xref: /openbmc/linux/net/core/filter.c (revision e6dec923)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/ip.h>
37 #include <net/protocol.h>
38 #include <net/netlink.h>
39 #include <linux/skbuff.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 
59 /**
60  *	sk_filter_trim_cap - run a packet through a socket filter
61  *	@sk: sock associated with &sk_buff
62  *	@skb: buffer to filter
63  *	@cap: limit on how short the eBPF program may trim the packet
64  *
65  * Run the eBPF program and then cut skb->data to correct size returned by
66  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
67  * than pkt_len we keep whole skb->data. This is the socket level
68  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
69  * be accepted or -EPERM if the packet should be tossed.
70  *
71  */
72 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
73 {
74 	int err;
75 	struct sk_filter *filter;
76 
77 	/*
78 	 * If the skb was allocated from pfmemalloc reserves, only
79 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
80 	 * helping free memory
81 	 */
82 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
83 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
84 		return -ENOMEM;
85 	}
86 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
87 	if (err)
88 		return err;
89 
90 	err = security_sock_rcv_skb(sk, skb);
91 	if (err)
92 		return err;
93 
94 	rcu_read_lock();
95 	filter = rcu_dereference(sk->sk_filter);
96 	if (filter) {
97 		struct sock *save_sk = skb->sk;
98 		unsigned int pkt_len;
99 
100 		skb->sk = sk;
101 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
102 		skb->sk = save_sk;
103 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
104 	}
105 	rcu_read_unlock();
106 
107 	return err;
108 }
109 EXPORT_SYMBOL(sk_filter_trim_cap);
110 
111 BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
112 {
113 	return skb_get_poff(skb);
114 }
115 
116 BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
117 {
118 	struct nlattr *nla;
119 
120 	if (skb_is_nonlinear(skb))
121 		return 0;
122 
123 	if (skb->len < sizeof(struct nlattr))
124 		return 0;
125 
126 	if (a > skb->len - sizeof(struct nlattr))
127 		return 0;
128 
129 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
130 	if (nla)
131 		return (void *) nla - (void *) skb->data;
132 
133 	return 0;
134 }
135 
136 BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
137 {
138 	struct nlattr *nla;
139 
140 	if (skb_is_nonlinear(skb))
141 		return 0;
142 
143 	if (skb->len < sizeof(struct nlattr))
144 		return 0;
145 
146 	if (a > skb->len - sizeof(struct nlattr))
147 		return 0;
148 
149 	nla = (struct nlattr *) &skb->data[a];
150 	if (nla->nla_len > skb->len - a)
151 		return 0;
152 
153 	nla = nla_find_nested(nla, x);
154 	if (nla)
155 		return (void *) nla - (void *) skb->data;
156 
157 	return 0;
158 }
159 
160 BPF_CALL_0(__get_raw_cpu_id)
161 {
162 	return raw_smp_processor_id();
163 }
164 
165 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
166 	.func		= __get_raw_cpu_id,
167 	.gpl_only	= false,
168 	.ret_type	= RET_INTEGER,
169 };
170 
171 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
172 			      struct bpf_insn *insn_buf)
173 {
174 	struct bpf_insn *insn = insn_buf;
175 
176 	switch (skb_field) {
177 	case SKF_AD_MARK:
178 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
179 
180 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
181 				      offsetof(struct sk_buff, mark));
182 		break;
183 
184 	case SKF_AD_PKTTYPE:
185 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
186 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
187 #ifdef __BIG_ENDIAN_BITFIELD
188 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
189 #endif
190 		break;
191 
192 	case SKF_AD_QUEUE:
193 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
194 
195 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
196 				      offsetof(struct sk_buff, queue_mapping));
197 		break;
198 
199 	case SKF_AD_VLAN_TAG:
200 	case SKF_AD_VLAN_TAG_PRESENT:
201 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
202 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
203 
204 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
205 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
206 				      offsetof(struct sk_buff, vlan_tci));
207 		if (skb_field == SKF_AD_VLAN_TAG) {
208 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
209 						~VLAN_TAG_PRESENT);
210 		} else {
211 			/* dst_reg >>= 12 */
212 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
213 			/* dst_reg &= 1 */
214 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
215 		}
216 		break;
217 	}
218 
219 	return insn - insn_buf;
220 }
221 
222 static bool convert_bpf_extensions(struct sock_filter *fp,
223 				   struct bpf_insn **insnp)
224 {
225 	struct bpf_insn *insn = *insnp;
226 	u32 cnt;
227 
228 	switch (fp->k) {
229 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
230 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
231 
232 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
233 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
234 				      offsetof(struct sk_buff, protocol));
235 		/* A = ntohs(A) [emitting a nop or swap16] */
236 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
237 		break;
238 
239 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
240 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
241 		insn += cnt - 1;
242 		break;
243 
244 	case SKF_AD_OFF + SKF_AD_IFINDEX:
245 	case SKF_AD_OFF + SKF_AD_HATYPE:
246 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
247 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
248 
249 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
250 				      BPF_REG_TMP, BPF_REG_CTX,
251 				      offsetof(struct sk_buff, dev));
252 		/* if (tmp != 0) goto pc + 1 */
253 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
254 		*insn++ = BPF_EXIT_INSN();
255 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
256 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
257 					    offsetof(struct net_device, ifindex));
258 		else
259 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
260 					    offsetof(struct net_device, type));
261 		break;
262 
263 	case SKF_AD_OFF + SKF_AD_MARK:
264 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
265 		insn += cnt - 1;
266 		break;
267 
268 	case SKF_AD_OFF + SKF_AD_RXHASH:
269 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
270 
271 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
272 				    offsetof(struct sk_buff, hash));
273 		break;
274 
275 	case SKF_AD_OFF + SKF_AD_QUEUE:
276 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
277 		insn += cnt - 1;
278 		break;
279 
280 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
281 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
282 					 BPF_REG_A, BPF_REG_CTX, insn);
283 		insn += cnt - 1;
284 		break;
285 
286 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
287 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
288 					 BPF_REG_A, BPF_REG_CTX, insn);
289 		insn += cnt - 1;
290 		break;
291 
292 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
293 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
294 
295 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
296 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
297 				      offsetof(struct sk_buff, vlan_proto));
298 		/* A = ntohs(A) [emitting a nop or swap16] */
299 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
300 		break;
301 
302 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
303 	case SKF_AD_OFF + SKF_AD_NLATTR:
304 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
305 	case SKF_AD_OFF + SKF_AD_CPU:
306 	case SKF_AD_OFF + SKF_AD_RANDOM:
307 		/* arg1 = CTX */
308 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
309 		/* arg2 = A */
310 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
311 		/* arg3 = X */
312 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
313 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
314 		switch (fp->k) {
315 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
316 			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
317 			break;
318 		case SKF_AD_OFF + SKF_AD_NLATTR:
319 			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
320 			break;
321 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
322 			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
323 			break;
324 		case SKF_AD_OFF + SKF_AD_CPU:
325 			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
326 			break;
327 		case SKF_AD_OFF + SKF_AD_RANDOM:
328 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
329 			bpf_user_rnd_init_once();
330 			break;
331 		}
332 		break;
333 
334 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
335 		/* A ^= X */
336 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
337 		break;
338 
339 	default:
340 		/* This is just a dummy call to avoid letting the compiler
341 		 * evict __bpf_call_base() as an optimization. Placed here
342 		 * where no-one bothers.
343 		 */
344 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
345 		return false;
346 	}
347 
348 	*insnp = insn;
349 	return true;
350 }
351 
352 /**
353  *	bpf_convert_filter - convert filter program
354  *	@prog: the user passed filter program
355  *	@len: the length of the user passed filter program
356  *	@new_prog: allocated 'struct bpf_prog' or NULL
357  *	@new_len: pointer to store length of converted program
358  *
359  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
360  * style extended BPF (eBPF).
361  * Conversion workflow:
362  *
363  * 1) First pass for calculating the new program length:
364  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
365  *
366  * 2) 2nd pass to remap in two passes: 1st pass finds new
367  *    jump offsets, 2nd pass remapping:
368  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
369  */
370 static int bpf_convert_filter(struct sock_filter *prog, int len,
371 			      struct bpf_prog *new_prog, int *new_len)
372 {
373 	int new_flen = 0, pass = 0, target, i, stack_off;
374 	struct bpf_insn *new_insn, *first_insn = NULL;
375 	struct sock_filter *fp;
376 	int *addrs = NULL;
377 	u8 bpf_src;
378 
379 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
380 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
381 
382 	if (len <= 0 || len > BPF_MAXINSNS)
383 		return -EINVAL;
384 
385 	if (new_prog) {
386 		first_insn = new_prog->insnsi;
387 		addrs = kcalloc(len, sizeof(*addrs),
388 				GFP_KERNEL | __GFP_NOWARN);
389 		if (!addrs)
390 			return -ENOMEM;
391 	}
392 
393 do_pass:
394 	new_insn = first_insn;
395 	fp = prog;
396 
397 	/* Classic BPF related prologue emission. */
398 	if (new_prog) {
399 		/* Classic BPF expects A and X to be reset first. These need
400 		 * to be guaranteed to be the first two instructions.
401 		 */
402 		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
403 		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
404 
405 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
406 		 * In eBPF case it's done by the compiler, here we need to
407 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
408 		 */
409 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
410 	} else {
411 		new_insn += 3;
412 	}
413 
414 	for (i = 0; i < len; fp++, i++) {
415 		struct bpf_insn tmp_insns[6] = { };
416 		struct bpf_insn *insn = tmp_insns;
417 
418 		if (addrs)
419 			addrs[i] = new_insn - first_insn;
420 
421 		switch (fp->code) {
422 		/* All arithmetic insns and skb loads map as-is. */
423 		case BPF_ALU | BPF_ADD | BPF_X:
424 		case BPF_ALU | BPF_ADD | BPF_K:
425 		case BPF_ALU | BPF_SUB | BPF_X:
426 		case BPF_ALU | BPF_SUB | BPF_K:
427 		case BPF_ALU | BPF_AND | BPF_X:
428 		case BPF_ALU | BPF_AND | BPF_K:
429 		case BPF_ALU | BPF_OR | BPF_X:
430 		case BPF_ALU | BPF_OR | BPF_K:
431 		case BPF_ALU | BPF_LSH | BPF_X:
432 		case BPF_ALU | BPF_LSH | BPF_K:
433 		case BPF_ALU | BPF_RSH | BPF_X:
434 		case BPF_ALU | BPF_RSH | BPF_K:
435 		case BPF_ALU | BPF_XOR | BPF_X:
436 		case BPF_ALU | BPF_XOR | BPF_K:
437 		case BPF_ALU | BPF_MUL | BPF_X:
438 		case BPF_ALU | BPF_MUL | BPF_K:
439 		case BPF_ALU | BPF_DIV | BPF_X:
440 		case BPF_ALU | BPF_DIV | BPF_K:
441 		case BPF_ALU | BPF_MOD | BPF_X:
442 		case BPF_ALU | BPF_MOD | BPF_K:
443 		case BPF_ALU | BPF_NEG:
444 		case BPF_LD | BPF_ABS | BPF_W:
445 		case BPF_LD | BPF_ABS | BPF_H:
446 		case BPF_LD | BPF_ABS | BPF_B:
447 		case BPF_LD | BPF_IND | BPF_W:
448 		case BPF_LD | BPF_IND | BPF_H:
449 		case BPF_LD | BPF_IND | BPF_B:
450 			/* Check for overloaded BPF extension and
451 			 * directly convert it if found, otherwise
452 			 * just move on with mapping.
453 			 */
454 			if (BPF_CLASS(fp->code) == BPF_LD &&
455 			    BPF_MODE(fp->code) == BPF_ABS &&
456 			    convert_bpf_extensions(fp, &insn))
457 				break;
458 
459 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
460 			break;
461 
462 		/* Jump transformation cannot use BPF block macros
463 		 * everywhere as offset calculation and target updates
464 		 * require a bit more work than the rest, i.e. jump
465 		 * opcodes map as-is, but offsets need adjustment.
466 		 */
467 
468 #define BPF_EMIT_JMP							\
469 	do {								\
470 		if (target >= len || target < 0)			\
471 			goto err;					\
472 		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
473 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
474 		insn->off -= insn - tmp_insns;				\
475 	} while (0)
476 
477 		case BPF_JMP | BPF_JA:
478 			target = i + fp->k + 1;
479 			insn->code = fp->code;
480 			BPF_EMIT_JMP;
481 			break;
482 
483 		case BPF_JMP | BPF_JEQ | BPF_K:
484 		case BPF_JMP | BPF_JEQ | BPF_X:
485 		case BPF_JMP | BPF_JSET | BPF_K:
486 		case BPF_JMP | BPF_JSET | BPF_X:
487 		case BPF_JMP | BPF_JGT | BPF_K:
488 		case BPF_JMP | BPF_JGT | BPF_X:
489 		case BPF_JMP | BPF_JGE | BPF_K:
490 		case BPF_JMP | BPF_JGE | BPF_X:
491 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
492 				/* BPF immediates are signed, zero extend
493 				 * immediate into tmp register and use it
494 				 * in compare insn.
495 				 */
496 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
497 
498 				insn->dst_reg = BPF_REG_A;
499 				insn->src_reg = BPF_REG_TMP;
500 				bpf_src = BPF_X;
501 			} else {
502 				insn->dst_reg = BPF_REG_A;
503 				insn->imm = fp->k;
504 				bpf_src = BPF_SRC(fp->code);
505 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
506 			}
507 
508 			/* Common case where 'jump_false' is next insn. */
509 			if (fp->jf == 0) {
510 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
511 				target = i + fp->jt + 1;
512 				BPF_EMIT_JMP;
513 				break;
514 			}
515 
516 			/* Convert JEQ into JNE when 'jump_true' is next insn. */
517 			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
518 				insn->code = BPF_JMP | BPF_JNE | bpf_src;
519 				target = i + fp->jf + 1;
520 				BPF_EMIT_JMP;
521 				break;
522 			}
523 
524 			/* Other jumps are mapped into two insns: Jxx and JA. */
525 			target = i + fp->jt + 1;
526 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
527 			BPF_EMIT_JMP;
528 			insn++;
529 
530 			insn->code = BPF_JMP | BPF_JA;
531 			target = i + fp->jf + 1;
532 			BPF_EMIT_JMP;
533 			break;
534 
535 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
536 		case BPF_LDX | BPF_MSH | BPF_B:
537 			/* tmp = A */
538 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
539 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
540 			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
541 			/* A &= 0xf */
542 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
543 			/* A <<= 2 */
544 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
545 			/* X = A */
546 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
547 			/* A = tmp */
548 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
549 			break;
550 
551 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
552 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
553 		 */
554 		case BPF_RET | BPF_A:
555 		case BPF_RET | BPF_K:
556 			if (BPF_RVAL(fp->code) == BPF_K)
557 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
558 							0, fp->k);
559 			*insn = BPF_EXIT_INSN();
560 			break;
561 
562 		/* Store to stack. */
563 		case BPF_ST:
564 		case BPF_STX:
565 			stack_off = fp->k * 4  + 4;
566 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
567 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
568 					    -stack_off);
569 			/* check_load_and_stores() verifies that classic BPF can
570 			 * load from stack only after write, so tracking
571 			 * stack_depth for ST|STX insns is enough
572 			 */
573 			if (new_prog && new_prog->aux->stack_depth < stack_off)
574 				new_prog->aux->stack_depth = stack_off;
575 			break;
576 
577 		/* Load from stack. */
578 		case BPF_LD | BPF_MEM:
579 		case BPF_LDX | BPF_MEM:
580 			stack_off = fp->k * 4  + 4;
581 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
582 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
583 					    -stack_off);
584 			break;
585 
586 		/* A = K or X = K */
587 		case BPF_LD | BPF_IMM:
588 		case BPF_LDX | BPF_IMM:
589 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
590 					      BPF_REG_A : BPF_REG_X, fp->k);
591 			break;
592 
593 		/* X = A */
594 		case BPF_MISC | BPF_TAX:
595 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
596 			break;
597 
598 		/* A = X */
599 		case BPF_MISC | BPF_TXA:
600 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
601 			break;
602 
603 		/* A = skb->len or X = skb->len */
604 		case BPF_LD | BPF_W | BPF_LEN:
605 		case BPF_LDX | BPF_W | BPF_LEN:
606 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
607 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
608 					    offsetof(struct sk_buff, len));
609 			break;
610 
611 		/* Access seccomp_data fields. */
612 		case BPF_LDX | BPF_ABS | BPF_W:
613 			/* A = *(u32 *) (ctx + K) */
614 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
615 			break;
616 
617 		/* Unknown instruction. */
618 		default:
619 			goto err;
620 		}
621 
622 		insn++;
623 		if (new_prog)
624 			memcpy(new_insn, tmp_insns,
625 			       sizeof(*insn) * (insn - tmp_insns));
626 		new_insn += insn - tmp_insns;
627 	}
628 
629 	if (!new_prog) {
630 		/* Only calculating new length. */
631 		*new_len = new_insn - first_insn;
632 		return 0;
633 	}
634 
635 	pass++;
636 	if (new_flen != new_insn - first_insn) {
637 		new_flen = new_insn - first_insn;
638 		if (pass > 2)
639 			goto err;
640 		goto do_pass;
641 	}
642 
643 	kfree(addrs);
644 	BUG_ON(*new_len != new_flen);
645 	return 0;
646 err:
647 	kfree(addrs);
648 	return -EINVAL;
649 }
650 
651 /* Security:
652  *
653  * As we dont want to clear mem[] array for each packet going through
654  * __bpf_prog_run(), we check that filter loaded by user never try to read
655  * a cell if not previously written, and we check all branches to be sure
656  * a malicious user doesn't try to abuse us.
657  */
658 static int check_load_and_stores(const struct sock_filter *filter, int flen)
659 {
660 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
661 	int pc, ret = 0;
662 
663 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
664 
665 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
666 	if (!masks)
667 		return -ENOMEM;
668 
669 	memset(masks, 0xff, flen * sizeof(*masks));
670 
671 	for (pc = 0; pc < flen; pc++) {
672 		memvalid &= masks[pc];
673 
674 		switch (filter[pc].code) {
675 		case BPF_ST:
676 		case BPF_STX:
677 			memvalid |= (1 << filter[pc].k);
678 			break;
679 		case BPF_LD | BPF_MEM:
680 		case BPF_LDX | BPF_MEM:
681 			if (!(memvalid & (1 << filter[pc].k))) {
682 				ret = -EINVAL;
683 				goto error;
684 			}
685 			break;
686 		case BPF_JMP | BPF_JA:
687 			/* A jump must set masks on target */
688 			masks[pc + 1 + filter[pc].k] &= memvalid;
689 			memvalid = ~0;
690 			break;
691 		case BPF_JMP | BPF_JEQ | BPF_K:
692 		case BPF_JMP | BPF_JEQ | BPF_X:
693 		case BPF_JMP | BPF_JGE | BPF_K:
694 		case BPF_JMP | BPF_JGE | BPF_X:
695 		case BPF_JMP | BPF_JGT | BPF_K:
696 		case BPF_JMP | BPF_JGT | BPF_X:
697 		case BPF_JMP | BPF_JSET | BPF_K:
698 		case BPF_JMP | BPF_JSET | BPF_X:
699 			/* A jump must set masks on targets */
700 			masks[pc + 1 + filter[pc].jt] &= memvalid;
701 			masks[pc + 1 + filter[pc].jf] &= memvalid;
702 			memvalid = ~0;
703 			break;
704 		}
705 	}
706 error:
707 	kfree(masks);
708 	return ret;
709 }
710 
711 static bool chk_code_allowed(u16 code_to_probe)
712 {
713 	static const bool codes[] = {
714 		/* 32 bit ALU operations */
715 		[BPF_ALU | BPF_ADD | BPF_K] = true,
716 		[BPF_ALU | BPF_ADD | BPF_X] = true,
717 		[BPF_ALU | BPF_SUB | BPF_K] = true,
718 		[BPF_ALU | BPF_SUB | BPF_X] = true,
719 		[BPF_ALU | BPF_MUL | BPF_K] = true,
720 		[BPF_ALU | BPF_MUL | BPF_X] = true,
721 		[BPF_ALU | BPF_DIV | BPF_K] = true,
722 		[BPF_ALU | BPF_DIV | BPF_X] = true,
723 		[BPF_ALU | BPF_MOD | BPF_K] = true,
724 		[BPF_ALU | BPF_MOD | BPF_X] = true,
725 		[BPF_ALU | BPF_AND | BPF_K] = true,
726 		[BPF_ALU | BPF_AND | BPF_X] = true,
727 		[BPF_ALU | BPF_OR | BPF_K] = true,
728 		[BPF_ALU | BPF_OR | BPF_X] = true,
729 		[BPF_ALU | BPF_XOR | BPF_K] = true,
730 		[BPF_ALU | BPF_XOR | BPF_X] = true,
731 		[BPF_ALU | BPF_LSH | BPF_K] = true,
732 		[BPF_ALU | BPF_LSH | BPF_X] = true,
733 		[BPF_ALU | BPF_RSH | BPF_K] = true,
734 		[BPF_ALU | BPF_RSH | BPF_X] = true,
735 		[BPF_ALU | BPF_NEG] = true,
736 		/* Load instructions */
737 		[BPF_LD | BPF_W | BPF_ABS] = true,
738 		[BPF_LD | BPF_H | BPF_ABS] = true,
739 		[BPF_LD | BPF_B | BPF_ABS] = true,
740 		[BPF_LD | BPF_W | BPF_LEN] = true,
741 		[BPF_LD | BPF_W | BPF_IND] = true,
742 		[BPF_LD | BPF_H | BPF_IND] = true,
743 		[BPF_LD | BPF_B | BPF_IND] = true,
744 		[BPF_LD | BPF_IMM] = true,
745 		[BPF_LD | BPF_MEM] = true,
746 		[BPF_LDX | BPF_W | BPF_LEN] = true,
747 		[BPF_LDX | BPF_B | BPF_MSH] = true,
748 		[BPF_LDX | BPF_IMM] = true,
749 		[BPF_LDX | BPF_MEM] = true,
750 		/* Store instructions */
751 		[BPF_ST] = true,
752 		[BPF_STX] = true,
753 		/* Misc instructions */
754 		[BPF_MISC | BPF_TAX] = true,
755 		[BPF_MISC | BPF_TXA] = true,
756 		/* Return instructions */
757 		[BPF_RET | BPF_K] = true,
758 		[BPF_RET | BPF_A] = true,
759 		/* Jump instructions */
760 		[BPF_JMP | BPF_JA] = true,
761 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
762 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
763 		[BPF_JMP | BPF_JGE | BPF_K] = true,
764 		[BPF_JMP | BPF_JGE | BPF_X] = true,
765 		[BPF_JMP | BPF_JGT | BPF_K] = true,
766 		[BPF_JMP | BPF_JGT | BPF_X] = true,
767 		[BPF_JMP | BPF_JSET | BPF_K] = true,
768 		[BPF_JMP | BPF_JSET | BPF_X] = true,
769 	};
770 
771 	if (code_to_probe >= ARRAY_SIZE(codes))
772 		return false;
773 
774 	return codes[code_to_probe];
775 }
776 
777 static bool bpf_check_basics_ok(const struct sock_filter *filter,
778 				unsigned int flen)
779 {
780 	if (filter == NULL)
781 		return false;
782 	if (flen == 0 || flen > BPF_MAXINSNS)
783 		return false;
784 
785 	return true;
786 }
787 
788 /**
789  *	bpf_check_classic - verify socket filter code
790  *	@filter: filter to verify
791  *	@flen: length of filter
792  *
793  * Check the user's filter code. If we let some ugly
794  * filter code slip through kaboom! The filter must contain
795  * no references or jumps that are out of range, no illegal
796  * instructions, and must end with a RET instruction.
797  *
798  * All jumps are forward as they are not signed.
799  *
800  * Returns 0 if the rule set is legal or -EINVAL if not.
801  */
802 static int bpf_check_classic(const struct sock_filter *filter,
803 			     unsigned int flen)
804 {
805 	bool anc_found;
806 	int pc;
807 
808 	/* Check the filter code now */
809 	for (pc = 0; pc < flen; pc++) {
810 		const struct sock_filter *ftest = &filter[pc];
811 
812 		/* May we actually operate on this code? */
813 		if (!chk_code_allowed(ftest->code))
814 			return -EINVAL;
815 
816 		/* Some instructions need special checks */
817 		switch (ftest->code) {
818 		case BPF_ALU | BPF_DIV | BPF_K:
819 		case BPF_ALU | BPF_MOD | BPF_K:
820 			/* Check for division by zero */
821 			if (ftest->k == 0)
822 				return -EINVAL;
823 			break;
824 		case BPF_ALU | BPF_LSH | BPF_K:
825 		case BPF_ALU | BPF_RSH | BPF_K:
826 			if (ftest->k >= 32)
827 				return -EINVAL;
828 			break;
829 		case BPF_LD | BPF_MEM:
830 		case BPF_LDX | BPF_MEM:
831 		case BPF_ST:
832 		case BPF_STX:
833 			/* Check for invalid memory addresses */
834 			if (ftest->k >= BPF_MEMWORDS)
835 				return -EINVAL;
836 			break;
837 		case BPF_JMP | BPF_JA:
838 			/* Note, the large ftest->k might cause loops.
839 			 * Compare this with conditional jumps below,
840 			 * where offsets are limited. --ANK (981016)
841 			 */
842 			if (ftest->k >= (unsigned int)(flen - pc - 1))
843 				return -EINVAL;
844 			break;
845 		case BPF_JMP | BPF_JEQ | BPF_K:
846 		case BPF_JMP | BPF_JEQ | BPF_X:
847 		case BPF_JMP | BPF_JGE | BPF_K:
848 		case BPF_JMP | BPF_JGE | BPF_X:
849 		case BPF_JMP | BPF_JGT | BPF_K:
850 		case BPF_JMP | BPF_JGT | BPF_X:
851 		case BPF_JMP | BPF_JSET | BPF_K:
852 		case BPF_JMP | BPF_JSET | BPF_X:
853 			/* Both conditionals must be safe */
854 			if (pc + ftest->jt + 1 >= flen ||
855 			    pc + ftest->jf + 1 >= flen)
856 				return -EINVAL;
857 			break;
858 		case BPF_LD | BPF_W | BPF_ABS:
859 		case BPF_LD | BPF_H | BPF_ABS:
860 		case BPF_LD | BPF_B | BPF_ABS:
861 			anc_found = false;
862 			if (bpf_anc_helper(ftest) & BPF_ANC)
863 				anc_found = true;
864 			/* Ancillary operation unknown or unsupported */
865 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
866 				return -EINVAL;
867 		}
868 	}
869 
870 	/* Last instruction must be a RET code */
871 	switch (filter[flen - 1].code) {
872 	case BPF_RET | BPF_K:
873 	case BPF_RET | BPF_A:
874 		return check_load_and_stores(filter, flen);
875 	}
876 
877 	return -EINVAL;
878 }
879 
880 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
881 				      const struct sock_fprog *fprog)
882 {
883 	unsigned int fsize = bpf_classic_proglen(fprog);
884 	struct sock_fprog_kern *fkprog;
885 
886 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
887 	if (!fp->orig_prog)
888 		return -ENOMEM;
889 
890 	fkprog = fp->orig_prog;
891 	fkprog->len = fprog->len;
892 
893 	fkprog->filter = kmemdup(fp->insns, fsize,
894 				 GFP_KERNEL | __GFP_NOWARN);
895 	if (!fkprog->filter) {
896 		kfree(fp->orig_prog);
897 		return -ENOMEM;
898 	}
899 
900 	return 0;
901 }
902 
903 static void bpf_release_orig_filter(struct bpf_prog *fp)
904 {
905 	struct sock_fprog_kern *fprog = fp->orig_prog;
906 
907 	if (fprog) {
908 		kfree(fprog->filter);
909 		kfree(fprog);
910 	}
911 }
912 
913 static void __bpf_prog_release(struct bpf_prog *prog)
914 {
915 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
916 		bpf_prog_put(prog);
917 	} else {
918 		bpf_release_orig_filter(prog);
919 		bpf_prog_free(prog);
920 	}
921 }
922 
923 static void __sk_filter_release(struct sk_filter *fp)
924 {
925 	__bpf_prog_release(fp->prog);
926 	kfree(fp);
927 }
928 
929 /**
930  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
931  *	@rcu: rcu_head that contains the sk_filter to free
932  */
933 static void sk_filter_release_rcu(struct rcu_head *rcu)
934 {
935 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
936 
937 	__sk_filter_release(fp);
938 }
939 
940 /**
941  *	sk_filter_release - release a socket filter
942  *	@fp: filter to remove
943  *
944  *	Remove a filter from a socket and release its resources.
945  */
946 static void sk_filter_release(struct sk_filter *fp)
947 {
948 	if (refcount_dec_and_test(&fp->refcnt))
949 		call_rcu(&fp->rcu, sk_filter_release_rcu);
950 }
951 
952 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
953 {
954 	u32 filter_size = bpf_prog_size(fp->prog->len);
955 
956 	atomic_sub(filter_size, &sk->sk_omem_alloc);
957 	sk_filter_release(fp);
958 }
959 
960 /* try to charge the socket memory if there is space available
961  * return true on success
962  */
963 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
964 {
965 	u32 filter_size = bpf_prog_size(fp->prog->len);
966 
967 	/* same check as in sock_kmalloc() */
968 	if (filter_size <= sysctl_optmem_max &&
969 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
970 		atomic_add(filter_size, &sk->sk_omem_alloc);
971 		return true;
972 	}
973 	return false;
974 }
975 
976 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
977 {
978 	bool ret = __sk_filter_charge(sk, fp);
979 	if (ret)
980 		refcount_inc(&fp->refcnt);
981 	return ret;
982 }
983 
984 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
985 {
986 	struct sock_filter *old_prog;
987 	struct bpf_prog *old_fp;
988 	int err, new_len, old_len = fp->len;
989 
990 	/* We are free to overwrite insns et al right here as it
991 	 * won't be used at this point in time anymore internally
992 	 * after the migration to the internal BPF instruction
993 	 * representation.
994 	 */
995 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
996 		     sizeof(struct bpf_insn));
997 
998 	/* Conversion cannot happen on overlapping memory areas,
999 	 * so we need to keep the user BPF around until the 2nd
1000 	 * pass. At this time, the user BPF is stored in fp->insns.
1001 	 */
1002 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1003 			   GFP_KERNEL | __GFP_NOWARN);
1004 	if (!old_prog) {
1005 		err = -ENOMEM;
1006 		goto out_err;
1007 	}
1008 
1009 	/* 1st pass: calculate the new program length. */
1010 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
1011 	if (err)
1012 		goto out_err_free;
1013 
1014 	/* Expand fp for appending the new filter representation. */
1015 	old_fp = fp;
1016 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1017 	if (!fp) {
1018 		/* The old_fp is still around in case we couldn't
1019 		 * allocate new memory, so uncharge on that one.
1020 		 */
1021 		fp = old_fp;
1022 		err = -ENOMEM;
1023 		goto out_err_free;
1024 	}
1025 
1026 	fp->len = new_len;
1027 
1028 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1029 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len);
1030 	if (err)
1031 		/* 2nd bpf_convert_filter() can fail only if it fails
1032 		 * to allocate memory, remapping must succeed. Note,
1033 		 * that at this time old_fp has already been released
1034 		 * by krealloc().
1035 		 */
1036 		goto out_err_free;
1037 
1038 	/* We are guaranteed to never error here with cBPF to eBPF
1039 	 * transitions, since there's no issue with type compatibility
1040 	 * checks on program arrays.
1041 	 */
1042 	fp = bpf_prog_select_runtime(fp, &err);
1043 
1044 	kfree(old_prog);
1045 	return fp;
1046 
1047 out_err_free:
1048 	kfree(old_prog);
1049 out_err:
1050 	__bpf_prog_release(fp);
1051 	return ERR_PTR(err);
1052 }
1053 
1054 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1055 					   bpf_aux_classic_check_t trans)
1056 {
1057 	int err;
1058 
1059 	fp->bpf_func = NULL;
1060 	fp->jited = 0;
1061 
1062 	err = bpf_check_classic(fp->insns, fp->len);
1063 	if (err) {
1064 		__bpf_prog_release(fp);
1065 		return ERR_PTR(err);
1066 	}
1067 
1068 	/* There might be additional checks and transformations
1069 	 * needed on classic filters, f.e. in case of seccomp.
1070 	 */
1071 	if (trans) {
1072 		err = trans(fp->insns, fp->len);
1073 		if (err) {
1074 			__bpf_prog_release(fp);
1075 			return ERR_PTR(err);
1076 		}
1077 	}
1078 
1079 	/* Probe if we can JIT compile the filter and if so, do
1080 	 * the compilation of the filter.
1081 	 */
1082 	bpf_jit_compile(fp);
1083 
1084 	/* JIT compiler couldn't process this filter, so do the
1085 	 * internal BPF translation for the optimized interpreter.
1086 	 */
1087 	if (!fp->jited)
1088 		fp = bpf_migrate_filter(fp);
1089 
1090 	return fp;
1091 }
1092 
1093 /**
1094  *	bpf_prog_create - create an unattached filter
1095  *	@pfp: the unattached filter that is created
1096  *	@fprog: the filter program
1097  *
1098  * Create a filter independent of any socket. We first run some
1099  * sanity checks on it to make sure it does not explode on us later.
1100  * If an error occurs or there is insufficient memory for the filter
1101  * a negative errno code is returned. On success the return is zero.
1102  */
1103 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1104 {
1105 	unsigned int fsize = bpf_classic_proglen(fprog);
1106 	struct bpf_prog *fp;
1107 
1108 	/* Make sure new filter is there and in the right amounts. */
1109 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1110 		return -EINVAL;
1111 
1112 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1113 	if (!fp)
1114 		return -ENOMEM;
1115 
1116 	memcpy(fp->insns, fprog->filter, fsize);
1117 
1118 	fp->len = fprog->len;
1119 	/* Since unattached filters are not copied back to user
1120 	 * space through sk_get_filter(), we do not need to hold
1121 	 * a copy here, and can spare us the work.
1122 	 */
1123 	fp->orig_prog = NULL;
1124 
1125 	/* bpf_prepare_filter() already takes care of freeing
1126 	 * memory in case something goes wrong.
1127 	 */
1128 	fp = bpf_prepare_filter(fp, NULL);
1129 	if (IS_ERR(fp))
1130 		return PTR_ERR(fp);
1131 
1132 	*pfp = fp;
1133 	return 0;
1134 }
1135 EXPORT_SYMBOL_GPL(bpf_prog_create);
1136 
1137 /**
1138  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1139  *	@pfp: the unattached filter that is created
1140  *	@fprog: the filter program
1141  *	@trans: post-classic verifier transformation handler
1142  *	@save_orig: save classic BPF program
1143  *
1144  * This function effectively does the same as bpf_prog_create(), only
1145  * that it builds up its insns buffer from user space provided buffer.
1146  * It also allows for passing a bpf_aux_classic_check_t handler.
1147  */
1148 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1149 			      bpf_aux_classic_check_t trans, bool save_orig)
1150 {
1151 	unsigned int fsize = bpf_classic_proglen(fprog);
1152 	struct bpf_prog *fp;
1153 	int err;
1154 
1155 	/* Make sure new filter is there and in the right amounts. */
1156 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1157 		return -EINVAL;
1158 
1159 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1160 	if (!fp)
1161 		return -ENOMEM;
1162 
1163 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1164 		__bpf_prog_free(fp);
1165 		return -EFAULT;
1166 	}
1167 
1168 	fp->len = fprog->len;
1169 	fp->orig_prog = NULL;
1170 
1171 	if (save_orig) {
1172 		err = bpf_prog_store_orig_filter(fp, fprog);
1173 		if (err) {
1174 			__bpf_prog_free(fp);
1175 			return -ENOMEM;
1176 		}
1177 	}
1178 
1179 	/* bpf_prepare_filter() already takes care of freeing
1180 	 * memory in case something goes wrong.
1181 	 */
1182 	fp = bpf_prepare_filter(fp, trans);
1183 	if (IS_ERR(fp))
1184 		return PTR_ERR(fp);
1185 
1186 	*pfp = fp;
1187 	return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1190 
1191 void bpf_prog_destroy(struct bpf_prog *fp)
1192 {
1193 	__bpf_prog_release(fp);
1194 }
1195 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1196 
1197 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1198 {
1199 	struct sk_filter *fp, *old_fp;
1200 
1201 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1202 	if (!fp)
1203 		return -ENOMEM;
1204 
1205 	fp->prog = prog;
1206 
1207 	if (!__sk_filter_charge(sk, fp)) {
1208 		kfree(fp);
1209 		return -ENOMEM;
1210 	}
1211 	refcount_set(&fp->refcnt, 1);
1212 
1213 	old_fp = rcu_dereference_protected(sk->sk_filter,
1214 					   lockdep_sock_is_held(sk));
1215 	rcu_assign_pointer(sk->sk_filter, fp);
1216 
1217 	if (old_fp)
1218 		sk_filter_uncharge(sk, old_fp);
1219 
1220 	return 0;
1221 }
1222 
1223 static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1224 {
1225 	struct bpf_prog *old_prog;
1226 	int err;
1227 
1228 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1229 		return -ENOMEM;
1230 
1231 	if (sk_unhashed(sk) && sk->sk_reuseport) {
1232 		err = reuseport_alloc(sk);
1233 		if (err)
1234 			return err;
1235 	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1236 		/* The socket wasn't bound with SO_REUSEPORT */
1237 		return -EINVAL;
1238 	}
1239 
1240 	old_prog = reuseport_attach_prog(sk, prog);
1241 	if (old_prog)
1242 		bpf_prog_destroy(old_prog);
1243 
1244 	return 0;
1245 }
1246 
1247 static
1248 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1249 {
1250 	unsigned int fsize = bpf_classic_proglen(fprog);
1251 	struct bpf_prog *prog;
1252 	int err;
1253 
1254 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1255 		return ERR_PTR(-EPERM);
1256 
1257 	/* Make sure new filter is there and in the right amounts. */
1258 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1259 		return ERR_PTR(-EINVAL);
1260 
1261 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1262 	if (!prog)
1263 		return ERR_PTR(-ENOMEM);
1264 
1265 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1266 		__bpf_prog_free(prog);
1267 		return ERR_PTR(-EFAULT);
1268 	}
1269 
1270 	prog->len = fprog->len;
1271 
1272 	err = bpf_prog_store_orig_filter(prog, fprog);
1273 	if (err) {
1274 		__bpf_prog_free(prog);
1275 		return ERR_PTR(-ENOMEM);
1276 	}
1277 
1278 	/* bpf_prepare_filter() already takes care of freeing
1279 	 * memory in case something goes wrong.
1280 	 */
1281 	return bpf_prepare_filter(prog, NULL);
1282 }
1283 
1284 /**
1285  *	sk_attach_filter - attach a socket filter
1286  *	@fprog: the filter program
1287  *	@sk: the socket to use
1288  *
1289  * Attach the user's filter code. We first run some sanity checks on
1290  * it to make sure it does not explode on us later. If an error
1291  * occurs or there is insufficient memory for the filter a negative
1292  * errno code is returned. On success the return is zero.
1293  */
1294 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1295 {
1296 	struct bpf_prog *prog = __get_filter(fprog, sk);
1297 	int err;
1298 
1299 	if (IS_ERR(prog))
1300 		return PTR_ERR(prog);
1301 
1302 	err = __sk_attach_prog(prog, sk);
1303 	if (err < 0) {
1304 		__bpf_prog_release(prog);
1305 		return err;
1306 	}
1307 
1308 	return 0;
1309 }
1310 EXPORT_SYMBOL_GPL(sk_attach_filter);
1311 
1312 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1313 {
1314 	struct bpf_prog *prog = __get_filter(fprog, sk);
1315 	int err;
1316 
1317 	if (IS_ERR(prog))
1318 		return PTR_ERR(prog);
1319 
1320 	err = __reuseport_attach_prog(prog, sk);
1321 	if (err < 0) {
1322 		__bpf_prog_release(prog);
1323 		return err;
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1330 {
1331 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1332 		return ERR_PTR(-EPERM);
1333 
1334 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1335 }
1336 
1337 int sk_attach_bpf(u32 ufd, struct sock *sk)
1338 {
1339 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1340 	int err;
1341 
1342 	if (IS_ERR(prog))
1343 		return PTR_ERR(prog);
1344 
1345 	err = __sk_attach_prog(prog, sk);
1346 	if (err < 0) {
1347 		bpf_prog_put(prog);
1348 		return err;
1349 	}
1350 
1351 	return 0;
1352 }
1353 
1354 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1355 {
1356 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1357 	int err;
1358 
1359 	if (IS_ERR(prog))
1360 		return PTR_ERR(prog);
1361 
1362 	err = __reuseport_attach_prog(prog, sk);
1363 	if (err < 0) {
1364 		bpf_prog_put(prog);
1365 		return err;
1366 	}
1367 
1368 	return 0;
1369 }
1370 
1371 struct bpf_scratchpad {
1372 	union {
1373 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1374 		u8     buff[MAX_BPF_STACK];
1375 	};
1376 };
1377 
1378 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1379 
1380 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1381 					  unsigned int write_len)
1382 {
1383 	return skb_ensure_writable(skb, write_len);
1384 }
1385 
1386 static inline int bpf_try_make_writable(struct sk_buff *skb,
1387 					unsigned int write_len)
1388 {
1389 	int err = __bpf_try_make_writable(skb, write_len);
1390 
1391 	bpf_compute_data_end(skb);
1392 	return err;
1393 }
1394 
1395 static int bpf_try_make_head_writable(struct sk_buff *skb)
1396 {
1397 	return bpf_try_make_writable(skb, skb_headlen(skb));
1398 }
1399 
1400 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1401 {
1402 	if (skb_at_tc_ingress(skb))
1403 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1404 }
1405 
1406 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1407 {
1408 	if (skb_at_tc_ingress(skb))
1409 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1410 }
1411 
1412 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1413 	   const void *, from, u32, len, u64, flags)
1414 {
1415 	void *ptr;
1416 
1417 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1418 		return -EINVAL;
1419 	if (unlikely(offset > 0xffff))
1420 		return -EFAULT;
1421 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1422 		return -EFAULT;
1423 
1424 	ptr = skb->data + offset;
1425 	if (flags & BPF_F_RECOMPUTE_CSUM)
1426 		__skb_postpull_rcsum(skb, ptr, len, offset);
1427 
1428 	memcpy(ptr, from, len);
1429 
1430 	if (flags & BPF_F_RECOMPUTE_CSUM)
1431 		__skb_postpush_rcsum(skb, ptr, len, offset);
1432 	if (flags & BPF_F_INVALIDATE_HASH)
1433 		skb_clear_hash(skb);
1434 
1435 	return 0;
1436 }
1437 
1438 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1439 	.func		= bpf_skb_store_bytes,
1440 	.gpl_only	= false,
1441 	.ret_type	= RET_INTEGER,
1442 	.arg1_type	= ARG_PTR_TO_CTX,
1443 	.arg2_type	= ARG_ANYTHING,
1444 	.arg3_type	= ARG_PTR_TO_MEM,
1445 	.arg4_type	= ARG_CONST_SIZE,
1446 	.arg5_type	= ARG_ANYTHING,
1447 };
1448 
1449 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1450 	   void *, to, u32, len)
1451 {
1452 	void *ptr;
1453 
1454 	if (unlikely(offset > 0xffff))
1455 		goto err_clear;
1456 
1457 	ptr = skb_header_pointer(skb, offset, len, to);
1458 	if (unlikely(!ptr))
1459 		goto err_clear;
1460 	if (ptr != to)
1461 		memcpy(to, ptr, len);
1462 
1463 	return 0;
1464 err_clear:
1465 	memset(to, 0, len);
1466 	return -EFAULT;
1467 }
1468 
1469 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1470 	.func		= bpf_skb_load_bytes,
1471 	.gpl_only	= false,
1472 	.ret_type	= RET_INTEGER,
1473 	.arg1_type	= ARG_PTR_TO_CTX,
1474 	.arg2_type	= ARG_ANYTHING,
1475 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1476 	.arg4_type	= ARG_CONST_SIZE,
1477 };
1478 
1479 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1480 {
1481 	/* Idea is the following: should the needed direct read/write
1482 	 * test fail during runtime, we can pull in more data and redo
1483 	 * again, since implicitly, we invalidate previous checks here.
1484 	 *
1485 	 * Or, since we know how much we need to make read/writeable,
1486 	 * this can be done once at the program beginning for direct
1487 	 * access case. By this we overcome limitations of only current
1488 	 * headroom being accessible.
1489 	 */
1490 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1491 }
1492 
1493 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1494 	.func		= bpf_skb_pull_data,
1495 	.gpl_only	= false,
1496 	.ret_type	= RET_INTEGER,
1497 	.arg1_type	= ARG_PTR_TO_CTX,
1498 	.arg2_type	= ARG_ANYTHING,
1499 };
1500 
1501 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1502 	   u64, from, u64, to, u64, flags)
1503 {
1504 	__sum16 *ptr;
1505 
1506 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1507 		return -EINVAL;
1508 	if (unlikely(offset > 0xffff || offset & 1))
1509 		return -EFAULT;
1510 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1511 		return -EFAULT;
1512 
1513 	ptr = (__sum16 *)(skb->data + offset);
1514 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1515 	case 0:
1516 		if (unlikely(from != 0))
1517 			return -EINVAL;
1518 
1519 		csum_replace_by_diff(ptr, to);
1520 		break;
1521 	case 2:
1522 		csum_replace2(ptr, from, to);
1523 		break;
1524 	case 4:
1525 		csum_replace4(ptr, from, to);
1526 		break;
1527 	default:
1528 		return -EINVAL;
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1535 	.func		= bpf_l3_csum_replace,
1536 	.gpl_only	= false,
1537 	.ret_type	= RET_INTEGER,
1538 	.arg1_type	= ARG_PTR_TO_CTX,
1539 	.arg2_type	= ARG_ANYTHING,
1540 	.arg3_type	= ARG_ANYTHING,
1541 	.arg4_type	= ARG_ANYTHING,
1542 	.arg5_type	= ARG_ANYTHING,
1543 };
1544 
1545 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1546 	   u64, from, u64, to, u64, flags)
1547 {
1548 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1549 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1550 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1551 	__sum16 *ptr;
1552 
1553 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1554 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1555 		return -EINVAL;
1556 	if (unlikely(offset > 0xffff || offset & 1))
1557 		return -EFAULT;
1558 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1559 		return -EFAULT;
1560 
1561 	ptr = (__sum16 *)(skb->data + offset);
1562 	if (is_mmzero && !do_mforce && !*ptr)
1563 		return 0;
1564 
1565 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1566 	case 0:
1567 		if (unlikely(from != 0))
1568 			return -EINVAL;
1569 
1570 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1571 		break;
1572 	case 2:
1573 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1574 		break;
1575 	case 4:
1576 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1577 		break;
1578 	default:
1579 		return -EINVAL;
1580 	}
1581 
1582 	if (is_mmzero && !*ptr)
1583 		*ptr = CSUM_MANGLED_0;
1584 	return 0;
1585 }
1586 
1587 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1588 	.func		= bpf_l4_csum_replace,
1589 	.gpl_only	= false,
1590 	.ret_type	= RET_INTEGER,
1591 	.arg1_type	= ARG_PTR_TO_CTX,
1592 	.arg2_type	= ARG_ANYTHING,
1593 	.arg3_type	= ARG_ANYTHING,
1594 	.arg4_type	= ARG_ANYTHING,
1595 	.arg5_type	= ARG_ANYTHING,
1596 };
1597 
1598 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1599 	   __be32 *, to, u32, to_size, __wsum, seed)
1600 {
1601 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1602 	u32 diff_size = from_size + to_size;
1603 	int i, j = 0;
1604 
1605 	/* This is quite flexible, some examples:
1606 	 *
1607 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1608 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1609 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1610 	 *
1611 	 * Even for diffing, from_size and to_size don't need to be equal.
1612 	 */
1613 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1614 		     diff_size > sizeof(sp->diff)))
1615 		return -EINVAL;
1616 
1617 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1618 		sp->diff[j] = ~from[i];
1619 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1620 		sp->diff[j] = to[i];
1621 
1622 	return csum_partial(sp->diff, diff_size, seed);
1623 }
1624 
1625 static const struct bpf_func_proto bpf_csum_diff_proto = {
1626 	.func		= bpf_csum_diff,
1627 	.gpl_only	= false,
1628 	.pkt_access	= true,
1629 	.ret_type	= RET_INTEGER,
1630 	.arg1_type	= ARG_PTR_TO_MEM,
1631 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1632 	.arg3_type	= ARG_PTR_TO_MEM,
1633 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1634 	.arg5_type	= ARG_ANYTHING,
1635 };
1636 
1637 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1638 {
1639 	/* The interface is to be used in combination with bpf_csum_diff()
1640 	 * for direct packet writes. csum rotation for alignment as well
1641 	 * as emulating csum_sub() can be done from the eBPF program.
1642 	 */
1643 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1644 		return (skb->csum = csum_add(skb->csum, csum));
1645 
1646 	return -ENOTSUPP;
1647 }
1648 
1649 static const struct bpf_func_proto bpf_csum_update_proto = {
1650 	.func		= bpf_csum_update,
1651 	.gpl_only	= false,
1652 	.ret_type	= RET_INTEGER,
1653 	.arg1_type	= ARG_PTR_TO_CTX,
1654 	.arg2_type	= ARG_ANYTHING,
1655 };
1656 
1657 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1658 {
1659 	return dev_forward_skb(dev, skb);
1660 }
1661 
1662 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1663 				      struct sk_buff *skb)
1664 {
1665 	int ret = ____dev_forward_skb(dev, skb);
1666 
1667 	if (likely(!ret)) {
1668 		skb->dev = dev;
1669 		ret = netif_rx(skb);
1670 	}
1671 
1672 	return ret;
1673 }
1674 
1675 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
1676 {
1677 	int ret;
1678 
1679 	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
1680 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
1681 		kfree_skb(skb);
1682 		return -ENETDOWN;
1683 	}
1684 
1685 	skb->dev = dev;
1686 
1687 	__this_cpu_inc(xmit_recursion);
1688 	ret = dev_queue_xmit(skb);
1689 	__this_cpu_dec(xmit_recursion);
1690 
1691 	return ret;
1692 }
1693 
1694 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
1695 				 u32 flags)
1696 {
1697 	/* skb->mac_len is not set on normal egress */
1698 	unsigned int mlen = skb->network_header - skb->mac_header;
1699 
1700 	__skb_pull(skb, mlen);
1701 
1702 	/* At ingress, the mac header has already been pulled once.
1703 	 * At egress, skb_pospull_rcsum has to be done in case that
1704 	 * the skb is originated from ingress (i.e. a forwarded skb)
1705 	 * to ensure that rcsum starts at net header.
1706 	 */
1707 	if (!skb_at_tc_ingress(skb))
1708 		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
1709 	skb_pop_mac_header(skb);
1710 	skb_reset_mac_len(skb);
1711 	return flags & BPF_F_INGRESS ?
1712 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
1713 }
1714 
1715 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
1716 				 u32 flags)
1717 {
1718 	/* Verify that a link layer header is carried */
1719 	if (unlikely(skb->mac_header >= skb->network_header)) {
1720 		kfree_skb(skb);
1721 		return -ERANGE;
1722 	}
1723 
1724 	bpf_push_mac_rcsum(skb);
1725 	return flags & BPF_F_INGRESS ?
1726 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1727 }
1728 
1729 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
1730 			  u32 flags)
1731 {
1732 	if (dev_is_mac_header_xmit(dev))
1733 		return __bpf_redirect_common(skb, dev, flags);
1734 	else
1735 		return __bpf_redirect_no_mac(skb, dev, flags);
1736 }
1737 
1738 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1739 {
1740 	struct net_device *dev;
1741 	struct sk_buff *clone;
1742 	int ret;
1743 
1744 	if (unlikely(flags & ~(BPF_F_INGRESS)))
1745 		return -EINVAL;
1746 
1747 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1748 	if (unlikely(!dev))
1749 		return -EINVAL;
1750 
1751 	clone = skb_clone(skb, GFP_ATOMIC);
1752 	if (unlikely(!clone))
1753 		return -ENOMEM;
1754 
1755 	/* For direct write, we need to keep the invariant that the skbs
1756 	 * we're dealing with need to be uncloned. Should uncloning fail
1757 	 * here, we need to free the just generated clone to unclone once
1758 	 * again.
1759 	 */
1760 	ret = bpf_try_make_head_writable(skb);
1761 	if (unlikely(ret)) {
1762 		kfree_skb(clone);
1763 		return -ENOMEM;
1764 	}
1765 
1766 	return __bpf_redirect(clone, dev, flags);
1767 }
1768 
1769 static const struct bpf_func_proto bpf_clone_redirect_proto = {
1770 	.func           = bpf_clone_redirect,
1771 	.gpl_only       = false,
1772 	.ret_type       = RET_INTEGER,
1773 	.arg1_type      = ARG_PTR_TO_CTX,
1774 	.arg2_type      = ARG_ANYTHING,
1775 	.arg3_type      = ARG_ANYTHING,
1776 };
1777 
1778 struct redirect_info {
1779 	u32 ifindex;
1780 	u32 flags;
1781 };
1782 
1783 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1784 
1785 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1786 {
1787 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1788 
1789 	if (unlikely(flags & ~(BPF_F_INGRESS)))
1790 		return TC_ACT_SHOT;
1791 
1792 	ri->ifindex = ifindex;
1793 	ri->flags = flags;
1794 
1795 	return TC_ACT_REDIRECT;
1796 }
1797 
1798 int skb_do_redirect(struct sk_buff *skb)
1799 {
1800 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1801 	struct net_device *dev;
1802 
1803 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1804 	ri->ifindex = 0;
1805 	if (unlikely(!dev)) {
1806 		kfree_skb(skb);
1807 		return -EINVAL;
1808 	}
1809 
1810 	return __bpf_redirect(skb, dev, ri->flags);
1811 }
1812 
1813 static const struct bpf_func_proto bpf_redirect_proto = {
1814 	.func           = bpf_redirect,
1815 	.gpl_only       = false,
1816 	.ret_type       = RET_INTEGER,
1817 	.arg1_type      = ARG_ANYTHING,
1818 	.arg2_type      = ARG_ANYTHING,
1819 };
1820 
1821 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
1822 {
1823 	return task_get_classid(skb);
1824 }
1825 
1826 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1827 	.func           = bpf_get_cgroup_classid,
1828 	.gpl_only       = false,
1829 	.ret_type       = RET_INTEGER,
1830 	.arg1_type      = ARG_PTR_TO_CTX,
1831 };
1832 
1833 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
1834 {
1835 	return dst_tclassid(skb);
1836 }
1837 
1838 static const struct bpf_func_proto bpf_get_route_realm_proto = {
1839 	.func           = bpf_get_route_realm,
1840 	.gpl_only       = false,
1841 	.ret_type       = RET_INTEGER,
1842 	.arg1_type      = ARG_PTR_TO_CTX,
1843 };
1844 
1845 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
1846 {
1847 	/* If skb_clear_hash() was called due to mangling, we can
1848 	 * trigger SW recalculation here. Later access to hash
1849 	 * can then use the inline skb->hash via context directly
1850 	 * instead of calling this helper again.
1851 	 */
1852 	return skb_get_hash(skb);
1853 }
1854 
1855 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
1856 	.func		= bpf_get_hash_recalc,
1857 	.gpl_only	= false,
1858 	.ret_type	= RET_INTEGER,
1859 	.arg1_type	= ARG_PTR_TO_CTX,
1860 };
1861 
1862 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
1863 {
1864 	/* After all direct packet write, this can be used once for
1865 	 * triggering a lazy recalc on next skb_get_hash() invocation.
1866 	 */
1867 	skb_clear_hash(skb);
1868 	return 0;
1869 }
1870 
1871 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
1872 	.func		= bpf_set_hash_invalid,
1873 	.gpl_only	= false,
1874 	.ret_type	= RET_INTEGER,
1875 	.arg1_type	= ARG_PTR_TO_CTX,
1876 };
1877 
1878 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
1879 {
1880 	/* Set user specified hash as L4(+), so that it gets returned
1881 	 * on skb_get_hash() call unless BPF prog later on triggers a
1882 	 * skb_clear_hash().
1883 	 */
1884 	__skb_set_sw_hash(skb, hash, true);
1885 	return 0;
1886 }
1887 
1888 static const struct bpf_func_proto bpf_set_hash_proto = {
1889 	.func		= bpf_set_hash,
1890 	.gpl_only	= false,
1891 	.ret_type	= RET_INTEGER,
1892 	.arg1_type	= ARG_PTR_TO_CTX,
1893 	.arg2_type	= ARG_ANYTHING,
1894 };
1895 
1896 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
1897 	   u16, vlan_tci)
1898 {
1899 	int ret;
1900 
1901 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1902 		     vlan_proto != htons(ETH_P_8021AD)))
1903 		vlan_proto = htons(ETH_P_8021Q);
1904 
1905 	bpf_push_mac_rcsum(skb);
1906 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
1907 	bpf_pull_mac_rcsum(skb);
1908 
1909 	bpf_compute_data_end(skb);
1910 	return ret;
1911 }
1912 
1913 const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1914 	.func           = bpf_skb_vlan_push,
1915 	.gpl_only       = false,
1916 	.ret_type       = RET_INTEGER,
1917 	.arg1_type      = ARG_PTR_TO_CTX,
1918 	.arg2_type      = ARG_ANYTHING,
1919 	.arg3_type      = ARG_ANYTHING,
1920 };
1921 EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1922 
1923 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
1924 {
1925 	int ret;
1926 
1927 	bpf_push_mac_rcsum(skb);
1928 	ret = skb_vlan_pop(skb);
1929 	bpf_pull_mac_rcsum(skb);
1930 
1931 	bpf_compute_data_end(skb);
1932 	return ret;
1933 }
1934 
1935 const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
1936 	.func           = bpf_skb_vlan_pop,
1937 	.gpl_only       = false,
1938 	.ret_type       = RET_INTEGER,
1939 	.arg1_type      = ARG_PTR_TO_CTX,
1940 };
1941 EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1942 
1943 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
1944 {
1945 	/* Caller already did skb_cow() with len as headroom,
1946 	 * so no need to do it here.
1947 	 */
1948 	skb_push(skb, len);
1949 	memmove(skb->data, skb->data + len, off);
1950 	memset(skb->data + off, 0, len);
1951 
1952 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
1953 	 * needed here as it does not change the skb->csum
1954 	 * result for checksum complete when summing over
1955 	 * zeroed blocks.
1956 	 */
1957 	return 0;
1958 }
1959 
1960 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
1961 {
1962 	/* skb_ensure_writable() is not needed here, as we're
1963 	 * already working on an uncloned skb.
1964 	 */
1965 	if (unlikely(!pskb_may_pull(skb, off + len)))
1966 		return -ENOMEM;
1967 
1968 	skb_postpull_rcsum(skb, skb->data + off, len);
1969 	memmove(skb->data + len, skb->data, off);
1970 	__skb_pull(skb, len);
1971 
1972 	return 0;
1973 }
1974 
1975 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
1976 {
1977 	bool trans_same = skb->transport_header == skb->network_header;
1978 	int ret;
1979 
1980 	/* There's no need for __skb_push()/__skb_pull() pair to
1981 	 * get to the start of the mac header as we're guaranteed
1982 	 * to always start from here under eBPF.
1983 	 */
1984 	ret = bpf_skb_generic_push(skb, off, len);
1985 	if (likely(!ret)) {
1986 		skb->mac_header -= len;
1987 		skb->network_header -= len;
1988 		if (trans_same)
1989 			skb->transport_header = skb->network_header;
1990 	}
1991 
1992 	return ret;
1993 }
1994 
1995 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
1996 {
1997 	bool trans_same = skb->transport_header == skb->network_header;
1998 	int ret;
1999 
2000 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
2001 	ret = bpf_skb_generic_pop(skb, off, len);
2002 	if (likely(!ret)) {
2003 		skb->mac_header += len;
2004 		skb->network_header += len;
2005 		if (trans_same)
2006 			skb->transport_header = skb->network_header;
2007 	}
2008 
2009 	return ret;
2010 }
2011 
2012 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2013 {
2014 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2015 	u32 off = skb_mac_header_len(skb);
2016 	int ret;
2017 
2018 	ret = skb_cow(skb, len_diff);
2019 	if (unlikely(ret < 0))
2020 		return ret;
2021 
2022 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2023 	if (unlikely(ret < 0))
2024 		return ret;
2025 
2026 	if (skb_is_gso(skb)) {
2027 		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV4 needs to
2028 		 * be changed into SKB_GSO_TCPV6.
2029 		 */
2030 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2031 			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV4;
2032 			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV6;
2033 		}
2034 
2035 		/* Due to IPv6 header, MSS needs to be downgraded. */
2036 		skb_shinfo(skb)->gso_size -= len_diff;
2037 		/* Header must be checked, and gso_segs recomputed. */
2038 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2039 		skb_shinfo(skb)->gso_segs = 0;
2040 	}
2041 
2042 	skb->protocol = htons(ETH_P_IPV6);
2043 	skb_clear_hash(skb);
2044 
2045 	return 0;
2046 }
2047 
2048 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2049 {
2050 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2051 	u32 off = skb_mac_header_len(skb);
2052 	int ret;
2053 
2054 	ret = skb_unclone(skb, GFP_ATOMIC);
2055 	if (unlikely(ret < 0))
2056 		return ret;
2057 
2058 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2059 	if (unlikely(ret < 0))
2060 		return ret;
2061 
2062 	if (skb_is_gso(skb)) {
2063 		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV6 needs to
2064 		 * be changed into SKB_GSO_TCPV4.
2065 		 */
2066 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
2067 			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV6;
2068 			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV4;
2069 		}
2070 
2071 		/* Due to IPv4 header, MSS can be upgraded. */
2072 		skb_shinfo(skb)->gso_size += len_diff;
2073 		/* Header must be checked, and gso_segs recomputed. */
2074 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2075 		skb_shinfo(skb)->gso_segs = 0;
2076 	}
2077 
2078 	skb->protocol = htons(ETH_P_IP);
2079 	skb_clear_hash(skb);
2080 
2081 	return 0;
2082 }
2083 
2084 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2085 {
2086 	__be16 from_proto = skb->protocol;
2087 
2088 	if (from_proto == htons(ETH_P_IP) &&
2089 	      to_proto == htons(ETH_P_IPV6))
2090 		return bpf_skb_proto_4_to_6(skb);
2091 
2092 	if (from_proto == htons(ETH_P_IPV6) &&
2093 	      to_proto == htons(ETH_P_IP))
2094 		return bpf_skb_proto_6_to_4(skb);
2095 
2096 	return -ENOTSUPP;
2097 }
2098 
2099 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2100 	   u64, flags)
2101 {
2102 	int ret;
2103 
2104 	if (unlikely(flags))
2105 		return -EINVAL;
2106 
2107 	/* General idea is that this helper does the basic groundwork
2108 	 * needed for changing the protocol, and eBPF program fills the
2109 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2110 	 * and other helpers, rather than passing a raw buffer here.
2111 	 *
2112 	 * The rationale is to keep this minimal and without a need to
2113 	 * deal with raw packet data. F.e. even if we would pass buffers
2114 	 * here, the program still needs to call the bpf_lX_csum_replace()
2115 	 * helpers anyway. Plus, this way we keep also separation of
2116 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
2117 	 * care of stores.
2118 	 *
2119 	 * Currently, additional options and extension header space are
2120 	 * not supported, but flags register is reserved so we can adapt
2121 	 * that. For offloads, we mark packet as dodgy, so that headers
2122 	 * need to be verified first.
2123 	 */
2124 	ret = bpf_skb_proto_xlat(skb, proto);
2125 	bpf_compute_data_end(skb);
2126 	return ret;
2127 }
2128 
2129 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2130 	.func		= bpf_skb_change_proto,
2131 	.gpl_only	= false,
2132 	.ret_type	= RET_INTEGER,
2133 	.arg1_type	= ARG_PTR_TO_CTX,
2134 	.arg2_type	= ARG_ANYTHING,
2135 	.arg3_type	= ARG_ANYTHING,
2136 };
2137 
2138 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2139 {
2140 	/* We only allow a restricted subset to be changed for now. */
2141 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2142 		     !skb_pkt_type_ok(pkt_type)))
2143 		return -EINVAL;
2144 
2145 	skb->pkt_type = pkt_type;
2146 	return 0;
2147 }
2148 
2149 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2150 	.func		= bpf_skb_change_type,
2151 	.gpl_only	= false,
2152 	.ret_type	= RET_INTEGER,
2153 	.arg1_type	= ARG_PTR_TO_CTX,
2154 	.arg2_type	= ARG_ANYTHING,
2155 };
2156 
2157 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2158 {
2159 	switch (skb->protocol) {
2160 	case htons(ETH_P_IP):
2161 		return sizeof(struct iphdr);
2162 	case htons(ETH_P_IPV6):
2163 		return sizeof(struct ipv6hdr);
2164 	default:
2165 		return ~0U;
2166 	}
2167 }
2168 
2169 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2170 {
2171 	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2172 	int ret;
2173 
2174 	ret = skb_cow(skb, len_diff);
2175 	if (unlikely(ret < 0))
2176 		return ret;
2177 
2178 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2179 	if (unlikely(ret < 0))
2180 		return ret;
2181 
2182 	if (skb_is_gso(skb)) {
2183 		/* Due to header grow, MSS needs to be downgraded. */
2184 		skb_shinfo(skb)->gso_size -= len_diff;
2185 		/* Header must be checked, and gso_segs recomputed. */
2186 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2187 		skb_shinfo(skb)->gso_segs = 0;
2188 	}
2189 
2190 	return 0;
2191 }
2192 
2193 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2194 {
2195 	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2196 	int ret;
2197 
2198 	ret = skb_unclone(skb, GFP_ATOMIC);
2199 	if (unlikely(ret < 0))
2200 		return ret;
2201 
2202 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2203 	if (unlikely(ret < 0))
2204 		return ret;
2205 
2206 	if (skb_is_gso(skb)) {
2207 		/* Due to header shrink, MSS can be upgraded. */
2208 		skb_shinfo(skb)->gso_size += len_diff;
2209 		/* Header must be checked, and gso_segs recomputed. */
2210 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2211 		skb_shinfo(skb)->gso_segs = 0;
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2218 {
2219 	return skb->dev->mtu + skb->dev->hard_header_len;
2220 }
2221 
2222 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2223 {
2224 	bool trans_same = skb->transport_header == skb->network_header;
2225 	u32 len_cur, len_diff_abs = abs(len_diff);
2226 	u32 len_min = bpf_skb_net_base_len(skb);
2227 	u32 len_max = __bpf_skb_max_len(skb);
2228 	__be16 proto = skb->protocol;
2229 	bool shrink = len_diff < 0;
2230 	int ret;
2231 
2232 	if (unlikely(len_diff_abs > 0xfffU))
2233 		return -EFAULT;
2234 	if (unlikely(proto != htons(ETH_P_IP) &&
2235 		     proto != htons(ETH_P_IPV6)))
2236 		return -ENOTSUPP;
2237 
2238 	len_cur = skb->len - skb_network_offset(skb);
2239 	if (skb_transport_header_was_set(skb) && !trans_same)
2240 		len_cur = skb_network_header_len(skb);
2241 	if ((shrink && (len_diff_abs >= len_cur ||
2242 			len_cur - len_diff_abs < len_min)) ||
2243 	    (!shrink && (skb->len + len_diff_abs > len_max &&
2244 			 !skb_is_gso(skb))))
2245 		return -ENOTSUPP;
2246 
2247 	ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2248 		       bpf_skb_net_grow(skb, len_diff_abs);
2249 
2250 	bpf_compute_data_end(skb);
2251 	return ret;
2252 }
2253 
2254 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2255 	   u32, mode, u64, flags)
2256 {
2257 	if (unlikely(flags))
2258 		return -EINVAL;
2259 	if (likely(mode == BPF_ADJ_ROOM_NET))
2260 		return bpf_skb_adjust_net(skb, len_diff);
2261 
2262 	return -ENOTSUPP;
2263 }
2264 
2265 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2266 	.func		= bpf_skb_adjust_room,
2267 	.gpl_only	= false,
2268 	.ret_type	= RET_INTEGER,
2269 	.arg1_type	= ARG_PTR_TO_CTX,
2270 	.arg2_type	= ARG_ANYTHING,
2271 	.arg3_type	= ARG_ANYTHING,
2272 	.arg4_type	= ARG_ANYTHING,
2273 };
2274 
2275 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2276 {
2277 	u32 min_len = skb_network_offset(skb);
2278 
2279 	if (skb_transport_header_was_set(skb))
2280 		min_len = skb_transport_offset(skb);
2281 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2282 		min_len = skb_checksum_start_offset(skb) +
2283 			  skb->csum_offset + sizeof(__sum16);
2284 	return min_len;
2285 }
2286 
2287 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2288 {
2289 	unsigned int old_len = skb->len;
2290 	int ret;
2291 
2292 	ret = __skb_grow_rcsum(skb, new_len);
2293 	if (!ret)
2294 		memset(skb->data + old_len, 0, new_len - old_len);
2295 	return ret;
2296 }
2297 
2298 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2299 {
2300 	return __skb_trim_rcsum(skb, new_len);
2301 }
2302 
2303 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2304 	   u64, flags)
2305 {
2306 	u32 max_len = __bpf_skb_max_len(skb);
2307 	u32 min_len = __bpf_skb_min_len(skb);
2308 	int ret;
2309 
2310 	if (unlikely(flags || new_len > max_len || new_len < min_len))
2311 		return -EINVAL;
2312 	if (skb->encapsulation)
2313 		return -ENOTSUPP;
2314 
2315 	/* The basic idea of this helper is that it's performing the
2316 	 * needed work to either grow or trim an skb, and eBPF program
2317 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
2318 	 * bpf_lX_csum_replace() and others rather than passing a raw
2319 	 * buffer here. This one is a slow path helper and intended
2320 	 * for replies with control messages.
2321 	 *
2322 	 * Like in bpf_skb_change_proto(), we want to keep this rather
2323 	 * minimal and without protocol specifics so that we are able
2324 	 * to separate concerns as in bpf_skb_store_bytes() should only
2325 	 * be the one responsible for writing buffers.
2326 	 *
2327 	 * It's really expected to be a slow path operation here for
2328 	 * control message replies, so we're implicitly linearizing,
2329 	 * uncloning and drop offloads from the skb by this.
2330 	 */
2331 	ret = __bpf_try_make_writable(skb, skb->len);
2332 	if (!ret) {
2333 		if (new_len > skb->len)
2334 			ret = bpf_skb_grow_rcsum(skb, new_len);
2335 		else if (new_len < skb->len)
2336 			ret = bpf_skb_trim_rcsum(skb, new_len);
2337 		if (!ret && skb_is_gso(skb))
2338 			skb_gso_reset(skb);
2339 	}
2340 
2341 	bpf_compute_data_end(skb);
2342 	return ret;
2343 }
2344 
2345 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2346 	.func		= bpf_skb_change_tail,
2347 	.gpl_only	= false,
2348 	.ret_type	= RET_INTEGER,
2349 	.arg1_type	= ARG_PTR_TO_CTX,
2350 	.arg2_type	= ARG_ANYTHING,
2351 	.arg3_type	= ARG_ANYTHING,
2352 };
2353 
2354 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
2355 	   u64, flags)
2356 {
2357 	u32 max_len = __bpf_skb_max_len(skb);
2358 	u32 new_len = skb->len + head_room;
2359 	int ret;
2360 
2361 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
2362 		     new_len < skb->len))
2363 		return -EINVAL;
2364 
2365 	ret = skb_cow(skb, head_room);
2366 	if (likely(!ret)) {
2367 		/* Idea for this helper is that we currently only
2368 		 * allow to expand on mac header. This means that
2369 		 * skb->protocol network header, etc, stay as is.
2370 		 * Compared to bpf_skb_change_tail(), we're more
2371 		 * flexible due to not needing to linearize or
2372 		 * reset GSO. Intention for this helper is to be
2373 		 * used by an L3 skb that needs to push mac header
2374 		 * for redirection into L2 device.
2375 		 */
2376 		__skb_push(skb, head_room);
2377 		memset(skb->data, 0, head_room);
2378 		skb_reset_mac_header(skb);
2379 	}
2380 
2381 	bpf_compute_data_end(skb);
2382 	return 0;
2383 }
2384 
2385 static const struct bpf_func_proto bpf_skb_change_head_proto = {
2386 	.func		= bpf_skb_change_head,
2387 	.gpl_only	= false,
2388 	.ret_type	= RET_INTEGER,
2389 	.arg1_type	= ARG_PTR_TO_CTX,
2390 	.arg2_type	= ARG_ANYTHING,
2391 	.arg3_type	= ARG_ANYTHING,
2392 };
2393 
2394 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
2395 {
2396 	void *data = xdp->data + offset;
2397 
2398 	if (unlikely(data < xdp->data_hard_start ||
2399 		     data > xdp->data_end - ETH_HLEN))
2400 		return -EINVAL;
2401 
2402 	xdp->data = data;
2403 
2404 	return 0;
2405 }
2406 
2407 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
2408 	.func		= bpf_xdp_adjust_head,
2409 	.gpl_only	= false,
2410 	.ret_type	= RET_INTEGER,
2411 	.arg1_type	= ARG_PTR_TO_CTX,
2412 	.arg2_type	= ARG_ANYTHING,
2413 };
2414 
2415 bool bpf_helper_changes_pkt_data(void *func)
2416 {
2417 	if (func == bpf_skb_vlan_push ||
2418 	    func == bpf_skb_vlan_pop ||
2419 	    func == bpf_skb_store_bytes ||
2420 	    func == bpf_skb_change_proto ||
2421 	    func == bpf_skb_change_head ||
2422 	    func == bpf_skb_change_tail ||
2423 	    func == bpf_skb_adjust_room ||
2424 	    func == bpf_skb_pull_data ||
2425 	    func == bpf_clone_redirect ||
2426 	    func == bpf_l3_csum_replace ||
2427 	    func == bpf_l4_csum_replace ||
2428 	    func == bpf_xdp_adjust_head)
2429 		return true;
2430 
2431 	return false;
2432 }
2433 
2434 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
2435 				  unsigned long off, unsigned long len)
2436 {
2437 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
2438 
2439 	if (unlikely(!ptr))
2440 		return len;
2441 	if (ptr != dst_buff)
2442 		memcpy(dst_buff, ptr, len);
2443 
2444 	return 0;
2445 }
2446 
2447 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
2448 	   u64, flags, void *, meta, u64, meta_size)
2449 {
2450 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
2451 
2452 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
2453 		return -EINVAL;
2454 	if (unlikely(skb_size > skb->len))
2455 		return -EFAULT;
2456 
2457 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
2458 				bpf_skb_copy);
2459 }
2460 
2461 static const struct bpf_func_proto bpf_skb_event_output_proto = {
2462 	.func		= bpf_skb_event_output,
2463 	.gpl_only	= true,
2464 	.ret_type	= RET_INTEGER,
2465 	.arg1_type	= ARG_PTR_TO_CTX,
2466 	.arg2_type	= ARG_CONST_MAP_PTR,
2467 	.arg3_type	= ARG_ANYTHING,
2468 	.arg4_type	= ARG_PTR_TO_MEM,
2469 	.arg5_type	= ARG_CONST_SIZE,
2470 };
2471 
2472 static unsigned short bpf_tunnel_key_af(u64 flags)
2473 {
2474 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
2475 }
2476 
2477 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
2478 	   u32, size, u64, flags)
2479 {
2480 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2481 	u8 compat[sizeof(struct bpf_tunnel_key)];
2482 	void *to_orig = to;
2483 	int err;
2484 
2485 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
2486 		err = -EINVAL;
2487 		goto err_clear;
2488 	}
2489 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
2490 		err = -EPROTO;
2491 		goto err_clear;
2492 	}
2493 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2494 		err = -EINVAL;
2495 		switch (size) {
2496 		case offsetof(struct bpf_tunnel_key, tunnel_label):
2497 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2498 			goto set_compat;
2499 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
2500 			/* Fixup deprecated structure layouts here, so we have
2501 			 * a common path later on.
2502 			 */
2503 			if (ip_tunnel_info_af(info) != AF_INET)
2504 				goto err_clear;
2505 set_compat:
2506 			to = (struct bpf_tunnel_key *)compat;
2507 			break;
2508 		default:
2509 			goto err_clear;
2510 		}
2511 	}
2512 
2513 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
2514 	to->tunnel_tos = info->key.tos;
2515 	to->tunnel_ttl = info->key.ttl;
2516 
2517 	if (flags & BPF_F_TUNINFO_IPV6) {
2518 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
2519 		       sizeof(to->remote_ipv6));
2520 		to->tunnel_label = be32_to_cpu(info->key.label);
2521 	} else {
2522 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
2523 	}
2524 
2525 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
2526 		memcpy(to_orig, to, size);
2527 
2528 	return 0;
2529 err_clear:
2530 	memset(to_orig, 0, size);
2531 	return err;
2532 }
2533 
2534 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
2535 	.func		= bpf_skb_get_tunnel_key,
2536 	.gpl_only	= false,
2537 	.ret_type	= RET_INTEGER,
2538 	.arg1_type	= ARG_PTR_TO_CTX,
2539 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
2540 	.arg3_type	= ARG_CONST_SIZE,
2541 	.arg4_type	= ARG_ANYTHING,
2542 };
2543 
2544 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
2545 {
2546 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2547 	int err;
2548 
2549 	if (unlikely(!info ||
2550 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
2551 		err = -ENOENT;
2552 		goto err_clear;
2553 	}
2554 	if (unlikely(size < info->options_len)) {
2555 		err = -ENOMEM;
2556 		goto err_clear;
2557 	}
2558 
2559 	ip_tunnel_info_opts_get(to, info);
2560 	if (size > info->options_len)
2561 		memset(to + info->options_len, 0, size - info->options_len);
2562 
2563 	return info->options_len;
2564 err_clear:
2565 	memset(to, 0, size);
2566 	return err;
2567 }
2568 
2569 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
2570 	.func		= bpf_skb_get_tunnel_opt,
2571 	.gpl_only	= false,
2572 	.ret_type	= RET_INTEGER,
2573 	.arg1_type	= ARG_PTR_TO_CTX,
2574 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
2575 	.arg3_type	= ARG_CONST_SIZE,
2576 };
2577 
2578 static struct metadata_dst __percpu *md_dst;
2579 
2580 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
2581 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
2582 {
2583 	struct metadata_dst *md = this_cpu_ptr(md_dst);
2584 	u8 compat[sizeof(struct bpf_tunnel_key)];
2585 	struct ip_tunnel_info *info;
2586 
2587 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
2588 			       BPF_F_DONT_FRAGMENT)))
2589 		return -EINVAL;
2590 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2591 		switch (size) {
2592 		case offsetof(struct bpf_tunnel_key, tunnel_label):
2593 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2594 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
2595 			/* Fixup deprecated structure layouts here, so we have
2596 			 * a common path later on.
2597 			 */
2598 			memcpy(compat, from, size);
2599 			memset(compat + size, 0, sizeof(compat) - size);
2600 			from = (const struct bpf_tunnel_key *) compat;
2601 			break;
2602 		default:
2603 			return -EINVAL;
2604 		}
2605 	}
2606 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
2607 		     from->tunnel_ext))
2608 		return -EINVAL;
2609 
2610 	skb_dst_drop(skb);
2611 	dst_hold((struct dst_entry *) md);
2612 	skb_dst_set(skb, (struct dst_entry *) md);
2613 
2614 	info = &md->u.tun_info;
2615 	info->mode = IP_TUNNEL_INFO_TX;
2616 
2617 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
2618 	if (flags & BPF_F_DONT_FRAGMENT)
2619 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
2620 
2621 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
2622 	info->key.tos = from->tunnel_tos;
2623 	info->key.ttl = from->tunnel_ttl;
2624 
2625 	if (flags & BPF_F_TUNINFO_IPV6) {
2626 		info->mode |= IP_TUNNEL_INFO_IPV6;
2627 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
2628 		       sizeof(from->remote_ipv6));
2629 		info->key.label = cpu_to_be32(from->tunnel_label) &
2630 				  IPV6_FLOWLABEL_MASK;
2631 	} else {
2632 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
2633 		if (flags & BPF_F_ZERO_CSUM_TX)
2634 			info->key.tun_flags &= ~TUNNEL_CSUM;
2635 	}
2636 
2637 	return 0;
2638 }
2639 
2640 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
2641 	.func		= bpf_skb_set_tunnel_key,
2642 	.gpl_only	= false,
2643 	.ret_type	= RET_INTEGER,
2644 	.arg1_type	= ARG_PTR_TO_CTX,
2645 	.arg2_type	= ARG_PTR_TO_MEM,
2646 	.arg3_type	= ARG_CONST_SIZE,
2647 	.arg4_type	= ARG_ANYTHING,
2648 };
2649 
2650 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
2651 	   const u8 *, from, u32, size)
2652 {
2653 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
2654 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
2655 
2656 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
2657 		return -EINVAL;
2658 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
2659 		return -ENOMEM;
2660 
2661 	ip_tunnel_info_opts_set(info, from, size);
2662 
2663 	return 0;
2664 }
2665 
2666 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
2667 	.func		= bpf_skb_set_tunnel_opt,
2668 	.gpl_only	= false,
2669 	.ret_type	= RET_INTEGER,
2670 	.arg1_type	= ARG_PTR_TO_CTX,
2671 	.arg2_type	= ARG_PTR_TO_MEM,
2672 	.arg3_type	= ARG_CONST_SIZE,
2673 };
2674 
2675 static const struct bpf_func_proto *
2676 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
2677 {
2678 	if (!md_dst) {
2679 		/* Race is not possible, since it's called from verifier
2680 		 * that is holding verifier mutex.
2681 		 */
2682 		md_dst = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
2683 						   METADATA_IP_TUNNEL,
2684 						   GFP_KERNEL);
2685 		if (!md_dst)
2686 			return NULL;
2687 	}
2688 
2689 	switch (which) {
2690 	case BPF_FUNC_skb_set_tunnel_key:
2691 		return &bpf_skb_set_tunnel_key_proto;
2692 	case BPF_FUNC_skb_set_tunnel_opt:
2693 		return &bpf_skb_set_tunnel_opt_proto;
2694 	default:
2695 		return NULL;
2696 	}
2697 }
2698 
2699 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
2700 	   u32, idx)
2701 {
2702 	struct bpf_array *array = container_of(map, struct bpf_array, map);
2703 	struct cgroup *cgrp;
2704 	struct sock *sk;
2705 
2706 	sk = skb_to_full_sk(skb);
2707 	if (!sk || !sk_fullsock(sk))
2708 		return -ENOENT;
2709 	if (unlikely(idx >= array->map.max_entries))
2710 		return -E2BIG;
2711 
2712 	cgrp = READ_ONCE(array->ptrs[idx]);
2713 	if (unlikely(!cgrp))
2714 		return -EAGAIN;
2715 
2716 	return sk_under_cgroup_hierarchy(sk, cgrp);
2717 }
2718 
2719 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
2720 	.func		= bpf_skb_under_cgroup,
2721 	.gpl_only	= false,
2722 	.ret_type	= RET_INTEGER,
2723 	.arg1_type	= ARG_PTR_TO_CTX,
2724 	.arg2_type	= ARG_CONST_MAP_PTR,
2725 	.arg3_type	= ARG_ANYTHING,
2726 };
2727 
2728 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
2729 				  unsigned long off, unsigned long len)
2730 {
2731 	memcpy(dst_buff, src_buff + off, len);
2732 	return 0;
2733 }
2734 
2735 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
2736 	   u64, flags, void *, meta, u64, meta_size)
2737 {
2738 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
2739 
2740 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
2741 		return -EINVAL;
2742 	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
2743 		return -EFAULT;
2744 
2745 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
2746 				xdp_size, bpf_xdp_copy);
2747 }
2748 
2749 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
2750 	.func		= bpf_xdp_event_output,
2751 	.gpl_only	= true,
2752 	.ret_type	= RET_INTEGER,
2753 	.arg1_type	= ARG_PTR_TO_CTX,
2754 	.arg2_type	= ARG_CONST_MAP_PTR,
2755 	.arg3_type	= ARG_ANYTHING,
2756 	.arg4_type	= ARG_PTR_TO_MEM,
2757 	.arg5_type	= ARG_CONST_SIZE,
2758 };
2759 
2760 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
2761 {
2762 	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
2763 }
2764 
2765 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
2766 	.func           = bpf_get_socket_cookie,
2767 	.gpl_only       = false,
2768 	.ret_type       = RET_INTEGER,
2769 	.arg1_type      = ARG_PTR_TO_CTX,
2770 };
2771 
2772 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
2773 {
2774 	struct sock *sk = sk_to_full_sk(skb->sk);
2775 	kuid_t kuid;
2776 
2777 	if (!sk || !sk_fullsock(sk))
2778 		return overflowuid;
2779 	kuid = sock_net_uid(sock_net(sk), sk);
2780 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
2781 }
2782 
2783 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
2784 	.func           = bpf_get_socket_uid,
2785 	.gpl_only       = false,
2786 	.ret_type       = RET_INTEGER,
2787 	.arg1_type      = ARG_PTR_TO_CTX,
2788 };
2789 
2790 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
2791 	   int, level, int, optname, char *, optval, int, optlen)
2792 {
2793 	struct sock *sk = bpf_sock->sk;
2794 	int ret = 0;
2795 	int val;
2796 
2797 	if (!sk_fullsock(sk))
2798 		return -EINVAL;
2799 
2800 	if (level == SOL_SOCKET) {
2801 		if (optlen != sizeof(int))
2802 			return -EINVAL;
2803 		val = *((int *)optval);
2804 
2805 		/* Only some socketops are supported */
2806 		switch (optname) {
2807 		case SO_RCVBUF:
2808 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
2809 			sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
2810 			break;
2811 		case SO_SNDBUF:
2812 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
2813 			sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
2814 			break;
2815 		case SO_MAX_PACING_RATE:
2816 			sk->sk_max_pacing_rate = val;
2817 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
2818 						 sk->sk_max_pacing_rate);
2819 			break;
2820 		case SO_PRIORITY:
2821 			sk->sk_priority = val;
2822 			break;
2823 		case SO_RCVLOWAT:
2824 			if (val < 0)
2825 				val = INT_MAX;
2826 			sk->sk_rcvlowat = val ? : 1;
2827 			break;
2828 		case SO_MARK:
2829 			sk->sk_mark = val;
2830 			break;
2831 		default:
2832 			ret = -EINVAL;
2833 		}
2834 #ifdef CONFIG_INET
2835 	} else if (level == SOL_TCP &&
2836 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
2837 		if (optname == TCP_CONGESTION) {
2838 			char name[TCP_CA_NAME_MAX];
2839 
2840 			strncpy(name, optval, min_t(long, optlen,
2841 						    TCP_CA_NAME_MAX-1));
2842 			name[TCP_CA_NAME_MAX-1] = 0;
2843 			ret = tcp_set_congestion_control(sk, name, false);
2844 			if (!ret && bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN)
2845 				/* replacing an existing ca */
2846 				tcp_reinit_congestion_control(sk,
2847 					inet_csk(sk)->icsk_ca_ops);
2848 		} else {
2849 			struct tcp_sock *tp = tcp_sk(sk);
2850 
2851 			if (optlen != sizeof(int))
2852 				return -EINVAL;
2853 
2854 			val = *((int *)optval);
2855 			/* Only some options are supported */
2856 			switch (optname) {
2857 			case TCP_BPF_IW:
2858 				if (val <= 0 || tp->data_segs_out > 0)
2859 					ret = -EINVAL;
2860 				else
2861 					tp->snd_cwnd = val;
2862 				break;
2863 			case TCP_BPF_SNDCWND_CLAMP:
2864 				if (val <= 0) {
2865 					ret = -EINVAL;
2866 				} else {
2867 					tp->snd_cwnd_clamp = val;
2868 					tp->snd_ssthresh = val;
2869 				}
2870 				break;
2871 			default:
2872 				ret = -EINVAL;
2873 			}
2874 		}
2875 		ret = -EINVAL;
2876 #endif
2877 	} else {
2878 		ret = -EINVAL;
2879 	}
2880 	return ret;
2881 }
2882 
2883 static const struct bpf_func_proto bpf_setsockopt_proto = {
2884 	.func		= bpf_setsockopt,
2885 	.gpl_only	= true,
2886 	.ret_type	= RET_INTEGER,
2887 	.arg1_type	= ARG_PTR_TO_CTX,
2888 	.arg2_type	= ARG_ANYTHING,
2889 	.arg3_type	= ARG_ANYTHING,
2890 	.arg4_type	= ARG_PTR_TO_MEM,
2891 	.arg5_type	= ARG_CONST_SIZE,
2892 };
2893 
2894 static const struct bpf_func_proto *
2895 bpf_base_func_proto(enum bpf_func_id func_id)
2896 {
2897 	switch (func_id) {
2898 	case BPF_FUNC_map_lookup_elem:
2899 		return &bpf_map_lookup_elem_proto;
2900 	case BPF_FUNC_map_update_elem:
2901 		return &bpf_map_update_elem_proto;
2902 	case BPF_FUNC_map_delete_elem:
2903 		return &bpf_map_delete_elem_proto;
2904 	case BPF_FUNC_get_prandom_u32:
2905 		return &bpf_get_prandom_u32_proto;
2906 	case BPF_FUNC_get_smp_processor_id:
2907 		return &bpf_get_raw_smp_processor_id_proto;
2908 	case BPF_FUNC_get_numa_node_id:
2909 		return &bpf_get_numa_node_id_proto;
2910 	case BPF_FUNC_tail_call:
2911 		return &bpf_tail_call_proto;
2912 	case BPF_FUNC_ktime_get_ns:
2913 		return &bpf_ktime_get_ns_proto;
2914 	case BPF_FUNC_trace_printk:
2915 		if (capable(CAP_SYS_ADMIN))
2916 			return bpf_get_trace_printk_proto();
2917 	default:
2918 		return NULL;
2919 	}
2920 }
2921 
2922 static const struct bpf_func_proto *
2923 sk_filter_func_proto(enum bpf_func_id func_id)
2924 {
2925 	switch (func_id) {
2926 	case BPF_FUNC_skb_load_bytes:
2927 		return &bpf_skb_load_bytes_proto;
2928 	case BPF_FUNC_get_socket_cookie:
2929 		return &bpf_get_socket_cookie_proto;
2930 	case BPF_FUNC_get_socket_uid:
2931 		return &bpf_get_socket_uid_proto;
2932 	default:
2933 		return bpf_base_func_proto(func_id);
2934 	}
2935 }
2936 
2937 static const struct bpf_func_proto *
2938 tc_cls_act_func_proto(enum bpf_func_id func_id)
2939 {
2940 	switch (func_id) {
2941 	case BPF_FUNC_skb_store_bytes:
2942 		return &bpf_skb_store_bytes_proto;
2943 	case BPF_FUNC_skb_load_bytes:
2944 		return &bpf_skb_load_bytes_proto;
2945 	case BPF_FUNC_skb_pull_data:
2946 		return &bpf_skb_pull_data_proto;
2947 	case BPF_FUNC_csum_diff:
2948 		return &bpf_csum_diff_proto;
2949 	case BPF_FUNC_csum_update:
2950 		return &bpf_csum_update_proto;
2951 	case BPF_FUNC_l3_csum_replace:
2952 		return &bpf_l3_csum_replace_proto;
2953 	case BPF_FUNC_l4_csum_replace:
2954 		return &bpf_l4_csum_replace_proto;
2955 	case BPF_FUNC_clone_redirect:
2956 		return &bpf_clone_redirect_proto;
2957 	case BPF_FUNC_get_cgroup_classid:
2958 		return &bpf_get_cgroup_classid_proto;
2959 	case BPF_FUNC_skb_vlan_push:
2960 		return &bpf_skb_vlan_push_proto;
2961 	case BPF_FUNC_skb_vlan_pop:
2962 		return &bpf_skb_vlan_pop_proto;
2963 	case BPF_FUNC_skb_change_proto:
2964 		return &bpf_skb_change_proto_proto;
2965 	case BPF_FUNC_skb_change_type:
2966 		return &bpf_skb_change_type_proto;
2967 	case BPF_FUNC_skb_adjust_room:
2968 		return &bpf_skb_adjust_room_proto;
2969 	case BPF_FUNC_skb_change_tail:
2970 		return &bpf_skb_change_tail_proto;
2971 	case BPF_FUNC_skb_get_tunnel_key:
2972 		return &bpf_skb_get_tunnel_key_proto;
2973 	case BPF_FUNC_skb_set_tunnel_key:
2974 		return bpf_get_skb_set_tunnel_proto(func_id);
2975 	case BPF_FUNC_skb_get_tunnel_opt:
2976 		return &bpf_skb_get_tunnel_opt_proto;
2977 	case BPF_FUNC_skb_set_tunnel_opt:
2978 		return bpf_get_skb_set_tunnel_proto(func_id);
2979 	case BPF_FUNC_redirect:
2980 		return &bpf_redirect_proto;
2981 	case BPF_FUNC_get_route_realm:
2982 		return &bpf_get_route_realm_proto;
2983 	case BPF_FUNC_get_hash_recalc:
2984 		return &bpf_get_hash_recalc_proto;
2985 	case BPF_FUNC_set_hash_invalid:
2986 		return &bpf_set_hash_invalid_proto;
2987 	case BPF_FUNC_set_hash:
2988 		return &bpf_set_hash_proto;
2989 	case BPF_FUNC_perf_event_output:
2990 		return &bpf_skb_event_output_proto;
2991 	case BPF_FUNC_get_smp_processor_id:
2992 		return &bpf_get_smp_processor_id_proto;
2993 	case BPF_FUNC_skb_under_cgroup:
2994 		return &bpf_skb_under_cgroup_proto;
2995 	case BPF_FUNC_get_socket_cookie:
2996 		return &bpf_get_socket_cookie_proto;
2997 	case BPF_FUNC_get_socket_uid:
2998 		return &bpf_get_socket_uid_proto;
2999 	default:
3000 		return bpf_base_func_proto(func_id);
3001 	}
3002 }
3003 
3004 static const struct bpf_func_proto *
3005 xdp_func_proto(enum bpf_func_id func_id)
3006 {
3007 	switch (func_id) {
3008 	case BPF_FUNC_perf_event_output:
3009 		return &bpf_xdp_event_output_proto;
3010 	case BPF_FUNC_get_smp_processor_id:
3011 		return &bpf_get_smp_processor_id_proto;
3012 	case BPF_FUNC_xdp_adjust_head:
3013 		return &bpf_xdp_adjust_head_proto;
3014 	default:
3015 		return bpf_base_func_proto(func_id);
3016 	}
3017 }
3018 
3019 static const struct bpf_func_proto *
3020 lwt_inout_func_proto(enum bpf_func_id func_id)
3021 {
3022 	switch (func_id) {
3023 	case BPF_FUNC_skb_load_bytes:
3024 		return &bpf_skb_load_bytes_proto;
3025 	case BPF_FUNC_skb_pull_data:
3026 		return &bpf_skb_pull_data_proto;
3027 	case BPF_FUNC_csum_diff:
3028 		return &bpf_csum_diff_proto;
3029 	case BPF_FUNC_get_cgroup_classid:
3030 		return &bpf_get_cgroup_classid_proto;
3031 	case BPF_FUNC_get_route_realm:
3032 		return &bpf_get_route_realm_proto;
3033 	case BPF_FUNC_get_hash_recalc:
3034 		return &bpf_get_hash_recalc_proto;
3035 	case BPF_FUNC_perf_event_output:
3036 		return &bpf_skb_event_output_proto;
3037 	case BPF_FUNC_get_smp_processor_id:
3038 		return &bpf_get_smp_processor_id_proto;
3039 	case BPF_FUNC_skb_under_cgroup:
3040 		return &bpf_skb_under_cgroup_proto;
3041 	default:
3042 		return bpf_base_func_proto(func_id);
3043 	}
3044 }
3045 
3046 static const struct bpf_func_proto *
3047 	sock_ops_func_proto(enum bpf_func_id func_id)
3048 {
3049 	switch (func_id) {
3050 	case BPF_FUNC_setsockopt:
3051 		return &bpf_setsockopt_proto;
3052 	default:
3053 		return bpf_base_func_proto(func_id);
3054 	}
3055 }
3056 
3057 static const struct bpf_func_proto *
3058 lwt_xmit_func_proto(enum bpf_func_id func_id)
3059 {
3060 	switch (func_id) {
3061 	case BPF_FUNC_skb_get_tunnel_key:
3062 		return &bpf_skb_get_tunnel_key_proto;
3063 	case BPF_FUNC_skb_set_tunnel_key:
3064 		return bpf_get_skb_set_tunnel_proto(func_id);
3065 	case BPF_FUNC_skb_get_tunnel_opt:
3066 		return &bpf_skb_get_tunnel_opt_proto;
3067 	case BPF_FUNC_skb_set_tunnel_opt:
3068 		return bpf_get_skb_set_tunnel_proto(func_id);
3069 	case BPF_FUNC_redirect:
3070 		return &bpf_redirect_proto;
3071 	case BPF_FUNC_clone_redirect:
3072 		return &bpf_clone_redirect_proto;
3073 	case BPF_FUNC_skb_change_tail:
3074 		return &bpf_skb_change_tail_proto;
3075 	case BPF_FUNC_skb_change_head:
3076 		return &bpf_skb_change_head_proto;
3077 	case BPF_FUNC_skb_store_bytes:
3078 		return &bpf_skb_store_bytes_proto;
3079 	case BPF_FUNC_csum_update:
3080 		return &bpf_csum_update_proto;
3081 	case BPF_FUNC_l3_csum_replace:
3082 		return &bpf_l3_csum_replace_proto;
3083 	case BPF_FUNC_l4_csum_replace:
3084 		return &bpf_l4_csum_replace_proto;
3085 	case BPF_FUNC_set_hash_invalid:
3086 		return &bpf_set_hash_invalid_proto;
3087 	default:
3088 		return lwt_inout_func_proto(func_id);
3089 	}
3090 }
3091 
3092 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
3093 				    struct bpf_insn_access_aux *info)
3094 {
3095 	const int size_default = sizeof(__u32);
3096 
3097 	if (off < 0 || off >= sizeof(struct __sk_buff))
3098 		return false;
3099 
3100 	/* The verifier guarantees that size > 0. */
3101 	if (off % size != 0)
3102 		return false;
3103 
3104 	switch (off) {
3105 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3106 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
3107 			return false;
3108 		break;
3109 	case bpf_ctx_range(struct __sk_buff, data):
3110 	case bpf_ctx_range(struct __sk_buff, data_end):
3111 		if (size != size_default)
3112 			return false;
3113 		break;
3114 	default:
3115 		/* Only narrow read access allowed for now. */
3116 		if (type == BPF_WRITE) {
3117 			if (size != size_default)
3118 				return false;
3119 		} else {
3120 			bpf_ctx_record_field_size(info, size_default);
3121 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
3122 				return false;
3123 		}
3124 	}
3125 
3126 	return true;
3127 }
3128 
3129 static bool sk_filter_is_valid_access(int off, int size,
3130 				      enum bpf_access_type type,
3131 				      struct bpf_insn_access_aux *info)
3132 {
3133 	switch (off) {
3134 	case bpf_ctx_range(struct __sk_buff, tc_classid):
3135 	case bpf_ctx_range(struct __sk_buff, data):
3136 	case bpf_ctx_range(struct __sk_buff, data_end):
3137 		return false;
3138 	}
3139 
3140 	if (type == BPF_WRITE) {
3141 		switch (off) {
3142 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3143 			break;
3144 		default:
3145 			return false;
3146 		}
3147 	}
3148 
3149 	return bpf_skb_is_valid_access(off, size, type, info);
3150 }
3151 
3152 static bool lwt_is_valid_access(int off, int size,
3153 				enum bpf_access_type type,
3154 				struct bpf_insn_access_aux *info)
3155 {
3156 	switch (off) {
3157 	case bpf_ctx_range(struct __sk_buff, tc_classid):
3158 		return false;
3159 	}
3160 
3161 	if (type == BPF_WRITE) {
3162 		switch (off) {
3163 		case bpf_ctx_range(struct __sk_buff, mark):
3164 		case bpf_ctx_range(struct __sk_buff, priority):
3165 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3166 			break;
3167 		default:
3168 			return false;
3169 		}
3170 	}
3171 
3172 	switch (off) {
3173 	case bpf_ctx_range(struct __sk_buff, data):
3174 		info->reg_type = PTR_TO_PACKET;
3175 		break;
3176 	case bpf_ctx_range(struct __sk_buff, data_end):
3177 		info->reg_type = PTR_TO_PACKET_END;
3178 		break;
3179 	}
3180 
3181 	return bpf_skb_is_valid_access(off, size, type, info);
3182 }
3183 
3184 static bool sock_filter_is_valid_access(int off, int size,
3185 					enum bpf_access_type type,
3186 					struct bpf_insn_access_aux *info)
3187 {
3188 	if (type == BPF_WRITE) {
3189 		switch (off) {
3190 		case offsetof(struct bpf_sock, bound_dev_if):
3191 			break;
3192 		default:
3193 			return false;
3194 		}
3195 	}
3196 
3197 	if (off < 0 || off + size > sizeof(struct bpf_sock))
3198 		return false;
3199 	/* The verifier guarantees that size > 0. */
3200 	if (off % size != 0)
3201 		return false;
3202 	if (size != sizeof(__u32))
3203 		return false;
3204 
3205 	return true;
3206 }
3207 
3208 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
3209 			       const struct bpf_prog *prog)
3210 {
3211 	struct bpf_insn *insn = insn_buf;
3212 
3213 	if (!direct_write)
3214 		return 0;
3215 
3216 	/* if (!skb->cloned)
3217 	 *       goto start;
3218 	 *
3219 	 * (Fast-path, otherwise approximation that we might be
3220 	 *  a clone, do the rest in helper.)
3221 	 */
3222 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
3223 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
3224 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
3225 
3226 	/* ret = bpf_skb_pull_data(skb, 0); */
3227 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
3228 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
3229 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
3230 			       BPF_FUNC_skb_pull_data);
3231 	/* if (!ret)
3232 	 *      goto restore;
3233 	 * return TC_ACT_SHOT;
3234 	 */
3235 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
3236 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, TC_ACT_SHOT);
3237 	*insn++ = BPF_EXIT_INSN();
3238 
3239 	/* restore: */
3240 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
3241 	/* start: */
3242 	*insn++ = prog->insnsi[0];
3243 
3244 	return insn - insn_buf;
3245 }
3246 
3247 static bool tc_cls_act_is_valid_access(int off, int size,
3248 				       enum bpf_access_type type,
3249 				       struct bpf_insn_access_aux *info)
3250 {
3251 	if (type == BPF_WRITE) {
3252 		switch (off) {
3253 		case bpf_ctx_range(struct __sk_buff, mark):
3254 		case bpf_ctx_range(struct __sk_buff, tc_index):
3255 		case bpf_ctx_range(struct __sk_buff, priority):
3256 		case bpf_ctx_range(struct __sk_buff, tc_classid):
3257 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3258 			break;
3259 		default:
3260 			return false;
3261 		}
3262 	}
3263 
3264 	switch (off) {
3265 	case bpf_ctx_range(struct __sk_buff, data):
3266 		info->reg_type = PTR_TO_PACKET;
3267 		break;
3268 	case bpf_ctx_range(struct __sk_buff, data_end):
3269 		info->reg_type = PTR_TO_PACKET_END;
3270 		break;
3271 	}
3272 
3273 	return bpf_skb_is_valid_access(off, size, type, info);
3274 }
3275 
3276 static bool __is_valid_xdp_access(int off, int size)
3277 {
3278 	if (off < 0 || off >= sizeof(struct xdp_md))
3279 		return false;
3280 	if (off % size != 0)
3281 		return false;
3282 	if (size != sizeof(__u32))
3283 		return false;
3284 
3285 	return true;
3286 }
3287 
3288 static bool xdp_is_valid_access(int off, int size,
3289 				enum bpf_access_type type,
3290 				struct bpf_insn_access_aux *info)
3291 {
3292 	if (type == BPF_WRITE)
3293 		return false;
3294 
3295 	switch (off) {
3296 	case offsetof(struct xdp_md, data):
3297 		info->reg_type = PTR_TO_PACKET;
3298 		break;
3299 	case offsetof(struct xdp_md, data_end):
3300 		info->reg_type = PTR_TO_PACKET_END;
3301 		break;
3302 	}
3303 
3304 	return __is_valid_xdp_access(off, size);
3305 }
3306 
3307 void bpf_warn_invalid_xdp_action(u32 act)
3308 {
3309 	WARN_ONCE(1, "Illegal XDP return value %u, expect packet loss\n", act);
3310 }
3311 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
3312 
3313 static bool __is_valid_sock_ops_access(int off, int size)
3314 {
3315 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
3316 		return false;
3317 	/* The verifier guarantees that size > 0. */
3318 	if (off % size != 0)
3319 		return false;
3320 	if (size != sizeof(__u32))
3321 		return false;
3322 
3323 	return true;
3324 }
3325 
3326 static bool sock_ops_is_valid_access(int off, int size,
3327 				     enum bpf_access_type type,
3328 				     struct bpf_insn_access_aux *info)
3329 {
3330 	if (type == BPF_WRITE) {
3331 		switch (off) {
3332 		case offsetof(struct bpf_sock_ops, op) ...
3333 		     offsetof(struct bpf_sock_ops, replylong[3]):
3334 			break;
3335 		default:
3336 			return false;
3337 		}
3338 	}
3339 
3340 	return __is_valid_sock_ops_access(off, size);
3341 }
3342 
3343 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
3344 				  const struct bpf_insn *si,
3345 				  struct bpf_insn *insn_buf,
3346 				  struct bpf_prog *prog, u32 *target_size)
3347 {
3348 	struct bpf_insn *insn = insn_buf;
3349 	int off;
3350 
3351 	switch (si->off) {
3352 	case offsetof(struct __sk_buff, len):
3353 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3354 				      bpf_target_off(struct sk_buff, len, 4,
3355 						     target_size));
3356 		break;
3357 
3358 	case offsetof(struct __sk_buff, protocol):
3359 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3360 				      bpf_target_off(struct sk_buff, protocol, 2,
3361 						     target_size));
3362 		break;
3363 
3364 	case offsetof(struct __sk_buff, vlan_proto):
3365 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3366 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
3367 						     target_size));
3368 		break;
3369 
3370 	case offsetof(struct __sk_buff, priority):
3371 		if (type == BPF_WRITE)
3372 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3373 					      bpf_target_off(struct sk_buff, priority, 4,
3374 							     target_size));
3375 		else
3376 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3377 					      bpf_target_off(struct sk_buff, priority, 4,
3378 							     target_size));
3379 		break;
3380 
3381 	case offsetof(struct __sk_buff, ingress_ifindex):
3382 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3383 				      bpf_target_off(struct sk_buff, skb_iif, 4,
3384 						     target_size));
3385 		break;
3386 
3387 	case offsetof(struct __sk_buff, ifindex):
3388 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3389 				      si->dst_reg, si->src_reg,
3390 				      offsetof(struct sk_buff, dev));
3391 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
3392 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3393 				      bpf_target_off(struct net_device, ifindex, 4,
3394 						     target_size));
3395 		break;
3396 
3397 	case offsetof(struct __sk_buff, hash):
3398 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3399 				      bpf_target_off(struct sk_buff, hash, 4,
3400 						     target_size));
3401 		break;
3402 
3403 	case offsetof(struct __sk_buff, mark):
3404 		if (type == BPF_WRITE)
3405 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3406 					      bpf_target_off(struct sk_buff, mark, 4,
3407 							     target_size));
3408 		else
3409 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3410 					      bpf_target_off(struct sk_buff, mark, 4,
3411 							     target_size));
3412 		break;
3413 
3414 	case offsetof(struct __sk_buff, pkt_type):
3415 		*target_size = 1;
3416 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
3417 				      PKT_TYPE_OFFSET());
3418 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
3419 #ifdef __BIG_ENDIAN_BITFIELD
3420 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
3421 #endif
3422 		break;
3423 
3424 	case offsetof(struct __sk_buff, queue_mapping):
3425 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3426 				      bpf_target_off(struct sk_buff, queue_mapping, 2,
3427 						     target_size));
3428 		break;
3429 
3430 	case offsetof(struct __sk_buff, vlan_present):
3431 	case offsetof(struct __sk_buff, vlan_tci):
3432 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
3433 
3434 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3435 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
3436 						     target_size));
3437 		if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
3438 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
3439 						~VLAN_TAG_PRESENT);
3440 		} else {
3441 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
3442 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
3443 		}
3444 		break;
3445 
3446 	case offsetof(struct __sk_buff, cb[0]) ...
3447 	     offsetofend(struct __sk_buff, cb[4]) - 1:
3448 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
3449 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
3450 			      offsetof(struct qdisc_skb_cb, data)) %
3451 			     sizeof(__u64));
3452 
3453 		prog->cb_access = 1;
3454 		off  = si->off;
3455 		off -= offsetof(struct __sk_buff, cb[0]);
3456 		off += offsetof(struct sk_buff, cb);
3457 		off += offsetof(struct qdisc_skb_cb, data);
3458 		if (type == BPF_WRITE)
3459 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
3460 					      si->src_reg, off);
3461 		else
3462 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
3463 					      si->src_reg, off);
3464 		break;
3465 
3466 	case offsetof(struct __sk_buff, tc_classid):
3467 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
3468 
3469 		off  = si->off;
3470 		off -= offsetof(struct __sk_buff, tc_classid);
3471 		off += offsetof(struct sk_buff, cb);
3472 		off += offsetof(struct qdisc_skb_cb, tc_classid);
3473 		*target_size = 2;
3474 		if (type == BPF_WRITE)
3475 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
3476 					      si->src_reg, off);
3477 		else
3478 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
3479 					      si->src_reg, off);
3480 		break;
3481 
3482 	case offsetof(struct __sk_buff, data):
3483 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
3484 				      si->dst_reg, si->src_reg,
3485 				      offsetof(struct sk_buff, data));
3486 		break;
3487 
3488 	case offsetof(struct __sk_buff, data_end):
3489 		off  = si->off;
3490 		off -= offsetof(struct __sk_buff, data_end);
3491 		off += offsetof(struct sk_buff, cb);
3492 		off += offsetof(struct bpf_skb_data_end, data_end);
3493 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
3494 				      si->src_reg, off);
3495 		break;
3496 
3497 	case offsetof(struct __sk_buff, tc_index):
3498 #ifdef CONFIG_NET_SCHED
3499 		if (type == BPF_WRITE)
3500 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
3501 					      bpf_target_off(struct sk_buff, tc_index, 2,
3502 							     target_size));
3503 		else
3504 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3505 					      bpf_target_off(struct sk_buff, tc_index, 2,
3506 							     target_size));
3507 #else
3508 		if (type == BPF_WRITE)
3509 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
3510 		else
3511 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3512 #endif
3513 		break;
3514 
3515 	case offsetof(struct __sk_buff, napi_id):
3516 #if defined(CONFIG_NET_RX_BUSY_POLL)
3517 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3518 				      bpf_target_off(struct sk_buff, napi_id, 4,
3519 						     target_size));
3520 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
3521 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3522 #else
3523 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3524 #endif
3525 		break;
3526 	}
3527 
3528 	return insn - insn_buf;
3529 }
3530 
3531 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
3532 					  const struct bpf_insn *si,
3533 					  struct bpf_insn *insn_buf,
3534 					  struct bpf_prog *prog, u32 *target_size)
3535 {
3536 	struct bpf_insn *insn = insn_buf;
3537 
3538 	switch (si->off) {
3539 	case offsetof(struct bpf_sock, bound_dev_if):
3540 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
3541 
3542 		if (type == BPF_WRITE)
3543 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3544 					offsetof(struct sock, sk_bound_dev_if));
3545 		else
3546 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3547 				      offsetof(struct sock, sk_bound_dev_if));
3548 		break;
3549 
3550 	case offsetof(struct bpf_sock, family):
3551 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
3552 
3553 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3554 				      offsetof(struct sock, sk_family));
3555 		break;
3556 
3557 	case offsetof(struct bpf_sock, type):
3558 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3559 				      offsetof(struct sock, __sk_flags_offset));
3560 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
3561 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
3562 		break;
3563 
3564 	case offsetof(struct bpf_sock, protocol):
3565 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3566 				      offsetof(struct sock, __sk_flags_offset));
3567 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
3568 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
3569 		break;
3570 	}
3571 
3572 	return insn - insn_buf;
3573 }
3574 
3575 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
3576 					 const struct bpf_insn *si,
3577 					 struct bpf_insn *insn_buf,
3578 					 struct bpf_prog *prog, u32 *target_size)
3579 {
3580 	struct bpf_insn *insn = insn_buf;
3581 
3582 	switch (si->off) {
3583 	case offsetof(struct __sk_buff, ifindex):
3584 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3585 				      si->dst_reg, si->src_reg,
3586 				      offsetof(struct sk_buff, dev));
3587 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3588 				      bpf_target_off(struct net_device, ifindex, 4,
3589 						     target_size));
3590 		break;
3591 	default:
3592 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
3593 					      target_size);
3594 	}
3595 
3596 	return insn - insn_buf;
3597 }
3598 
3599 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
3600 				  const struct bpf_insn *si,
3601 				  struct bpf_insn *insn_buf,
3602 				  struct bpf_prog *prog, u32 *target_size)
3603 {
3604 	struct bpf_insn *insn = insn_buf;
3605 
3606 	switch (si->off) {
3607 	case offsetof(struct xdp_md, data):
3608 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
3609 				      si->dst_reg, si->src_reg,
3610 				      offsetof(struct xdp_buff, data));
3611 		break;
3612 	case offsetof(struct xdp_md, data_end):
3613 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
3614 				      si->dst_reg, si->src_reg,
3615 				      offsetof(struct xdp_buff, data_end));
3616 		break;
3617 	}
3618 
3619 	return insn - insn_buf;
3620 }
3621 
3622 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
3623 				       const struct bpf_insn *si,
3624 				       struct bpf_insn *insn_buf,
3625 				       struct bpf_prog *prog,
3626 				       u32 *target_size)
3627 {
3628 	struct bpf_insn *insn = insn_buf;
3629 	int off;
3630 
3631 	switch (si->off) {
3632 	case offsetof(struct bpf_sock_ops, op) ...
3633 	     offsetof(struct bpf_sock_ops, replylong[3]):
3634 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
3635 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
3636 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
3637 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
3638 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
3639 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
3640 		off = si->off;
3641 		off -= offsetof(struct bpf_sock_ops, op);
3642 		off += offsetof(struct bpf_sock_ops_kern, op);
3643 		if (type == BPF_WRITE)
3644 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3645 					      off);
3646 		else
3647 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3648 					      off);
3649 		break;
3650 
3651 	case offsetof(struct bpf_sock_ops, family):
3652 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
3653 
3654 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
3655 					      struct bpf_sock_ops_kern, sk),
3656 				      si->dst_reg, si->src_reg,
3657 				      offsetof(struct bpf_sock_ops_kern, sk));
3658 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
3659 				      offsetof(struct sock_common, skc_family));
3660 		break;
3661 
3662 	case offsetof(struct bpf_sock_ops, remote_ip4):
3663 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
3664 
3665 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
3666 						struct bpf_sock_ops_kern, sk),
3667 				      si->dst_reg, si->src_reg,
3668 				      offsetof(struct bpf_sock_ops_kern, sk));
3669 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3670 				      offsetof(struct sock_common, skc_daddr));
3671 		break;
3672 
3673 	case offsetof(struct bpf_sock_ops, local_ip4):
3674 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_rcv_saddr) != 4);
3675 
3676 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
3677 					      struct bpf_sock_ops_kern, sk),
3678 				      si->dst_reg, si->src_reg,
3679 				      offsetof(struct bpf_sock_ops_kern, sk));
3680 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3681 				      offsetof(struct sock_common,
3682 					       skc_rcv_saddr));
3683 		break;
3684 
3685 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
3686 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
3687 #if IS_ENABLED(CONFIG_IPV6)
3688 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
3689 					  skc_v6_daddr.s6_addr32[0]) != 4);
3690 
3691 		off = si->off;
3692 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
3693 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
3694 						struct bpf_sock_ops_kern, sk),
3695 				      si->dst_reg, si->src_reg,
3696 				      offsetof(struct bpf_sock_ops_kern, sk));
3697 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3698 				      offsetof(struct sock_common,
3699 					       skc_v6_daddr.s6_addr32[0]) +
3700 				      off);
3701 #else
3702 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
3703 #endif
3704 		break;
3705 
3706 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
3707 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
3708 #if IS_ENABLED(CONFIG_IPV6)
3709 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
3710 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
3711 
3712 		off = si->off;
3713 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
3714 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
3715 						struct bpf_sock_ops_kern, sk),
3716 				      si->dst_reg, si->src_reg,
3717 				      offsetof(struct bpf_sock_ops_kern, sk));
3718 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3719 				      offsetof(struct sock_common,
3720 					       skc_v6_rcv_saddr.s6_addr32[0]) +
3721 				      off);
3722 #else
3723 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
3724 #endif
3725 		break;
3726 
3727 	case offsetof(struct bpf_sock_ops, remote_port):
3728 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
3729 
3730 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
3731 						struct bpf_sock_ops_kern, sk),
3732 				      si->dst_reg, si->src_reg,
3733 				      offsetof(struct bpf_sock_ops_kern, sk));
3734 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
3735 				      offsetof(struct sock_common, skc_dport));
3736 #ifndef __BIG_ENDIAN_BITFIELD
3737 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
3738 #endif
3739 		break;
3740 
3741 	case offsetof(struct bpf_sock_ops, local_port):
3742 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
3743 
3744 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
3745 						struct bpf_sock_ops_kern, sk),
3746 				      si->dst_reg, si->src_reg,
3747 				      offsetof(struct bpf_sock_ops_kern, sk));
3748 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
3749 				      offsetof(struct sock_common, skc_num));
3750 		break;
3751 	}
3752 	return insn - insn_buf;
3753 }
3754 
3755 const struct bpf_verifier_ops sk_filter_prog_ops = {
3756 	.get_func_proto		= sk_filter_func_proto,
3757 	.is_valid_access	= sk_filter_is_valid_access,
3758 	.convert_ctx_access	= bpf_convert_ctx_access,
3759 };
3760 
3761 const struct bpf_verifier_ops tc_cls_act_prog_ops = {
3762 	.get_func_proto		= tc_cls_act_func_proto,
3763 	.is_valid_access	= tc_cls_act_is_valid_access,
3764 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
3765 	.gen_prologue		= tc_cls_act_prologue,
3766 	.test_run		= bpf_prog_test_run_skb,
3767 };
3768 
3769 const struct bpf_verifier_ops xdp_prog_ops = {
3770 	.get_func_proto		= xdp_func_proto,
3771 	.is_valid_access	= xdp_is_valid_access,
3772 	.convert_ctx_access	= xdp_convert_ctx_access,
3773 	.test_run		= bpf_prog_test_run_xdp,
3774 };
3775 
3776 const struct bpf_verifier_ops cg_skb_prog_ops = {
3777 	.get_func_proto		= sk_filter_func_proto,
3778 	.is_valid_access	= sk_filter_is_valid_access,
3779 	.convert_ctx_access	= bpf_convert_ctx_access,
3780 	.test_run		= bpf_prog_test_run_skb,
3781 };
3782 
3783 const struct bpf_verifier_ops lwt_inout_prog_ops = {
3784 	.get_func_proto		= lwt_inout_func_proto,
3785 	.is_valid_access	= lwt_is_valid_access,
3786 	.convert_ctx_access	= bpf_convert_ctx_access,
3787 	.test_run		= bpf_prog_test_run_skb,
3788 };
3789 
3790 const struct bpf_verifier_ops lwt_xmit_prog_ops = {
3791 	.get_func_proto		= lwt_xmit_func_proto,
3792 	.is_valid_access	= lwt_is_valid_access,
3793 	.convert_ctx_access	= bpf_convert_ctx_access,
3794 	.gen_prologue		= tc_cls_act_prologue,
3795 	.test_run		= bpf_prog_test_run_skb,
3796 };
3797 
3798 const struct bpf_verifier_ops cg_sock_prog_ops = {
3799 	.get_func_proto		= bpf_base_func_proto,
3800 	.is_valid_access	= sock_filter_is_valid_access,
3801 	.convert_ctx_access	= sock_filter_convert_ctx_access,
3802 };
3803 
3804 const struct bpf_verifier_ops sock_ops_prog_ops = {
3805 	.get_func_proto		= sock_ops_func_proto,
3806 	.is_valid_access	= sock_ops_is_valid_access,
3807 	.convert_ctx_access	= sock_ops_convert_ctx_access,
3808 };
3809 
3810 int sk_detach_filter(struct sock *sk)
3811 {
3812 	int ret = -ENOENT;
3813 	struct sk_filter *filter;
3814 
3815 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
3816 		return -EPERM;
3817 
3818 	filter = rcu_dereference_protected(sk->sk_filter,
3819 					   lockdep_sock_is_held(sk));
3820 	if (filter) {
3821 		RCU_INIT_POINTER(sk->sk_filter, NULL);
3822 		sk_filter_uncharge(sk, filter);
3823 		ret = 0;
3824 	}
3825 
3826 	return ret;
3827 }
3828 EXPORT_SYMBOL_GPL(sk_detach_filter);
3829 
3830 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
3831 		  unsigned int len)
3832 {
3833 	struct sock_fprog_kern *fprog;
3834 	struct sk_filter *filter;
3835 	int ret = 0;
3836 
3837 	lock_sock(sk);
3838 	filter = rcu_dereference_protected(sk->sk_filter,
3839 					   lockdep_sock_is_held(sk));
3840 	if (!filter)
3841 		goto out;
3842 
3843 	/* We're copying the filter that has been originally attached,
3844 	 * so no conversion/decode needed anymore. eBPF programs that
3845 	 * have no original program cannot be dumped through this.
3846 	 */
3847 	ret = -EACCES;
3848 	fprog = filter->prog->orig_prog;
3849 	if (!fprog)
3850 		goto out;
3851 
3852 	ret = fprog->len;
3853 	if (!len)
3854 		/* User space only enquires number of filter blocks. */
3855 		goto out;
3856 
3857 	ret = -EINVAL;
3858 	if (len < fprog->len)
3859 		goto out;
3860 
3861 	ret = -EFAULT;
3862 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
3863 		goto out;
3864 
3865 	/* Instead of bytes, the API requests to return the number
3866 	 * of filter blocks.
3867 	 */
3868 	ret = fprog->len;
3869 out:
3870 	release_sock(sk);
3871 	return ret;
3872 }
3873