xref: /openbmc/linux/net/core/filter.c (revision e0f6d1a5)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/inet_common.h>
37 #include <net/ip.h>
38 #include <net/protocol.h>
39 #include <net/netlink.h>
40 #include <linux/skbuff.h>
41 #include <net/sock.h>
42 #include <net/flow_dissector.h>
43 #include <linux/errno.h>
44 #include <linux/timer.h>
45 #include <linux/uaccess.h>
46 #include <asm/unaligned.h>
47 #include <asm/cmpxchg.h>
48 #include <linux/filter.h>
49 #include <linux/ratelimit.h>
50 #include <linux/seccomp.h>
51 #include <linux/if_vlan.h>
52 #include <linux/bpf.h>
53 #include <net/sch_generic.h>
54 #include <net/cls_cgroup.h>
55 #include <net/dst_metadata.h>
56 #include <net/dst.h>
57 #include <net/sock_reuseport.h>
58 #include <net/busy_poll.h>
59 #include <net/tcp.h>
60 #include <linux/bpf_trace.h>
61 
62 /**
63  *	sk_filter_trim_cap - run a packet through a socket filter
64  *	@sk: sock associated with &sk_buff
65  *	@skb: buffer to filter
66  *	@cap: limit on how short the eBPF program may trim the packet
67  *
68  * Run the eBPF program and then cut skb->data to correct size returned by
69  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
70  * than pkt_len we keep whole skb->data. This is the socket level
71  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
72  * be accepted or -EPERM if the packet should be tossed.
73  *
74  */
75 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
76 {
77 	int err;
78 	struct sk_filter *filter;
79 
80 	/*
81 	 * If the skb was allocated from pfmemalloc reserves, only
82 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
83 	 * helping free memory
84 	 */
85 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
86 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
87 		return -ENOMEM;
88 	}
89 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
90 	if (err)
91 		return err;
92 
93 	err = security_sock_rcv_skb(sk, skb);
94 	if (err)
95 		return err;
96 
97 	rcu_read_lock();
98 	filter = rcu_dereference(sk->sk_filter);
99 	if (filter) {
100 		struct sock *save_sk = skb->sk;
101 		unsigned int pkt_len;
102 
103 		skb->sk = sk;
104 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
105 		skb->sk = save_sk;
106 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
107 	}
108 	rcu_read_unlock();
109 
110 	return err;
111 }
112 EXPORT_SYMBOL(sk_filter_trim_cap);
113 
114 BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
115 {
116 	return skb_get_poff(skb);
117 }
118 
119 BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
120 {
121 	struct nlattr *nla;
122 
123 	if (skb_is_nonlinear(skb))
124 		return 0;
125 
126 	if (skb->len < sizeof(struct nlattr))
127 		return 0;
128 
129 	if (a > skb->len - sizeof(struct nlattr))
130 		return 0;
131 
132 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
133 	if (nla)
134 		return (void *) nla - (void *) skb->data;
135 
136 	return 0;
137 }
138 
139 BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
140 {
141 	struct nlattr *nla;
142 
143 	if (skb_is_nonlinear(skb))
144 		return 0;
145 
146 	if (skb->len < sizeof(struct nlattr))
147 		return 0;
148 
149 	if (a > skb->len - sizeof(struct nlattr))
150 		return 0;
151 
152 	nla = (struct nlattr *) &skb->data[a];
153 	if (nla->nla_len > skb->len - a)
154 		return 0;
155 
156 	nla = nla_find_nested(nla, x);
157 	if (nla)
158 		return (void *) nla - (void *) skb->data;
159 
160 	return 0;
161 }
162 
163 BPF_CALL_0(__get_raw_cpu_id)
164 {
165 	return raw_smp_processor_id();
166 }
167 
168 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
169 	.func		= __get_raw_cpu_id,
170 	.gpl_only	= false,
171 	.ret_type	= RET_INTEGER,
172 };
173 
174 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
175 			      struct bpf_insn *insn_buf)
176 {
177 	struct bpf_insn *insn = insn_buf;
178 
179 	switch (skb_field) {
180 	case SKF_AD_MARK:
181 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
182 
183 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
184 				      offsetof(struct sk_buff, mark));
185 		break;
186 
187 	case SKF_AD_PKTTYPE:
188 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
189 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
190 #ifdef __BIG_ENDIAN_BITFIELD
191 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
192 #endif
193 		break;
194 
195 	case SKF_AD_QUEUE:
196 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
197 
198 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
199 				      offsetof(struct sk_buff, queue_mapping));
200 		break;
201 
202 	case SKF_AD_VLAN_TAG:
203 	case SKF_AD_VLAN_TAG_PRESENT:
204 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
205 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
206 
207 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
208 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
209 				      offsetof(struct sk_buff, vlan_tci));
210 		if (skb_field == SKF_AD_VLAN_TAG) {
211 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
212 						~VLAN_TAG_PRESENT);
213 		} else {
214 			/* dst_reg >>= 12 */
215 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
216 			/* dst_reg &= 1 */
217 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
218 		}
219 		break;
220 	}
221 
222 	return insn - insn_buf;
223 }
224 
225 static bool convert_bpf_extensions(struct sock_filter *fp,
226 				   struct bpf_insn **insnp)
227 {
228 	struct bpf_insn *insn = *insnp;
229 	u32 cnt;
230 
231 	switch (fp->k) {
232 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
233 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
234 
235 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
236 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
237 				      offsetof(struct sk_buff, protocol));
238 		/* A = ntohs(A) [emitting a nop or swap16] */
239 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
240 		break;
241 
242 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
243 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
244 		insn += cnt - 1;
245 		break;
246 
247 	case SKF_AD_OFF + SKF_AD_IFINDEX:
248 	case SKF_AD_OFF + SKF_AD_HATYPE:
249 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
250 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
251 
252 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
253 				      BPF_REG_TMP, BPF_REG_CTX,
254 				      offsetof(struct sk_buff, dev));
255 		/* if (tmp != 0) goto pc + 1 */
256 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
257 		*insn++ = BPF_EXIT_INSN();
258 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
259 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
260 					    offsetof(struct net_device, ifindex));
261 		else
262 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
263 					    offsetof(struct net_device, type));
264 		break;
265 
266 	case SKF_AD_OFF + SKF_AD_MARK:
267 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
268 		insn += cnt - 1;
269 		break;
270 
271 	case SKF_AD_OFF + SKF_AD_RXHASH:
272 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
273 
274 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
275 				    offsetof(struct sk_buff, hash));
276 		break;
277 
278 	case SKF_AD_OFF + SKF_AD_QUEUE:
279 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
280 		insn += cnt - 1;
281 		break;
282 
283 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
284 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
285 					 BPF_REG_A, BPF_REG_CTX, insn);
286 		insn += cnt - 1;
287 		break;
288 
289 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
290 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
291 					 BPF_REG_A, BPF_REG_CTX, insn);
292 		insn += cnt - 1;
293 		break;
294 
295 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
296 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
297 
298 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
299 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
300 				      offsetof(struct sk_buff, vlan_proto));
301 		/* A = ntohs(A) [emitting a nop or swap16] */
302 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
303 		break;
304 
305 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
306 	case SKF_AD_OFF + SKF_AD_NLATTR:
307 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
308 	case SKF_AD_OFF + SKF_AD_CPU:
309 	case SKF_AD_OFF + SKF_AD_RANDOM:
310 		/* arg1 = CTX */
311 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
312 		/* arg2 = A */
313 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
314 		/* arg3 = X */
315 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
316 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
317 		switch (fp->k) {
318 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
319 			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
320 			break;
321 		case SKF_AD_OFF + SKF_AD_NLATTR:
322 			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
323 			break;
324 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
325 			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
326 			break;
327 		case SKF_AD_OFF + SKF_AD_CPU:
328 			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
329 			break;
330 		case SKF_AD_OFF + SKF_AD_RANDOM:
331 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
332 			bpf_user_rnd_init_once();
333 			break;
334 		}
335 		break;
336 
337 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
338 		/* A ^= X */
339 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
340 		break;
341 
342 	default:
343 		/* This is just a dummy call to avoid letting the compiler
344 		 * evict __bpf_call_base() as an optimization. Placed here
345 		 * where no-one bothers.
346 		 */
347 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
348 		return false;
349 	}
350 
351 	*insnp = insn;
352 	return true;
353 }
354 
355 /**
356  *	bpf_convert_filter - convert filter program
357  *	@prog: the user passed filter program
358  *	@len: the length of the user passed filter program
359  *	@new_prog: allocated 'struct bpf_prog' or NULL
360  *	@new_len: pointer to store length of converted program
361  *
362  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
363  * style extended BPF (eBPF).
364  * Conversion workflow:
365  *
366  * 1) First pass for calculating the new program length:
367  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
368  *
369  * 2) 2nd pass to remap in two passes: 1st pass finds new
370  *    jump offsets, 2nd pass remapping:
371  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
372  */
373 static int bpf_convert_filter(struct sock_filter *prog, int len,
374 			      struct bpf_prog *new_prog, int *new_len)
375 {
376 	int new_flen = 0, pass = 0, target, i, stack_off;
377 	struct bpf_insn *new_insn, *first_insn = NULL;
378 	struct sock_filter *fp;
379 	int *addrs = NULL;
380 	u8 bpf_src;
381 
382 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
383 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
384 
385 	if (len <= 0 || len > BPF_MAXINSNS)
386 		return -EINVAL;
387 
388 	if (new_prog) {
389 		first_insn = new_prog->insnsi;
390 		addrs = kcalloc(len, sizeof(*addrs),
391 				GFP_KERNEL | __GFP_NOWARN);
392 		if (!addrs)
393 			return -ENOMEM;
394 	}
395 
396 do_pass:
397 	new_insn = first_insn;
398 	fp = prog;
399 
400 	/* Classic BPF related prologue emission. */
401 	if (new_prog) {
402 		/* Classic BPF expects A and X to be reset first. These need
403 		 * to be guaranteed to be the first two instructions.
404 		 */
405 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
406 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
407 
408 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
409 		 * In eBPF case it's done by the compiler, here we need to
410 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
411 		 */
412 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
413 	} else {
414 		new_insn += 3;
415 	}
416 
417 	for (i = 0; i < len; fp++, i++) {
418 		struct bpf_insn tmp_insns[6] = { };
419 		struct bpf_insn *insn = tmp_insns;
420 
421 		if (addrs)
422 			addrs[i] = new_insn - first_insn;
423 
424 		switch (fp->code) {
425 		/* All arithmetic insns and skb loads map as-is. */
426 		case BPF_ALU | BPF_ADD | BPF_X:
427 		case BPF_ALU | BPF_ADD | BPF_K:
428 		case BPF_ALU | BPF_SUB | BPF_X:
429 		case BPF_ALU | BPF_SUB | BPF_K:
430 		case BPF_ALU | BPF_AND | BPF_X:
431 		case BPF_ALU | BPF_AND | BPF_K:
432 		case BPF_ALU | BPF_OR | BPF_X:
433 		case BPF_ALU | BPF_OR | BPF_K:
434 		case BPF_ALU | BPF_LSH | BPF_X:
435 		case BPF_ALU | BPF_LSH | BPF_K:
436 		case BPF_ALU | BPF_RSH | BPF_X:
437 		case BPF_ALU | BPF_RSH | BPF_K:
438 		case BPF_ALU | BPF_XOR | BPF_X:
439 		case BPF_ALU | BPF_XOR | BPF_K:
440 		case BPF_ALU | BPF_MUL | BPF_X:
441 		case BPF_ALU | BPF_MUL | BPF_K:
442 		case BPF_ALU | BPF_DIV | BPF_X:
443 		case BPF_ALU | BPF_DIV | BPF_K:
444 		case BPF_ALU | BPF_MOD | BPF_X:
445 		case BPF_ALU | BPF_MOD | BPF_K:
446 		case BPF_ALU | BPF_NEG:
447 		case BPF_LD | BPF_ABS | BPF_W:
448 		case BPF_LD | BPF_ABS | BPF_H:
449 		case BPF_LD | BPF_ABS | BPF_B:
450 		case BPF_LD | BPF_IND | BPF_W:
451 		case BPF_LD | BPF_IND | BPF_H:
452 		case BPF_LD | BPF_IND | BPF_B:
453 			/* Check for overloaded BPF extension and
454 			 * directly convert it if found, otherwise
455 			 * just move on with mapping.
456 			 */
457 			if (BPF_CLASS(fp->code) == BPF_LD &&
458 			    BPF_MODE(fp->code) == BPF_ABS &&
459 			    convert_bpf_extensions(fp, &insn))
460 				break;
461 
462 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
463 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
464 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
465 				/* Error with exception code on div/mod by 0.
466 				 * For cBPF programs, this was always return 0.
467 				 */
468 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
469 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
470 				*insn++ = BPF_EXIT_INSN();
471 			}
472 
473 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
474 			break;
475 
476 		/* Jump transformation cannot use BPF block macros
477 		 * everywhere as offset calculation and target updates
478 		 * require a bit more work than the rest, i.e. jump
479 		 * opcodes map as-is, but offsets need adjustment.
480 		 */
481 
482 #define BPF_EMIT_JMP							\
483 	do {								\
484 		if (target >= len || target < 0)			\
485 			goto err;					\
486 		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
487 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
488 		insn->off -= insn - tmp_insns;				\
489 	} while (0)
490 
491 		case BPF_JMP | BPF_JA:
492 			target = i + fp->k + 1;
493 			insn->code = fp->code;
494 			BPF_EMIT_JMP;
495 			break;
496 
497 		case BPF_JMP | BPF_JEQ | BPF_K:
498 		case BPF_JMP | BPF_JEQ | BPF_X:
499 		case BPF_JMP | BPF_JSET | BPF_K:
500 		case BPF_JMP | BPF_JSET | BPF_X:
501 		case BPF_JMP | BPF_JGT | BPF_K:
502 		case BPF_JMP | BPF_JGT | BPF_X:
503 		case BPF_JMP | BPF_JGE | BPF_K:
504 		case BPF_JMP | BPF_JGE | BPF_X:
505 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
506 				/* BPF immediates are signed, zero extend
507 				 * immediate into tmp register and use it
508 				 * in compare insn.
509 				 */
510 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
511 
512 				insn->dst_reg = BPF_REG_A;
513 				insn->src_reg = BPF_REG_TMP;
514 				bpf_src = BPF_X;
515 			} else {
516 				insn->dst_reg = BPF_REG_A;
517 				insn->imm = fp->k;
518 				bpf_src = BPF_SRC(fp->code);
519 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
520 			}
521 
522 			/* Common case where 'jump_false' is next insn. */
523 			if (fp->jf == 0) {
524 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
525 				target = i + fp->jt + 1;
526 				BPF_EMIT_JMP;
527 				break;
528 			}
529 
530 			/* Convert some jumps when 'jump_true' is next insn. */
531 			if (fp->jt == 0) {
532 				switch (BPF_OP(fp->code)) {
533 				case BPF_JEQ:
534 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
535 					break;
536 				case BPF_JGT:
537 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
538 					break;
539 				case BPF_JGE:
540 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
541 					break;
542 				default:
543 					goto jmp_rest;
544 				}
545 
546 				target = i + fp->jf + 1;
547 				BPF_EMIT_JMP;
548 				break;
549 			}
550 jmp_rest:
551 			/* Other jumps are mapped into two insns: Jxx and JA. */
552 			target = i + fp->jt + 1;
553 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
554 			BPF_EMIT_JMP;
555 			insn++;
556 
557 			insn->code = BPF_JMP | BPF_JA;
558 			target = i + fp->jf + 1;
559 			BPF_EMIT_JMP;
560 			break;
561 
562 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
563 		case BPF_LDX | BPF_MSH | BPF_B:
564 			/* tmp = A */
565 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
566 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
567 			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
568 			/* A &= 0xf */
569 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
570 			/* A <<= 2 */
571 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
572 			/* X = A */
573 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
574 			/* A = tmp */
575 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
576 			break;
577 
578 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
579 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
580 		 */
581 		case BPF_RET | BPF_A:
582 		case BPF_RET | BPF_K:
583 			if (BPF_RVAL(fp->code) == BPF_K)
584 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
585 							0, fp->k);
586 			*insn = BPF_EXIT_INSN();
587 			break;
588 
589 		/* Store to stack. */
590 		case BPF_ST:
591 		case BPF_STX:
592 			stack_off = fp->k * 4  + 4;
593 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
594 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
595 					    -stack_off);
596 			/* check_load_and_stores() verifies that classic BPF can
597 			 * load from stack only after write, so tracking
598 			 * stack_depth for ST|STX insns is enough
599 			 */
600 			if (new_prog && new_prog->aux->stack_depth < stack_off)
601 				new_prog->aux->stack_depth = stack_off;
602 			break;
603 
604 		/* Load from stack. */
605 		case BPF_LD | BPF_MEM:
606 		case BPF_LDX | BPF_MEM:
607 			stack_off = fp->k * 4  + 4;
608 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
609 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
610 					    -stack_off);
611 			break;
612 
613 		/* A = K or X = K */
614 		case BPF_LD | BPF_IMM:
615 		case BPF_LDX | BPF_IMM:
616 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
617 					      BPF_REG_A : BPF_REG_X, fp->k);
618 			break;
619 
620 		/* X = A */
621 		case BPF_MISC | BPF_TAX:
622 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
623 			break;
624 
625 		/* A = X */
626 		case BPF_MISC | BPF_TXA:
627 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
628 			break;
629 
630 		/* A = skb->len or X = skb->len */
631 		case BPF_LD | BPF_W | BPF_LEN:
632 		case BPF_LDX | BPF_W | BPF_LEN:
633 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
634 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
635 					    offsetof(struct sk_buff, len));
636 			break;
637 
638 		/* Access seccomp_data fields. */
639 		case BPF_LDX | BPF_ABS | BPF_W:
640 			/* A = *(u32 *) (ctx + K) */
641 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
642 			break;
643 
644 		/* Unknown instruction. */
645 		default:
646 			goto err;
647 		}
648 
649 		insn++;
650 		if (new_prog)
651 			memcpy(new_insn, tmp_insns,
652 			       sizeof(*insn) * (insn - tmp_insns));
653 		new_insn += insn - tmp_insns;
654 	}
655 
656 	if (!new_prog) {
657 		/* Only calculating new length. */
658 		*new_len = new_insn - first_insn;
659 		return 0;
660 	}
661 
662 	pass++;
663 	if (new_flen != new_insn - first_insn) {
664 		new_flen = new_insn - first_insn;
665 		if (pass > 2)
666 			goto err;
667 		goto do_pass;
668 	}
669 
670 	kfree(addrs);
671 	BUG_ON(*new_len != new_flen);
672 	return 0;
673 err:
674 	kfree(addrs);
675 	return -EINVAL;
676 }
677 
678 /* Security:
679  *
680  * As we dont want to clear mem[] array for each packet going through
681  * __bpf_prog_run(), we check that filter loaded by user never try to read
682  * a cell if not previously written, and we check all branches to be sure
683  * a malicious user doesn't try to abuse us.
684  */
685 static int check_load_and_stores(const struct sock_filter *filter, int flen)
686 {
687 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
688 	int pc, ret = 0;
689 
690 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
691 
692 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
693 	if (!masks)
694 		return -ENOMEM;
695 
696 	memset(masks, 0xff, flen * sizeof(*masks));
697 
698 	for (pc = 0; pc < flen; pc++) {
699 		memvalid &= masks[pc];
700 
701 		switch (filter[pc].code) {
702 		case BPF_ST:
703 		case BPF_STX:
704 			memvalid |= (1 << filter[pc].k);
705 			break;
706 		case BPF_LD | BPF_MEM:
707 		case BPF_LDX | BPF_MEM:
708 			if (!(memvalid & (1 << filter[pc].k))) {
709 				ret = -EINVAL;
710 				goto error;
711 			}
712 			break;
713 		case BPF_JMP | BPF_JA:
714 			/* A jump must set masks on target */
715 			masks[pc + 1 + filter[pc].k] &= memvalid;
716 			memvalid = ~0;
717 			break;
718 		case BPF_JMP | BPF_JEQ | BPF_K:
719 		case BPF_JMP | BPF_JEQ | BPF_X:
720 		case BPF_JMP | BPF_JGE | BPF_K:
721 		case BPF_JMP | BPF_JGE | BPF_X:
722 		case BPF_JMP | BPF_JGT | BPF_K:
723 		case BPF_JMP | BPF_JGT | BPF_X:
724 		case BPF_JMP | BPF_JSET | BPF_K:
725 		case BPF_JMP | BPF_JSET | BPF_X:
726 			/* A jump must set masks on targets */
727 			masks[pc + 1 + filter[pc].jt] &= memvalid;
728 			masks[pc + 1 + filter[pc].jf] &= memvalid;
729 			memvalid = ~0;
730 			break;
731 		}
732 	}
733 error:
734 	kfree(masks);
735 	return ret;
736 }
737 
738 static bool chk_code_allowed(u16 code_to_probe)
739 {
740 	static const bool codes[] = {
741 		/* 32 bit ALU operations */
742 		[BPF_ALU | BPF_ADD | BPF_K] = true,
743 		[BPF_ALU | BPF_ADD | BPF_X] = true,
744 		[BPF_ALU | BPF_SUB | BPF_K] = true,
745 		[BPF_ALU | BPF_SUB | BPF_X] = true,
746 		[BPF_ALU | BPF_MUL | BPF_K] = true,
747 		[BPF_ALU | BPF_MUL | BPF_X] = true,
748 		[BPF_ALU | BPF_DIV | BPF_K] = true,
749 		[BPF_ALU | BPF_DIV | BPF_X] = true,
750 		[BPF_ALU | BPF_MOD | BPF_K] = true,
751 		[BPF_ALU | BPF_MOD | BPF_X] = true,
752 		[BPF_ALU | BPF_AND | BPF_K] = true,
753 		[BPF_ALU | BPF_AND | BPF_X] = true,
754 		[BPF_ALU | BPF_OR | BPF_K] = true,
755 		[BPF_ALU | BPF_OR | BPF_X] = true,
756 		[BPF_ALU | BPF_XOR | BPF_K] = true,
757 		[BPF_ALU | BPF_XOR | BPF_X] = true,
758 		[BPF_ALU | BPF_LSH | BPF_K] = true,
759 		[BPF_ALU | BPF_LSH | BPF_X] = true,
760 		[BPF_ALU | BPF_RSH | BPF_K] = true,
761 		[BPF_ALU | BPF_RSH | BPF_X] = true,
762 		[BPF_ALU | BPF_NEG] = true,
763 		/* Load instructions */
764 		[BPF_LD | BPF_W | BPF_ABS] = true,
765 		[BPF_LD | BPF_H | BPF_ABS] = true,
766 		[BPF_LD | BPF_B | BPF_ABS] = true,
767 		[BPF_LD | BPF_W | BPF_LEN] = true,
768 		[BPF_LD | BPF_W | BPF_IND] = true,
769 		[BPF_LD | BPF_H | BPF_IND] = true,
770 		[BPF_LD | BPF_B | BPF_IND] = true,
771 		[BPF_LD | BPF_IMM] = true,
772 		[BPF_LD | BPF_MEM] = true,
773 		[BPF_LDX | BPF_W | BPF_LEN] = true,
774 		[BPF_LDX | BPF_B | BPF_MSH] = true,
775 		[BPF_LDX | BPF_IMM] = true,
776 		[BPF_LDX | BPF_MEM] = true,
777 		/* Store instructions */
778 		[BPF_ST] = true,
779 		[BPF_STX] = true,
780 		/* Misc instructions */
781 		[BPF_MISC | BPF_TAX] = true,
782 		[BPF_MISC | BPF_TXA] = true,
783 		/* Return instructions */
784 		[BPF_RET | BPF_K] = true,
785 		[BPF_RET | BPF_A] = true,
786 		/* Jump instructions */
787 		[BPF_JMP | BPF_JA] = true,
788 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
789 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
790 		[BPF_JMP | BPF_JGE | BPF_K] = true,
791 		[BPF_JMP | BPF_JGE | BPF_X] = true,
792 		[BPF_JMP | BPF_JGT | BPF_K] = true,
793 		[BPF_JMP | BPF_JGT | BPF_X] = true,
794 		[BPF_JMP | BPF_JSET | BPF_K] = true,
795 		[BPF_JMP | BPF_JSET | BPF_X] = true,
796 	};
797 
798 	if (code_to_probe >= ARRAY_SIZE(codes))
799 		return false;
800 
801 	return codes[code_to_probe];
802 }
803 
804 static bool bpf_check_basics_ok(const struct sock_filter *filter,
805 				unsigned int flen)
806 {
807 	if (filter == NULL)
808 		return false;
809 	if (flen == 0 || flen > BPF_MAXINSNS)
810 		return false;
811 
812 	return true;
813 }
814 
815 /**
816  *	bpf_check_classic - verify socket filter code
817  *	@filter: filter to verify
818  *	@flen: length of filter
819  *
820  * Check the user's filter code. If we let some ugly
821  * filter code slip through kaboom! The filter must contain
822  * no references or jumps that are out of range, no illegal
823  * instructions, and must end with a RET instruction.
824  *
825  * All jumps are forward as they are not signed.
826  *
827  * Returns 0 if the rule set is legal or -EINVAL if not.
828  */
829 static int bpf_check_classic(const struct sock_filter *filter,
830 			     unsigned int flen)
831 {
832 	bool anc_found;
833 	int pc;
834 
835 	/* Check the filter code now */
836 	for (pc = 0; pc < flen; pc++) {
837 		const struct sock_filter *ftest = &filter[pc];
838 
839 		/* May we actually operate on this code? */
840 		if (!chk_code_allowed(ftest->code))
841 			return -EINVAL;
842 
843 		/* Some instructions need special checks */
844 		switch (ftest->code) {
845 		case BPF_ALU | BPF_DIV | BPF_K:
846 		case BPF_ALU | BPF_MOD | BPF_K:
847 			/* Check for division by zero */
848 			if (ftest->k == 0)
849 				return -EINVAL;
850 			break;
851 		case BPF_ALU | BPF_LSH | BPF_K:
852 		case BPF_ALU | BPF_RSH | BPF_K:
853 			if (ftest->k >= 32)
854 				return -EINVAL;
855 			break;
856 		case BPF_LD | BPF_MEM:
857 		case BPF_LDX | BPF_MEM:
858 		case BPF_ST:
859 		case BPF_STX:
860 			/* Check for invalid memory addresses */
861 			if (ftest->k >= BPF_MEMWORDS)
862 				return -EINVAL;
863 			break;
864 		case BPF_JMP | BPF_JA:
865 			/* Note, the large ftest->k might cause loops.
866 			 * Compare this with conditional jumps below,
867 			 * where offsets are limited. --ANK (981016)
868 			 */
869 			if (ftest->k >= (unsigned int)(flen - pc - 1))
870 				return -EINVAL;
871 			break;
872 		case BPF_JMP | BPF_JEQ | BPF_K:
873 		case BPF_JMP | BPF_JEQ | BPF_X:
874 		case BPF_JMP | BPF_JGE | BPF_K:
875 		case BPF_JMP | BPF_JGE | BPF_X:
876 		case BPF_JMP | BPF_JGT | BPF_K:
877 		case BPF_JMP | BPF_JGT | BPF_X:
878 		case BPF_JMP | BPF_JSET | BPF_K:
879 		case BPF_JMP | BPF_JSET | BPF_X:
880 			/* Both conditionals must be safe */
881 			if (pc + ftest->jt + 1 >= flen ||
882 			    pc + ftest->jf + 1 >= flen)
883 				return -EINVAL;
884 			break;
885 		case BPF_LD | BPF_W | BPF_ABS:
886 		case BPF_LD | BPF_H | BPF_ABS:
887 		case BPF_LD | BPF_B | BPF_ABS:
888 			anc_found = false;
889 			if (bpf_anc_helper(ftest) & BPF_ANC)
890 				anc_found = true;
891 			/* Ancillary operation unknown or unsupported */
892 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
893 				return -EINVAL;
894 		}
895 	}
896 
897 	/* Last instruction must be a RET code */
898 	switch (filter[flen - 1].code) {
899 	case BPF_RET | BPF_K:
900 	case BPF_RET | BPF_A:
901 		return check_load_and_stores(filter, flen);
902 	}
903 
904 	return -EINVAL;
905 }
906 
907 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
908 				      const struct sock_fprog *fprog)
909 {
910 	unsigned int fsize = bpf_classic_proglen(fprog);
911 	struct sock_fprog_kern *fkprog;
912 
913 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
914 	if (!fp->orig_prog)
915 		return -ENOMEM;
916 
917 	fkprog = fp->orig_prog;
918 	fkprog->len = fprog->len;
919 
920 	fkprog->filter = kmemdup(fp->insns, fsize,
921 				 GFP_KERNEL | __GFP_NOWARN);
922 	if (!fkprog->filter) {
923 		kfree(fp->orig_prog);
924 		return -ENOMEM;
925 	}
926 
927 	return 0;
928 }
929 
930 static void bpf_release_orig_filter(struct bpf_prog *fp)
931 {
932 	struct sock_fprog_kern *fprog = fp->orig_prog;
933 
934 	if (fprog) {
935 		kfree(fprog->filter);
936 		kfree(fprog);
937 	}
938 }
939 
940 static void __bpf_prog_release(struct bpf_prog *prog)
941 {
942 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
943 		bpf_prog_put(prog);
944 	} else {
945 		bpf_release_orig_filter(prog);
946 		bpf_prog_free(prog);
947 	}
948 }
949 
950 static void __sk_filter_release(struct sk_filter *fp)
951 {
952 	__bpf_prog_release(fp->prog);
953 	kfree(fp);
954 }
955 
956 /**
957  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
958  *	@rcu: rcu_head that contains the sk_filter to free
959  */
960 static void sk_filter_release_rcu(struct rcu_head *rcu)
961 {
962 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
963 
964 	__sk_filter_release(fp);
965 }
966 
967 /**
968  *	sk_filter_release - release a socket filter
969  *	@fp: filter to remove
970  *
971  *	Remove a filter from a socket and release its resources.
972  */
973 static void sk_filter_release(struct sk_filter *fp)
974 {
975 	if (refcount_dec_and_test(&fp->refcnt))
976 		call_rcu(&fp->rcu, sk_filter_release_rcu);
977 }
978 
979 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
980 {
981 	u32 filter_size = bpf_prog_size(fp->prog->len);
982 
983 	atomic_sub(filter_size, &sk->sk_omem_alloc);
984 	sk_filter_release(fp);
985 }
986 
987 /* try to charge the socket memory if there is space available
988  * return true on success
989  */
990 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
991 {
992 	u32 filter_size = bpf_prog_size(fp->prog->len);
993 
994 	/* same check as in sock_kmalloc() */
995 	if (filter_size <= sysctl_optmem_max &&
996 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
997 		atomic_add(filter_size, &sk->sk_omem_alloc);
998 		return true;
999 	}
1000 	return false;
1001 }
1002 
1003 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1004 {
1005 	if (!refcount_inc_not_zero(&fp->refcnt))
1006 		return false;
1007 
1008 	if (!__sk_filter_charge(sk, fp)) {
1009 		sk_filter_release(fp);
1010 		return false;
1011 	}
1012 	return true;
1013 }
1014 
1015 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1016 {
1017 	struct sock_filter *old_prog;
1018 	struct bpf_prog *old_fp;
1019 	int err, new_len, old_len = fp->len;
1020 
1021 	/* We are free to overwrite insns et al right here as it
1022 	 * won't be used at this point in time anymore internally
1023 	 * after the migration to the internal BPF instruction
1024 	 * representation.
1025 	 */
1026 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1027 		     sizeof(struct bpf_insn));
1028 
1029 	/* Conversion cannot happen on overlapping memory areas,
1030 	 * so we need to keep the user BPF around until the 2nd
1031 	 * pass. At this time, the user BPF is stored in fp->insns.
1032 	 */
1033 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1034 			   GFP_KERNEL | __GFP_NOWARN);
1035 	if (!old_prog) {
1036 		err = -ENOMEM;
1037 		goto out_err;
1038 	}
1039 
1040 	/* 1st pass: calculate the new program length. */
1041 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
1042 	if (err)
1043 		goto out_err_free;
1044 
1045 	/* Expand fp for appending the new filter representation. */
1046 	old_fp = fp;
1047 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1048 	if (!fp) {
1049 		/* The old_fp is still around in case we couldn't
1050 		 * allocate new memory, so uncharge on that one.
1051 		 */
1052 		fp = old_fp;
1053 		err = -ENOMEM;
1054 		goto out_err_free;
1055 	}
1056 
1057 	fp->len = new_len;
1058 
1059 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1060 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len);
1061 	if (err)
1062 		/* 2nd bpf_convert_filter() can fail only if it fails
1063 		 * to allocate memory, remapping must succeed. Note,
1064 		 * that at this time old_fp has already been released
1065 		 * by krealloc().
1066 		 */
1067 		goto out_err_free;
1068 
1069 	fp = bpf_prog_select_runtime(fp, &err);
1070 	if (err)
1071 		goto out_err_free;
1072 
1073 	kfree(old_prog);
1074 	return fp;
1075 
1076 out_err_free:
1077 	kfree(old_prog);
1078 out_err:
1079 	__bpf_prog_release(fp);
1080 	return ERR_PTR(err);
1081 }
1082 
1083 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1084 					   bpf_aux_classic_check_t trans)
1085 {
1086 	int err;
1087 
1088 	fp->bpf_func = NULL;
1089 	fp->jited = 0;
1090 
1091 	err = bpf_check_classic(fp->insns, fp->len);
1092 	if (err) {
1093 		__bpf_prog_release(fp);
1094 		return ERR_PTR(err);
1095 	}
1096 
1097 	/* There might be additional checks and transformations
1098 	 * needed on classic filters, f.e. in case of seccomp.
1099 	 */
1100 	if (trans) {
1101 		err = trans(fp->insns, fp->len);
1102 		if (err) {
1103 			__bpf_prog_release(fp);
1104 			return ERR_PTR(err);
1105 		}
1106 	}
1107 
1108 	/* Probe if we can JIT compile the filter and if so, do
1109 	 * the compilation of the filter.
1110 	 */
1111 	bpf_jit_compile(fp);
1112 
1113 	/* JIT compiler couldn't process this filter, so do the
1114 	 * internal BPF translation for the optimized interpreter.
1115 	 */
1116 	if (!fp->jited)
1117 		fp = bpf_migrate_filter(fp);
1118 
1119 	return fp;
1120 }
1121 
1122 /**
1123  *	bpf_prog_create - create an unattached filter
1124  *	@pfp: the unattached filter that is created
1125  *	@fprog: the filter program
1126  *
1127  * Create a filter independent of any socket. We first run some
1128  * sanity checks on it to make sure it does not explode on us later.
1129  * If an error occurs or there is insufficient memory for the filter
1130  * a negative errno code is returned. On success the return is zero.
1131  */
1132 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1133 {
1134 	unsigned int fsize = bpf_classic_proglen(fprog);
1135 	struct bpf_prog *fp;
1136 
1137 	/* Make sure new filter is there and in the right amounts. */
1138 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1139 		return -EINVAL;
1140 
1141 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1142 	if (!fp)
1143 		return -ENOMEM;
1144 
1145 	memcpy(fp->insns, fprog->filter, fsize);
1146 
1147 	fp->len = fprog->len;
1148 	/* Since unattached filters are not copied back to user
1149 	 * space through sk_get_filter(), we do not need to hold
1150 	 * a copy here, and can spare us the work.
1151 	 */
1152 	fp->orig_prog = NULL;
1153 
1154 	/* bpf_prepare_filter() already takes care of freeing
1155 	 * memory in case something goes wrong.
1156 	 */
1157 	fp = bpf_prepare_filter(fp, NULL);
1158 	if (IS_ERR(fp))
1159 		return PTR_ERR(fp);
1160 
1161 	*pfp = fp;
1162 	return 0;
1163 }
1164 EXPORT_SYMBOL_GPL(bpf_prog_create);
1165 
1166 /**
1167  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1168  *	@pfp: the unattached filter that is created
1169  *	@fprog: the filter program
1170  *	@trans: post-classic verifier transformation handler
1171  *	@save_orig: save classic BPF program
1172  *
1173  * This function effectively does the same as bpf_prog_create(), only
1174  * that it builds up its insns buffer from user space provided buffer.
1175  * It also allows for passing a bpf_aux_classic_check_t handler.
1176  */
1177 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1178 			      bpf_aux_classic_check_t trans, bool save_orig)
1179 {
1180 	unsigned int fsize = bpf_classic_proglen(fprog);
1181 	struct bpf_prog *fp;
1182 	int err;
1183 
1184 	/* Make sure new filter is there and in the right amounts. */
1185 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1186 		return -EINVAL;
1187 
1188 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1189 	if (!fp)
1190 		return -ENOMEM;
1191 
1192 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1193 		__bpf_prog_free(fp);
1194 		return -EFAULT;
1195 	}
1196 
1197 	fp->len = fprog->len;
1198 	fp->orig_prog = NULL;
1199 
1200 	if (save_orig) {
1201 		err = bpf_prog_store_orig_filter(fp, fprog);
1202 		if (err) {
1203 			__bpf_prog_free(fp);
1204 			return -ENOMEM;
1205 		}
1206 	}
1207 
1208 	/* bpf_prepare_filter() already takes care of freeing
1209 	 * memory in case something goes wrong.
1210 	 */
1211 	fp = bpf_prepare_filter(fp, trans);
1212 	if (IS_ERR(fp))
1213 		return PTR_ERR(fp);
1214 
1215 	*pfp = fp;
1216 	return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1219 
1220 void bpf_prog_destroy(struct bpf_prog *fp)
1221 {
1222 	__bpf_prog_release(fp);
1223 }
1224 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1225 
1226 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1227 {
1228 	struct sk_filter *fp, *old_fp;
1229 
1230 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1231 	if (!fp)
1232 		return -ENOMEM;
1233 
1234 	fp->prog = prog;
1235 
1236 	if (!__sk_filter_charge(sk, fp)) {
1237 		kfree(fp);
1238 		return -ENOMEM;
1239 	}
1240 	refcount_set(&fp->refcnt, 1);
1241 
1242 	old_fp = rcu_dereference_protected(sk->sk_filter,
1243 					   lockdep_sock_is_held(sk));
1244 	rcu_assign_pointer(sk->sk_filter, fp);
1245 
1246 	if (old_fp)
1247 		sk_filter_uncharge(sk, old_fp);
1248 
1249 	return 0;
1250 }
1251 
1252 static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1253 {
1254 	struct bpf_prog *old_prog;
1255 	int err;
1256 
1257 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1258 		return -ENOMEM;
1259 
1260 	if (sk_unhashed(sk) && sk->sk_reuseport) {
1261 		err = reuseport_alloc(sk);
1262 		if (err)
1263 			return err;
1264 	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1265 		/* The socket wasn't bound with SO_REUSEPORT */
1266 		return -EINVAL;
1267 	}
1268 
1269 	old_prog = reuseport_attach_prog(sk, prog);
1270 	if (old_prog)
1271 		bpf_prog_destroy(old_prog);
1272 
1273 	return 0;
1274 }
1275 
1276 static
1277 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1278 {
1279 	unsigned int fsize = bpf_classic_proglen(fprog);
1280 	struct bpf_prog *prog;
1281 	int err;
1282 
1283 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1284 		return ERR_PTR(-EPERM);
1285 
1286 	/* Make sure new filter is there and in the right amounts. */
1287 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1288 		return ERR_PTR(-EINVAL);
1289 
1290 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1291 	if (!prog)
1292 		return ERR_PTR(-ENOMEM);
1293 
1294 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1295 		__bpf_prog_free(prog);
1296 		return ERR_PTR(-EFAULT);
1297 	}
1298 
1299 	prog->len = fprog->len;
1300 
1301 	err = bpf_prog_store_orig_filter(prog, fprog);
1302 	if (err) {
1303 		__bpf_prog_free(prog);
1304 		return ERR_PTR(-ENOMEM);
1305 	}
1306 
1307 	/* bpf_prepare_filter() already takes care of freeing
1308 	 * memory in case something goes wrong.
1309 	 */
1310 	return bpf_prepare_filter(prog, NULL);
1311 }
1312 
1313 /**
1314  *	sk_attach_filter - attach a socket filter
1315  *	@fprog: the filter program
1316  *	@sk: the socket to use
1317  *
1318  * Attach the user's filter code. We first run some sanity checks on
1319  * it to make sure it does not explode on us later. If an error
1320  * occurs or there is insufficient memory for the filter a negative
1321  * errno code is returned. On success the return is zero.
1322  */
1323 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1324 {
1325 	struct bpf_prog *prog = __get_filter(fprog, sk);
1326 	int err;
1327 
1328 	if (IS_ERR(prog))
1329 		return PTR_ERR(prog);
1330 
1331 	err = __sk_attach_prog(prog, sk);
1332 	if (err < 0) {
1333 		__bpf_prog_release(prog);
1334 		return err;
1335 	}
1336 
1337 	return 0;
1338 }
1339 EXPORT_SYMBOL_GPL(sk_attach_filter);
1340 
1341 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1342 {
1343 	struct bpf_prog *prog = __get_filter(fprog, sk);
1344 	int err;
1345 
1346 	if (IS_ERR(prog))
1347 		return PTR_ERR(prog);
1348 
1349 	err = __reuseport_attach_prog(prog, sk);
1350 	if (err < 0) {
1351 		__bpf_prog_release(prog);
1352 		return err;
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1359 {
1360 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1361 		return ERR_PTR(-EPERM);
1362 
1363 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1364 }
1365 
1366 int sk_attach_bpf(u32 ufd, struct sock *sk)
1367 {
1368 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1369 	int err;
1370 
1371 	if (IS_ERR(prog))
1372 		return PTR_ERR(prog);
1373 
1374 	err = __sk_attach_prog(prog, sk);
1375 	if (err < 0) {
1376 		bpf_prog_put(prog);
1377 		return err;
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1384 {
1385 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1386 	int err;
1387 
1388 	if (IS_ERR(prog))
1389 		return PTR_ERR(prog);
1390 
1391 	err = __reuseport_attach_prog(prog, sk);
1392 	if (err < 0) {
1393 		bpf_prog_put(prog);
1394 		return err;
1395 	}
1396 
1397 	return 0;
1398 }
1399 
1400 struct bpf_scratchpad {
1401 	union {
1402 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1403 		u8     buff[MAX_BPF_STACK];
1404 	};
1405 };
1406 
1407 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1408 
1409 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1410 					  unsigned int write_len)
1411 {
1412 	return skb_ensure_writable(skb, write_len);
1413 }
1414 
1415 static inline int bpf_try_make_writable(struct sk_buff *skb,
1416 					unsigned int write_len)
1417 {
1418 	int err = __bpf_try_make_writable(skb, write_len);
1419 
1420 	bpf_compute_data_pointers(skb);
1421 	return err;
1422 }
1423 
1424 static int bpf_try_make_head_writable(struct sk_buff *skb)
1425 {
1426 	return bpf_try_make_writable(skb, skb_headlen(skb));
1427 }
1428 
1429 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1430 {
1431 	if (skb_at_tc_ingress(skb))
1432 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1433 }
1434 
1435 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1436 {
1437 	if (skb_at_tc_ingress(skb))
1438 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1439 }
1440 
1441 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1442 	   const void *, from, u32, len, u64, flags)
1443 {
1444 	void *ptr;
1445 
1446 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1447 		return -EINVAL;
1448 	if (unlikely(offset > 0xffff))
1449 		return -EFAULT;
1450 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1451 		return -EFAULT;
1452 
1453 	ptr = skb->data + offset;
1454 	if (flags & BPF_F_RECOMPUTE_CSUM)
1455 		__skb_postpull_rcsum(skb, ptr, len, offset);
1456 
1457 	memcpy(ptr, from, len);
1458 
1459 	if (flags & BPF_F_RECOMPUTE_CSUM)
1460 		__skb_postpush_rcsum(skb, ptr, len, offset);
1461 	if (flags & BPF_F_INVALIDATE_HASH)
1462 		skb_clear_hash(skb);
1463 
1464 	return 0;
1465 }
1466 
1467 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1468 	.func		= bpf_skb_store_bytes,
1469 	.gpl_only	= false,
1470 	.ret_type	= RET_INTEGER,
1471 	.arg1_type	= ARG_PTR_TO_CTX,
1472 	.arg2_type	= ARG_ANYTHING,
1473 	.arg3_type	= ARG_PTR_TO_MEM,
1474 	.arg4_type	= ARG_CONST_SIZE,
1475 	.arg5_type	= ARG_ANYTHING,
1476 };
1477 
1478 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1479 	   void *, to, u32, len)
1480 {
1481 	void *ptr;
1482 
1483 	if (unlikely(offset > 0xffff))
1484 		goto err_clear;
1485 
1486 	ptr = skb_header_pointer(skb, offset, len, to);
1487 	if (unlikely(!ptr))
1488 		goto err_clear;
1489 	if (ptr != to)
1490 		memcpy(to, ptr, len);
1491 
1492 	return 0;
1493 err_clear:
1494 	memset(to, 0, len);
1495 	return -EFAULT;
1496 }
1497 
1498 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1499 	.func		= bpf_skb_load_bytes,
1500 	.gpl_only	= false,
1501 	.ret_type	= RET_INTEGER,
1502 	.arg1_type	= ARG_PTR_TO_CTX,
1503 	.arg2_type	= ARG_ANYTHING,
1504 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1505 	.arg4_type	= ARG_CONST_SIZE,
1506 };
1507 
1508 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1509 {
1510 	/* Idea is the following: should the needed direct read/write
1511 	 * test fail during runtime, we can pull in more data and redo
1512 	 * again, since implicitly, we invalidate previous checks here.
1513 	 *
1514 	 * Or, since we know how much we need to make read/writeable,
1515 	 * this can be done once at the program beginning for direct
1516 	 * access case. By this we overcome limitations of only current
1517 	 * headroom being accessible.
1518 	 */
1519 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1520 }
1521 
1522 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1523 	.func		= bpf_skb_pull_data,
1524 	.gpl_only	= false,
1525 	.ret_type	= RET_INTEGER,
1526 	.arg1_type	= ARG_PTR_TO_CTX,
1527 	.arg2_type	= ARG_ANYTHING,
1528 };
1529 
1530 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1531 	   u64, from, u64, to, u64, flags)
1532 {
1533 	__sum16 *ptr;
1534 
1535 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1536 		return -EINVAL;
1537 	if (unlikely(offset > 0xffff || offset & 1))
1538 		return -EFAULT;
1539 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1540 		return -EFAULT;
1541 
1542 	ptr = (__sum16 *)(skb->data + offset);
1543 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1544 	case 0:
1545 		if (unlikely(from != 0))
1546 			return -EINVAL;
1547 
1548 		csum_replace_by_diff(ptr, to);
1549 		break;
1550 	case 2:
1551 		csum_replace2(ptr, from, to);
1552 		break;
1553 	case 4:
1554 		csum_replace4(ptr, from, to);
1555 		break;
1556 	default:
1557 		return -EINVAL;
1558 	}
1559 
1560 	return 0;
1561 }
1562 
1563 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1564 	.func		= bpf_l3_csum_replace,
1565 	.gpl_only	= false,
1566 	.ret_type	= RET_INTEGER,
1567 	.arg1_type	= ARG_PTR_TO_CTX,
1568 	.arg2_type	= ARG_ANYTHING,
1569 	.arg3_type	= ARG_ANYTHING,
1570 	.arg4_type	= ARG_ANYTHING,
1571 	.arg5_type	= ARG_ANYTHING,
1572 };
1573 
1574 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1575 	   u64, from, u64, to, u64, flags)
1576 {
1577 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1578 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1579 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1580 	__sum16 *ptr;
1581 
1582 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1583 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1584 		return -EINVAL;
1585 	if (unlikely(offset > 0xffff || offset & 1))
1586 		return -EFAULT;
1587 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1588 		return -EFAULT;
1589 
1590 	ptr = (__sum16 *)(skb->data + offset);
1591 	if (is_mmzero && !do_mforce && !*ptr)
1592 		return 0;
1593 
1594 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1595 	case 0:
1596 		if (unlikely(from != 0))
1597 			return -EINVAL;
1598 
1599 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1600 		break;
1601 	case 2:
1602 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1603 		break;
1604 	case 4:
1605 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1606 		break;
1607 	default:
1608 		return -EINVAL;
1609 	}
1610 
1611 	if (is_mmzero && !*ptr)
1612 		*ptr = CSUM_MANGLED_0;
1613 	return 0;
1614 }
1615 
1616 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1617 	.func		= bpf_l4_csum_replace,
1618 	.gpl_only	= false,
1619 	.ret_type	= RET_INTEGER,
1620 	.arg1_type	= ARG_PTR_TO_CTX,
1621 	.arg2_type	= ARG_ANYTHING,
1622 	.arg3_type	= ARG_ANYTHING,
1623 	.arg4_type	= ARG_ANYTHING,
1624 	.arg5_type	= ARG_ANYTHING,
1625 };
1626 
1627 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1628 	   __be32 *, to, u32, to_size, __wsum, seed)
1629 {
1630 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1631 	u32 diff_size = from_size + to_size;
1632 	int i, j = 0;
1633 
1634 	/* This is quite flexible, some examples:
1635 	 *
1636 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1637 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1638 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1639 	 *
1640 	 * Even for diffing, from_size and to_size don't need to be equal.
1641 	 */
1642 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1643 		     diff_size > sizeof(sp->diff)))
1644 		return -EINVAL;
1645 
1646 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1647 		sp->diff[j] = ~from[i];
1648 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1649 		sp->diff[j] = to[i];
1650 
1651 	return csum_partial(sp->diff, diff_size, seed);
1652 }
1653 
1654 static const struct bpf_func_proto bpf_csum_diff_proto = {
1655 	.func		= bpf_csum_diff,
1656 	.gpl_only	= false,
1657 	.pkt_access	= true,
1658 	.ret_type	= RET_INTEGER,
1659 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1660 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1661 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
1662 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1663 	.arg5_type	= ARG_ANYTHING,
1664 };
1665 
1666 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1667 {
1668 	/* The interface is to be used in combination with bpf_csum_diff()
1669 	 * for direct packet writes. csum rotation for alignment as well
1670 	 * as emulating csum_sub() can be done from the eBPF program.
1671 	 */
1672 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1673 		return (skb->csum = csum_add(skb->csum, csum));
1674 
1675 	return -ENOTSUPP;
1676 }
1677 
1678 static const struct bpf_func_proto bpf_csum_update_proto = {
1679 	.func		= bpf_csum_update,
1680 	.gpl_only	= false,
1681 	.ret_type	= RET_INTEGER,
1682 	.arg1_type	= ARG_PTR_TO_CTX,
1683 	.arg2_type	= ARG_ANYTHING,
1684 };
1685 
1686 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1687 {
1688 	return dev_forward_skb(dev, skb);
1689 }
1690 
1691 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1692 				      struct sk_buff *skb)
1693 {
1694 	int ret = ____dev_forward_skb(dev, skb);
1695 
1696 	if (likely(!ret)) {
1697 		skb->dev = dev;
1698 		ret = netif_rx(skb);
1699 	}
1700 
1701 	return ret;
1702 }
1703 
1704 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
1705 {
1706 	int ret;
1707 
1708 	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
1709 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
1710 		kfree_skb(skb);
1711 		return -ENETDOWN;
1712 	}
1713 
1714 	skb->dev = dev;
1715 
1716 	__this_cpu_inc(xmit_recursion);
1717 	ret = dev_queue_xmit(skb);
1718 	__this_cpu_dec(xmit_recursion);
1719 
1720 	return ret;
1721 }
1722 
1723 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
1724 				 u32 flags)
1725 {
1726 	/* skb->mac_len is not set on normal egress */
1727 	unsigned int mlen = skb->network_header - skb->mac_header;
1728 
1729 	__skb_pull(skb, mlen);
1730 
1731 	/* At ingress, the mac header has already been pulled once.
1732 	 * At egress, skb_pospull_rcsum has to be done in case that
1733 	 * the skb is originated from ingress (i.e. a forwarded skb)
1734 	 * to ensure that rcsum starts at net header.
1735 	 */
1736 	if (!skb_at_tc_ingress(skb))
1737 		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
1738 	skb_pop_mac_header(skb);
1739 	skb_reset_mac_len(skb);
1740 	return flags & BPF_F_INGRESS ?
1741 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
1742 }
1743 
1744 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
1745 				 u32 flags)
1746 {
1747 	/* Verify that a link layer header is carried */
1748 	if (unlikely(skb->mac_header >= skb->network_header)) {
1749 		kfree_skb(skb);
1750 		return -ERANGE;
1751 	}
1752 
1753 	bpf_push_mac_rcsum(skb);
1754 	return flags & BPF_F_INGRESS ?
1755 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1756 }
1757 
1758 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
1759 			  u32 flags)
1760 {
1761 	if (dev_is_mac_header_xmit(dev))
1762 		return __bpf_redirect_common(skb, dev, flags);
1763 	else
1764 		return __bpf_redirect_no_mac(skb, dev, flags);
1765 }
1766 
1767 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1768 {
1769 	struct net_device *dev;
1770 	struct sk_buff *clone;
1771 	int ret;
1772 
1773 	if (unlikely(flags & ~(BPF_F_INGRESS)))
1774 		return -EINVAL;
1775 
1776 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1777 	if (unlikely(!dev))
1778 		return -EINVAL;
1779 
1780 	clone = skb_clone(skb, GFP_ATOMIC);
1781 	if (unlikely(!clone))
1782 		return -ENOMEM;
1783 
1784 	/* For direct write, we need to keep the invariant that the skbs
1785 	 * we're dealing with need to be uncloned. Should uncloning fail
1786 	 * here, we need to free the just generated clone to unclone once
1787 	 * again.
1788 	 */
1789 	ret = bpf_try_make_head_writable(skb);
1790 	if (unlikely(ret)) {
1791 		kfree_skb(clone);
1792 		return -ENOMEM;
1793 	}
1794 
1795 	return __bpf_redirect(clone, dev, flags);
1796 }
1797 
1798 static const struct bpf_func_proto bpf_clone_redirect_proto = {
1799 	.func           = bpf_clone_redirect,
1800 	.gpl_only       = false,
1801 	.ret_type       = RET_INTEGER,
1802 	.arg1_type      = ARG_PTR_TO_CTX,
1803 	.arg2_type      = ARG_ANYTHING,
1804 	.arg3_type      = ARG_ANYTHING,
1805 };
1806 
1807 struct redirect_info {
1808 	u32 ifindex;
1809 	u32 flags;
1810 	struct bpf_map *map;
1811 	struct bpf_map *map_to_flush;
1812 	unsigned long   map_owner;
1813 };
1814 
1815 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1816 
1817 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1818 {
1819 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1820 
1821 	if (unlikely(flags & ~(BPF_F_INGRESS)))
1822 		return TC_ACT_SHOT;
1823 
1824 	ri->ifindex = ifindex;
1825 	ri->flags = flags;
1826 
1827 	return TC_ACT_REDIRECT;
1828 }
1829 
1830 int skb_do_redirect(struct sk_buff *skb)
1831 {
1832 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1833 	struct net_device *dev;
1834 
1835 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1836 	ri->ifindex = 0;
1837 	if (unlikely(!dev)) {
1838 		kfree_skb(skb);
1839 		return -EINVAL;
1840 	}
1841 
1842 	return __bpf_redirect(skb, dev, ri->flags);
1843 }
1844 
1845 static const struct bpf_func_proto bpf_redirect_proto = {
1846 	.func           = bpf_redirect,
1847 	.gpl_only       = false,
1848 	.ret_type       = RET_INTEGER,
1849 	.arg1_type      = ARG_ANYTHING,
1850 	.arg2_type      = ARG_ANYTHING,
1851 };
1852 
1853 BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
1854 	   struct bpf_map *, map, u32, key, u64, flags)
1855 {
1856 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1857 
1858 	/* If user passes invalid input drop the packet. */
1859 	if (unlikely(flags & ~(BPF_F_INGRESS)))
1860 		return SK_DROP;
1861 
1862 	tcb->bpf.key = key;
1863 	tcb->bpf.flags = flags;
1864 	tcb->bpf.map = map;
1865 
1866 	return SK_PASS;
1867 }
1868 
1869 struct sock *do_sk_redirect_map(struct sk_buff *skb)
1870 {
1871 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1872 	struct sock *sk = NULL;
1873 
1874 	if (tcb->bpf.map) {
1875 		sk = __sock_map_lookup_elem(tcb->bpf.map, tcb->bpf.key);
1876 
1877 		tcb->bpf.key = 0;
1878 		tcb->bpf.map = NULL;
1879 	}
1880 
1881 	return sk;
1882 }
1883 
1884 static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
1885 	.func           = bpf_sk_redirect_map,
1886 	.gpl_only       = false,
1887 	.ret_type       = RET_INTEGER,
1888 	.arg1_type	= ARG_PTR_TO_CTX,
1889 	.arg2_type      = ARG_CONST_MAP_PTR,
1890 	.arg3_type      = ARG_ANYTHING,
1891 	.arg4_type      = ARG_ANYTHING,
1892 };
1893 
1894 BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg,
1895 	   struct bpf_map *, map, u32, key, u64, flags)
1896 {
1897 	/* If user passes invalid input drop the packet. */
1898 	if (unlikely(flags & ~(BPF_F_INGRESS)))
1899 		return SK_DROP;
1900 
1901 	msg->key = key;
1902 	msg->flags = flags;
1903 	msg->map = map;
1904 
1905 	return SK_PASS;
1906 }
1907 
1908 struct sock *do_msg_redirect_map(struct sk_msg_buff *msg)
1909 {
1910 	struct sock *sk = NULL;
1911 
1912 	if (msg->map) {
1913 		sk = __sock_map_lookup_elem(msg->map, msg->key);
1914 
1915 		msg->key = 0;
1916 		msg->map = NULL;
1917 	}
1918 
1919 	return sk;
1920 }
1921 
1922 static const struct bpf_func_proto bpf_msg_redirect_map_proto = {
1923 	.func           = bpf_msg_redirect_map,
1924 	.gpl_only       = false,
1925 	.ret_type       = RET_INTEGER,
1926 	.arg1_type	= ARG_PTR_TO_CTX,
1927 	.arg2_type      = ARG_CONST_MAP_PTR,
1928 	.arg3_type      = ARG_ANYTHING,
1929 	.arg4_type      = ARG_ANYTHING,
1930 };
1931 
1932 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes)
1933 {
1934 	msg->apply_bytes = bytes;
1935 	return 0;
1936 }
1937 
1938 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
1939 	.func           = bpf_msg_apply_bytes,
1940 	.gpl_only       = false,
1941 	.ret_type       = RET_INTEGER,
1942 	.arg1_type	= ARG_PTR_TO_CTX,
1943 	.arg2_type      = ARG_ANYTHING,
1944 };
1945 
1946 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes)
1947 {
1948 	msg->cork_bytes = bytes;
1949 	return 0;
1950 }
1951 
1952 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
1953 	.func           = bpf_msg_cork_bytes,
1954 	.gpl_only       = false,
1955 	.ret_type       = RET_INTEGER,
1956 	.arg1_type	= ARG_PTR_TO_CTX,
1957 	.arg2_type      = ARG_ANYTHING,
1958 };
1959 
1960 BPF_CALL_4(bpf_msg_pull_data,
1961 	   struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags)
1962 {
1963 	unsigned int len = 0, offset = 0, copy = 0;
1964 	struct scatterlist *sg = msg->sg_data;
1965 	int first_sg, last_sg, i, shift;
1966 	unsigned char *p, *to, *from;
1967 	int bytes = end - start;
1968 	struct page *page;
1969 
1970 	if (unlikely(flags || end <= start))
1971 		return -EINVAL;
1972 
1973 	/* First find the starting scatterlist element */
1974 	i = msg->sg_start;
1975 	do {
1976 		len = sg[i].length;
1977 		offset += len;
1978 		if (start < offset + len)
1979 			break;
1980 		i++;
1981 		if (i == MAX_SKB_FRAGS)
1982 			i = 0;
1983 	} while (i != msg->sg_end);
1984 
1985 	if (unlikely(start >= offset + len))
1986 		return -EINVAL;
1987 
1988 	if (!msg->sg_copy[i] && bytes <= len)
1989 		goto out;
1990 
1991 	first_sg = i;
1992 
1993 	/* At this point we need to linearize multiple scatterlist
1994 	 * elements or a single shared page. Either way we need to
1995 	 * copy into a linear buffer exclusively owned by BPF. Then
1996 	 * place the buffer in the scatterlist and fixup the original
1997 	 * entries by removing the entries now in the linear buffer
1998 	 * and shifting the remaining entries. For now we do not try
1999 	 * to copy partial entries to avoid complexity of running out
2000 	 * of sg_entry slots. The downside is reading a single byte
2001 	 * will copy the entire sg entry.
2002 	 */
2003 	do {
2004 		copy += sg[i].length;
2005 		i++;
2006 		if (i == MAX_SKB_FRAGS)
2007 			i = 0;
2008 		if (bytes < copy)
2009 			break;
2010 	} while (i != msg->sg_end);
2011 	last_sg = i;
2012 
2013 	if (unlikely(copy < end - start))
2014 		return -EINVAL;
2015 
2016 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC, get_order(copy));
2017 	if (unlikely(!page))
2018 		return -ENOMEM;
2019 	p = page_address(page);
2020 	offset = 0;
2021 
2022 	i = first_sg;
2023 	do {
2024 		from = sg_virt(&sg[i]);
2025 		len = sg[i].length;
2026 		to = p + offset;
2027 
2028 		memcpy(to, from, len);
2029 		offset += len;
2030 		sg[i].length = 0;
2031 		put_page(sg_page(&sg[i]));
2032 
2033 		i++;
2034 		if (i == MAX_SKB_FRAGS)
2035 			i = 0;
2036 	} while (i != last_sg);
2037 
2038 	sg[first_sg].length = copy;
2039 	sg_set_page(&sg[first_sg], page, copy, 0);
2040 
2041 	/* To repair sg ring we need to shift entries. If we only
2042 	 * had a single entry though we can just replace it and
2043 	 * be done. Otherwise walk the ring and shift the entries.
2044 	 */
2045 	shift = last_sg - first_sg - 1;
2046 	if (!shift)
2047 		goto out;
2048 
2049 	i = first_sg + 1;
2050 	do {
2051 		int move_from;
2052 
2053 		if (i + shift >= MAX_SKB_FRAGS)
2054 			move_from = i + shift - MAX_SKB_FRAGS;
2055 		else
2056 			move_from = i + shift;
2057 
2058 		if (move_from == msg->sg_end)
2059 			break;
2060 
2061 		sg[i] = sg[move_from];
2062 		sg[move_from].length = 0;
2063 		sg[move_from].page_link = 0;
2064 		sg[move_from].offset = 0;
2065 
2066 		i++;
2067 		if (i == MAX_SKB_FRAGS)
2068 			i = 0;
2069 	} while (1);
2070 	msg->sg_end -= shift;
2071 	if (msg->sg_end < 0)
2072 		msg->sg_end += MAX_SKB_FRAGS;
2073 out:
2074 	msg->data = sg_virt(&sg[i]) + start - offset;
2075 	msg->data_end = msg->data + bytes;
2076 
2077 	return 0;
2078 }
2079 
2080 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2081 	.func		= bpf_msg_pull_data,
2082 	.gpl_only	= false,
2083 	.ret_type	= RET_INTEGER,
2084 	.arg1_type	= ARG_PTR_TO_CTX,
2085 	.arg2_type	= ARG_ANYTHING,
2086 	.arg3_type	= ARG_ANYTHING,
2087 	.arg4_type	= ARG_ANYTHING,
2088 };
2089 
2090 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2091 {
2092 	return task_get_classid(skb);
2093 }
2094 
2095 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2096 	.func           = bpf_get_cgroup_classid,
2097 	.gpl_only       = false,
2098 	.ret_type       = RET_INTEGER,
2099 	.arg1_type      = ARG_PTR_TO_CTX,
2100 };
2101 
2102 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2103 {
2104 	return dst_tclassid(skb);
2105 }
2106 
2107 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2108 	.func           = bpf_get_route_realm,
2109 	.gpl_only       = false,
2110 	.ret_type       = RET_INTEGER,
2111 	.arg1_type      = ARG_PTR_TO_CTX,
2112 };
2113 
2114 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2115 {
2116 	/* If skb_clear_hash() was called due to mangling, we can
2117 	 * trigger SW recalculation here. Later access to hash
2118 	 * can then use the inline skb->hash via context directly
2119 	 * instead of calling this helper again.
2120 	 */
2121 	return skb_get_hash(skb);
2122 }
2123 
2124 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2125 	.func		= bpf_get_hash_recalc,
2126 	.gpl_only	= false,
2127 	.ret_type	= RET_INTEGER,
2128 	.arg1_type	= ARG_PTR_TO_CTX,
2129 };
2130 
2131 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2132 {
2133 	/* After all direct packet write, this can be used once for
2134 	 * triggering a lazy recalc on next skb_get_hash() invocation.
2135 	 */
2136 	skb_clear_hash(skb);
2137 	return 0;
2138 }
2139 
2140 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2141 	.func		= bpf_set_hash_invalid,
2142 	.gpl_only	= false,
2143 	.ret_type	= RET_INTEGER,
2144 	.arg1_type	= ARG_PTR_TO_CTX,
2145 };
2146 
2147 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2148 {
2149 	/* Set user specified hash as L4(+), so that it gets returned
2150 	 * on skb_get_hash() call unless BPF prog later on triggers a
2151 	 * skb_clear_hash().
2152 	 */
2153 	__skb_set_sw_hash(skb, hash, true);
2154 	return 0;
2155 }
2156 
2157 static const struct bpf_func_proto bpf_set_hash_proto = {
2158 	.func		= bpf_set_hash,
2159 	.gpl_only	= false,
2160 	.ret_type	= RET_INTEGER,
2161 	.arg1_type	= ARG_PTR_TO_CTX,
2162 	.arg2_type	= ARG_ANYTHING,
2163 };
2164 
2165 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2166 	   u16, vlan_tci)
2167 {
2168 	int ret;
2169 
2170 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2171 		     vlan_proto != htons(ETH_P_8021AD)))
2172 		vlan_proto = htons(ETH_P_8021Q);
2173 
2174 	bpf_push_mac_rcsum(skb);
2175 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2176 	bpf_pull_mac_rcsum(skb);
2177 
2178 	bpf_compute_data_pointers(skb);
2179 	return ret;
2180 }
2181 
2182 const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2183 	.func           = bpf_skb_vlan_push,
2184 	.gpl_only       = false,
2185 	.ret_type       = RET_INTEGER,
2186 	.arg1_type      = ARG_PTR_TO_CTX,
2187 	.arg2_type      = ARG_ANYTHING,
2188 	.arg3_type      = ARG_ANYTHING,
2189 };
2190 EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
2191 
2192 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2193 {
2194 	int ret;
2195 
2196 	bpf_push_mac_rcsum(skb);
2197 	ret = skb_vlan_pop(skb);
2198 	bpf_pull_mac_rcsum(skb);
2199 
2200 	bpf_compute_data_pointers(skb);
2201 	return ret;
2202 }
2203 
2204 const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2205 	.func           = bpf_skb_vlan_pop,
2206 	.gpl_only       = false,
2207 	.ret_type       = RET_INTEGER,
2208 	.arg1_type      = ARG_PTR_TO_CTX,
2209 };
2210 EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
2211 
2212 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2213 {
2214 	/* Caller already did skb_cow() with len as headroom,
2215 	 * so no need to do it here.
2216 	 */
2217 	skb_push(skb, len);
2218 	memmove(skb->data, skb->data + len, off);
2219 	memset(skb->data + off, 0, len);
2220 
2221 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
2222 	 * needed here as it does not change the skb->csum
2223 	 * result for checksum complete when summing over
2224 	 * zeroed blocks.
2225 	 */
2226 	return 0;
2227 }
2228 
2229 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2230 {
2231 	/* skb_ensure_writable() is not needed here, as we're
2232 	 * already working on an uncloned skb.
2233 	 */
2234 	if (unlikely(!pskb_may_pull(skb, off + len)))
2235 		return -ENOMEM;
2236 
2237 	skb_postpull_rcsum(skb, skb->data + off, len);
2238 	memmove(skb->data + len, skb->data, off);
2239 	__skb_pull(skb, len);
2240 
2241 	return 0;
2242 }
2243 
2244 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2245 {
2246 	bool trans_same = skb->transport_header == skb->network_header;
2247 	int ret;
2248 
2249 	/* There's no need for __skb_push()/__skb_pull() pair to
2250 	 * get to the start of the mac header as we're guaranteed
2251 	 * to always start from here under eBPF.
2252 	 */
2253 	ret = bpf_skb_generic_push(skb, off, len);
2254 	if (likely(!ret)) {
2255 		skb->mac_header -= len;
2256 		skb->network_header -= len;
2257 		if (trans_same)
2258 			skb->transport_header = skb->network_header;
2259 	}
2260 
2261 	return ret;
2262 }
2263 
2264 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2265 {
2266 	bool trans_same = skb->transport_header == skb->network_header;
2267 	int ret;
2268 
2269 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
2270 	ret = bpf_skb_generic_pop(skb, off, len);
2271 	if (likely(!ret)) {
2272 		skb->mac_header += len;
2273 		skb->network_header += len;
2274 		if (trans_same)
2275 			skb->transport_header = skb->network_header;
2276 	}
2277 
2278 	return ret;
2279 }
2280 
2281 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2282 {
2283 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2284 	u32 off = skb_mac_header_len(skb);
2285 	int ret;
2286 
2287 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2288 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2289 		return -ENOTSUPP;
2290 
2291 	ret = skb_cow(skb, len_diff);
2292 	if (unlikely(ret < 0))
2293 		return ret;
2294 
2295 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2296 	if (unlikely(ret < 0))
2297 		return ret;
2298 
2299 	if (skb_is_gso(skb)) {
2300 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2301 
2302 		/* SKB_GSO_TCPV4 needs to be changed into
2303 		 * SKB_GSO_TCPV6.
2304 		 */
2305 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
2306 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
2307 			shinfo->gso_type |=  SKB_GSO_TCPV6;
2308 		}
2309 
2310 		/* Due to IPv6 header, MSS needs to be downgraded. */
2311 		skb_decrease_gso_size(shinfo, len_diff);
2312 		/* Header must be checked, and gso_segs recomputed. */
2313 		shinfo->gso_type |= SKB_GSO_DODGY;
2314 		shinfo->gso_segs = 0;
2315 	}
2316 
2317 	skb->protocol = htons(ETH_P_IPV6);
2318 	skb_clear_hash(skb);
2319 
2320 	return 0;
2321 }
2322 
2323 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2324 {
2325 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2326 	u32 off = skb_mac_header_len(skb);
2327 	int ret;
2328 
2329 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2330 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2331 		return -ENOTSUPP;
2332 
2333 	ret = skb_unclone(skb, GFP_ATOMIC);
2334 	if (unlikely(ret < 0))
2335 		return ret;
2336 
2337 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2338 	if (unlikely(ret < 0))
2339 		return ret;
2340 
2341 	if (skb_is_gso(skb)) {
2342 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2343 
2344 		/* SKB_GSO_TCPV6 needs to be changed into
2345 		 * SKB_GSO_TCPV4.
2346 		 */
2347 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
2348 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
2349 			shinfo->gso_type |=  SKB_GSO_TCPV4;
2350 		}
2351 
2352 		/* Due to IPv4 header, MSS can be upgraded. */
2353 		skb_increase_gso_size(shinfo, len_diff);
2354 		/* Header must be checked, and gso_segs recomputed. */
2355 		shinfo->gso_type |= SKB_GSO_DODGY;
2356 		shinfo->gso_segs = 0;
2357 	}
2358 
2359 	skb->protocol = htons(ETH_P_IP);
2360 	skb_clear_hash(skb);
2361 
2362 	return 0;
2363 }
2364 
2365 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2366 {
2367 	__be16 from_proto = skb->protocol;
2368 
2369 	if (from_proto == htons(ETH_P_IP) &&
2370 	      to_proto == htons(ETH_P_IPV6))
2371 		return bpf_skb_proto_4_to_6(skb);
2372 
2373 	if (from_proto == htons(ETH_P_IPV6) &&
2374 	      to_proto == htons(ETH_P_IP))
2375 		return bpf_skb_proto_6_to_4(skb);
2376 
2377 	return -ENOTSUPP;
2378 }
2379 
2380 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2381 	   u64, flags)
2382 {
2383 	int ret;
2384 
2385 	if (unlikely(flags))
2386 		return -EINVAL;
2387 
2388 	/* General idea is that this helper does the basic groundwork
2389 	 * needed for changing the protocol, and eBPF program fills the
2390 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2391 	 * and other helpers, rather than passing a raw buffer here.
2392 	 *
2393 	 * The rationale is to keep this minimal and without a need to
2394 	 * deal with raw packet data. F.e. even if we would pass buffers
2395 	 * here, the program still needs to call the bpf_lX_csum_replace()
2396 	 * helpers anyway. Plus, this way we keep also separation of
2397 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
2398 	 * care of stores.
2399 	 *
2400 	 * Currently, additional options and extension header space are
2401 	 * not supported, but flags register is reserved so we can adapt
2402 	 * that. For offloads, we mark packet as dodgy, so that headers
2403 	 * need to be verified first.
2404 	 */
2405 	ret = bpf_skb_proto_xlat(skb, proto);
2406 	bpf_compute_data_pointers(skb);
2407 	return ret;
2408 }
2409 
2410 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2411 	.func		= bpf_skb_change_proto,
2412 	.gpl_only	= false,
2413 	.ret_type	= RET_INTEGER,
2414 	.arg1_type	= ARG_PTR_TO_CTX,
2415 	.arg2_type	= ARG_ANYTHING,
2416 	.arg3_type	= ARG_ANYTHING,
2417 };
2418 
2419 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2420 {
2421 	/* We only allow a restricted subset to be changed for now. */
2422 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2423 		     !skb_pkt_type_ok(pkt_type)))
2424 		return -EINVAL;
2425 
2426 	skb->pkt_type = pkt_type;
2427 	return 0;
2428 }
2429 
2430 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2431 	.func		= bpf_skb_change_type,
2432 	.gpl_only	= false,
2433 	.ret_type	= RET_INTEGER,
2434 	.arg1_type	= ARG_PTR_TO_CTX,
2435 	.arg2_type	= ARG_ANYTHING,
2436 };
2437 
2438 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2439 {
2440 	switch (skb->protocol) {
2441 	case htons(ETH_P_IP):
2442 		return sizeof(struct iphdr);
2443 	case htons(ETH_P_IPV6):
2444 		return sizeof(struct ipv6hdr);
2445 	default:
2446 		return ~0U;
2447 	}
2448 }
2449 
2450 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2451 {
2452 	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2453 	int ret;
2454 
2455 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2456 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2457 		return -ENOTSUPP;
2458 
2459 	ret = skb_cow(skb, len_diff);
2460 	if (unlikely(ret < 0))
2461 		return ret;
2462 
2463 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2464 	if (unlikely(ret < 0))
2465 		return ret;
2466 
2467 	if (skb_is_gso(skb)) {
2468 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2469 
2470 		/* Due to header grow, MSS needs to be downgraded. */
2471 		skb_decrease_gso_size(shinfo, len_diff);
2472 		/* Header must be checked, and gso_segs recomputed. */
2473 		shinfo->gso_type |= SKB_GSO_DODGY;
2474 		shinfo->gso_segs = 0;
2475 	}
2476 
2477 	return 0;
2478 }
2479 
2480 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2481 {
2482 	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2483 	int ret;
2484 
2485 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2486 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2487 		return -ENOTSUPP;
2488 
2489 	ret = skb_unclone(skb, GFP_ATOMIC);
2490 	if (unlikely(ret < 0))
2491 		return ret;
2492 
2493 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2494 	if (unlikely(ret < 0))
2495 		return ret;
2496 
2497 	if (skb_is_gso(skb)) {
2498 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2499 
2500 		/* Due to header shrink, MSS can be upgraded. */
2501 		skb_increase_gso_size(shinfo, len_diff);
2502 		/* Header must be checked, and gso_segs recomputed. */
2503 		shinfo->gso_type |= SKB_GSO_DODGY;
2504 		shinfo->gso_segs = 0;
2505 	}
2506 
2507 	return 0;
2508 }
2509 
2510 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2511 {
2512 	return skb->dev->mtu + skb->dev->hard_header_len;
2513 }
2514 
2515 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2516 {
2517 	bool trans_same = skb->transport_header == skb->network_header;
2518 	u32 len_cur, len_diff_abs = abs(len_diff);
2519 	u32 len_min = bpf_skb_net_base_len(skb);
2520 	u32 len_max = __bpf_skb_max_len(skb);
2521 	__be16 proto = skb->protocol;
2522 	bool shrink = len_diff < 0;
2523 	int ret;
2524 
2525 	if (unlikely(len_diff_abs > 0xfffU))
2526 		return -EFAULT;
2527 	if (unlikely(proto != htons(ETH_P_IP) &&
2528 		     proto != htons(ETH_P_IPV6)))
2529 		return -ENOTSUPP;
2530 
2531 	len_cur = skb->len - skb_network_offset(skb);
2532 	if (skb_transport_header_was_set(skb) && !trans_same)
2533 		len_cur = skb_network_header_len(skb);
2534 	if ((shrink && (len_diff_abs >= len_cur ||
2535 			len_cur - len_diff_abs < len_min)) ||
2536 	    (!shrink && (skb->len + len_diff_abs > len_max &&
2537 			 !skb_is_gso(skb))))
2538 		return -ENOTSUPP;
2539 
2540 	ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2541 		       bpf_skb_net_grow(skb, len_diff_abs);
2542 
2543 	bpf_compute_data_pointers(skb);
2544 	return ret;
2545 }
2546 
2547 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2548 	   u32, mode, u64, flags)
2549 {
2550 	if (unlikely(flags))
2551 		return -EINVAL;
2552 	if (likely(mode == BPF_ADJ_ROOM_NET))
2553 		return bpf_skb_adjust_net(skb, len_diff);
2554 
2555 	return -ENOTSUPP;
2556 }
2557 
2558 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2559 	.func		= bpf_skb_adjust_room,
2560 	.gpl_only	= false,
2561 	.ret_type	= RET_INTEGER,
2562 	.arg1_type	= ARG_PTR_TO_CTX,
2563 	.arg2_type	= ARG_ANYTHING,
2564 	.arg3_type	= ARG_ANYTHING,
2565 	.arg4_type	= ARG_ANYTHING,
2566 };
2567 
2568 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2569 {
2570 	u32 min_len = skb_network_offset(skb);
2571 
2572 	if (skb_transport_header_was_set(skb))
2573 		min_len = skb_transport_offset(skb);
2574 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2575 		min_len = skb_checksum_start_offset(skb) +
2576 			  skb->csum_offset + sizeof(__sum16);
2577 	return min_len;
2578 }
2579 
2580 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2581 {
2582 	unsigned int old_len = skb->len;
2583 	int ret;
2584 
2585 	ret = __skb_grow_rcsum(skb, new_len);
2586 	if (!ret)
2587 		memset(skb->data + old_len, 0, new_len - old_len);
2588 	return ret;
2589 }
2590 
2591 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2592 {
2593 	return __skb_trim_rcsum(skb, new_len);
2594 }
2595 
2596 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2597 	   u64, flags)
2598 {
2599 	u32 max_len = __bpf_skb_max_len(skb);
2600 	u32 min_len = __bpf_skb_min_len(skb);
2601 	int ret;
2602 
2603 	if (unlikely(flags || new_len > max_len || new_len < min_len))
2604 		return -EINVAL;
2605 	if (skb->encapsulation)
2606 		return -ENOTSUPP;
2607 
2608 	/* The basic idea of this helper is that it's performing the
2609 	 * needed work to either grow or trim an skb, and eBPF program
2610 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
2611 	 * bpf_lX_csum_replace() and others rather than passing a raw
2612 	 * buffer here. This one is a slow path helper and intended
2613 	 * for replies with control messages.
2614 	 *
2615 	 * Like in bpf_skb_change_proto(), we want to keep this rather
2616 	 * minimal and without protocol specifics so that we are able
2617 	 * to separate concerns as in bpf_skb_store_bytes() should only
2618 	 * be the one responsible for writing buffers.
2619 	 *
2620 	 * It's really expected to be a slow path operation here for
2621 	 * control message replies, so we're implicitly linearizing,
2622 	 * uncloning and drop offloads from the skb by this.
2623 	 */
2624 	ret = __bpf_try_make_writable(skb, skb->len);
2625 	if (!ret) {
2626 		if (new_len > skb->len)
2627 			ret = bpf_skb_grow_rcsum(skb, new_len);
2628 		else if (new_len < skb->len)
2629 			ret = bpf_skb_trim_rcsum(skb, new_len);
2630 		if (!ret && skb_is_gso(skb))
2631 			skb_gso_reset(skb);
2632 	}
2633 
2634 	bpf_compute_data_pointers(skb);
2635 	return ret;
2636 }
2637 
2638 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2639 	.func		= bpf_skb_change_tail,
2640 	.gpl_only	= false,
2641 	.ret_type	= RET_INTEGER,
2642 	.arg1_type	= ARG_PTR_TO_CTX,
2643 	.arg2_type	= ARG_ANYTHING,
2644 	.arg3_type	= ARG_ANYTHING,
2645 };
2646 
2647 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
2648 	   u64, flags)
2649 {
2650 	u32 max_len = __bpf_skb_max_len(skb);
2651 	u32 new_len = skb->len + head_room;
2652 	int ret;
2653 
2654 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
2655 		     new_len < skb->len))
2656 		return -EINVAL;
2657 
2658 	ret = skb_cow(skb, head_room);
2659 	if (likely(!ret)) {
2660 		/* Idea for this helper is that we currently only
2661 		 * allow to expand on mac header. This means that
2662 		 * skb->protocol network header, etc, stay as is.
2663 		 * Compared to bpf_skb_change_tail(), we're more
2664 		 * flexible due to not needing to linearize or
2665 		 * reset GSO. Intention for this helper is to be
2666 		 * used by an L3 skb that needs to push mac header
2667 		 * for redirection into L2 device.
2668 		 */
2669 		__skb_push(skb, head_room);
2670 		memset(skb->data, 0, head_room);
2671 		skb_reset_mac_header(skb);
2672 	}
2673 
2674 	bpf_compute_data_pointers(skb);
2675 	return 0;
2676 }
2677 
2678 static const struct bpf_func_proto bpf_skb_change_head_proto = {
2679 	.func		= bpf_skb_change_head,
2680 	.gpl_only	= false,
2681 	.ret_type	= RET_INTEGER,
2682 	.arg1_type	= ARG_PTR_TO_CTX,
2683 	.arg2_type	= ARG_ANYTHING,
2684 	.arg3_type	= ARG_ANYTHING,
2685 };
2686 
2687 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
2688 {
2689 	return xdp_data_meta_unsupported(xdp) ? 0 :
2690 	       xdp->data - xdp->data_meta;
2691 }
2692 
2693 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
2694 {
2695 	unsigned long metalen = xdp_get_metalen(xdp);
2696 	void *data_start = xdp->data_hard_start + metalen;
2697 	void *data = xdp->data + offset;
2698 
2699 	if (unlikely(data < data_start ||
2700 		     data > xdp->data_end - ETH_HLEN))
2701 		return -EINVAL;
2702 
2703 	if (metalen)
2704 		memmove(xdp->data_meta + offset,
2705 			xdp->data_meta, metalen);
2706 	xdp->data_meta += offset;
2707 	xdp->data = data;
2708 
2709 	return 0;
2710 }
2711 
2712 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
2713 	.func		= bpf_xdp_adjust_head,
2714 	.gpl_only	= false,
2715 	.ret_type	= RET_INTEGER,
2716 	.arg1_type	= ARG_PTR_TO_CTX,
2717 	.arg2_type	= ARG_ANYTHING,
2718 };
2719 
2720 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
2721 {
2722 	void *meta = xdp->data_meta + offset;
2723 	unsigned long metalen = xdp->data - meta;
2724 
2725 	if (xdp_data_meta_unsupported(xdp))
2726 		return -ENOTSUPP;
2727 	if (unlikely(meta < xdp->data_hard_start ||
2728 		     meta > xdp->data))
2729 		return -EINVAL;
2730 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
2731 		     (metalen > 32)))
2732 		return -EACCES;
2733 
2734 	xdp->data_meta = meta;
2735 
2736 	return 0;
2737 }
2738 
2739 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
2740 	.func		= bpf_xdp_adjust_meta,
2741 	.gpl_only	= false,
2742 	.ret_type	= RET_INTEGER,
2743 	.arg1_type	= ARG_PTR_TO_CTX,
2744 	.arg2_type	= ARG_ANYTHING,
2745 };
2746 
2747 static int __bpf_tx_xdp(struct net_device *dev,
2748 			struct bpf_map *map,
2749 			struct xdp_buff *xdp,
2750 			u32 index)
2751 {
2752 	int err;
2753 
2754 	if (!dev->netdev_ops->ndo_xdp_xmit) {
2755 		return -EOPNOTSUPP;
2756 	}
2757 
2758 	err = dev->netdev_ops->ndo_xdp_xmit(dev, xdp);
2759 	if (err)
2760 		return err;
2761 	dev->netdev_ops->ndo_xdp_flush(dev);
2762 	return 0;
2763 }
2764 
2765 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
2766 			    struct bpf_map *map,
2767 			    struct xdp_buff *xdp,
2768 			    u32 index)
2769 {
2770 	int err;
2771 
2772 	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
2773 		struct net_device *dev = fwd;
2774 
2775 		if (!dev->netdev_ops->ndo_xdp_xmit)
2776 			return -EOPNOTSUPP;
2777 
2778 		err = dev->netdev_ops->ndo_xdp_xmit(dev, xdp);
2779 		if (err)
2780 			return err;
2781 		__dev_map_insert_ctx(map, index);
2782 
2783 	} else if (map->map_type == BPF_MAP_TYPE_CPUMAP) {
2784 		struct bpf_cpu_map_entry *rcpu = fwd;
2785 
2786 		err = cpu_map_enqueue(rcpu, xdp, dev_rx);
2787 		if (err)
2788 			return err;
2789 		__cpu_map_insert_ctx(map, index);
2790 	}
2791 	return 0;
2792 }
2793 
2794 void xdp_do_flush_map(void)
2795 {
2796 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2797 	struct bpf_map *map = ri->map_to_flush;
2798 
2799 	ri->map_to_flush = NULL;
2800 	if (map) {
2801 		switch (map->map_type) {
2802 		case BPF_MAP_TYPE_DEVMAP:
2803 			__dev_map_flush(map);
2804 			break;
2805 		case BPF_MAP_TYPE_CPUMAP:
2806 			__cpu_map_flush(map);
2807 			break;
2808 		default:
2809 			break;
2810 		}
2811 	}
2812 }
2813 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
2814 
2815 static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
2816 {
2817 	switch (map->map_type) {
2818 	case BPF_MAP_TYPE_DEVMAP:
2819 		return __dev_map_lookup_elem(map, index);
2820 	case BPF_MAP_TYPE_CPUMAP:
2821 		return __cpu_map_lookup_elem(map, index);
2822 	default:
2823 		return NULL;
2824 	}
2825 }
2826 
2827 static inline bool xdp_map_invalid(const struct bpf_prog *xdp_prog,
2828 				   unsigned long aux)
2829 {
2830 	return (unsigned long)xdp_prog->aux != aux;
2831 }
2832 
2833 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
2834 			       struct bpf_prog *xdp_prog)
2835 {
2836 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2837 	unsigned long map_owner = ri->map_owner;
2838 	struct bpf_map *map = ri->map;
2839 	u32 index = ri->ifindex;
2840 	void *fwd = NULL;
2841 	int err;
2842 
2843 	ri->ifindex = 0;
2844 	ri->map = NULL;
2845 	ri->map_owner = 0;
2846 
2847 	if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2848 		err = -EFAULT;
2849 		map = NULL;
2850 		goto err;
2851 	}
2852 
2853 	fwd = __xdp_map_lookup_elem(map, index);
2854 	if (!fwd) {
2855 		err = -EINVAL;
2856 		goto err;
2857 	}
2858 	if (ri->map_to_flush && ri->map_to_flush != map)
2859 		xdp_do_flush_map();
2860 
2861 	err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
2862 	if (unlikely(err))
2863 		goto err;
2864 
2865 	ri->map_to_flush = map;
2866 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
2867 	return 0;
2868 err:
2869 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
2870 	return err;
2871 }
2872 
2873 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
2874 		    struct bpf_prog *xdp_prog)
2875 {
2876 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2877 	struct net_device *fwd;
2878 	u32 index = ri->ifindex;
2879 	int err;
2880 
2881 	if (ri->map)
2882 		return xdp_do_redirect_map(dev, xdp, xdp_prog);
2883 
2884 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
2885 	ri->ifindex = 0;
2886 	if (unlikely(!fwd)) {
2887 		err = -EINVAL;
2888 		goto err;
2889 	}
2890 
2891 	err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
2892 	if (unlikely(err))
2893 		goto err;
2894 
2895 	_trace_xdp_redirect(dev, xdp_prog, index);
2896 	return 0;
2897 err:
2898 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
2899 	return err;
2900 }
2901 EXPORT_SYMBOL_GPL(xdp_do_redirect);
2902 
2903 static int __xdp_generic_ok_fwd_dev(struct sk_buff *skb, struct net_device *fwd)
2904 {
2905 	unsigned int len;
2906 
2907 	if (unlikely(!(fwd->flags & IFF_UP)))
2908 		return -ENETDOWN;
2909 
2910 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
2911 	if (skb->len > len)
2912 		return -EMSGSIZE;
2913 
2914 	return 0;
2915 }
2916 
2917 static int xdp_do_generic_redirect_map(struct net_device *dev,
2918 				       struct sk_buff *skb,
2919 				       struct bpf_prog *xdp_prog)
2920 {
2921 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2922 	unsigned long map_owner = ri->map_owner;
2923 	struct bpf_map *map = ri->map;
2924 	struct net_device *fwd = NULL;
2925 	u32 index = ri->ifindex;
2926 	int err = 0;
2927 
2928 	ri->ifindex = 0;
2929 	ri->map = NULL;
2930 	ri->map_owner = 0;
2931 
2932 	if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2933 		err = -EFAULT;
2934 		map = NULL;
2935 		goto err;
2936 	}
2937 	fwd = __xdp_map_lookup_elem(map, index);
2938 	if (unlikely(!fwd)) {
2939 		err = -EINVAL;
2940 		goto err;
2941 	}
2942 
2943 	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
2944 		if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
2945 			goto err;
2946 		skb->dev = fwd;
2947 	} else {
2948 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
2949 		err = -EBADRQC;
2950 		goto err;
2951 	}
2952 
2953 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
2954 	return 0;
2955 err:
2956 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
2957 	return err;
2958 }
2959 
2960 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
2961 			    struct bpf_prog *xdp_prog)
2962 {
2963 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2964 	u32 index = ri->ifindex;
2965 	struct net_device *fwd;
2966 	int err = 0;
2967 
2968 	if (ri->map)
2969 		return xdp_do_generic_redirect_map(dev, skb, xdp_prog);
2970 
2971 	ri->ifindex = 0;
2972 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
2973 	if (unlikely(!fwd)) {
2974 		err = -EINVAL;
2975 		goto err;
2976 	}
2977 
2978 	if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
2979 		goto err;
2980 
2981 	skb->dev = fwd;
2982 	_trace_xdp_redirect(dev, xdp_prog, index);
2983 	return 0;
2984 err:
2985 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
2986 	return err;
2987 }
2988 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
2989 
2990 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
2991 {
2992 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2993 
2994 	if (unlikely(flags))
2995 		return XDP_ABORTED;
2996 
2997 	ri->ifindex = ifindex;
2998 	ri->flags = flags;
2999 	ri->map = NULL;
3000 	ri->map_owner = 0;
3001 
3002 	return XDP_REDIRECT;
3003 }
3004 
3005 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3006 	.func           = bpf_xdp_redirect,
3007 	.gpl_only       = false,
3008 	.ret_type       = RET_INTEGER,
3009 	.arg1_type      = ARG_ANYTHING,
3010 	.arg2_type      = ARG_ANYTHING,
3011 };
3012 
3013 BPF_CALL_4(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags,
3014 	   unsigned long, map_owner)
3015 {
3016 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3017 
3018 	if (unlikely(flags))
3019 		return XDP_ABORTED;
3020 
3021 	ri->ifindex = ifindex;
3022 	ri->flags = flags;
3023 	ri->map = map;
3024 	ri->map_owner = map_owner;
3025 
3026 	return XDP_REDIRECT;
3027 }
3028 
3029 /* Note, arg4 is hidden from users and populated by the verifier
3030  * with the right pointer.
3031  */
3032 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3033 	.func           = bpf_xdp_redirect_map,
3034 	.gpl_only       = false,
3035 	.ret_type       = RET_INTEGER,
3036 	.arg1_type      = ARG_CONST_MAP_PTR,
3037 	.arg2_type      = ARG_ANYTHING,
3038 	.arg3_type      = ARG_ANYTHING,
3039 };
3040 
3041 bool bpf_helper_changes_pkt_data(void *func)
3042 {
3043 	if (func == bpf_skb_vlan_push ||
3044 	    func == bpf_skb_vlan_pop ||
3045 	    func == bpf_skb_store_bytes ||
3046 	    func == bpf_skb_change_proto ||
3047 	    func == bpf_skb_change_head ||
3048 	    func == bpf_skb_change_tail ||
3049 	    func == bpf_skb_adjust_room ||
3050 	    func == bpf_skb_pull_data ||
3051 	    func == bpf_clone_redirect ||
3052 	    func == bpf_l3_csum_replace ||
3053 	    func == bpf_l4_csum_replace ||
3054 	    func == bpf_xdp_adjust_head ||
3055 	    func == bpf_xdp_adjust_meta ||
3056 	    func == bpf_msg_pull_data)
3057 		return true;
3058 
3059 	return false;
3060 }
3061 
3062 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3063 				  unsigned long off, unsigned long len)
3064 {
3065 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3066 
3067 	if (unlikely(!ptr))
3068 		return len;
3069 	if (ptr != dst_buff)
3070 		memcpy(dst_buff, ptr, len);
3071 
3072 	return 0;
3073 }
3074 
3075 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3076 	   u64, flags, void *, meta, u64, meta_size)
3077 {
3078 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3079 
3080 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3081 		return -EINVAL;
3082 	if (unlikely(skb_size > skb->len))
3083 		return -EFAULT;
3084 
3085 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3086 				bpf_skb_copy);
3087 }
3088 
3089 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3090 	.func		= bpf_skb_event_output,
3091 	.gpl_only	= true,
3092 	.ret_type	= RET_INTEGER,
3093 	.arg1_type	= ARG_PTR_TO_CTX,
3094 	.arg2_type	= ARG_CONST_MAP_PTR,
3095 	.arg3_type	= ARG_ANYTHING,
3096 	.arg4_type	= ARG_PTR_TO_MEM,
3097 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3098 };
3099 
3100 static unsigned short bpf_tunnel_key_af(u64 flags)
3101 {
3102 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3103 }
3104 
3105 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3106 	   u32, size, u64, flags)
3107 {
3108 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3109 	u8 compat[sizeof(struct bpf_tunnel_key)];
3110 	void *to_orig = to;
3111 	int err;
3112 
3113 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3114 		err = -EINVAL;
3115 		goto err_clear;
3116 	}
3117 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3118 		err = -EPROTO;
3119 		goto err_clear;
3120 	}
3121 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3122 		err = -EINVAL;
3123 		switch (size) {
3124 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3125 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3126 			goto set_compat;
3127 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3128 			/* Fixup deprecated structure layouts here, so we have
3129 			 * a common path later on.
3130 			 */
3131 			if (ip_tunnel_info_af(info) != AF_INET)
3132 				goto err_clear;
3133 set_compat:
3134 			to = (struct bpf_tunnel_key *)compat;
3135 			break;
3136 		default:
3137 			goto err_clear;
3138 		}
3139 	}
3140 
3141 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
3142 	to->tunnel_tos = info->key.tos;
3143 	to->tunnel_ttl = info->key.ttl;
3144 
3145 	if (flags & BPF_F_TUNINFO_IPV6) {
3146 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3147 		       sizeof(to->remote_ipv6));
3148 		to->tunnel_label = be32_to_cpu(info->key.label);
3149 	} else {
3150 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3151 	}
3152 
3153 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3154 		memcpy(to_orig, to, size);
3155 
3156 	return 0;
3157 err_clear:
3158 	memset(to_orig, 0, size);
3159 	return err;
3160 }
3161 
3162 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3163 	.func		= bpf_skb_get_tunnel_key,
3164 	.gpl_only	= false,
3165 	.ret_type	= RET_INTEGER,
3166 	.arg1_type	= ARG_PTR_TO_CTX,
3167 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3168 	.arg3_type	= ARG_CONST_SIZE,
3169 	.arg4_type	= ARG_ANYTHING,
3170 };
3171 
3172 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3173 {
3174 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3175 	int err;
3176 
3177 	if (unlikely(!info ||
3178 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3179 		err = -ENOENT;
3180 		goto err_clear;
3181 	}
3182 	if (unlikely(size < info->options_len)) {
3183 		err = -ENOMEM;
3184 		goto err_clear;
3185 	}
3186 
3187 	ip_tunnel_info_opts_get(to, info);
3188 	if (size > info->options_len)
3189 		memset(to + info->options_len, 0, size - info->options_len);
3190 
3191 	return info->options_len;
3192 err_clear:
3193 	memset(to, 0, size);
3194 	return err;
3195 }
3196 
3197 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3198 	.func		= bpf_skb_get_tunnel_opt,
3199 	.gpl_only	= false,
3200 	.ret_type	= RET_INTEGER,
3201 	.arg1_type	= ARG_PTR_TO_CTX,
3202 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3203 	.arg3_type	= ARG_CONST_SIZE,
3204 };
3205 
3206 static struct metadata_dst __percpu *md_dst;
3207 
3208 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3209 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3210 {
3211 	struct metadata_dst *md = this_cpu_ptr(md_dst);
3212 	u8 compat[sizeof(struct bpf_tunnel_key)];
3213 	struct ip_tunnel_info *info;
3214 
3215 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3216 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3217 		return -EINVAL;
3218 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3219 		switch (size) {
3220 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3221 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3222 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3223 			/* Fixup deprecated structure layouts here, so we have
3224 			 * a common path later on.
3225 			 */
3226 			memcpy(compat, from, size);
3227 			memset(compat + size, 0, sizeof(compat) - size);
3228 			from = (const struct bpf_tunnel_key *) compat;
3229 			break;
3230 		default:
3231 			return -EINVAL;
3232 		}
3233 	}
3234 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3235 		     from->tunnel_ext))
3236 		return -EINVAL;
3237 
3238 	skb_dst_drop(skb);
3239 	dst_hold((struct dst_entry *) md);
3240 	skb_dst_set(skb, (struct dst_entry *) md);
3241 
3242 	info = &md->u.tun_info;
3243 	info->mode = IP_TUNNEL_INFO_TX;
3244 
3245 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3246 	if (flags & BPF_F_DONT_FRAGMENT)
3247 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3248 	if (flags & BPF_F_ZERO_CSUM_TX)
3249 		info->key.tun_flags &= ~TUNNEL_CSUM;
3250 	if (flags & BPF_F_SEQ_NUMBER)
3251 		info->key.tun_flags |= TUNNEL_SEQ;
3252 
3253 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3254 	info->key.tos = from->tunnel_tos;
3255 	info->key.ttl = from->tunnel_ttl;
3256 
3257 	if (flags & BPF_F_TUNINFO_IPV6) {
3258 		info->mode |= IP_TUNNEL_INFO_IPV6;
3259 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3260 		       sizeof(from->remote_ipv6));
3261 		info->key.label = cpu_to_be32(from->tunnel_label) &
3262 				  IPV6_FLOWLABEL_MASK;
3263 	} else {
3264 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3265 	}
3266 
3267 	return 0;
3268 }
3269 
3270 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3271 	.func		= bpf_skb_set_tunnel_key,
3272 	.gpl_only	= false,
3273 	.ret_type	= RET_INTEGER,
3274 	.arg1_type	= ARG_PTR_TO_CTX,
3275 	.arg2_type	= ARG_PTR_TO_MEM,
3276 	.arg3_type	= ARG_CONST_SIZE,
3277 	.arg4_type	= ARG_ANYTHING,
3278 };
3279 
3280 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3281 	   const u8 *, from, u32, size)
3282 {
3283 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
3284 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
3285 
3286 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3287 		return -EINVAL;
3288 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3289 		return -ENOMEM;
3290 
3291 	ip_tunnel_info_opts_set(info, from, size);
3292 
3293 	return 0;
3294 }
3295 
3296 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3297 	.func		= bpf_skb_set_tunnel_opt,
3298 	.gpl_only	= false,
3299 	.ret_type	= RET_INTEGER,
3300 	.arg1_type	= ARG_PTR_TO_CTX,
3301 	.arg2_type	= ARG_PTR_TO_MEM,
3302 	.arg3_type	= ARG_CONST_SIZE,
3303 };
3304 
3305 static const struct bpf_func_proto *
3306 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3307 {
3308 	if (!md_dst) {
3309 		struct metadata_dst __percpu *tmp;
3310 
3311 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3312 						METADATA_IP_TUNNEL,
3313 						GFP_KERNEL);
3314 		if (!tmp)
3315 			return NULL;
3316 		if (cmpxchg(&md_dst, NULL, tmp))
3317 			metadata_dst_free_percpu(tmp);
3318 	}
3319 
3320 	switch (which) {
3321 	case BPF_FUNC_skb_set_tunnel_key:
3322 		return &bpf_skb_set_tunnel_key_proto;
3323 	case BPF_FUNC_skb_set_tunnel_opt:
3324 		return &bpf_skb_set_tunnel_opt_proto;
3325 	default:
3326 		return NULL;
3327 	}
3328 }
3329 
3330 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3331 	   u32, idx)
3332 {
3333 	struct bpf_array *array = container_of(map, struct bpf_array, map);
3334 	struct cgroup *cgrp;
3335 	struct sock *sk;
3336 
3337 	sk = skb_to_full_sk(skb);
3338 	if (!sk || !sk_fullsock(sk))
3339 		return -ENOENT;
3340 	if (unlikely(idx >= array->map.max_entries))
3341 		return -E2BIG;
3342 
3343 	cgrp = READ_ONCE(array->ptrs[idx]);
3344 	if (unlikely(!cgrp))
3345 		return -EAGAIN;
3346 
3347 	return sk_under_cgroup_hierarchy(sk, cgrp);
3348 }
3349 
3350 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3351 	.func		= bpf_skb_under_cgroup,
3352 	.gpl_only	= false,
3353 	.ret_type	= RET_INTEGER,
3354 	.arg1_type	= ARG_PTR_TO_CTX,
3355 	.arg2_type	= ARG_CONST_MAP_PTR,
3356 	.arg3_type	= ARG_ANYTHING,
3357 };
3358 
3359 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3360 				  unsigned long off, unsigned long len)
3361 {
3362 	memcpy(dst_buff, src_buff + off, len);
3363 	return 0;
3364 }
3365 
3366 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3367 	   u64, flags, void *, meta, u64, meta_size)
3368 {
3369 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3370 
3371 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3372 		return -EINVAL;
3373 	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
3374 		return -EFAULT;
3375 
3376 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
3377 				xdp_size, bpf_xdp_copy);
3378 }
3379 
3380 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
3381 	.func		= bpf_xdp_event_output,
3382 	.gpl_only	= true,
3383 	.ret_type	= RET_INTEGER,
3384 	.arg1_type	= ARG_PTR_TO_CTX,
3385 	.arg2_type	= ARG_CONST_MAP_PTR,
3386 	.arg3_type	= ARG_ANYTHING,
3387 	.arg4_type	= ARG_PTR_TO_MEM,
3388 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3389 };
3390 
3391 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
3392 {
3393 	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
3394 }
3395 
3396 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
3397 	.func           = bpf_get_socket_cookie,
3398 	.gpl_only       = false,
3399 	.ret_type       = RET_INTEGER,
3400 	.arg1_type      = ARG_PTR_TO_CTX,
3401 };
3402 
3403 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
3404 {
3405 	struct sock *sk = sk_to_full_sk(skb->sk);
3406 	kuid_t kuid;
3407 
3408 	if (!sk || !sk_fullsock(sk))
3409 		return overflowuid;
3410 	kuid = sock_net_uid(sock_net(sk), sk);
3411 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
3412 }
3413 
3414 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
3415 	.func           = bpf_get_socket_uid,
3416 	.gpl_only       = false,
3417 	.ret_type       = RET_INTEGER,
3418 	.arg1_type      = ARG_PTR_TO_CTX,
3419 };
3420 
3421 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3422 	   int, level, int, optname, char *, optval, int, optlen)
3423 {
3424 	struct sock *sk = bpf_sock->sk;
3425 	int ret = 0;
3426 	int val;
3427 
3428 	if (!sk_fullsock(sk))
3429 		return -EINVAL;
3430 
3431 	if (level == SOL_SOCKET) {
3432 		if (optlen != sizeof(int))
3433 			return -EINVAL;
3434 		val = *((int *)optval);
3435 
3436 		/* Only some socketops are supported */
3437 		switch (optname) {
3438 		case SO_RCVBUF:
3439 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
3440 			sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
3441 			break;
3442 		case SO_SNDBUF:
3443 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
3444 			sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
3445 			break;
3446 		case SO_MAX_PACING_RATE:
3447 			sk->sk_max_pacing_rate = val;
3448 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
3449 						 sk->sk_max_pacing_rate);
3450 			break;
3451 		case SO_PRIORITY:
3452 			sk->sk_priority = val;
3453 			break;
3454 		case SO_RCVLOWAT:
3455 			if (val < 0)
3456 				val = INT_MAX;
3457 			sk->sk_rcvlowat = val ? : 1;
3458 			break;
3459 		case SO_MARK:
3460 			sk->sk_mark = val;
3461 			break;
3462 		default:
3463 			ret = -EINVAL;
3464 		}
3465 #ifdef CONFIG_INET
3466 	} else if (level == SOL_IP) {
3467 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3468 			return -EINVAL;
3469 
3470 		val = *((int *)optval);
3471 		/* Only some options are supported */
3472 		switch (optname) {
3473 		case IP_TOS:
3474 			if (val < -1 || val > 0xff) {
3475 				ret = -EINVAL;
3476 			} else {
3477 				struct inet_sock *inet = inet_sk(sk);
3478 
3479 				if (val == -1)
3480 					val = 0;
3481 				inet->tos = val;
3482 			}
3483 			break;
3484 		default:
3485 			ret = -EINVAL;
3486 		}
3487 #if IS_ENABLED(CONFIG_IPV6)
3488 	} else if (level == SOL_IPV6) {
3489 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3490 			return -EINVAL;
3491 
3492 		val = *((int *)optval);
3493 		/* Only some options are supported */
3494 		switch (optname) {
3495 		case IPV6_TCLASS:
3496 			if (val < -1 || val > 0xff) {
3497 				ret = -EINVAL;
3498 			} else {
3499 				struct ipv6_pinfo *np = inet6_sk(sk);
3500 
3501 				if (val == -1)
3502 					val = 0;
3503 				np->tclass = val;
3504 			}
3505 			break;
3506 		default:
3507 			ret = -EINVAL;
3508 		}
3509 #endif
3510 	} else if (level == SOL_TCP &&
3511 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
3512 		if (optname == TCP_CONGESTION) {
3513 			char name[TCP_CA_NAME_MAX];
3514 			bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3515 
3516 			strncpy(name, optval, min_t(long, optlen,
3517 						    TCP_CA_NAME_MAX-1));
3518 			name[TCP_CA_NAME_MAX-1] = 0;
3519 			ret = tcp_set_congestion_control(sk, name, false,
3520 							 reinit);
3521 		} else {
3522 			struct tcp_sock *tp = tcp_sk(sk);
3523 
3524 			if (optlen != sizeof(int))
3525 				return -EINVAL;
3526 
3527 			val = *((int *)optval);
3528 			/* Only some options are supported */
3529 			switch (optname) {
3530 			case TCP_BPF_IW:
3531 				if (val <= 0 || tp->data_segs_out > 0)
3532 					ret = -EINVAL;
3533 				else
3534 					tp->snd_cwnd = val;
3535 				break;
3536 			case TCP_BPF_SNDCWND_CLAMP:
3537 				if (val <= 0) {
3538 					ret = -EINVAL;
3539 				} else {
3540 					tp->snd_cwnd_clamp = val;
3541 					tp->snd_ssthresh = val;
3542 				}
3543 				break;
3544 			default:
3545 				ret = -EINVAL;
3546 			}
3547 		}
3548 #endif
3549 	} else {
3550 		ret = -EINVAL;
3551 	}
3552 	return ret;
3553 }
3554 
3555 static const struct bpf_func_proto bpf_setsockopt_proto = {
3556 	.func		= bpf_setsockopt,
3557 	.gpl_only	= false,
3558 	.ret_type	= RET_INTEGER,
3559 	.arg1_type	= ARG_PTR_TO_CTX,
3560 	.arg2_type	= ARG_ANYTHING,
3561 	.arg3_type	= ARG_ANYTHING,
3562 	.arg4_type	= ARG_PTR_TO_MEM,
3563 	.arg5_type	= ARG_CONST_SIZE,
3564 };
3565 
3566 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3567 	   int, level, int, optname, char *, optval, int, optlen)
3568 {
3569 	struct sock *sk = bpf_sock->sk;
3570 
3571 	if (!sk_fullsock(sk))
3572 		goto err_clear;
3573 
3574 #ifdef CONFIG_INET
3575 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
3576 		if (optname == TCP_CONGESTION) {
3577 			struct inet_connection_sock *icsk = inet_csk(sk);
3578 
3579 			if (!icsk->icsk_ca_ops || optlen <= 1)
3580 				goto err_clear;
3581 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
3582 			optval[optlen - 1] = 0;
3583 		} else {
3584 			goto err_clear;
3585 		}
3586 	} else if (level == SOL_IP) {
3587 		struct inet_sock *inet = inet_sk(sk);
3588 
3589 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3590 			goto err_clear;
3591 
3592 		/* Only some options are supported */
3593 		switch (optname) {
3594 		case IP_TOS:
3595 			*((int *)optval) = (int)inet->tos;
3596 			break;
3597 		default:
3598 			goto err_clear;
3599 		}
3600 #if IS_ENABLED(CONFIG_IPV6)
3601 	} else if (level == SOL_IPV6) {
3602 		struct ipv6_pinfo *np = inet6_sk(sk);
3603 
3604 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3605 			goto err_clear;
3606 
3607 		/* Only some options are supported */
3608 		switch (optname) {
3609 		case IPV6_TCLASS:
3610 			*((int *)optval) = (int)np->tclass;
3611 			break;
3612 		default:
3613 			goto err_clear;
3614 		}
3615 #endif
3616 	} else {
3617 		goto err_clear;
3618 	}
3619 	return 0;
3620 #endif
3621 err_clear:
3622 	memset(optval, 0, optlen);
3623 	return -EINVAL;
3624 }
3625 
3626 static const struct bpf_func_proto bpf_getsockopt_proto = {
3627 	.func		= bpf_getsockopt,
3628 	.gpl_only	= false,
3629 	.ret_type	= RET_INTEGER,
3630 	.arg1_type	= ARG_PTR_TO_CTX,
3631 	.arg2_type	= ARG_ANYTHING,
3632 	.arg3_type	= ARG_ANYTHING,
3633 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
3634 	.arg5_type	= ARG_CONST_SIZE,
3635 };
3636 
3637 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
3638 	   int, argval)
3639 {
3640 	struct sock *sk = bpf_sock->sk;
3641 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
3642 
3643 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
3644 		return -EINVAL;
3645 
3646 	if (val)
3647 		tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
3648 
3649 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
3650 }
3651 
3652 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
3653 	.func		= bpf_sock_ops_cb_flags_set,
3654 	.gpl_only	= false,
3655 	.ret_type	= RET_INTEGER,
3656 	.arg1_type	= ARG_PTR_TO_CTX,
3657 	.arg2_type	= ARG_ANYTHING,
3658 };
3659 
3660 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
3661 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
3662 
3663 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
3664 	   int, addr_len)
3665 {
3666 #ifdef CONFIG_INET
3667 	struct sock *sk = ctx->sk;
3668 	int err;
3669 
3670 	/* Binding to port can be expensive so it's prohibited in the helper.
3671 	 * Only binding to IP is supported.
3672 	 */
3673 	err = -EINVAL;
3674 	if (addr->sa_family == AF_INET) {
3675 		if (addr_len < sizeof(struct sockaddr_in))
3676 			return err;
3677 		if (((struct sockaddr_in *)addr)->sin_port != htons(0))
3678 			return err;
3679 		return __inet_bind(sk, addr, addr_len, true, false);
3680 #if IS_ENABLED(CONFIG_IPV6)
3681 	} else if (addr->sa_family == AF_INET6) {
3682 		if (addr_len < SIN6_LEN_RFC2133)
3683 			return err;
3684 		if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
3685 			return err;
3686 		/* ipv6_bpf_stub cannot be NULL, since it's called from
3687 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
3688 		 */
3689 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
3690 #endif /* CONFIG_IPV6 */
3691 	}
3692 #endif /* CONFIG_INET */
3693 
3694 	return -EAFNOSUPPORT;
3695 }
3696 
3697 static const struct bpf_func_proto bpf_bind_proto = {
3698 	.func		= bpf_bind,
3699 	.gpl_only	= false,
3700 	.ret_type	= RET_INTEGER,
3701 	.arg1_type	= ARG_PTR_TO_CTX,
3702 	.arg2_type	= ARG_PTR_TO_MEM,
3703 	.arg3_type	= ARG_CONST_SIZE,
3704 };
3705 
3706 static const struct bpf_func_proto *
3707 bpf_base_func_proto(enum bpf_func_id func_id)
3708 {
3709 	switch (func_id) {
3710 	case BPF_FUNC_map_lookup_elem:
3711 		return &bpf_map_lookup_elem_proto;
3712 	case BPF_FUNC_map_update_elem:
3713 		return &bpf_map_update_elem_proto;
3714 	case BPF_FUNC_map_delete_elem:
3715 		return &bpf_map_delete_elem_proto;
3716 	case BPF_FUNC_get_prandom_u32:
3717 		return &bpf_get_prandom_u32_proto;
3718 	case BPF_FUNC_get_smp_processor_id:
3719 		return &bpf_get_raw_smp_processor_id_proto;
3720 	case BPF_FUNC_get_numa_node_id:
3721 		return &bpf_get_numa_node_id_proto;
3722 	case BPF_FUNC_tail_call:
3723 		return &bpf_tail_call_proto;
3724 	case BPF_FUNC_ktime_get_ns:
3725 		return &bpf_ktime_get_ns_proto;
3726 	case BPF_FUNC_trace_printk:
3727 		if (capable(CAP_SYS_ADMIN))
3728 			return bpf_get_trace_printk_proto();
3729 	default:
3730 		return NULL;
3731 	}
3732 }
3733 
3734 static const struct bpf_func_proto *
3735 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3736 {
3737 	switch (func_id) {
3738 	/* inet and inet6 sockets are created in a process
3739 	 * context so there is always a valid uid/gid
3740 	 */
3741 	case BPF_FUNC_get_current_uid_gid:
3742 		return &bpf_get_current_uid_gid_proto;
3743 	default:
3744 		return bpf_base_func_proto(func_id);
3745 	}
3746 }
3747 
3748 static const struct bpf_func_proto *
3749 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3750 {
3751 	switch (func_id) {
3752 	/* inet and inet6 sockets are created in a process
3753 	 * context so there is always a valid uid/gid
3754 	 */
3755 	case BPF_FUNC_get_current_uid_gid:
3756 		return &bpf_get_current_uid_gid_proto;
3757 	case BPF_FUNC_bind:
3758 		switch (prog->expected_attach_type) {
3759 		case BPF_CGROUP_INET4_CONNECT:
3760 		case BPF_CGROUP_INET6_CONNECT:
3761 			return &bpf_bind_proto;
3762 		default:
3763 			return NULL;
3764 		}
3765 	default:
3766 		return bpf_base_func_proto(func_id);
3767 	}
3768 }
3769 
3770 static const struct bpf_func_proto *
3771 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3772 {
3773 	switch (func_id) {
3774 	case BPF_FUNC_skb_load_bytes:
3775 		return &bpf_skb_load_bytes_proto;
3776 	case BPF_FUNC_get_socket_cookie:
3777 		return &bpf_get_socket_cookie_proto;
3778 	case BPF_FUNC_get_socket_uid:
3779 		return &bpf_get_socket_uid_proto;
3780 	default:
3781 		return bpf_base_func_proto(func_id);
3782 	}
3783 }
3784 
3785 static const struct bpf_func_proto *
3786 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3787 {
3788 	switch (func_id) {
3789 	case BPF_FUNC_skb_store_bytes:
3790 		return &bpf_skb_store_bytes_proto;
3791 	case BPF_FUNC_skb_load_bytes:
3792 		return &bpf_skb_load_bytes_proto;
3793 	case BPF_FUNC_skb_pull_data:
3794 		return &bpf_skb_pull_data_proto;
3795 	case BPF_FUNC_csum_diff:
3796 		return &bpf_csum_diff_proto;
3797 	case BPF_FUNC_csum_update:
3798 		return &bpf_csum_update_proto;
3799 	case BPF_FUNC_l3_csum_replace:
3800 		return &bpf_l3_csum_replace_proto;
3801 	case BPF_FUNC_l4_csum_replace:
3802 		return &bpf_l4_csum_replace_proto;
3803 	case BPF_FUNC_clone_redirect:
3804 		return &bpf_clone_redirect_proto;
3805 	case BPF_FUNC_get_cgroup_classid:
3806 		return &bpf_get_cgroup_classid_proto;
3807 	case BPF_FUNC_skb_vlan_push:
3808 		return &bpf_skb_vlan_push_proto;
3809 	case BPF_FUNC_skb_vlan_pop:
3810 		return &bpf_skb_vlan_pop_proto;
3811 	case BPF_FUNC_skb_change_proto:
3812 		return &bpf_skb_change_proto_proto;
3813 	case BPF_FUNC_skb_change_type:
3814 		return &bpf_skb_change_type_proto;
3815 	case BPF_FUNC_skb_adjust_room:
3816 		return &bpf_skb_adjust_room_proto;
3817 	case BPF_FUNC_skb_change_tail:
3818 		return &bpf_skb_change_tail_proto;
3819 	case BPF_FUNC_skb_get_tunnel_key:
3820 		return &bpf_skb_get_tunnel_key_proto;
3821 	case BPF_FUNC_skb_set_tunnel_key:
3822 		return bpf_get_skb_set_tunnel_proto(func_id);
3823 	case BPF_FUNC_skb_get_tunnel_opt:
3824 		return &bpf_skb_get_tunnel_opt_proto;
3825 	case BPF_FUNC_skb_set_tunnel_opt:
3826 		return bpf_get_skb_set_tunnel_proto(func_id);
3827 	case BPF_FUNC_redirect:
3828 		return &bpf_redirect_proto;
3829 	case BPF_FUNC_get_route_realm:
3830 		return &bpf_get_route_realm_proto;
3831 	case BPF_FUNC_get_hash_recalc:
3832 		return &bpf_get_hash_recalc_proto;
3833 	case BPF_FUNC_set_hash_invalid:
3834 		return &bpf_set_hash_invalid_proto;
3835 	case BPF_FUNC_set_hash:
3836 		return &bpf_set_hash_proto;
3837 	case BPF_FUNC_perf_event_output:
3838 		return &bpf_skb_event_output_proto;
3839 	case BPF_FUNC_get_smp_processor_id:
3840 		return &bpf_get_smp_processor_id_proto;
3841 	case BPF_FUNC_skb_under_cgroup:
3842 		return &bpf_skb_under_cgroup_proto;
3843 	case BPF_FUNC_get_socket_cookie:
3844 		return &bpf_get_socket_cookie_proto;
3845 	case BPF_FUNC_get_socket_uid:
3846 		return &bpf_get_socket_uid_proto;
3847 	default:
3848 		return bpf_base_func_proto(func_id);
3849 	}
3850 }
3851 
3852 static const struct bpf_func_proto *
3853 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3854 {
3855 	switch (func_id) {
3856 	case BPF_FUNC_perf_event_output:
3857 		return &bpf_xdp_event_output_proto;
3858 	case BPF_FUNC_get_smp_processor_id:
3859 		return &bpf_get_smp_processor_id_proto;
3860 	case BPF_FUNC_csum_diff:
3861 		return &bpf_csum_diff_proto;
3862 	case BPF_FUNC_xdp_adjust_head:
3863 		return &bpf_xdp_adjust_head_proto;
3864 	case BPF_FUNC_xdp_adjust_meta:
3865 		return &bpf_xdp_adjust_meta_proto;
3866 	case BPF_FUNC_redirect:
3867 		return &bpf_xdp_redirect_proto;
3868 	case BPF_FUNC_redirect_map:
3869 		return &bpf_xdp_redirect_map_proto;
3870 	default:
3871 		return bpf_base_func_proto(func_id);
3872 	}
3873 }
3874 
3875 static const struct bpf_func_proto *
3876 lwt_inout_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3877 {
3878 	switch (func_id) {
3879 	case BPF_FUNC_skb_load_bytes:
3880 		return &bpf_skb_load_bytes_proto;
3881 	case BPF_FUNC_skb_pull_data:
3882 		return &bpf_skb_pull_data_proto;
3883 	case BPF_FUNC_csum_diff:
3884 		return &bpf_csum_diff_proto;
3885 	case BPF_FUNC_get_cgroup_classid:
3886 		return &bpf_get_cgroup_classid_proto;
3887 	case BPF_FUNC_get_route_realm:
3888 		return &bpf_get_route_realm_proto;
3889 	case BPF_FUNC_get_hash_recalc:
3890 		return &bpf_get_hash_recalc_proto;
3891 	case BPF_FUNC_perf_event_output:
3892 		return &bpf_skb_event_output_proto;
3893 	case BPF_FUNC_get_smp_processor_id:
3894 		return &bpf_get_smp_processor_id_proto;
3895 	case BPF_FUNC_skb_under_cgroup:
3896 		return &bpf_skb_under_cgroup_proto;
3897 	default:
3898 		return bpf_base_func_proto(func_id);
3899 	}
3900 }
3901 
3902 static const struct bpf_func_proto *
3903 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3904 {
3905 	switch (func_id) {
3906 	case BPF_FUNC_setsockopt:
3907 		return &bpf_setsockopt_proto;
3908 	case BPF_FUNC_getsockopt:
3909 		return &bpf_getsockopt_proto;
3910 	case BPF_FUNC_sock_ops_cb_flags_set:
3911 		return &bpf_sock_ops_cb_flags_set_proto;
3912 	case BPF_FUNC_sock_map_update:
3913 		return &bpf_sock_map_update_proto;
3914 	default:
3915 		return bpf_base_func_proto(func_id);
3916 	}
3917 }
3918 
3919 static const struct bpf_func_proto *
3920 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3921 {
3922 	switch (func_id) {
3923 	case BPF_FUNC_msg_redirect_map:
3924 		return &bpf_msg_redirect_map_proto;
3925 	case BPF_FUNC_msg_apply_bytes:
3926 		return &bpf_msg_apply_bytes_proto;
3927 	case BPF_FUNC_msg_cork_bytes:
3928 		return &bpf_msg_cork_bytes_proto;
3929 	case BPF_FUNC_msg_pull_data:
3930 		return &bpf_msg_pull_data_proto;
3931 	default:
3932 		return bpf_base_func_proto(func_id);
3933 	}
3934 }
3935 
3936 static const struct bpf_func_proto *
3937 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3938 {
3939 	switch (func_id) {
3940 	case BPF_FUNC_skb_store_bytes:
3941 		return &bpf_skb_store_bytes_proto;
3942 	case BPF_FUNC_skb_load_bytes:
3943 		return &bpf_skb_load_bytes_proto;
3944 	case BPF_FUNC_skb_pull_data:
3945 		return &bpf_skb_pull_data_proto;
3946 	case BPF_FUNC_skb_change_tail:
3947 		return &bpf_skb_change_tail_proto;
3948 	case BPF_FUNC_skb_change_head:
3949 		return &bpf_skb_change_head_proto;
3950 	case BPF_FUNC_get_socket_cookie:
3951 		return &bpf_get_socket_cookie_proto;
3952 	case BPF_FUNC_get_socket_uid:
3953 		return &bpf_get_socket_uid_proto;
3954 	case BPF_FUNC_sk_redirect_map:
3955 		return &bpf_sk_redirect_map_proto;
3956 	default:
3957 		return bpf_base_func_proto(func_id);
3958 	}
3959 }
3960 
3961 static const struct bpf_func_proto *
3962 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3963 {
3964 	switch (func_id) {
3965 	case BPF_FUNC_skb_get_tunnel_key:
3966 		return &bpf_skb_get_tunnel_key_proto;
3967 	case BPF_FUNC_skb_set_tunnel_key:
3968 		return bpf_get_skb_set_tunnel_proto(func_id);
3969 	case BPF_FUNC_skb_get_tunnel_opt:
3970 		return &bpf_skb_get_tunnel_opt_proto;
3971 	case BPF_FUNC_skb_set_tunnel_opt:
3972 		return bpf_get_skb_set_tunnel_proto(func_id);
3973 	case BPF_FUNC_redirect:
3974 		return &bpf_redirect_proto;
3975 	case BPF_FUNC_clone_redirect:
3976 		return &bpf_clone_redirect_proto;
3977 	case BPF_FUNC_skb_change_tail:
3978 		return &bpf_skb_change_tail_proto;
3979 	case BPF_FUNC_skb_change_head:
3980 		return &bpf_skb_change_head_proto;
3981 	case BPF_FUNC_skb_store_bytes:
3982 		return &bpf_skb_store_bytes_proto;
3983 	case BPF_FUNC_csum_update:
3984 		return &bpf_csum_update_proto;
3985 	case BPF_FUNC_l3_csum_replace:
3986 		return &bpf_l3_csum_replace_proto;
3987 	case BPF_FUNC_l4_csum_replace:
3988 		return &bpf_l4_csum_replace_proto;
3989 	case BPF_FUNC_set_hash_invalid:
3990 		return &bpf_set_hash_invalid_proto;
3991 	default:
3992 		return lwt_inout_func_proto(func_id, prog);
3993 	}
3994 }
3995 
3996 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
3997 				    const struct bpf_prog *prog,
3998 				    struct bpf_insn_access_aux *info)
3999 {
4000 	const int size_default = sizeof(__u32);
4001 
4002 	if (off < 0 || off >= sizeof(struct __sk_buff))
4003 		return false;
4004 
4005 	/* The verifier guarantees that size > 0. */
4006 	if (off % size != 0)
4007 		return false;
4008 
4009 	switch (off) {
4010 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4011 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
4012 			return false;
4013 		break;
4014 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
4015 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
4016 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
4017 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
4018 	case bpf_ctx_range(struct __sk_buff, data):
4019 	case bpf_ctx_range(struct __sk_buff, data_meta):
4020 	case bpf_ctx_range(struct __sk_buff, data_end):
4021 		if (size != size_default)
4022 			return false;
4023 		break;
4024 	default:
4025 		/* Only narrow read access allowed for now. */
4026 		if (type == BPF_WRITE) {
4027 			if (size != size_default)
4028 				return false;
4029 		} else {
4030 			bpf_ctx_record_field_size(info, size_default);
4031 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
4032 				return false;
4033 		}
4034 	}
4035 
4036 	return true;
4037 }
4038 
4039 static bool sk_filter_is_valid_access(int off, int size,
4040 				      enum bpf_access_type type,
4041 				      const struct bpf_prog *prog,
4042 				      struct bpf_insn_access_aux *info)
4043 {
4044 	switch (off) {
4045 	case bpf_ctx_range(struct __sk_buff, tc_classid):
4046 	case bpf_ctx_range(struct __sk_buff, data):
4047 	case bpf_ctx_range(struct __sk_buff, data_meta):
4048 	case bpf_ctx_range(struct __sk_buff, data_end):
4049 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
4050 		return false;
4051 	}
4052 
4053 	if (type == BPF_WRITE) {
4054 		switch (off) {
4055 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4056 			break;
4057 		default:
4058 			return false;
4059 		}
4060 	}
4061 
4062 	return bpf_skb_is_valid_access(off, size, type, prog, info);
4063 }
4064 
4065 static bool lwt_is_valid_access(int off, int size,
4066 				enum bpf_access_type type,
4067 				const struct bpf_prog *prog,
4068 				struct bpf_insn_access_aux *info)
4069 {
4070 	switch (off) {
4071 	case bpf_ctx_range(struct __sk_buff, tc_classid):
4072 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
4073 	case bpf_ctx_range(struct __sk_buff, data_meta):
4074 		return false;
4075 	}
4076 
4077 	if (type == BPF_WRITE) {
4078 		switch (off) {
4079 		case bpf_ctx_range(struct __sk_buff, mark):
4080 		case bpf_ctx_range(struct __sk_buff, priority):
4081 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4082 			break;
4083 		default:
4084 			return false;
4085 		}
4086 	}
4087 
4088 	switch (off) {
4089 	case bpf_ctx_range(struct __sk_buff, data):
4090 		info->reg_type = PTR_TO_PACKET;
4091 		break;
4092 	case bpf_ctx_range(struct __sk_buff, data_end):
4093 		info->reg_type = PTR_TO_PACKET_END;
4094 		break;
4095 	}
4096 
4097 	return bpf_skb_is_valid_access(off, size, type, prog, info);
4098 }
4099 
4100 
4101 /* Attach type specific accesses */
4102 static bool __sock_filter_check_attach_type(int off,
4103 					    enum bpf_access_type access_type,
4104 					    enum bpf_attach_type attach_type)
4105 {
4106 	switch (off) {
4107 	case offsetof(struct bpf_sock, bound_dev_if):
4108 	case offsetof(struct bpf_sock, mark):
4109 	case offsetof(struct bpf_sock, priority):
4110 		switch (attach_type) {
4111 		case BPF_CGROUP_INET_SOCK_CREATE:
4112 			goto full_access;
4113 		default:
4114 			return false;
4115 		}
4116 	case bpf_ctx_range(struct bpf_sock, src_ip4):
4117 		switch (attach_type) {
4118 		case BPF_CGROUP_INET4_POST_BIND:
4119 			goto read_only;
4120 		default:
4121 			return false;
4122 		}
4123 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
4124 		switch (attach_type) {
4125 		case BPF_CGROUP_INET6_POST_BIND:
4126 			goto read_only;
4127 		default:
4128 			return false;
4129 		}
4130 	case bpf_ctx_range(struct bpf_sock, src_port):
4131 		switch (attach_type) {
4132 		case BPF_CGROUP_INET4_POST_BIND:
4133 		case BPF_CGROUP_INET6_POST_BIND:
4134 			goto read_only;
4135 		default:
4136 			return false;
4137 		}
4138 	}
4139 read_only:
4140 	return access_type == BPF_READ;
4141 full_access:
4142 	return true;
4143 }
4144 
4145 static bool __sock_filter_check_size(int off, int size,
4146 				     struct bpf_insn_access_aux *info)
4147 {
4148 	const int size_default = sizeof(__u32);
4149 
4150 	switch (off) {
4151 	case bpf_ctx_range(struct bpf_sock, src_ip4):
4152 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
4153 		bpf_ctx_record_field_size(info, size_default);
4154 		return bpf_ctx_narrow_access_ok(off, size, size_default);
4155 	}
4156 
4157 	return size == size_default;
4158 }
4159 
4160 static bool sock_filter_is_valid_access(int off, int size,
4161 					enum bpf_access_type type,
4162 					const struct bpf_prog *prog,
4163 					struct bpf_insn_access_aux *info)
4164 {
4165 	if (off < 0 || off >= sizeof(struct bpf_sock))
4166 		return false;
4167 	if (off % size != 0)
4168 		return false;
4169 	if (!__sock_filter_check_attach_type(off, type,
4170 					     prog->expected_attach_type))
4171 		return false;
4172 	if (!__sock_filter_check_size(off, size, info))
4173 		return false;
4174 	return true;
4175 }
4176 
4177 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
4178 				const struct bpf_prog *prog, int drop_verdict)
4179 {
4180 	struct bpf_insn *insn = insn_buf;
4181 
4182 	if (!direct_write)
4183 		return 0;
4184 
4185 	/* if (!skb->cloned)
4186 	 *       goto start;
4187 	 *
4188 	 * (Fast-path, otherwise approximation that we might be
4189 	 *  a clone, do the rest in helper.)
4190 	 */
4191 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
4192 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
4193 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
4194 
4195 	/* ret = bpf_skb_pull_data(skb, 0); */
4196 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
4197 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
4198 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
4199 			       BPF_FUNC_skb_pull_data);
4200 	/* if (!ret)
4201 	 *      goto restore;
4202 	 * return TC_ACT_SHOT;
4203 	 */
4204 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
4205 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
4206 	*insn++ = BPF_EXIT_INSN();
4207 
4208 	/* restore: */
4209 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
4210 	/* start: */
4211 	*insn++ = prog->insnsi[0];
4212 
4213 	return insn - insn_buf;
4214 }
4215 
4216 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
4217 			       const struct bpf_prog *prog)
4218 {
4219 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
4220 }
4221 
4222 static bool tc_cls_act_is_valid_access(int off, int size,
4223 				       enum bpf_access_type type,
4224 				       const struct bpf_prog *prog,
4225 				       struct bpf_insn_access_aux *info)
4226 {
4227 	if (type == BPF_WRITE) {
4228 		switch (off) {
4229 		case bpf_ctx_range(struct __sk_buff, mark):
4230 		case bpf_ctx_range(struct __sk_buff, tc_index):
4231 		case bpf_ctx_range(struct __sk_buff, priority):
4232 		case bpf_ctx_range(struct __sk_buff, tc_classid):
4233 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4234 			break;
4235 		default:
4236 			return false;
4237 		}
4238 	}
4239 
4240 	switch (off) {
4241 	case bpf_ctx_range(struct __sk_buff, data):
4242 		info->reg_type = PTR_TO_PACKET;
4243 		break;
4244 	case bpf_ctx_range(struct __sk_buff, data_meta):
4245 		info->reg_type = PTR_TO_PACKET_META;
4246 		break;
4247 	case bpf_ctx_range(struct __sk_buff, data_end):
4248 		info->reg_type = PTR_TO_PACKET_END;
4249 		break;
4250 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
4251 		return false;
4252 	}
4253 
4254 	return bpf_skb_is_valid_access(off, size, type, prog, info);
4255 }
4256 
4257 static bool __is_valid_xdp_access(int off, int size)
4258 {
4259 	if (off < 0 || off >= sizeof(struct xdp_md))
4260 		return false;
4261 	if (off % size != 0)
4262 		return false;
4263 	if (size != sizeof(__u32))
4264 		return false;
4265 
4266 	return true;
4267 }
4268 
4269 static bool xdp_is_valid_access(int off, int size,
4270 				enum bpf_access_type type,
4271 				const struct bpf_prog *prog,
4272 				struct bpf_insn_access_aux *info)
4273 {
4274 	if (type == BPF_WRITE)
4275 		return false;
4276 
4277 	switch (off) {
4278 	case offsetof(struct xdp_md, data):
4279 		info->reg_type = PTR_TO_PACKET;
4280 		break;
4281 	case offsetof(struct xdp_md, data_meta):
4282 		info->reg_type = PTR_TO_PACKET_META;
4283 		break;
4284 	case offsetof(struct xdp_md, data_end):
4285 		info->reg_type = PTR_TO_PACKET_END;
4286 		break;
4287 	}
4288 
4289 	return __is_valid_xdp_access(off, size);
4290 }
4291 
4292 void bpf_warn_invalid_xdp_action(u32 act)
4293 {
4294 	const u32 act_max = XDP_REDIRECT;
4295 
4296 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
4297 		  act > act_max ? "Illegal" : "Driver unsupported",
4298 		  act);
4299 }
4300 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
4301 
4302 static bool sock_addr_is_valid_access(int off, int size,
4303 				      enum bpf_access_type type,
4304 				      const struct bpf_prog *prog,
4305 				      struct bpf_insn_access_aux *info)
4306 {
4307 	const int size_default = sizeof(__u32);
4308 
4309 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
4310 		return false;
4311 	if (off % size != 0)
4312 		return false;
4313 
4314 	/* Disallow access to IPv6 fields from IPv4 contex and vise
4315 	 * versa.
4316 	 */
4317 	switch (off) {
4318 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
4319 		switch (prog->expected_attach_type) {
4320 		case BPF_CGROUP_INET4_BIND:
4321 		case BPF_CGROUP_INET4_CONNECT:
4322 			break;
4323 		default:
4324 			return false;
4325 		}
4326 		break;
4327 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
4328 		switch (prog->expected_attach_type) {
4329 		case BPF_CGROUP_INET6_BIND:
4330 		case BPF_CGROUP_INET6_CONNECT:
4331 			break;
4332 		default:
4333 			return false;
4334 		}
4335 		break;
4336 	}
4337 
4338 	switch (off) {
4339 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
4340 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
4341 		/* Only narrow read access allowed for now. */
4342 		if (type == BPF_READ) {
4343 			bpf_ctx_record_field_size(info, size_default);
4344 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
4345 				return false;
4346 		} else {
4347 			if (size != size_default)
4348 				return false;
4349 		}
4350 		break;
4351 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
4352 		if (size != size_default)
4353 			return false;
4354 		break;
4355 	default:
4356 		if (type == BPF_READ) {
4357 			if (size != size_default)
4358 				return false;
4359 		} else {
4360 			return false;
4361 		}
4362 	}
4363 
4364 	return true;
4365 }
4366 
4367 static bool sock_ops_is_valid_access(int off, int size,
4368 				     enum bpf_access_type type,
4369 				     const struct bpf_prog *prog,
4370 				     struct bpf_insn_access_aux *info)
4371 {
4372 	const int size_default = sizeof(__u32);
4373 
4374 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
4375 		return false;
4376 
4377 	/* The verifier guarantees that size > 0. */
4378 	if (off % size != 0)
4379 		return false;
4380 
4381 	if (type == BPF_WRITE) {
4382 		switch (off) {
4383 		case offsetof(struct bpf_sock_ops, reply):
4384 		case offsetof(struct bpf_sock_ops, sk_txhash):
4385 			if (size != size_default)
4386 				return false;
4387 			break;
4388 		default:
4389 			return false;
4390 		}
4391 	} else {
4392 		switch (off) {
4393 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
4394 					bytes_acked):
4395 			if (size != sizeof(__u64))
4396 				return false;
4397 			break;
4398 		default:
4399 			if (size != size_default)
4400 				return false;
4401 			break;
4402 		}
4403 	}
4404 
4405 	return true;
4406 }
4407 
4408 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
4409 			   const struct bpf_prog *prog)
4410 {
4411 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
4412 }
4413 
4414 static bool sk_skb_is_valid_access(int off, int size,
4415 				   enum bpf_access_type type,
4416 				   const struct bpf_prog *prog,
4417 				   struct bpf_insn_access_aux *info)
4418 {
4419 	switch (off) {
4420 	case bpf_ctx_range(struct __sk_buff, tc_classid):
4421 	case bpf_ctx_range(struct __sk_buff, data_meta):
4422 		return false;
4423 	}
4424 
4425 	if (type == BPF_WRITE) {
4426 		switch (off) {
4427 		case bpf_ctx_range(struct __sk_buff, tc_index):
4428 		case bpf_ctx_range(struct __sk_buff, priority):
4429 			break;
4430 		default:
4431 			return false;
4432 		}
4433 	}
4434 
4435 	switch (off) {
4436 	case bpf_ctx_range(struct __sk_buff, mark):
4437 		return false;
4438 	case bpf_ctx_range(struct __sk_buff, data):
4439 		info->reg_type = PTR_TO_PACKET;
4440 		break;
4441 	case bpf_ctx_range(struct __sk_buff, data_end):
4442 		info->reg_type = PTR_TO_PACKET_END;
4443 		break;
4444 	}
4445 
4446 	return bpf_skb_is_valid_access(off, size, type, prog, info);
4447 }
4448 
4449 static bool sk_msg_is_valid_access(int off, int size,
4450 				   enum bpf_access_type type,
4451 				   const struct bpf_prog *prog,
4452 				   struct bpf_insn_access_aux *info)
4453 {
4454 	if (type == BPF_WRITE)
4455 		return false;
4456 
4457 	switch (off) {
4458 	case offsetof(struct sk_msg_md, data):
4459 		info->reg_type = PTR_TO_PACKET;
4460 		break;
4461 	case offsetof(struct sk_msg_md, data_end):
4462 		info->reg_type = PTR_TO_PACKET_END;
4463 		break;
4464 	}
4465 
4466 	if (off < 0 || off >= sizeof(struct sk_msg_md))
4467 		return false;
4468 	if (off % size != 0)
4469 		return false;
4470 	if (size != sizeof(__u64))
4471 		return false;
4472 
4473 	return true;
4474 }
4475 
4476 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
4477 				  const struct bpf_insn *si,
4478 				  struct bpf_insn *insn_buf,
4479 				  struct bpf_prog *prog, u32 *target_size)
4480 {
4481 	struct bpf_insn *insn = insn_buf;
4482 	int off;
4483 
4484 	switch (si->off) {
4485 	case offsetof(struct __sk_buff, len):
4486 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4487 				      bpf_target_off(struct sk_buff, len, 4,
4488 						     target_size));
4489 		break;
4490 
4491 	case offsetof(struct __sk_buff, protocol):
4492 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4493 				      bpf_target_off(struct sk_buff, protocol, 2,
4494 						     target_size));
4495 		break;
4496 
4497 	case offsetof(struct __sk_buff, vlan_proto):
4498 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4499 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
4500 						     target_size));
4501 		break;
4502 
4503 	case offsetof(struct __sk_buff, priority):
4504 		if (type == BPF_WRITE)
4505 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4506 					      bpf_target_off(struct sk_buff, priority, 4,
4507 							     target_size));
4508 		else
4509 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4510 					      bpf_target_off(struct sk_buff, priority, 4,
4511 							     target_size));
4512 		break;
4513 
4514 	case offsetof(struct __sk_buff, ingress_ifindex):
4515 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4516 				      bpf_target_off(struct sk_buff, skb_iif, 4,
4517 						     target_size));
4518 		break;
4519 
4520 	case offsetof(struct __sk_buff, ifindex):
4521 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
4522 				      si->dst_reg, si->src_reg,
4523 				      offsetof(struct sk_buff, dev));
4524 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
4525 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4526 				      bpf_target_off(struct net_device, ifindex, 4,
4527 						     target_size));
4528 		break;
4529 
4530 	case offsetof(struct __sk_buff, hash):
4531 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4532 				      bpf_target_off(struct sk_buff, hash, 4,
4533 						     target_size));
4534 		break;
4535 
4536 	case offsetof(struct __sk_buff, mark):
4537 		if (type == BPF_WRITE)
4538 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4539 					      bpf_target_off(struct sk_buff, mark, 4,
4540 							     target_size));
4541 		else
4542 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4543 					      bpf_target_off(struct sk_buff, mark, 4,
4544 							     target_size));
4545 		break;
4546 
4547 	case offsetof(struct __sk_buff, pkt_type):
4548 		*target_size = 1;
4549 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
4550 				      PKT_TYPE_OFFSET());
4551 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
4552 #ifdef __BIG_ENDIAN_BITFIELD
4553 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
4554 #endif
4555 		break;
4556 
4557 	case offsetof(struct __sk_buff, queue_mapping):
4558 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4559 				      bpf_target_off(struct sk_buff, queue_mapping, 2,
4560 						     target_size));
4561 		break;
4562 
4563 	case offsetof(struct __sk_buff, vlan_present):
4564 	case offsetof(struct __sk_buff, vlan_tci):
4565 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
4566 
4567 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4568 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
4569 						     target_size));
4570 		if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
4571 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
4572 						~VLAN_TAG_PRESENT);
4573 		} else {
4574 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
4575 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
4576 		}
4577 		break;
4578 
4579 	case offsetof(struct __sk_buff, cb[0]) ...
4580 	     offsetofend(struct __sk_buff, cb[4]) - 1:
4581 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
4582 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
4583 			      offsetof(struct qdisc_skb_cb, data)) %
4584 			     sizeof(__u64));
4585 
4586 		prog->cb_access = 1;
4587 		off  = si->off;
4588 		off -= offsetof(struct __sk_buff, cb[0]);
4589 		off += offsetof(struct sk_buff, cb);
4590 		off += offsetof(struct qdisc_skb_cb, data);
4591 		if (type == BPF_WRITE)
4592 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
4593 					      si->src_reg, off);
4594 		else
4595 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
4596 					      si->src_reg, off);
4597 		break;
4598 
4599 	case offsetof(struct __sk_buff, tc_classid):
4600 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
4601 
4602 		off  = si->off;
4603 		off -= offsetof(struct __sk_buff, tc_classid);
4604 		off += offsetof(struct sk_buff, cb);
4605 		off += offsetof(struct qdisc_skb_cb, tc_classid);
4606 		*target_size = 2;
4607 		if (type == BPF_WRITE)
4608 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
4609 					      si->src_reg, off);
4610 		else
4611 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
4612 					      si->src_reg, off);
4613 		break;
4614 
4615 	case offsetof(struct __sk_buff, data):
4616 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
4617 				      si->dst_reg, si->src_reg,
4618 				      offsetof(struct sk_buff, data));
4619 		break;
4620 
4621 	case offsetof(struct __sk_buff, data_meta):
4622 		off  = si->off;
4623 		off -= offsetof(struct __sk_buff, data_meta);
4624 		off += offsetof(struct sk_buff, cb);
4625 		off += offsetof(struct bpf_skb_data_end, data_meta);
4626 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
4627 				      si->src_reg, off);
4628 		break;
4629 
4630 	case offsetof(struct __sk_buff, data_end):
4631 		off  = si->off;
4632 		off -= offsetof(struct __sk_buff, data_end);
4633 		off += offsetof(struct sk_buff, cb);
4634 		off += offsetof(struct bpf_skb_data_end, data_end);
4635 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
4636 				      si->src_reg, off);
4637 		break;
4638 
4639 	case offsetof(struct __sk_buff, tc_index):
4640 #ifdef CONFIG_NET_SCHED
4641 		if (type == BPF_WRITE)
4642 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
4643 					      bpf_target_off(struct sk_buff, tc_index, 2,
4644 							     target_size));
4645 		else
4646 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4647 					      bpf_target_off(struct sk_buff, tc_index, 2,
4648 							     target_size));
4649 #else
4650 		*target_size = 2;
4651 		if (type == BPF_WRITE)
4652 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
4653 		else
4654 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
4655 #endif
4656 		break;
4657 
4658 	case offsetof(struct __sk_buff, napi_id):
4659 #if defined(CONFIG_NET_RX_BUSY_POLL)
4660 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4661 				      bpf_target_off(struct sk_buff, napi_id, 4,
4662 						     target_size));
4663 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
4664 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
4665 #else
4666 		*target_size = 4;
4667 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
4668 #endif
4669 		break;
4670 	case offsetof(struct __sk_buff, family):
4671 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
4672 
4673 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4674 				      si->dst_reg, si->src_reg,
4675 				      offsetof(struct sk_buff, sk));
4676 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4677 				      bpf_target_off(struct sock_common,
4678 						     skc_family,
4679 						     2, target_size));
4680 		break;
4681 	case offsetof(struct __sk_buff, remote_ip4):
4682 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
4683 
4684 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4685 				      si->dst_reg, si->src_reg,
4686 				      offsetof(struct sk_buff, sk));
4687 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4688 				      bpf_target_off(struct sock_common,
4689 						     skc_daddr,
4690 						     4, target_size));
4691 		break;
4692 	case offsetof(struct __sk_buff, local_ip4):
4693 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4694 					  skc_rcv_saddr) != 4);
4695 
4696 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4697 				      si->dst_reg, si->src_reg,
4698 				      offsetof(struct sk_buff, sk));
4699 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4700 				      bpf_target_off(struct sock_common,
4701 						     skc_rcv_saddr,
4702 						     4, target_size));
4703 		break;
4704 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
4705 	     offsetof(struct __sk_buff, remote_ip6[3]):
4706 #if IS_ENABLED(CONFIG_IPV6)
4707 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4708 					  skc_v6_daddr.s6_addr32[0]) != 4);
4709 
4710 		off = si->off;
4711 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
4712 
4713 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4714 				      si->dst_reg, si->src_reg,
4715 				      offsetof(struct sk_buff, sk));
4716 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4717 				      offsetof(struct sock_common,
4718 					       skc_v6_daddr.s6_addr32[0]) +
4719 				      off);
4720 #else
4721 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
4722 #endif
4723 		break;
4724 	case offsetof(struct __sk_buff, local_ip6[0]) ...
4725 	     offsetof(struct __sk_buff, local_ip6[3]):
4726 #if IS_ENABLED(CONFIG_IPV6)
4727 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4728 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
4729 
4730 		off = si->off;
4731 		off -= offsetof(struct __sk_buff, local_ip6[0]);
4732 
4733 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4734 				      si->dst_reg, si->src_reg,
4735 				      offsetof(struct sk_buff, sk));
4736 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4737 				      offsetof(struct sock_common,
4738 					       skc_v6_rcv_saddr.s6_addr32[0]) +
4739 				      off);
4740 #else
4741 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
4742 #endif
4743 		break;
4744 
4745 	case offsetof(struct __sk_buff, remote_port):
4746 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
4747 
4748 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4749 				      si->dst_reg, si->src_reg,
4750 				      offsetof(struct sk_buff, sk));
4751 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4752 				      bpf_target_off(struct sock_common,
4753 						     skc_dport,
4754 						     2, target_size));
4755 #ifndef __BIG_ENDIAN_BITFIELD
4756 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
4757 #endif
4758 		break;
4759 
4760 	case offsetof(struct __sk_buff, local_port):
4761 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
4762 
4763 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4764 				      si->dst_reg, si->src_reg,
4765 				      offsetof(struct sk_buff, sk));
4766 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4767 				      bpf_target_off(struct sock_common,
4768 						     skc_num, 2, target_size));
4769 		break;
4770 	}
4771 
4772 	return insn - insn_buf;
4773 }
4774 
4775 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
4776 					  const struct bpf_insn *si,
4777 					  struct bpf_insn *insn_buf,
4778 					  struct bpf_prog *prog, u32 *target_size)
4779 {
4780 	struct bpf_insn *insn = insn_buf;
4781 	int off;
4782 
4783 	switch (si->off) {
4784 	case offsetof(struct bpf_sock, bound_dev_if):
4785 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
4786 
4787 		if (type == BPF_WRITE)
4788 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4789 					offsetof(struct sock, sk_bound_dev_if));
4790 		else
4791 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4792 				      offsetof(struct sock, sk_bound_dev_if));
4793 		break;
4794 
4795 	case offsetof(struct bpf_sock, mark):
4796 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
4797 
4798 		if (type == BPF_WRITE)
4799 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4800 					offsetof(struct sock, sk_mark));
4801 		else
4802 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4803 				      offsetof(struct sock, sk_mark));
4804 		break;
4805 
4806 	case offsetof(struct bpf_sock, priority):
4807 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
4808 
4809 		if (type == BPF_WRITE)
4810 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4811 					offsetof(struct sock, sk_priority));
4812 		else
4813 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4814 				      offsetof(struct sock, sk_priority));
4815 		break;
4816 
4817 	case offsetof(struct bpf_sock, family):
4818 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
4819 
4820 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4821 				      offsetof(struct sock, sk_family));
4822 		break;
4823 
4824 	case offsetof(struct bpf_sock, type):
4825 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4826 				      offsetof(struct sock, __sk_flags_offset));
4827 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
4828 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
4829 		break;
4830 
4831 	case offsetof(struct bpf_sock, protocol):
4832 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4833 				      offsetof(struct sock, __sk_flags_offset));
4834 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
4835 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
4836 		break;
4837 
4838 	case offsetof(struct bpf_sock, src_ip4):
4839 		*insn++ = BPF_LDX_MEM(
4840 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
4841 			bpf_target_off(struct sock_common, skc_rcv_saddr,
4842 				       FIELD_SIZEOF(struct sock_common,
4843 						    skc_rcv_saddr),
4844 				       target_size));
4845 		break;
4846 
4847 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
4848 #if IS_ENABLED(CONFIG_IPV6)
4849 		off = si->off;
4850 		off -= offsetof(struct bpf_sock, src_ip6[0]);
4851 		*insn++ = BPF_LDX_MEM(
4852 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
4853 			bpf_target_off(
4854 				struct sock_common,
4855 				skc_v6_rcv_saddr.s6_addr32[0],
4856 				FIELD_SIZEOF(struct sock_common,
4857 					     skc_v6_rcv_saddr.s6_addr32[0]),
4858 				target_size) + off);
4859 #else
4860 		(void)off;
4861 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
4862 #endif
4863 		break;
4864 
4865 	case offsetof(struct bpf_sock, src_port):
4866 		*insn++ = BPF_LDX_MEM(
4867 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
4868 			si->dst_reg, si->src_reg,
4869 			bpf_target_off(struct sock_common, skc_num,
4870 				       FIELD_SIZEOF(struct sock_common,
4871 						    skc_num),
4872 				       target_size));
4873 		break;
4874 	}
4875 
4876 	return insn - insn_buf;
4877 }
4878 
4879 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
4880 					 const struct bpf_insn *si,
4881 					 struct bpf_insn *insn_buf,
4882 					 struct bpf_prog *prog, u32 *target_size)
4883 {
4884 	struct bpf_insn *insn = insn_buf;
4885 
4886 	switch (si->off) {
4887 	case offsetof(struct __sk_buff, ifindex):
4888 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
4889 				      si->dst_reg, si->src_reg,
4890 				      offsetof(struct sk_buff, dev));
4891 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4892 				      bpf_target_off(struct net_device, ifindex, 4,
4893 						     target_size));
4894 		break;
4895 	default:
4896 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
4897 					      target_size);
4898 	}
4899 
4900 	return insn - insn_buf;
4901 }
4902 
4903 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
4904 				  const struct bpf_insn *si,
4905 				  struct bpf_insn *insn_buf,
4906 				  struct bpf_prog *prog, u32 *target_size)
4907 {
4908 	struct bpf_insn *insn = insn_buf;
4909 
4910 	switch (si->off) {
4911 	case offsetof(struct xdp_md, data):
4912 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
4913 				      si->dst_reg, si->src_reg,
4914 				      offsetof(struct xdp_buff, data));
4915 		break;
4916 	case offsetof(struct xdp_md, data_meta):
4917 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
4918 				      si->dst_reg, si->src_reg,
4919 				      offsetof(struct xdp_buff, data_meta));
4920 		break;
4921 	case offsetof(struct xdp_md, data_end):
4922 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
4923 				      si->dst_reg, si->src_reg,
4924 				      offsetof(struct xdp_buff, data_end));
4925 		break;
4926 	case offsetof(struct xdp_md, ingress_ifindex):
4927 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
4928 				      si->dst_reg, si->src_reg,
4929 				      offsetof(struct xdp_buff, rxq));
4930 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
4931 				      si->dst_reg, si->dst_reg,
4932 				      offsetof(struct xdp_rxq_info, dev));
4933 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4934 				      offsetof(struct net_device, ifindex));
4935 		break;
4936 	case offsetof(struct xdp_md, rx_queue_index):
4937 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
4938 				      si->dst_reg, si->src_reg,
4939 				      offsetof(struct xdp_buff, rxq));
4940 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4941 				      offsetof(struct xdp_rxq_info,
4942 					       queue_index));
4943 		break;
4944 	}
4945 
4946 	return insn - insn_buf;
4947 }
4948 
4949 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
4950  * context Structure, F is Field in context structure that contains a pointer
4951  * to Nested Structure of type NS that has the field NF.
4952  *
4953  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
4954  * sure that SIZE is not greater than actual size of S.F.NF.
4955  *
4956  * If offset OFF is provided, the load happens from that offset relative to
4957  * offset of NF.
4958  */
4959 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
4960 	do {								       \
4961 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
4962 				      si->src_reg, offsetof(S, F));	       \
4963 		*insn++ = BPF_LDX_MEM(					       \
4964 			SIZE, si->dst_reg, si->dst_reg,			       \
4965 			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
4966 				       target_size)			       \
4967 				+ OFF);					       \
4968 	} while (0)
4969 
4970 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
4971 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
4972 					     BPF_FIELD_SIZEOF(NS, NF), 0)
4973 
4974 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
4975  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
4976  *
4977  * It doesn't support SIZE argument though since narrow stores are not
4978  * supported for now.
4979  *
4980  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
4981  * "register" since two registers available in convert_ctx_access are not
4982  * enough: we can't override neither SRC, since it contains value to store, nor
4983  * DST since it contains pointer to context that may be used by later
4984  * instructions. But we need a temporary place to save pointer to nested
4985  * structure whose field we want to store to.
4986  */
4987 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF)		       \
4988 	do {								       \
4989 		int tmp_reg = BPF_REG_9;				       \
4990 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
4991 			--tmp_reg;					       \
4992 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
4993 			--tmp_reg;					       \
4994 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
4995 				      offsetof(S, TF));			       \
4996 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
4997 				      si->dst_reg, offsetof(S, F));	       \
4998 		*insn++ = BPF_STX_MEM(					       \
4999 			BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg,	       \
5000 			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
5001 				       target_size)			       \
5002 				+ OFF);					       \
5003 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
5004 				      offsetof(S, TF));			       \
5005 	} while (0)
5006 
5007 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
5008 						      TF)		       \
5009 	do {								       \
5010 		if (type == BPF_WRITE) {				       \
5011 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF,    \
5012 							 TF);		       \
5013 		} else {						       \
5014 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
5015 				S, NS, F, NF, SIZE, OFF);  \
5016 		}							       \
5017 	} while (0)
5018 
5019 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
5020 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
5021 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
5022 
5023 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
5024 					const struct bpf_insn *si,
5025 					struct bpf_insn *insn_buf,
5026 					struct bpf_prog *prog, u32 *target_size)
5027 {
5028 	struct bpf_insn *insn = insn_buf;
5029 	int off;
5030 
5031 	switch (si->off) {
5032 	case offsetof(struct bpf_sock_addr, user_family):
5033 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
5034 					    struct sockaddr, uaddr, sa_family);
5035 		break;
5036 
5037 	case offsetof(struct bpf_sock_addr, user_ip4):
5038 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
5039 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
5040 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
5041 		break;
5042 
5043 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5044 		off = si->off;
5045 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
5046 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
5047 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
5048 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
5049 			tmp_reg);
5050 		break;
5051 
5052 	case offsetof(struct bpf_sock_addr, user_port):
5053 		/* To get port we need to know sa_family first and then treat
5054 		 * sockaddr as either sockaddr_in or sockaddr_in6.
5055 		 * Though we can simplify since port field has same offset and
5056 		 * size in both structures.
5057 		 * Here we check this invariant and use just one of the
5058 		 * structures if it's true.
5059 		 */
5060 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
5061 			     offsetof(struct sockaddr_in6, sin6_port));
5062 		BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
5063 			     FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
5064 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
5065 						     struct sockaddr_in6, uaddr,
5066 						     sin6_port, tmp_reg);
5067 		break;
5068 
5069 	case offsetof(struct bpf_sock_addr, family):
5070 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
5071 					    struct sock, sk, sk_family);
5072 		break;
5073 
5074 	case offsetof(struct bpf_sock_addr, type):
5075 		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
5076 			struct bpf_sock_addr_kern, struct sock, sk,
5077 			__sk_flags_offset, BPF_W, 0);
5078 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
5079 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
5080 		break;
5081 
5082 	case offsetof(struct bpf_sock_addr, protocol):
5083 		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
5084 			struct bpf_sock_addr_kern, struct sock, sk,
5085 			__sk_flags_offset, BPF_W, 0);
5086 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
5087 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
5088 					SK_FL_PROTO_SHIFT);
5089 		break;
5090 	}
5091 
5092 	return insn - insn_buf;
5093 }
5094 
5095 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
5096 				       const struct bpf_insn *si,
5097 				       struct bpf_insn *insn_buf,
5098 				       struct bpf_prog *prog,
5099 				       u32 *target_size)
5100 {
5101 	struct bpf_insn *insn = insn_buf;
5102 	int off;
5103 
5104 	switch (si->off) {
5105 	case offsetof(struct bpf_sock_ops, op) ...
5106 	     offsetof(struct bpf_sock_ops, replylong[3]):
5107 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
5108 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
5109 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
5110 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
5111 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
5112 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
5113 		off = si->off;
5114 		off -= offsetof(struct bpf_sock_ops, op);
5115 		off += offsetof(struct bpf_sock_ops_kern, op);
5116 		if (type == BPF_WRITE)
5117 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5118 					      off);
5119 		else
5120 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5121 					      off);
5122 		break;
5123 
5124 	case offsetof(struct bpf_sock_ops, family):
5125 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
5126 
5127 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5128 					      struct bpf_sock_ops_kern, sk),
5129 				      si->dst_reg, si->src_reg,
5130 				      offsetof(struct bpf_sock_ops_kern, sk));
5131 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5132 				      offsetof(struct sock_common, skc_family));
5133 		break;
5134 
5135 	case offsetof(struct bpf_sock_ops, remote_ip4):
5136 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
5137 
5138 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5139 						struct bpf_sock_ops_kern, sk),
5140 				      si->dst_reg, si->src_reg,
5141 				      offsetof(struct bpf_sock_ops_kern, sk));
5142 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5143 				      offsetof(struct sock_common, skc_daddr));
5144 		break;
5145 
5146 	case offsetof(struct bpf_sock_ops, local_ip4):
5147 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_rcv_saddr) != 4);
5148 
5149 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5150 					      struct bpf_sock_ops_kern, sk),
5151 				      si->dst_reg, si->src_reg,
5152 				      offsetof(struct bpf_sock_ops_kern, sk));
5153 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5154 				      offsetof(struct sock_common,
5155 					       skc_rcv_saddr));
5156 		break;
5157 
5158 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
5159 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
5160 #if IS_ENABLED(CONFIG_IPV6)
5161 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5162 					  skc_v6_daddr.s6_addr32[0]) != 4);
5163 
5164 		off = si->off;
5165 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
5166 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5167 						struct bpf_sock_ops_kern, sk),
5168 				      si->dst_reg, si->src_reg,
5169 				      offsetof(struct bpf_sock_ops_kern, sk));
5170 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5171 				      offsetof(struct sock_common,
5172 					       skc_v6_daddr.s6_addr32[0]) +
5173 				      off);
5174 #else
5175 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5176 #endif
5177 		break;
5178 
5179 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
5180 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
5181 #if IS_ENABLED(CONFIG_IPV6)
5182 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5183 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
5184 
5185 		off = si->off;
5186 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
5187 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5188 						struct bpf_sock_ops_kern, sk),
5189 				      si->dst_reg, si->src_reg,
5190 				      offsetof(struct bpf_sock_ops_kern, sk));
5191 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5192 				      offsetof(struct sock_common,
5193 					       skc_v6_rcv_saddr.s6_addr32[0]) +
5194 				      off);
5195 #else
5196 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5197 #endif
5198 		break;
5199 
5200 	case offsetof(struct bpf_sock_ops, remote_port):
5201 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
5202 
5203 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5204 						struct bpf_sock_ops_kern, sk),
5205 				      si->dst_reg, si->src_reg,
5206 				      offsetof(struct bpf_sock_ops_kern, sk));
5207 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5208 				      offsetof(struct sock_common, skc_dport));
5209 #ifndef __BIG_ENDIAN_BITFIELD
5210 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
5211 #endif
5212 		break;
5213 
5214 	case offsetof(struct bpf_sock_ops, local_port):
5215 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
5216 
5217 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5218 						struct bpf_sock_ops_kern, sk),
5219 				      si->dst_reg, si->src_reg,
5220 				      offsetof(struct bpf_sock_ops_kern, sk));
5221 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5222 				      offsetof(struct sock_common, skc_num));
5223 		break;
5224 
5225 	case offsetof(struct bpf_sock_ops, is_fullsock):
5226 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5227 						struct bpf_sock_ops_kern,
5228 						is_fullsock),
5229 				      si->dst_reg, si->src_reg,
5230 				      offsetof(struct bpf_sock_ops_kern,
5231 					       is_fullsock));
5232 		break;
5233 
5234 	case offsetof(struct bpf_sock_ops, state):
5235 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
5236 
5237 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5238 						struct bpf_sock_ops_kern, sk),
5239 				      si->dst_reg, si->src_reg,
5240 				      offsetof(struct bpf_sock_ops_kern, sk));
5241 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
5242 				      offsetof(struct sock_common, skc_state));
5243 		break;
5244 
5245 	case offsetof(struct bpf_sock_ops, rtt_min):
5246 		BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
5247 			     sizeof(struct minmax));
5248 		BUILD_BUG_ON(sizeof(struct minmax) <
5249 			     sizeof(struct minmax_sample));
5250 
5251 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
5252 						struct bpf_sock_ops_kern, sk),
5253 				      si->dst_reg, si->src_reg,
5254 				      offsetof(struct bpf_sock_ops_kern, sk));
5255 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5256 				      offsetof(struct tcp_sock, rtt_min) +
5257 				      FIELD_SIZEOF(struct minmax_sample, t));
5258 		break;
5259 
5260 /* Helper macro for adding read access to tcp_sock or sock fields. */
5261 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
5262 	do {								      \
5263 		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
5264 			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
5265 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
5266 						struct bpf_sock_ops_kern,     \
5267 						is_fullsock),		      \
5268 				      si->dst_reg, si->src_reg,		      \
5269 				      offsetof(struct bpf_sock_ops_kern,      \
5270 					       is_fullsock));		      \
5271 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);	      \
5272 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
5273 						struct bpf_sock_ops_kern, sk),\
5274 				      si->dst_reg, si->src_reg,		      \
5275 				      offsetof(struct bpf_sock_ops_kern, sk));\
5276 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
5277 						       OBJ_FIELD),	      \
5278 				      si->dst_reg, si->dst_reg,		      \
5279 				      offsetof(OBJ, OBJ_FIELD));	      \
5280 	} while (0)
5281 
5282 /* Helper macro for adding write access to tcp_sock or sock fields.
5283  * The macro is called with two registers, dst_reg which contains a pointer
5284  * to ctx (context) and src_reg which contains the value that should be
5285  * stored. However, we need an additional register since we cannot overwrite
5286  * dst_reg because it may be used later in the program.
5287  * Instead we "borrow" one of the other register. We first save its value
5288  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
5289  * it at the end of the macro.
5290  */
5291 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
5292 	do {								      \
5293 		int reg = BPF_REG_9;					      \
5294 		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
5295 			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
5296 		if (si->dst_reg == reg || si->src_reg == reg)		      \
5297 			reg--;						      \
5298 		if (si->dst_reg == reg || si->src_reg == reg)		      \
5299 			reg--;						      \
5300 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
5301 				      offsetof(struct bpf_sock_ops_kern,      \
5302 					       temp));			      \
5303 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
5304 						struct bpf_sock_ops_kern,     \
5305 						is_fullsock),		      \
5306 				      reg, si->dst_reg,			      \
5307 				      offsetof(struct bpf_sock_ops_kern,      \
5308 					       is_fullsock));		      \
5309 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
5310 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
5311 						struct bpf_sock_ops_kern, sk),\
5312 				      reg, si->dst_reg,			      \
5313 				      offsetof(struct bpf_sock_ops_kern, sk));\
5314 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
5315 				      reg, si->src_reg,			      \
5316 				      offsetof(OBJ, OBJ_FIELD));	      \
5317 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
5318 				      offsetof(struct bpf_sock_ops_kern,      \
5319 					       temp));			      \
5320 	} while (0)
5321 
5322 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
5323 	do {								      \
5324 		if (TYPE == BPF_WRITE)					      \
5325 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
5326 		else							      \
5327 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
5328 	} while (0)
5329 
5330 	case offsetof(struct bpf_sock_ops, snd_cwnd):
5331 		SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
5332 		break;
5333 
5334 	case offsetof(struct bpf_sock_ops, srtt_us):
5335 		SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
5336 		break;
5337 
5338 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
5339 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
5340 				   struct tcp_sock);
5341 		break;
5342 
5343 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
5344 		SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
5345 		break;
5346 
5347 	case offsetof(struct bpf_sock_ops, rcv_nxt):
5348 		SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
5349 		break;
5350 
5351 	case offsetof(struct bpf_sock_ops, snd_nxt):
5352 		SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
5353 		break;
5354 
5355 	case offsetof(struct bpf_sock_ops, snd_una):
5356 		SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
5357 		break;
5358 
5359 	case offsetof(struct bpf_sock_ops, mss_cache):
5360 		SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
5361 		break;
5362 
5363 	case offsetof(struct bpf_sock_ops, ecn_flags):
5364 		SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
5365 		break;
5366 
5367 	case offsetof(struct bpf_sock_ops, rate_delivered):
5368 		SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
5369 				   struct tcp_sock);
5370 		break;
5371 
5372 	case offsetof(struct bpf_sock_ops, rate_interval_us):
5373 		SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
5374 				   struct tcp_sock);
5375 		break;
5376 
5377 	case offsetof(struct bpf_sock_ops, packets_out):
5378 		SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
5379 		break;
5380 
5381 	case offsetof(struct bpf_sock_ops, retrans_out):
5382 		SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
5383 		break;
5384 
5385 	case offsetof(struct bpf_sock_ops, total_retrans):
5386 		SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
5387 				   struct tcp_sock);
5388 		break;
5389 
5390 	case offsetof(struct bpf_sock_ops, segs_in):
5391 		SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
5392 		break;
5393 
5394 	case offsetof(struct bpf_sock_ops, data_segs_in):
5395 		SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
5396 		break;
5397 
5398 	case offsetof(struct bpf_sock_ops, segs_out):
5399 		SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
5400 		break;
5401 
5402 	case offsetof(struct bpf_sock_ops, data_segs_out):
5403 		SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
5404 				   struct tcp_sock);
5405 		break;
5406 
5407 	case offsetof(struct bpf_sock_ops, lost_out):
5408 		SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
5409 		break;
5410 
5411 	case offsetof(struct bpf_sock_ops, sacked_out):
5412 		SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
5413 		break;
5414 
5415 	case offsetof(struct bpf_sock_ops, sk_txhash):
5416 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
5417 					  struct sock, type);
5418 		break;
5419 
5420 	case offsetof(struct bpf_sock_ops, bytes_received):
5421 		SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
5422 				   struct tcp_sock);
5423 		break;
5424 
5425 	case offsetof(struct bpf_sock_ops, bytes_acked):
5426 		SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
5427 		break;
5428 
5429 	}
5430 	return insn - insn_buf;
5431 }
5432 
5433 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
5434 				     const struct bpf_insn *si,
5435 				     struct bpf_insn *insn_buf,
5436 				     struct bpf_prog *prog, u32 *target_size)
5437 {
5438 	struct bpf_insn *insn = insn_buf;
5439 	int off;
5440 
5441 	switch (si->off) {
5442 	case offsetof(struct __sk_buff, data_end):
5443 		off  = si->off;
5444 		off -= offsetof(struct __sk_buff, data_end);
5445 		off += offsetof(struct sk_buff, cb);
5446 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
5447 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5448 				      si->src_reg, off);
5449 		break;
5450 	default:
5451 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
5452 					      target_size);
5453 	}
5454 
5455 	return insn - insn_buf;
5456 }
5457 
5458 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
5459 				     const struct bpf_insn *si,
5460 				     struct bpf_insn *insn_buf,
5461 				     struct bpf_prog *prog, u32 *target_size)
5462 {
5463 	struct bpf_insn *insn = insn_buf;
5464 
5465 	switch (si->off) {
5466 	case offsetof(struct sk_msg_md, data):
5467 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data),
5468 				      si->dst_reg, si->src_reg,
5469 				      offsetof(struct sk_msg_buff, data));
5470 		break;
5471 	case offsetof(struct sk_msg_md, data_end):
5472 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data_end),
5473 				      si->dst_reg, si->src_reg,
5474 				      offsetof(struct sk_msg_buff, data_end));
5475 		break;
5476 	}
5477 
5478 	return insn - insn_buf;
5479 }
5480 
5481 const struct bpf_verifier_ops sk_filter_verifier_ops = {
5482 	.get_func_proto		= sk_filter_func_proto,
5483 	.is_valid_access	= sk_filter_is_valid_access,
5484 	.convert_ctx_access	= bpf_convert_ctx_access,
5485 };
5486 
5487 const struct bpf_prog_ops sk_filter_prog_ops = {
5488 	.test_run		= bpf_prog_test_run_skb,
5489 };
5490 
5491 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
5492 	.get_func_proto		= tc_cls_act_func_proto,
5493 	.is_valid_access	= tc_cls_act_is_valid_access,
5494 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
5495 	.gen_prologue		= tc_cls_act_prologue,
5496 };
5497 
5498 const struct bpf_prog_ops tc_cls_act_prog_ops = {
5499 	.test_run		= bpf_prog_test_run_skb,
5500 };
5501 
5502 const struct bpf_verifier_ops xdp_verifier_ops = {
5503 	.get_func_proto		= xdp_func_proto,
5504 	.is_valid_access	= xdp_is_valid_access,
5505 	.convert_ctx_access	= xdp_convert_ctx_access,
5506 };
5507 
5508 const struct bpf_prog_ops xdp_prog_ops = {
5509 	.test_run		= bpf_prog_test_run_xdp,
5510 };
5511 
5512 const struct bpf_verifier_ops cg_skb_verifier_ops = {
5513 	.get_func_proto		= sk_filter_func_proto,
5514 	.is_valid_access	= sk_filter_is_valid_access,
5515 	.convert_ctx_access	= bpf_convert_ctx_access,
5516 };
5517 
5518 const struct bpf_prog_ops cg_skb_prog_ops = {
5519 	.test_run		= bpf_prog_test_run_skb,
5520 };
5521 
5522 const struct bpf_verifier_ops lwt_inout_verifier_ops = {
5523 	.get_func_proto		= lwt_inout_func_proto,
5524 	.is_valid_access	= lwt_is_valid_access,
5525 	.convert_ctx_access	= bpf_convert_ctx_access,
5526 };
5527 
5528 const struct bpf_prog_ops lwt_inout_prog_ops = {
5529 	.test_run		= bpf_prog_test_run_skb,
5530 };
5531 
5532 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
5533 	.get_func_proto		= lwt_xmit_func_proto,
5534 	.is_valid_access	= lwt_is_valid_access,
5535 	.convert_ctx_access	= bpf_convert_ctx_access,
5536 	.gen_prologue		= tc_cls_act_prologue,
5537 };
5538 
5539 const struct bpf_prog_ops lwt_xmit_prog_ops = {
5540 	.test_run		= bpf_prog_test_run_skb,
5541 };
5542 
5543 const struct bpf_verifier_ops cg_sock_verifier_ops = {
5544 	.get_func_proto		= sock_filter_func_proto,
5545 	.is_valid_access	= sock_filter_is_valid_access,
5546 	.convert_ctx_access	= sock_filter_convert_ctx_access,
5547 };
5548 
5549 const struct bpf_prog_ops cg_sock_prog_ops = {
5550 };
5551 
5552 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
5553 	.get_func_proto		= sock_addr_func_proto,
5554 	.is_valid_access	= sock_addr_is_valid_access,
5555 	.convert_ctx_access	= sock_addr_convert_ctx_access,
5556 };
5557 
5558 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
5559 };
5560 
5561 const struct bpf_verifier_ops sock_ops_verifier_ops = {
5562 	.get_func_proto		= sock_ops_func_proto,
5563 	.is_valid_access	= sock_ops_is_valid_access,
5564 	.convert_ctx_access	= sock_ops_convert_ctx_access,
5565 };
5566 
5567 const struct bpf_prog_ops sock_ops_prog_ops = {
5568 };
5569 
5570 const struct bpf_verifier_ops sk_skb_verifier_ops = {
5571 	.get_func_proto		= sk_skb_func_proto,
5572 	.is_valid_access	= sk_skb_is_valid_access,
5573 	.convert_ctx_access	= sk_skb_convert_ctx_access,
5574 	.gen_prologue		= sk_skb_prologue,
5575 };
5576 
5577 const struct bpf_prog_ops sk_skb_prog_ops = {
5578 };
5579 
5580 const struct bpf_verifier_ops sk_msg_verifier_ops = {
5581 	.get_func_proto		= sk_msg_func_proto,
5582 	.is_valid_access	= sk_msg_is_valid_access,
5583 	.convert_ctx_access	= sk_msg_convert_ctx_access,
5584 };
5585 
5586 const struct bpf_prog_ops sk_msg_prog_ops = {
5587 };
5588 
5589 int sk_detach_filter(struct sock *sk)
5590 {
5591 	int ret = -ENOENT;
5592 	struct sk_filter *filter;
5593 
5594 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
5595 		return -EPERM;
5596 
5597 	filter = rcu_dereference_protected(sk->sk_filter,
5598 					   lockdep_sock_is_held(sk));
5599 	if (filter) {
5600 		RCU_INIT_POINTER(sk->sk_filter, NULL);
5601 		sk_filter_uncharge(sk, filter);
5602 		ret = 0;
5603 	}
5604 
5605 	return ret;
5606 }
5607 EXPORT_SYMBOL_GPL(sk_detach_filter);
5608 
5609 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
5610 		  unsigned int len)
5611 {
5612 	struct sock_fprog_kern *fprog;
5613 	struct sk_filter *filter;
5614 	int ret = 0;
5615 
5616 	lock_sock(sk);
5617 	filter = rcu_dereference_protected(sk->sk_filter,
5618 					   lockdep_sock_is_held(sk));
5619 	if (!filter)
5620 		goto out;
5621 
5622 	/* We're copying the filter that has been originally attached,
5623 	 * so no conversion/decode needed anymore. eBPF programs that
5624 	 * have no original program cannot be dumped through this.
5625 	 */
5626 	ret = -EACCES;
5627 	fprog = filter->prog->orig_prog;
5628 	if (!fprog)
5629 		goto out;
5630 
5631 	ret = fprog->len;
5632 	if (!len)
5633 		/* User space only enquires number of filter blocks. */
5634 		goto out;
5635 
5636 	ret = -EINVAL;
5637 	if (len < fprog->len)
5638 		goto out;
5639 
5640 	ret = -EFAULT;
5641 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
5642 		goto out;
5643 
5644 	/* Instead of bytes, the API requests to return the number
5645 	 * of filter blocks.
5646 	 */
5647 	ret = fprog->len;
5648 out:
5649 	release_sock(sk);
5650 	return ret;
5651 }
5652