 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
151 		skb->sk = save_sk;
152 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
153 	}
154 	rcu_read_unlock();
155 
156 	return err;
157 }
158 EXPORT_SYMBOL(sk_filter_trim_cap);
159 
160 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
161 {
162 	return skb_get_poff(skb);
163 }
164 
165 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
166 {
167 	struct nlattr *nla;
168 
169 	if (skb_is_nonlinear(skb))
170 		return 0;
171 
172 	if (skb->len < sizeof(struct nlattr))
173 		return 0;
174 
175 	if (a > skb->len - sizeof(struct nlattr))
176 		return 0;
177 
178 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
179 	if (nla)
180 		return (void *) nla - (void *) skb->data;
181 
182 	return 0;
183 }
184 
185 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
186 {
187 	struct nlattr *nla;
188 
189 	if (skb_is_nonlinear(skb))
190 		return 0;
191 
192 	if (skb->len < sizeof(struct nlattr))
193 		return 0;
194 
195 	if (a > skb->len - sizeof(struct nlattr))
196 		return 0;
197 
198 	nla = (struct nlattr *) &skb->data[a];
199 	if (nla->nla_len > skb->len - a)
200 		return 0;
201 
202 	nla = nla_find_nested(nla, x);
203 	if (nla)
204 		return (void *) nla - (void *) skb->data;
205 
206 	return 0;
207 }
208 
209 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
210 	   data, int, headlen, int, offset)
211 {
212 	u8 tmp, *ptr;
213 	const int len = sizeof(tmp);
214 
215 	if (offset >= 0) {
216 		if (headlen - offset >= len)
217 			return *(u8 *)(data + offset);
218 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
219 			return tmp;
220 	} else {
221 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
222 		if (likely(ptr))
223 			return *(u8 *)ptr;
224 	}
225 
226 	return -EFAULT;
227 }
228 
229 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
230 	   int, offset)
231 {
232 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
233 					 offset);
234 }
235 
236 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
237 	   data, int, headlen, int, offset)
238 {
239 	u16 tmp, *ptr;
240 	const int len = sizeof(tmp);
241 
242 	if (offset >= 0) {
243 		if (headlen - offset >= len)
244 			return get_unaligned_be16(data + offset);
245 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
246 			return be16_to_cpu(tmp);
247 	} else {
248 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
249 		if (likely(ptr))
250 			return get_unaligned_be16(ptr);
251 	}
252 
253 	return -EFAULT;
254 }
255 
256 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
257 	   int, offset)
258 {
259 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
260 					  offset);
261 }
262 
263 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
264 	   data, int, headlen, int, offset)
265 {
266 	u32 tmp, *ptr;
267 	const int len = sizeof(tmp);
268 
269 	if (likely(offset >= 0)) {
270 		if (headlen - offset >= len)
271 			return get_unaligned_be32(data + offset);
272 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273 			return be32_to_cpu(tmp);
274 	} else {
275 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
276 		if (likely(ptr))
277 			return get_unaligned_be32(ptr);
278 	}
279 
280 	return -EFAULT;
281 }
282 
283 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
284 	   int, offset)
285 {
286 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
287 					  offset);
288 }
289 
290 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
291 			      struct bpf_insn *insn_buf)
292 {
293 	struct bpf_insn *insn = insn_buf;
294 
295 	switch (skb_field) {
296 	case SKF_AD_MARK:
297 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
298 
299 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
300 				      offsetof(struct sk_buff, mark));
301 		break;
302 
303 	case SKF_AD_PKTTYPE:
304 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
305 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
306 #ifdef __BIG_ENDIAN_BITFIELD
307 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
308 #endif
309 		break;
310 
311 	case SKF_AD_QUEUE:
312 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
313 
314 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
315 				      offsetof(struct sk_buff, queue_mapping));
316 		break;
317 
318 	case SKF_AD_VLAN_TAG:
319 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
320 
321 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
322 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
323 				      offsetof(struct sk_buff, vlan_tci));
324 		break;
325 	case SKF_AD_VLAN_TAG_PRESENT:
326 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
327 		if (PKT_VLAN_PRESENT_BIT)
328 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
329 		if (PKT_VLAN_PRESENT_BIT < 7)
330 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
331 		break;
332 	}
333 
334 	return insn - insn_buf;
335 }
336 
337 static bool convert_bpf_extensions(struct sock_filter *fp,
338 				   struct bpf_insn **insnp)
339 {
340 	struct bpf_insn *insn = *insnp;
341 	u32 cnt;
342 
343 	switch (fp->k) {
344 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
345 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
346 
347 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
348 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
349 				      offsetof(struct sk_buff, protocol));
350 		/* A = ntohs(A) [emitting a nop or swap16] */
351 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
352 		break;
353 
354 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
355 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
356 		insn += cnt - 1;
357 		break;
358 
359 	case SKF_AD_OFF + SKF_AD_IFINDEX:
360 	case SKF_AD_OFF + SKF_AD_HATYPE:
361 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
362 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
363 
364 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
365 				      BPF_REG_TMP, BPF_REG_CTX,
366 				      offsetof(struct sk_buff, dev));
367 		/* if (tmp != 0) goto pc + 1 */
368 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
369 		*insn++ = BPF_EXIT_INSN();
370 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
371 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
372 					    offsetof(struct net_device, ifindex));
373 		else
374 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
375 					    offsetof(struct net_device, type));
376 		break;
377 
378 	case SKF_AD_OFF + SKF_AD_MARK:
379 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
380 		insn += cnt - 1;
381 		break;
382 
383 	case SKF_AD_OFF + SKF_AD_RXHASH:
384 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
385 
386 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
387 				    offsetof(struct sk_buff, hash));
388 		break;
389 
390 	case SKF_AD_OFF + SKF_AD_QUEUE:
391 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
392 		insn += cnt - 1;
393 		break;
394 
395 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
396 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
397 					 BPF_REG_A, BPF_REG_CTX, insn);
398 		insn += cnt - 1;
399 		break;
400 
401 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
402 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
403 					 BPF_REG_A, BPF_REG_CTX, insn);
404 		insn += cnt - 1;
405 		break;
406 
407 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
408 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
409 
410 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
411 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
412 				      offsetof(struct sk_buff, vlan_proto));
413 		/* A = ntohs(A) [emitting a nop or swap16] */
414 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
415 		break;
416 
417 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
418 	case SKF_AD_OFF + SKF_AD_NLATTR:
419 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
420 	case SKF_AD_OFF + SKF_AD_CPU:
421 	case SKF_AD_OFF + SKF_AD_RANDOM:
422 		/* arg1 = CTX */
423 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
424 		/* arg2 = A */
425 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
426 		/* arg3 = X */
427 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
428 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
429 		switch (fp->k) {
430 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
431 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
432 			break;
433 		case SKF_AD_OFF + SKF_AD_NLATTR:
434 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
435 			break;
436 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
437 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
438 			break;
439 		case SKF_AD_OFF + SKF_AD_CPU:
440 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
441 			break;
442 		case SKF_AD_OFF + SKF_AD_RANDOM:
443 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
444 			bpf_user_rnd_init_once();
445 			break;
446 		}
447 		break;
448 
449 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
450 		/* A ^= X */
451 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
452 		break;
453 
454 	default:
455 		/* This is just a dummy call to avoid letting the compiler
456 		 * evict __bpf_call_base() as an optimization. Placed here
457 		 * where no-one bothers.
458 		 */
459 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
460 		return false;
461 	}
462 
463 	*insnp = insn;
464 	return true;
465 }
466 
467 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
468 {
469 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
470 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
471 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
472 		      BPF_SIZE(fp->code) == BPF_W;
473 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
474 	const int ip_align = NET_IP_ALIGN;
475 	struct bpf_insn *insn = *insnp;
476 	int offset = fp->k;
477 
478 	if (!indirect &&
479 	    ((unaligned_ok && offset >= 0) ||
480 	     (!unaligned_ok && offset >= 0 &&
481 	      offset + ip_align >= 0 &&
482 	      offset + ip_align % size == 0))) {
483 		bool ldx_off_ok = offset <= S16_MAX;
484 
485 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
486 		if (offset)
487 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
488 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
489 				      size, 2 + endian + (!ldx_off_ok * 2));
490 		if (ldx_off_ok) {
491 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
492 					      BPF_REG_D, offset);
493 		} else {
494 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
495 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
496 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497 					      BPF_REG_TMP, 0);
498 		}
499 		if (endian)
500 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
501 		*insn++ = BPF_JMP_A(8);
502 	}
503 
504 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
506 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
507 	if (!indirect) {
508 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
509 	} else {
510 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
511 		if (fp->k)
512 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
513 	}
514 
515 	switch (BPF_SIZE(fp->code)) {
516 	case BPF_B:
517 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
518 		break;
519 	case BPF_H:
520 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
521 		break;
522 	case BPF_W:
523 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
524 		break;
525 	default:
526 		return false;
527 	}
528 
529 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
530 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
531 	*insn   = BPF_EXIT_INSN();
532 
533 	*insnp = insn;
534 	return true;
535 }
536 
537 /**
538  *	bpf_convert_filter - convert filter program
539  *	@prog: the user passed filter program
540  *	@len: the length of the user passed filter program
541  *	@new_prog: allocated 'struct bpf_prog' or NULL
542  *	@new_len: pointer to store length of converted program
543  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
544  *
545  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
546  * style extended BPF (eBPF).
547  * Conversion workflow:
548  *
549  * 1) First pass for calculating the new program length:
550  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
551  *
552  * 2) 2nd pass to remap in two passes: 1st pass finds new
553  *    jump offsets, 2nd pass remapping:
554  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
555  */
556 static int bpf_convert_filter(struct sock_filter *prog, int len,
557 			      struct bpf_prog *new_prog, int *new_len,
558 			      bool *seen_ld_abs)
559 {
560 	int new_flen = 0, pass = 0, target, i, stack_off;
561 	struct bpf_insn *new_insn, *first_insn = NULL;
562 	struct sock_filter *fp;
563 	int *addrs = NULL;
564 	u8 bpf_src;
565 
566 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
567 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
568 
569 	if (len <= 0 || len > BPF_MAXINSNS)
570 		return -EINVAL;
571 
572 	if (new_prog) {
573 		first_insn = new_prog->insnsi;
574 		addrs = kcalloc(len, sizeof(*addrs),
575 				GFP_KERNEL | __GFP_NOWARN);
576 		if (!addrs)
577 			return -ENOMEM;
578 	}
579 
580 do_pass:
581 	new_insn = first_insn;
582 	fp = prog;
583 
584 	/* Classic BPF related prologue emission. */
585 	if (new_prog) {
586 		/* Classic BPF expects A and X to be reset first. These need
587 		 * to be guaranteed to be the first two instructions.
588 		 */
589 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
590 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
591 
592 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
593 		 * In eBPF case it's done by the compiler, here we need to
594 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
595 		 */
596 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
597 		if (*seen_ld_abs) {
598 			/* For packet access in classic BPF, cache skb->data
599 			 * in callee-saved BPF R8 and skb->len - skb->data_len
600 			 * (headlen) in BPF R9. Since classic BPF is read-only
601 			 * on CTX, we only need to cache it once.
602 			 */
603 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
604 						  BPF_REG_D, BPF_REG_CTX,
605 						  offsetof(struct sk_buff, data));
606 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
607 						  offsetof(struct sk_buff, len));
608 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
609 						  offsetof(struct sk_buff, data_len));
610 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
611 		}
612 	} else {
613 		new_insn += 3;
614 	}
615 
616 	for (i = 0; i < len; fp++, i++) {
617 		struct bpf_insn tmp_insns[32] = { };
618 		struct bpf_insn *insn = tmp_insns;
619 
620 		if (addrs)
621 			addrs[i] = new_insn - first_insn;
622 
623 		switch (fp->code) {
624 		/* All arithmetic insns and skb loads map as-is. */
625 		case BPF_ALU | BPF_ADD | BPF_X:
626 		case BPF_ALU | BPF_ADD | BPF_K:
627 		case BPF_ALU | BPF_SUB | BPF_X:
628 		case BPF_ALU | BPF_SUB | BPF_K:
629 		case BPF_ALU | BPF_AND | BPF_X:
630 		case BPF_ALU | BPF_AND | BPF_K:
631 		case BPF_ALU | BPF_OR | BPF_X:
632 		case BPF_ALU | BPF_OR | BPF_K:
633 		case BPF_ALU | BPF_LSH | BPF_X:
634 		case BPF_ALU | BPF_LSH | BPF_K:
635 		case BPF_ALU | BPF_RSH | BPF_X:
636 		case BPF_ALU | BPF_RSH | BPF_K:
637 		case BPF_ALU | BPF_XOR | BPF_X:
638 		case BPF_ALU | BPF_XOR | BPF_K:
639 		case BPF_ALU | BPF_MUL | BPF_X:
640 		case BPF_ALU | BPF_MUL | BPF_K:
641 		case BPF_ALU | BPF_DIV | BPF_X:
642 		case BPF_ALU | BPF_DIV | BPF_K:
643 		case BPF_ALU | BPF_MOD | BPF_X:
644 		case BPF_ALU | BPF_MOD | BPF_K:
645 		case BPF_ALU | BPF_NEG:
646 		case BPF_LD | BPF_ABS | BPF_W:
647 		case BPF_LD | BPF_ABS | BPF_H:
648 		case BPF_LD | BPF_ABS | BPF_B:
649 		case BPF_LD | BPF_IND | BPF_W:
650 		case BPF_LD | BPF_IND | BPF_H:
651 		case BPF_LD | BPF_IND | BPF_B:
652 			/* Check for overloaded BPF extension and
653 			 * directly convert it if found, otherwise
654 			 * just move on with mapping.
655 			 */
656 			if (BPF_CLASS(fp->code) == BPF_LD &&
657 			    BPF_MODE(fp->code) == BPF_ABS &&
658 			    convert_bpf_extensions(fp, &insn))
659 				break;
660 			if (BPF_CLASS(fp->code) == BPF_LD &&
661 			    convert_bpf_ld_abs(fp, &insn)) {
662 				*seen_ld_abs = true;
663 				break;
664 			}
665 
666 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
667 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
668 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
669 				/* Error with exception code on div/mod by 0.
670 				 * For cBPF programs, this was always return 0.
671 				 */
672 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
673 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
674 				*insn++ = BPF_EXIT_INSN();
675 			}
676 
677 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
678 			break;
679 
680 		/* Jump transformation cannot use BPF block macros
681 		 * everywhere as offset calculation and target updates
682 		 * require a bit more work than the rest, i.e. jump
683 		 * opcodes map as-is, but offsets need adjustment.
684 		 */
685 
686 #define BPF_EMIT_JMP							\
687 	do {								\
688 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
689 		s32 off;						\
690 									\
691 		if (target >= len || target < 0)			\
692 			goto err;					\
693 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
694 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
695 		off -= insn - tmp_insns;				\
696 		/* Reject anything not fitting into insn->off. */	\
697 		if (off < off_min || off > off_max)			\
698 			goto err;					\
699 		insn->off = off;					\
700 	} while (0)
701 
702 		case BPF_JMP | BPF_JA:
703 			target = i + fp->k + 1;
704 			insn->code = fp->code;
705 			BPF_EMIT_JMP;
706 			break;
707 
708 		case BPF_JMP | BPF_JEQ | BPF_K:
709 		case BPF_JMP | BPF_JEQ | BPF_X:
710 		case BPF_JMP | BPF_JSET | BPF_K:
711 		case BPF_JMP | BPF_JSET | BPF_X:
712 		case BPF_JMP | BPF_JGT | BPF_K:
713 		case BPF_JMP | BPF_JGT | BPF_X:
714 		case BPF_JMP | BPF_JGE | BPF_K:
715 		case BPF_JMP | BPF_JGE | BPF_X:
716 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
717 				/* BPF immediates are signed, zero extend
718 				 * immediate into tmp register and use it
719 				 * in compare insn.
720 				 */
721 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
722 
723 				insn->dst_reg = BPF_REG_A;
724 				insn->src_reg = BPF_REG_TMP;
725 				bpf_src = BPF_X;
726 			} else {
727 				insn->dst_reg = BPF_REG_A;
728 				insn->imm = fp->k;
729 				bpf_src = BPF_SRC(fp->code);
730 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
731 			}
732 
733 			/* Common case where 'jump_false' is next insn. */
734 			if (fp->jf == 0) {
735 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
736 				target = i + fp->jt + 1;
737 				BPF_EMIT_JMP;
738 				break;
739 			}
740 
741 			/* Convert some jumps when 'jump_true' is next insn. */
742 			if (fp->jt == 0) {
743 				switch (BPF_OP(fp->code)) {
744 				case BPF_JEQ:
745 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
746 					break;
747 				case BPF_JGT:
748 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
749 					break;
750 				case BPF_JGE:
751 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
752 					break;
753 				default:
754 					goto jmp_rest;
755 				}
756 
757 				target = i + fp->jf + 1;
758 				BPF_EMIT_JMP;
759 				break;
760 			}
761 jmp_rest:
762 			/* Other jumps are mapped into two insns: Jxx and JA. */
763 			target = i + fp->jt + 1;
764 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765 			BPF_EMIT_JMP;
766 			insn++;
767 
768 			insn->code = BPF_JMP | BPF_JA;
769 			target = i + fp->jf + 1;
770 			BPF_EMIT_JMP;
771 			break;
772 
773 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
774 		case BPF_LDX | BPF_MSH | BPF_B: {
775 			struct sock_filter tmp = {
776 				.code	= BPF_LD | BPF_ABS | BPF_B,
777 				.k	= fp->k,
778 			};
779 
780 			*seen_ld_abs = true;
781 
782 			/* X = A */
783 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
784 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
785 			convert_bpf_ld_abs(&tmp, &insn);
786 			insn++;
787 			/* A &= 0xf */
788 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
789 			/* A <<= 2 */
790 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
791 			/* tmp = X */
792 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
793 			/* X = A */
794 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
795 			/* A = tmp */
796 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
797 			break;
798 		}
799 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
800 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
801 		 */
802 		case BPF_RET | BPF_A:
803 		case BPF_RET | BPF_K:
804 			if (BPF_RVAL(fp->code) == BPF_K)
805 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
806 							0, fp->k);
807 			*insn = BPF_EXIT_INSN();
808 			break;
809 
810 		/* Store to stack. */
811 		case BPF_ST:
812 		case BPF_STX:
813 			stack_off = fp->k * 4  + 4;
814 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
815 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
816 					    -stack_off);
817 			/* check_load_and_stores() verifies that classic BPF can
818 			 * load from stack only after write, so tracking
819 			 * stack_depth for ST|STX insns is enough
820 			 */
821 			if (new_prog && new_prog->aux->stack_depth < stack_off)
822 				new_prog->aux->stack_depth = stack_off;
823 			break;
824 
825 		/* Load from stack. */
826 		case BPF_LD | BPF_MEM:
827 		case BPF_LDX | BPF_MEM:
828 			stack_off = fp->k * 4  + 4;
829 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
830 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
831 					    -stack_off);
832 			break;
833 
834 		/* A = K or X = K */
835 		case BPF_LD | BPF_IMM:
836 		case BPF_LDX | BPF_IMM:
837 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
838 					      BPF_REG_A : BPF_REG_X, fp->k);
839 			break;
840 
841 		/* X = A */
842 		case BPF_MISC | BPF_TAX:
843 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
844 			break;
845 
846 		/* A = X */
847 		case BPF_MISC | BPF_TXA:
848 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
849 			break;
850 
851 		/* A = skb->len or X = skb->len */
852 		case BPF_LD | BPF_W | BPF_LEN:
853 		case BPF_LDX | BPF_W | BPF_LEN:
854 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
855 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
856 					    offsetof(struct sk_buff, len));
857 			break;
858 
859 		/* Access seccomp_data fields. */
860 		case BPF_LDX | BPF_ABS | BPF_W:
861 			/* A = *(u32 *) (ctx + K) */
862 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
863 			break;
864 
865 		/* Unknown instruction. */
866 		default:
867 			goto err;
868 		}
869 
870 		insn++;
871 		if (new_prog)
872 			memcpy(new_insn, tmp_insns,
873 			       sizeof(*insn) * (insn - tmp_insns));
874 		new_insn += insn - tmp_insns;
875 	}
876 
877 	if (!new_prog) {
878 		/* Only calculating new length. */
879 		*new_len = new_insn - first_insn;
880 		if (*seen_ld_abs)
881 			*new_len += 4; /* Prologue bits. */
882 		return 0;
883 	}
884 
885 	pass++;
886 	if (new_flen != new_insn - first_insn) {
887 		new_flen = new_insn - first_insn;
888 		if (pass > 2)
889 			goto err;
890 		goto do_pass;
891 	}
892 
893 	kfree(addrs);
894 	BUG_ON(*new_len != new_flen);
895 	return 0;
896 err:
897 	kfree(addrs);
898 	return -EINVAL;
899 }
900 
901 /* Security:
902  *
903  * As we dont want to clear mem[] array for each packet going through
904  * __bpf_prog_run(), we check that filter loaded by user never try to read
905  * a cell if not previously written, and we check all branches to be sure
906  * a malicious user doesn't try to abuse us.
907  */
908 static int check_load_and_stores(const struct sock_filter *filter, int flen)
909 {
910 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
911 	int pc, ret = 0;
912 
913 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
914 
915 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
916 	if (!masks)
917 		return -ENOMEM;
918 
919 	memset(masks, 0xff, flen * sizeof(*masks));
920 
921 	for (pc = 0; pc < flen; pc++) {
922 		memvalid &= masks[pc];
923 
924 		switch (filter[pc].code) {
925 		case BPF_ST:
926 		case BPF_STX:
927 			memvalid |= (1 << filter[pc].k);
928 			break;
929 		case BPF_LD | BPF_MEM:
930 		case BPF_LDX | BPF_MEM:
931 			if (!(memvalid & (1 << filter[pc].k))) {
932 				ret = -EINVAL;
933 				goto error;
934 			}
935 			break;
936 		case BPF_JMP | BPF_JA:
937 			/* A jump must set masks on target */
938 			masks[pc + 1 + filter[pc].k] &= memvalid;
939 			memvalid = ~0;
940 			break;
941 		case BPF_JMP | BPF_JEQ | BPF_K:
942 		case BPF_JMP | BPF_JEQ | BPF_X:
943 		case BPF_JMP | BPF_JGE | BPF_K:
944 		case BPF_JMP | BPF_JGE | BPF_X:
945 		case BPF_JMP | BPF_JGT | BPF_K:
946 		case BPF_JMP | BPF_JGT | BPF_X:
947 		case BPF_JMP | BPF_JSET | BPF_K:
948 		case BPF_JMP | BPF_JSET | BPF_X:
949 			/* A jump must set masks on targets */
950 			masks[pc + 1 + filter[pc].jt] &= memvalid;
951 			masks[pc + 1 + filter[pc].jf] &= memvalid;
952 			memvalid = ~0;
953 			break;
954 		}
955 	}
956 error:
957 	kfree(masks);
958 	return ret;
959 }
960 
961 static bool chk_code_allowed(u16 code_to_probe)
962 {
963 	static const bool codes[] = {
964 		/* 32 bit ALU operations */
965 		[BPF_ALU | BPF_ADD | BPF_K] = true,
966 		[BPF_ALU | BPF_ADD | BPF_X] = true,
967 		[BPF_ALU | BPF_SUB | BPF_K] = true,
968 		[BPF_ALU | BPF_SUB | BPF_X] = true,
969 		[BPF_ALU | BPF_MUL | BPF_K] = true,
970 		[BPF_ALU | BPF_MUL | BPF_X] = true,
971 		[BPF_ALU | BPF_DIV | BPF_K] = true,
972 		[BPF_ALU | BPF_DIV | BPF_X] = true,
973 		[BPF_ALU | BPF_MOD | BPF_K] = true,
974 		[BPF_ALU | BPF_MOD | BPF_X] = true,
975 		[BPF_ALU | BPF_AND | BPF_K] = true,
976 		[BPF_ALU | BPF_AND | BPF_X] = true,
977 		[BPF_ALU | BPF_OR | BPF_K] = true,
978 		[BPF_ALU | BPF_OR | BPF_X] = true,
979 		[BPF_ALU | BPF_XOR | BPF_K] = true,
980 		[BPF_ALU | BPF_XOR | BPF_X] = true,
981 		[BPF_ALU | BPF_LSH | BPF_K] = true,
982 		[BPF_ALU | BPF_LSH | BPF_X] = true,
983 		[BPF_ALU | BPF_RSH | BPF_K] = true,
984 		[BPF_ALU | BPF_RSH | BPF_X] = true,
985 		[BPF_ALU | BPF_NEG] = true,
986 		/* Load instructions */
987 		[BPF_LD | BPF_W | BPF_ABS] = true,
988 		[BPF_LD | BPF_H | BPF_ABS] = true,
989 		[BPF_LD | BPF_B | BPF_ABS] = true,
990 		[BPF_LD | BPF_W | BPF_LEN] = true,
991 		[BPF_LD | BPF_W | BPF_IND] = true,
992 		[BPF_LD | BPF_H | BPF_IND] = true,
993 		[BPF_LD | BPF_B | BPF_IND] = true,
994 		[BPF_LD | BPF_IMM] = true,
995 		[BPF_LD | BPF_MEM] = true,
996 		[BPF_LDX | BPF_W | BPF_LEN] = true,
997 		[BPF_LDX | BPF_B | BPF_MSH] = true,
998 		[BPF_LDX | BPF_IMM] = true,
999 		[BPF_LDX | BPF_MEM] = true,
1000 		/* Store instructions */
1001 		[BPF_ST] = true,
1002 		[BPF_STX] = true,
1003 		/* Misc instructions */
1004 		[BPF_MISC | BPF_TAX] = true,
1005 		[BPF_MISC | BPF_TXA] = true,
1006 		/* Return instructions */
1007 		[BPF_RET | BPF_K] = true,
1008 		[BPF_RET | BPF_A] = true,
1009 		/* Jump instructions */
1010 		[BPF_JMP | BPF_JA] = true,
1011 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1012 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1013 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1014 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1015 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1016 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1017 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1018 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1019 	};
1020 
1021 	if (code_to_probe >= ARRAY_SIZE(codes))
1022 		return false;
1023 
1024 	return codes[code_to_probe];
1025 }
1026 
1027 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1028 				unsigned int flen)
1029 {
1030 	if (filter == NULL)
1031 		return false;
1032 	if (flen == 0 || flen > BPF_MAXINSNS)
1033 		return false;
1034 
1035 	return true;
1036 }
1037 
1038 /**
1039  *	bpf_check_classic - verify socket filter code
1040  *	@filter: filter to verify
1041  *	@flen: length of filter
1042  *
1043  * Check the user's filter code. If we let some ugly
1044  * filter code slip through kaboom! The filter must contain
1045  * no references or jumps that are out of range, no illegal
1046  * instructions, and must end with a RET instruction.
1047  *
1048  * All jumps are forward as they are not signed.
1049  *
1050  * Returns 0 if the rule set is legal or -EINVAL if not.
1051  */
1052 static int bpf_check_classic(const struct sock_filter *filter,
1053 			     unsigned int flen)
1054 {
1055 	bool anc_found;
1056 	int pc;
1057 
1058 	/* Check the filter code now */
1059 	for (pc = 0; pc < flen; pc++) {
1060 		const struct sock_filter *ftest = &filter[pc];
1061 
1062 		/* May we actually operate on this code? */
1063 		if (!chk_code_allowed(ftest->code))
1064 			return -EINVAL;
1065 
1066 		/* Some instructions need special checks */
1067 		switch (ftest->code) {
1068 		case BPF_ALU | BPF_DIV | BPF_K:
1069 		case BPF_ALU | BPF_MOD | BPF_K:
1070 			/* Check for division by zero */
1071 			if (ftest->k == 0)
1072 				return -EINVAL;
1073 			break;
1074 		case BPF_ALU | BPF_LSH | BPF_K:
1075 		case BPF_ALU | BPF_RSH | BPF_K:
1076 			if (ftest->k >= 32)
1077 				return -EINVAL;
1078 			break;
1079 		case BPF_LD | BPF_MEM:
1080 		case BPF_LDX | BPF_MEM:
1081 		case BPF_ST:
1082 		case BPF_STX:
1083 			/* Check for invalid memory addresses */
1084 			if (ftest->k >= BPF_MEMWORDS)
1085 				return -EINVAL;
1086 			break;
1087 		case BPF_JMP | BPF_JA:
1088 			/* Note, the large ftest->k might cause loops.
1089 			 * Compare this with conditional jumps below,
1090 			 * where offsets are limited. --ANK (981016)
1091 			 */
1092 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1093 				return -EINVAL;
1094 			break;
1095 		case BPF_JMP | BPF_JEQ | BPF_K:
1096 		case BPF_JMP | BPF_JEQ | BPF_X:
1097 		case BPF_JMP | BPF_JGE | BPF_K:
1098 		case BPF_JMP | BPF_JGE | BPF_X:
1099 		case BPF_JMP | BPF_JGT | BPF_K:
1100 		case BPF_JMP | BPF_JGT | BPF_X:
1101 		case BPF_JMP | BPF_JSET | BPF_K:
1102 		case BPF_JMP | BPF_JSET | BPF_X:
1103 			/* Both conditionals must be safe */
1104 			if (pc + ftest->jt + 1 >= flen ||
1105 			    pc + ftest->jf + 1 >= flen)
1106 				return -EINVAL;
1107 			break;
1108 		case BPF_LD | BPF_W | BPF_ABS:
1109 		case BPF_LD | BPF_H | BPF_ABS:
1110 		case BPF_LD | BPF_B | BPF_ABS:
1111 			anc_found = false;
1112 			if (bpf_anc_helper(ftest) & BPF_ANC)
1113 				anc_found = true;
1114 			/* Ancillary operation unknown or unsupported */
1115 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1116 				return -EINVAL;
1117 		}
1118 	}
1119 
1120 	/* Last instruction must be a RET code */
1121 	switch (filter[flen - 1].code) {
1122 	case BPF_RET | BPF_K:
1123 	case BPF_RET | BPF_A:
1124 		return check_load_and_stores(filter, flen);
1125 	}
1126 
1127 	return -EINVAL;
1128 }
1129 
1130 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1131 				      const struct sock_fprog *fprog)
1132 {
1133 	unsigned int fsize = bpf_classic_proglen(fprog);
1134 	struct sock_fprog_kern *fkprog;
1135 
1136 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1137 	if (!fp->orig_prog)
1138 		return -ENOMEM;
1139 
1140 	fkprog = fp->orig_prog;
1141 	fkprog->len = fprog->len;
1142 
1143 	fkprog->filter = kmemdup(fp->insns, fsize,
1144 				 GFP_KERNEL | __GFP_NOWARN);
1145 	if (!fkprog->filter) {
1146 		kfree(fp->orig_prog);
1147 		return -ENOMEM;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static void bpf_release_orig_filter(struct bpf_prog *fp)
1154 {
1155 	struct sock_fprog_kern *fprog = fp->orig_prog;
1156 
1157 	if (fprog) {
1158 		kfree(fprog->filter);
1159 		kfree(fprog);
1160 	}
1161 }
1162 
1163 static void __bpf_prog_release(struct bpf_prog *prog)
1164 {
1165 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1166 		bpf_prog_put(prog);
1167 	} else {
1168 		bpf_release_orig_filter(prog);
1169 		bpf_prog_free(prog);
1170 	}
1171 }
1172 
1173 static void __sk_filter_release(struct sk_filter *fp)
1174 {
1175 	__bpf_prog_release(fp->prog);
1176 	kfree(fp);
1177 }
1178 
1179 /**
1180  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1181  *	@rcu: rcu_head that contains the sk_filter to free
1182  */
1183 static void sk_filter_release_rcu(struct rcu_head *rcu)
1184 {
1185 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1186 
1187 	__sk_filter_release(fp);
1188 }
1189 
1190 /**
1191  *	sk_filter_release - release a socket filter
1192  *	@fp: filter to remove
1193  *
1194  *	Remove a filter from a socket and release its resources.
1195  */
1196 static void sk_filter_release(struct sk_filter *fp)
1197 {
1198 	if (refcount_dec_and_test(&fp->refcnt))
1199 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1200 }
1201 
1202 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1203 {
1204 	u32 filter_size = bpf_prog_size(fp->prog->len);
1205 
1206 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1207 	sk_filter_release(fp);
1208 }
1209 
1210 /* try to charge the socket memory if there is space available
1211  * return true on success
1212  */
1213 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1214 {
1215 	u32 filter_size = bpf_prog_size(fp->prog->len);
1216 
1217 	/* same check as in sock_kmalloc() */
1218 	if (filter_size <= sysctl_optmem_max &&
1219 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1220 		atomic_add(filter_size, &sk->sk_omem_alloc);
1221 		return true;
1222 	}
1223 	return false;
1224 }
1225 
1226 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1227 {
1228 	if (!refcount_inc_not_zero(&fp->refcnt))
1229 		return false;
1230 
1231 	if (!__sk_filter_charge(sk, fp)) {
1232 		sk_filter_release(fp);
1233 		return false;
1234 	}
1235 	return true;
1236 }
1237 
1238 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1239 {
1240 	struct sock_filter *old_prog;
1241 	struct bpf_prog *old_fp;
1242 	int err, new_len, old_len = fp->len;
1243 	bool seen_ld_abs = false;
1244 
1245 	/* We are free to overwrite insns et al right here as it
1246 	 * won't be used at this point in time anymore internally
1247 	 * after the migration to the internal BPF instruction
1248 	 * representation.
1249 	 */
1250 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1251 		     sizeof(struct bpf_insn));
1252 
1253 	/* Conversion cannot happen on overlapping memory areas,
1254 	 * so we need to keep the user BPF around until the 2nd
1255 	 * pass. At this time, the user BPF is stored in fp->insns.
1256 	 */
1257 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1258 			   GFP_KERNEL | __GFP_NOWARN);
1259 	if (!old_prog) {
1260 		err = -ENOMEM;
1261 		goto out_err;
1262 	}
1263 
1264 	/* 1st pass: calculate the new program length. */
1265 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1266 				 &seen_ld_abs);
1267 	if (err)
1268 		goto out_err_free;
1269 
1270 	/* Expand fp for appending the new filter representation. */
1271 	old_fp = fp;
1272 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1273 	if (!fp) {
1274 		/* The old_fp is still around in case we couldn't
1275 		 * allocate new memory, so uncharge on that one.
1276 		 */
1277 		fp = old_fp;
1278 		err = -ENOMEM;
1279 		goto out_err_free;
1280 	}
1281 
1282 	fp->len = new_len;
1283 
1284 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1285 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1286 				 &seen_ld_abs);
1287 	if (err)
1288 		/* 2nd bpf_convert_filter() can fail only if it fails
1289 		 * to allocate memory, remapping must succeed. Note,
1290 		 * that at this time old_fp has already been released
1291 		 * by krealloc().
1292 		 */
1293 		goto out_err_free;
1294 
1295 	fp = bpf_prog_select_runtime(fp, &err);
1296 	if (err)
1297 		goto out_err_free;
1298 
1299 	kfree(old_prog);
1300 	return fp;
1301 
1302 out_err_free:
1303 	kfree(old_prog);
1304 out_err:
1305 	__bpf_prog_release(fp);
1306 	return ERR_PTR(err);
1307 }
1308 
1309 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1310 					   bpf_aux_classic_check_t trans)
1311 {
1312 	int err;
1313 
1314 	fp->bpf_func = NULL;
1315 	fp->jited = 0;
1316 
1317 	err = bpf_check_classic(fp->insns, fp->len);
1318 	if (err) {
1319 		__bpf_prog_release(fp);
1320 		return ERR_PTR(err);
1321 	}
1322 
1323 	/* There might be additional checks and transformations
1324 	 * needed on classic filters, f.e. in case of seccomp.
1325 	 */
1326 	if (trans) {
1327 		err = trans(fp->insns, fp->len);
1328 		if (err) {
1329 			__bpf_prog_release(fp);
1330 			return ERR_PTR(err);
1331 		}
1332 	}
1333 
1334 	/* Probe if we can JIT compile the filter and if so, do
1335 	 * the compilation of the filter.
1336 	 */
1337 	bpf_jit_compile(fp);
1338 
1339 	/* JIT compiler couldn't process this filter, so do the
1340 	 * internal BPF translation for the optimized interpreter.
1341 	 */
1342 	if (!fp->jited)
1343 		fp = bpf_migrate_filter(fp);
1344 
1345 	return fp;
1346 }
1347 
1348 /**
1349  *	bpf_prog_create - create an unattached filter
1350  *	@pfp: the unattached filter that is created
1351  *	@fprog: the filter program
1352  *
1353  * Create a filter independent of any socket. We first run some
1354  * sanity checks on it to make sure it does not explode on us later.
1355  * If an error occurs or there is insufficient memory for the filter
1356  * a negative errno code is returned. On success the return is zero.
1357  */
1358 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1359 {
1360 	unsigned int fsize = bpf_classic_proglen(fprog);
1361 	struct bpf_prog *fp;
1362 
1363 	/* Make sure new filter is there and in the right amounts. */
1364 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1365 		return -EINVAL;
1366 
1367 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1368 	if (!fp)
1369 		return -ENOMEM;
1370 
1371 	memcpy(fp->insns, fprog->filter, fsize);
1372 
1373 	fp->len = fprog->len;
1374 	/* Since unattached filters are not copied back to user
1375 	 * space through sk_get_filter(), we do not need to hold
1376 	 * a copy here, and can spare us the work.
1377 	 */
1378 	fp->orig_prog = NULL;
1379 
1380 	/* bpf_prepare_filter() already takes care of freeing
1381 	 * memory in case something goes wrong.
1382 	 */
1383 	fp = bpf_prepare_filter(fp, NULL);
1384 	if (IS_ERR(fp))
1385 		return PTR_ERR(fp);
1386 
1387 	*pfp = fp;
1388 	return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(bpf_prog_create);
1391 
1392 /**
1393  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1394  *	@pfp: the unattached filter that is created
1395  *	@fprog: the filter program
1396  *	@trans: post-classic verifier transformation handler
1397  *	@save_orig: save classic BPF program
1398  *
1399  * This function effectively does the same as bpf_prog_create(), only
1400  * that it builds up its insns buffer from user space provided buffer.
1401  * It also allows for passing a bpf_aux_classic_check_t handler.
1402  */
1403 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1404 			      bpf_aux_classic_check_t trans, bool save_orig)
1405 {
1406 	unsigned int fsize = bpf_classic_proglen(fprog);
1407 	struct bpf_prog *fp;
1408 	int err;
1409 
1410 	/* Make sure new filter is there and in the right amounts. */
1411 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1412 		return -EINVAL;
1413 
1414 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1415 	if (!fp)
1416 		return -ENOMEM;
1417 
1418 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1419 		__bpf_prog_free(fp);
1420 		return -EFAULT;
1421 	}
1422 
1423 	fp->len = fprog->len;
1424 	fp->orig_prog = NULL;
1425 
1426 	if (save_orig) {
1427 		err = bpf_prog_store_orig_filter(fp, fprog);
1428 		if (err) {
1429 			__bpf_prog_free(fp);
1430 			return -ENOMEM;
1431 		}
1432 	}
1433 
1434 	/* bpf_prepare_filter() already takes care of freeing
1435 	 * memory in case something goes wrong.
1436 	 */
1437 	fp = bpf_prepare_filter(fp, trans);
1438 	if (IS_ERR(fp))
1439 		return PTR_ERR(fp);
1440 
1441 	*pfp = fp;
1442 	return 0;
1443 }
1444 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1445 
1446 void bpf_prog_destroy(struct bpf_prog *fp)
1447 {
1448 	__bpf_prog_release(fp);
1449 }
1450 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1451 
1452 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1453 {
1454 	struct sk_filter *fp, *old_fp;
1455 
1456 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1457 	if (!fp)
1458 		return -ENOMEM;
1459 
1460 	fp->prog = prog;
1461 
1462 	if (!__sk_filter_charge(sk, fp)) {
1463 		kfree(fp);
1464 		return -ENOMEM;
1465 	}
1466 	refcount_set(&fp->refcnt, 1);
1467 
1468 	old_fp = rcu_dereference_protected(sk->sk_filter,
1469 					   lockdep_sock_is_held(sk));
1470 	rcu_assign_pointer(sk->sk_filter, fp);
1471 
1472 	if (old_fp)
1473 		sk_filter_uncharge(sk, old_fp);
1474 
1475 	return 0;
1476 }
1477 
1478 static
1479 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1480 {
1481 	unsigned int fsize = bpf_classic_proglen(fprog);
1482 	struct bpf_prog *prog;
1483 	int err;
1484 
1485 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1486 		return ERR_PTR(-EPERM);
1487 
1488 	/* Make sure new filter is there and in the right amounts. */
1489 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1490 		return ERR_PTR(-EINVAL);
1491 
1492 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1493 	if (!prog)
1494 		return ERR_PTR(-ENOMEM);
1495 
1496 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1497 		__bpf_prog_free(prog);
1498 		return ERR_PTR(-EFAULT);
1499 	}
1500 
1501 	prog->len = fprog->len;
1502 
1503 	err = bpf_prog_store_orig_filter(prog, fprog);
1504 	if (err) {
1505 		__bpf_prog_free(prog);
1506 		return ERR_PTR(-ENOMEM);
1507 	}
1508 
1509 	/* bpf_prepare_filter() already takes care of freeing
1510 	 * memory in case something goes wrong.
1511 	 */
1512 	return bpf_prepare_filter(prog, NULL);
1513 }
1514 
1515 /**
1516  *	sk_attach_filter - attach a socket filter
1517  *	@fprog: the filter program
1518  *	@sk: the socket to use
1519  *
1520  * Attach the user's filter code. We first run some sanity checks on
1521  * it to make sure it does not explode on us later. If an error
1522  * occurs or there is insufficient memory for the filter a negative
1523  * errno code is returned. On success the return is zero.
1524  */
1525 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1526 {
1527 	struct bpf_prog *prog = __get_filter(fprog, sk);
1528 	int err;
1529 
1530 	if (IS_ERR(prog))
1531 		return PTR_ERR(prog);
1532 
1533 	err = __sk_attach_prog(prog, sk);
1534 	if (err < 0) {
1535 		__bpf_prog_release(prog);
1536 		return err;
1537 	}
1538 
1539 	return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(sk_attach_filter);
1542 
1543 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1544 {
1545 	struct bpf_prog *prog = __get_filter(fprog, sk);
1546 	int err;
1547 
1548 	if (IS_ERR(prog))
1549 		return PTR_ERR(prog);
1550 
1551 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1552 		err = -ENOMEM;
1553 	else
1554 		err = reuseport_attach_prog(sk, prog);
1555 
1556 	if (err)
1557 		__bpf_prog_release(prog);
1558 
1559 	return err;
1560 }
1561 
1562 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1563 {
1564 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1565 		return ERR_PTR(-EPERM);
1566 
1567 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 }
1569 
1570 int sk_attach_bpf(u32 ufd, struct sock *sk)
1571 {
1572 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1573 	int err;
1574 
1575 	if (IS_ERR(prog))
1576 		return PTR_ERR(prog);
1577 
1578 	err = __sk_attach_prog(prog, sk);
1579 	if (err < 0) {
1580 		bpf_prog_put(prog);
1581 		return err;
1582 	}
1583 
1584 	return 0;
1585 }
1586 
1587 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1588 {
1589 	struct bpf_prog *prog;
1590 	int err;
1591 
1592 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1593 		return -EPERM;
1594 
1595 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1596 	if (PTR_ERR(prog) == -EINVAL)
1597 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1598 	if (IS_ERR(prog))
1599 		return PTR_ERR(prog);
1600 
1601 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1602 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1603 		 * bpf prog (e.g. sockmap).  It depends on the
1604 		 * limitation imposed by bpf_prog_load().
1605 		 * Hence, sysctl_optmem_max is not checked.
1606 		 */
1607 		if ((sk->sk_type != SOCK_STREAM &&
1608 		     sk->sk_type != SOCK_DGRAM) ||
1609 		    (sk->sk_protocol != IPPROTO_UDP &&
1610 		     sk->sk_protocol != IPPROTO_TCP) ||
1611 		    (sk->sk_family != AF_INET &&
1612 		     sk->sk_family != AF_INET6)) {
1613 			err = -ENOTSUPP;
1614 			goto err_prog_put;
1615 		}
1616 	} else {
1617 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1618 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1619 			err = -ENOMEM;
1620 			goto err_prog_put;
1621 		}
1622 	}
1623 
1624 	err = reuseport_attach_prog(sk, prog);
1625 err_prog_put:
1626 	if (err)
1627 		bpf_prog_put(prog);
1628 
1629 	return err;
1630 }
1631 
1632 void sk_reuseport_prog_free(struct bpf_prog *prog)
1633 {
1634 	if (!prog)
1635 		return;
1636 
1637 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1638 		bpf_prog_put(prog);
1639 	else
1640 		bpf_prog_destroy(prog);
1641 }
1642 
1643 struct bpf_scratchpad {
1644 	union {
1645 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1646 		u8     buff[MAX_BPF_STACK];
1647 	};
1648 };
1649 
1650 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1651 
1652 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1653 					  unsigned int write_len)
1654 {
1655 	return skb_ensure_writable(skb, write_len);
1656 }
1657 
1658 static inline int bpf_try_make_writable(struct sk_buff *skb,
1659 					unsigned int write_len)
1660 {
1661 	int err = __bpf_try_make_writable(skb, write_len);
1662 
1663 	bpf_compute_data_pointers(skb);
1664 	return err;
1665 }
1666 
1667 static int bpf_try_make_head_writable(struct sk_buff *skb)
1668 {
1669 	return bpf_try_make_writable(skb, skb_headlen(skb));
1670 }
1671 
1672 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1673 {
1674 	if (skb_at_tc_ingress(skb))
1675 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1676 }
1677 
1678 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1679 {
1680 	if (skb_at_tc_ingress(skb))
1681 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1682 }
1683 
1684 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1685 	   const void *, from, u32, len, u64, flags)
1686 {
1687 	void *ptr;
1688 
1689 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1690 		return -EINVAL;
1691 	if (unlikely(offset > 0xffff))
1692 		return -EFAULT;
1693 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1694 		return -EFAULT;
1695 
1696 	ptr = skb->data + offset;
1697 	if (flags & BPF_F_RECOMPUTE_CSUM)
1698 		__skb_postpull_rcsum(skb, ptr, len, offset);
1699 
1700 	memcpy(ptr, from, len);
1701 
1702 	if (flags & BPF_F_RECOMPUTE_CSUM)
1703 		__skb_postpush_rcsum(skb, ptr, len, offset);
1704 	if (flags & BPF_F_INVALIDATE_HASH)
1705 		skb_clear_hash(skb);
1706 
1707 	return 0;
1708 }
1709 
1710 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1711 	.func		= bpf_skb_store_bytes,
1712 	.gpl_only	= false,
1713 	.ret_type	= RET_INTEGER,
1714 	.arg1_type	= ARG_PTR_TO_CTX,
1715 	.arg2_type	= ARG_ANYTHING,
1716 	.arg3_type	= ARG_PTR_TO_MEM,
1717 	.arg4_type	= ARG_CONST_SIZE,
1718 	.arg5_type	= ARG_ANYTHING,
1719 };
1720 
1721 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1722 	   void *, to, u32, len)
1723 {
1724 	void *ptr;
1725 
1726 	if (unlikely(offset > 0xffff))
1727 		goto err_clear;
1728 
1729 	ptr = skb_header_pointer(skb, offset, len, to);
1730 	if (unlikely(!ptr))
1731 		goto err_clear;
1732 	if (ptr != to)
1733 		memcpy(to, ptr, len);
1734 
1735 	return 0;
1736 err_clear:
1737 	memset(to, 0, len);
1738 	return -EFAULT;
1739 }
1740 
1741 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1742 	.func		= bpf_skb_load_bytes,
1743 	.gpl_only	= false,
1744 	.ret_type	= RET_INTEGER,
1745 	.arg1_type	= ARG_PTR_TO_CTX,
1746 	.arg2_type	= ARG_ANYTHING,
1747 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1748 	.arg4_type	= ARG_CONST_SIZE,
1749 };
1750 
1751 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1752 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1753 	   void *, to, u32, len)
1754 {
1755 	void *ptr;
1756 
1757 	if (unlikely(offset > 0xffff))
1758 		goto err_clear;
1759 
1760 	if (unlikely(!ctx->skb))
1761 		goto err_clear;
1762 
1763 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1764 	if (unlikely(!ptr))
1765 		goto err_clear;
1766 	if (ptr != to)
1767 		memcpy(to, ptr, len);
1768 
1769 	return 0;
1770 err_clear:
1771 	memset(to, 0, len);
1772 	return -EFAULT;
1773 }
1774 
1775 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1776 	.func		= bpf_flow_dissector_load_bytes,
1777 	.gpl_only	= false,
1778 	.ret_type	= RET_INTEGER,
1779 	.arg1_type	= ARG_PTR_TO_CTX,
1780 	.arg2_type	= ARG_ANYTHING,
1781 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1782 	.arg4_type	= ARG_CONST_SIZE,
1783 };
1784 
1785 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1786 	   u32, offset, void *, to, u32, len, u32, start_header)
1787 {
1788 	u8 *end = skb_tail_pointer(skb);
1789 	u8 *start, *ptr;
1790 
1791 	if (unlikely(offset > 0xffff))
1792 		goto err_clear;
1793 
1794 	switch (start_header) {
1795 	case BPF_HDR_START_MAC:
1796 		if (unlikely(!skb_mac_header_was_set(skb)))
1797 			goto err_clear;
1798 		start = skb_mac_header(skb);
1799 		break;
1800 	case BPF_HDR_START_NET:
1801 		start = skb_network_header(skb);
1802 		break;
1803 	default:
1804 		goto err_clear;
1805 	}
1806 
1807 	ptr = start + offset;
1808 
1809 	if (likely(ptr + len <= end)) {
1810 		memcpy(to, ptr, len);
1811 		return 0;
1812 	}
1813 
1814 err_clear:
1815 	memset(to, 0, len);
1816 	return -EFAULT;
1817 }
1818 
1819 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1820 	.func		= bpf_skb_load_bytes_relative,
1821 	.gpl_only	= false,
1822 	.ret_type	= RET_INTEGER,
1823 	.arg1_type	= ARG_PTR_TO_CTX,
1824 	.arg2_type	= ARG_ANYTHING,
1825 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1826 	.arg4_type	= ARG_CONST_SIZE,
1827 	.arg5_type	= ARG_ANYTHING,
1828 };
1829 
1830 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1831 {
1832 	/* Idea is the following: should the needed direct read/write
1833 	 * test fail during runtime, we can pull in more data and redo
1834 	 * again, since implicitly, we invalidate previous checks here.
1835 	 *
1836 	 * Or, since we know how much we need to make read/writeable,
1837 	 * this can be done once at the program beginning for direct
1838 	 * access case. By this we overcome limitations of only current
1839 	 * headroom being accessible.
1840 	 */
1841 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1842 }
1843 
1844 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1845 	.func		= bpf_skb_pull_data,
1846 	.gpl_only	= false,
1847 	.ret_type	= RET_INTEGER,
1848 	.arg1_type	= ARG_PTR_TO_CTX,
1849 	.arg2_type	= ARG_ANYTHING,
1850 };
1851 
1852 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1853 {
1854 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1855 }
1856 
1857 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1858 	.func		= bpf_sk_fullsock,
1859 	.gpl_only	= false,
1860 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1861 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1862 };
1863 
1864 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1865 					   unsigned int write_len)
1866 {
1867 	return __bpf_try_make_writable(skb, write_len);
1868 }
1869 
1870 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1871 {
1872 	/* Idea is the following: should the needed direct read/write
1873 	 * test fail during runtime, we can pull in more data and redo
1874 	 * again, since implicitly, we invalidate previous checks here.
1875 	 *
1876 	 * Or, since we know how much we need to make read/writeable,
1877 	 * this can be done once at the program beginning for direct
1878 	 * access case. By this we overcome limitations of only current
1879 	 * headroom being accessible.
1880 	 */
1881 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1882 }
1883 
1884 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1885 	.func		= sk_skb_pull_data,
1886 	.gpl_only	= false,
1887 	.ret_type	= RET_INTEGER,
1888 	.arg1_type	= ARG_PTR_TO_CTX,
1889 	.arg2_type	= ARG_ANYTHING,
1890 };
1891 
1892 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1893 	   u64, from, u64, to, u64, flags)
1894 {
1895 	__sum16 *ptr;
1896 
1897 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1898 		return -EINVAL;
1899 	if (unlikely(offset > 0xffff || offset & 1))
1900 		return -EFAULT;
1901 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1902 		return -EFAULT;
1903 
1904 	ptr = (__sum16 *)(skb->data + offset);
1905 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1906 	case 0:
1907 		if (unlikely(from != 0))
1908 			return -EINVAL;
1909 
1910 		csum_replace_by_diff(ptr, to);
1911 		break;
1912 	case 2:
1913 		csum_replace2(ptr, from, to);
1914 		break;
1915 	case 4:
1916 		csum_replace4(ptr, from, to);
1917 		break;
1918 	default:
1919 		return -EINVAL;
1920 	}
1921 
1922 	return 0;
1923 }
1924 
1925 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1926 	.func		= bpf_l3_csum_replace,
1927 	.gpl_only	= false,
1928 	.ret_type	= RET_INTEGER,
1929 	.arg1_type	= ARG_PTR_TO_CTX,
1930 	.arg2_type	= ARG_ANYTHING,
1931 	.arg3_type	= ARG_ANYTHING,
1932 	.arg4_type	= ARG_ANYTHING,
1933 	.arg5_type	= ARG_ANYTHING,
1934 };
1935 
1936 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1937 	   u64, from, u64, to, u64, flags)
1938 {
1939 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1940 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1941 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1942 	__sum16 *ptr;
1943 
1944 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1945 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1946 		return -EINVAL;
1947 	if (unlikely(offset > 0xffff || offset & 1))
1948 		return -EFAULT;
1949 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1950 		return -EFAULT;
1951 
1952 	ptr = (__sum16 *)(skb->data + offset);
1953 	if (is_mmzero && !do_mforce && !*ptr)
1954 		return 0;
1955 
1956 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1957 	case 0:
1958 		if (unlikely(from != 0))
1959 			return -EINVAL;
1960 
1961 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1962 		break;
1963 	case 2:
1964 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1965 		break;
1966 	case 4:
1967 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1968 		break;
1969 	default:
1970 		return -EINVAL;
1971 	}
1972 
1973 	if (is_mmzero && !*ptr)
1974 		*ptr = CSUM_MANGLED_0;
1975 	return 0;
1976 }
1977 
1978 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1979 	.func		= bpf_l4_csum_replace,
1980 	.gpl_only	= false,
1981 	.ret_type	= RET_INTEGER,
1982 	.arg1_type	= ARG_PTR_TO_CTX,
1983 	.arg2_type	= ARG_ANYTHING,
1984 	.arg3_type	= ARG_ANYTHING,
1985 	.arg4_type	= ARG_ANYTHING,
1986 	.arg5_type	= ARG_ANYTHING,
1987 };
1988 
1989 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1990 	   __be32 *, to, u32, to_size, __wsum, seed)
1991 {
1992 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1993 	u32 diff_size = from_size + to_size;
1994 	int i, j = 0;
1995 
1996 	/* This is quite flexible, some examples:
1997 	 *
1998 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1999 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2000 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2001 	 *
2002 	 * Even for diffing, from_size and to_size don't need to be equal.
2003 	 */
2004 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2005 		     diff_size > sizeof(sp->diff)))
2006 		return -EINVAL;
2007 
2008 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2009 		sp->diff[j] = ~from[i];
2010 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2011 		sp->diff[j] = to[i];
2012 
2013 	return csum_partial(sp->diff, diff_size, seed);
2014 }
2015 
2016 static const struct bpf_func_proto bpf_csum_diff_proto = {
2017 	.func		= bpf_csum_diff,
2018 	.gpl_only	= false,
2019 	.pkt_access	= true,
2020 	.ret_type	= RET_INTEGER,
2021 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
2022 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2023 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
2024 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2025 	.arg5_type	= ARG_ANYTHING,
2026 };
2027 
2028 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2029 {
2030 	/* The interface is to be used in combination with bpf_csum_diff()
2031 	 * for direct packet writes. csum rotation for alignment as well
2032 	 * as emulating csum_sub() can be done from the eBPF program.
2033 	 */
2034 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2035 		return (skb->csum = csum_add(skb->csum, csum));
2036 
2037 	return -ENOTSUPP;
2038 }
2039 
2040 static const struct bpf_func_proto bpf_csum_update_proto = {
2041 	.func		= bpf_csum_update,
2042 	.gpl_only	= false,
2043 	.ret_type	= RET_INTEGER,
2044 	.arg1_type	= ARG_PTR_TO_CTX,
2045 	.arg2_type	= ARG_ANYTHING,
2046 };
2047 
2048 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2049 {
2050 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2051 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2052 	 * is passed as flags, for example.
2053 	 */
2054 	switch (level) {
2055 	case BPF_CSUM_LEVEL_INC:
2056 		__skb_incr_checksum_unnecessary(skb);
2057 		break;
2058 	case BPF_CSUM_LEVEL_DEC:
2059 		__skb_decr_checksum_unnecessary(skb);
2060 		break;
2061 	case BPF_CSUM_LEVEL_RESET:
2062 		__skb_reset_checksum_unnecessary(skb);
2063 		break;
2064 	case BPF_CSUM_LEVEL_QUERY:
2065 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2066 		       skb->csum_level : -EACCES;
2067 	default:
2068 		return -EINVAL;
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 static const struct bpf_func_proto bpf_csum_level_proto = {
2075 	.func		= bpf_csum_level,
2076 	.gpl_only	= false,
2077 	.ret_type	= RET_INTEGER,
2078 	.arg1_type	= ARG_PTR_TO_CTX,
2079 	.arg2_type	= ARG_ANYTHING,
2080 };
2081 
2082 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2083 {
2084 	return dev_forward_skb_nomtu(dev, skb);
2085 }
2086 
2087 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2088 				      struct sk_buff *skb)
2089 {
2090 	int ret = ____dev_forward_skb(dev, skb, false);
2091 
2092 	if (likely(!ret)) {
2093 		skb->dev = dev;
2094 		ret = netif_rx(skb);
2095 	}
2096 
2097 	return ret;
2098 }
2099 
2100 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2101 {
2102 	int ret;
2103 
2104 	if (dev_xmit_recursion()) {
2105 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2106 		kfree_skb(skb);
2107 		return -ENETDOWN;
2108 	}
2109 
2110 	skb->dev = dev;
2111 	skb->tstamp = 0;
2112 
2113 	dev_xmit_recursion_inc();
2114 	ret = dev_queue_xmit(skb);
2115 	dev_xmit_recursion_dec();
2116 
2117 	return ret;
2118 }
2119 
2120 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2121 				 u32 flags)
2122 {
2123 	unsigned int mlen = skb_network_offset(skb);
2124 
2125 	if (mlen) {
2126 		__skb_pull(skb, mlen);
2127 
2128 		/* At ingress, the mac header has already been pulled once.
2129 		 * At egress, skb_pospull_rcsum has to be done in case that
2130 		 * the skb is originated from ingress (i.e. a forwarded skb)
2131 		 * to ensure that rcsum starts at net header.
2132 		 */
2133 		if (!skb_at_tc_ingress(skb))
2134 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2135 	}
2136 	skb_pop_mac_header(skb);
2137 	skb_reset_mac_len(skb);
2138 	return flags & BPF_F_INGRESS ?
2139 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2140 }
2141 
2142 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2143 				 u32 flags)
2144 {
2145 	/* Verify that a link layer header is carried */
2146 	if (unlikely(skb->mac_header >= skb->network_header)) {
2147 		kfree_skb(skb);
2148 		return -ERANGE;
2149 	}
2150 
2151 	bpf_push_mac_rcsum(skb);
2152 	return flags & BPF_F_INGRESS ?
2153 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2154 }
2155 
2156 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2157 			  u32 flags)
2158 {
2159 	if (dev_is_mac_header_xmit(dev))
2160 		return __bpf_redirect_common(skb, dev, flags);
2161 	else
2162 		return __bpf_redirect_no_mac(skb, dev, flags);
2163 }
2164 
2165 #if IS_ENABLED(CONFIG_IPV6)
2166 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2167 			    struct net_device *dev, struct bpf_nh_params *nh)
2168 {
2169 	u32 hh_len = LL_RESERVED_SPACE(dev);
2170 	const struct in6_addr *nexthop;
2171 	struct dst_entry *dst = NULL;
2172 	struct neighbour *neigh;
2173 
2174 	if (dev_xmit_recursion()) {
2175 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2176 		goto out_drop;
2177 	}
2178 
2179 	skb->dev = dev;
2180 	skb->tstamp = 0;
2181 
2182 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2183 		skb = skb_expand_head(skb, hh_len);
2184 		if (!skb)
2185 			return -ENOMEM;
2186 	}
2187 
2188 	rcu_read_lock_bh();
2189 	if (!nh) {
2190 		dst = skb_dst(skb);
2191 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2192 				      &ipv6_hdr(skb)->daddr);
2193 	} else {
2194 		nexthop = &nh->ipv6_nh;
2195 	}
2196 	neigh = ip_neigh_gw6(dev, nexthop);
2197 	if (likely(!IS_ERR(neigh))) {
2198 		int ret;
2199 
2200 		sock_confirm_neigh(skb, neigh);
2201 		dev_xmit_recursion_inc();
2202 		ret = neigh_output(neigh, skb, false);
2203 		dev_xmit_recursion_dec();
2204 		rcu_read_unlock_bh();
2205 		return ret;
2206 	}
2207 	rcu_read_unlock_bh();
2208 	if (dst)
2209 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2210 out_drop:
2211 	kfree_skb(skb);
2212 	return -ENETDOWN;
2213 }
2214 
2215 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2216 				   struct bpf_nh_params *nh)
2217 {
2218 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2219 	struct net *net = dev_net(dev);
2220 	int err, ret = NET_XMIT_DROP;
2221 
2222 	if (!nh) {
2223 		struct dst_entry *dst;
2224 		struct flowi6 fl6 = {
2225 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2226 			.flowi6_mark  = skb->mark,
2227 			.flowlabel    = ip6_flowinfo(ip6h),
2228 			.flowi6_oif   = dev->ifindex,
2229 			.flowi6_proto = ip6h->nexthdr,
2230 			.daddr	      = ip6h->daddr,
2231 			.saddr	      = ip6h->saddr,
2232 		};
2233 
2234 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2235 		if (IS_ERR(dst))
2236 			goto out_drop;
2237 
2238 		skb_dst_set(skb, dst);
2239 	} else if (nh->nh_family != AF_INET6) {
2240 		goto out_drop;
2241 	}
2242 
2243 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2244 	if (unlikely(net_xmit_eval(err)))
2245 		dev->stats.tx_errors++;
2246 	else
2247 		ret = NET_XMIT_SUCCESS;
2248 	goto out_xmit;
2249 out_drop:
2250 	dev->stats.tx_errors++;
2251 	kfree_skb(skb);
2252 out_xmit:
2253 	return ret;
2254 }
2255 #else
2256 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2257 				   struct bpf_nh_params *nh)
2258 {
2259 	kfree_skb(skb);
2260 	return NET_XMIT_DROP;
2261 }
2262 #endif /* CONFIG_IPV6 */
2263 
2264 #if IS_ENABLED(CONFIG_INET)
2265 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2266 			    struct net_device *dev, struct bpf_nh_params *nh)
2267 {
2268 	u32 hh_len = LL_RESERVED_SPACE(dev);
2269 	struct neighbour *neigh;
2270 	bool is_v6gw = false;
2271 
2272 	if (dev_xmit_recursion()) {
2273 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2274 		goto out_drop;
2275 	}
2276 
2277 	skb->dev = dev;
2278 	skb->tstamp = 0;
2279 
2280 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2281 		skb = skb_expand_head(skb, hh_len);
2282 		if (!skb)
2283 			return -ENOMEM;
2284 	}
2285 
2286 	rcu_read_lock_bh();
2287 	if (!nh) {
2288 		struct dst_entry *dst = skb_dst(skb);
2289 		struct rtable *rt = container_of(dst, struct rtable, dst);
2290 
2291 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2292 	} else if (nh->nh_family == AF_INET6) {
2293 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2294 		is_v6gw = true;
2295 	} else if (nh->nh_family == AF_INET) {
2296 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2297 	} else {
2298 		rcu_read_unlock_bh();
2299 		goto out_drop;
2300 	}
2301 
2302 	if (likely(!IS_ERR(neigh))) {
2303 		int ret;
2304 
2305 		sock_confirm_neigh(skb, neigh);
2306 		dev_xmit_recursion_inc();
2307 		ret = neigh_output(neigh, skb, is_v6gw);
2308 		dev_xmit_recursion_dec();
2309 		rcu_read_unlock_bh();
2310 		return ret;
2311 	}
2312 	rcu_read_unlock_bh();
2313 out_drop:
2314 	kfree_skb(skb);
2315 	return -ENETDOWN;
2316 }
2317 
2318 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2319 				   struct bpf_nh_params *nh)
2320 {
2321 	const struct iphdr *ip4h = ip_hdr(skb);
2322 	struct net *net = dev_net(dev);
2323 	int err, ret = NET_XMIT_DROP;
2324 
2325 	if (!nh) {
2326 		struct flowi4 fl4 = {
2327 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2328 			.flowi4_mark  = skb->mark,
2329 			.flowi4_tos   = RT_TOS(ip4h->tos),
2330 			.flowi4_oif   = dev->ifindex,
2331 			.flowi4_proto = ip4h->protocol,
2332 			.daddr	      = ip4h->daddr,
2333 			.saddr	      = ip4h->saddr,
2334 		};
2335 		struct rtable *rt;
2336 
2337 		rt = ip_route_output_flow(net, &fl4, NULL);
2338 		if (IS_ERR(rt))
2339 			goto out_drop;
2340 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2341 			ip_rt_put(rt);
2342 			goto out_drop;
2343 		}
2344 
2345 		skb_dst_set(skb, &rt->dst);
2346 	}
2347 
2348 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2349 	if (unlikely(net_xmit_eval(err)))
2350 		dev->stats.tx_errors++;
2351 	else
2352 		ret = NET_XMIT_SUCCESS;
2353 	goto out_xmit;
2354 out_drop:
2355 	dev->stats.tx_errors++;
2356 	kfree_skb(skb);
2357 out_xmit:
2358 	return ret;
2359 }
2360 #else
2361 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2362 				   struct bpf_nh_params *nh)
2363 {
2364 	kfree_skb(skb);
2365 	return NET_XMIT_DROP;
2366 }
2367 #endif /* CONFIG_INET */
2368 
2369 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2370 				struct bpf_nh_params *nh)
2371 {
2372 	struct ethhdr *ethh = eth_hdr(skb);
2373 
2374 	if (unlikely(skb->mac_header >= skb->network_header))
2375 		goto out;
2376 	bpf_push_mac_rcsum(skb);
2377 	if (is_multicast_ether_addr(ethh->h_dest))
2378 		goto out;
2379 
2380 	skb_pull(skb, sizeof(*ethh));
2381 	skb_unset_mac_header(skb);
2382 	skb_reset_network_header(skb);
2383 
2384 	if (skb->protocol == htons(ETH_P_IP))
2385 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2386 	else if (skb->protocol == htons(ETH_P_IPV6))
2387 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2388 out:
2389 	kfree_skb(skb);
2390 	return -ENOTSUPP;
2391 }
2392 
2393 /* Internal, non-exposed redirect flags. */
2394 enum {
2395 	BPF_F_NEIGH	= (1ULL << 1),
2396 	BPF_F_PEER	= (1ULL << 2),
2397 	BPF_F_NEXTHOP	= (1ULL << 3),
2398 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2399 };
2400 
2401 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2402 {
2403 	struct net_device *dev;
2404 	struct sk_buff *clone;
2405 	int ret;
2406 
2407 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2408 		return -EINVAL;
2409 
2410 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2411 	if (unlikely(!dev))
2412 		return -EINVAL;
2413 
2414 	clone = skb_clone(skb, GFP_ATOMIC);
2415 	if (unlikely(!clone))
2416 		return -ENOMEM;
2417 
2418 	/* For direct write, we need to keep the invariant that the skbs
2419 	 * we're dealing with need to be uncloned. Should uncloning fail
2420 	 * here, we need to free the just generated clone to unclone once
2421 	 * again.
2422 	 */
2423 	ret = bpf_try_make_head_writable(skb);
2424 	if (unlikely(ret)) {
2425 		kfree_skb(clone);
2426 		return -ENOMEM;
2427 	}
2428 
2429 	return __bpf_redirect(clone, dev, flags);
2430 }
2431 
2432 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2433 	.func           = bpf_clone_redirect,
2434 	.gpl_only       = false,
2435 	.ret_type       = RET_INTEGER,
2436 	.arg1_type      = ARG_PTR_TO_CTX,
2437 	.arg2_type      = ARG_ANYTHING,
2438 	.arg3_type      = ARG_ANYTHING,
2439 };
2440 
2441 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2442 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2443 
2444 int skb_do_redirect(struct sk_buff *skb)
2445 {
2446 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2447 	struct net *net = dev_net(skb->dev);
2448 	struct net_device *dev;
2449 	u32 flags = ri->flags;
2450 
2451 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2452 	ri->tgt_index = 0;
2453 	ri->flags = 0;
2454 	if (unlikely(!dev))
2455 		goto out_drop;
2456 	if (flags & BPF_F_PEER) {
2457 		const struct net_device_ops *ops = dev->netdev_ops;
2458 
2459 		if (unlikely(!ops->ndo_get_peer_dev ||
2460 			     !skb_at_tc_ingress(skb)))
2461 			goto out_drop;
2462 		dev = ops->ndo_get_peer_dev(dev);
2463 		if (unlikely(!dev ||
2464 			     !(dev->flags & IFF_UP) ||
2465 			     net_eq(net, dev_net(dev))))
2466 			goto out_drop;
2467 		skb->dev = dev;
2468 		return -EAGAIN;
2469 	}
2470 	return flags & BPF_F_NEIGH ?
2471 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2472 				    &ri->nh : NULL) :
2473 	       __bpf_redirect(skb, dev, flags);
2474 out_drop:
2475 	kfree_skb(skb);
2476 	return -EINVAL;
2477 }
2478 
2479 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2480 {
2481 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2482 
2483 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2484 		return TC_ACT_SHOT;
2485 
2486 	ri->flags = flags;
2487 	ri->tgt_index = ifindex;
2488 
2489 	return TC_ACT_REDIRECT;
2490 }
2491 
2492 static const struct bpf_func_proto bpf_redirect_proto = {
2493 	.func           = bpf_redirect,
2494 	.gpl_only       = false,
2495 	.ret_type       = RET_INTEGER,
2496 	.arg1_type      = ARG_ANYTHING,
2497 	.arg2_type      = ARG_ANYTHING,
2498 };
2499 
2500 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2501 {
2502 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2503 
2504 	if (unlikely(flags))
2505 		return TC_ACT_SHOT;
2506 
2507 	ri->flags = BPF_F_PEER;
2508 	ri->tgt_index = ifindex;
2509 
2510 	return TC_ACT_REDIRECT;
2511 }
2512 
2513 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2514 	.func           = bpf_redirect_peer,
2515 	.gpl_only       = false,
2516 	.ret_type       = RET_INTEGER,
2517 	.arg1_type      = ARG_ANYTHING,
2518 	.arg2_type      = ARG_ANYTHING,
2519 };
2520 
2521 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2522 	   int, plen, u64, flags)
2523 {
2524 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2525 
2526 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2527 		return TC_ACT_SHOT;
2528 
2529 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2530 	ri->tgt_index = ifindex;
2531 
2532 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2533 	if (plen)
2534 		memcpy(&ri->nh, params, sizeof(ri->nh));
2535 
2536 	return TC_ACT_REDIRECT;
2537 }
2538 
2539 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2540 	.func		= bpf_redirect_neigh,
2541 	.gpl_only	= false,
2542 	.ret_type	= RET_INTEGER,
2543 	.arg1_type	= ARG_ANYTHING,
2544 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
2545 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2546 	.arg4_type	= ARG_ANYTHING,
2547 };
2548 
2549 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2550 {
2551 	msg->apply_bytes = bytes;
2552 	return 0;
2553 }
2554 
2555 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2556 	.func           = bpf_msg_apply_bytes,
2557 	.gpl_only       = false,
2558 	.ret_type       = RET_INTEGER,
2559 	.arg1_type	= ARG_PTR_TO_CTX,
2560 	.arg2_type      = ARG_ANYTHING,
2561 };
2562 
2563 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2564 {
2565 	msg->cork_bytes = bytes;
2566 	return 0;
2567 }
2568 
2569 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2570 	.func           = bpf_msg_cork_bytes,
2571 	.gpl_only       = false,
2572 	.ret_type       = RET_INTEGER,
2573 	.arg1_type	= ARG_PTR_TO_CTX,
2574 	.arg2_type      = ARG_ANYTHING,
2575 };
2576 
2577 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2578 	   u32, end, u64, flags)
2579 {
2580 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2581 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2582 	struct scatterlist *sge;
2583 	u8 *raw, *to, *from;
2584 	struct page *page;
2585 
2586 	if (unlikely(flags || end <= start))
2587 		return -EINVAL;
2588 
2589 	/* First find the starting scatterlist element */
2590 	i = msg->sg.start;
2591 	do {
2592 		offset += len;
2593 		len = sk_msg_elem(msg, i)->length;
2594 		if (start < offset + len)
2595 			break;
2596 		sk_msg_iter_var_next(i);
2597 	} while (i != msg->sg.end);
2598 
2599 	if (unlikely(start >= offset + len))
2600 		return -EINVAL;
2601 
2602 	first_sge = i;
2603 	/* The start may point into the sg element so we need to also
2604 	 * account for the headroom.
2605 	 */
2606 	bytes_sg_total = start - offset + bytes;
2607 	if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2608 		goto out;
2609 
2610 	/* At this point we need to linearize multiple scatterlist
2611 	 * elements or a single shared page. Either way we need to
2612 	 * copy into a linear buffer exclusively owned by BPF. Then
2613 	 * place the buffer in the scatterlist and fixup the original
2614 	 * entries by removing the entries now in the linear buffer
2615 	 * and shifting the remaining entries. For now we do not try
2616 	 * to copy partial entries to avoid complexity of running out
2617 	 * of sg_entry slots. The downside is reading a single byte
2618 	 * will copy the entire sg entry.
2619 	 */
2620 	do {
2621 		copy += sk_msg_elem(msg, i)->length;
2622 		sk_msg_iter_var_next(i);
2623 		if (bytes_sg_total <= copy)
2624 			break;
2625 	} while (i != msg->sg.end);
2626 	last_sge = i;
2627 
2628 	if (unlikely(bytes_sg_total > copy))
2629 		return -EINVAL;
2630 
2631 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2632 			   get_order(copy));
2633 	if (unlikely(!page))
2634 		return -ENOMEM;
2635 
2636 	raw = page_address(page);
2637 	i = first_sge;
2638 	do {
2639 		sge = sk_msg_elem(msg, i);
2640 		from = sg_virt(sge);
2641 		len = sge->length;
2642 		to = raw + poffset;
2643 
2644 		memcpy(to, from, len);
2645 		poffset += len;
2646 		sge->length = 0;
2647 		put_page(sg_page(sge));
2648 
2649 		sk_msg_iter_var_next(i);
2650 	} while (i != last_sge);
2651 
2652 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2653 
2654 	/* To repair sg ring we need to shift entries. If we only
2655 	 * had a single entry though we can just replace it and
2656 	 * be done. Otherwise walk the ring and shift the entries.
2657 	 */
2658 	WARN_ON_ONCE(last_sge == first_sge);
2659 	shift = last_sge > first_sge ?
2660 		last_sge - first_sge - 1 :
2661 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2662 	if (!shift)
2663 		goto out;
2664 
2665 	i = first_sge;
2666 	sk_msg_iter_var_next(i);
2667 	do {
2668 		u32 move_from;
2669 
2670 		if (i + shift >= NR_MSG_FRAG_IDS)
2671 			move_from = i + shift - NR_MSG_FRAG_IDS;
2672 		else
2673 			move_from = i + shift;
2674 		if (move_from == msg->sg.end)
2675 			break;
2676 
2677 		msg->sg.data[i] = msg->sg.data[move_from];
2678 		msg->sg.data[move_from].length = 0;
2679 		msg->sg.data[move_from].page_link = 0;
2680 		msg->sg.data[move_from].offset = 0;
2681 		sk_msg_iter_var_next(i);
2682 	} while (1);
2683 
2684 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2685 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2686 		      msg->sg.end - shift;
2687 out:
2688 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2689 	msg->data_end = msg->data + bytes;
2690 	return 0;
2691 }
2692 
2693 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2694 	.func		= bpf_msg_pull_data,
2695 	.gpl_only	= false,
2696 	.ret_type	= RET_INTEGER,
2697 	.arg1_type	= ARG_PTR_TO_CTX,
2698 	.arg2_type	= ARG_ANYTHING,
2699 	.arg3_type	= ARG_ANYTHING,
2700 	.arg4_type	= ARG_ANYTHING,
2701 };
2702 
2703 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2704 	   u32, len, u64, flags)
2705 {
2706 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2707 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2708 	u8 *raw, *to, *from;
2709 	struct page *page;
2710 
2711 	if (unlikely(flags))
2712 		return -EINVAL;
2713 
2714 	/* First find the starting scatterlist element */
2715 	i = msg->sg.start;
2716 	do {
2717 		offset += l;
2718 		l = sk_msg_elem(msg, i)->length;
2719 
2720 		if (start < offset + l)
2721 			break;
2722 		sk_msg_iter_var_next(i);
2723 	} while (i != msg->sg.end);
2724 
2725 	if (start >= offset + l)
2726 		return -EINVAL;
2727 
2728 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2729 
2730 	/* If no space available will fallback to copy, we need at
2731 	 * least one scatterlist elem available to push data into
2732 	 * when start aligns to the beginning of an element or two
2733 	 * when it falls inside an element. We handle the start equals
2734 	 * offset case because its the common case for inserting a
2735 	 * header.
2736 	 */
2737 	if (!space || (space == 1 && start != offset))
2738 		copy = msg->sg.data[i].length;
2739 
2740 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2741 			   get_order(copy + len));
2742 	if (unlikely(!page))
2743 		return -ENOMEM;
2744 
2745 	if (copy) {
2746 		int front, back;
2747 
2748 		raw = page_address(page);
2749 
2750 		psge = sk_msg_elem(msg, i);
2751 		front = start - offset;
2752 		back = psge->length - front;
2753 		from = sg_virt(psge);
2754 
2755 		if (front)
2756 			memcpy(raw, from, front);
2757 
2758 		if (back) {
2759 			from += front;
2760 			to = raw + front + len;
2761 
2762 			memcpy(to, from, back);
2763 		}
2764 
2765 		put_page(sg_page(psge));
2766 	} else if (start - offset) {
2767 		psge = sk_msg_elem(msg, i);
2768 		rsge = sk_msg_elem_cpy(msg, i);
2769 
2770 		psge->length = start - offset;
2771 		rsge.length -= psge->length;
2772 		rsge.offset += start;
2773 
2774 		sk_msg_iter_var_next(i);
2775 		sg_unmark_end(psge);
2776 		sg_unmark_end(&rsge);
2777 		sk_msg_iter_next(msg, end);
2778 	}
2779 
2780 	/* Slot(s) to place newly allocated data */
2781 	new = i;
2782 
2783 	/* Shift one or two slots as needed */
2784 	if (!copy) {
2785 		sge = sk_msg_elem_cpy(msg, i);
2786 
2787 		sk_msg_iter_var_next(i);
2788 		sg_unmark_end(&sge);
2789 		sk_msg_iter_next(msg, end);
2790 
2791 		nsge = sk_msg_elem_cpy(msg, i);
2792 		if (rsge.length) {
2793 			sk_msg_iter_var_next(i);
2794 			nnsge = sk_msg_elem_cpy(msg, i);
2795 		}
2796 
2797 		while (i != msg->sg.end) {
2798 			msg->sg.data[i] = sge;
2799 			sge = nsge;
2800 			sk_msg_iter_var_next(i);
2801 			if (rsge.length) {
2802 				nsge = nnsge;
2803 				nnsge = sk_msg_elem_cpy(msg, i);
2804 			} else {
2805 				nsge = sk_msg_elem_cpy(msg, i);
2806 			}
2807 		}
2808 	}
2809 
2810 	/* Place newly allocated data buffer */
2811 	sk_mem_charge(msg->sk, len);
2812 	msg->sg.size += len;
2813 	__clear_bit(new, &msg->sg.copy);
2814 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2815 	if (rsge.length) {
2816 		get_page(sg_page(&rsge));
2817 		sk_msg_iter_var_next(new);
2818 		msg->sg.data[new] = rsge;
2819 	}
2820 
2821 	sk_msg_compute_data_pointers(msg);
2822 	return 0;
2823 }
2824 
2825 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2826 	.func		= bpf_msg_push_data,
2827 	.gpl_only	= false,
2828 	.ret_type	= RET_INTEGER,
2829 	.arg1_type	= ARG_PTR_TO_CTX,
2830 	.arg2_type	= ARG_ANYTHING,
2831 	.arg3_type	= ARG_ANYTHING,
2832 	.arg4_type	= ARG_ANYTHING,
2833 };
2834 
2835 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2836 {
2837 	int prev;
2838 
2839 	do {
2840 		prev = i;
2841 		sk_msg_iter_var_next(i);
2842 		msg->sg.data[prev] = msg->sg.data[i];
2843 	} while (i != msg->sg.end);
2844 
2845 	sk_msg_iter_prev(msg, end);
2846 }
2847 
2848 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2849 {
2850 	struct scatterlist tmp, sge;
2851 
2852 	sk_msg_iter_next(msg, end);
2853 	sge = sk_msg_elem_cpy(msg, i);
2854 	sk_msg_iter_var_next(i);
2855 	tmp = sk_msg_elem_cpy(msg, i);
2856 
2857 	while (i != msg->sg.end) {
2858 		msg->sg.data[i] = sge;
2859 		sk_msg_iter_var_next(i);
2860 		sge = tmp;
2861 		tmp = sk_msg_elem_cpy(msg, i);
2862 	}
2863 }
2864 
2865 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2866 	   u32, len, u64, flags)
2867 {
2868 	u32 i = 0, l = 0, space, offset = 0;
2869 	u64 last = start + len;
2870 	int pop;
2871 
2872 	if (unlikely(flags))
2873 		return -EINVAL;
2874 
2875 	/* First find the starting scatterlist element */
2876 	i = msg->sg.start;
2877 	do {
2878 		offset += l;
2879 		l = sk_msg_elem(msg, i)->length;
2880 
2881 		if (start < offset + l)
2882 			break;
2883 		sk_msg_iter_var_next(i);
2884 	} while (i != msg->sg.end);
2885 
2886 	/* Bounds checks: start and pop must be inside message */
2887 	if (start >= offset + l || last >= msg->sg.size)
2888 		return -EINVAL;
2889 
2890 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2891 
2892 	pop = len;
2893 	/* --------------| offset
2894 	 * -| start      |-------- len -------|
2895 	 *
2896 	 *  |----- a ----|-------- pop -------|----- b ----|
2897 	 *  |______________________________________________| length
2898 	 *
2899 	 *
2900 	 * a:   region at front of scatter element to save
2901 	 * b:   region at back of scatter element to save when length > A + pop
2902 	 * pop: region to pop from element, same as input 'pop' here will be
2903 	 *      decremented below per iteration.
2904 	 *
2905 	 * Two top-level cases to handle when start != offset, first B is non
2906 	 * zero and second B is zero corresponding to when a pop includes more
2907 	 * than one element.
2908 	 *
2909 	 * Then if B is non-zero AND there is no space allocate space and
2910 	 * compact A, B regions into page. If there is space shift ring to
2911 	 * the rigth free'ing the next element in ring to place B, leaving
2912 	 * A untouched except to reduce length.
2913 	 */
2914 	if (start != offset) {
2915 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2916 		int a = start;
2917 		int b = sge->length - pop - a;
2918 
2919 		sk_msg_iter_var_next(i);
2920 
2921 		if (pop < sge->length - a) {
2922 			if (space) {
2923 				sge->length = a;
2924 				sk_msg_shift_right(msg, i);
2925 				nsge = sk_msg_elem(msg, i);
2926 				get_page(sg_page(sge));
2927 				sg_set_page(nsge,
2928 					    sg_page(sge),
2929 					    b, sge->offset + pop + a);
2930 			} else {
2931 				struct page *page, *orig;
2932 				u8 *to, *from;
2933 
2934 				page = alloc_pages(__GFP_NOWARN |
2935 						   __GFP_COMP   | GFP_ATOMIC,
2936 						   get_order(a + b));
2937 				if (unlikely(!page))
2938 					return -ENOMEM;
2939 
2940 				sge->length = a;
2941 				orig = sg_page(sge);
2942 				from = sg_virt(sge);
2943 				to = page_address(page);
2944 				memcpy(to, from, a);
2945 				memcpy(to + a, from + a + pop, b);
2946 				sg_set_page(sge, page, a + b, 0);
2947 				put_page(orig);
2948 			}
2949 			pop = 0;
2950 		} else if (pop >= sge->length - a) {
2951 			pop -= (sge->length - a);
2952 			sge->length = a;
2953 		}
2954 	}
2955 
2956 	/* From above the current layout _must_ be as follows,
2957 	 *
2958 	 * -| offset
2959 	 * -| start
2960 	 *
2961 	 *  |---- pop ---|---------------- b ------------|
2962 	 *  |____________________________________________| length
2963 	 *
2964 	 * Offset and start of the current msg elem are equal because in the
2965 	 * previous case we handled offset != start and either consumed the
2966 	 * entire element and advanced to the next element OR pop == 0.
2967 	 *
2968 	 * Two cases to handle here are first pop is less than the length
2969 	 * leaving some remainder b above. Simply adjust the element's layout
2970 	 * in this case. Or pop >= length of the element so that b = 0. In this
2971 	 * case advance to next element decrementing pop.
2972 	 */
2973 	while (pop) {
2974 		struct scatterlist *sge = sk_msg_elem(msg, i);
2975 
2976 		if (pop < sge->length) {
2977 			sge->length -= pop;
2978 			sge->offset += pop;
2979 			pop = 0;
2980 		} else {
2981 			pop -= sge->length;
2982 			sk_msg_shift_left(msg, i);
2983 		}
2984 		sk_msg_iter_var_next(i);
2985 	}
2986 
2987 	sk_mem_uncharge(msg->sk, len - pop);
2988 	msg->sg.size -= (len - pop);
2989 	sk_msg_compute_data_pointers(msg);
2990 	return 0;
2991 }
2992 
2993 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2994 	.func		= bpf_msg_pop_data,
2995 	.gpl_only	= false,
2996 	.ret_type	= RET_INTEGER,
2997 	.arg1_type	= ARG_PTR_TO_CTX,
2998 	.arg2_type	= ARG_ANYTHING,
2999 	.arg3_type	= ARG_ANYTHING,
3000 	.arg4_type	= ARG_ANYTHING,
3001 };
3002 
3003 #ifdef CONFIG_CGROUP_NET_CLASSID
3004 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3005 {
3006 	return __task_get_classid(current);
3007 }
3008 
3009 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3010 	.func		= bpf_get_cgroup_classid_curr,
3011 	.gpl_only	= false,
3012 	.ret_type	= RET_INTEGER,
3013 };
3014 
3015 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3016 {
3017 	struct sock *sk = skb_to_full_sk(skb);
3018 
3019 	if (!sk || !sk_fullsock(sk))
3020 		return 0;
3021 
3022 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3023 }
3024 
3025 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3026 	.func		= bpf_skb_cgroup_classid,
3027 	.gpl_only	= false,
3028 	.ret_type	= RET_INTEGER,
3029 	.arg1_type	= ARG_PTR_TO_CTX,
3030 };
3031 #endif
3032 
3033 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3034 {
3035 	return task_get_classid(skb);
3036 }
3037 
3038 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3039 	.func           = bpf_get_cgroup_classid,
3040 	.gpl_only       = false,
3041 	.ret_type       = RET_INTEGER,
3042 	.arg1_type      = ARG_PTR_TO_CTX,
3043 };
3044 
3045 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3046 {
3047 	return dst_tclassid(skb);
3048 }
3049 
3050 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3051 	.func           = bpf_get_route_realm,
3052 	.gpl_only       = false,
3053 	.ret_type       = RET_INTEGER,
3054 	.arg1_type      = ARG_PTR_TO_CTX,
3055 };
3056 
3057 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3058 {
3059 	/* If skb_clear_hash() was called due to mangling, we can
3060 	 * trigger SW recalculation here. Later access to hash
3061 	 * can then use the inline skb->hash via context directly
3062 	 * instead of calling this helper again.
3063 	 */
3064 	return skb_get_hash(skb);
3065 }
3066 
3067 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3068 	.func		= bpf_get_hash_recalc,
3069 	.gpl_only	= false,
3070 	.ret_type	= RET_INTEGER,
3071 	.arg1_type	= ARG_PTR_TO_CTX,
3072 };
3073 
3074 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3075 {
3076 	/* After all direct packet write, this can be used once for
3077 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3078 	 */
3079 	skb_clear_hash(skb);
3080 	return 0;
3081 }
3082 
3083 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3084 	.func		= bpf_set_hash_invalid,
3085 	.gpl_only	= false,
3086 	.ret_type	= RET_INTEGER,
3087 	.arg1_type	= ARG_PTR_TO_CTX,
3088 };
3089 
3090 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3091 {
3092 	/* Set user specified hash as L4(+), so that it gets returned
3093 	 * on skb_get_hash() call unless BPF prog later on triggers a
3094 	 * skb_clear_hash().
3095 	 */
3096 	__skb_set_sw_hash(skb, hash, true);
3097 	return 0;
3098 }
3099 
3100 static const struct bpf_func_proto bpf_set_hash_proto = {
3101 	.func		= bpf_set_hash,
3102 	.gpl_only	= false,
3103 	.ret_type	= RET_INTEGER,
3104 	.arg1_type	= ARG_PTR_TO_CTX,
3105 	.arg2_type	= ARG_ANYTHING,
3106 };
3107 
3108 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3109 	   u16, vlan_tci)
3110 {
3111 	int ret;
3112 
3113 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3114 		     vlan_proto != htons(ETH_P_8021AD)))
3115 		vlan_proto = htons(ETH_P_8021Q);
3116 
3117 	bpf_push_mac_rcsum(skb);
3118 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3119 	bpf_pull_mac_rcsum(skb);
3120 
3121 	bpf_compute_data_pointers(skb);
3122 	return ret;
3123 }
3124 
3125 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3126 	.func           = bpf_skb_vlan_push,
3127 	.gpl_only       = false,
3128 	.ret_type       = RET_INTEGER,
3129 	.arg1_type      = ARG_PTR_TO_CTX,
3130 	.arg2_type      = ARG_ANYTHING,
3131 	.arg3_type      = ARG_ANYTHING,
3132 };
3133 
3134 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3135 {
3136 	int ret;
3137 
3138 	bpf_push_mac_rcsum(skb);
3139 	ret = skb_vlan_pop(skb);
3140 	bpf_pull_mac_rcsum(skb);
3141 
3142 	bpf_compute_data_pointers(skb);
3143 	return ret;
3144 }
3145 
3146 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3147 	.func           = bpf_skb_vlan_pop,
3148 	.gpl_only       = false,
3149 	.ret_type       = RET_INTEGER,
3150 	.arg1_type      = ARG_PTR_TO_CTX,
3151 };
3152 
3153 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3154 {
3155 	/* Caller already did skb_cow() with len as headroom,
3156 	 * so no need to do it here.
3157 	 */
3158 	skb_push(skb, len);
3159 	memmove(skb->data, skb->data + len, off);
3160 	memset(skb->data + off, 0, len);
3161 
3162 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3163 	 * needed here as it does not change the skb->csum
3164 	 * result for checksum complete when summing over
3165 	 * zeroed blocks.
3166 	 */
3167 	return 0;
3168 }
3169 
3170 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3171 {
3172 	/* skb_ensure_writable() is not needed here, as we're
3173 	 * already working on an uncloned skb.
3174 	 */
3175 	if (unlikely(!pskb_may_pull(skb, off + len)))
3176 		return -ENOMEM;
3177 
3178 	skb_postpull_rcsum(skb, skb->data + off, len);
3179 	memmove(skb->data + len, skb->data, off);
3180 	__skb_pull(skb, len);
3181 
3182 	return 0;
3183 }
3184 
3185 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3186 {
3187 	bool trans_same = skb->transport_header == skb->network_header;
3188 	int ret;
3189 
3190 	/* There's no need for __skb_push()/__skb_pull() pair to
3191 	 * get to the start of the mac header as we're guaranteed
3192 	 * to always start from here under eBPF.
3193 	 */
3194 	ret = bpf_skb_generic_push(skb, off, len);
3195 	if (likely(!ret)) {
3196 		skb->mac_header -= len;
3197 		skb->network_header -= len;
3198 		if (trans_same)
3199 			skb->transport_header = skb->network_header;
3200 	}
3201 
3202 	return ret;
3203 }
3204 
3205 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3206 {
3207 	bool trans_same = skb->transport_header == skb->network_header;
3208 	int ret;
3209 
3210 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3211 	ret = bpf_skb_generic_pop(skb, off, len);
3212 	if (likely(!ret)) {
3213 		skb->mac_header += len;
3214 		skb->network_header += len;
3215 		if (trans_same)
3216 			skb->transport_header = skb->network_header;
3217 	}
3218 
3219 	return ret;
3220 }
3221 
3222 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3223 {
3224 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3225 	u32 off = skb_mac_header_len(skb);
3226 	int ret;
3227 
3228 	ret = skb_cow(skb, len_diff);
3229 	if (unlikely(ret < 0))
3230 		return ret;
3231 
3232 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3233 	if (unlikely(ret < 0))
3234 		return ret;
3235 
3236 	if (skb_is_gso(skb)) {
3237 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3238 
3239 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3240 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3241 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3242 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3243 		}
3244 	}
3245 
3246 	skb->protocol = htons(ETH_P_IPV6);
3247 	skb_clear_hash(skb);
3248 
3249 	return 0;
3250 }
3251 
3252 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3253 {
3254 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3255 	u32 off = skb_mac_header_len(skb);
3256 	int ret;
3257 
3258 	ret = skb_unclone(skb, GFP_ATOMIC);
3259 	if (unlikely(ret < 0))
3260 		return ret;
3261 
3262 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3263 	if (unlikely(ret < 0))
3264 		return ret;
3265 
3266 	if (skb_is_gso(skb)) {
3267 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3268 
3269 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3270 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3271 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3272 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3273 		}
3274 	}
3275 
3276 	skb->protocol = htons(ETH_P_IP);
3277 	skb_clear_hash(skb);
3278 
3279 	return 0;
3280 }
3281 
3282 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3283 {
3284 	__be16 from_proto = skb->protocol;
3285 
3286 	if (from_proto == htons(ETH_P_IP) &&
3287 	      to_proto == htons(ETH_P_IPV6))
3288 		return bpf_skb_proto_4_to_6(skb);
3289 
3290 	if (from_proto == htons(ETH_P_IPV6) &&
3291 	      to_proto == htons(ETH_P_IP))
3292 		return bpf_skb_proto_6_to_4(skb);
3293 
3294 	return -ENOTSUPP;
3295 }
3296 
3297 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3298 	   u64, flags)
3299 {
3300 	int ret;
3301 
3302 	if (unlikely(flags))
3303 		return -EINVAL;
3304 
3305 	/* General idea is that this helper does the basic groundwork
3306 	 * needed for changing the protocol, and eBPF program fills the
3307 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3308 	 * and other helpers, rather than passing a raw buffer here.
3309 	 *
3310 	 * The rationale is to keep this minimal and without a need to
3311 	 * deal with raw packet data. F.e. even if we would pass buffers
3312 	 * here, the program still needs to call the bpf_lX_csum_replace()
3313 	 * helpers anyway. Plus, this way we keep also separation of
3314 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3315 	 * care of stores.
3316 	 *
3317 	 * Currently, additional options and extension header space are
3318 	 * not supported, but flags register is reserved so we can adapt
3319 	 * that. For offloads, we mark packet as dodgy, so that headers
3320 	 * need to be verified first.
3321 	 */
3322 	ret = bpf_skb_proto_xlat(skb, proto);
3323 	bpf_compute_data_pointers(skb);
3324 	return ret;
3325 }
3326 
3327 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3328 	.func		= bpf_skb_change_proto,
3329 	.gpl_only	= false,
3330 	.ret_type	= RET_INTEGER,
3331 	.arg1_type	= ARG_PTR_TO_CTX,
3332 	.arg2_type	= ARG_ANYTHING,
3333 	.arg3_type	= ARG_ANYTHING,
3334 };
3335 
3336 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3337 {
3338 	/* We only allow a restricted subset to be changed for now. */
3339 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3340 		     !skb_pkt_type_ok(pkt_type)))
3341 		return -EINVAL;
3342 
3343 	skb->pkt_type = pkt_type;
3344 	return 0;
3345 }
3346 
3347 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3348 	.func		= bpf_skb_change_type,
3349 	.gpl_only	= false,
3350 	.ret_type	= RET_INTEGER,
3351 	.arg1_type	= ARG_PTR_TO_CTX,
3352 	.arg2_type	= ARG_ANYTHING,
3353 };
3354 
3355 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3356 {
3357 	switch (skb->protocol) {
3358 	case htons(ETH_P_IP):
3359 		return sizeof(struct iphdr);
3360 	case htons(ETH_P_IPV6):
3361 		return sizeof(struct ipv6hdr);
3362 	default:
3363 		return ~0U;
3364 	}
3365 }
3366 
3367 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3368 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3369 
3370 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3371 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3372 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3373 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3374 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3375 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3376 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3377 
3378 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3379 			    u64 flags)
3380 {
3381 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3382 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3383 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3384 	unsigned int gso_type = SKB_GSO_DODGY;
3385 	int ret;
3386 
3387 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3388 		/* udp gso_size delineates datagrams, only allow if fixed */
3389 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3390 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3391 			return -ENOTSUPP;
3392 	}
3393 
3394 	ret = skb_cow_head(skb, len_diff);
3395 	if (unlikely(ret < 0))
3396 		return ret;
3397 
3398 	if (encap) {
3399 		if (skb->protocol != htons(ETH_P_IP) &&
3400 		    skb->protocol != htons(ETH_P_IPV6))
3401 			return -ENOTSUPP;
3402 
3403 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3404 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3405 			return -EINVAL;
3406 
3407 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3408 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3409 			return -EINVAL;
3410 
3411 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3412 		    inner_mac_len < ETH_HLEN)
3413 			return -EINVAL;
3414 
3415 		if (skb->encapsulation)
3416 			return -EALREADY;
3417 
3418 		mac_len = skb->network_header - skb->mac_header;
3419 		inner_net = skb->network_header;
3420 		if (inner_mac_len > len_diff)
3421 			return -EINVAL;
3422 		inner_trans = skb->transport_header;
3423 	}
3424 
3425 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3426 	if (unlikely(ret < 0))
3427 		return ret;
3428 
3429 	if (encap) {
3430 		skb->inner_mac_header = inner_net - inner_mac_len;
3431 		skb->inner_network_header = inner_net;
3432 		skb->inner_transport_header = inner_trans;
3433 
3434 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3435 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3436 		else
3437 			skb_set_inner_protocol(skb, skb->protocol);
3438 
3439 		skb->encapsulation = 1;
3440 		skb_set_network_header(skb, mac_len);
3441 
3442 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3443 			gso_type |= SKB_GSO_UDP_TUNNEL;
3444 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3445 			gso_type |= SKB_GSO_GRE;
3446 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3447 			gso_type |= SKB_GSO_IPXIP6;
3448 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3449 			gso_type |= SKB_GSO_IPXIP4;
3450 
3451 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3452 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3453 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3454 					sizeof(struct ipv6hdr) :
3455 					sizeof(struct iphdr);
3456 
3457 			skb_set_transport_header(skb, mac_len + nh_len);
3458 		}
3459 
3460 		/* Match skb->protocol to new outer l3 protocol */
3461 		if (skb->protocol == htons(ETH_P_IP) &&
3462 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3463 			skb->protocol = htons(ETH_P_IPV6);
3464 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3465 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3466 			skb->protocol = htons(ETH_P_IP);
3467 	}
3468 
3469 	if (skb_is_gso(skb)) {
3470 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3471 
3472 		/* Due to header grow, MSS needs to be downgraded. */
3473 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3474 			skb_decrease_gso_size(shinfo, len_diff);
3475 
3476 		/* Header must be checked, and gso_segs recomputed. */
3477 		shinfo->gso_type |= gso_type;
3478 		shinfo->gso_segs = 0;
3479 	}
3480 
3481 	return 0;
3482 }
3483 
3484 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3485 			      u64 flags)
3486 {
3487 	int ret;
3488 
3489 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3490 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3491 		return -EINVAL;
3492 
3493 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3494 		/* udp gso_size delineates datagrams, only allow if fixed */
3495 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3496 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3497 			return -ENOTSUPP;
3498 	}
3499 
3500 	ret = skb_unclone(skb, GFP_ATOMIC);
3501 	if (unlikely(ret < 0))
3502 		return ret;
3503 
3504 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3505 	if (unlikely(ret < 0))
3506 		return ret;
3507 
3508 	if (skb_is_gso(skb)) {
3509 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3510 
3511 		/* Due to header shrink, MSS can be upgraded. */
3512 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3513 			skb_increase_gso_size(shinfo, len_diff);
3514 
3515 		/* Header must be checked, and gso_segs recomputed. */
3516 		shinfo->gso_type |= SKB_GSO_DODGY;
3517 		shinfo->gso_segs = 0;
3518 	}
3519 
3520 	return 0;
3521 }
3522 
3523 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3524 
3525 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3526 	   u32, mode, u64, flags)
3527 {
3528 	u32 len_diff_abs = abs(len_diff);
3529 	bool shrink = len_diff < 0;
3530 	int ret = 0;
3531 
3532 	if (unlikely(flags || mode))
3533 		return -EINVAL;
3534 	if (unlikely(len_diff_abs > 0xfffU))
3535 		return -EFAULT;
3536 
3537 	if (!shrink) {
3538 		ret = skb_cow(skb, len_diff);
3539 		if (unlikely(ret < 0))
3540 			return ret;
3541 		__skb_push(skb, len_diff_abs);
3542 		memset(skb->data, 0, len_diff_abs);
3543 	} else {
3544 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3545 			return -ENOMEM;
3546 		__skb_pull(skb, len_diff_abs);
3547 	}
3548 	if (tls_sw_has_ctx_rx(skb->sk)) {
3549 		struct strp_msg *rxm = strp_msg(skb);
3550 
3551 		rxm->full_len += len_diff;
3552 	}
3553 	return ret;
3554 }
3555 
3556 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3557 	.func		= sk_skb_adjust_room,
3558 	.gpl_only	= false,
3559 	.ret_type	= RET_INTEGER,
3560 	.arg1_type	= ARG_PTR_TO_CTX,
3561 	.arg2_type	= ARG_ANYTHING,
3562 	.arg3_type	= ARG_ANYTHING,
3563 	.arg4_type	= ARG_ANYTHING,
3564 };
3565 
3566 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3567 	   u32, mode, u64, flags)
3568 {
3569 	u32 len_cur, len_diff_abs = abs(len_diff);
3570 	u32 len_min = bpf_skb_net_base_len(skb);
3571 	u32 len_max = BPF_SKB_MAX_LEN;
3572 	__be16 proto = skb->protocol;
3573 	bool shrink = len_diff < 0;
3574 	u32 off;
3575 	int ret;
3576 
3577 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3578 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3579 		return -EINVAL;
3580 	if (unlikely(len_diff_abs > 0xfffU))
3581 		return -EFAULT;
3582 	if (unlikely(proto != htons(ETH_P_IP) &&
3583 		     proto != htons(ETH_P_IPV6)))
3584 		return -ENOTSUPP;
3585 
3586 	off = skb_mac_header_len(skb);
3587 	switch (mode) {
3588 	case BPF_ADJ_ROOM_NET:
3589 		off += bpf_skb_net_base_len(skb);
3590 		break;
3591 	case BPF_ADJ_ROOM_MAC:
3592 		break;
3593 	default:
3594 		return -ENOTSUPP;
3595 	}
3596 
3597 	len_cur = skb->len - skb_network_offset(skb);
3598 	if ((shrink && (len_diff_abs >= len_cur ||
3599 			len_cur - len_diff_abs < len_min)) ||
3600 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3601 			 !skb_is_gso(skb))))
3602 		return -ENOTSUPP;
3603 
3604 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3605 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3606 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3607 		__skb_reset_checksum_unnecessary(skb);
3608 
3609 	bpf_compute_data_pointers(skb);
3610 	return ret;
3611 }
3612 
3613 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3614 	.func		= bpf_skb_adjust_room,
3615 	.gpl_only	= false,
3616 	.ret_type	= RET_INTEGER,
3617 	.arg1_type	= ARG_PTR_TO_CTX,
3618 	.arg2_type	= ARG_ANYTHING,
3619 	.arg3_type	= ARG_ANYTHING,
3620 	.arg4_type	= ARG_ANYTHING,
3621 };
3622 
3623 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3624 {
3625 	u32 min_len = skb_network_offset(skb);
3626 
3627 	if (skb_transport_header_was_set(skb))
3628 		min_len = skb_transport_offset(skb);
3629 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3630 		min_len = skb_checksum_start_offset(skb) +
3631 			  skb->csum_offset + sizeof(__sum16);
3632 	return min_len;
3633 }
3634 
3635 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3636 {
3637 	unsigned int old_len = skb->len;
3638 	int ret;
3639 
3640 	ret = __skb_grow_rcsum(skb, new_len);
3641 	if (!ret)
3642 		memset(skb->data + old_len, 0, new_len - old_len);
3643 	return ret;
3644 }
3645 
3646 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3647 {
3648 	return __skb_trim_rcsum(skb, new_len);
3649 }
3650 
3651 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3652 					u64 flags)
3653 {
3654 	u32 max_len = BPF_SKB_MAX_LEN;
3655 	u32 min_len = __bpf_skb_min_len(skb);
3656 	int ret;
3657 
3658 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3659 		return -EINVAL;
3660 	if (skb->encapsulation)
3661 		return -ENOTSUPP;
3662 
3663 	/* The basic idea of this helper is that it's performing the
3664 	 * needed work to either grow or trim an skb, and eBPF program
3665 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3666 	 * bpf_lX_csum_replace() and others rather than passing a raw
3667 	 * buffer here. This one is a slow path helper and intended
3668 	 * for replies with control messages.
3669 	 *
3670 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3671 	 * minimal and without protocol specifics so that we are able
3672 	 * to separate concerns as in bpf_skb_store_bytes() should only
3673 	 * be the one responsible for writing buffers.
3674 	 *
3675 	 * It's really expected to be a slow path operation here for
3676 	 * control message replies, so we're implicitly linearizing,
3677 	 * uncloning and drop offloads from the skb by this.
3678 	 */
3679 	ret = __bpf_try_make_writable(skb, skb->len);
3680 	if (!ret) {
3681 		if (new_len > skb->len)
3682 			ret = bpf_skb_grow_rcsum(skb, new_len);
3683 		else if (new_len < skb->len)
3684 			ret = bpf_skb_trim_rcsum(skb, new_len);
3685 		if (!ret && skb_is_gso(skb))
3686 			skb_gso_reset(skb);
3687 	}
3688 	return ret;
3689 }
3690 
3691 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3692 	   u64, flags)
3693 {
3694 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3695 
3696 	bpf_compute_data_pointers(skb);
3697 	return ret;
3698 }
3699 
3700 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3701 	.func		= bpf_skb_change_tail,
3702 	.gpl_only	= false,
3703 	.ret_type	= RET_INTEGER,
3704 	.arg1_type	= ARG_PTR_TO_CTX,
3705 	.arg2_type	= ARG_ANYTHING,
3706 	.arg3_type	= ARG_ANYTHING,
3707 };
3708 
3709 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3710 	   u64, flags)
3711 {
3712 	return __bpf_skb_change_tail(skb, new_len, flags);
3713 }
3714 
3715 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3716 	.func		= sk_skb_change_tail,
3717 	.gpl_only	= false,
3718 	.ret_type	= RET_INTEGER,
3719 	.arg1_type	= ARG_PTR_TO_CTX,
3720 	.arg2_type	= ARG_ANYTHING,
3721 	.arg3_type	= ARG_ANYTHING,
3722 };
3723 
3724 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3725 					u64 flags)
3726 {
3727 	u32 max_len = BPF_SKB_MAX_LEN;
3728 	u32 new_len = skb->len + head_room;
3729 	int ret;
3730 
3731 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3732 		     new_len < skb->len))
3733 		return -EINVAL;
3734 
3735 	ret = skb_cow(skb, head_room);
3736 	if (likely(!ret)) {
3737 		/* Idea for this helper is that we currently only
3738 		 * allow to expand on mac header. This means that
3739 		 * skb->protocol network header, etc, stay as is.
3740 		 * Compared to bpf_skb_change_tail(), we're more
3741 		 * flexible due to not needing to linearize or
3742 		 * reset GSO. Intention for this helper is to be
3743 		 * used by an L3 skb that needs to push mac header
3744 		 * for redirection into L2 device.
3745 		 */
3746 		__skb_push(skb, head_room);
3747 		memset(skb->data, 0, head_room);
3748 		skb_reset_mac_header(skb);
3749 		skb_reset_mac_len(skb);
3750 	}
3751 
3752 	return ret;
3753 }
3754 
3755 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3756 	   u64, flags)
3757 {
3758 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3759 
3760 	bpf_compute_data_pointers(skb);
3761 	return ret;
3762 }
3763 
3764 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3765 	.func		= bpf_skb_change_head,
3766 	.gpl_only	= false,
3767 	.ret_type	= RET_INTEGER,
3768 	.arg1_type	= ARG_PTR_TO_CTX,
3769 	.arg2_type	= ARG_ANYTHING,
3770 	.arg3_type	= ARG_ANYTHING,
3771 };
3772 
3773 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3774 	   u64, flags)
3775 {
3776 	return __bpf_skb_change_head(skb, head_room, flags);
3777 }
3778 
3779 static const struct bpf_func_proto sk_skb_change_head_proto = {
3780 	.func		= sk_skb_change_head,
3781 	.gpl_only	= false,
3782 	.ret_type	= RET_INTEGER,
3783 	.arg1_type	= ARG_PTR_TO_CTX,
3784 	.arg2_type	= ARG_ANYTHING,
3785 	.arg3_type	= ARG_ANYTHING,
3786 };
3787 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3788 {
3789 	return xdp_data_meta_unsupported(xdp) ? 0 :
3790 	       xdp->data - xdp->data_meta;
3791 }
3792 
3793 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3794 {
3795 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3796 	unsigned long metalen = xdp_get_metalen(xdp);
3797 	void *data_start = xdp_frame_end + metalen;
3798 	void *data = xdp->data + offset;
3799 
3800 	if (unlikely(data < data_start ||
3801 		     data > xdp->data_end - ETH_HLEN))
3802 		return -EINVAL;
3803 
3804 	if (metalen)
3805 		memmove(xdp->data_meta + offset,
3806 			xdp->data_meta, metalen);
3807 	xdp->data_meta += offset;
3808 	xdp->data = data;
3809 
3810 	return 0;
3811 }
3812 
3813 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3814 	.func		= bpf_xdp_adjust_head,
3815 	.gpl_only	= false,
3816 	.ret_type	= RET_INTEGER,
3817 	.arg1_type	= ARG_PTR_TO_CTX,
3818 	.arg2_type	= ARG_ANYTHING,
3819 };
3820 
3821 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3822 {
3823 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3824 	void *data_end = xdp->data_end + offset;
3825 
3826 	/* Notice that xdp_data_hard_end have reserved some tailroom */
3827 	if (unlikely(data_end > data_hard_end))
3828 		return -EINVAL;
3829 
3830 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
3831 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3832 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3833 		return -EINVAL;
3834 	}
3835 
3836 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3837 		return -EINVAL;
3838 
3839 	/* Clear memory area on grow, can contain uninit kernel memory */
3840 	if (offset > 0)
3841 		memset(xdp->data_end, 0, offset);
3842 
3843 	xdp->data_end = data_end;
3844 
3845 	return 0;
3846 }
3847 
3848 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3849 	.func		= bpf_xdp_adjust_tail,
3850 	.gpl_only	= false,
3851 	.ret_type	= RET_INTEGER,
3852 	.arg1_type	= ARG_PTR_TO_CTX,
3853 	.arg2_type	= ARG_ANYTHING,
3854 };
3855 
3856 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3857 {
3858 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3859 	void *meta = xdp->data_meta + offset;
3860 	unsigned long metalen = xdp->data - meta;
3861 
3862 	if (xdp_data_meta_unsupported(xdp))
3863 		return -ENOTSUPP;
3864 	if (unlikely(meta < xdp_frame_end ||
3865 		     meta > xdp->data))
3866 		return -EINVAL;
3867 	if (unlikely(xdp_metalen_invalid(metalen)))
3868 		return -EACCES;
3869 
3870 	xdp->data_meta = meta;
3871 
3872 	return 0;
3873 }
3874 
3875 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3876 	.func		= bpf_xdp_adjust_meta,
3877 	.gpl_only	= false,
3878 	.ret_type	= RET_INTEGER,
3879 	.arg1_type	= ARG_PTR_TO_CTX,
3880 	.arg2_type	= ARG_ANYTHING,
3881 };
3882 
3883 /* XDP_REDIRECT works by a three-step process, implemented in the functions
3884  * below:
3885  *
3886  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
3887  *    of the redirect and store it (along with some other metadata) in a per-CPU
3888  *    struct bpf_redirect_info.
3889  *
3890  * 2. When the program returns the XDP_REDIRECT return code, the driver will
3891  *    call xdp_do_redirect() which will use the information in struct
3892  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
3893  *    bulk queue structure.
3894  *
3895  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
3896  *    which will flush all the different bulk queues, thus completing the
3897  *    redirect.
3898  *
3899  * Pointers to the map entries will be kept around for this whole sequence of
3900  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
3901  * the core code; instead, the RCU protection relies on everything happening
3902  * inside a single NAPI poll sequence, which means it's between a pair of calls
3903  * to local_bh_disable()/local_bh_enable().
3904  *
3905  * The map entries are marked as __rcu and the map code makes sure to
3906  * dereference those pointers with rcu_dereference_check() in a way that works
3907  * for both sections that to hold an rcu_read_lock() and sections that are
3908  * called from NAPI without a separate rcu_read_lock(). The code below does not
3909  * use RCU annotations, but relies on those in the map code.
3910  */
3911 void xdp_do_flush(void)
3912 {
3913 	__dev_flush();
3914 	__cpu_map_flush();
3915 	__xsk_map_flush();
3916 }
3917 EXPORT_SYMBOL_GPL(xdp_do_flush);
3918 
3919 void bpf_clear_redirect_map(struct bpf_map *map)
3920 {
3921 	struct bpf_redirect_info *ri;
3922 	int cpu;
3923 
3924 	for_each_possible_cpu(cpu) {
3925 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3926 		/* Avoid polluting remote cacheline due to writes if
3927 		 * not needed. Once we pass this test, we need the
3928 		 * cmpxchg() to make sure it hasn't been changed in
3929 		 * the meantime by remote CPU.
3930 		 */
3931 		if (unlikely(READ_ONCE(ri->map) == map))
3932 			cmpxchg(&ri->map, map, NULL);
3933 	}
3934 }
3935 
3936 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
3937 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
3938 
3939 u32 xdp_master_redirect(struct xdp_buff *xdp)
3940 {
3941 	struct net_device *master, *slave;
3942 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3943 
3944 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
3945 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
3946 	if (slave && slave != xdp->rxq->dev) {
3947 		/* The target device is different from the receiving device, so
3948 		 * redirect it to the new device.
3949 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
3950 		 * drivers to unmap the packet from their rx ring.
3951 		 */
3952 		ri->tgt_index = slave->ifindex;
3953 		ri->map_id = INT_MAX;
3954 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
3955 		return XDP_REDIRECT;
3956 	}
3957 	return XDP_TX;
3958 }
3959 EXPORT_SYMBOL_GPL(xdp_master_redirect);
3960 
3961 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3962 		    struct bpf_prog *xdp_prog)
3963 {
3964 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3965 	enum bpf_map_type map_type = ri->map_type;
3966 	void *fwd = ri->tgt_value;
3967 	u32 map_id = ri->map_id;
3968 	struct bpf_map *map;
3969 	int err;
3970 
3971 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
3972 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
3973 
3974 	switch (map_type) {
3975 	case BPF_MAP_TYPE_DEVMAP:
3976 		fallthrough;
3977 	case BPF_MAP_TYPE_DEVMAP_HASH:
3978 		map = READ_ONCE(ri->map);
3979 		if (unlikely(map)) {
3980 			WRITE_ONCE(ri->map, NULL);
3981 			err = dev_map_enqueue_multi(xdp, dev, map,
3982 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
3983 		} else {
3984 			err = dev_map_enqueue(fwd, xdp, dev);
3985 		}
3986 		break;
3987 	case BPF_MAP_TYPE_CPUMAP:
3988 		err = cpu_map_enqueue(fwd, xdp, dev);
3989 		break;
3990 	case BPF_MAP_TYPE_XSKMAP:
3991 		err = __xsk_map_redirect(fwd, xdp);
3992 		break;
3993 	case BPF_MAP_TYPE_UNSPEC:
3994 		if (map_id == INT_MAX) {
3995 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
3996 			if (unlikely(!fwd)) {
3997 				err = -EINVAL;
3998 				break;
3999 			}
4000 			err = dev_xdp_enqueue(fwd, xdp, dev);
4001 			break;
4002 		}
4003 		fallthrough;
4004 	default:
4005 		err = -EBADRQC;
4006 	}
4007 
4008 	if (unlikely(err))
4009 		goto err;
4010 
4011 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4012 	return 0;
4013 err:
4014 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4015 	return err;
4016 }
4017 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4018 
4019 static int xdp_do_generic_redirect_map(struct net_device *dev,
4020 				       struct sk_buff *skb,
4021 				       struct xdp_buff *xdp,
4022 				       struct bpf_prog *xdp_prog,
4023 				       void *fwd,
4024 				       enum bpf_map_type map_type, u32 map_id)
4025 {
4026 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4027 	struct bpf_map *map;
4028 	int err;
4029 
4030 	switch (map_type) {
4031 	case BPF_MAP_TYPE_DEVMAP:
4032 		fallthrough;
4033 	case BPF_MAP_TYPE_DEVMAP_HASH:
4034 		map = READ_ONCE(ri->map);
4035 		if (unlikely(map)) {
4036 			WRITE_ONCE(ri->map, NULL);
4037 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4038 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4039 		} else {
4040 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4041 		}
4042 		if (unlikely(err))
4043 			goto err;
4044 		break;
4045 	case BPF_MAP_TYPE_XSKMAP:
4046 		err = xsk_generic_rcv(fwd, xdp);
4047 		if (err)
4048 			goto err;
4049 		consume_skb(skb);
4050 		break;
4051 	case BPF_MAP_TYPE_CPUMAP:
4052 		err = cpu_map_generic_redirect(fwd, skb);
4053 		if (unlikely(err))
4054 			goto err;
4055 		break;
4056 	default:
4057 		err = -EBADRQC;
4058 		goto err;
4059 	}
4060 
4061 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4062 	return 0;
4063 err:
4064 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4065 	return err;
4066 }
4067 
4068 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4069 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4070 {
4071 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4072 	enum bpf_map_type map_type = ri->map_type;
4073 	void *fwd = ri->tgt_value;
4074 	u32 map_id = ri->map_id;
4075 	int err;
4076 
4077 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4078 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4079 
4080 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4081 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4082 		if (unlikely(!fwd)) {
4083 			err = -EINVAL;
4084 			goto err;
4085 		}
4086 
4087 		err = xdp_ok_fwd_dev(fwd, skb->len);
4088 		if (unlikely(err))
4089 			goto err;
4090 
4091 		skb->dev = fwd;
4092 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4093 		generic_xdp_tx(skb, xdp_prog);
4094 		return 0;
4095 	}
4096 
4097 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4098 err:
4099 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4100 	return err;
4101 }
4102 
4103 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4104 {
4105 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4106 
4107 	if (unlikely(flags))
4108 		return XDP_ABORTED;
4109 
4110 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4111 	 * by map_idr) is used for ifindex based XDP redirect.
4112 	 */
4113 	ri->tgt_index = ifindex;
4114 	ri->map_id = INT_MAX;
4115 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4116 
4117 	return XDP_REDIRECT;
4118 }
4119 
4120 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4121 	.func           = bpf_xdp_redirect,
4122 	.gpl_only       = false,
4123 	.ret_type       = RET_INTEGER,
4124 	.arg1_type      = ARG_ANYTHING,
4125 	.arg2_type      = ARG_ANYTHING,
4126 };
4127 
4128 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4129 	   u64, flags)
4130 {
4131 	return map->ops->map_redirect(map, ifindex, flags);
4132 }
4133 
4134 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4135 	.func           = bpf_xdp_redirect_map,
4136 	.gpl_only       = false,
4137 	.ret_type       = RET_INTEGER,
4138 	.arg1_type      = ARG_CONST_MAP_PTR,
4139 	.arg2_type      = ARG_ANYTHING,
4140 	.arg3_type      = ARG_ANYTHING,
4141 };
4142 
4143 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4144 				  unsigned long off, unsigned long len)
4145 {
4146 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4147 
4148 	if (unlikely(!ptr))
4149 		return len;
4150 	if (ptr != dst_buff)
4151 		memcpy(dst_buff, ptr, len);
4152 
4153 	return 0;
4154 }
4155 
4156 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4157 	   u64, flags, void *, meta, u64, meta_size)
4158 {
4159 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4160 
4161 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4162 		return -EINVAL;
4163 	if (unlikely(!skb || skb_size > skb->len))
4164 		return -EFAULT;
4165 
4166 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4167 				bpf_skb_copy);
4168 }
4169 
4170 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4171 	.func		= bpf_skb_event_output,
4172 	.gpl_only	= true,
4173 	.ret_type	= RET_INTEGER,
4174 	.arg1_type	= ARG_PTR_TO_CTX,
4175 	.arg2_type	= ARG_CONST_MAP_PTR,
4176 	.arg3_type	= ARG_ANYTHING,
4177 	.arg4_type	= ARG_PTR_TO_MEM,
4178 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4179 };
4180 
4181 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4182 
4183 const struct bpf_func_proto bpf_skb_output_proto = {
4184 	.func		= bpf_skb_event_output,
4185 	.gpl_only	= true,
4186 	.ret_type	= RET_INTEGER,
4187 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4188 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4189 	.arg2_type	= ARG_CONST_MAP_PTR,
4190 	.arg3_type	= ARG_ANYTHING,
4191 	.arg4_type	= ARG_PTR_TO_MEM,
4192 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4193 };
4194 
4195 static unsigned short bpf_tunnel_key_af(u64 flags)
4196 {
4197 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4198 }
4199 
4200 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4201 	   u32, size, u64, flags)
4202 {
4203 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4204 	u8 compat[sizeof(struct bpf_tunnel_key)];
4205 	void *to_orig = to;
4206 	int err;
4207 
4208 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4209 		err = -EINVAL;
4210 		goto err_clear;
4211 	}
4212 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4213 		err = -EPROTO;
4214 		goto err_clear;
4215 	}
4216 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4217 		err = -EINVAL;
4218 		switch (size) {
4219 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4220 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4221 			goto set_compat;
4222 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4223 			/* Fixup deprecated structure layouts here, so we have
4224 			 * a common path later on.
4225 			 */
4226 			if (ip_tunnel_info_af(info) != AF_INET)
4227 				goto err_clear;
4228 set_compat:
4229 			to = (struct bpf_tunnel_key *)compat;
4230 			break;
4231 		default:
4232 			goto err_clear;
4233 		}
4234 	}
4235 
4236 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4237 	to->tunnel_tos = info->key.tos;
4238 	to->tunnel_ttl = info->key.ttl;
4239 	to->tunnel_ext = 0;
4240 
4241 	if (flags & BPF_F_TUNINFO_IPV6) {
4242 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4243 		       sizeof(to->remote_ipv6));
4244 		to->tunnel_label = be32_to_cpu(info->key.label);
4245 	} else {
4246 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4247 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4248 		to->tunnel_label = 0;
4249 	}
4250 
4251 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4252 		memcpy(to_orig, to, size);
4253 
4254 	return 0;
4255 err_clear:
4256 	memset(to_orig, 0, size);
4257 	return err;
4258 }
4259 
4260 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4261 	.func		= bpf_skb_get_tunnel_key,
4262 	.gpl_only	= false,
4263 	.ret_type	= RET_INTEGER,
4264 	.arg1_type	= ARG_PTR_TO_CTX,
4265 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4266 	.arg3_type	= ARG_CONST_SIZE,
4267 	.arg4_type	= ARG_ANYTHING,
4268 };
4269 
4270 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4271 {
4272 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4273 	int err;
4274 
4275 	if (unlikely(!info ||
4276 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4277 		err = -ENOENT;
4278 		goto err_clear;
4279 	}
4280 	if (unlikely(size < info->options_len)) {
4281 		err = -ENOMEM;
4282 		goto err_clear;
4283 	}
4284 
4285 	ip_tunnel_info_opts_get(to, info);
4286 	if (size > info->options_len)
4287 		memset(to + info->options_len, 0, size - info->options_len);
4288 
4289 	return info->options_len;
4290 err_clear:
4291 	memset(to, 0, size);
4292 	return err;
4293 }
4294 
4295 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4296 	.func		= bpf_skb_get_tunnel_opt,
4297 	.gpl_only	= false,
4298 	.ret_type	= RET_INTEGER,
4299 	.arg1_type	= ARG_PTR_TO_CTX,
4300 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4301 	.arg3_type	= ARG_CONST_SIZE,
4302 };
4303 
4304 static struct metadata_dst __percpu *md_dst;
4305 
4306 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4307 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4308 {
4309 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4310 	u8 compat[sizeof(struct bpf_tunnel_key)];
4311 	struct ip_tunnel_info *info;
4312 
4313 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4314 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4315 		return -EINVAL;
4316 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4317 		switch (size) {
4318 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4319 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4320 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4321 			/* Fixup deprecated structure layouts here, so we have
4322 			 * a common path later on.
4323 			 */
4324 			memcpy(compat, from, size);
4325 			memset(compat + size, 0, sizeof(compat) - size);
4326 			from = (const struct bpf_tunnel_key *) compat;
4327 			break;
4328 		default:
4329 			return -EINVAL;
4330 		}
4331 	}
4332 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4333 		     from->tunnel_ext))
4334 		return -EINVAL;
4335 
4336 	skb_dst_drop(skb);
4337 	dst_hold((struct dst_entry *) md);
4338 	skb_dst_set(skb, (struct dst_entry *) md);
4339 
4340 	info = &md->u.tun_info;
4341 	memset(info, 0, sizeof(*info));
4342 	info->mode = IP_TUNNEL_INFO_TX;
4343 
4344 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4345 	if (flags & BPF_F_DONT_FRAGMENT)
4346 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4347 	if (flags & BPF_F_ZERO_CSUM_TX)
4348 		info->key.tun_flags &= ~TUNNEL_CSUM;
4349 	if (flags & BPF_F_SEQ_NUMBER)
4350 		info->key.tun_flags |= TUNNEL_SEQ;
4351 
4352 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4353 	info->key.tos = from->tunnel_tos;
4354 	info->key.ttl = from->tunnel_ttl;
4355 
4356 	if (flags & BPF_F_TUNINFO_IPV6) {
4357 		info->mode |= IP_TUNNEL_INFO_IPV6;
4358 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4359 		       sizeof(from->remote_ipv6));
4360 		info->key.label = cpu_to_be32(from->tunnel_label) &
4361 				  IPV6_FLOWLABEL_MASK;
4362 	} else {
4363 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4364 	}
4365 
4366 	return 0;
4367 }
4368 
4369 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4370 	.func		= bpf_skb_set_tunnel_key,
4371 	.gpl_only	= false,
4372 	.ret_type	= RET_INTEGER,
4373 	.arg1_type	= ARG_PTR_TO_CTX,
4374 	.arg2_type	= ARG_PTR_TO_MEM,
4375 	.arg3_type	= ARG_CONST_SIZE,
4376 	.arg4_type	= ARG_ANYTHING,
4377 };
4378 
4379 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4380 	   const u8 *, from, u32, size)
4381 {
4382 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4383 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4384 
4385 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4386 		return -EINVAL;
4387 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4388 		return -ENOMEM;
4389 
4390 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4391 
4392 	return 0;
4393 }
4394 
4395 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4396 	.func		= bpf_skb_set_tunnel_opt,
4397 	.gpl_only	= false,
4398 	.ret_type	= RET_INTEGER,
4399 	.arg1_type	= ARG_PTR_TO_CTX,
4400 	.arg2_type	= ARG_PTR_TO_MEM,
4401 	.arg3_type	= ARG_CONST_SIZE,
4402 };
4403 
4404 static const struct bpf_func_proto *
4405 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4406 {
4407 	if (!md_dst) {
4408 		struct metadata_dst __percpu *tmp;
4409 
4410 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4411 						METADATA_IP_TUNNEL,
4412 						GFP_KERNEL);
4413 		if (!tmp)
4414 			return NULL;
4415 		if (cmpxchg(&md_dst, NULL, tmp))
4416 			metadata_dst_free_percpu(tmp);
4417 	}
4418 
4419 	switch (which) {
4420 	case BPF_FUNC_skb_set_tunnel_key:
4421 		return &bpf_skb_set_tunnel_key_proto;
4422 	case BPF_FUNC_skb_set_tunnel_opt:
4423 		return &bpf_skb_set_tunnel_opt_proto;
4424 	default:
4425 		return NULL;
4426 	}
4427 }
4428 
4429 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4430 	   u32, idx)
4431 {
4432 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4433 	struct cgroup *cgrp;
4434 	struct sock *sk;
4435 
4436 	sk = skb_to_full_sk(skb);
4437 	if (!sk || !sk_fullsock(sk))
4438 		return -ENOENT;
4439 	if (unlikely(idx >= array->map.max_entries))
4440 		return -E2BIG;
4441 
4442 	cgrp = READ_ONCE(array->ptrs[idx]);
4443 	if (unlikely(!cgrp))
4444 		return -EAGAIN;
4445 
4446 	return sk_under_cgroup_hierarchy(sk, cgrp);
4447 }
4448 
4449 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4450 	.func		= bpf_skb_under_cgroup,
4451 	.gpl_only	= false,
4452 	.ret_type	= RET_INTEGER,
4453 	.arg1_type	= ARG_PTR_TO_CTX,
4454 	.arg2_type	= ARG_CONST_MAP_PTR,
4455 	.arg3_type	= ARG_ANYTHING,
4456 };
4457 
4458 #ifdef CONFIG_SOCK_CGROUP_DATA
4459 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4460 {
4461 	struct cgroup *cgrp;
4462 
4463 	sk = sk_to_full_sk(sk);
4464 	if (!sk || !sk_fullsock(sk))
4465 		return 0;
4466 
4467 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4468 	return cgroup_id(cgrp);
4469 }
4470 
4471 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4472 {
4473 	return __bpf_sk_cgroup_id(skb->sk);
4474 }
4475 
4476 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4477 	.func           = bpf_skb_cgroup_id,
4478 	.gpl_only       = false,
4479 	.ret_type       = RET_INTEGER,
4480 	.arg1_type      = ARG_PTR_TO_CTX,
4481 };
4482 
4483 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4484 					      int ancestor_level)
4485 {
4486 	struct cgroup *ancestor;
4487 	struct cgroup *cgrp;
4488 
4489 	sk = sk_to_full_sk(sk);
4490 	if (!sk || !sk_fullsock(sk))
4491 		return 0;
4492 
4493 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4494 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4495 	if (!ancestor)
4496 		return 0;
4497 
4498 	return cgroup_id(ancestor);
4499 }
4500 
4501 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4502 	   ancestor_level)
4503 {
4504 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4505 }
4506 
4507 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4508 	.func           = bpf_skb_ancestor_cgroup_id,
4509 	.gpl_only       = false,
4510 	.ret_type       = RET_INTEGER,
4511 	.arg1_type      = ARG_PTR_TO_CTX,
4512 	.arg2_type      = ARG_ANYTHING,
4513 };
4514 
4515 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4516 {
4517 	return __bpf_sk_cgroup_id(sk);
4518 }
4519 
4520 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4521 	.func           = bpf_sk_cgroup_id,
4522 	.gpl_only       = false,
4523 	.ret_type       = RET_INTEGER,
4524 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4525 };
4526 
4527 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4528 {
4529 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4530 }
4531 
4532 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4533 	.func           = bpf_sk_ancestor_cgroup_id,
4534 	.gpl_only       = false,
4535 	.ret_type       = RET_INTEGER,
4536 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4537 	.arg2_type      = ARG_ANYTHING,
4538 };
4539 #endif
4540 
4541 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4542 				  unsigned long off, unsigned long len)
4543 {
4544 	memcpy(dst_buff, src_buff + off, len);
4545 	return 0;
4546 }
4547 
4548 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4549 	   u64, flags, void *, meta, u64, meta_size)
4550 {
4551 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4552 
4553 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4554 		return -EINVAL;
4555 	if (unlikely(!xdp ||
4556 		     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4557 		return -EFAULT;
4558 
4559 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4560 				xdp_size, bpf_xdp_copy);
4561 }
4562 
4563 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4564 	.func		= bpf_xdp_event_output,
4565 	.gpl_only	= true,
4566 	.ret_type	= RET_INTEGER,
4567 	.arg1_type	= ARG_PTR_TO_CTX,
4568 	.arg2_type	= ARG_CONST_MAP_PTR,
4569 	.arg3_type	= ARG_ANYTHING,
4570 	.arg4_type	= ARG_PTR_TO_MEM,
4571 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4572 };
4573 
4574 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4575 
4576 const struct bpf_func_proto bpf_xdp_output_proto = {
4577 	.func		= bpf_xdp_event_output,
4578 	.gpl_only	= true,
4579 	.ret_type	= RET_INTEGER,
4580 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4581 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4582 	.arg2_type	= ARG_CONST_MAP_PTR,
4583 	.arg3_type	= ARG_ANYTHING,
4584 	.arg4_type	= ARG_PTR_TO_MEM,
4585 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4586 };
4587 
4588 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4589 {
4590 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4591 }
4592 
4593 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4594 	.func           = bpf_get_socket_cookie,
4595 	.gpl_only       = false,
4596 	.ret_type       = RET_INTEGER,
4597 	.arg1_type      = ARG_PTR_TO_CTX,
4598 };
4599 
4600 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4601 {
4602 	return __sock_gen_cookie(ctx->sk);
4603 }
4604 
4605 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4606 	.func		= bpf_get_socket_cookie_sock_addr,
4607 	.gpl_only	= false,
4608 	.ret_type	= RET_INTEGER,
4609 	.arg1_type	= ARG_PTR_TO_CTX,
4610 };
4611 
4612 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4613 {
4614 	return __sock_gen_cookie(ctx);
4615 }
4616 
4617 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4618 	.func		= bpf_get_socket_cookie_sock,
4619 	.gpl_only	= false,
4620 	.ret_type	= RET_INTEGER,
4621 	.arg1_type	= ARG_PTR_TO_CTX,
4622 };
4623 
4624 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4625 {
4626 	return sk ? sock_gen_cookie(sk) : 0;
4627 }
4628 
4629 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4630 	.func		= bpf_get_socket_ptr_cookie,
4631 	.gpl_only	= false,
4632 	.ret_type	= RET_INTEGER,
4633 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4634 };
4635 
4636 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4637 {
4638 	return __sock_gen_cookie(ctx->sk);
4639 }
4640 
4641 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4642 	.func		= bpf_get_socket_cookie_sock_ops,
4643 	.gpl_only	= false,
4644 	.ret_type	= RET_INTEGER,
4645 	.arg1_type	= ARG_PTR_TO_CTX,
4646 };
4647 
4648 static u64 __bpf_get_netns_cookie(struct sock *sk)
4649 {
4650 	const struct net *net = sk ? sock_net(sk) : &init_net;
4651 
4652 	return net->net_cookie;
4653 }
4654 
4655 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4656 {
4657 	return __bpf_get_netns_cookie(ctx);
4658 }
4659 
4660 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4661 	.func		= bpf_get_netns_cookie_sock,
4662 	.gpl_only	= false,
4663 	.ret_type	= RET_INTEGER,
4664 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4665 };
4666 
4667 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4668 {
4669 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4670 }
4671 
4672 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4673 	.func		= bpf_get_netns_cookie_sock_addr,
4674 	.gpl_only	= false,
4675 	.ret_type	= RET_INTEGER,
4676 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4677 };
4678 
4679 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4680 {
4681 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4682 }
4683 
4684 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4685 	.func		= bpf_get_netns_cookie_sock_ops,
4686 	.gpl_only	= false,
4687 	.ret_type	= RET_INTEGER,
4688 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4689 };
4690 
4691 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4692 {
4693 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4694 }
4695 
4696 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4697 	.func		= bpf_get_netns_cookie_sk_msg,
4698 	.gpl_only	= false,
4699 	.ret_type	= RET_INTEGER,
4700 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4701 };
4702 
4703 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4704 {
4705 	struct sock *sk = sk_to_full_sk(skb->sk);
4706 	kuid_t kuid;
4707 
4708 	if (!sk || !sk_fullsock(sk))
4709 		return overflowuid;
4710 	kuid = sock_net_uid(sock_net(sk), sk);
4711 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4712 }
4713 
4714 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4715 	.func           = bpf_get_socket_uid,
4716 	.gpl_only       = false,
4717 	.ret_type       = RET_INTEGER,
4718 	.arg1_type      = ARG_PTR_TO_CTX,
4719 };
4720 
4721 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4722 			   char *optval, int optlen)
4723 {
4724 	char devname[IFNAMSIZ];
4725 	int val, valbool;
4726 	struct net *net;
4727 	int ifindex;
4728 	int ret = 0;
4729 
4730 	if (!sk_fullsock(sk))
4731 		return -EINVAL;
4732 
4733 	sock_owned_by_me(sk);
4734 
4735 	if (level == SOL_SOCKET) {
4736 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4737 			return -EINVAL;
4738 		val = *((int *)optval);
4739 		valbool = val ? 1 : 0;
4740 
4741 		/* Only some socketops are supported */
4742 		switch (optname) {
4743 		case SO_RCVBUF:
4744 			val = min_t(u32, val, sysctl_rmem_max);
4745 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4746 			WRITE_ONCE(sk->sk_rcvbuf,
4747 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4748 			break;
4749 		case SO_SNDBUF:
4750 			val = min_t(u32, val, sysctl_wmem_max);
4751 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4752 			WRITE_ONCE(sk->sk_sndbuf,
4753 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4754 			break;
4755 		case SO_MAX_PACING_RATE: /* 32bit version */
4756 			if (val != ~0U)
4757 				cmpxchg(&sk->sk_pacing_status,
4758 					SK_PACING_NONE,
4759 					SK_PACING_NEEDED);
4760 			sk->sk_max_pacing_rate = (val == ~0U) ?
4761 						 ~0UL : (unsigned int)val;
4762 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4763 						 sk->sk_max_pacing_rate);
4764 			break;
4765 		case SO_PRIORITY:
4766 			sk->sk_priority = val;
4767 			break;
4768 		case SO_RCVLOWAT:
4769 			if (val < 0)
4770 				val = INT_MAX;
4771 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4772 			break;
4773 		case SO_MARK:
4774 			if (sk->sk_mark != val) {
4775 				sk->sk_mark = val;
4776 				sk_dst_reset(sk);
4777 			}
4778 			break;
4779 		case SO_BINDTODEVICE:
4780 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
4781 			strncpy(devname, optval, optlen);
4782 			devname[optlen] = 0;
4783 
4784 			ifindex = 0;
4785 			if (devname[0] != '\0') {
4786 				struct net_device *dev;
4787 
4788 				ret = -ENODEV;
4789 
4790 				net = sock_net(sk);
4791 				dev = dev_get_by_name(net, devname);
4792 				if (!dev)
4793 					break;
4794 				ifindex = dev->ifindex;
4795 				dev_put(dev);
4796 			}
4797 			fallthrough;
4798 		case SO_BINDTOIFINDEX:
4799 			if (optname == SO_BINDTOIFINDEX)
4800 				ifindex = val;
4801 			ret = sock_bindtoindex(sk, ifindex, false);
4802 			break;
4803 		case SO_KEEPALIVE:
4804 			if (sk->sk_prot->keepalive)
4805 				sk->sk_prot->keepalive(sk, valbool);
4806 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4807 			break;
4808 		case SO_REUSEPORT:
4809 			sk->sk_reuseport = valbool;
4810 			break;
4811 		default:
4812 			ret = -EINVAL;
4813 		}
4814 #ifdef CONFIG_INET
4815 	} else if (level == SOL_IP) {
4816 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4817 			return -EINVAL;
4818 
4819 		val = *((int *)optval);
4820 		/* Only some options are supported */
4821 		switch (optname) {
4822 		case IP_TOS:
4823 			if (val < -1 || val > 0xff) {
4824 				ret = -EINVAL;
4825 			} else {
4826 				struct inet_sock *inet = inet_sk(sk);
4827 
4828 				if (val == -1)
4829 					val = 0;
4830 				inet->tos = val;
4831 			}
4832 			break;
4833 		default:
4834 			ret = -EINVAL;
4835 		}
4836 #if IS_ENABLED(CONFIG_IPV6)
4837 	} else if (level == SOL_IPV6) {
4838 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4839 			return -EINVAL;
4840 
4841 		val = *((int *)optval);
4842 		/* Only some options are supported */
4843 		switch (optname) {
4844 		case IPV6_TCLASS:
4845 			if (val < -1 || val > 0xff) {
4846 				ret = -EINVAL;
4847 			} else {
4848 				struct ipv6_pinfo *np = inet6_sk(sk);
4849 
4850 				if (val == -1)
4851 					val = 0;
4852 				np->tclass = val;
4853 			}
4854 			break;
4855 		default:
4856 			ret = -EINVAL;
4857 		}
4858 #endif
4859 	} else if (level == SOL_TCP &&
4860 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4861 		if (optname == TCP_CONGESTION) {
4862 			char name[TCP_CA_NAME_MAX];
4863 
4864 			strncpy(name, optval, min_t(long, optlen,
4865 						    TCP_CA_NAME_MAX-1));
4866 			name[TCP_CA_NAME_MAX-1] = 0;
4867 			ret = tcp_set_congestion_control(sk, name, false, true);
4868 		} else {
4869 			struct inet_connection_sock *icsk = inet_csk(sk);
4870 			struct tcp_sock *tp = tcp_sk(sk);
4871 			unsigned long timeout;
4872 
4873 			if (optlen != sizeof(int))
4874 				return -EINVAL;
4875 
4876 			val = *((int *)optval);
4877 			/* Only some options are supported */
4878 			switch (optname) {
4879 			case TCP_BPF_IW:
4880 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4881 					ret = -EINVAL;
4882 				else
4883 					tp->snd_cwnd = val;
4884 				break;
4885 			case TCP_BPF_SNDCWND_CLAMP:
4886 				if (val <= 0) {
4887 					ret = -EINVAL;
4888 				} else {
4889 					tp->snd_cwnd_clamp = val;
4890 					tp->snd_ssthresh = val;
4891 				}
4892 				break;
4893 			case TCP_BPF_DELACK_MAX:
4894 				timeout = usecs_to_jiffies(val);
4895 				if (timeout > TCP_DELACK_MAX ||
4896 				    timeout < TCP_TIMEOUT_MIN)
4897 					return -EINVAL;
4898 				inet_csk(sk)->icsk_delack_max = timeout;
4899 				break;
4900 			case TCP_BPF_RTO_MIN:
4901 				timeout = usecs_to_jiffies(val);
4902 				if (timeout > TCP_RTO_MIN ||
4903 				    timeout < TCP_TIMEOUT_MIN)
4904 					return -EINVAL;
4905 				inet_csk(sk)->icsk_rto_min = timeout;
4906 				break;
4907 			case TCP_SAVE_SYN:
4908 				if (val < 0 || val > 1)
4909 					ret = -EINVAL;
4910 				else
4911 					tp->save_syn = val;
4912 				break;
4913 			case TCP_KEEPIDLE:
4914 				ret = tcp_sock_set_keepidle_locked(sk, val);
4915 				break;
4916 			case TCP_KEEPINTVL:
4917 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
4918 					ret = -EINVAL;
4919 				else
4920 					tp->keepalive_intvl = val * HZ;
4921 				break;
4922 			case TCP_KEEPCNT:
4923 				if (val < 1 || val > MAX_TCP_KEEPCNT)
4924 					ret = -EINVAL;
4925 				else
4926 					tp->keepalive_probes = val;
4927 				break;
4928 			case TCP_SYNCNT:
4929 				if (val < 1 || val > MAX_TCP_SYNCNT)
4930 					ret = -EINVAL;
4931 				else
4932 					icsk->icsk_syn_retries = val;
4933 				break;
4934 			case TCP_USER_TIMEOUT:
4935 				if (val < 0)
4936 					ret = -EINVAL;
4937 				else
4938 					icsk->icsk_user_timeout = val;
4939 				break;
4940 			case TCP_NOTSENT_LOWAT:
4941 				tp->notsent_lowat = val;
4942 				sk->sk_write_space(sk);
4943 				break;
4944 			case TCP_WINDOW_CLAMP:
4945 				ret = tcp_set_window_clamp(sk, val);
4946 				break;
4947 			default:
4948 				ret = -EINVAL;
4949 			}
4950 		}
4951 #endif
4952 	} else {
4953 		ret = -EINVAL;
4954 	}
4955 	return ret;
4956 }
4957 
4958 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4959 			   char *optval, int optlen)
4960 {
4961 	if (!sk_fullsock(sk))
4962 		goto err_clear;
4963 
4964 	sock_owned_by_me(sk);
4965 
4966 	if (level == SOL_SOCKET) {
4967 		if (optlen != sizeof(int))
4968 			goto err_clear;
4969 
4970 		switch (optname) {
4971 		case SO_MARK:
4972 			*((int *)optval) = sk->sk_mark;
4973 			break;
4974 		case SO_PRIORITY:
4975 			*((int *)optval) = sk->sk_priority;
4976 			break;
4977 		case SO_BINDTOIFINDEX:
4978 			*((int *)optval) = sk->sk_bound_dev_if;
4979 			break;
4980 		case SO_REUSEPORT:
4981 			*((int *)optval) = sk->sk_reuseport;
4982 			break;
4983 		default:
4984 			goto err_clear;
4985 		}
4986 #ifdef CONFIG_INET
4987 	} else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4988 		struct inet_connection_sock *icsk;
4989 		struct tcp_sock *tp;
4990 
4991 		switch (optname) {
4992 		case TCP_CONGESTION:
4993 			icsk = inet_csk(sk);
4994 
4995 			if (!icsk->icsk_ca_ops || optlen <= 1)
4996 				goto err_clear;
4997 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4998 			optval[optlen - 1] = 0;
4999 			break;
5000 		case TCP_SAVED_SYN:
5001 			tp = tcp_sk(sk);
5002 
5003 			if (optlen <= 0 || !tp->saved_syn ||
5004 			    optlen > tcp_saved_syn_len(tp->saved_syn))
5005 				goto err_clear;
5006 			memcpy(optval, tp->saved_syn->data, optlen);
5007 			break;
5008 		default:
5009 			goto err_clear;
5010 		}
5011 	} else if (level == SOL_IP) {
5012 		struct inet_sock *inet = inet_sk(sk);
5013 
5014 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5015 			goto err_clear;
5016 
5017 		/* Only some options are supported */
5018 		switch (optname) {
5019 		case IP_TOS:
5020 			*((int *)optval) = (int)inet->tos;
5021 			break;
5022 		default:
5023 			goto err_clear;
5024 		}
5025 #if IS_ENABLED(CONFIG_IPV6)
5026 	} else if (level == SOL_IPV6) {
5027 		struct ipv6_pinfo *np = inet6_sk(sk);
5028 
5029 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5030 			goto err_clear;
5031 
5032 		/* Only some options are supported */
5033 		switch (optname) {
5034 		case IPV6_TCLASS:
5035 			*((int *)optval) = (int)np->tclass;
5036 			break;
5037 		default:
5038 			goto err_clear;
5039 		}
5040 #endif
5041 #endif
5042 	} else {
5043 		goto err_clear;
5044 	}
5045 	return 0;
5046 err_clear:
5047 	memset(optval, 0, optlen);
5048 	return -EINVAL;
5049 }
5050 
5051 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5052 	   int, optname, char *, optval, int, optlen)
5053 {
5054 	if (level == SOL_TCP && optname == TCP_CONGESTION) {
5055 		if (optlen >= sizeof("cdg") - 1 &&
5056 		    !strncmp("cdg", optval, optlen))
5057 			return -ENOTSUPP;
5058 	}
5059 
5060 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5061 }
5062 
5063 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5064 	.func		= bpf_sk_setsockopt,
5065 	.gpl_only	= false,
5066 	.ret_type	= RET_INTEGER,
5067 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5068 	.arg2_type	= ARG_ANYTHING,
5069 	.arg3_type	= ARG_ANYTHING,
5070 	.arg4_type	= ARG_PTR_TO_MEM,
5071 	.arg5_type	= ARG_CONST_SIZE,
5072 };
5073 
5074 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5075 	   int, optname, char *, optval, int, optlen)
5076 {
5077 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5078 }
5079 
5080 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5081 	.func		= bpf_sk_getsockopt,
5082 	.gpl_only	= false,
5083 	.ret_type	= RET_INTEGER,
5084 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5085 	.arg2_type	= ARG_ANYTHING,
5086 	.arg3_type	= ARG_ANYTHING,
5087 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5088 	.arg5_type	= ARG_CONST_SIZE,
5089 };
5090 
5091 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5092 	   int, level, int, optname, char *, optval, int, optlen)
5093 {
5094 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5095 }
5096 
5097 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5098 	.func		= bpf_sock_addr_setsockopt,
5099 	.gpl_only	= false,
5100 	.ret_type	= RET_INTEGER,
5101 	.arg1_type	= ARG_PTR_TO_CTX,
5102 	.arg2_type	= ARG_ANYTHING,
5103 	.arg3_type	= ARG_ANYTHING,
5104 	.arg4_type	= ARG_PTR_TO_MEM,
5105 	.arg5_type	= ARG_CONST_SIZE,
5106 };
5107 
5108 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5109 	   int, level, int, optname, char *, optval, int, optlen)
5110 {
5111 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5112 }
5113 
5114 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5115 	.func		= bpf_sock_addr_getsockopt,
5116 	.gpl_only	= false,
5117 	.ret_type	= RET_INTEGER,
5118 	.arg1_type	= ARG_PTR_TO_CTX,
5119 	.arg2_type	= ARG_ANYTHING,
5120 	.arg3_type	= ARG_ANYTHING,
5121 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5122 	.arg5_type	= ARG_CONST_SIZE,
5123 };
5124 
5125 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5126 	   int, level, int, optname, char *, optval, int, optlen)
5127 {
5128 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5129 }
5130 
5131 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5132 	.func		= bpf_sock_ops_setsockopt,
5133 	.gpl_only	= false,
5134 	.ret_type	= RET_INTEGER,
5135 	.arg1_type	= ARG_PTR_TO_CTX,
5136 	.arg2_type	= ARG_ANYTHING,
5137 	.arg3_type	= ARG_ANYTHING,
5138 	.arg4_type	= ARG_PTR_TO_MEM,
5139 	.arg5_type	= ARG_CONST_SIZE,
5140 };
5141 
5142 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5143 				int optname, const u8 **start)
5144 {
5145 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5146 	const u8 *hdr_start;
5147 	int ret;
5148 
5149 	if (syn_skb) {
5150 		/* sk is a request_sock here */
5151 
5152 		if (optname == TCP_BPF_SYN) {
5153 			hdr_start = syn_skb->data;
5154 			ret = tcp_hdrlen(syn_skb);
5155 		} else if (optname == TCP_BPF_SYN_IP) {
5156 			hdr_start = skb_network_header(syn_skb);
5157 			ret = skb_network_header_len(syn_skb) +
5158 				tcp_hdrlen(syn_skb);
5159 		} else {
5160 			/* optname == TCP_BPF_SYN_MAC */
5161 			hdr_start = skb_mac_header(syn_skb);
5162 			ret = skb_mac_header_len(syn_skb) +
5163 				skb_network_header_len(syn_skb) +
5164 				tcp_hdrlen(syn_skb);
5165 		}
5166 	} else {
5167 		struct sock *sk = bpf_sock->sk;
5168 		struct saved_syn *saved_syn;
5169 
5170 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5171 			/* synack retransmit. bpf_sock->syn_skb will
5172 			 * not be available.  It has to resort to
5173 			 * saved_syn (if it is saved).
5174 			 */
5175 			saved_syn = inet_reqsk(sk)->saved_syn;
5176 		else
5177 			saved_syn = tcp_sk(sk)->saved_syn;
5178 
5179 		if (!saved_syn)
5180 			return -ENOENT;
5181 
5182 		if (optname == TCP_BPF_SYN) {
5183 			hdr_start = saved_syn->data +
5184 				saved_syn->mac_hdrlen +
5185 				saved_syn->network_hdrlen;
5186 			ret = saved_syn->tcp_hdrlen;
5187 		} else if (optname == TCP_BPF_SYN_IP) {
5188 			hdr_start = saved_syn->data +
5189 				saved_syn->mac_hdrlen;
5190 			ret = saved_syn->network_hdrlen +
5191 				saved_syn->tcp_hdrlen;
5192 		} else {
5193 			/* optname == TCP_BPF_SYN_MAC */
5194 
5195 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5196 			if (!saved_syn->mac_hdrlen)
5197 				return -ENOENT;
5198 
5199 			hdr_start = saved_syn->data;
5200 			ret = saved_syn->mac_hdrlen +
5201 				saved_syn->network_hdrlen +
5202 				saved_syn->tcp_hdrlen;
5203 		}
5204 	}
5205 
5206 	*start = hdr_start;
5207 	return ret;
5208 }
5209 
5210 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5211 	   int, level, int, optname, char *, optval, int, optlen)
5212 {
5213 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5214 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5215 		int ret, copy_len = 0;
5216 		const u8 *start;
5217 
5218 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5219 		if (ret > 0) {
5220 			copy_len = ret;
5221 			if (optlen < copy_len) {
5222 				copy_len = optlen;
5223 				ret = -ENOSPC;
5224 			}
5225 
5226 			memcpy(optval, start, copy_len);
5227 		}
5228 
5229 		/* Zero out unused buffer at the end */
5230 		memset(optval + copy_len, 0, optlen - copy_len);
5231 
5232 		return ret;
5233 	}
5234 
5235 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5236 }
5237 
5238 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5239 	.func		= bpf_sock_ops_getsockopt,
5240 	.gpl_only	= false,
5241 	.ret_type	= RET_INTEGER,
5242 	.arg1_type	= ARG_PTR_TO_CTX,
5243 	.arg2_type	= ARG_ANYTHING,
5244 	.arg3_type	= ARG_ANYTHING,
5245 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5246 	.arg5_type	= ARG_CONST_SIZE,
5247 };
5248 
5249 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5250 	   int, argval)
5251 {
5252 	struct sock *sk = bpf_sock->sk;
5253 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5254 
5255 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5256 		return -EINVAL;
5257 
5258 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5259 
5260 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5261 }
5262 
5263 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5264 	.func		= bpf_sock_ops_cb_flags_set,
5265 	.gpl_only	= false,
5266 	.ret_type	= RET_INTEGER,
5267 	.arg1_type	= ARG_PTR_TO_CTX,
5268 	.arg2_type	= ARG_ANYTHING,
5269 };
5270 
5271 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5272 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5273 
5274 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5275 	   int, addr_len)
5276 {
5277 #ifdef CONFIG_INET
5278 	struct sock *sk = ctx->sk;
5279 	u32 flags = BIND_FROM_BPF;
5280 	int err;
5281 
5282 	err = -EINVAL;
5283 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5284 		return err;
5285 	if (addr->sa_family == AF_INET) {
5286 		if (addr_len < sizeof(struct sockaddr_in))
5287 			return err;
5288 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5289 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5290 		return __inet_bind(sk, addr, addr_len, flags);
5291 #if IS_ENABLED(CONFIG_IPV6)
5292 	} else if (addr->sa_family == AF_INET6) {
5293 		if (addr_len < SIN6_LEN_RFC2133)
5294 			return err;
5295 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5296 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5297 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5298 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5299 		 */
5300 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5301 #endif /* CONFIG_IPV6 */
5302 	}
5303 #endif /* CONFIG_INET */
5304 
5305 	return -EAFNOSUPPORT;
5306 }
5307 
5308 static const struct bpf_func_proto bpf_bind_proto = {
5309 	.func		= bpf_bind,
5310 	.gpl_only	= false,
5311 	.ret_type	= RET_INTEGER,
5312 	.arg1_type	= ARG_PTR_TO_CTX,
5313 	.arg2_type	= ARG_PTR_TO_MEM,
5314 	.arg3_type	= ARG_CONST_SIZE,
5315 };
5316 
5317 #ifdef CONFIG_XFRM
5318 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5319 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5320 {
5321 	const struct sec_path *sp = skb_sec_path(skb);
5322 	const struct xfrm_state *x;
5323 
5324 	if (!sp || unlikely(index >= sp->len || flags))
5325 		goto err_clear;
5326 
5327 	x = sp->xvec[index];
5328 
5329 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5330 		goto err_clear;
5331 
5332 	to->reqid = x->props.reqid;
5333 	to->spi = x->id.spi;
5334 	to->family = x->props.family;
5335 	to->ext = 0;
5336 
5337 	if (to->family == AF_INET6) {
5338 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5339 		       sizeof(to->remote_ipv6));
5340 	} else {
5341 		to->remote_ipv4 = x->props.saddr.a4;
5342 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5343 	}
5344 
5345 	return 0;
5346 err_clear:
5347 	memset(to, 0, size);
5348 	return -EINVAL;
5349 }
5350 
5351 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5352 	.func		= bpf_skb_get_xfrm_state,
5353 	.gpl_only	= false,
5354 	.ret_type	= RET_INTEGER,
5355 	.arg1_type	= ARG_PTR_TO_CTX,
5356 	.arg2_type	= ARG_ANYTHING,
5357 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5358 	.arg4_type	= ARG_CONST_SIZE,
5359 	.arg5_type	= ARG_ANYTHING,
5360 };
5361 #endif
5362 
5363 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5364 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5365 				  const struct neighbour *neigh,
5366 				  const struct net_device *dev, u32 mtu)
5367 {
5368 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5369 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5370 	params->h_vlan_TCI = 0;
5371 	params->h_vlan_proto = 0;
5372 	if (mtu)
5373 		params->mtu_result = mtu; /* union with tot_len */
5374 
5375 	return 0;
5376 }
5377 #endif
5378 
5379 #if IS_ENABLED(CONFIG_INET)
5380 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5381 			       u32 flags, bool check_mtu)
5382 {
5383 	struct fib_nh_common *nhc;
5384 	struct in_device *in_dev;
5385 	struct neighbour *neigh;
5386 	struct net_device *dev;
5387 	struct fib_result res;
5388 	struct flowi4 fl4;
5389 	u32 mtu = 0;
5390 	int err;
5391 
5392 	dev = dev_get_by_index_rcu(net, params->ifindex);
5393 	if (unlikely(!dev))
5394 		return -ENODEV;
5395 
5396 	/* verify forwarding is enabled on this interface */
5397 	in_dev = __in_dev_get_rcu(dev);
5398 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5399 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5400 
5401 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5402 		fl4.flowi4_iif = 1;
5403 		fl4.flowi4_oif = params->ifindex;
5404 	} else {
5405 		fl4.flowi4_iif = params->ifindex;
5406 		fl4.flowi4_oif = 0;
5407 	}
5408 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5409 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5410 	fl4.flowi4_flags = 0;
5411 
5412 	fl4.flowi4_proto = params->l4_protocol;
5413 	fl4.daddr = params->ipv4_dst;
5414 	fl4.saddr = params->ipv4_src;
5415 	fl4.fl4_sport = params->sport;
5416 	fl4.fl4_dport = params->dport;
5417 	fl4.flowi4_multipath_hash = 0;
5418 
5419 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5420 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5421 		struct fib_table *tb;
5422 
5423 		tb = fib_get_table(net, tbid);
5424 		if (unlikely(!tb))
5425 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5426 
5427 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5428 	} else {
5429 		fl4.flowi4_mark = 0;
5430 		fl4.flowi4_secid = 0;
5431 		fl4.flowi4_tun_key.tun_id = 0;
5432 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5433 
5434 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5435 	}
5436 
5437 	if (err) {
5438 		/* map fib lookup errors to RTN_ type */
5439 		if (err == -EINVAL)
5440 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5441 		if (err == -EHOSTUNREACH)
5442 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5443 		if (err == -EACCES)
5444 			return BPF_FIB_LKUP_RET_PROHIBIT;
5445 
5446 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5447 	}
5448 
5449 	if (res.type != RTN_UNICAST)
5450 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5451 
5452 	if (fib_info_num_path(res.fi) > 1)
5453 		fib_select_path(net, &res, &fl4, NULL);
5454 
5455 	if (check_mtu) {
5456 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5457 		if (params->tot_len > mtu) {
5458 			params->mtu_result = mtu; /* union with tot_len */
5459 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5460 		}
5461 	}
5462 
5463 	nhc = res.nhc;
5464 
5465 	/* do not handle lwt encaps right now */
5466 	if (nhc->nhc_lwtstate)
5467 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5468 
5469 	dev = nhc->nhc_dev;
5470 
5471 	params->rt_metric = res.fi->fib_priority;
5472 	params->ifindex = dev->ifindex;
5473 
5474 	/* xdp and cls_bpf programs are run in RCU-bh so
5475 	 * rcu_read_lock_bh is not needed here
5476 	 */
5477 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5478 		if (nhc->nhc_gw_family)
5479 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5480 
5481 		neigh = __ipv4_neigh_lookup_noref(dev,
5482 						 (__force u32)params->ipv4_dst);
5483 	} else {
5484 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5485 
5486 		params->family = AF_INET6;
5487 		*dst = nhc->nhc_gw.ipv6;
5488 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5489 	}
5490 
5491 	if (!neigh)
5492 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5493 
5494 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5495 }
5496 #endif
5497 
5498 #if IS_ENABLED(CONFIG_IPV6)
5499 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5500 			       u32 flags, bool check_mtu)
5501 {
5502 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5503 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5504 	struct fib6_result res = {};
5505 	struct neighbour *neigh;
5506 	struct net_device *dev;
5507 	struct inet6_dev *idev;
5508 	struct flowi6 fl6;
5509 	int strict = 0;
5510 	int oif, err;
5511 	u32 mtu = 0;
5512 
5513 	/* link local addresses are never forwarded */
5514 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5515 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5516 
5517 	dev = dev_get_by_index_rcu(net, params->ifindex);
5518 	if (unlikely(!dev))
5519 		return -ENODEV;
5520 
5521 	idev = __in6_dev_get_safely(dev);
5522 	if (unlikely(!idev || !idev->cnf.forwarding))
5523 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5524 
5525 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5526 		fl6.flowi6_iif = 1;
5527 		oif = fl6.flowi6_oif = params->ifindex;
5528 	} else {
5529 		oif = fl6.flowi6_iif = params->ifindex;
5530 		fl6.flowi6_oif = 0;
5531 		strict = RT6_LOOKUP_F_HAS_SADDR;
5532 	}
5533 	fl6.flowlabel = params->flowinfo;
5534 	fl6.flowi6_scope = 0;
5535 	fl6.flowi6_flags = 0;
5536 	fl6.mp_hash = 0;
5537 
5538 	fl6.flowi6_proto = params->l4_protocol;
5539 	fl6.daddr = *dst;
5540 	fl6.saddr = *src;
5541 	fl6.fl6_sport = params->sport;
5542 	fl6.fl6_dport = params->dport;
5543 
5544 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5545 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5546 		struct fib6_table *tb;
5547 
5548 		tb = ipv6_stub->fib6_get_table(net, tbid);
5549 		if (unlikely(!tb))
5550 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5551 
5552 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5553 						   strict);
5554 	} else {
5555 		fl6.flowi6_mark = 0;
5556 		fl6.flowi6_secid = 0;
5557 		fl6.flowi6_tun_key.tun_id = 0;
5558 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5559 
5560 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5561 	}
5562 
5563 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5564 		     res.f6i == net->ipv6.fib6_null_entry))
5565 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5566 
5567 	switch (res.fib6_type) {
5568 	/* only unicast is forwarded */
5569 	case RTN_UNICAST:
5570 		break;
5571 	case RTN_BLACKHOLE:
5572 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5573 	case RTN_UNREACHABLE:
5574 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5575 	case RTN_PROHIBIT:
5576 		return BPF_FIB_LKUP_RET_PROHIBIT;
5577 	default:
5578 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5579 	}
5580 
5581 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5582 				    fl6.flowi6_oif != 0, NULL, strict);
5583 
5584 	if (check_mtu) {
5585 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5586 		if (params->tot_len > mtu) {
5587 			params->mtu_result = mtu; /* union with tot_len */
5588 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5589 		}
5590 	}
5591 
5592 	if (res.nh->fib_nh_lws)
5593 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5594 
5595 	if (res.nh->fib_nh_gw_family)
5596 		*dst = res.nh->fib_nh_gw6;
5597 
5598 	dev = res.nh->fib_nh_dev;
5599 	params->rt_metric = res.f6i->fib6_metric;
5600 	params->ifindex = dev->ifindex;
5601 
5602 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5603 	 * not needed here.
5604 	 */
5605 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5606 	if (!neigh)
5607 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5608 
5609 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5610 }
5611 #endif
5612 
5613 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5614 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5615 {
5616 	if (plen < sizeof(*params))
5617 		return -EINVAL;
5618 
5619 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5620 		return -EINVAL;
5621 
5622 	switch (params->family) {
5623 #if IS_ENABLED(CONFIG_INET)
5624 	case AF_INET:
5625 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5626 					   flags, true);
5627 #endif
5628 #if IS_ENABLED(CONFIG_IPV6)
5629 	case AF_INET6:
5630 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5631 					   flags, true);
5632 #endif
5633 	}
5634 	return -EAFNOSUPPORT;
5635 }
5636 
5637 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5638 	.func		= bpf_xdp_fib_lookup,
5639 	.gpl_only	= true,
5640 	.ret_type	= RET_INTEGER,
5641 	.arg1_type      = ARG_PTR_TO_CTX,
5642 	.arg2_type      = ARG_PTR_TO_MEM,
5643 	.arg3_type      = ARG_CONST_SIZE,
5644 	.arg4_type	= ARG_ANYTHING,
5645 };
5646 
5647 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5648 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5649 {
5650 	struct net *net = dev_net(skb->dev);
5651 	int rc = -EAFNOSUPPORT;
5652 	bool check_mtu = false;
5653 
5654 	if (plen < sizeof(*params))
5655 		return -EINVAL;
5656 
5657 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5658 		return -EINVAL;
5659 
5660 	if (params->tot_len)
5661 		check_mtu = true;
5662 
5663 	switch (params->family) {
5664 #if IS_ENABLED(CONFIG_INET)
5665 	case AF_INET:
5666 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5667 		break;
5668 #endif
5669 #if IS_ENABLED(CONFIG_IPV6)
5670 	case AF_INET6:
5671 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5672 		break;
5673 #endif
5674 	}
5675 
5676 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5677 		struct net_device *dev;
5678 
5679 		/* When tot_len isn't provided by user, check skb
5680 		 * against MTU of FIB lookup resulting net_device
5681 		 */
5682 		dev = dev_get_by_index_rcu(net, params->ifindex);
5683 		if (!is_skb_forwardable(dev, skb))
5684 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5685 
5686 		params->mtu_result = dev->mtu; /* union with tot_len */
5687 	}
5688 
5689 	return rc;
5690 }
5691 
5692 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5693 	.func		= bpf_skb_fib_lookup,
5694 	.gpl_only	= true,
5695 	.ret_type	= RET_INTEGER,
5696 	.arg1_type      = ARG_PTR_TO_CTX,
5697 	.arg2_type      = ARG_PTR_TO_MEM,
5698 	.arg3_type      = ARG_CONST_SIZE,
5699 	.arg4_type	= ARG_ANYTHING,
5700 };
5701 
5702 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
5703 					    u32 ifindex)
5704 {
5705 	struct net *netns = dev_net(dev_curr);
5706 
5707 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
5708 	if (ifindex == 0)
5709 		return dev_curr;
5710 
5711 	return dev_get_by_index_rcu(netns, ifindex);
5712 }
5713 
5714 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
5715 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5716 {
5717 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5718 	struct net_device *dev = skb->dev;
5719 	int skb_len, dev_len;
5720 	int mtu;
5721 
5722 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
5723 		return -EINVAL;
5724 
5725 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
5726 		return -EINVAL;
5727 
5728 	dev = __dev_via_ifindex(dev, ifindex);
5729 	if (unlikely(!dev))
5730 		return -ENODEV;
5731 
5732 	mtu = READ_ONCE(dev->mtu);
5733 
5734 	dev_len = mtu + dev->hard_header_len;
5735 
5736 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5737 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
5738 
5739 	skb_len += len_diff; /* minus result pass check */
5740 	if (skb_len <= dev_len) {
5741 		ret = BPF_MTU_CHK_RET_SUCCESS;
5742 		goto out;
5743 	}
5744 	/* At this point, skb->len exceed MTU, but as it include length of all
5745 	 * segments, it can still be below MTU.  The SKB can possibly get
5746 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
5747 	 * must choose if segs are to be MTU checked.
5748 	 */
5749 	if (skb_is_gso(skb)) {
5750 		ret = BPF_MTU_CHK_RET_SUCCESS;
5751 
5752 		if (flags & BPF_MTU_CHK_SEGS &&
5753 		    !skb_gso_validate_network_len(skb, mtu))
5754 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
5755 	}
5756 out:
5757 	/* BPF verifier guarantees valid pointer */
5758 	*mtu_len = mtu;
5759 
5760 	return ret;
5761 }
5762 
5763 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
5764 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5765 {
5766 	struct net_device *dev = xdp->rxq->dev;
5767 	int xdp_len = xdp->data_end - xdp->data;
5768 	int ret = BPF_MTU_CHK_RET_SUCCESS;
5769 	int mtu, dev_len;
5770 
5771 	/* XDP variant doesn't support multi-buffer segment check (yet) */
5772 	if (unlikely(flags))
5773 		return -EINVAL;
5774 
5775 	dev = __dev_via_ifindex(dev, ifindex);
5776 	if (unlikely(!dev))
5777 		return -ENODEV;
5778 
5779 	mtu = READ_ONCE(dev->mtu);
5780 
5781 	/* Add L2-header as dev MTU is L3 size */
5782 	dev_len = mtu + dev->hard_header_len;
5783 
5784 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5785 	if (*mtu_len)
5786 		xdp_len = *mtu_len + dev->hard_header_len;
5787 
5788 	xdp_len += len_diff; /* minus result pass check */
5789 	if (xdp_len > dev_len)
5790 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5791 
5792 	/* BPF verifier guarantees valid pointer */
5793 	*mtu_len = mtu;
5794 
5795 	return ret;
5796 }
5797 
5798 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
5799 	.func		= bpf_skb_check_mtu,
5800 	.gpl_only	= true,
5801 	.ret_type	= RET_INTEGER,
5802 	.arg1_type      = ARG_PTR_TO_CTX,
5803 	.arg2_type      = ARG_ANYTHING,
5804 	.arg3_type      = ARG_PTR_TO_INT,
5805 	.arg4_type      = ARG_ANYTHING,
5806 	.arg5_type      = ARG_ANYTHING,
5807 };
5808 
5809 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
5810 	.func		= bpf_xdp_check_mtu,
5811 	.gpl_only	= true,
5812 	.ret_type	= RET_INTEGER,
5813 	.arg1_type      = ARG_PTR_TO_CTX,
5814 	.arg2_type      = ARG_ANYTHING,
5815 	.arg3_type      = ARG_PTR_TO_INT,
5816 	.arg4_type      = ARG_ANYTHING,
5817 	.arg5_type      = ARG_ANYTHING,
5818 };
5819 
5820 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5821 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5822 {
5823 	int err;
5824 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5825 
5826 	if (!seg6_validate_srh(srh, len, false))
5827 		return -EINVAL;
5828 
5829 	switch (type) {
5830 	case BPF_LWT_ENCAP_SEG6_INLINE:
5831 		if (skb->protocol != htons(ETH_P_IPV6))
5832 			return -EBADMSG;
5833 
5834 		err = seg6_do_srh_inline(skb, srh);
5835 		break;
5836 	case BPF_LWT_ENCAP_SEG6:
5837 		skb_reset_inner_headers(skb);
5838 		skb->encapsulation = 1;
5839 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5840 		break;
5841 	default:
5842 		return -EINVAL;
5843 	}
5844 
5845 	bpf_compute_data_pointers(skb);
5846 	if (err)
5847 		return err;
5848 
5849 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5850 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5851 
5852 	return seg6_lookup_nexthop(skb, NULL, 0);
5853 }
5854 #endif /* CONFIG_IPV6_SEG6_BPF */
5855 
5856 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5857 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5858 			     bool ingress)
5859 {
5860 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5861 }
5862 #endif
5863 
5864 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5865 	   u32, len)
5866 {
5867 	switch (type) {
5868 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5869 	case BPF_LWT_ENCAP_SEG6:
5870 	case BPF_LWT_ENCAP_SEG6_INLINE:
5871 		return bpf_push_seg6_encap(skb, type, hdr, len);
5872 #endif
5873 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5874 	case BPF_LWT_ENCAP_IP:
5875 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5876 #endif
5877 	default:
5878 		return -EINVAL;
5879 	}
5880 }
5881 
5882 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5883 	   void *, hdr, u32, len)
5884 {
5885 	switch (type) {
5886 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5887 	case BPF_LWT_ENCAP_IP:
5888 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5889 #endif
5890 	default:
5891 		return -EINVAL;
5892 	}
5893 }
5894 
5895 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5896 	.func		= bpf_lwt_in_push_encap,
5897 	.gpl_only	= false,
5898 	.ret_type	= RET_INTEGER,
5899 	.arg1_type	= ARG_PTR_TO_CTX,
5900 	.arg2_type	= ARG_ANYTHING,
5901 	.arg3_type	= ARG_PTR_TO_MEM,
5902 	.arg4_type	= ARG_CONST_SIZE
5903 };
5904 
5905 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5906 	.func		= bpf_lwt_xmit_push_encap,
5907 	.gpl_only	= false,
5908 	.ret_type	= RET_INTEGER,
5909 	.arg1_type	= ARG_PTR_TO_CTX,
5910 	.arg2_type	= ARG_ANYTHING,
5911 	.arg3_type	= ARG_PTR_TO_MEM,
5912 	.arg4_type	= ARG_CONST_SIZE
5913 };
5914 
5915 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5916 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5917 	   const void *, from, u32, len)
5918 {
5919 	struct seg6_bpf_srh_state *srh_state =
5920 		this_cpu_ptr(&seg6_bpf_srh_states);
5921 	struct ipv6_sr_hdr *srh = srh_state->srh;
5922 	void *srh_tlvs, *srh_end, *ptr;
5923 	int srhoff = 0;
5924 
5925 	if (srh == NULL)
5926 		return -EINVAL;
5927 
5928 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5929 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5930 
5931 	ptr = skb->data + offset;
5932 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
5933 		srh_state->valid = false;
5934 	else if (ptr < (void *)&srh->flags ||
5935 		 ptr + len > (void *)&srh->segments)
5936 		return -EFAULT;
5937 
5938 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
5939 		return -EFAULT;
5940 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5941 		return -EINVAL;
5942 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5943 
5944 	memcpy(skb->data + offset, from, len);
5945 	return 0;
5946 }
5947 
5948 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5949 	.func		= bpf_lwt_seg6_store_bytes,
5950 	.gpl_only	= false,
5951 	.ret_type	= RET_INTEGER,
5952 	.arg1_type	= ARG_PTR_TO_CTX,
5953 	.arg2_type	= ARG_ANYTHING,
5954 	.arg3_type	= ARG_PTR_TO_MEM,
5955 	.arg4_type	= ARG_CONST_SIZE
5956 };
5957 
5958 static void bpf_update_srh_state(struct sk_buff *skb)
5959 {
5960 	struct seg6_bpf_srh_state *srh_state =
5961 		this_cpu_ptr(&seg6_bpf_srh_states);
5962 	int srhoff = 0;
5963 
5964 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5965 		srh_state->srh = NULL;
5966 	} else {
5967 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5968 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5969 		srh_state->valid = true;
5970 	}
5971 }
5972 
5973 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5974 	   u32, action, void *, param, u32, param_len)
5975 {
5976 	struct seg6_bpf_srh_state *srh_state =
5977 		this_cpu_ptr(&seg6_bpf_srh_states);
5978 	int hdroff = 0;
5979 	int err;
5980 
5981 	switch (action) {
5982 	case SEG6_LOCAL_ACTION_END_X:
5983 		if (!seg6_bpf_has_valid_srh(skb))
5984 			return -EBADMSG;
5985 		if (param_len != sizeof(struct in6_addr))
5986 			return -EINVAL;
5987 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5988 	case SEG6_LOCAL_ACTION_END_T:
5989 		if (!seg6_bpf_has_valid_srh(skb))
5990 			return -EBADMSG;
5991 		if (param_len != sizeof(int))
5992 			return -EINVAL;
5993 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5994 	case SEG6_LOCAL_ACTION_END_DT6:
5995 		if (!seg6_bpf_has_valid_srh(skb))
5996 			return -EBADMSG;
5997 		if (param_len != sizeof(int))
5998 			return -EINVAL;
5999 
6000 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6001 			return -EBADMSG;
6002 		if (!pskb_pull(skb, hdroff))
6003 			return -EBADMSG;
6004 
6005 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6006 		skb_reset_network_header(skb);
6007 		skb_reset_transport_header(skb);
6008 		skb->encapsulation = 0;
6009 
6010 		bpf_compute_data_pointers(skb);
6011 		bpf_update_srh_state(skb);
6012 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6013 	case SEG6_LOCAL_ACTION_END_B6:
6014 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6015 			return -EBADMSG;
6016 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6017 					  param, param_len);
6018 		if (!err)
6019 			bpf_update_srh_state(skb);
6020 
6021 		return err;
6022 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6023 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6024 			return -EBADMSG;
6025 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6026 					  param, param_len);
6027 		if (!err)
6028 			bpf_update_srh_state(skb);
6029 
6030 		return err;
6031 	default:
6032 		return -EINVAL;
6033 	}
6034 }
6035 
6036 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6037 	.func		= bpf_lwt_seg6_action,
6038 	.gpl_only	= false,
6039 	.ret_type	= RET_INTEGER,
6040 	.arg1_type	= ARG_PTR_TO_CTX,
6041 	.arg2_type	= ARG_ANYTHING,
6042 	.arg3_type	= ARG_PTR_TO_MEM,
6043 	.arg4_type	= ARG_CONST_SIZE
6044 };
6045 
6046 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6047 	   s32, len)
6048 {
6049 	struct seg6_bpf_srh_state *srh_state =
6050 		this_cpu_ptr(&seg6_bpf_srh_states);
6051 	struct ipv6_sr_hdr *srh = srh_state->srh;
6052 	void *srh_end, *srh_tlvs, *ptr;
6053 	struct ipv6hdr *hdr;
6054 	int srhoff = 0;
6055 	int ret;
6056 
6057 	if (unlikely(srh == NULL))
6058 		return -EINVAL;
6059 
6060 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6061 			((srh->first_segment + 1) << 4));
6062 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6063 			srh_state->hdrlen);
6064 	ptr = skb->data + offset;
6065 
6066 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6067 		return -EFAULT;
6068 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6069 		return -EFAULT;
6070 
6071 	if (len > 0) {
6072 		ret = skb_cow_head(skb, len);
6073 		if (unlikely(ret < 0))
6074 			return ret;
6075 
6076 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6077 	} else {
6078 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6079 	}
6080 
6081 	bpf_compute_data_pointers(skb);
6082 	if (unlikely(ret < 0))
6083 		return ret;
6084 
6085 	hdr = (struct ipv6hdr *)skb->data;
6086 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6087 
6088 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6089 		return -EINVAL;
6090 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6091 	srh_state->hdrlen += len;
6092 	srh_state->valid = false;
6093 	return 0;
6094 }
6095 
6096 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6097 	.func		= bpf_lwt_seg6_adjust_srh,
6098 	.gpl_only	= false,
6099 	.ret_type	= RET_INTEGER,
6100 	.arg1_type	= ARG_PTR_TO_CTX,
6101 	.arg2_type	= ARG_ANYTHING,
6102 	.arg3_type	= ARG_ANYTHING,
6103 };
6104 #endif /* CONFIG_IPV6_SEG6_BPF */
6105 
6106 #ifdef CONFIG_INET
6107 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6108 			      int dif, int sdif, u8 family, u8 proto)
6109 {
6110 	bool refcounted = false;
6111 	struct sock *sk = NULL;
6112 
6113 	if (family == AF_INET) {
6114 		__be32 src4 = tuple->ipv4.saddr;
6115 		__be32 dst4 = tuple->ipv4.daddr;
6116 
6117 		if (proto == IPPROTO_TCP)
6118 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6119 					   src4, tuple->ipv4.sport,
6120 					   dst4, tuple->ipv4.dport,
6121 					   dif, sdif, &refcounted);
6122 		else
6123 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6124 					       dst4, tuple->ipv4.dport,
6125 					       dif, sdif, &udp_table, NULL);
6126 #if IS_ENABLED(CONFIG_IPV6)
6127 	} else {
6128 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6129 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6130 
6131 		if (proto == IPPROTO_TCP)
6132 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6133 					    src6, tuple->ipv6.sport,
6134 					    dst6, ntohs(tuple->ipv6.dport),
6135 					    dif, sdif, &refcounted);
6136 		else if (likely(ipv6_bpf_stub))
6137 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6138 							    src6, tuple->ipv6.sport,
6139 							    dst6, tuple->ipv6.dport,
6140 							    dif, sdif,
6141 							    &udp_table, NULL);
6142 #endif
6143 	}
6144 
6145 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6146 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6147 		sk = NULL;
6148 	}
6149 	return sk;
6150 }
6151 
6152 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6153  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6154  * Returns the socket as an 'unsigned long' to simplify the casting in the
6155  * callers to satisfy BPF_CALL declarations.
6156  */
6157 static struct sock *
6158 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6159 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6160 		 u64 flags)
6161 {
6162 	struct sock *sk = NULL;
6163 	u8 family = AF_UNSPEC;
6164 	struct net *net;
6165 	int sdif;
6166 
6167 	if (len == sizeof(tuple->ipv4))
6168 		family = AF_INET;
6169 	else if (len == sizeof(tuple->ipv6))
6170 		family = AF_INET6;
6171 	else
6172 		return NULL;
6173 
6174 	if (unlikely(family == AF_UNSPEC || flags ||
6175 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6176 		goto out;
6177 
6178 	if (family == AF_INET)
6179 		sdif = inet_sdif(skb);
6180 	else
6181 		sdif = inet6_sdif(skb);
6182 
6183 	if ((s32)netns_id < 0) {
6184 		net = caller_net;
6185 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6186 	} else {
6187 		net = get_net_ns_by_id(caller_net, netns_id);
6188 		if (unlikely(!net))
6189 			goto out;
6190 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6191 		put_net(net);
6192 	}
6193 
6194 out:
6195 	return sk;
6196 }
6197 
6198 static struct sock *
6199 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6200 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6201 		u64 flags)
6202 {
6203 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6204 					   ifindex, proto, netns_id, flags);
6205 
6206 	if (sk) {
6207 		sk = sk_to_full_sk(sk);
6208 		if (!sk_fullsock(sk)) {
6209 			sock_gen_put(sk);
6210 			return NULL;
6211 		}
6212 	}
6213 
6214 	return sk;
6215 }
6216 
6217 static struct sock *
6218 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6219 	       u8 proto, u64 netns_id, u64 flags)
6220 {
6221 	struct net *caller_net;
6222 	int ifindex;
6223 
6224 	if (skb->dev) {
6225 		caller_net = dev_net(skb->dev);
6226 		ifindex = skb->dev->ifindex;
6227 	} else {
6228 		caller_net = sock_net(skb->sk);
6229 		ifindex = 0;
6230 	}
6231 
6232 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6233 				netns_id, flags);
6234 }
6235 
6236 static struct sock *
6237 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6238 	      u8 proto, u64 netns_id, u64 flags)
6239 {
6240 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6241 					 flags);
6242 
6243 	if (sk) {
6244 		sk = sk_to_full_sk(sk);
6245 		if (!sk_fullsock(sk)) {
6246 			sock_gen_put(sk);
6247 			return NULL;
6248 		}
6249 	}
6250 
6251 	return sk;
6252 }
6253 
6254 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6255 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6256 {
6257 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6258 					     netns_id, flags);
6259 }
6260 
6261 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6262 	.func		= bpf_skc_lookup_tcp,
6263 	.gpl_only	= false,
6264 	.pkt_access	= true,
6265 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6266 	.arg1_type	= ARG_PTR_TO_CTX,
6267 	.arg2_type	= ARG_PTR_TO_MEM,
6268 	.arg3_type	= ARG_CONST_SIZE,
6269 	.arg4_type	= ARG_ANYTHING,
6270 	.arg5_type	= ARG_ANYTHING,
6271 };
6272 
6273 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6274 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6275 {
6276 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6277 					    netns_id, flags);
6278 }
6279 
6280 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6281 	.func		= bpf_sk_lookup_tcp,
6282 	.gpl_only	= false,
6283 	.pkt_access	= true,
6284 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6285 	.arg1_type	= ARG_PTR_TO_CTX,
6286 	.arg2_type	= ARG_PTR_TO_MEM,
6287 	.arg3_type	= ARG_CONST_SIZE,
6288 	.arg4_type	= ARG_ANYTHING,
6289 	.arg5_type	= ARG_ANYTHING,
6290 };
6291 
6292 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6293 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6294 {
6295 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6296 					    netns_id, flags);
6297 }
6298 
6299 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6300 	.func		= bpf_sk_lookup_udp,
6301 	.gpl_only	= false,
6302 	.pkt_access	= true,
6303 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6304 	.arg1_type	= ARG_PTR_TO_CTX,
6305 	.arg2_type	= ARG_PTR_TO_MEM,
6306 	.arg3_type	= ARG_CONST_SIZE,
6307 	.arg4_type	= ARG_ANYTHING,
6308 	.arg5_type	= ARG_ANYTHING,
6309 };
6310 
6311 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6312 {
6313 	if (sk && sk_is_refcounted(sk))
6314 		sock_gen_put(sk);
6315 	return 0;
6316 }
6317 
6318 static const struct bpf_func_proto bpf_sk_release_proto = {
6319 	.func		= bpf_sk_release,
6320 	.gpl_only	= false,
6321 	.ret_type	= RET_INTEGER,
6322 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6323 };
6324 
6325 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6326 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6327 {
6328 	struct net *caller_net = dev_net(ctx->rxq->dev);
6329 	int ifindex = ctx->rxq->dev->ifindex;
6330 
6331 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6332 					      ifindex, IPPROTO_UDP, netns_id,
6333 					      flags);
6334 }
6335 
6336 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6337 	.func           = bpf_xdp_sk_lookup_udp,
6338 	.gpl_only       = false,
6339 	.pkt_access     = true,
6340 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6341 	.arg1_type      = ARG_PTR_TO_CTX,
6342 	.arg2_type      = ARG_PTR_TO_MEM,
6343 	.arg3_type      = ARG_CONST_SIZE,
6344 	.arg4_type      = ARG_ANYTHING,
6345 	.arg5_type      = ARG_ANYTHING,
6346 };
6347 
6348 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6349 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6350 {
6351 	struct net *caller_net = dev_net(ctx->rxq->dev);
6352 	int ifindex = ctx->rxq->dev->ifindex;
6353 
6354 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6355 					       ifindex, IPPROTO_TCP, netns_id,
6356 					       flags);
6357 }
6358 
6359 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6360 	.func           = bpf_xdp_skc_lookup_tcp,
6361 	.gpl_only       = false,
6362 	.pkt_access     = true,
6363 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6364 	.arg1_type      = ARG_PTR_TO_CTX,
6365 	.arg2_type      = ARG_PTR_TO_MEM,
6366 	.arg3_type      = ARG_CONST_SIZE,
6367 	.arg4_type      = ARG_ANYTHING,
6368 	.arg5_type      = ARG_ANYTHING,
6369 };
6370 
6371 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6372 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6373 {
6374 	struct net *caller_net = dev_net(ctx->rxq->dev);
6375 	int ifindex = ctx->rxq->dev->ifindex;
6376 
6377 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6378 					      ifindex, IPPROTO_TCP, netns_id,
6379 					      flags);
6380 }
6381 
6382 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6383 	.func           = bpf_xdp_sk_lookup_tcp,
6384 	.gpl_only       = false,
6385 	.pkt_access     = true,
6386 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6387 	.arg1_type      = ARG_PTR_TO_CTX,
6388 	.arg2_type      = ARG_PTR_TO_MEM,
6389 	.arg3_type      = ARG_CONST_SIZE,
6390 	.arg4_type      = ARG_ANYTHING,
6391 	.arg5_type      = ARG_ANYTHING,
6392 };
6393 
6394 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6395 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6396 {
6397 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6398 					       sock_net(ctx->sk), 0,
6399 					       IPPROTO_TCP, netns_id, flags);
6400 }
6401 
6402 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6403 	.func		= bpf_sock_addr_skc_lookup_tcp,
6404 	.gpl_only	= false,
6405 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6406 	.arg1_type	= ARG_PTR_TO_CTX,
6407 	.arg2_type	= ARG_PTR_TO_MEM,
6408 	.arg3_type	= ARG_CONST_SIZE,
6409 	.arg4_type	= ARG_ANYTHING,
6410 	.arg5_type	= ARG_ANYTHING,
6411 };
6412 
6413 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6414 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6415 {
6416 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6417 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6418 					      netns_id, flags);
6419 }
6420 
6421 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6422 	.func		= bpf_sock_addr_sk_lookup_tcp,
6423 	.gpl_only	= false,
6424 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6425 	.arg1_type	= ARG_PTR_TO_CTX,
6426 	.arg2_type	= ARG_PTR_TO_MEM,
6427 	.arg3_type	= ARG_CONST_SIZE,
6428 	.arg4_type	= ARG_ANYTHING,
6429 	.arg5_type	= ARG_ANYTHING,
6430 };
6431 
6432 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6433 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6434 {
6435 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6436 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6437 					      netns_id, flags);
6438 }
6439 
6440 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6441 	.func		= bpf_sock_addr_sk_lookup_udp,
6442 	.gpl_only	= false,
6443 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6444 	.arg1_type	= ARG_PTR_TO_CTX,
6445 	.arg2_type	= ARG_PTR_TO_MEM,
6446 	.arg3_type	= ARG_CONST_SIZE,
6447 	.arg4_type	= ARG_ANYTHING,
6448 	.arg5_type	= ARG_ANYTHING,
6449 };
6450 
6451 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6452 				  struct bpf_insn_access_aux *info)
6453 {
6454 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6455 					  icsk_retransmits))
6456 		return false;
6457 
6458 	if (off % size != 0)
6459 		return false;
6460 
6461 	switch (off) {
6462 	case offsetof(struct bpf_tcp_sock, bytes_received):
6463 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6464 		return size == sizeof(__u64);
6465 	default:
6466 		return size == sizeof(__u32);
6467 	}
6468 }
6469 
6470 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6471 				    const struct bpf_insn *si,
6472 				    struct bpf_insn *insn_buf,
6473 				    struct bpf_prog *prog, u32 *target_size)
6474 {
6475 	struct bpf_insn *insn = insn_buf;
6476 
6477 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6478 	do {								\
6479 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6480 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6481 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6482 				      si->dst_reg, si->src_reg,		\
6483 				      offsetof(struct tcp_sock, FIELD)); \
6484 	} while (0)
6485 
6486 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6487 	do {								\
6488 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6489 					  FIELD) >			\
6490 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6491 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6492 					struct inet_connection_sock,	\
6493 					FIELD),				\
6494 				      si->dst_reg, si->src_reg,		\
6495 				      offsetof(				\
6496 					struct inet_connection_sock,	\
6497 					FIELD));			\
6498 	} while (0)
6499 
6500 	if (insn > insn_buf)
6501 		return insn - insn_buf;
6502 
6503 	switch (si->off) {
6504 	case offsetof(struct bpf_tcp_sock, rtt_min):
6505 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6506 			     sizeof(struct minmax));
6507 		BUILD_BUG_ON(sizeof(struct minmax) <
6508 			     sizeof(struct minmax_sample));
6509 
6510 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6511 				      offsetof(struct tcp_sock, rtt_min) +
6512 				      offsetof(struct minmax_sample, v));
6513 		break;
6514 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6515 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6516 		break;
6517 	case offsetof(struct bpf_tcp_sock, srtt_us):
6518 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6519 		break;
6520 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6521 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6522 		break;
6523 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6524 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6525 		break;
6526 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6527 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6528 		break;
6529 	case offsetof(struct bpf_tcp_sock, snd_una):
6530 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6531 		break;
6532 	case offsetof(struct bpf_tcp_sock, mss_cache):
6533 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6534 		break;
6535 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6536 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6537 		break;
6538 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6539 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6540 		break;
6541 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6542 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6543 		break;
6544 	case offsetof(struct bpf_tcp_sock, packets_out):
6545 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6546 		break;
6547 	case offsetof(struct bpf_tcp_sock, retrans_out):
6548 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6549 		break;
6550 	case offsetof(struct bpf_tcp_sock, total_retrans):
6551 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6552 		break;
6553 	case offsetof(struct bpf_tcp_sock, segs_in):
6554 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6555 		break;
6556 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6557 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6558 		break;
6559 	case offsetof(struct bpf_tcp_sock, segs_out):
6560 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6561 		break;
6562 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6563 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6564 		break;
6565 	case offsetof(struct bpf_tcp_sock, lost_out):
6566 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6567 		break;
6568 	case offsetof(struct bpf_tcp_sock, sacked_out):
6569 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6570 		break;
6571 	case offsetof(struct bpf_tcp_sock, bytes_received):
6572 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6573 		break;
6574 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6575 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6576 		break;
6577 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6578 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6579 		break;
6580 	case offsetof(struct bpf_tcp_sock, delivered):
6581 		BPF_TCP_SOCK_GET_COMMON(delivered);
6582 		break;
6583 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6584 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6585 		break;
6586 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6587 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6588 		break;
6589 	}
6590 
6591 	return insn - insn_buf;
6592 }
6593 
6594 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6595 {
6596 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6597 		return (unsigned long)sk;
6598 
6599 	return (unsigned long)NULL;
6600 }
6601 
6602 const struct bpf_func_proto bpf_tcp_sock_proto = {
6603 	.func		= bpf_tcp_sock,
6604 	.gpl_only	= false,
6605 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6606 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6607 };
6608 
6609 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6610 {
6611 	sk = sk_to_full_sk(sk);
6612 
6613 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6614 		return (unsigned long)sk;
6615 
6616 	return (unsigned long)NULL;
6617 }
6618 
6619 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6620 	.func		= bpf_get_listener_sock,
6621 	.gpl_only	= false,
6622 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6623 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6624 };
6625 
6626 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6627 {
6628 	unsigned int iphdr_len;
6629 
6630 	switch (skb_protocol(skb, true)) {
6631 	case cpu_to_be16(ETH_P_IP):
6632 		iphdr_len = sizeof(struct iphdr);
6633 		break;
6634 	case cpu_to_be16(ETH_P_IPV6):
6635 		iphdr_len = sizeof(struct ipv6hdr);
6636 		break;
6637 	default:
6638 		return 0;
6639 	}
6640 
6641 	if (skb_headlen(skb) < iphdr_len)
6642 		return 0;
6643 
6644 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6645 		return 0;
6646 
6647 	return INET_ECN_set_ce(skb);
6648 }
6649 
6650 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6651 				  struct bpf_insn_access_aux *info)
6652 {
6653 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6654 		return false;
6655 
6656 	if (off % size != 0)
6657 		return false;
6658 
6659 	switch (off) {
6660 	default:
6661 		return size == sizeof(__u32);
6662 	}
6663 }
6664 
6665 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6666 				    const struct bpf_insn *si,
6667 				    struct bpf_insn *insn_buf,
6668 				    struct bpf_prog *prog, u32 *target_size)
6669 {
6670 	struct bpf_insn *insn = insn_buf;
6671 
6672 #define BPF_XDP_SOCK_GET(FIELD)						\
6673 	do {								\
6674 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
6675 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
6676 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6677 				      si->dst_reg, si->src_reg,		\
6678 				      offsetof(struct xdp_sock, FIELD)); \
6679 	} while (0)
6680 
6681 	switch (si->off) {
6682 	case offsetof(struct bpf_xdp_sock, queue_id):
6683 		BPF_XDP_SOCK_GET(queue_id);
6684 		break;
6685 	}
6686 
6687 	return insn - insn_buf;
6688 }
6689 
6690 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6691 	.func           = bpf_skb_ecn_set_ce,
6692 	.gpl_only       = false,
6693 	.ret_type       = RET_INTEGER,
6694 	.arg1_type      = ARG_PTR_TO_CTX,
6695 };
6696 
6697 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6698 	   struct tcphdr *, th, u32, th_len)
6699 {
6700 #ifdef CONFIG_SYN_COOKIES
6701 	u32 cookie;
6702 	int ret;
6703 
6704 	if (unlikely(!sk || th_len < sizeof(*th)))
6705 		return -EINVAL;
6706 
6707 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6708 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6709 		return -EINVAL;
6710 
6711 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6712 		return -EINVAL;
6713 
6714 	if (!th->ack || th->rst || th->syn)
6715 		return -ENOENT;
6716 
6717 	if (tcp_synq_no_recent_overflow(sk))
6718 		return -ENOENT;
6719 
6720 	cookie = ntohl(th->ack_seq) - 1;
6721 
6722 	switch (sk->sk_family) {
6723 	case AF_INET:
6724 		if (unlikely(iph_len < sizeof(struct iphdr)))
6725 			return -EINVAL;
6726 
6727 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6728 		break;
6729 
6730 #if IS_BUILTIN(CONFIG_IPV6)
6731 	case AF_INET6:
6732 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6733 			return -EINVAL;
6734 
6735 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6736 		break;
6737 #endif /* CONFIG_IPV6 */
6738 
6739 	default:
6740 		return -EPROTONOSUPPORT;
6741 	}
6742 
6743 	if (ret > 0)
6744 		return 0;
6745 
6746 	return -ENOENT;
6747 #else
6748 	return -ENOTSUPP;
6749 #endif
6750 }
6751 
6752 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6753 	.func		= bpf_tcp_check_syncookie,
6754 	.gpl_only	= true,
6755 	.pkt_access	= true,
6756 	.ret_type	= RET_INTEGER,
6757 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6758 	.arg2_type	= ARG_PTR_TO_MEM,
6759 	.arg3_type	= ARG_CONST_SIZE,
6760 	.arg4_type	= ARG_PTR_TO_MEM,
6761 	.arg5_type	= ARG_CONST_SIZE,
6762 };
6763 
6764 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6765 	   struct tcphdr *, th, u32, th_len)
6766 {
6767 #ifdef CONFIG_SYN_COOKIES
6768 	u32 cookie;
6769 	u16 mss;
6770 
6771 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6772 		return -EINVAL;
6773 
6774 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6775 		return -EINVAL;
6776 
6777 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6778 		return -ENOENT;
6779 
6780 	if (!th->syn || th->ack || th->fin || th->rst)
6781 		return -EINVAL;
6782 
6783 	if (unlikely(iph_len < sizeof(struct iphdr)))
6784 		return -EINVAL;
6785 
6786 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6787 	 * same offset so we can cast to the shorter header (struct iphdr).
6788 	 */
6789 	switch (((struct iphdr *)iph)->version) {
6790 	case 4:
6791 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6792 			return -EINVAL;
6793 
6794 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6795 		break;
6796 
6797 #if IS_BUILTIN(CONFIG_IPV6)
6798 	case 6:
6799 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6800 			return -EINVAL;
6801 
6802 		if (sk->sk_family != AF_INET6)
6803 			return -EINVAL;
6804 
6805 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6806 		break;
6807 #endif /* CONFIG_IPV6 */
6808 
6809 	default:
6810 		return -EPROTONOSUPPORT;
6811 	}
6812 	if (mss == 0)
6813 		return -ENOENT;
6814 
6815 	return cookie | ((u64)mss << 32);
6816 #else
6817 	return -EOPNOTSUPP;
6818 #endif /* CONFIG_SYN_COOKIES */
6819 }
6820 
6821 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6822 	.func		= bpf_tcp_gen_syncookie,
6823 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
6824 	.pkt_access	= true,
6825 	.ret_type	= RET_INTEGER,
6826 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6827 	.arg2_type	= ARG_PTR_TO_MEM,
6828 	.arg3_type	= ARG_CONST_SIZE,
6829 	.arg4_type	= ARG_PTR_TO_MEM,
6830 	.arg5_type	= ARG_CONST_SIZE,
6831 };
6832 
6833 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6834 {
6835 	if (!sk || flags != 0)
6836 		return -EINVAL;
6837 	if (!skb_at_tc_ingress(skb))
6838 		return -EOPNOTSUPP;
6839 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6840 		return -ENETUNREACH;
6841 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6842 		return -ESOCKTNOSUPPORT;
6843 	if (sk_is_refcounted(sk) &&
6844 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6845 		return -ENOENT;
6846 
6847 	skb_orphan(skb);
6848 	skb->sk = sk;
6849 	skb->destructor = sock_pfree;
6850 
6851 	return 0;
6852 }
6853 
6854 static const struct bpf_func_proto bpf_sk_assign_proto = {
6855 	.func		= bpf_sk_assign,
6856 	.gpl_only	= false,
6857 	.ret_type	= RET_INTEGER,
6858 	.arg1_type      = ARG_PTR_TO_CTX,
6859 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6860 	.arg3_type	= ARG_ANYTHING,
6861 };
6862 
6863 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6864 				    u8 search_kind, const u8 *magic,
6865 				    u8 magic_len, bool *eol)
6866 {
6867 	u8 kind, kind_len;
6868 
6869 	*eol = false;
6870 
6871 	while (op < opend) {
6872 		kind = op[0];
6873 
6874 		if (kind == TCPOPT_EOL) {
6875 			*eol = true;
6876 			return ERR_PTR(-ENOMSG);
6877 		} else if (kind == TCPOPT_NOP) {
6878 			op++;
6879 			continue;
6880 		}
6881 
6882 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6883 			/* Something is wrong in the received header.
6884 			 * Follow the TCP stack's tcp_parse_options()
6885 			 * and just bail here.
6886 			 */
6887 			return ERR_PTR(-EFAULT);
6888 
6889 		kind_len = op[1];
6890 		if (search_kind == kind) {
6891 			if (!magic_len)
6892 				return op;
6893 
6894 			if (magic_len > kind_len - 2)
6895 				return ERR_PTR(-ENOMSG);
6896 
6897 			if (!memcmp(&op[2], magic, magic_len))
6898 				return op;
6899 		}
6900 
6901 		op += kind_len;
6902 	}
6903 
6904 	return ERR_PTR(-ENOMSG);
6905 }
6906 
6907 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6908 	   void *, search_res, u32, len, u64, flags)
6909 {
6910 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6911 	const u8 *op, *opend, *magic, *search = search_res;
6912 	u8 search_kind, search_len, copy_len, magic_len;
6913 	int ret;
6914 
6915 	/* 2 byte is the minimal option len except TCPOPT_NOP and
6916 	 * TCPOPT_EOL which are useless for the bpf prog to learn
6917 	 * and this helper disallow loading them also.
6918 	 */
6919 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6920 		return -EINVAL;
6921 
6922 	search_kind = search[0];
6923 	search_len = search[1];
6924 
6925 	if (search_len > len || search_kind == TCPOPT_NOP ||
6926 	    search_kind == TCPOPT_EOL)
6927 		return -EINVAL;
6928 
6929 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
6930 		/* 16 or 32 bit magic.  +2 for kind and kind length */
6931 		if (search_len != 4 && search_len != 6)
6932 			return -EINVAL;
6933 		magic = &search[2];
6934 		magic_len = search_len - 2;
6935 	} else {
6936 		if (search_len)
6937 			return -EINVAL;
6938 		magic = NULL;
6939 		magic_len = 0;
6940 	}
6941 
6942 	if (load_syn) {
6943 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6944 		if (ret < 0)
6945 			return ret;
6946 
6947 		opend = op + ret;
6948 		op += sizeof(struct tcphdr);
6949 	} else {
6950 		if (!bpf_sock->skb ||
6951 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6952 			/* This bpf_sock->op cannot call this helper */
6953 			return -EPERM;
6954 
6955 		opend = bpf_sock->skb_data_end;
6956 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
6957 	}
6958 
6959 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6960 				&eol);
6961 	if (IS_ERR(op))
6962 		return PTR_ERR(op);
6963 
6964 	copy_len = op[1];
6965 	ret = copy_len;
6966 	if (copy_len > len) {
6967 		ret = -ENOSPC;
6968 		copy_len = len;
6969 	}
6970 
6971 	memcpy(search_res, op, copy_len);
6972 	return ret;
6973 }
6974 
6975 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6976 	.func		= bpf_sock_ops_load_hdr_opt,
6977 	.gpl_only	= false,
6978 	.ret_type	= RET_INTEGER,
6979 	.arg1_type	= ARG_PTR_TO_CTX,
6980 	.arg2_type	= ARG_PTR_TO_MEM,
6981 	.arg3_type	= ARG_CONST_SIZE,
6982 	.arg4_type	= ARG_ANYTHING,
6983 };
6984 
6985 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6986 	   const void *, from, u32, len, u64, flags)
6987 {
6988 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
6989 	const u8 *op, *new_op, *magic = NULL;
6990 	struct sk_buff *skb;
6991 	bool eol;
6992 
6993 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6994 		return -EPERM;
6995 
6996 	if (len < 2 || flags)
6997 		return -EINVAL;
6998 
6999 	new_op = from;
7000 	new_kind = new_op[0];
7001 	new_kind_len = new_op[1];
7002 
7003 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7004 	    new_kind == TCPOPT_EOL)
7005 		return -EINVAL;
7006 
7007 	if (new_kind_len > bpf_sock->remaining_opt_len)
7008 		return -ENOSPC;
7009 
7010 	/* 253 is another experimental kind */
7011 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7012 		if (new_kind_len < 4)
7013 			return -EINVAL;
7014 		/* Match for the 2 byte magic also.
7015 		 * RFC 6994: the magic could be 2 or 4 bytes.
7016 		 * Hence, matching by 2 byte only is on the
7017 		 * conservative side but it is the right
7018 		 * thing to do for the 'search-for-duplication'
7019 		 * purpose.
7020 		 */
7021 		magic = &new_op[2];
7022 		magic_len = 2;
7023 	}
7024 
7025 	/* Check for duplication */
7026 	skb = bpf_sock->skb;
7027 	op = skb->data + sizeof(struct tcphdr);
7028 	opend = bpf_sock->skb_data_end;
7029 
7030 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7031 				&eol);
7032 	if (!IS_ERR(op))
7033 		return -EEXIST;
7034 
7035 	if (PTR_ERR(op) != -ENOMSG)
7036 		return PTR_ERR(op);
7037 
7038 	if (eol)
7039 		/* The option has been ended.  Treat it as no more
7040 		 * header option can be written.
7041 		 */
7042 		return -ENOSPC;
7043 
7044 	/* No duplication found.  Store the header option. */
7045 	memcpy(opend, from, new_kind_len);
7046 
7047 	bpf_sock->remaining_opt_len -= new_kind_len;
7048 	bpf_sock->skb_data_end += new_kind_len;
7049 
7050 	return 0;
7051 }
7052 
7053 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7054 	.func		= bpf_sock_ops_store_hdr_opt,
7055 	.gpl_only	= false,
7056 	.ret_type	= RET_INTEGER,
7057 	.arg1_type	= ARG_PTR_TO_CTX,
7058 	.arg2_type	= ARG_PTR_TO_MEM,
7059 	.arg3_type	= ARG_CONST_SIZE,
7060 	.arg4_type	= ARG_ANYTHING,
7061 };
7062 
7063 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7064 	   u32, len, u64, flags)
7065 {
7066 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7067 		return -EPERM;
7068 
7069 	if (flags || len < 2)
7070 		return -EINVAL;
7071 
7072 	if (len > bpf_sock->remaining_opt_len)
7073 		return -ENOSPC;
7074 
7075 	bpf_sock->remaining_opt_len -= len;
7076 
7077 	return 0;
7078 }
7079 
7080 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7081 	.func		= bpf_sock_ops_reserve_hdr_opt,
7082 	.gpl_only	= false,
7083 	.ret_type	= RET_INTEGER,
7084 	.arg1_type	= ARG_PTR_TO_CTX,
7085 	.arg2_type	= ARG_ANYTHING,
7086 	.arg3_type	= ARG_ANYTHING,
7087 };
7088 
7089 #endif /* CONFIG_INET */
7090 
7091 bool bpf_helper_changes_pkt_data(void *func)
7092 {
7093 	if (func == bpf_skb_vlan_push ||
7094 	    func == bpf_skb_vlan_pop ||
7095 	    func == bpf_skb_store_bytes ||
7096 	    func == bpf_skb_change_proto ||
7097 	    func == bpf_skb_change_head ||
7098 	    func == sk_skb_change_head ||
7099 	    func == bpf_skb_change_tail ||
7100 	    func == sk_skb_change_tail ||
7101 	    func == bpf_skb_adjust_room ||
7102 	    func == sk_skb_adjust_room ||
7103 	    func == bpf_skb_pull_data ||
7104 	    func == sk_skb_pull_data ||
7105 	    func == bpf_clone_redirect ||
7106 	    func == bpf_l3_csum_replace ||
7107 	    func == bpf_l4_csum_replace ||
7108 	    func == bpf_xdp_adjust_head ||
7109 	    func == bpf_xdp_adjust_meta ||
7110 	    func == bpf_msg_pull_data ||
7111 	    func == bpf_msg_push_data ||
7112 	    func == bpf_msg_pop_data ||
7113 	    func == bpf_xdp_adjust_tail ||
7114 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7115 	    func == bpf_lwt_seg6_store_bytes ||
7116 	    func == bpf_lwt_seg6_adjust_srh ||
7117 	    func == bpf_lwt_seg6_action ||
7118 #endif
7119 #ifdef CONFIG_INET
7120 	    func == bpf_sock_ops_store_hdr_opt ||
7121 #endif
7122 	    func == bpf_lwt_in_push_encap ||
7123 	    func == bpf_lwt_xmit_push_encap)
7124 		return true;
7125 
7126 	return false;
7127 }
7128 
7129 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7130 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7131 
7132 static const struct bpf_func_proto *
7133 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7134 {
7135 	switch (func_id) {
7136 	/* inet and inet6 sockets are created in a process
7137 	 * context so there is always a valid uid/gid
7138 	 */
7139 	case BPF_FUNC_get_current_uid_gid:
7140 		return &bpf_get_current_uid_gid_proto;
7141 	case BPF_FUNC_get_local_storage:
7142 		return &bpf_get_local_storage_proto;
7143 	case BPF_FUNC_get_socket_cookie:
7144 		return &bpf_get_socket_cookie_sock_proto;
7145 	case BPF_FUNC_get_netns_cookie:
7146 		return &bpf_get_netns_cookie_sock_proto;
7147 	case BPF_FUNC_perf_event_output:
7148 		return &bpf_event_output_data_proto;
7149 	case BPF_FUNC_get_current_pid_tgid:
7150 		return &bpf_get_current_pid_tgid_proto;
7151 	case BPF_FUNC_get_current_comm:
7152 		return &bpf_get_current_comm_proto;
7153 #ifdef CONFIG_CGROUPS
7154 	case BPF_FUNC_get_current_cgroup_id:
7155 		return &bpf_get_current_cgroup_id_proto;
7156 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7157 		return &bpf_get_current_ancestor_cgroup_id_proto;
7158 #endif
7159 #ifdef CONFIG_CGROUP_NET_CLASSID
7160 	case BPF_FUNC_get_cgroup_classid:
7161 		return &bpf_get_cgroup_classid_curr_proto;
7162 #endif
7163 	case BPF_FUNC_sk_storage_get:
7164 		return &bpf_sk_storage_get_cg_sock_proto;
7165 	default:
7166 		return bpf_base_func_proto(func_id);
7167 	}
7168 }
7169 
7170 static const struct bpf_func_proto *
7171 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7172 {
7173 	switch (func_id) {
7174 	/* inet and inet6 sockets are created in a process
7175 	 * context so there is always a valid uid/gid
7176 	 */
7177 	case BPF_FUNC_get_current_uid_gid:
7178 		return &bpf_get_current_uid_gid_proto;
7179 	case BPF_FUNC_bind:
7180 		switch (prog->expected_attach_type) {
7181 		case BPF_CGROUP_INET4_CONNECT:
7182 		case BPF_CGROUP_INET6_CONNECT:
7183 			return &bpf_bind_proto;
7184 		default:
7185 			return NULL;
7186 		}
7187 	case BPF_FUNC_get_socket_cookie:
7188 		return &bpf_get_socket_cookie_sock_addr_proto;
7189 	case BPF_FUNC_get_netns_cookie:
7190 		return &bpf_get_netns_cookie_sock_addr_proto;
7191 	case BPF_FUNC_get_local_storage:
7192 		return &bpf_get_local_storage_proto;
7193 	case BPF_FUNC_perf_event_output:
7194 		return &bpf_event_output_data_proto;
7195 	case BPF_FUNC_get_current_pid_tgid:
7196 		return &bpf_get_current_pid_tgid_proto;
7197 	case BPF_FUNC_get_current_comm:
7198 		return &bpf_get_current_comm_proto;
7199 #ifdef CONFIG_CGROUPS
7200 	case BPF_FUNC_get_current_cgroup_id:
7201 		return &bpf_get_current_cgroup_id_proto;
7202 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7203 		return &bpf_get_current_ancestor_cgroup_id_proto;
7204 #endif
7205 #ifdef CONFIG_CGROUP_NET_CLASSID
7206 	case BPF_FUNC_get_cgroup_classid:
7207 		return &bpf_get_cgroup_classid_curr_proto;
7208 #endif
7209 #ifdef CONFIG_INET
7210 	case BPF_FUNC_sk_lookup_tcp:
7211 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7212 	case BPF_FUNC_sk_lookup_udp:
7213 		return &bpf_sock_addr_sk_lookup_udp_proto;
7214 	case BPF_FUNC_sk_release:
7215 		return &bpf_sk_release_proto;
7216 	case BPF_FUNC_skc_lookup_tcp:
7217 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7218 #endif /* CONFIG_INET */
7219 	case BPF_FUNC_sk_storage_get:
7220 		return &bpf_sk_storage_get_proto;
7221 	case BPF_FUNC_sk_storage_delete:
7222 		return &bpf_sk_storage_delete_proto;
7223 	case BPF_FUNC_setsockopt:
7224 		switch (prog->expected_attach_type) {
7225 		case BPF_CGROUP_INET4_BIND:
7226 		case BPF_CGROUP_INET6_BIND:
7227 		case BPF_CGROUP_INET4_CONNECT:
7228 		case BPF_CGROUP_INET6_CONNECT:
7229 		case BPF_CGROUP_UDP4_RECVMSG:
7230 		case BPF_CGROUP_UDP6_RECVMSG:
7231 		case BPF_CGROUP_UDP4_SENDMSG:
7232 		case BPF_CGROUP_UDP6_SENDMSG:
7233 		case BPF_CGROUP_INET4_GETPEERNAME:
7234 		case BPF_CGROUP_INET6_GETPEERNAME:
7235 		case BPF_CGROUP_INET4_GETSOCKNAME:
7236 		case BPF_CGROUP_INET6_GETSOCKNAME:
7237 			return &bpf_sock_addr_setsockopt_proto;
7238 		default:
7239 			return NULL;
7240 		}
7241 	case BPF_FUNC_getsockopt:
7242 		switch (prog->expected_attach_type) {
7243 		case BPF_CGROUP_INET4_BIND:
7244 		case BPF_CGROUP_INET6_BIND:
7245 		case BPF_CGROUP_INET4_CONNECT:
7246 		case BPF_CGROUP_INET6_CONNECT:
7247 		case BPF_CGROUP_UDP4_RECVMSG:
7248 		case BPF_CGROUP_UDP6_RECVMSG:
7249 		case BPF_CGROUP_UDP4_SENDMSG:
7250 		case BPF_CGROUP_UDP6_SENDMSG:
7251 		case BPF_CGROUP_INET4_GETPEERNAME:
7252 		case BPF_CGROUP_INET6_GETPEERNAME:
7253 		case BPF_CGROUP_INET4_GETSOCKNAME:
7254 		case BPF_CGROUP_INET6_GETSOCKNAME:
7255 			return &bpf_sock_addr_getsockopt_proto;
7256 		default:
7257 			return NULL;
7258 		}
7259 	default:
7260 		return bpf_sk_base_func_proto(func_id);
7261 	}
7262 }
7263 
7264 static const struct bpf_func_proto *
7265 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7266 {
7267 	switch (func_id) {
7268 	case BPF_FUNC_skb_load_bytes:
7269 		return &bpf_skb_load_bytes_proto;
7270 	case BPF_FUNC_skb_load_bytes_relative:
7271 		return &bpf_skb_load_bytes_relative_proto;
7272 	case BPF_FUNC_get_socket_cookie:
7273 		return &bpf_get_socket_cookie_proto;
7274 	case BPF_FUNC_get_socket_uid:
7275 		return &bpf_get_socket_uid_proto;
7276 	case BPF_FUNC_perf_event_output:
7277 		return &bpf_skb_event_output_proto;
7278 	default:
7279 		return bpf_sk_base_func_proto(func_id);
7280 	}
7281 }
7282 
7283 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7284 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7285 
7286 static const struct bpf_func_proto *
7287 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7288 {
7289 	switch (func_id) {
7290 	case BPF_FUNC_get_local_storage:
7291 		return &bpf_get_local_storage_proto;
7292 	case BPF_FUNC_sk_fullsock:
7293 		return &bpf_sk_fullsock_proto;
7294 	case BPF_FUNC_sk_storage_get:
7295 		return &bpf_sk_storage_get_proto;
7296 	case BPF_FUNC_sk_storage_delete:
7297 		return &bpf_sk_storage_delete_proto;
7298 	case BPF_FUNC_perf_event_output:
7299 		return &bpf_skb_event_output_proto;
7300 #ifdef CONFIG_SOCK_CGROUP_DATA
7301 	case BPF_FUNC_skb_cgroup_id:
7302 		return &bpf_skb_cgroup_id_proto;
7303 	case BPF_FUNC_skb_ancestor_cgroup_id:
7304 		return &bpf_skb_ancestor_cgroup_id_proto;
7305 	case BPF_FUNC_sk_cgroup_id:
7306 		return &bpf_sk_cgroup_id_proto;
7307 	case BPF_FUNC_sk_ancestor_cgroup_id:
7308 		return &bpf_sk_ancestor_cgroup_id_proto;
7309 #endif
7310 #ifdef CONFIG_INET
7311 	case BPF_FUNC_sk_lookup_tcp:
7312 		return &bpf_sk_lookup_tcp_proto;
7313 	case BPF_FUNC_sk_lookup_udp:
7314 		return &bpf_sk_lookup_udp_proto;
7315 	case BPF_FUNC_sk_release:
7316 		return &bpf_sk_release_proto;
7317 	case BPF_FUNC_skc_lookup_tcp:
7318 		return &bpf_skc_lookup_tcp_proto;
7319 	case BPF_FUNC_tcp_sock:
7320 		return &bpf_tcp_sock_proto;
7321 	case BPF_FUNC_get_listener_sock:
7322 		return &bpf_get_listener_sock_proto;
7323 	case BPF_FUNC_skb_ecn_set_ce:
7324 		return &bpf_skb_ecn_set_ce_proto;
7325 #endif
7326 	default:
7327 		return sk_filter_func_proto(func_id, prog);
7328 	}
7329 }
7330 
7331 static const struct bpf_func_proto *
7332 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7333 {
7334 	switch (func_id) {
7335 	case BPF_FUNC_skb_store_bytes:
7336 		return &bpf_skb_store_bytes_proto;
7337 	case BPF_FUNC_skb_load_bytes:
7338 		return &bpf_skb_load_bytes_proto;
7339 	case BPF_FUNC_skb_load_bytes_relative:
7340 		return &bpf_skb_load_bytes_relative_proto;
7341 	case BPF_FUNC_skb_pull_data:
7342 		return &bpf_skb_pull_data_proto;
7343 	case BPF_FUNC_csum_diff:
7344 		return &bpf_csum_diff_proto;
7345 	case BPF_FUNC_csum_update:
7346 		return &bpf_csum_update_proto;
7347 	case BPF_FUNC_csum_level:
7348 		return &bpf_csum_level_proto;
7349 	case BPF_FUNC_l3_csum_replace:
7350 		return &bpf_l3_csum_replace_proto;
7351 	case BPF_FUNC_l4_csum_replace:
7352 		return &bpf_l4_csum_replace_proto;
7353 	case BPF_FUNC_clone_redirect:
7354 		return &bpf_clone_redirect_proto;
7355 	case BPF_FUNC_get_cgroup_classid:
7356 		return &bpf_get_cgroup_classid_proto;
7357 	case BPF_FUNC_skb_vlan_push:
7358 		return &bpf_skb_vlan_push_proto;
7359 	case BPF_FUNC_skb_vlan_pop:
7360 		return &bpf_skb_vlan_pop_proto;
7361 	case BPF_FUNC_skb_change_proto:
7362 		return &bpf_skb_change_proto_proto;
7363 	case BPF_FUNC_skb_change_type:
7364 		return &bpf_skb_change_type_proto;
7365 	case BPF_FUNC_skb_adjust_room:
7366 		return &bpf_skb_adjust_room_proto;
7367 	case BPF_FUNC_skb_change_tail:
7368 		return &bpf_skb_change_tail_proto;
7369 	case BPF_FUNC_skb_change_head:
7370 		return &bpf_skb_change_head_proto;
7371 	case BPF_FUNC_skb_get_tunnel_key:
7372 		return &bpf_skb_get_tunnel_key_proto;
7373 	case BPF_FUNC_skb_set_tunnel_key:
7374 		return bpf_get_skb_set_tunnel_proto(func_id);
7375 	case BPF_FUNC_skb_get_tunnel_opt:
7376 		return &bpf_skb_get_tunnel_opt_proto;
7377 	case BPF_FUNC_skb_set_tunnel_opt:
7378 		return bpf_get_skb_set_tunnel_proto(func_id);
7379 	case BPF_FUNC_redirect:
7380 		return &bpf_redirect_proto;
7381 	case BPF_FUNC_redirect_neigh:
7382 		return &bpf_redirect_neigh_proto;
7383 	case BPF_FUNC_redirect_peer:
7384 		return &bpf_redirect_peer_proto;
7385 	case BPF_FUNC_get_route_realm:
7386 		return &bpf_get_route_realm_proto;
7387 	case BPF_FUNC_get_hash_recalc:
7388 		return &bpf_get_hash_recalc_proto;
7389 	case BPF_FUNC_set_hash_invalid:
7390 		return &bpf_set_hash_invalid_proto;
7391 	case BPF_FUNC_set_hash:
7392 		return &bpf_set_hash_proto;
7393 	case BPF_FUNC_perf_event_output:
7394 		return &bpf_skb_event_output_proto;
7395 	case BPF_FUNC_get_smp_processor_id:
7396 		return &bpf_get_smp_processor_id_proto;
7397 	case BPF_FUNC_skb_under_cgroup:
7398 		return &bpf_skb_under_cgroup_proto;
7399 	case BPF_FUNC_get_socket_cookie:
7400 		return &bpf_get_socket_cookie_proto;
7401 	case BPF_FUNC_get_socket_uid:
7402 		return &bpf_get_socket_uid_proto;
7403 	case BPF_FUNC_fib_lookup:
7404 		return &bpf_skb_fib_lookup_proto;
7405 	case BPF_FUNC_check_mtu:
7406 		return &bpf_skb_check_mtu_proto;
7407 	case BPF_FUNC_sk_fullsock:
7408 		return &bpf_sk_fullsock_proto;
7409 	case BPF_FUNC_sk_storage_get:
7410 		return &bpf_sk_storage_get_proto;
7411 	case BPF_FUNC_sk_storage_delete:
7412 		return &bpf_sk_storage_delete_proto;
7413 #ifdef CONFIG_XFRM
7414 	case BPF_FUNC_skb_get_xfrm_state:
7415 		return &bpf_skb_get_xfrm_state_proto;
7416 #endif
7417 #ifdef CONFIG_CGROUP_NET_CLASSID
7418 	case BPF_FUNC_skb_cgroup_classid:
7419 		return &bpf_skb_cgroup_classid_proto;
7420 #endif
7421 #ifdef CONFIG_SOCK_CGROUP_DATA
7422 	case BPF_FUNC_skb_cgroup_id:
7423 		return &bpf_skb_cgroup_id_proto;
7424 	case BPF_FUNC_skb_ancestor_cgroup_id:
7425 		return &bpf_skb_ancestor_cgroup_id_proto;
7426 #endif
7427 #ifdef CONFIG_INET
7428 	case BPF_FUNC_sk_lookup_tcp:
7429 		return &bpf_sk_lookup_tcp_proto;
7430 	case BPF_FUNC_sk_lookup_udp:
7431 		return &bpf_sk_lookup_udp_proto;
7432 	case BPF_FUNC_sk_release:
7433 		return &bpf_sk_release_proto;
7434 	case BPF_FUNC_tcp_sock:
7435 		return &bpf_tcp_sock_proto;
7436 	case BPF_FUNC_get_listener_sock:
7437 		return &bpf_get_listener_sock_proto;
7438 	case BPF_FUNC_skc_lookup_tcp:
7439 		return &bpf_skc_lookup_tcp_proto;
7440 	case BPF_FUNC_tcp_check_syncookie:
7441 		return &bpf_tcp_check_syncookie_proto;
7442 	case BPF_FUNC_skb_ecn_set_ce:
7443 		return &bpf_skb_ecn_set_ce_proto;
7444 	case BPF_FUNC_tcp_gen_syncookie:
7445 		return &bpf_tcp_gen_syncookie_proto;
7446 	case BPF_FUNC_sk_assign:
7447 		return &bpf_sk_assign_proto;
7448 #endif
7449 	default:
7450 		return bpf_sk_base_func_proto(func_id);
7451 	}
7452 }
7453 
7454 static const struct bpf_func_proto *
7455 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7456 {
7457 	switch (func_id) {
7458 	case BPF_FUNC_perf_event_output:
7459 		return &bpf_xdp_event_output_proto;
7460 	case BPF_FUNC_get_smp_processor_id:
7461 		return &bpf_get_smp_processor_id_proto;
7462 	case BPF_FUNC_csum_diff:
7463 		return &bpf_csum_diff_proto;
7464 	case BPF_FUNC_xdp_adjust_head:
7465 		return &bpf_xdp_adjust_head_proto;
7466 	case BPF_FUNC_xdp_adjust_meta:
7467 		return &bpf_xdp_adjust_meta_proto;
7468 	case BPF_FUNC_redirect:
7469 		return &bpf_xdp_redirect_proto;
7470 	case BPF_FUNC_redirect_map:
7471 		return &bpf_xdp_redirect_map_proto;
7472 	case BPF_FUNC_xdp_adjust_tail:
7473 		return &bpf_xdp_adjust_tail_proto;
7474 	case BPF_FUNC_fib_lookup:
7475 		return &bpf_xdp_fib_lookup_proto;
7476 	case BPF_FUNC_check_mtu:
7477 		return &bpf_xdp_check_mtu_proto;
7478 #ifdef CONFIG_INET
7479 	case BPF_FUNC_sk_lookup_udp:
7480 		return &bpf_xdp_sk_lookup_udp_proto;
7481 	case BPF_FUNC_sk_lookup_tcp:
7482 		return &bpf_xdp_sk_lookup_tcp_proto;
7483 	case BPF_FUNC_sk_release:
7484 		return &bpf_sk_release_proto;
7485 	case BPF_FUNC_skc_lookup_tcp:
7486 		return &bpf_xdp_skc_lookup_tcp_proto;
7487 	case BPF_FUNC_tcp_check_syncookie:
7488 		return &bpf_tcp_check_syncookie_proto;
7489 	case BPF_FUNC_tcp_gen_syncookie:
7490 		return &bpf_tcp_gen_syncookie_proto;
7491 #endif
7492 	default:
7493 		return bpf_sk_base_func_proto(func_id);
7494 	}
7495 }
7496 
7497 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7498 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7499 
7500 static const struct bpf_func_proto *
7501 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7502 {
7503 	switch (func_id) {
7504 	case BPF_FUNC_setsockopt:
7505 		return &bpf_sock_ops_setsockopt_proto;
7506 	case BPF_FUNC_getsockopt:
7507 		return &bpf_sock_ops_getsockopt_proto;
7508 	case BPF_FUNC_sock_ops_cb_flags_set:
7509 		return &bpf_sock_ops_cb_flags_set_proto;
7510 	case BPF_FUNC_sock_map_update:
7511 		return &bpf_sock_map_update_proto;
7512 	case BPF_FUNC_sock_hash_update:
7513 		return &bpf_sock_hash_update_proto;
7514 	case BPF_FUNC_get_socket_cookie:
7515 		return &bpf_get_socket_cookie_sock_ops_proto;
7516 	case BPF_FUNC_get_local_storage:
7517 		return &bpf_get_local_storage_proto;
7518 	case BPF_FUNC_perf_event_output:
7519 		return &bpf_event_output_data_proto;
7520 	case BPF_FUNC_sk_storage_get:
7521 		return &bpf_sk_storage_get_proto;
7522 	case BPF_FUNC_sk_storage_delete:
7523 		return &bpf_sk_storage_delete_proto;
7524 	case BPF_FUNC_get_netns_cookie:
7525 		return &bpf_get_netns_cookie_sock_ops_proto;
7526 #ifdef CONFIG_INET
7527 	case BPF_FUNC_load_hdr_opt:
7528 		return &bpf_sock_ops_load_hdr_opt_proto;
7529 	case BPF_FUNC_store_hdr_opt:
7530 		return &bpf_sock_ops_store_hdr_opt_proto;
7531 	case BPF_FUNC_reserve_hdr_opt:
7532 		return &bpf_sock_ops_reserve_hdr_opt_proto;
7533 	case BPF_FUNC_tcp_sock:
7534 		return &bpf_tcp_sock_proto;
7535 #endif /* CONFIG_INET */
7536 	default:
7537 		return bpf_sk_base_func_proto(func_id);
7538 	}
7539 }
7540 
7541 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7542 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7543 
7544 static const struct bpf_func_proto *
7545 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7546 {
7547 	switch (func_id) {
7548 	case BPF_FUNC_msg_redirect_map:
7549 		return &bpf_msg_redirect_map_proto;
7550 	case BPF_FUNC_msg_redirect_hash:
7551 		return &bpf_msg_redirect_hash_proto;
7552 	case BPF_FUNC_msg_apply_bytes:
7553 		return &bpf_msg_apply_bytes_proto;
7554 	case BPF_FUNC_msg_cork_bytes:
7555 		return &bpf_msg_cork_bytes_proto;
7556 	case BPF_FUNC_msg_pull_data:
7557 		return &bpf_msg_pull_data_proto;
7558 	case BPF_FUNC_msg_push_data:
7559 		return &bpf_msg_push_data_proto;
7560 	case BPF_FUNC_msg_pop_data:
7561 		return &bpf_msg_pop_data_proto;
7562 	case BPF_FUNC_perf_event_output:
7563 		return &bpf_event_output_data_proto;
7564 	case BPF_FUNC_get_current_uid_gid:
7565 		return &bpf_get_current_uid_gid_proto;
7566 	case BPF_FUNC_get_current_pid_tgid:
7567 		return &bpf_get_current_pid_tgid_proto;
7568 	case BPF_FUNC_sk_storage_get:
7569 		return &bpf_sk_storage_get_proto;
7570 	case BPF_FUNC_sk_storage_delete:
7571 		return &bpf_sk_storage_delete_proto;
7572 	case BPF_FUNC_get_netns_cookie:
7573 		return &bpf_get_netns_cookie_sk_msg_proto;
7574 #ifdef CONFIG_CGROUPS
7575 	case BPF_FUNC_get_current_cgroup_id:
7576 		return &bpf_get_current_cgroup_id_proto;
7577 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7578 		return &bpf_get_current_ancestor_cgroup_id_proto;
7579 #endif
7580 #ifdef CONFIG_CGROUP_NET_CLASSID
7581 	case BPF_FUNC_get_cgroup_classid:
7582 		return &bpf_get_cgroup_classid_curr_proto;
7583 #endif
7584 	default:
7585 		return bpf_sk_base_func_proto(func_id);
7586 	}
7587 }
7588 
7589 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7590 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7591 
7592 static const struct bpf_func_proto *
7593 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7594 {
7595 	switch (func_id) {
7596 	case BPF_FUNC_skb_store_bytes:
7597 		return &bpf_skb_store_bytes_proto;
7598 	case BPF_FUNC_skb_load_bytes:
7599 		return &bpf_skb_load_bytes_proto;
7600 	case BPF_FUNC_skb_pull_data:
7601 		return &sk_skb_pull_data_proto;
7602 	case BPF_FUNC_skb_change_tail:
7603 		return &sk_skb_change_tail_proto;
7604 	case BPF_FUNC_skb_change_head:
7605 		return &sk_skb_change_head_proto;
7606 	case BPF_FUNC_skb_adjust_room:
7607 		return &sk_skb_adjust_room_proto;
7608 	case BPF_FUNC_get_socket_cookie:
7609 		return &bpf_get_socket_cookie_proto;
7610 	case BPF_FUNC_get_socket_uid:
7611 		return &bpf_get_socket_uid_proto;
7612 	case BPF_FUNC_sk_redirect_map:
7613 		return &bpf_sk_redirect_map_proto;
7614 	case BPF_FUNC_sk_redirect_hash:
7615 		return &bpf_sk_redirect_hash_proto;
7616 	case BPF_FUNC_perf_event_output:
7617 		return &bpf_skb_event_output_proto;
7618 #ifdef CONFIG_INET
7619 	case BPF_FUNC_sk_lookup_tcp:
7620 		return &bpf_sk_lookup_tcp_proto;
7621 	case BPF_FUNC_sk_lookup_udp:
7622 		return &bpf_sk_lookup_udp_proto;
7623 	case BPF_FUNC_sk_release:
7624 		return &bpf_sk_release_proto;
7625 	case BPF_FUNC_skc_lookup_tcp:
7626 		return &bpf_skc_lookup_tcp_proto;
7627 #endif
7628 	default:
7629 		return bpf_sk_base_func_proto(func_id);
7630 	}
7631 }
7632 
7633 static const struct bpf_func_proto *
7634 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7635 {
7636 	switch (func_id) {
7637 	case BPF_FUNC_skb_load_bytes:
7638 		return &bpf_flow_dissector_load_bytes_proto;
7639 	default:
7640 		return bpf_sk_base_func_proto(func_id);
7641 	}
7642 }
7643 
7644 static const struct bpf_func_proto *
7645 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7646 {
7647 	switch (func_id) {
7648 	case BPF_FUNC_skb_load_bytes:
7649 		return &bpf_skb_load_bytes_proto;
7650 	case BPF_FUNC_skb_pull_data:
7651 		return &bpf_skb_pull_data_proto;
7652 	case BPF_FUNC_csum_diff:
7653 		return &bpf_csum_diff_proto;
7654 	case BPF_FUNC_get_cgroup_classid:
7655 		return &bpf_get_cgroup_classid_proto;
7656 	case BPF_FUNC_get_route_realm:
7657 		return &bpf_get_route_realm_proto;
7658 	case BPF_FUNC_get_hash_recalc:
7659 		return &bpf_get_hash_recalc_proto;
7660 	case BPF_FUNC_perf_event_output:
7661 		return &bpf_skb_event_output_proto;
7662 	case BPF_FUNC_get_smp_processor_id:
7663 		return &bpf_get_smp_processor_id_proto;
7664 	case BPF_FUNC_skb_under_cgroup:
7665 		return &bpf_skb_under_cgroup_proto;
7666 	default:
7667 		return bpf_sk_base_func_proto(func_id);
7668 	}
7669 }
7670 
7671 static const struct bpf_func_proto *
7672 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7673 {
7674 	switch (func_id) {
7675 	case BPF_FUNC_lwt_push_encap:
7676 		return &bpf_lwt_in_push_encap_proto;
7677 	default:
7678 		return lwt_out_func_proto(func_id, prog);
7679 	}
7680 }
7681 
7682 static const struct bpf_func_proto *
7683 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7684 {
7685 	switch (func_id) {
7686 	case BPF_FUNC_skb_get_tunnel_key:
7687 		return &bpf_skb_get_tunnel_key_proto;
7688 	case BPF_FUNC_skb_set_tunnel_key:
7689 		return bpf_get_skb_set_tunnel_proto(func_id);
7690 	case BPF_FUNC_skb_get_tunnel_opt:
7691 		return &bpf_skb_get_tunnel_opt_proto;
7692 	case BPF_FUNC_skb_set_tunnel_opt:
7693 		return bpf_get_skb_set_tunnel_proto(func_id);
7694 	case BPF_FUNC_redirect:
7695 		return &bpf_redirect_proto;
7696 	case BPF_FUNC_clone_redirect:
7697 		return &bpf_clone_redirect_proto;
7698 	case BPF_FUNC_skb_change_tail:
7699 		return &bpf_skb_change_tail_proto;
7700 	case BPF_FUNC_skb_change_head:
7701 		return &bpf_skb_change_head_proto;
7702 	case BPF_FUNC_skb_store_bytes:
7703 		return &bpf_skb_store_bytes_proto;
7704 	case BPF_FUNC_csum_update:
7705 		return &bpf_csum_update_proto;
7706 	case BPF_FUNC_csum_level:
7707 		return &bpf_csum_level_proto;
7708 	case BPF_FUNC_l3_csum_replace:
7709 		return &bpf_l3_csum_replace_proto;
7710 	case BPF_FUNC_l4_csum_replace:
7711 		return &bpf_l4_csum_replace_proto;
7712 	case BPF_FUNC_set_hash_invalid:
7713 		return &bpf_set_hash_invalid_proto;
7714 	case BPF_FUNC_lwt_push_encap:
7715 		return &bpf_lwt_xmit_push_encap_proto;
7716 	default:
7717 		return lwt_out_func_proto(func_id, prog);
7718 	}
7719 }
7720 
7721 static const struct bpf_func_proto *
7722 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7723 {
7724 	switch (func_id) {
7725 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7726 	case BPF_FUNC_lwt_seg6_store_bytes:
7727 		return &bpf_lwt_seg6_store_bytes_proto;
7728 	case BPF_FUNC_lwt_seg6_action:
7729 		return &bpf_lwt_seg6_action_proto;
7730 	case BPF_FUNC_lwt_seg6_adjust_srh:
7731 		return &bpf_lwt_seg6_adjust_srh_proto;
7732 #endif
7733 	default:
7734 		return lwt_out_func_proto(func_id, prog);
7735 	}
7736 }
7737 
7738 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7739 				    const struct bpf_prog *prog,
7740 				    struct bpf_insn_access_aux *info)
7741 {
7742 	const int size_default = sizeof(__u32);
7743 
7744 	if (off < 0 || off >= sizeof(struct __sk_buff))
7745 		return false;
7746 
7747 	/* The verifier guarantees that size > 0. */
7748 	if (off % size != 0)
7749 		return false;
7750 
7751 	switch (off) {
7752 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7753 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
7754 			return false;
7755 		break;
7756 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7757 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7758 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7759 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7760 	case bpf_ctx_range(struct __sk_buff, data):
7761 	case bpf_ctx_range(struct __sk_buff, data_meta):
7762 	case bpf_ctx_range(struct __sk_buff, data_end):
7763 		if (size != size_default)
7764 			return false;
7765 		break;
7766 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7767 		return false;
7768 	case bpf_ctx_range(struct __sk_buff, tstamp):
7769 		if (size != sizeof(__u64))
7770 			return false;
7771 		break;
7772 	case offsetof(struct __sk_buff, sk):
7773 		if (type == BPF_WRITE || size != sizeof(__u64))
7774 			return false;
7775 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7776 		break;
7777 	default:
7778 		/* Only narrow read access allowed for now. */
7779 		if (type == BPF_WRITE) {
7780 			if (size != size_default)
7781 				return false;
7782 		} else {
7783 			bpf_ctx_record_field_size(info, size_default);
7784 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7785 				return false;
7786 		}
7787 	}
7788 
7789 	return true;
7790 }
7791 
7792 static bool sk_filter_is_valid_access(int off, int size,
7793 				      enum bpf_access_type type,
7794 				      const struct bpf_prog *prog,
7795 				      struct bpf_insn_access_aux *info)
7796 {
7797 	switch (off) {
7798 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7799 	case bpf_ctx_range(struct __sk_buff, data):
7800 	case bpf_ctx_range(struct __sk_buff, data_meta):
7801 	case bpf_ctx_range(struct __sk_buff, data_end):
7802 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7803 	case bpf_ctx_range(struct __sk_buff, tstamp):
7804 	case bpf_ctx_range(struct __sk_buff, wire_len):
7805 		return false;
7806 	}
7807 
7808 	if (type == BPF_WRITE) {
7809 		switch (off) {
7810 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7811 			break;
7812 		default:
7813 			return false;
7814 		}
7815 	}
7816 
7817 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7818 }
7819 
7820 static bool cg_skb_is_valid_access(int off, int size,
7821 				   enum bpf_access_type type,
7822 				   const struct bpf_prog *prog,
7823 				   struct bpf_insn_access_aux *info)
7824 {
7825 	switch (off) {
7826 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7827 	case bpf_ctx_range(struct __sk_buff, data_meta):
7828 	case bpf_ctx_range(struct __sk_buff, wire_len):
7829 		return false;
7830 	case bpf_ctx_range(struct __sk_buff, data):
7831 	case bpf_ctx_range(struct __sk_buff, data_end):
7832 		if (!bpf_capable())
7833 			return false;
7834 		break;
7835 	}
7836 
7837 	if (type == BPF_WRITE) {
7838 		switch (off) {
7839 		case bpf_ctx_range(struct __sk_buff, mark):
7840 		case bpf_ctx_range(struct __sk_buff, priority):
7841 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7842 			break;
7843 		case bpf_ctx_range(struct __sk_buff, tstamp):
7844 			if (!bpf_capable())
7845 				return false;
7846 			break;
7847 		default:
7848 			return false;
7849 		}
7850 	}
7851 
7852 	switch (off) {
7853 	case bpf_ctx_range(struct __sk_buff, data):
7854 		info->reg_type = PTR_TO_PACKET;
7855 		break;
7856 	case bpf_ctx_range(struct __sk_buff, data_end):
7857 		info->reg_type = PTR_TO_PACKET_END;
7858 		break;
7859 	}
7860 
7861 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7862 }
7863 
7864 static bool lwt_is_valid_access(int off, int size,
7865 				enum bpf_access_type type,
7866 				const struct bpf_prog *prog,
7867 				struct bpf_insn_access_aux *info)
7868 {
7869 	switch (off) {
7870 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7871 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7872 	case bpf_ctx_range(struct __sk_buff, data_meta):
7873 	case bpf_ctx_range(struct __sk_buff, tstamp):
7874 	case bpf_ctx_range(struct __sk_buff, wire_len):
7875 		return false;
7876 	}
7877 
7878 	if (type == BPF_WRITE) {
7879 		switch (off) {
7880 		case bpf_ctx_range(struct __sk_buff, mark):
7881 		case bpf_ctx_range(struct __sk_buff, priority):
7882 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7883 			break;
7884 		default:
7885 			return false;
7886 		}
7887 	}
7888 
7889 	switch (off) {
7890 	case bpf_ctx_range(struct __sk_buff, data):
7891 		info->reg_type = PTR_TO_PACKET;
7892 		break;
7893 	case bpf_ctx_range(struct __sk_buff, data_end):
7894 		info->reg_type = PTR_TO_PACKET_END;
7895 		break;
7896 	}
7897 
7898 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7899 }
7900 
7901 /* Attach type specific accesses */
7902 static bool __sock_filter_check_attach_type(int off,
7903 					    enum bpf_access_type access_type,
7904 					    enum bpf_attach_type attach_type)
7905 {
7906 	switch (off) {
7907 	case offsetof(struct bpf_sock, bound_dev_if):
7908 	case offsetof(struct bpf_sock, mark):
7909 	case offsetof(struct bpf_sock, priority):
7910 		switch (attach_type) {
7911 		case BPF_CGROUP_INET_SOCK_CREATE:
7912 		case BPF_CGROUP_INET_SOCK_RELEASE:
7913 			goto full_access;
7914 		default:
7915 			return false;
7916 		}
7917 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7918 		switch (attach_type) {
7919 		case BPF_CGROUP_INET4_POST_BIND:
7920 			goto read_only;
7921 		default:
7922 			return false;
7923 		}
7924 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7925 		switch (attach_type) {
7926 		case BPF_CGROUP_INET6_POST_BIND:
7927 			goto read_only;
7928 		default:
7929 			return false;
7930 		}
7931 	case bpf_ctx_range(struct bpf_sock, src_port):
7932 		switch (attach_type) {
7933 		case BPF_CGROUP_INET4_POST_BIND:
7934 		case BPF_CGROUP_INET6_POST_BIND:
7935 			goto read_only;
7936 		default:
7937 			return false;
7938 		}
7939 	}
7940 read_only:
7941 	return access_type == BPF_READ;
7942 full_access:
7943 	return true;
7944 }
7945 
7946 bool bpf_sock_common_is_valid_access(int off, int size,
7947 				     enum bpf_access_type type,
7948 				     struct bpf_insn_access_aux *info)
7949 {
7950 	switch (off) {
7951 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
7952 		return false;
7953 	default:
7954 		return bpf_sock_is_valid_access(off, size, type, info);
7955 	}
7956 }
7957 
7958 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7959 			      struct bpf_insn_access_aux *info)
7960 {
7961 	const int size_default = sizeof(__u32);
7962 
7963 	if (off < 0 || off >= sizeof(struct bpf_sock))
7964 		return false;
7965 	if (off % size != 0)
7966 		return false;
7967 
7968 	switch (off) {
7969 	case offsetof(struct bpf_sock, state):
7970 	case offsetof(struct bpf_sock, family):
7971 	case offsetof(struct bpf_sock, type):
7972 	case offsetof(struct bpf_sock, protocol):
7973 	case offsetof(struct bpf_sock, dst_port):
7974 	case offsetof(struct bpf_sock, src_port):
7975 	case offsetof(struct bpf_sock, rx_queue_mapping):
7976 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7977 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7978 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
7979 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7980 		bpf_ctx_record_field_size(info, size_default);
7981 		return bpf_ctx_narrow_access_ok(off, size, size_default);
7982 	}
7983 
7984 	return size == size_default;
7985 }
7986 
7987 static bool sock_filter_is_valid_access(int off, int size,
7988 					enum bpf_access_type type,
7989 					const struct bpf_prog *prog,
7990 					struct bpf_insn_access_aux *info)
7991 {
7992 	if (!bpf_sock_is_valid_access(off, size, type, info))
7993 		return false;
7994 	return __sock_filter_check_attach_type(off, type,
7995 					       prog->expected_attach_type);
7996 }
7997 
7998 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7999 			     const struct bpf_prog *prog)
8000 {
8001 	/* Neither direct read nor direct write requires any preliminary
8002 	 * action.
8003 	 */
8004 	return 0;
8005 }
8006 
8007 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8008 				const struct bpf_prog *prog, int drop_verdict)
8009 {
8010 	struct bpf_insn *insn = insn_buf;
8011 
8012 	if (!direct_write)
8013 		return 0;
8014 
8015 	/* if (!skb->cloned)
8016 	 *       goto start;
8017 	 *
8018 	 * (Fast-path, otherwise approximation that we might be
8019 	 *  a clone, do the rest in helper.)
8020 	 */
8021 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
8022 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8023 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8024 
8025 	/* ret = bpf_skb_pull_data(skb, 0); */
8026 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8027 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8028 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8029 			       BPF_FUNC_skb_pull_data);
8030 	/* if (!ret)
8031 	 *      goto restore;
8032 	 * return TC_ACT_SHOT;
8033 	 */
8034 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8035 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8036 	*insn++ = BPF_EXIT_INSN();
8037 
8038 	/* restore: */
8039 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8040 	/* start: */
8041 	*insn++ = prog->insnsi[0];
8042 
8043 	return insn - insn_buf;
8044 }
8045 
8046 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8047 			  struct bpf_insn *insn_buf)
8048 {
8049 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8050 	struct bpf_insn *insn = insn_buf;
8051 
8052 	if (!indirect) {
8053 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8054 	} else {
8055 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8056 		if (orig->imm)
8057 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8058 	}
8059 	/* We're guaranteed here that CTX is in R6. */
8060 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8061 
8062 	switch (BPF_SIZE(orig->code)) {
8063 	case BPF_B:
8064 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8065 		break;
8066 	case BPF_H:
8067 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8068 		break;
8069 	case BPF_W:
8070 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8071 		break;
8072 	}
8073 
8074 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8075 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8076 	*insn++ = BPF_EXIT_INSN();
8077 
8078 	return insn - insn_buf;
8079 }
8080 
8081 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8082 			       const struct bpf_prog *prog)
8083 {
8084 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8085 }
8086 
8087 static bool tc_cls_act_is_valid_access(int off, int size,
8088 				       enum bpf_access_type type,
8089 				       const struct bpf_prog *prog,
8090 				       struct bpf_insn_access_aux *info)
8091 {
8092 	if (type == BPF_WRITE) {
8093 		switch (off) {
8094 		case bpf_ctx_range(struct __sk_buff, mark):
8095 		case bpf_ctx_range(struct __sk_buff, tc_index):
8096 		case bpf_ctx_range(struct __sk_buff, priority):
8097 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8098 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8099 		case bpf_ctx_range(struct __sk_buff, tstamp):
8100 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8101 			break;
8102 		default:
8103 			return false;
8104 		}
8105 	}
8106 
8107 	switch (off) {
8108 	case bpf_ctx_range(struct __sk_buff, data):
8109 		info->reg_type = PTR_TO_PACKET;
8110 		break;
8111 	case bpf_ctx_range(struct __sk_buff, data_meta):
8112 		info->reg_type = PTR_TO_PACKET_META;
8113 		break;
8114 	case bpf_ctx_range(struct __sk_buff, data_end):
8115 		info->reg_type = PTR_TO_PACKET_END;
8116 		break;
8117 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8118 		return false;
8119 	}
8120 
8121 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8122 }
8123 
8124 static bool __is_valid_xdp_access(int off, int size)
8125 {
8126 	if (off < 0 || off >= sizeof(struct xdp_md))
8127 		return false;
8128 	if (off % size != 0)
8129 		return false;
8130 	if (size != sizeof(__u32))
8131 		return false;
8132 
8133 	return true;
8134 }
8135 
8136 static bool xdp_is_valid_access(int off, int size,
8137 				enum bpf_access_type type,
8138 				const struct bpf_prog *prog,
8139 				struct bpf_insn_access_aux *info)
8140 {
8141 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8142 		switch (off) {
8143 		case offsetof(struct xdp_md, egress_ifindex):
8144 			return false;
8145 		}
8146 	}
8147 
8148 	if (type == BPF_WRITE) {
8149 		if (bpf_prog_is_dev_bound(prog->aux)) {
8150 			switch (off) {
8151 			case offsetof(struct xdp_md, rx_queue_index):
8152 				return __is_valid_xdp_access(off, size);
8153 			}
8154 		}
8155 		return false;
8156 	}
8157 
8158 	switch (off) {
8159 	case offsetof(struct xdp_md, data):
8160 		info->reg_type = PTR_TO_PACKET;
8161 		break;
8162 	case offsetof(struct xdp_md, data_meta):
8163 		info->reg_type = PTR_TO_PACKET_META;
8164 		break;
8165 	case offsetof(struct xdp_md, data_end):
8166 		info->reg_type = PTR_TO_PACKET_END;
8167 		break;
8168 	}
8169 
8170 	return __is_valid_xdp_access(off, size);
8171 }
8172 
8173 void bpf_warn_invalid_xdp_action(u32 act)
8174 {
8175 	const u32 act_max = XDP_REDIRECT;
8176 
8177 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
8178 		  act > act_max ? "Illegal" : "Driver unsupported",
8179 		  act);
8180 }
8181 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8182 
8183 static bool sock_addr_is_valid_access(int off, int size,
8184 				      enum bpf_access_type type,
8185 				      const struct bpf_prog *prog,
8186 				      struct bpf_insn_access_aux *info)
8187 {
8188 	const int size_default = sizeof(__u32);
8189 
8190 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8191 		return false;
8192 	if (off % size != 0)
8193 		return false;
8194 
8195 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8196 	 * versa.
8197 	 */
8198 	switch (off) {
8199 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8200 		switch (prog->expected_attach_type) {
8201 		case BPF_CGROUP_INET4_BIND:
8202 		case BPF_CGROUP_INET4_CONNECT:
8203 		case BPF_CGROUP_INET4_GETPEERNAME:
8204 		case BPF_CGROUP_INET4_GETSOCKNAME:
8205 		case BPF_CGROUP_UDP4_SENDMSG:
8206 		case BPF_CGROUP_UDP4_RECVMSG:
8207 			break;
8208 		default:
8209 			return false;
8210 		}
8211 		break;
8212 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8213 		switch (prog->expected_attach_type) {
8214 		case BPF_CGROUP_INET6_BIND:
8215 		case BPF_CGROUP_INET6_CONNECT:
8216 		case BPF_CGROUP_INET6_GETPEERNAME:
8217 		case BPF_CGROUP_INET6_GETSOCKNAME:
8218 		case BPF_CGROUP_UDP6_SENDMSG:
8219 		case BPF_CGROUP_UDP6_RECVMSG:
8220 			break;
8221 		default:
8222 			return false;
8223 		}
8224 		break;
8225 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8226 		switch (prog->expected_attach_type) {
8227 		case BPF_CGROUP_UDP4_SENDMSG:
8228 			break;
8229 		default:
8230 			return false;
8231 		}
8232 		break;
8233 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8234 				msg_src_ip6[3]):
8235 		switch (prog->expected_attach_type) {
8236 		case BPF_CGROUP_UDP6_SENDMSG:
8237 			break;
8238 		default:
8239 			return false;
8240 		}
8241 		break;
8242 	}
8243 
8244 	switch (off) {
8245 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8246 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8247 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8248 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8249 				msg_src_ip6[3]):
8250 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8251 		if (type == BPF_READ) {
8252 			bpf_ctx_record_field_size(info, size_default);
8253 
8254 			if (bpf_ctx_wide_access_ok(off, size,
8255 						   struct bpf_sock_addr,
8256 						   user_ip6))
8257 				return true;
8258 
8259 			if (bpf_ctx_wide_access_ok(off, size,
8260 						   struct bpf_sock_addr,
8261 						   msg_src_ip6))
8262 				return true;
8263 
8264 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8265 				return false;
8266 		} else {
8267 			if (bpf_ctx_wide_access_ok(off, size,
8268 						   struct bpf_sock_addr,
8269 						   user_ip6))
8270 				return true;
8271 
8272 			if (bpf_ctx_wide_access_ok(off, size,
8273 						   struct bpf_sock_addr,
8274 						   msg_src_ip6))
8275 				return true;
8276 
8277 			if (size != size_default)
8278 				return false;
8279 		}
8280 		break;
8281 	case offsetof(struct bpf_sock_addr, sk):
8282 		if (type != BPF_READ)
8283 			return false;
8284 		if (size != sizeof(__u64))
8285 			return false;
8286 		info->reg_type = PTR_TO_SOCKET;
8287 		break;
8288 	default:
8289 		if (type == BPF_READ) {
8290 			if (size != size_default)
8291 				return false;
8292 		} else {
8293 			return false;
8294 		}
8295 	}
8296 
8297 	return true;
8298 }
8299 
8300 static bool sock_ops_is_valid_access(int off, int size,
8301 				     enum bpf_access_type type,
8302 				     const struct bpf_prog *prog,
8303 				     struct bpf_insn_access_aux *info)
8304 {
8305 	const int size_default = sizeof(__u32);
8306 
8307 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8308 		return false;
8309 
8310 	/* The verifier guarantees that size > 0. */
8311 	if (off % size != 0)
8312 		return false;
8313 
8314 	if (type == BPF_WRITE) {
8315 		switch (off) {
8316 		case offsetof(struct bpf_sock_ops, reply):
8317 		case offsetof(struct bpf_sock_ops, sk_txhash):
8318 			if (size != size_default)
8319 				return false;
8320 			break;
8321 		default:
8322 			return false;
8323 		}
8324 	} else {
8325 		switch (off) {
8326 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8327 					bytes_acked):
8328 			if (size != sizeof(__u64))
8329 				return false;
8330 			break;
8331 		case offsetof(struct bpf_sock_ops, sk):
8332 			if (size != sizeof(__u64))
8333 				return false;
8334 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8335 			break;
8336 		case offsetof(struct bpf_sock_ops, skb_data):
8337 			if (size != sizeof(__u64))
8338 				return false;
8339 			info->reg_type = PTR_TO_PACKET;
8340 			break;
8341 		case offsetof(struct bpf_sock_ops, skb_data_end):
8342 			if (size != sizeof(__u64))
8343 				return false;
8344 			info->reg_type = PTR_TO_PACKET_END;
8345 			break;
8346 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8347 			bpf_ctx_record_field_size(info, size_default);
8348 			return bpf_ctx_narrow_access_ok(off, size,
8349 							size_default);
8350 		default:
8351 			if (size != size_default)
8352 				return false;
8353 			break;
8354 		}
8355 	}
8356 
8357 	return true;
8358 }
8359 
8360 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8361 			   const struct bpf_prog *prog)
8362 {
8363 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8364 }
8365 
8366 static bool sk_skb_is_valid_access(int off, int size,
8367 				   enum bpf_access_type type,
8368 				   const struct bpf_prog *prog,
8369 				   struct bpf_insn_access_aux *info)
8370 {
8371 	switch (off) {
8372 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8373 	case bpf_ctx_range(struct __sk_buff, data_meta):
8374 	case bpf_ctx_range(struct __sk_buff, tstamp):
8375 	case bpf_ctx_range(struct __sk_buff, wire_len):
8376 		return false;
8377 	}
8378 
8379 	if (type == BPF_WRITE) {
8380 		switch (off) {
8381 		case bpf_ctx_range(struct __sk_buff, tc_index):
8382 		case bpf_ctx_range(struct __sk_buff, priority):
8383 			break;
8384 		default:
8385 			return false;
8386 		}
8387 	}
8388 
8389 	switch (off) {
8390 	case bpf_ctx_range(struct __sk_buff, mark):
8391 		return false;
8392 	case bpf_ctx_range(struct __sk_buff, data):
8393 		info->reg_type = PTR_TO_PACKET;
8394 		break;
8395 	case bpf_ctx_range(struct __sk_buff, data_end):
8396 		info->reg_type = PTR_TO_PACKET_END;
8397 		break;
8398 	}
8399 
8400 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8401 }
8402 
8403 static bool sk_msg_is_valid_access(int off, int size,
8404 				   enum bpf_access_type type,
8405 				   const struct bpf_prog *prog,
8406 				   struct bpf_insn_access_aux *info)
8407 {
8408 	if (type == BPF_WRITE)
8409 		return false;
8410 
8411 	if (off % size != 0)
8412 		return false;
8413 
8414 	switch (off) {
8415 	case offsetof(struct sk_msg_md, data):
8416 		info->reg_type = PTR_TO_PACKET;
8417 		if (size != sizeof(__u64))
8418 			return false;
8419 		break;
8420 	case offsetof(struct sk_msg_md, data_end):
8421 		info->reg_type = PTR_TO_PACKET_END;
8422 		if (size != sizeof(__u64))
8423 			return false;
8424 		break;
8425 	case offsetof(struct sk_msg_md, sk):
8426 		if (size != sizeof(__u64))
8427 			return false;
8428 		info->reg_type = PTR_TO_SOCKET;
8429 		break;
8430 	case bpf_ctx_range(struct sk_msg_md, family):
8431 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8432 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
8433 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8434 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8435 	case bpf_ctx_range(struct sk_msg_md, remote_port):
8436 	case bpf_ctx_range(struct sk_msg_md, local_port):
8437 	case bpf_ctx_range(struct sk_msg_md, size):
8438 		if (size != sizeof(__u32))
8439 			return false;
8440 		break;
8441 	default:
8442 		return false;
8443 	}
8444 	return true;
8445 }
8446 
8447 static bool flow_dissector_is_valid_access(int off, int size,
8448 					   enum bpf_access_type type,
8449 					   const struct bpf_prog *prog,
8450 					   struct bpf_insn_access_aux *info)
8451 {
8452 	const int size_default = sizeof(__u32);
8453 
8454 	if (off < 0 || off >= sizeof(struct __sk_buff))
8455 		return false;
8456 
8457 	if (type == BPF_WRITE)
8458 		return false;
8459 
8460 	switch (off) {
8461 	case bpf_ctx_range(struct __sk_buff, data):
8462 		if (size != size_default)
8463 			return false;
8464 		info->reg_type = PTR_TO_PACKET;
8465 		return true;
8466 	case bpf_ctx_range(struct __sk_buff, data_end):
8467 		if (size != size_default)
8468 			return false;
8469 		info->reg_type = PTR_TO_PACKET_END;
8470 		return true;
8471 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8472 		if (size != sizeof(__u64))
8473 			return false;
8474 		info->reg_type = PTR_TO_FLOW_KEYS;
8475 		return true;
8476 	default:
8477 		return false;
8478 	}
8479 }
8480 
8481 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8482 					     const struct bpf_insn *si,
8483 					     struct bpf_insn *insn_buf,
8484 					     struct bpf_prog *prog,
8485 					     u32 *target_size)
8486 
8487 {
8488 	struct bpf_insn *insn = insn_buf;
8489 
8490 	switch (si->off) {
8491 	case offsetof(struct __sk_buff, data):
8492 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8493 				      si->dst_reg, si->src_reg,
8494 				      offsetof(struct bpf_flow_dissector, data));
8495 		break;
8496 
8497 	case offsetof(struct __sk_buff, data_end):
8498 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8499 				      si->dst_reg, si->src_reg,
8500 				      offsetof(struct bpf_flow_dissector, data_end));
8501 		break;
8502 
8503 	case offsetof(struct __sk_buff, flow_keys):
8504 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8505 				      si->dst_reg, si->src_reg,
8506 				      offsetof(struct bpf_flow_dissector, flow_keys));
8507 		break;
8508 	}
8509 
8510 	return insn - insn_buf;
8511 }
8512 
8513 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8514 						  struct bpf_insn *insn)
8515 {
8516 	/* si->dst_reg = skb_shinfo(SKB); */
8517 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8518 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8519 			      BPF_REG_AX, si->src_reg,
8520 			      offsetof(struct sk_buff, end));
8521 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8522 			      si->dst_reg, si->src_reg,
8523 			      offsetof(struct sk_buff, head));
8524 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8525 #else
8526 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8527 			      si->dst_reg, si->src_reg,
8528 			      offsetof(struct sk_buff, end));
8529 #endif
8530 
8531 	return insn;
8532 }
8533 
8534 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8535 				  const struct bpf_insn *si,
8536 				  struct bpf_insn *insn_buf,
8537 				  struct bpf_prog *prog, u32 *target_size)
8538 {
8539 	struct bpf_insn *insn = insn_buf;
8540 	int off;
8541 
8542 	switch (si->off) {
8543 	case offsetof(struct __sk_buff, len):
8544 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8545 				      bpf_target_off(struct sk_buff, len, 4,
8546 						     target_size));
8547 		break;
8548 
8549 	case offsetof(struct __sk_buff, protocol):
8550 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8551 				      bpf_target_off(struct sk_buff, protocol, 2,
8552 						     target_size));
8553 		break;
8554 
8555 	case offsetof(struct __sk_buff, vlan_proto):
8556 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8557 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
8558 						     target_size));
8559 		break;
8560 
8561 	case offsetof(struct __sk_buff, priority):
8562 		if (type == BPF_WRITE)
8563 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8564 					      bpf_target_off(struct sk_buff, priority, 4,
8565 							     target_size));
8566 		else
8567 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8568 					      bpf_target_off(struct sk_buff, priority, 4,
8569 							     target_size));
8570 		break;
8571 
8572 	case offsetof(struct __sk_buff, ingress_ifindex):
8573 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8574 				      bpf_target_off(struct sk_buff, skb_iif, 4,
8575 						     target_size));
8576 		break;
8577 
8578 	case offsetof(struct __sk_buff, ifindex):
8579 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8580 				      si->dst_reg, si->src_reg,
8581 				      offsetof(struct sk_buff, dev));
8582 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8583 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8584 				      bpf_target_off(struct net_device, ifindex, 4,
8585 						     target_size));
8586 		break;
8587 
8588 	case offsetof(struct __sk_buff, hash):
8589 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8590 				      bpf_target_off(struct sk_buff, hash, 4,
8591 						     target_size));
8592 		break;
8593 
8594 	case offsetof(struct __sk_buff, mark):
8595 		if (type == BPF_WRITE)
8596 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8597 					      bpf_target_off(struct sk_buff, mark, 4,
8598 							     target_size));
8599 		else
8600 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8601 					      bpf_target_off(struct sk_buff, mark, 4,
8602 							     target_size));
8603 		break;
8604 
8605 	case offsetof(struct __sk_buff, pkt_type):
8606 		*target_size = 1;
8607 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8608 				      PKT_TYPE_OFFSET());
8609 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8610 #ifdef __BIG_ENDIAN_BITFIELD
8611 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8612 #endif
8613 		break;
8614 
8615 	case offsetof(struct __sk_buff, queue_mapping):
8616 		if (type == BPF_WRITE) {
8617 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8618 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8619 					      bpf_target_off(struct sk_buff,
8620 							     queue_mapping,
8621 							     2, target_size));
8622 		} else {
8623 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8624 					      bpf_target_off(struct sk_buff,
8625 							     queue_mapping,
8626 							     2, target_size));
8627 		}
8628 		break;
8629 
8630 	case offsetof(struct __sk_buff, vlan_present):
8631 		*target_size = 1;
8632 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8633 				      PKT_VLAN_PRESENT_OFFSET());
8634 		if (PKT_VLAN_PRESENT_BIT)
8635 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8636 		if (PKT_VLAN_PRESENT_BIT < 7)
8637 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8638 		break;
8639 
8640 	case offsetof(struct __sk_buff, vlan_tci):
8641 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8642 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
8643 						     target_size));
8644 		break;
8645 
8646 	case offsetof(struct __sk_buff, cb[0]) ...
8647 	     offsetofend(struct __sk_buff, cb[4]) - 1:
8648 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8649 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8650 			      offsetof(struct qdisc_skb_cb, data)) %
8651 			     sizeof(__u64));
8652 
8653 		prog->cb_access = 1;
8654 		off  = si->off;
8655 		off -= offsetof(struct __sk_buff, cb[0]);
8656 		off += offsetof(struct sk_buff, cb);
8657 		off += offsetof(struct qdisc_skb_cb, data);
8658 		if (type == BPF_WRITE)
8659 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8660 					      si->src_reg, off);
8661 		else
8662 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8663 					      si->src_reg, off);
8664 		break;
8665 
8666 	case offsetof(struct __sk_buff, tc_classid):
8667 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8668 
8669 		off  = si->off;
8670 		off -= offsetof(struct __sk_buff, tc_classid);
8671 		off += offsetof(struct sk_buff, cb);
8672 		off += offsetof(struct qdisc_skb_cb, tc_classid);
8673 		*target_size = 2;
8674 		if (type == BPF_WRITE)
8675 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8676 					      si->src_reg, off);
8677 		else
8678 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8679 					      si->src_reg, off);
8680 		break;
8681 
8682 	case offsetof(struct __sk_buff, data):
8683 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8684 				      si->dst_reg, si->src_reg,
8685 				      offsetof(struct sk_buff, data));
8686 		break;
8687 
8688 	case offsetof(struct __sk_buff, data_meta):
8689 		off  = si->off;
8690 		off -= offsetof(struct __sk_buff, data_meta);
8691 		off += offsetof(struct sk_buff, cb);
8692 		off += offsetof(struct bpf_skb_data_end, data_meta);
8693 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8694 				      si->src_reg, off);
8695 		break;
8696 
8697 	case offsetof(struct __sk_buff, data_end):
8698 		off  = si->off;
8699 		off -= offsetof(struct __sk_buff, data_end);
8700 		off += offsetof(struct sk_buff, cb);
8701 		off += offsetof(struct bpf_skb_data_end, data_end);
8702 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8703 				      si->src_reg, off);
8704 		break;
8705 
8706 	case offsetof(struct __sk_buff, tc_index):
8707 #ifdef CONFIG_NET_SCHED
8708 		if (type == BPF_WRITE)
8709 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8710 					      bpf_target_off(struct sk_buff, tc_index, 2,
8711 							     target_size));
8712 		else
8713 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8714 					      bpf_target_off(struct sk_buff, tc_index, 2,
8715 							     target_size));
8716 #else
8717 		*target_size = 2;
8718 		if (type == BPF_WRITE)
8719 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8720 		else
8721 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8722 #endif
8723 		break;
8724 
8725 	case offsetof(struct __sk_buff, napi_id):
8726 #if defined(CONFIG_NET_RX_BUSY_POLL)
8727 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8728 				      bpf_target_off(struct sk_buff, napi_id, 4,
8729 						     target_size));
8730 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8731 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8732 #else
8733 		*target_size = 4;
8734 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8735 #endif
8736 		break;
8737 	case offsetof(struct __sk_buff, family):
8738 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8739 
8740 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8741 				      si->dst_reg, si->src_reg,
8742 				      offsetof(struct sk_buff, sk));
8743 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8744 				      bpf_target_off(struct sock_common,
8745 						     skc_family,
8746 						     2, target_size));
8747 		break;
8748 	case offsetof(struct __sk_buff, remote_ip4):
8749 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8750 
8751 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8752 				      si->dst_reg, si->src_reg,
8753 				      offsetof(struct sk_buff, sk));
8754 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8755 				      bpf_target_off(struct sock_common,
8756 						     skc_daddr,
8757 						     4, target_size));
8758 		break;
8759 	case offsetof(struct __sk_buff, local_ip4):
8760 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8761 					  skc_rcv_saddr) != 4);
8762 
8763 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8764 				      si->dst_reg, si->src_reg,
8765 				      offsetof(struct sk_buff, sk));
8766 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8767 				      bpf_target_off(struct sock_common,
8768 						     skc_rcv_saddr,
8769 						     4, target_size));
8770 		break;
8771 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
8772 	     offsetof(struct __sk_buff, remote_ip6[3]):
8773 #if IS_ENABLED(CONFIG_IPV6)
8774 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8775 					  skc_v6_daddr.s6_addr32[0]) != 4);
8776 
8777 		off = si->off;
8778 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
8779 
8780 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8781 				      si->dst_reg, si->src_reg,
8782 				      offsetof(struct sk_buff, sk));
8783 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8784 				      offsetof(struct sock_common,
8785 					       skc_v6_daddr.s6_addr32[0]) +
8786 				      off);
8787 #else
8788 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8789 #endif
8790 		break;
8791 	case offsetof(struct __sk_buff, local_ip6[0]) ...
8792 	     offsetof(struct __sk_buff, local_ip6[3]):
8793 #if IS_ENABLED(CONFIG_IPV6)
8794 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8795 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8796 
8797 		off = si->off;
8798 		off -= offsetof(struct __sk_buff, local_ip6[0]);
8799 
8800 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8801 				      si->dst_reg, si->src_reg,
8802 				      offsetof(struct sk_buff, sk));
8803 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8804 				      offsetof(struct sock_common,
8805 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8806 				      off);
8807 #else
8808 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8809 #endif
8810 		break;
8811 
8812 	case offsetof(struct __sk_buff, remote_port):
8813 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8814 
8815 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8816 				      si->dst_reg, si->src_reg,
8817 				      offsetof(struct sk_buff, sk));
8818 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8819 				      bpf_target_off(struct sock_common,
8820 						     skc_dport,
8821 						     2, target_size));
8822 #ifndef __BIG_ENDIAN_BITFIELD
8823 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8824 #endif
8825 		break;
8826 
8827 	case offsetof(struct __sk_buff, local_port):
8828 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8829 
8830 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8831 				      si->dst_reg, si->src_reg,
8832 				      offsetof(struct sk_buff, sk));
8833 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8834 				      bpf_target_off(struct sock_common,
8835 						     skc_num, 2, target_size));
8836 		break;
8837 
8838 	case offsetof(struct __sk_buff, tstamp):
8839 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8840 
8841 		if (type == BPF_WRITE)
8842 			*insn++ = BPF_STX_MEM(BPF_DW,
8843 					      si->dst_reg, si->src_reg,
8844 					      bpf_target_off(struct sk_buff,
8845 							     tstamp, 8,
8846 							     target_size));
8847 		else
8848 			*insn++ = BPF_LDX_MEM(BPF_DW,
8849 					      si->dst_reg, si->src_reg,
8850 					      bpf_target_off(struct sk_buff,
8851 							     tstamp, 8,
8852 							     target_size));
8853 		break;
8854 
8855 	case offsetof(struct __sk_buff, gso_segs):
8856 		insn = bpf_convert_shinfo_access(si, insn);
8857 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8858 				      si->dst_reg, si->dst_reg,
8859 				      bpf_target_off(struct skb_shared_info,
8860 						     gso_segs, 2,
8861 						     target_size));
8862 		break;
8863 	case offsetof(struct __sk_buff, gso_size):
8864 		insn = bpf_convert_shinfo_access(si, insn);
8865 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8866 				      si->dst_reg, si->dst_reg,
8867 				      bpf_target_off(struct skb_shared_info,
8868 						     gso_size, 2,
8869 						     target_size));
8870 		break;
8871 	case offsetof(struct __sk_buff, wire_len):
8872 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8873 
8874 		off = si->off;
8875 		off -= offsetof(struct __sk_buff, wire_len);
8876 		off += offsetof(struct sk_buff, cb);
8877 		off += offsetof(struct qdisc_skb_cb, pkt_len);
8878 		*target_size = 4;
8879 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8880 		break;
8881 
8882 	case offsetof(struct __sk_buff, sk):
8883 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8884 				      si->dst_reg, si->src_reg,
8885 				      offsetof(struct sk_buff, sk));
8886 		break;
8887 	}
8888 
8889 	return insn - insn_buf;
8890 }
8891 
8892 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8893 				const struct bpf_insn *si,
8894 				struct bpf_insn *insn_buf,
8895 				struct bpf_prog *prog, u32 *target_size)
8896 {
8897 	struct bpf_insn *insn = insn_buf;
8898 	int off;
8899 
8900 	switch (si->off) {
8901 	case offsetof(struct bpf_sock, bound_dev_if):
8902 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8903 
8904 		if (type == BPF_WRITE)
8905 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8906 					offsetof(struct sock, sk_bound_dev_if));
8907 		else
8908 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8909 				      offsetof(struct sock, sk_bound_dev_if));
8910 		break;
8911 
8912 	case offsetof(struct bpf_sock, mark):
8913 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8914 
8915 		if (type == BPF_WRITE)
8916 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8917 					offsetof(struct sock, sk_mark));
8918 		else
8919 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8920 				      offsetof(struct sock, sk_mark));
8921 		break;
8922 
8923 	case offsetof(struct bpf_sock, priority):
8924 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8925 
8926 		if (type == BPF_WRITE)
8927 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8928 					offsetof(struct sock, sk_priority));
8929 		else
8930 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8931 				      offsetof(struct sock, sk_priority));
8932 		break;
8933 
8934 	case offsetof(struct bpf_sock, family):
8935 		*insn++ = BPF_LDX_MEM(
8936 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8937 			si->dst_reg, si->src_reg,
8938 			bpf_target_off(struct sock_common,
8939 				       skc_family,
8940 				       sizeof_field(struct sock_common,
8941 						    skc_family),
8942 				       target_size));
8943 		break;
8944 
8945 	case offsetof(struct bpf_sock, type):
8946 		*insn++ = BPF_LDX_MEM(
8947 			BPF_FIELD_SIZEOF(struct sock, sk_type),
8948 			si->dst_reg, si->src_reg,
8949 			bpf_target_off(struct sock, sk_type,
8950 				       sizeof_field(struct sock, sk_type),
8951 				       target_size));
8952 		break;
8953 
8954 	case offsetof(struct bpf_sock, protocol):
8955 		*insn++ = BPF_LDX_MEM(
8956 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8957 			si->dst_reg, si->src_reg,
8958 			bpf_target_off(struct sock, sk_protocol,
8959 				       sizeof_field(struct sock, sk_protocol),
8960 				       target_size));
8961 		break;
8962 
8963 	case offsetof(struct bpf_sock, src_ip4):
8964 		*insn++ = BPF_LDX_MEM(
8965 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8966 			bpf_target_off(struct sock_common, skc_rcv_saddr,
8967 				       sizeof_field(struct sock_common,
8968 						    skc_rcv_saddr),
8969 				       target_size));
8970 		break;
8971 
8972 	case offsetof(struct bpf_sock, dst_ip4):
8973 		*insn++ = BPF_LDX_MEM(
8974 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8975 			bpf_target_off(struct sock_common, skc_daddr,
8976 				       sizeof_field(struct sock_common,
8977 						    skc_daddr),
8978 				       target_size));
8979 		break;
8980 
8981 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8982 #if IS_ENABLED(CONFIG_IPV6)
8983 		off = si->off;
8984 		off -= offsetof(struct bpf_sock, src_ip6[0]);
8985 		*insn++ = BPF_LDX_MEM(
8986 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8987 			bpf_target_off(
8988 				struct sock_common,
8989 				skc_v6_rcv_saddr.s6_addr32[0],
8990 				sizeof_field(struct sock_common,
8991 					     skc_v6_rcv_saddr.s6_addr32[0]),
8992 				target_size) + off);
8993 #else
8994 		(void)off;
8995 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8996 #endif
8997 		break;
8998 
8999 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9000 #if IS_ENABLED(CONFIG_IPV6)
9001 		off = si->off;
9002 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9003 		*insn++ = BPF_LDX_MEM(
9004 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9005 			bpf_target_off(struct sock_common,
9006 				       skc_v6_daddr.s6_addr32[0],
9007 				       sizeof_field(struct sock_common,
9008 						    skc_v6_daddr.s6_addr32[0]),
9009 				       target_size) + off);
9010 #else
9011 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9012 		*target_size = 4;
9013 #endif
9014 		break;
9015 
9016 	case offsetof(struct bpf_sock, src_port):
9017 		*insn++ = BPF_LDX_MEM(
9018 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9019 			si->dst_reg, si->src_reg,
9020 			bpf_target_off(struct sock_common, skc_num,
9021 				       sizeof_field(struct sock_common,
9022 						    skc_num),
9023 				       target_size));
9024 		break;
9025 
9026 	case offsetof(struct bpf_sock, dst_port):
9027 		*insn++ = BPF_LDX_MEM(
9028 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9029 			si->dst_reg, si->src_reg,
9030 			bpf_target_off(struct sock_common, skc_dport,
9031 				       sizeof_field(struct sock_common,
9032 						    skc_dport),
9033 				       target_size));
9034 		break;
9035 
9036 	case offsetof(struct bpf_sock, state):
9037 		*insn++ = BPF_LDX_MEM(
9038 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9039 			si->dst_reg, si->src_reg,
9040 			bpf_target_off(struct sock_common, skc_state,
9041 				       sizeof_field(struct sock_common,
9042 						    skc_state),
9043 				       target_size));
9044 		break;
9045 	case offsetof(struct bpf_sock, rx_queue_mapping):
9046 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9047 		*insn++ = BPF_LDX_MEM(
9048 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9049 			si->dst_reg, si->src_reg,
9050 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9051 				       sizeof_field(struct sock,
9052 						    sk_rx_queue_mapping),
9053 				       target_size));
9054 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9055 				      1);
9056 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9057 #else
9058 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9059 		*target_size = 2;
9060 #endif
9061 		break;
9062 	}
9063 
9064 	return insn - insn_buf;
9065 }
9066 
9067 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9068 					 const struct bpf_insn *si,
9069 					 struct bpf_insn *insn_buf,
9070 					 struct bpf_prog *prog, u32 *target_size)
9071 {
9072 	struct bpf_insn *insn = insn_buf;
9073 
9074 	switch (si->off) {
9075 	case offsetof(struct __sk_buff, ifindex):
9076 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9077 				      si->dst_reg, si->src_reg,
9078 				      offsetof(struct sk_buff, dev));
9079 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9080 				      bpf_target_off(struct net_device, ifindex, 4,
9081 						     target_size));
9082 		break;
9083 	default:
9084 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9085 					      target_size);
9086 	}
9087 
9088 	return insn - insn_buf;
9089 }
9090 
9091 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9092 				  const struct bpf_insn *si,
9093 				  struct bpf_insn *insn_buf,
9094 				  struct bpf_prog *prog, u32 *target_size)
9095 {
9096 	struct bpf_insn *insn = insn_buf;
9097 
9098 	switch (si->off) {
9099 	case offsetof(struct xdp_md, data):
9100 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9101 				      si->dst_reg, si->src_reg,
9102 				      offsetof(struct xdp_buff, data));
9103 		break;
9104 	case offsetof(struct xdp_md, data_meta):
9105 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9106 				      si->dst_reg, si->src_reg,
9107 				      offsetof(struct xdp_buff, data_meta));
9108 		break;
9109 	case offsetof(struct xdp_md, data_end):
9110 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9111 				      si->dst_reg, si->src_reg,
9112 				      offsetof(struct xdp_buff, data_end));
9113 		break;
9114 	case offsetof(struct xdp_md, ingress_ifindex):
9115 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9116 				      si->dst_reg, si->src_reg,
9117 				      offsetof(struct xdp_buff, rxq));
9118 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9119 				      si->dst_reg, si->dst_reg,
9120 				      offsetof(struct xdp_rxq_info, dev));
9121 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9122 				      offsetof(struct net_device, ifindex));
9123 		break;
9124 	case offsetof(struct xdp_md, rx_queue_index):
9125 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9126 				      si->dst_reg, si->src_reg,
9127 				      offsetof(struct xdp_buff, rxq));
9128 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9129 				      offsetof(struct xdp_rxq_info,
9130 					       queue_index));
9131 		break;
9132 	case offsetof(struct xdp_md, egress_ifindex):
9133 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9134 				      si->dst_reg, si->src_reg,
9135 				      offsetof(struct xdp_buff, txq));
9136 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9137 				      si->dst_reg, si->dst_reg,
9138 				      offsetof(struct xdp_txq_info, dev));
9139 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9140 				      offsetof(struct net_device, ifindex));
9141 		break;
9142 	}
9143 
9144 	return insn - insn_buf;
9145 }
9146 
9147 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9148  * context Structure, F is Field in context structure that contains a pointer
9149  * to Nested Structure of type NS that has the field NF.
9150  *
9151  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9152  * sure that SIZE is not greater than actual size of S.F.NF.
9153  *
9154  * If offset OFF is provided, the load happens from that offset relative to
9155  * offset of NF.
9156  */
9157 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9158 	do {								       \
9159 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9160 				      si->src_reg, offsetof(S, F));	       \
9161 		*insn++ = BPF_LDX_MEM(					       \
9162 			SIZE, si->dst_reg, si->dst_reg,			       \
9163 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9164 				       target_size)			       \
9165 				+ OFF);					       \
9166 	} while (0)
9167 
9168 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9169 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9170 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9171 
9172 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9173  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9174  *
9175  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9176  * "register" since two registers available in convert_ctx_access are not
9177  * enough: we can't override neither SRC, since it contains value to store, nor
9178  * DST since it contains pointer to context that may be used by later
9179  * instructions. But we need a temporary place to save pointer to nested
9180  * structure whose field we want to store to.
9181  */
9182 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9183 	do {								       \
9184 		int tmp_reg = BPF_REG_9;				       \
9185 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9186 			--tmp_reg;					       \
9187 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9188 			--tmp_reg;					       \
9189 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9190 				      offsetof(S, TF));			       \
9191 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9192 				      si->dst_reg, offsetof(S, F));	       \
9193 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
9194 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9195 				       target_size)			       \
9196 				+ OFF);					       \
9197 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9198 				      offsetof(S, TF));			       \
9199 	} while (0)
9200 
9201 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9202 						      TF)		       \
9203 	do {								       \
9204 		if (type == BPF_WRITE) {				       \
9205 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9206 							 OFF, TF);	       \
9207 		} else {						       \
9208 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9209 				S, NS, F, NF, SIZE, OFF);  \
9210 		}							       \
9211 	} while (0)
9212 
9213 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9214 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9215 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9216 
9217 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9218 					const struct bpf_insn *si,
9219 					struct bpf_insn *insn_buf,
9220 					struct bpf_prog *prog, u32 *target_size)
9221 {
9222 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9223 	struct bpf_insn *insn = insn_buf;
9224 
9225 	switch (si->off) {
9226 	case offsetof(struct bpf_sock_addr, user_family):
9227 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9228 					    struct sockaddr, uaddr, sa_family);
9229 		break;
9230 
9231 	case offsetof(struct bpf_sock_addr, user_ip4):
9232 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9233 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9234 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9235 		break;
9236 
9237 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9238 		off = si->off;
9239 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9240 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9241 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9242 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9243 			tmp_reg);
9244 		break;
9245 
9246 	case offsetof(struct bpf_sock_addr, user_port):
9247 		/* To get port we need to know sa_family first and then treat
9248 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9249 		 * Though we can simplify since port field has same offset and
9250 		 * size in both structures.
9251 		 * Here we check this invariant and use just one of the
9252 		 * structures if it's true.
9253 		 */
9254 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9255 			     offsetof(struct sockaddr_in6, sin6_port));
9256 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9257 			     sizeof_field(struct sockaddr_in6, sin6_port));
9258 		/* Account for sin6_port being smaller than user_port. */
9259 		port_size = min(port_size, BPF_LDST_BYTES(si));
9260 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9261 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9262 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9263 		break;
9264 
9265 	case offsetof(struct bpf_sock_addr, family):
9266 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9267 					    struct sock, sk, sk_family);
9268 		break;
9269 
9270 	case offsetof(struct bpf_sock_addr, type):
9271 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9272 					    struct sock, sk, sk_type);
9273 		break;
9274 
9275 	case offsetof(struct bpf_sock_addr, protocol):
9276 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9277 					    struct sock, sk, sk_protocol);
9278 		break;
9279 
9280 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9281 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9282 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9283 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9284 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9285 		break;
9286 
9287 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9288 				msg_src_ip6[3]):
9289 		off = si->off;
9290 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9291 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9292 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9293 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9294 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9295 		break;
9296 	case offsetof(struct bpf_sock_addr, sk):
9297 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9298 				      si->dst_reg, si->src_reg,
9299 				      offsetof(struct bpf_sock_addr_kern, sk));
9300 		break;
9301 	}
9302 
9303 	return insn - insn_buf;
9304 }
9305 
9306 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9307 				       const struct bpf_insn *si,
9308 				       struct bpf_insn *insn_buf,
9309 				       struct bpf_prog *prog,
9310 				       u32 *target_size)
9311 {
9312 	struct bpf_insn *insn = insn_buf;
9313 	int off;
9314 
9315 /* Helper macro for adding read access to tcp_sock or sock fields. */
9316 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9317 	do {								      \
9318 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9319 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9320 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9321 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9322 			reg--;						      \
9323 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9324 			reg--;						      \
9325 		if (si->dst_reg == si->src_reg) {			      \
9326 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9327 					  offsetof(struct bpf_sock_ops_kern,  \
9328 					  temp));			      \
9329 			fullsock_reg = reg;				      \
9330 			jmp += 2;					      \
9331 		}							      \
9332 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9333 						struct bpf_sock_ops_kern,     \
9334 						is_fullsock),		      \
9335 				      fullsock_reg, si->src_reg,	      \
9336 				      offsetof(struct bpf_sock_ops_kern,      \
9337 					       is_fullsock));		      \
9338 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9339 		if (si->dst_reg == si->src_reg)				      \
9340 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9341 				      offsetof(struct bpf_sock_ops_kern,      \
9342 				      temp));				      \
9343 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9344 						struct bpf_sock_ops_kern, sk),\
9345 				      si->dst_reg, si->src_reg,		      \
9346 				      offsetof(struct bpf_sock_ops_kern, sk));\
9347 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
9348 						       OBJ_FIELD),	      \
9349 				      si->dst_reg, si->dst_reg,		      \
9350 				      offsetof(OBJ, OBJ_FIELD));	      \
9351 		if (si->dst_reg == si->src_reg)	{			      \
9352 			*insn++ = BPF_JMP_A(1);				      \
9353 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9354 				      offsetof(struct bpf_sock_ops_kern,      \
9355 				      temp));				      \
9356 		}							      \
9357 	} while (0)
9358 
9359 #define SOCK_OPS_GET_SK()							      \
9360 	do {								      \
9361 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9362 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9363 			reg--;						      \
9364 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9365 			reg--;						      \
9366 		if (si->dst_reg == si->src_reg) {			      \
9367 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9368 					  offsetof(struct bpf_sock_ops_kern,  \
9369 					  temp));			      \
9370 			fullsock_reg = reg;				      \
9371 			jmp += 2;					      \
9372 		}							      \
9373 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9374 						struct bpf_sock_ops_kern,     \
9375 						is_fullsock),		      \
9376 				      fullsock_reg, si->src_reg,	      \
9377 				      offsetof(struct bpf_sock_ops_kern,      \
9378 					       is_fullsock));		      \
9379 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9380 		if (si->dst_reg == si->src_reg)				      \
9381 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9382 				      offsetof(struct bpf_sock_ops_kern,      \
9383 				      temp));				      \
9384 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9385 						struct bpf_sock_ops_kern, sk),\
9386 				      si->dst_reg, si->src_reg,		      \
9387 				      offsetof(struct bpf_sock_ops_kern, sk));\
9388 		if (si->dst_reg == si->src_reg)	{			      \
9389 			*insn++ = BPF_JMP_A(1);				      \
9390 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9391 				      offsetof(struct bpf_sock_ops_kern,      \
9392 				      temp));				      \
9393 		}							      \
9394 	} while (0)
9395 
9396 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9397 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9398 
9399 /* Helper macro for adding write access to tcp_sock or sock fields.
9400  * The macro is called with two registers, dst_reg which contains a pointer
9401  * to ctx (context) and src_reg which contains the value that should be
9402  * stored. However, we need an additional register since we cannot overwrite
9403  * dst_reg because it may be used later in the program.
9404  * Instead we "borrow" one of the other register. We first save its value
9405  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9406  * it at the end of the macro.
9407  */
9408 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9409 	do {								      \
9410 		int reg = BPF_REG_9;					      \
9411 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9412 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9413 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9414 			reg--;						      \
9415 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9416 			reg--;						      \
9417 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
9418 				      offsetof(struct bpf_sock_ops_kern,      \
9419 					       temp));			      \
9420 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9421 						struct bpf_sock_ops_kern,     \
9422 						is_fullsock),		      \
9423 				      reg, si->dst_reg,			      \
9424 				      offsetof(struct bpf_sock_ops_kern,      \
9425 					       is_fullsock));		      \
9426 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
9427 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9428 						struct bpf_sock_ops_kern, sk),\
9429 				      reg, si->dst_reg,			      \
9430 				      offsetof(struct bpf_sock_ops_kern, sk));\
9431 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
9432 				      reg, si->src_reg,			      \
9433 				      offsetof(OBJ, OBJ_FIELD));	      \
9434 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
9435 				      offsetof(struct bpf_sock_ops_kern,      \
9436 					       temp));			      \
9437 	} while (0)
9438 
9439 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
9440 	do {								      \
9441 		if (TYPE == BPF_WRITE)					      \
9442 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9443 		else							      \
9444 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9445 	} while (0)
9446 
9447 	if (insn > insn_buf)
9448 		return insn - insn_buf;
9449 
9450 	switch (si->off) {
9451 	case offsetof(struct bpf_sock_ops, op):
9452 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9453 						       op),
9454 				      si->dst_reg, si->src_reg,
9455 				      offsetof(struct bpf_sock_ops_kern, op));
9456 		break;
9457 
9458 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
9459 	     offsetof(struct bpf_sock_ops, replylong[3]):
9460 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9461 			     sizeof_field(struct bpf_sock_ops_kern, reply));
9462 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9463 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
9464 		off = si->off;
9465 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
9466 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9467 		if (type == BPF_WRITE)
9468 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9469 					      off);
9470 		else
9471 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9472 					      off);
9473 		break;
9474 
9475 	case offsetof(struct bpf_sock_ops, family):
9476 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9477 
9478 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9479 					      struct bpf_sock_ops_kern, sk),
9480 				      si->dst_reg, si->src_reg,
9481 				      offsetof(struct bpf_sock_ops_kern, sk));
9482 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9483 				      offsetof(struct sock_common, skc_family));
9484 		break;
9485 
9486 	case offsetof(struct bpf_sock_ops, remote_ip4):
9487 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9488 
9489 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9490 						struct bpf_sock_ops_kern, sk),
9491 				      si->dst_reg, si->src_reg,
9492 				      offsetof(struct bpf_sock_ops_kern, sk));
9493 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9494 				      offsetof(struct sock_common, skc_daddr));
9495 		break;
9496 
9497 	case offsetof(struct bpf_sock_ops, local_ip4):
9498 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9499 					  skc_rcv_saddr) != 4);
9500 
9501 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9502 					      struct bpf_sock_ops_kern, sk),
9503 				      si->dst_reg, si->src_reg,
9504 				      offsetof(struct bpf_sock_ops_kern, sk));
9505 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9506 				      offsetof(struct sock_common,
9507 					       skc_rcv_saddr));
9508 		break;
9509 
9510 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9511 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
9512 #if IS_ENABLED(CONFIG_IPV6)
9513 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9514 					  skc_v6_daddr.s6_addr32[0]) != 4);
9515 
9516 		off = si->off;
9517 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9518 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9519 						struct bpf_sock_ops_kern, sk),
9520 				      si->dst_reg, si->src_reg,
9521 				      offsetof(struct bpf_sock_ops_kern, sk));
9522 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9523 				      offsetof(struct sock_common,
9524 					       skc_v6_daddr.s6_addr32[0]) +
9525 				      off);
9526 #else
9527 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9528 #endif
9529 		break;
9530 
9531 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9532 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
9533 #if IS_ENABLED(CONFIG_IPV6)
9534 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9535 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9536 
9537 		off = si->off;
9538 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9539 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9540 						struct bpf_sock_ops_kern, sk),
9541 				      si->dst_reg, si->src_reg,
9542 				      offsetof(struct bpf_sock_ops_kern, sk));
9543 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9544 				      offsetof(struct sock_common,
9545 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9546 				      off);
9547 #else
9548 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9549 #endif
9550 		break;
9551 
9552 	case offsetof(struct bpf_sock_ops, remote_port):
9553 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9554 
9555 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9556 						struct bpf_sock_ops_kern, sk),
9557 				      si->dst_reg, si->src_reg,
9558 				      offsetof(struct bpf_sock_ops_kern, sk));
9559 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9560 				      offsetof(struct sock_common, skc_dport));
9561 #ifndef __BIG_ENDIAN_BITFIELD
9562 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9563 #endif
9564 		break;
9565 
9566 	case offsetof(struct bpf_sock_ops, local_port):
9567 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9568 
9569 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9570 						struct bpf_sock_ops_kern, sk),
9571 				      si->dst_reg, si->src_reg,
9572 				      offsetof(struct bpf_sock_ops_kern, sk));
9573 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9574 				      offsetof(struct sock_common, skc_num));
9575 		break;
9576 
9577 	case offsetof(struct bpf_sock_ops, is_fullsock):
9578 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9579 						struct bpf_sock_ops_kern,
9580 						is_fullsock),
9581 				      si->dst_reg, si->src_reg,
9582 				      offsetof(struct bpf_sock_ops_kern,
9583 					       is_fullsock));
9584 		break;
9585 
9586 	case offsetof(struct bpf_sock_ops, state):
9587 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9588 
9589 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9590 						struct bpf_sock_ops_kern, sk),
9591 				      si->dst_reg, si->src_reg,
9592 				      offsetof(struct bpf_sock_ops_kern, sk));
9593 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9594 				      offsetof(struct sock_common, skc_state));
9595 		break;
9596 
9597 	case offsetof(struct bpf_sock_ops, rtt_min):
9598 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9599 			     sizeof(struct minmax));
9600 		BUILD_BUG_ON(sizeof(struct minmax) <
9601 			     sizeof(struct minmax_sample));
9602 
9603 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9604 						struct bpf_sock_ops_kern, sk),
9605 				      si->dst_reg, si->src_reg,
9606 				      offsetof(struct bpf_sock_ops_kern, sk));
9607 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9608 				      offsetof(struct tcp_sock, rtt_min) +
9609 				      sizeof_field(struct minmax_sample, t));
9610 		break;
9611 
9612 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9613 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9614 				   struct tcp_sock);
9615 		break;
9616 
9617 	case offsetof(struct bpf_sock_ops, sk_txhash):
9618 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9619 					  struct sock, type);
9620 		break;
9621 	case offsetof(struct bpf_sock_ops, snd_cwnd):
9622 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9623 		break;
9624 	case offsetof(struct bpf_sock_ops, srtt_us):
9625 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9626 		break;
9627 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
9628 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9629 		break;
9630 	case offsetof(struct bpf_sock_ops, rcv_nxt):
9631 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9632 		break;
9633 	case offsetof(struct bpf_sock_ops, snd_nxt):
9634 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9635 		break;
9636 	case offsetof(struct bpf_sock_ops, snd_una):
9637 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9638 		break;
9639 	case offsetof(struct bpf_sock_ops, mss_cache):
9640 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9641 		break;
9642 	case offsetof(struct bpf_sock_ops, ecn_flags):
9643 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9644 		break;
9645 	case offsetof(struct bpf_sock_ops, rate_delivered):
9646 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9647 		break;
9648 	case offsetof(struct bpf_sock_ops, rate_interval_us):
9649 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9650 		break;
9651 	case offsetof(struct bpf_sock_ops, packets_out):
9652 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9653 		break;
9654 	case offsetof(struct bpf_sock_ops, retrans_out):
9655 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9656 		break;
9657 	case offsetof(struct bpf_sock_ops, total_retrans):
9658 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9659 		break;
9660 	case offsetof(struct bpf_sock_ops, segs_in):
9661 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9662 		break;
9663 	case offsetof(struct bpf_sock_ops, data_segs_in):
9664 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9665 		break;
9666 	case offsetof(struct bpf_sock_ops, segs_out):
9667 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9668 		break;
9669 	case offsetof(struct bpf_sock_ops, data_segs_out):
9670 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9671 		break;
9672 	case offsetof(struct bpf_sock_ops, lost_out):
9673 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9674 		break;
9675 	case offsetof(struct bpf_sock_ops, sacked_out):
9676 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9677 		break;
9678 	case offsetof(struct bpf_sock_ops, bytes_received):
9679 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9680 		break;
9681 	case offsetof(struct bpf_sock_ops, bytes_acked):
9682 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9683 		break;
9684 	case offsetof(struct bpf_sock_ops, sk):
9685 		SOCK_OPS_GET_SK();
9686 		break;
9687 	case offsetof(struct bpf_sock_ops, skb_data_end):
9688 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9689 						       skb_data_end),
9690 				      si->dst_reg, si->src_reg,
9691 				      offsetof(struct bpf_sock_ops_kern,
9692 					       skb_data_end));
9693 		break;
9694 	case offsetof(struct bpf_sock_ops, skb_data):
9695 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9696 						       skb),
9697 				      si->dst_reg, si->src_reg,
9698 				      offsetof(struct bpf_sock_ops_kern,
9699 					       skb));
9700 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9701 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9702 				      si->dst_reg, si->dst_reg,
9703 				      offsetof(struct sk_buff, data));
9704 		break;
9705 	case offsetof(struct bpf_sock_ops, skb_len):
9706 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9707 						       skb),
9708 				      si->dst_reg, si->src_reg,
9709 				      offsetof(struct bpf_sock_ops_kern,
9710 					       skb));
9711 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9712 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9713 				      si->dst_reg, si->dst_reg,
9714 				      offsetof(struct sk_buff, len));
9715 		break;
9716 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9717 		off = offsetof(struct sk_buff, cb);
9718 		off += offsetof(struct tcp_skb_cb, tcp_flags);
9719 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9720 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9721 						       skb),
9722 				      si->dst_reg, si->src_reg,
9723 				      offsetof(struct bpf_sock_ops_kern,
9724 					       skb));
9725 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9726 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9727 						       tcp_flags),
9728 				      si->dst_reg, si->dst_reg, off);
9729 		break;
9730 	}
9731 	return insn - insn_buf;
9732 }
9733 
9734 /* data_end = skb->data + skb_headlen() */
9735 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
9736 						    struct bpf_insn *insn)
9737 {
9738 	/* si->dst_reg = skb->data */
9739 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9740 			      si->dst_reg, si->src_reg,
9741 			      offsetof(struct sk_buff, data));
9742 	/* AX = skb->len */
9743 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9744 			      BPF_REG_AX, si->src_reg,
9745 			      offsetof(struct sk_buff, len));
9746 	/* si->dst_reg = skb->data + skb->len */
9747 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9748 	/* AX = skb->data_len */
9749 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
9750 			      BPF_REG_AX, si->src_reg,
9751 			      offsetof(struct sk_buff, data_len));
9752 	/* si->dst_reg = skb->data + skb->len - skb->data_len */
9753 	*insn++ = BPF_ALU64_REG(BPF_SUB, si->dst_reg, BPF_REG_AX);
9754 
9755 	return insn;
9756 }
9757 
9758 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9759 				     const struct bpf_insn *si,
9760 				     struct bpf_insn *insn_buf,
9761 				     struct bpf_prog *prog, u32 *target_size)
9762 {
9763 	struct bpf_insn *insn = insn_buf;
9764 
9765 	switch (si->off) {
9766 	case offsetof(struct __sk_buff, data_end):
9767 		insn = bpf_convert_data_end_access(si, insn);
9768 		break;
9769 	default:
9770 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9771 					      target_size);
9772 	}
9773 
9774 	return insn - insn_buf;
9775 }
9776 
9777 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9778 				     const struct bpf_insn *si,
9779 				     struct bpf_insn *insn_buf,
9780 				     struct bpf_prog *prog, u32 *target_size)
9781 {
9782 	struct bpf_insn *insn = insn_buf;
9783 #if IS_ENABLED(CONFIG_IPV6)
9784 	int off;
9785 #endif
9786 
9787 	/* convert ctx uses the fact sg element is first in struct */
9788 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9789 
9790 	switch (si->off) {
9791 	case offsetof(struct sk_msg_md, data):
9792 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9793 				      si->dst_reg, si->src_reg,
9794 				      offsetof(struct sk_msg, data));
9795 		break;
9796 	case offsetof(struct sk_msg_md, data_end):
9797 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9798 				      si->dst_reg, si->src_reg,
9799 				      offsetof(struct sk_msg, data_end));
9800 		break;
9801 	case offsetof(struct sk_msg_md, family):
9802 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9803 
9804 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9805 					      struct sk_msg, sk),
9806 				      si->dst_reg, si->src_reg,
9807 				      offsetof(struct sk_msg, sk));
9808 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9809 				      offsetof(struct sock_common, skc_family));
9810 		break;
9811 
9812 	case offsetof(struct sk_msg_md, remote_ip4):
9813 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9814 
9815 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9816 						struct sk_msg, sk),
9817 				      si->dst_reg, si->src_reg,
9818 				      offsetof(struct sk_msg, sk));
9819 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9820 				      offsetof(struct sock_common, skc_daddr));
9821 		break;
9822 
9823 	case offsetof(struct sk_msg_md, local_ip4):
9824 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9825 					  skc_rcv_saddr) != 4);
9826 
9827 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9828 					      struct sk_msg, sk),
9829 				      si->dst_reg, si->src_reg,
9830 				      offsetof(struct sk_msg, sk));
9831 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9832 				      offsetof(struct sock_common,
9833 					       skc_rcv_saddr));
9834 		break;
9835 
9836 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9837 	     offsetof(struct sk_msg_md, remote_ip6[3]):
9838 #if IS_ENABLED(CONFIG_IPV6)
9839 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9840 					  skc_v6_daddr.s6_addr32[0]) != 4);
9841 
9842 		off = si->off;
9843 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9844 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9845 						struct sk_msg, sk),
9846 				      si->dst_reg, si->src_reg,
9847 				      offsetof(struct sk_msg, sk));
9848 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9849 				      offsetof(struct sock_common,
9850 					       skc_v6_daddr.s6_addr32[0]) +
9851 				      off);
9852 #else
9853 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9854 #endif
9855 		break;
9856 
9857 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
9858 	     offsetof(struct sk_msg_md, local_ip6[3]):
9859 #if IS_ENABLED(CONFIG_IPV6)
9860 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9861 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9862 
9863 		off = si->off;
9864 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
9865 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9866 						struct sk_msg, sk),
9867 				      si->dst_reg, si->src_reg,
9868 				      offsetof(struct sk_msg, sk));
9869 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9870 				      offsetof(struct sock_common,
9871 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9872 				      off);
9873 #else
9874 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9875 #endif
9876 		break;
9877 
9878 	case offsetof(struct sk_msg_md, remote_port):
9879 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9880 
9881 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9882 						struct sk_msg, sk),
9883 				      si->dst_reg, si->src_reg,
9884 				      offsetof(struct sk_msg, sk));
9885 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9886 				      offsetof(struct sock_common, skc_dport));
9887 #ifndef __BIG_ENDIAN_BITFIELD
9888 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9889 #endif
9890 		break;
9891 
9892 	case offsetof(struct sk_msg_md, local_port):
9893 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9894 
9895 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9896 						struct sk_msg, sk),
9897 				      si->dst_reg, si->src_reg,
9898 				      offsetof(struct sk_msg, sk));
9899 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9900 				      offsetof(struct sock_common, skc_num));
9901 		break;
9902 
9903 	case offsetof(struct sk_msg_md, size):
9904 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9905 				      si->dst_reg, si->src_reg,
9906 				      offsetof(struct sk_msg_sg, size));
9907 		break;
9908 
9909 	case offsetof(struct sk_msg_md, sk):
9910 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9911 				      si->dst_reg, si->src_reg,
9912 				      offsetof(struct sk_msg, sk));
9913 		break;
9914 	}
9915 
9916 	return insn - insn_buf;
9917 }
9918 
9919 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9920 	.get_func_proto		= sk_filter_func_proto,
9921 	.is_valid_access	= sk_filter_is_valid_access,
9922 	.convert_ctx_access	= bpf_convert_ctx_access,
9923 	.gen_ld_abs		= bpf_gen_ld_abs,
9924 };
9925 
9926 const struct bpf_prog_ops sk_filter_prog_ops = {
9927 	.test_run		= bpf_prog_test_run_skb,
9928 };
9929 
9930 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9931 	.get_func_proto		= tc_cls_act_func_proto,
9932 	.is_valid_access	= tc_cls_act_is_valid_access,
9933 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
9934 	.gen_prologue		= tc_cls_act_prologue,
9935 	.gen_ld_abs		= bpf_gen_ld_abs,
9936 	.check_kfunc_call	= bpf_prog_test_check_kfunc_call,
9937 };
9938 
9939 const struct bpf_prog_ops tc_cls_act_prog_ops = {
9940 	.test_run		= bpf_prog_test_run_skb,
9941 };
9942 
9943 const struct bpf_verifier_ops xdp_verifier_ops = {
9944 	.get_func_proto		= xdp_func_proto,
9945 	.is_valid_access	= xdp_is_valid_access,
9946 	.convert_ctx_access	= xdp_convert_ctx_access,
9947 	.gen_prologue		= bpf_noop_prologue,
9948 };
9949 
9950 const struct bpf_prog_ops xdp_prog_ops = {
9951 	.test_run		= bpf_prog_test_run_xdp,
9952 };
9953 
9954 const struct bpf_verifier_ops cg_skb_verifier_ops = {
9955 	.get_func_proto		= cg_skb_func_proto,
9956 	.is_valid_access	= cg_skb_is_valid_access,
9957 	.convert_ctx_access	= bpf_convert_ctx_access,
9958 };
9959 
9960 const struct bpf_prog_ops cg_skb_prog_ops = {
9961 	.test_run		= bpf_prog_test_run_skb,
9962 };
9963 
9964 const struct bpf_verifier_ops lwt_in_verifier_ops = {
9965 	.get_func_proto		= lwt_in_func_proto,
9966 	.is_valid_access	= lwt_is_valid_access,
9967 	.convert_ctx_access	= bpf_convert_ctx_access,
9968 };
9969 
9970 const struct bpf_prog_ops lwt_in_prog_ops = {
9971 	.test_run		= bpf_prog_test_run_skb,
9972 };
9973 
9974 const struct bpf_verifier_ops lwt_out_verifier_ops = {
9975 	.get_func_proto		= lwt_out_func_proto,
9976 	.is_valid_access	= lwt_is_valid_access,
9977 	.convert_ctx_access	= bpf_convert_ctx_access,
9978 };
9979 
9980 const struct bpf_prog_ops lwt_out_prog_ops = {
9981 	.test_run		= bpf_prog_test_run_skb,
9982 };
9983 
9984 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9985 	.get_func_proto		= lwt_xmit_func_proto,
9986 	.is_valid_access	= lwt_is_valid_access,
9987 	.convert_ctx_access	= bpf_convert_ctx_access,
9988 	.gen_prologue		= tc_cls_act_prologue,
9989 };
9990 
9991 const struct bpf_prog_ops lwt_xmit_prog_ops = {
9992 	.test_run		= bpf_prog_test_run_skb,
9993 };
9994 
9995 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9996 	.get_func_proto		= lwt_seg6local_func_proto,
9997 	.is_valid_access	= lwt_is_valid_access,
9998 	.convert_ctx_access	= bpf_convert_ctx_access,
9999 };
10000 
10001 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10002 	.test_run		= bpf_prog_test_run_skb,
10003 };
10004 
10005 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10006 	.get_func_proto		= sock_filter_func_proto,
10007 	.is_valid_access	= sock_filter_is_valid_access,
10008 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10009 };
10010 
10011 const struct bpf_prog_ops cg_sock_prog_ops = {
10012 };
10013 
10014 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10015 	.get_func_proto		= sock_addr_func_proto,
10016 	.is_valid_access	= sock_addr_is_valid_access,
10017 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10018 };
10019 
10020 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10021 };
10022 
10023 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10024 	.get_func_proto		= sock_ops_func_proto,
10025 	.is_valid_access	= sock_ops_is_valid_access,
10026 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10027 };
10028 
10029 const struct bpf_prog_ops sock_ops_prog_ops = {
10030 };
10031 
10032 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10033 	.get_func_proto		= sk_skb_func_proto,
10034 	.is_valid_access	= sk_skb_is_valid_access,
10035 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10036 	.gen_prologue		= sk_skb_prologue,
10037 };
10038 
10039 const struct bpf_prog_ops sk_skb_prog_ops = {
10040 };
10041 
10042 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10043 	.get_func_proto		= sk_msg_func_proto,
10044 	.is_valid_access	= sk_msg_is_valid_access,
10045 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10046 	.gen_prologue		= bpf_noop_prologue,
10047 };
10048 
10049 const struct bpf_prog_ops sk_msg_prog_ops = {
10050 };
10051 
10052 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10053 	.get_func_proto		= flow_dissector_func_proto,
10054 	.is_valid_access	= flow_dissector_is_valid_access,
10055 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10056 };
10057 
10058 const struct bpf_prog_ops flow_dissector_prog_ops = {
10059 	.test_run		= bpf_prog_test_run_flow_dissector,
10060 };
10061 
10062 int sk_detach_filter(struct sock *sk)
10063 {
10064 	int ret = -ENOENT;
10065 	struct sk_filter *filter;
10066 
10067 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10068 		return -EPERM;
10069 
10070 	filter = rcu_dereference_protected(sk->sk_filter,
10071 					   lockdep_sock_is_held(sk));
10072 	if (filter) {
10073 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10074 		sk_filter_uncharge(sk, filter);
10075 		ret = 0;
10076 	}
10077 
10078 	return ret;
10079 }
10080 EXPORT_SYMBOL_GPL(sk_detach_filter);
10081 
10082 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10083 		  unsigned int len)
10084 {
10085 	struct sock_fprog_kern *fprog;
10086 	struct sk_filter *filter;
10087 	int ret = 0;
10088 
10089 	lock_sock(sk);
10090 	filter = rcu_dereference_protected(sk->sk_filter,
10091 					   lockdep_sock_is_held(sk));
10092 	if (!filter)
10093 		goto out;
10094 
10095 	/* We're copying the filter that has been originally attached,
10096 	 * so no conversion/decode needed anymore. eBPF programs that
10097 	 * have no original program cannot be dumped through this.
10098 	 */
10099 	ret = -EACCES;
10100 	fprog = filter->prog->orig_prog;
10101 	if (!fprog)
10102 		goto out;
10103 
10104 	ret = fprog->len;
10105 	if (!len)
10106 		/* User space only enquires number of filter blocks. */
10107 		goto out;
10108 
10109 	ret = -EINVAL;
10110 	if (len < fprog->len)
10111 		goto out;
10112 
10113 	ret = -EFAULT;
10114 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10115 		goto out;
10116 
10117 	/* Instead of bytes, the API requests to return the number
10118 	 * of filter blocks.
10119 	 */
10120 	ret = fprog->len;
10121 out:
10122 	release_sock(sk);
10123 	return ret;
10124 }
10125 
10126 #ifdef CONFIG_INET
10127 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10128 				    struct sock_reuseport *reuse,
10129 				    struct sock *sk, struct sk_buff *skb,
10130 				    struct sock *migrating_sk,
10131 				    u32 hash)
10132 {
10133 	reuse_kern->skb = skb;
10134 	reuse_kern->sk = sk;
10135 	reuse_kern->selected_sk = NULL;
10136 	reuse_kern->migrating_sk = migrating_sk;
10137 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10138 	reuse_kern->hash = hash;
10139 	reuse_kern->reuseport_id = reuse->reuseport_id;
10140 	reuse_kern->bind_inany = reuse->bind_inany;
10141 }
10142 
10143 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10144 				  struct bpf_prog *prog, struct sk_buff *skb,
10145 				  struct sock *migrating_sk,
10146 				  u32 hash)
10147 {
10148 	struct sk_reuseport_kern reuse_kern;
10149 	enum sk_action action;
10150 
10151 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10152 	action = bpf_prog_run(prog, &reuse_kern);
10153 
10154 	if (action == SK_PASS)
10155 		return reuse_kern.selected_sk;
10156 	else
10157 		return ERR_PTR(-ECONNREFUSED);
10158 }
10159 
10160 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10161 	   struct bpf_map *, map, void *, key, u32, flags)
10162 {
10163 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10164 	struct sock_reuseport *reuse;
10165 	struct sock *selected_sk;
10166 
10167 	selected_sk = map->ops->map_lookup_elem(map, key);
10168 	if (!selected_sk)
10169 		return -ENOENT;
10170 
10171 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10172 	if (!reuse) {
10173 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10174 		if (sk_is_refcounted(selected_sk))
10175 			sock_put(selected_sk);
10176 
10177 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
10178 		 * The only (!reuse) case here is - the sk has already been
10179 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
10180 		 *
10181 		 * Other maps (e.g. sock_map) do not provide this guarantee and
10182 		 * the sk may never be in the reuseport group to begin with.
10183 		 */
10184 		return is_sockarray ? -ENOENT : -EINVAL;
10185 	}
10186 
10187 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10188 		struct sock *sk = reuse_kern->sk;
10189 
10190 		if (sk->sk_protocol != selected_sk->sk_protocol)
10191 			return -EPROTOTYPE;
10192 		else if (sk->sk_family != selected_sk->sk_family)
10193 			return -EAFNOSUPPORT;
10194 
10195 		/* Catch all. Likely bound to a different sockaddr. */
10196 		return -EBADFD;
10197 	}
10198 
10199 	reuse_kern->selected_sk = selected_sk;
10200 
10201 	return 0;
10202 }
10203 
10204 static const struct bpf_func_proto sk_select_reuseport_proto = {
10205 	.func           = sk_select_reuseport,
10206 	.gpl_only       = false,
10207 	.ret_type       = RET_INTEGER,
10208 	.arg1_type	= ARG_PTR_TO_CTX,
10209 	.arg2_type      = ARG_CONST_MAP_PTR,
10210 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
10211 	.arg4_type	= ARG_ANYTHING,
10212 };
10213 
10214 BPF_CALL_4(sk_reuseport_load_bytes,
10215 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10216 	   void *, to, u32, len)
10217 {
10218 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10219 }
10220 
10221 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10222 	.func		= sk_reuseport_load_bytes,
10223 	.gpl_only	= false,
10224 	.ret_type	= RET_INTEGER,
10225 	.arg1_type	= ARG_PTR_TO_CTX,
10226 	.arg2_type	= ARG_ANYTHING,
10227 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10228 	.arg4_type	= ARG_CONST_SIZE,
10229 };
10230 
10231 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10232 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10233 	   void *, to, u32, len, u32, start_header)
10234 {
10235 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10236 					       len, start_header);
10237 }
10238 
10239 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10240 	.func		= sk_reuseport_load_bytes_relative,
10241 	.gpl_only	= false,
10242 	.ret_type	= RET_INTEGER,
10243 	.arg1_type	= ARG_PTR_TO_CTX,
10244 	.arg2_type	= ARG_ANYTHING,
10245 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10246 	.arg4_type	= ARG_CONST_SIZE,
10247 	.arg5_type	= ARG_ANYTHING,
10248 };
10249 
10250 static const struct bpf_func_proto *
10251 sk_reuseport_func_proto(enum bpf_func_id func_id,
10252 			const struct bpf_prog *prog)
10253 {
10254 	switch (func_id) {
10255 	case BPF_FUNC_sk_select_reuseport:
10256 		return &sk_select_reuseport_proto;
10257 	case BPF_FUNC_skb_load_bytes:
10258 		return &sk_reuseport_load_bytes_proto;
10259 	case BPF_FUNC_skb_load_bytes_relative:
10260 		return &sk_reuseport_load_bytes_relative_proto;
10261 	case BPF_FUNC_get_socket_cookie:
10262 		return &bpf_get_socket_ptr_cookie_proto;
10263 	default:
10264 		return bpf_base_func_proto(func_id);
10265 	}
10266 }
10267 
10268 static bool
10269 sk_reuseport_is_valid_access(int off, int size,
10270 			     enum bpf_access_type type,
10271 			     const struct bpf_prog *prog,
10272 			     struct bpf_insn_access_aux *info)
10273 {
10274 	const u32 size_default = sizeof(__u32);
10275 
10276 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10277 	    off % size || type != BPF_READ)
10278 		return false;
10279 
10280 	switch (off) {
10281 	case offsetof(struct sk_reuseport_md, data):
10282 		info->reg_type = PTR_TO_PACKET;
10283 		return size == sizeof(__u64);
10284 
10285 	case offsetof(struct sk_reuseport_md, data_end):
10286 		info->reg_type = PTR_TO_PACKET_END;
10287 		return size == sizeof(__u64);
10288 
10289 	case offsetof(struct sk_reuseport_md, hash):
10290 		return size == size_default;
10291 
10292 	case offsetof(struct sk_reuseport_md, sk):
10293 		info->reg_type = PTR_TO_SOCKET;
10294 		return size == sizeof(__u64);
10295 
10296 	case offsetof(struct sk_reuseport_md, migrating_sk):
10297 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10298 		return size == sizeof(__u64);
10299 
10300 	/* Fields that allow narrowing */
10301 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10302 		if (size < sizeof_field(struct sk_buff, protocol))
10303 			return false;
10304 		fallthrough;
10305 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10306 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10307 	case bpf_ctx_range(struct sk_reuseport_md, len):
10308 		bpf_ctx_record_field_size(info, size_default);
10309 		return bpf_ctx_narrow_access_ok(off, size, size_default);
10310 
10311 	default:
10312 		return false;
10313 	}
10314 }
10315 
10316 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
10317 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10318 			      si->dst_reg, si->src_reg,			\
10319 			      bpf_target_off(struct sk_reuseport_kern, F, \
10320 					     sizeof_field(struct sk_reuseport_kern, F), \
10321 					     target_size));		\
10322 	})
10323 
10324 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
10325 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10326 				    struct sk_buff,			\
10327 				    skb,				\
10328 				    SKB_FIELD)
10329 
10330 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
10331 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10332 				    struct sock,			\
10333 				    sk,					\
10334 				    SK_FIELD)
10335 
10336 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10337 					   const struct bpf_insn *si,
10338 					   struct bpf_insn *insn_buf,
10339 					   struct bpf_prog *prog,
10340 					   u32 *target_size)
10341 {
10342 	struct bpf_insn *insn = insn_buf;
10343 
10344 	switch (si->off) {
10345 	case offsetof(struct sk_reuseport_md, data):
10346 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
10347 		break;
10348 
10349 	case offsetof(struct sk_reuseport_md, len):
10350 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
10351 		break;
10352 
10353 	case offsetof(struct sk_reuseport_md, eth_protocol):
10354 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10355 		break;
10356 
10357 	case offsetof(struct sk_reuseport_md, ip_protocol):
10358 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10359 		break;
10360 
10361 	case offsetof(struct sk_reuseport_md, data_end):
10362 		SK_REUSEPORT_LOAD_FIELD(data_end);
10363 		break;
10364 
10365 	case offsetof(struct sk_reuseport_md, hash):
10366 		SK_REUSEPORT_LOAD_FIELD(hash);
10367 		break;
10368 
10369 	case offsetof(struct sk_reuseport_md, bind_inany):
10370 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
10371 		break;
10372 
10373 	case offsetof(struct sk_reuseport_md, sk):
10374 		SK_REUSEPORT_LOAD_FIELD(sk);
10375 		break;
10376 
10377 	case offsetof(struct sk_reuseport_md, migrating_sk):
10378 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
10379 		break;
10380 	}
10381 
10382 	return insn - insn_buf;
10383 }
10384 
10385 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10386 	.get_func_proto		= sk_reuseport_func_proto,
10387 	.is_valid_access	= sk_reuseport_is_valid_access,
10388 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
10389 };
10390 
10391 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10392 };
10393 
10394 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10395 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10396 
10397 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10398 	   struct sock *, sk, u64, flags)
10399 {
10400 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10401 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10402 		return -EINVAL;
10403 	if (unlikely(sk && sk_is_refcounted(sk)))
10404 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10405 	if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10406 		return -ESOCKTNOSUPPORT; /* reject connected sockets */
10407 
10408 	/* Check if socket is suitable for packet L3/L4 protocol */
10409 	if (sk && sk->sk_protocol != ctx->protocol)
10410 		return -EPROTOTYPE;
10411 	if (sk && sk->sk_family != ctx->family &&
10412 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10413 		return -EAFNOSUPPORT;
10414 
10415 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10416 		return -EEXIST;
10417 
10418 	/* Select socket as lookup result */
10419 	ctx->selected_sk = sk;
10420 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10421 	return 0;
10422 }
10423 
10424 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10425 	.func		= bpf_sk_lookup_assign,
10426 	.gpl_only	= false,
10427 	.ret_type	= RET_INTEGER,
10428 	.arg1_type	= ARG_PTR_TO_CTX,
10429 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
10430 	.arg3_type	= ARG_ANYTHING,
10431 };
10432 
10433 static const struct bpf_func_proto *
10434 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10435 {
10436 	switch (func_id) {
10437 	case BPF_FUNC_perf_event_output:
10438 		return &bpf_event_output_data_proto;
10439 	case BPF_FUNC_sk_assign:
10440 		return &bpf_sk_lookup_assign_proto;
10441 	case BPF_FUNC_sk_release:
10442 		return &bpf_sk_release_proto;
10443 	default:
10444 		return bpf_sk_base_func_proto(func_id);
10445 	}
10446 }
10447 
10448 static bool sk_lookup_is_valid_access(int off, int size,
10449 				      enum bpf_access_type type,
10450 				      const struct bpf_prog *prog,
10451 				      struct bpf_insn_access_aux *info)
10452 {
10453 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10454 		return false;
10455 	if (off % size != 0)
10456 		return false;
10457 	if (type != BPF_READ)
10458 		return false;
10459 
10460 	switch (off) {
10461 	case offsetof(struct bpf_sk_lookup, sk):
10462 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
10463 		return size == sizeof(__u64);
10464 
10465 	case bpf_ctx_range(struct bpf_sk_lookup, family):
10466 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10467 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10468 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10469 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10470 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10471 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10472 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10473 		bpf_ctx_record_field_size(info, sizeof(__u32));
10474 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10475 
10476 	default:
10477 		return false;
10478 	}
10479 }
10480 
10481 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10482 					const struct bpf_insn *si,
10483 					struct bpf_insn *insn_buf,
10484 					struct bpf_prog *prog,
10485 					u32 *target_size)
10486 {
10487 	struct bpf_insn *insn = insn_buf;
10488 
10489 	switch (si->off) {
10490 	case offsetof(struct bpf_sk_lookup, sk):
10491 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10492 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
10493 		break;
10494 
10495 	case offsetof(struct bpf_sk_lookup, family):
10496 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10497 				      bpf_target_off(struct bpf_sk_lookup_kern,
10498 						     family, 2, target_size));
10499 		break;
10500 
10501 	case offsetof(struct bpf_sk_lookup, protocol):
10502 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10503 				      bpf_target_off(struct bpf_sk_lookup_kern,
10504 						     protocol, 2, target_size));
10505 		break;
10506 
10507 	case offsetof(struct bpf_sk_lookup, remote_ip4):
10508 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10509 				      bpf_target_off(struct bpf_sk_lookup_kern,
10510 						     v4.saddr, 4, target_size));
10511 		break;
10512 
10513 	case offsetof(struct bpf_sk_lookup, local_ip4):
10514 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10515 				      bpf_target_off(struct bpf_sk_lookup_kern,
10516 						     v4.daddr, 4, target_size));
10517 		break;
10518 
10519 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10520 				remote_ip6[0], remote_ip6[3]): {
10521 #if IS_ENABLED(CONFIG_IPV6)
10522 		int off = si->off;
10523 
10524 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10525 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10526 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10527 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10528 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10529 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10530 #else
10531 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10532 #endif
10533 		break;
10534 	}
10535 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10536 				local_ip6[0], local_ip6[3]): {
10537 #if IS_ENABLED(CONFIG_IPV6)
10538 		int off = si->off;
10539 
10540 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10541 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10542 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10543 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10544 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10545 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10546 #else
10547 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10548 #endif
10549 		break;
10550 	}
10551 	case offsetof(struct bpf_sk_lookup, remote_port):
10552 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10553 				      bpf_target_off(struct bpf_sk_lookup_kern,
10554 						     sport, 2, target_size));
10555 		break;
10556 
10557 	case offsetof(struct bpf_sk_lookup, local_port):
10558 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10559 				      bpf_target_off(struct bpf_sk_lookup_kern,
10560 						     dport, 2, target_size));
10561 		break;
10562 	}
10563 
10564 	return insn - insn_buf;
10565 }
10566 
10567 const struct bpf_prog_ops sk_lookup_prog_ops = {
10568 	.test_run = bpf_prog_test_run_sk_lookup,
10569 };
10570 
10571 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10572 	.get_func_proto		= sk_lookup_func_proto,
10573 	.is_valid_access	= sk_lookup_is_valid_access,
10574 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
10575 };
10576 
10577 #endif /* CONFIG_INET */
10578 
10579 DEFINE_BPF_DISPATCHER(xdp)
10580 
10581 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10582 {
10583 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10584 }
10585 
10586 #ifdef CONFIG_DEBUG_INFO_BTF
10587 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10588 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10589 BTF_SOCK_TYPE_xxx
10590 #undef BTF_SOCK_TYPE
10591 #else
10592 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10593 #endif
10594 
10595 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10596 {
10597 	/* tcp6_sock type is not generated in dwarf and hence btf,
10598 	 * trigger an explicit type generation here.
10599 	 */
10600 	BTF_TYPE_EMIT(struct tcp6_sock);
10601 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10602 	    sk->sk_family == AF_INET6)
10603 		return (unsigned long)sk;
10604 
10605 	return (unsigned long)NULL;
10606 }
10607 
10608 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10609 	.func			= bpf_skc_to_tcp6_sock,
10610 	.gpl_only		= false,
10611 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10612 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10613 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10614 };
10615 
10616 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10617 {
10618 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10619 		return (unsigned long)sk;
10620 
10621 	return (unsigned long)NULL;
10622 }
10623 
10624 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10625 	.func			= bpf_skc_to_tcp_sock,
10626 	.gpl_only		= false,
10627 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10628 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10629 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10630 };
10631 
10632 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10633 {
10634 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10635 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
10636 	 */
10637 	BTF_TYPE_EMIT(struct inet_timewait_sock);
10638 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
10639 
10640 #ifdef CONFIG_INET
10641 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10642 		return (unsigned long)sk;
10643 #endif
10644 
10645 #if IS_BUILTIN(CONFIG_IPV6)
10646 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10647 		return (unsigned long)sk;
10648 #endif
10649 
10650 	return (unsigned long)NULL;
10651 }
10652 
10653 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10654 	.func			= bpf_skc_to_tcp_timewait_sock,
10655 	.gpl_only		= false,
10656 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10657 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10658 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10659 };
10660 
10661 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10662 {
10663 #ifdef CONFIG_INET
10664 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10665 		return (unsigned long)sk;
10666 #endif
10667 
10668 #if IS_BUILTIN(CONFIG_IPV6)
10669 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10670 		return (unsigned long)sk;
10671 #endif
10672 
10673 	return (unsigned long)NULL;
10674 }
10675 
10676 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10677 	.func			= bpf_skc_to_tcp_request_sock,
10678 	.gpl_only		= false,
10679 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10680 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10681 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10682 };
10683 
10684 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10685 {
10686 	/* udp6_sock type is not generated in dwarf and hence btf,
10687 	 * trigger an explicit type generation here.
10688 	 */
10689 	BTF_TYPE_EMIT(struct udp6_sock);
10690 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10691 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10692 		return (unsigned long)sk;
10693 
10694 	return (unsigned long)NULL;
10695 }
10696 
10697 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10698 	.func			= bpf_skc_to_udp6_sock,
10699 	.gpl_only		= false,
10700 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10701 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10702 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10703 };
10704 
10705 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
10706 {
10707 	return (unsigned long)sock_from_file(file);
10708 }
10709 
10710 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
10711 BTF_ID(struct, socket)
10712 BTF_ID(struct, file)
10713 
10714 const struct bpf_func_proto bpf_sock_from_file_proto = {
10715 	.func		= bpf_sock_from_file,
10716 	.gpl_only	= false,
10717 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
10718 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
10719 	.arg1_type	= ARG_PTR_TO_BTF_ID,
10720 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
10721 };
10722 
10723 static const struct bpf_func_proto *
10724 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10725 {
10726 	const struct bpf_func_proto *func;
10727 
10728 	switch (func_id) {
10729 	case BPF_FUNC_skc_to_tcp6_sock:
10730 		func = &bpf_skc_to_tcp6_sock_proto;
10731 		break;
10732 	case BPF_FUNC_skc_to_tcp_sock:
10733 		func = &bpf_skc_to_tcp_sock_proto;
10734 		break;
10735 	case BPF_FUNC_skc_to_tcp_timewait_sock:
10736 		func = &bpf_skc_to_tcp_timewait_sock_proto;
10737 		break;
10738 	case BPF_FUNC_skc_to_tcp_request_sock:
10739 		func = &bpf_skc_to_tcp_request_sock_proto;
10740 		break;
10741 	case BPF_FUNC_skc_to_udp6_sock:
10742 		func = &bpf_skc_to_udp6_sock_proto;
10743 		break;
10744 	default:
10745 		return bpf_base_func_proto(func_id);
10746 	}
10747 
10748 	if (!perfmon_capable())
10749 		return NULL;
10750 
10751 	return func;
10752 }
10753