xref: /openbmc/linux/net/core/filter.c (revision d623f60d)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/inet_common.h>
37 #include <net/ip.h>
38 #include <net/protocol.h>
39 #include <net/netlink.h>
40 #include <linux/skbuff.h>
41 #include <net/sock.h>
42 #include <net/flow_dissector.h>
43 #include <linux/errno.h>
44 #include <linux/timer.h>
45 #include <linux/uaccess.h>
46 #include <asm/unaligned.h>
47 #include <asm/cmpxchg.h>
48 #include <linux/filter.h>
49 #include <linux/ratelimit.h>
50 #include <linux/seccomp.h>
51 #include <linux/if_vlan.h>
52 #include <linux/bpf.h>
53 #include <net/sch_generic.h>
54 #include <net/cls_cgroup.h>
55 #include <net/dst_metadata.h>
56 #include <net/dst.h>
57 #include <net/sock_reuseport.h>
58 #include <net/busy_poll.h>
59 #include <net/tcp.h>
60 #include <net/xfrm.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/ip_fib.h>
65 #include <net/flow.h>
66 #include <net/arp.h>
67 #include <net/ipv6.h>
68 #include <linux/seg6_local.h>
69 #include <net/seg6.h>
70 #include <net/seg6_local.h>
71 
72 /**
73  *	sk_filter_trim_cap - run a packet through a socket filter
74  *	@sk: sock associated with &sk_buff
75  *	@skb: buffer to filter
76  *	@cap: limit on how short the eBPF program may trim the packet
77  *
78  * Run the eBPF program and then cut skb->data to correct size returned by
79  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
80  * than pkt_len we keep whole skb->data. This is the socket level
81  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
82  * be accepted or -EPERM if the packet should be tossed.
83  *
84  */
85 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
86 {
87 	int err;
88 	struct sk_filter *filter;
89 
90 	/*
91 	 * If the skb was allocated from pfmemalloc reserves, only
92 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
93 	 * helping free memory
94 	 */
95 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
96 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
97 		return -ENOMEM;
98 	}
99 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
100 	if (err)
101 		return err;
102 
103 	err = security_sock_rcv_skb(sk, skb);
104 	if (err)
105 		return err;
106 
107 	rcu_read_lock();
108 	filter = rcu_dereference(sk->sk_filter);
109 	if (filter) {
110 		struct sock *save_sk = skb->sk;
111 		unsigned int pkt_len;
112 
113 		skb->sk = sk;
114 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
115 		skb->sk = save_sk;
116 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
117 	}
118 	rcu_read_unlock();
119 
120 	return err;
121 }
122 EXPORT_SYMBOL(sk_filter_trim_cap);
123 
124 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
125 {
126 	return skb_get_poff(skb);
127 }
128 
129 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
130 {
131 	struct nlattr *nla;
132 
133 	if (skb_is_nonlinear(skb))
134 		return 0;
135 
136 	if (skb->len < sizeof(struct nlattr))
137 		return 0;
138 
139 	if (a > skb->len - sizeof(struct nlattr))
140 		return 0;
141 
142 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
143 	if (nla)
144 		return (void *) nla - (void *) skb->data;
145 
146 	return 0;
147 }
148 
149 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
150 {
151 	struct nlattr *nla;
152 
153 	if (skb_is_nonlinear(skb))
154 		return 0;
155 
156 	if (skb->len < sizeof(struct nlattr))
157 		return 0;
158 
159 	if (a > skb->len - sizeof(struct nlattr))
160 		return 0;
161 
162 	nla = (struct nlattr *) &skb->data[a];
163 	if (nla->nla_len > skb->len - a)
164 		return 0;
165 
166 	nla = nla_find_nested(nla, x);
167 	if (nla)
168 		return (void *) nla - (void *) skb->data;
169 
170 	return 0;
171 }
172 
173 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
174 	   data, int, headlen, int, offset)
175 {
176 	u8 tmp, *ptr;
177 	const int len = sizeof(tmp);
178 
179 	if (offset >= 0) {
180 		if (headlen - offset >= len)
181 			return *(u8 *)(data + offset);
182 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
183 			return tmp;
184 	} else {
185 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
186 		if (likely(ptr))
187 			return *(u8 *)ptr;
188 	}
189 
190 	return -EFAULT;
191 }
192 
193 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
194 	   int, offset)
195 {
196 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
197 					 offset);
198 }
199 
200 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
201 	   data, int, headlen, int, offset)
202 {
203 	u16 tmp, *ptr;
204 	const int len = sizeof(tmp);
205 
206 	if (offset >= 0) {
207 		if (headlen - offset >= len)
208 			return get_unaligned_be16(data + offset);
209 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
210 			return be16_to_cpu(tmp);
211 	} else {
212 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
213 		if (likely(ptr))
214 			return get_unaligned_be16(ptr);
215 	}
216 
217 	return -EFAULT;
218 }
219 
220 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
221 	   int, offset)
222 {
223 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
224 					  offset);
225 }
226 
227 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
228 	   data, int, headlen, int, offset)
229 {
230 	u32 tmp, *ptr;
231 	const int len = sizeof(tmp);
232 
233 	if (likely(offset >= 0)) {
234 		if (headlen - offset >= len)
235 			return get_unaligned_be32(data + offset);
236 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
237 			return be32_to_cpu(tmp);
238 	} else {
239 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
240 		if (likely(ptr))
241 			return get_unaligned_be32(ptr);
242 	}
243 
244 	return -EFAULT;
245 }
246 
247 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
248 	   int, offset)
249 {
250 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
251 					  offset);
252 }
253 
254 BPF_CALL_0(bpf_get_raw_cpu_id)
255 {
256 	return raw_smp_processor_id();
257 }
258 
259 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
260 	.func		= bpf_get_raw_cpu_id,
261 	.gpl_only	= false,
262 	.ret_type	= RET_INTEGER,
263 };
264 
265 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
266 			      struct bpf_insn *insn_buf)
267 {
268 	struct bpf_insn *insn = insn_buf;
269 
270 	switch (skb_field) {
271 	case SKF_AD_MARK:
272 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
273 
274 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
275 				      offsetof(struct sk_buff, mark));
276 		break;
277 
278 	case SKF_AD_PKTTYPE:
279 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
280 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
281 #ifdef __BIG_ENDIAN_BITFIELD
282 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
283 #endif
284 		break;
285 
286 	case SKF_AD_QUEUE:
287 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
288 
289 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
290 				      offsetof(struct sk_buff, queue_mapping));
291 		break;
292 
293 	case SKF_AD_VLAN_TAG:
294 	case SKF_AD_VLAN_TAG_PRESENT:
295 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
296 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
297 
298 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
299 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
300 				      offsetof(struct sk_buff, vlan_tci));
301 		if (skb_field == SKF_AD_VLAN_TAG) {
302 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
303 						~VLAN_TAG_PRESENT);
304 		} else {
305 			/* dst_reg >>= 12 */
306 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
307 			/* dst_reg &= 1 */
308 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
309 		}
310 		break;
311 	}
312 
313 	return insn - insn_buf;
314 }
315 
316 static bool convert_bpf_extensions(struct sock_filter *fp,
317 				   struct bpf_insn **insnp)
318 {
319 	struct bpf_insn *insn = *insnp;
320 	u32 cnt;
321 
322 	switch (fp->k) {
323 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
324 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
325 
326 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
327 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
328 				      offsetof(struct sk_buff, protocol));
329 		/* A = ntohs(A) [emitting a nop or swap16] */
330 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
331 		break;
332 
333 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
334 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
335 		insn += cnt - 1;
336 		break;
337 
338 	case SKF_AD_OFF + SKF_AD_IFINDEX:
339 	case SKF_AD_OFF + SKF_AD_HATYPE:
340 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
341 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
342 
343 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
344 				      BPF_REG_TMP, BPF_REG_CTX,
345 				      offsetof(struct sk_buff, dev));
346 		/* if (tmp != 0) goto pc + 1 */
347 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
348 		*insn++ = BPF_EXIT_INSN();
349 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
350 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
351 					    offsetof(struct net_device, ifindex));
352 		else
353 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
354 					    offsetof(struct net_device, type));
355 		break;
356 
357 	case SKF_AD_OFF + SKF_AD_MARK:
358 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
359 		insn += cnt - 1;
360 		break;
361 
362 	case SKF_AD_OFF + SKF_AD_RXHASH:
363 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
364 
365 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
366 				    offsetof(struct sk_buff, hash));
367 		break;
368 
369 	case SKF_AD_OFF + SKF_AD_QUEUE:
370 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
371 		insn += cnt - 1;
372 		break;
373 
374 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
375 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
376 					 BPF_REG_A, BPF_REG_CTX, insn);
377 		insn += cnt - 1;
378 		break;
379 
380 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
381 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
382 					 BPF_REG_A, BPF_REG_CTX, insn);
383 		insn += cnt - 1;
384 		break;
385 
386 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
387 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
388 
389 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
390 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
391 				      offsetof(struct sk_buff, vlan_proto));
392 		/* A = ntohs(A) [emitting a nop or swap16] */
393 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
394 		break;
395 
396 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
397 	case SKF_AD_OFF + SKF_AD_NLATTR:
398 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
399 	case SKF_AD_OFF + SKF_AD_CPU:
400 	case SKF_AD_OFF + SKF_AD_RANDOM:
401 		/* arg1 = CTX */
402 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
403 		/* arg2 = A */
404 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
405 		/* arg3 = X */
406 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
407 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
408 		switch (fp->k) {
409 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
410 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
411 			break;
412 		case SKF_AD_OFF + SKF_AD_NLATTR:
413 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
414 			break;
415 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
416 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
417 			break;
418 		case SKF_AD_OFF + SKF_AD_CPU:
419 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
420 			break;
421 		case SKF_AD_OFF + SKF_AD_RANDOM:
422 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
423 			bpf_user_rnd_init_once();
424 			break;
425 		}
426 		break;
427 
428 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
429 		/* A ^= X */
430 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
431 		break;
432 
433 	default:
434 		/* This is just a dummy call to avoid letting the compiler
435 		 * evict __bpf_call_base() as an optimization. Placed here
436 		 * where no-one bothers.
437 		 */
438 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
439 		return false;
440 	}
441 
442 	*insnp = insn;
443 	return true;
444 }
445 
446 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
447 {
448 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
449 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
450 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
451 		      BPF_SIZE(fp->code) == BPF_W;
452 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
453 	const int ip_align = NET_IP_ALIGN;
454 	struct bpf_insn *insn = *insnp;
455 	int offset = fp->k;
456 
457 	if (!indirect &&
458 	    ((unaligned_ok && offset >= 0) ||
459 	     (!unaligned_ok && offset >= 0 &&
460 	      offset + ip_align >= 0 &&
461 	      offset + ip_align % size == 0))) {
462 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
463 		*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
464 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP, size, 2 + endian);
465 		*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A, BPF_REG_D,
466 				      offset);
467 		if (endian)
468 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
469 		*insn++ = BPF_JMP_A(8);
470 	}
471 
472 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
473 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
474 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
475 	if (!indirect) {
476 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
477 	} else {
478 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
479 		if (fp->k)
480 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
481 	}
482 
483 	switch (BPF_SIZE(fp->code)) {
484 	case BPF_B:
485 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
486 		break;
487 	case BPF_H:
488 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
489 		break;
490 	case BPF_W:
491 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
492 		break;
493 	default:
494 		return false;
495 	}
496 
497 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
498 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
499 	*insn   = BPF_EXIT_INSN();
500 
501 	*insnp = insn;
502 	return true;
503 }
504 
505 /**
506  *	bpf_convert_filter - convert filter program
507  *	@prog: the user passed filter program
508  *	@len: the length of the user passed filter program
509  *	@new_prog: allocated 'struct bpf_prog' or NULL
510  *	@new_len: pointer to store length of converted program
511  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
512  *
513  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
514  * style extended BPF (eBPF).
515  * Conversion workflow:
516  *
517  * 1) First pass for calculating the new program length:
518  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
519  *
520  * 2) 2nd pass to remap in two passes: 1st pass finds new
521  *    jump offsets, 2nd pass remapping:
522  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
523  */
524 static int bpf_convert_filter(struct sock_filter *prog, int len,
525 			      struct bpf_prog *new_prog, int *new_len,
526 			      bool *seen_ld_abs)
527 {
528 	int new_flen = 0, pass = 0, target, i, stack_off;
529 	struct bpf_insn *new_insn, *first_insn = NULL;
530 	struct sock_filter *fp;
531 	int *addrs = NULL;
532 	u8 bpf_src;
533 
534 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
535 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
536 
537 	if (len <= 0 || len > BPF_MAXINSNS)
538 		return -EINVAL;
539 
540 	if (new_prog) {
541 		first_insn = new_prog->insnsi;
542 		addrs = kcalloc(len, sizeof(*addrs),
543 				GFP_KERNEL | __GFP_NOWARN);
544 		if (!addrs)
545 			return -ENOMEM;
546 	}
547 
548 do_pass:
549 	new_insn = first_insn;
550 	fp = prog;
551 
552 	/* Classic BPF related prologue emission. */
553 	if (new_prog) {
554 		/* Classic BPF expects A and X to be reset first. These need
555 		 * to be guaranteed to be the first two instructions.
556 		 */
557 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
558 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
559 
560 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
561 		 * In eBPF case it's done by the compiler, here we need to
562 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
563 		 */
564 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
565 		if (*seen_ld_abs) {
566 			/* For packet access in classic BPF, cache skb->data
567 			 * in callee-saved BPF R8 and skb->len - skb->data_len
568 			 * (headlen) in BPF R9. Since classic BPF is read-only
569 			 * on CTX, we only need to cache it once.
570 			 */
571 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
572 						  BPF_REG_D, BPF_REG_CTX,
573 						  offsetof(struct sk_buff, data));
574 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
575 						  offsetof(struct sk_buff, len));
576 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
577 						  offsetof(struct sk_buff, data_len));
578 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
579 		}
580 	} else {
581 		new_insn += 3;
582 	}
583 
584 	for (i = 0; i < len; fp++, i++) {
585 		struct bpf_insn tmp_insns[32] = { };
586 		struct bpf_insn *insn = tmp_insns;
587 
588 		if (addrs)
589 			addrs[i] = new_insn - first_insn;
590 
591 		switch (fp->code) {
592 		/* All arithmetic insns and skb loads map as-is. */
593 		case BPF_ALU | BPF_ADD | BPF_X:
594 		case BPF_ALU | BPF_ADD | BPF_K:
595 		case BPF_ALU | BPF_SUB | BPF_X:
596 		case BPF_ALU | BPF_SUB | BPF_K:
597 		case BPF_ALU | BPF_AND | BPF_X:
598 		case BPF_ALU | BPF_AND | BPF_K:
599 		case BPF_ALU | BPF_OR | BPF_X:
600 		case BPF_ALU | BPF_OR | BPF_K:
601 		case BPF_ALU | BPF_LSH | BPF_X:
602 		case BPF_ALU | BPF_LSH | BPF_K:
603 		case BPF_ALU | BPF_RSH | BPF_X:
604 		case BPF_ALU | BPF_RSH | BPF_K:
605 		case BPF_ALU | BPF_XOR | BPF_X:
606 		case BPF_ALU | BPF_XOR | BPF_K:
607 		case BPF_ALU | BPF_MUL | BPF_X:
608 		case BPF_ALU | BPF_MUL | BPF_K:
609 		case BPF_ALU | BPF_DIV | BPF_X:
610 		case BPF_ALU | BPF_DIV | BPF_K:
611 		case BPF_ALU | BPF_MOD | BPF_X:
612 		case BPF_ALU | BPF_MOD | BPF_K:
613 		case BPF_ALU | BPF_NEG:
614 		case BPF_LD | BPF_ABS | BPF_W:
615 		case BPF_LD | BPF_ABS | BPF_H:
616 		case BPF_LD | BPF_ABS | BPF_B:
617 		case BPF_LD | BPF_IND | BPF_W:
618 		case BPF_LD | BPF_IND | BPF_H:
619 		case BPF_LD | BPF_IND | BPF_B:
620 			/* Check for overloaded BPF extension and
621 			 * directly convert it if found, otherwise
622 			 * just move on with mapping.
623 			 */
624 			if (BPF_CLASS(fp->code) == BPF_LD &&
625 			    BPF_MODE(fp->code) == BPF_ABS &&
626 			    convert_bpf_extensions(fp, &insn))
627 				break;
628 			if (BPF_CLASS(fp->code) == BPF_LD &&
629 			    convert_bpf_ld_abs(fp, &insn)) {
630 				*seen_ld_abs = true;
631 				break;
632 			}
633 
634 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
635 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
636 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
637 				/* Error with exception code on div/mod by 0.
638 				 * For cBPF programs, this was always return 0.
639 				 */
640 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
641 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
642 				*insn++ = BPF_EXIT_INSN();
643 			}
644 
645 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
646 			break;
647 
648 		/* Jump transformation cannot use BPF block macros
649 		 * everywhere as offset calculation and target updates
650 		 * require a bit more work than the rest, i.e. jump
651 		 * opcodes map as-is, but offsets need adjustment.
652 		 */
653 
654 #define BPF_EMIT_JMP							\
655 	do {								\
656 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
657 		s32 off;						\
658 									\
659 		if (target >= len || target < 0)			\
660 			goto err;					\
661 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
662 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
663 		off -= insn - tmp_insns;				\
664 		/* Reject anything not fitting into insn->off. */	\
665 		if (off < off_min || off > off_max)			\
666 			goto err;					\
667 		insn->off = off;					\
668 	} while (0)
669 
670 		case BPF_JMP | BPF_JA:
671 			target = i + fp->k + 1;
672 			insn->code = fp->code;
673 			BPF_EMIT_JMP;
674 			break;
675 
676 		case BPF_JMP | BPF_JEQ | BPF_K:
677 		case BPF_JMP | BPF_JEQ | BPF_X:
678 		case BPF_JMP | BPF_JSET | BPF_K:
679 		case BPF_JMP | BPF_JSET | BPF_X:
680 		case BPF_JMP | BPF_JGT | BPF_K:
681 		case BPF_JMP | BPF_JGT | BPF_X:
682 		case BPF_JMP | BPF_JGE | BPF_K:
683 		case BPF_JMP | BPF_JGE | BPF_X:
684 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
685 				/* BPF immediates are signed, zero extend
686 				 * immediate into tmp register and use it
687 				 * in compare insn.
688 				 */
689 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
690 
691 				insn->dst_reg = BPF_REG_A;
692 				insn->src_reg = BPF_REG_TMP;
693 				bpf_src = BPF_X;
694 			} else {
695 				insn->dst_reg = BPF_REG_A;
696 				insn->imm = fp->k;
697 				bpf_src = BPF_SRC(fp->code);
698 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
699 			}
700 
701 			/* Common case where 'jump_false' is next insn. */
702 			if (fp->jf == 0) {
703 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
704 				target = i + fp->jt + 1;
705 				BPF_EMIT_JMP;
706 				break;
707 			}
708 
709 			/* Convert some jumps when 'jump_true' is next insn. */
710 			if (fp->jt == 0) {
711 				switch (BPF_OP(fp->code)) {
712 				case BPF_JEQ:
713 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
714 					break;
715 				case BPF_JGT:
716 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
717 					break;
718 				case BPF_JGE:
719 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
720 					break;
721 				default:
722 					goto jmp_rest;
723 				}
724 
725 				target = i + fp->jf + 1;
726 				BPF_EMIT_JMP;
727 				break;
728 			}
729 jmp_rest:
730 			/* Other jumps are mapped into two insns: Jxx and JA. */
731 			target = i + fp->jt + 1;
732 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
733 			BPF_EMIT_JMP;
734 			insn++;
735 
736 			insn->code = BPF_JMP | BPF_JA;
737 			target = i + fp->jf + 1;
738 			BPF_EMIT_JMP;
739 			break;
740 
741 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
742 		case BPF_LDX | BPF_MSH | BPF_B: {
743 			struct sock_filter tmp = {
744 				.code	= BPF_LD | BPF_ABS | BPF_B,
745 				.k	= fp->k,
746 			};
747 
748 			*seen_ld_abs = true;
749 
750 			/* X = A */
751 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
752 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
753 			convert_bpf_ld_abs(&tmp, &insn);
754 			insn++;
755 			/* A &= 0xf */
756 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
757 			/* A <<= 2 */
758 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
759 			/* tmp = X */
760 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
761 			/* X = A */
762 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
763 			/* A = tmp */
764 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
765 			break;
766 		}
767 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
768 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
769 		 */
770 		case BPF_RET | BPF_A:
771 		case BPF_RET | BPF_K:
772 			if (BPF_RVAL(fp->code) == BPF_K)
773 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
774 							0, fp->k);
775 			*insn = BPF_EXIT_INSN();
776 			break;
777 
778 		/* Store to stack. */
779 		case BPF_ST:
780 		case BPF_STX:
781 			stack_off = fp->k * 4  + 4;
782 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
783 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
784 					    -stack_off);
785 			/* check_load_and_stores() verifies that classic BPF can
786 			 * load from stack only after write, so tracking
787 			 * stack_depth for ST|STX insns is enough
788 			 */
789 			if (new_prog && new_prog->aux->stack_depth < stack_off)
790 				new_prog->aux->stack_depth = stack_off;
791 			break;
792 
793 		/* Load from stack. */
794 		case BPF_LD | BPF_MEM:
795 		case BPF_LDX | BPF_MEM:
796 			stack_off = fp->k * 4  + 4;
797 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
798 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
799 					    -stack_off);
800 			break;
801 
802 		/* A = K or X = K */
803 		case BPF_LD | BPF_IMM:
804 		case BPF_LDX | BPF_IMM:
805 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
806 					      BPF_REG_A : BPF_REG_X, fp->k);
807 			break;
808 
809 		/* X = A */
810 		case BPF_MISC | BPF_TAX:
811 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
812 			break;
813 
814 		/* A = X */
815 		case BPF_MISC | BPF_TXA:
816 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
817 			break;
818 
819 		/* A = skb->len or X = skb->len */
820 		case BPF_LD | BPF_W | BPF_LEN:
821 		case BPF_LDX | BPF_W | BPF_LEN:
822 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
823 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
824 					    offsetof(struct sk_buff, len));
825 			break;
826 
827 		/* Access seccomp_data fields. */
828 		case BPF_LDX | BPF_ABS | BPF_W:
829 			/* A = *(u32 *) (ctx + K) */
830 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
831 			break;
832 
833 		/* Unknown instruction. */
834 		default:
835 			goto err;
836 		}
837 
838 		insn++;
839 		if (new_prog)
840 			memcpy(new_insn, tmp_insns,
841 			       sizeof(*insn) * (insn - tmp_insns));
842 		new_insn += insn - tmp_insns;
843 	}
844 
845 	if (!new_prog) {
846 		/* Only calculating new length. */
847 		*new_len = new_insn - first_insn;
848 		if (*seen_ld_abs)
849 			*new_len += 4; /* Prologue bits. */
850 		return 0;
851 	}
852 
853 	pass++;
854 	if (new_flen != new_insn - first_insn) {
855 		new_flen = new_insn - first_insn;
856 		if (pass > 2)
857 			goto err;
858 		goto do_pass;
859 	}
860 
861 	kfree(addrs);
862 	BUG_ON(*new_len != new_flen);
863 	return 0;
864 err:
865 	kfree(addrs);
866 	return -EINVAL;
867 }
868 
869 /* Security:
870  *
871  * As we dont want to clear mem[] array for each packet going through
872  * __bpf_prog_run(), we check that filter loaded by user never try to read
873  * a cell if not previously written, and we check all branches to be sure
874  * a malicious user doesn't try to abuse us.
875  */
876 static int check_load_and_stores(const struct sock_filter *filter, int flen)
877 {
878 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
879 	int pc, ret = 0;
880 
881 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
882 
883 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
884 	if (!masks)
885 		return -ENOMEM;
886 
887 	memset(masks, 0xff, flen * sizeof(*masks));
888 
889 	for (pc = 0; pc < flen; pc++) {
890 		memvalid &= masks[pc];
891 
892 		switch (filter[pc].code) {
893 		case BPF_ST:
894 		case BPF_STX:
895 			memvalid |= (1 << filter[pc].k);
896 			break;
897 		case BPF_LD | BPF_MEM:
898 		case BPF_LDX | BPF_MEM:
899 			if (!(memvalid & (1 << filter[pc].k))) {
900 				ret = -EINVAL;
901 				goto error;
902 			}
903 			break;
904 		case BPF_JMP | BPF_JA:
905 			/* A jump must set masks on target */
906 			masks[pc + 1 + filter[pc].k] &= memvalid;
907 			memvalid = ~0;
908 			break;
909 		case BPF_JMP | BPF_JEQ | BPF_K:
910 		case BPF_JMP | BPF_JEQ | BPF_X:
911 		case BPF_JMP | BPF_JGE | BPF_K:
912 		case BPF_JMP | BPF_JGE | BPF_X:
913 		case BPF_JMP | BPF_JGT | BPF_K:
914 		case BPF_JMP | BPF_JGT | BPF_X:
915 		case BPF_JMP | BPF_JSET | BPF_K:
916 		case BPF_JMP | BPF_JSET | BPF_X:
917 			/* A jump must set masks on targets */
918 			masks[pc + 1 + filter[pc].jt] &= memvalid;
919 			masks[pc + 1 + filter[pc].jf] &= memvalid;
920 			memvalid = ~0;
921 			break;
922 		}
923 	}
924 error:
925 	kfree(masks);
926 	return ret;
927 }
928 
929 static bool chk_code_allowed(u16 code_to_probe)
930 {
931 	static const bool codes[] = {
932 		/* 32 bit ALU operations */
933 		[BPF_ALU | BPF_ADD | BPF_K] = true,
934 		[BPF_ALU | BPF_ADD | BPF_X] = true,
935 		[BPF_ALU | BPF_SUB | BPF_K] = true,
936 		[BPF_ALU | BPF_SUB | BPF_X] = true,
937 		[BPF_ALU | BPF_MUL | BPF_K] = true,
938 		[BPF_ALU | BPF_MUL | BPF_X] = true,
939 		[BPF_ALU | BPF_DIV | BPF_K] = true,
940 		[BPF_ALU | BPF_DIV | BPF_X] = true,
941 		[BPF_ALU | BPF_MOD | BPF_K] = true,
942 		[BPF_ALU | BPF_MOD | BPF_X] = true,
943 		[BPF_ALU | BPF_AND | BPF_K] = true,
944 		[BPF_ALU | BPF_AND | BPF_X] = true,
945 		[BPF_ALU | BPF_OR | BPF_K] = true,
946 		[BPF_ALU | BPF_OR | BPF_X] = true,
947 		[BPF_ALU | BPF_XOR | BPF_K] = true,
948 		[BPF_ALU | BPF_XOR | BPF_X] = true,
949 		[BPF_ALU | BPF_LSH | BPF_K] = true,
950 		[BPF_ALU | BPF_LSH | BPF_X] = true,
951 		[BPF_ALU | BPF_RSH | BPF_K] = true,
952 		[BPF_ALU | BPF_RSH | BPF_X] = true,
953 		[BPF_ALU | BPF_NEG] = true,
954 		/* Load instructions */
955 		[BPF_LD | BPF_W | BPF_ABS] = true,
956 		[BPF_LD | BPF_H | BPF_ABS] = true,
957 		[BPF_LD | BPF_B | BPF_ABS] = true,
958 		[BPF_LD | BPF_W | BPF_LEN] = true,
959 		[BPF_LD | BPF_W | BPF_IND] = true,
960 		[BPF_LD | BPF_H | BPF_IND] = true,
961 		[BPF_LD | BPF_B | BPF_IND] = true,
962 		[BPF_LD | BPF_IMM] = true,
963 		[BPF_LD | BPF_MEM] = true,
964 		[BPF_LDX | BPF_W | BPF_LEN] = true,
965 		[BPF_LDX | BPF_B | BPF_MSH] = true,
966 		[BPF_LDX | BPF_IMM] = true,
967 		[BPF_LDX | BPF_MEM] = true,
968 		/* Store instructions */
969 		[BPF_ST] = true,
970 		[BPF_STX] = true,
971 		/* Misc instructions */
972 		[BPF_MISC | BPF_TAX] = true,
973 		[BPF_MISC | BPF_TXA] = true,
974 		/* Return instructions */
975 		[BPF_RET | BPF_K] = true,
976 		[BPF_RET | BPF_A] = true,
977 		/* Jump instructions */
978 		[BPF_JMP | BPF_JA] = true,
979 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
980 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
981 		[BPF_JMP | BPF_JGE | BPF_K] = true,
982 		[BPF_JMP | BPF_JGE | BPF_X] = true,
983 		[BPF_JMP | BPF_JGT | BPF_K] = true,
984 		[BPF_JMP | BPF_JGT | BPF_X] = true,
985 		[BPF_JMP | BPF_JSET | BPF_K] = true,
986 		[BPF_JMP | BPF_JSET | BPF_X] = true,
987 	};
988 
989 	if (code_to_probe >= ARRAY_SIZE(codes))
990 		return false;
991 
992 	return codes[code_to_probe];
993 }
994 
995 static bool bpf_check_basics_ok(const struct sock_filter *filter,
996 				unsigned int flen)
997 {
998 	if (filter == NULL)
999 		return false;
1000 	if (flen == 0 || flen > BPF_MAXINSNS)
1001 		return false;
1002 
1003 	return true;
1004 }
1005 
1006 /**
1007  *	bpf_check_classic - verify socket filter code
1008  *	@filter: filter to verify
1009  *	@flen: length of filter
1010  *
1011  * Check the user's filter code. If we let some ugly
1012  * filter code slip through kaboom! The filter must contain
1013  * no references or jumps that are out of range, no illegal
1014  * instructions, and must end with a RET instruction.
1015  *
1016  * All jumps are forward as they are not signed.
1017  *
1018  * Returns 0 if the rule set is legal or -EINVAL if not.
1019  */
1020 static int bpf_check_classic(const struct sock_filter *filter,
1021 			     unsigned int flen)
1022 {
1023 	bool anc_found;
1024 	int pc;
1025 
1026 	/* Check the filter code now */
1027 	for (pc = 0; pc < flen; pc++) {
1028 		const struct sock_filter *ftest = &filter[pc];
1029 
1030 		/* May we actually operate on this code? */
1031 		if (!chk_code_allowed(ftest->code))
1032 			return -EINVAL;
1033 
1034 		/* Some instructions need special checks */
1035 		switch (ftest->code) {
1036 		case BPF_ALU | BPF_DIV | BPF_K:
1037 		case BPF_ALU | BPF_MOD | BPF_K:
1038 			/* Check for division by zero */
1039 			if (ftest->k == 0)
1040 				return -EINVAL;
1041 			break;
1042 		case BPF_ALU | BPF_LSH | BPF_K:
1043 		case BPF_ALU | BPF_RSH | BPF_K:
1044 			if (ftest->k >= 32)
1045 				return -EINVAL;
1046 			break;
1047 		case BPF_LD | BPF_MEM:
1048 		case BPF_LDX | BPF_MEM:
1049 		case BPF_ST:
1050 		case BPF_STX:
1051 			/* Check for invalid memory addresses */
1052 			if (ftest->k >= BPF_MEMWORDS)
1053 				return -EINVAL;
1054 			break;
1055 		case BPF_JMP | BPF_JA:
1056 			/* Note, the large ftest->k might cause loops.
1057 			 * Compare this with conditional jumps below,
1058 			 * where offsets are limited. --ANK (981016)
1059 			 */
1060 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1061 				return -EINVAL;
1062 			break;
1063 		case BPF_JMP | BPF_JEQ | BPF_K:
1064 		case BPF_JMP | BPF_JEQ | BPF_X:
1065 		case BPF_JMP | BPF_JGE | BPF_K:
1066 		case BPF_JMP | BPF_JGE | BPF_X:
1067 		case BPF_JMP | BPF_JGT | BPF_K:
1068 		case BPF_JMP | BPF_JGT | BPF_X:
1069 		case BPF_JMP | BPF_JSET | BPF_K:
1070 		case BPF_JMP | BPF_JSET | BPF_X:
1071 			/* Both conditionals must be safe */
1072 			if (pc + ftest->jt + 1 >= flen ||
1073 			    pc + ftest->jf + 1 >= flen)
1074 				return -EINVAL;
1075 			break;
1076 		case BPF_LD | BPF_W | BPF_ABS:
1077 		case BPF_LD | BPF_H | BPF_ABS:
1078 		case BPF_LD | BPF_B | BPF_ABS:
1079 			anc_found = false;
1080 			if (bpf_anc_helper(ftest) & BPF_ANC)
1081 				anc_found = true;
1082 			/* Ancillary operation unknown or unsupported */
1083 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1084 				return -EINVAL;
1085 		}
1086 	}
1087 
1088 	/* Last instruction must be a RET code */
1089 	switch (filter[flen - 1].code) {
1090 	case BPF_RET | BPF_K:
1091 	case BPF_RET | BPF_A:
1092 		return check_load_and_stores(filter, flen);
1093 	}
1094 
1095 	return -EINVAL;
1096 }
1097 
1098 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1099 				      const struct sock_fprog *fprog)
1100 {
1101 	unsigned int fsize = bpf_classic_proglen(fprog);
1102 	struct sock_fprog_kern *fkprog;
1103 
1104 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1105 	if (!fp->orig_prog)
1106 		return -ENOMEM;
1107 
1108 	fkprog = fp->orig_prog;
1109 	fkprog->len = fprog->len;
1110 
1111 	fkprog->filter = kmemdup(fp->insns, fsize,
1112 				 GFP_KERNEL | __GFP_NOWARN);
1113 	if (!fkprog->filter) {
1114 		kfree(fp->orig_prog);
1115 		return -ENOMEM;
1116 	}
1117 
1118 	return 0;
1119 }
1120 
1121 static void bpf_release_orig_filter(struct bpf_prog *fp)
1122 {
1123 	struct sock_fprog_kern *fprog = fp->orig_prog;
1124 
1125 	if (fprog) {
1126 		kfree(fprog->filter);
1127 		kfree(fprog);
1128 	}
1129 }
1130 
1131 static void __bpf_prog_release(struct bpf_prog *prog)
1132 {
1133 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1134 		bpf_prog_put(prog);
1135 	} else {
1136 		bpf_release_orig_filter(prog);
1137 		bpf_prog_free(prog);
1138 	}
1139 }
1140 
1141 static void __sk_filter_release(struct sk_filter *fp)
1142 {
1143 	__bpf_prog_release(fp->prog);
1144 	kfree(fp);
1145 }
1146 
1147 /**
1148  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1149  *	@rcu: rcu_head that contains the sk_filter to free
1150  */
1151 static void sk_filter_release_rcu(struct rcu_head *rcu)
1152 {
1153 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1154 
1155 	__sk_filter_release(fp);
1156 }
1157 
1158 /**
1159  *	sk_filter_release - release a socket filter
1160  *	@fp: filter to remove
1161  *
1162  *	Remove a filter from a socket and release its resources.
1163  */
1164 static void sk_filter_release(struct sk_filter *fp)
1165 {
1166 	if (refcount_dec_and_test(&fp->refcnt))
1167 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1168 }
1169 
1170 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1171 {
1172 	u32 filter_size = bpf_prog_size(fp->prog->len);
1173 
1174 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1175 	sk_filter_release(fp);
1176 }
1177 
1178 /* try to charge the socket memory if there is space available
1179  * return true on success
1180  */
1181 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1182 {
1183 	u32 filter_size = bpf_prog_size(fp->prog->len);
1184 
1185 	/* same check as in sock_kmalloc() */
1186 	if (filter_size <= sysctl_optmem_max &&
1187 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1188 		atomic_add(filter_size, &sk->sk_omem_alloc);
1189 		return true;
1190 	}
1191 	return false;
1192 }
1193 
1194 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1195 {
1196 	if (!refcount_inc_not_zero(&fp->refcnt))
1197 		return false;
1198 
1199 	if (!__sk_filter_charge(sk, fp)) {
1200 		sk_filter_release(fp);
1201 		return false;
1202 	}
1203 	return true;
1204 }
1205 
1206 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1207 {
1208 	struct sock_filter *old_prog;
1209 	struct bpf_prog *old_fp;
1210 	int err, new_len, old_len = fp->len;
1211 	bool seen_ld_abs = false;
1212 
1213 	/* We are free to overwrite insns et al right here as it
1214 	 * won't be used at this point in time anymore internally
1215 	 * after the migration to the internal BPF instruction
1216 	 * representation.
1217 	 */
1218 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1219 		     sizeof(struct bpf_insn));
1220 
1221 	/* Conversion cannot happen on overlapping memory areas,
1222 	 * so we need to keep the user BPF around until the 2nd
1223 	 * pass. At this time, the user BPF is stored in fp->insns.
1224 	 */
1225 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1226 			   GFP_KERNEL | __GFP_NOWARN);
1227 	if (!old_prog) {
1228 		err = -ENOMEM;
1229 		goto out_err;
1230 	}
1231 
1232 	/* 1st pass: calculate the new program length. */
1233 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1234 				 &seen_ld_abs);
1235 	if (err)
1236 		goto out_err_free;
1237 
1238 	/* Expand fp for appending the new filter representation. */
1239 	old_fp = fp;
1240 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1241 	if (!fp) {
1242 		/* The old_fp is still around in case we couldn't
1243 		 * allocate new memory, so uncharge on that one.
1244 		 */
1245 		fp = old_fp;
1246 		err = -ENOMEM;
1247 		goto out_err_free;
1248 	}
1249 
1250 	fp->len = new_len;
1251 
1252 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1253 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1254 				 &seen_ld_abs);
1255 	if (err)
1256 		/* 2nd bpf_convert_filter() can fail only if it fails
1257 		 * to allocate memory, remapping must succeed. Note,
1258 		 * that at this time old_fp has already been released
1259 		 * by krealloc().
1260 		 */
1261 		goto out_err_free;
1262 
1263 	fp = bpf_prog_select_runtime(fp, &err);
1264 	if (err)
1265 		goto out_err_free;
1266 
1267 	kfree(old_prog);
1268 	return fp;
1269 
1270 out_err_free:
1271 	kfree(old_prog);
1272 out_err:
1273 	__bpf_prog_release(fp);
1274 	return ERR_PTR(err);
1275 }
1276 
1277 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1278 					   bpf_aux_classic_check_t trans)
1279 {
1280 	int err;
1281 
1282 	fp->bpf_func = NULL;
1283 	fp->jited = 0;
1284 
1285 	err = bpf_check_classic(fp->insns, fp->len);
1286 	if (err) {
1287 		__bpf_prog_release(fp);
1288 		return ERR_PTR(err);
1289 	}
1290 
1291 	/* There might be additional checks and transformations
1292 	 * needed on classic filters, f.e. in case of seccomp.
1293 	 */
1294 	if (trans) {
1295 		err = trans(fp->insns, fp->len);
1296 		if (err) {
1297 			__bpf_prog_release(fp);
1298 			return ERR_PTR(err);
1299 		}
1300 	}
1301 
1302 	/* Probe if we can JIT compile the filter and if so, do
1303 	 * the compilation of the filter.
1304 	 */
1305 	bpf_jit_compile(fp);
1306 
1307 	/* JIT compiler couldn't process this filter, so do the
1308 	 * internal BPF translation for the optimized interpreter.
1309 	 */
1310 	if (!fp->jited)
1311 		fp = bpf_migrate_filter(fp);
1312 
1313 	return fp;
1314 }
1315 
1316 /**
1317  *	bpf_prog_create - create an unattached filter
1318  *	@pfp: the unattached filter that is created
1319  *	@fprog: the filter program
1320  *
1321  * Create a filter independent of any socket. We first run some
1322  * sanity checks on it to make sure it does not explode on us later.
1323  * If an error occurs or there is insufficient memory for the filter
1324  * a negative errno code is returned. On success the return is zero.
1325  */
1326 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1327 {
1328 	unsigned int fsize = bpf_classic_proglen(fprog);
1329 	struct bpf_prog *fp;
1330 
1331 	/* Make sure new filter is there and in the right amounts. */
1332 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1333 		return -EINVAL;
1334 
1335 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1336 	if (!fp)
1337 		return -ENOMEM;
1338 
1339 	memcpy(fp->insns, fprog->filter, fsize);
1340 
1341 	fp->len = fprog->len;
1342 	/* Since unattached filters are not copied back to user
1343 	 * space through sk_get_filter(), we do not need to hold
1344 	 * a copy here, and can spare us the work.
1345 	 */
1346 	fp->orig_prog = NULL;
1347 
1348 	/* bpf_prepare_filter() already takes care of freeing
1349 	 * memory in case something goes wrong.
1350 	 */
1351 	fp = bpf_prepare_filter(fp, NULL);
1352 	if (IS_ERR(fp))
1353 		return PTR_ERR(fp);
1354 
1355 	*pfp = fp;
1356 	return 0;
1357 }
1358 EXPORT_SYMBOL_GPL(bpf_prog_create);
1359 
1360 /**
1361  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1362  *	@pfp: the unattached filter that is created
1363  *	@fprog: the filter program
1364  *	@trans: post-classic verifier transformation handler
1365  *	@save_orig: save classic BPF program
1366  *
1367  * This function effectively does the same as bpf_prog_create(), only
1368  * that it builds up its insns buffer from user space provided buffer.
1369  * It also allows for passing a bpf_aux_classic_check_t handler.
1370  */
1371 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1372 			      bpf_aux_classic_check_t trans, bool save_orig)
1373 {
1374 	unsigned int fsize = bpf_classic_proglen(fprog);
1375 	struct bpf_prog *fp;
1376 	int err;
1377 
1378 	/* Make sure new filter is there and in the right amounts. */
1379 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1380 		return -EINVAL;
1381 
1382 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1383 	if (!fp)
1384 		return -ENOMEM;
1385 
1386 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1387 		__bpf_prog_free(fp);
1388 		return -EFAULT;
1389 	}
1390 
1391 	fp->len = fprog->len;
1392 	fp->orig_prog = NULL;
1393 
1394 	if (save_orig) {
1395 		err = bpf_prog_store_orig_filter(fp, fprog);
1396 		if (err) {
1397 			__bpf_prog_free(fp);
1398 			return -ENOMEM;
1399 		}
1400 	}
1401 
1402 	/* bpf_prepare_filter() already takes care of freeing
1403 	 * memory in case something goes wrong.
1404 	 */
1405 	fp = bpf_prepare_filter(fp, trans);
1406 	if (IS_ERR(fp))
1407 		return PTR_ERR(fp);
1408 
1409 	*pfp = fp;
1410 	return 0;
1411 }
1412 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1413 
1414 void bpf_prog_destroy(struct bpf_prog *fp)
1415 {
1416 	__bpf_prog_release(fp);
1417 }
1418 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1419 
1420 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1421 {
1422 	struct sk_filter *fp, *old_fp;
1423 
1424 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1425 	if (!fp)
1426 		return -ENOMEM;
1427 
1428 	fp->prog = prog;
1429 
1430 	if (!__sk_filter_charge(sk, fp)) {
1431 		kfree(fp);
1432 		return -ENOMEM;
1433 	}
1434 	refcount_set(&fp->refcnt, 1);
1435 
1436 	old_fp = rcu_dereference_protected(sk->sk_filter,
1437 					   lockdep_sock_is_held(sk));
1438 	rcu_assign_pointer(sk->sk_filter, fp);
1439 
1440 	if (old_fp)
1441 		sk_filter_uncharge(sk, old_fp);
1442 
1443 	return 0;
1444 }
1445 
1446 static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1447 {
1448 	struct bpf_prog *old_prog;
1449 	int err;
1450 
1451 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1452 		return -ENOMEM;
1453 
1454 	if (sk_unhashed(sk) && sk->sk_reuseport) {
1455 		err = reuseport_alloc(sk);
1456 		if (err)
1457 			return err;
1458 	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1459 		/* The socket wasn't bound with SO_REUSEPORT */
1460 		return -EINVAL;
1461 	}
1462 
1463 	old_prog = reuseport_attach_prog(sk, prog);
1464 	if (old_prog)
1465 		bpf_prog_destroy(old_prog);
1466 
1467 	return 0;
1468 }
1469 
1470 static
1471 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1472 {
1473 	unsigned int fsize = bpf_classic_proglen(fprog);
1474 	struct bpf_prog *prog;
1475 	int err;
1476 
1477 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1478 		return ERR_PTR(-EPERM);
1479 
1480 	/* Make sure new filter is there and in the right amounts. */
1481 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1482 		return ERR_PTR(-EINVAL);
1483 
1484 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1485 	if (!prog)
1486 		return ERR_PTR(-ENOMEM);
1487 
1488 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1489 		__bpf_prog_free(prog);
1490 		return ERR_PTR(-EFAULT);
1491 	}
1492 
1493 	prog->len = fprog->len;
1494 
1495 	err = bpf_prog_store_orig_filter(prog, fprog);
1496 	if (err) {
1497 		__bpf_prog_free(prog);
1498 		return ERR_PTR(-ENOMEM);
1499 	}
1500 
1501 	/* bpf_prepare_filter() already takes care of freeing
1502 	 * memory in case something goes wrong.
1503 	 */
1504 	return bpf_prepare_filter(prog, NULL);
1505 }
1506 
1507 /**
1508  *	sk_attach_filter - attach a socket filter
1509  *	@fprog: the filter program
1510  *	@sk: the socket to use
1511  *
1512  * Attach the user's filter code. We first run some sanity checks on
1513  * it to make sure it does not explode on us later. If an error
1514  * occurs or there is insufficient memory for the filter a negative
1515  * errno code is returned. On success the return is zero.
1516  */
1517 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1518 {
1519 	struct bpf_prog *prog = __get_filter(fprog, sk);
1520 	int err;
1521 
1522 	if (IS_ERR(prog))
1523 		return PTR_ERR(prog);
1524 
1525 	err = __sk_attach_prog(prog, sk);
1526 	if (err < 0) {
1527 		__bpf_prog_release(prog);
1528 		return err;
1529 	}
1530 
1531 	return 0;
1532 }
1533 EXPORT_SYMBOL_GPL(sk_attach_filter);
1534 
1535 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1536 {
1537 	struct bpf_prog *prog = __get_filter(fprog, sk);
1538 	int err;
1539 
1540 	if (IS_ERR(prog))
1541 		return PTR_ERR(prog);
1542 
1543 	err = __reuseport_attach_prog(prog, sk);
1544 	if (err < 0) {
1545 		__bpf_prog_release(prog);
1546 		return err;
1547 	}
1548 
1549 	return 0;
1550 }
1551 
1552 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1553 {
1554 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1555 		return ERR_PTR(-EPERM);
1556 
1557 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1558 }
1559 
1560 int sk_attach_bpf(u32 ufd, struct sock *sk)
1561 {
1562 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1563 	int err;
1564 
1565 	if (IS_ERR(prog))
1566 		return PTR_ERR(prog);
1567 
1568 	err = __sk_attach_prog(prog, sk);
1569 	if (err < 0) {
1570 		bpf_prog_put(prog);
1571 		return err;
1572 	}
1573 
1574 	return 0;
1575 }
1576 
1577 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1578 {
1579 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1580 	int err;
1581 
1582 	if (IS_ERR(prog))
1583 		return PTR_ERR(prog);
1584 
1585 	err = __reuseport_attach_prog(prog, sk);
1586 	if (err < 0) {
1587 		bpf_prog_put(prog);
1588 		return err;
1589 	}
1590 
1591 	return 0;
1592 }
1593 
1594 struct bpf_scratchpad {
1595 	union {
1596 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1597 		u8     buff[MAX_BPF_STACK];
1598 	};
1599 };
1600 
1601 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1602 
1603 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1604 					  unsigned int write_len)
1605 {
1606 	return skb_ensure_writable(skb, write_len);
1607 }
1608 
1609 static inline int bpf_try_make_writable(struct sk_buff *skb,
1610 					unsigned int write_len)
1611 {
1612 	int err = __bpf_try_make_writable(skb, write_len);
1613 
1614 	bpf_compute_data_pointers(skb);
1615 	return err;
1616 }
1617 
1618 static int bpf_try_make_head_writable(struct sk_buff *skb)
1619 {
1620 	return bpf_try_make_writable(skb, skb_headlen(skb));
1621 }
1622 
1623 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1624 {
1625 	if (skb_at_tc_ingress(skb))
1626 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1627 }
1628 
1629 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1630 {
1631 	if (skb_at_tc_ingress(skb))
1632 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1633 }
1634 
1635 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1636 	   const void *, from, u32, len, u64, flags)
1637 {
1638 	void *ptr;
1639 
1640 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1641 		return -EINVAL;
1642 	if (unlikely(offset > 0xffff))
1643 		return -EFAULT;
1644 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1645 		return -EFAULT;
1646 
1647 	ptr = skb->data + offset;
1648 	if (flags & BPF_F_RECOMPUTE_CSUM)
1649 		__skb_postpull_rcsum(skb, ptr, len, offset);
1650 
1651 	memcpy(ptr, from, len);
1652 
1653 	if (flags & BPF_F_RECOMPUTE_CSUM)
1654 		__skb_postpush_rcsum(skb, ptr, len, offset);
1655 	if (flags & BPF_F_INVALIDATE_HASH)
1656 		skb_clear_hash(skb);
1657 
1658 	return 0;
1659 }
1660 
1661 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1662 	.func		= bpf_skb_store_bytes,
1663 	.gpl_only	= false,
1664 	.ret_type	= RET_INTEGER,
1665 	.arg1_type	= ARG_PTR_TO_CTX,
1666 	.arg2_type	= ARG_ANYTHING,
1667 	.arg3_type	= ARG_PTR_TO_MEM,
1668 	.arg4_type	= ARG_CONST_SIZE,
1669 	.arg5_type	= ARG_ANYTHING,
1670 };
1671 
1672 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1673 	   void *, to, u32, len)
1674 {
1675 	void *ptr;
1676 
1677 	if (unlikely(offset > 0xffff))
1678 		goto err_clear;
1679 
1680 	ptr = skb_header_pointer(skb, offset, len, to);
1681 	if (unlikely(!ptr))
1682 		goto err_clear;
1683 	if (ptr != to)
1684 		memcpy(to, ptr, len);
1685 
1686 	return 0;
1687 err_clear:
1688 	memset(to, 0, len);
1689 	return -EFAULT;
1690 }
1691 
1692 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1693 	.func		= bpf_skb_load_bytes,
1694 	.gpl_only	= false,
1695 	.ret_type	= RET_INTEGER,
1696 	.arg1_type	= ARG_PTR_TO_CTX,
1697 	.arg2_type	= ARG_ANYTHING,
1698 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1699 	.arg4_type	= ARG_CONST_SIZE,
1700 };
1701 
1702 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1703 	   u32, offset, void *, to, u32, len, u32, start_header)
1704 {
1705 	u8 *ptr;
1706 
1707 	if (unlikely(offset > 0xffff || len > skb_headlen(skb)))
1708 		goto err_clear;
1709 
1710 	switch (start_header) {
1711 	case BPF_HDR_START_MAC:
1712 		ptr = skb_mac_header(skb) + offset;
1713 		break;
1714 	case BPF_HDR_START_NET:
1715 		ptr = skb_network_header(skb) + offset;
1716 		break;
1717 	default:
1718 		goto err_clear;
1719 	}
1720 
1721 	if (likely(ptr >= skb_mac_header(skb) &&
1722 		   ptr + len <= skb_tail_pointer(skb))) {
1723 		memcpy(to, ptr, len);
1724 		return 0;
1725 	}
1726 
1727 err_clear:
1728 	memset(to, 0, len);
1729 	return -EFAULT;
1730 }
1731 
1732 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1733 	.func		= bpf_skb_load_bytes_relative,
1734 	.gpl_only	= false,
1735 	.ret_type	= RET_INTEGER,
1736 	.arg1_type	= ARG_PTR_TO_CTX,
1737 	.arg2_type	= ARG_ANYTHING,
1738 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1739 	.arg4_type	= ARG_CONST_SIZE,
1740 	.arg5_type	= ARG_ANYTHING,
1741 };
1742 
1743 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1744 {
1745 	/* Idea is the following: should the needed direct read/write
1746 	 * test fail during runtime, we can pull in more data and redo
1747 	 * again, since implicitly, we invalidate previous checks here.
1748 	 *
1749 	 * Or, since we know how much we need to make read/writeable,
1750 	 * this can be done once at the program beginning for direct
1751 	 * access case. By this we overcome limitations of only current
1752 	 * headroom being accessible.
1753 	 */
1754 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1755 }
1756 
1757 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1758 	.func		= bpf_skb_pull_data,
1759 	.gpl_only	= false,
1760 	.ret_type	= RET_INTEGER,
1761 	.arg1_type	= ARG_PTR_TO_CTX,
1762 	.arg2_type	= ARG_ANYTHING,
1763 };
1764 
1765 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1766 	   u64, from, u64, to, u64, flags)
1767 {
1768 	__sum16 *ptr;
1769 
1770 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1771 		return -EINVAL;
1772 	if (unlikely(offset > 0xffff || offset & 1))
1773 		return -EFAULT;
1774 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1775 		return -EFAULT;
1776 
1777 	ptr = (__sum16 *)(skb->data + offset);
1778 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1779 	case 0:
1780 		if (unlikely(from != 0))
1781 			return -EINVAL;
1782 
1783 		csum_replace_by_diff(ptr, to);
1784 		break;
1785 	case 2:
1786 		csum_replace2(ptr, from, to);
1787 		break;
1788 	case 4:
1789 		csum_replace4(ptr, from, to);
1790 		break;
1791 	default:
1792 		return -EINVAL;
1793 	}
1794 
1795 	return 0;
1796 }
1797 
1798 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1799 	.func		= bpf_l3_csum_replace,
1800 	.gpl_only	= false,
1801 	.ret_type	= RET_INTEGER,
1802 	.arg1_type	= ARG_PTR_TO_CTX,
1803 	.arg2_type	= ARG_ANYTHING,
1804 	.arg3_type	= ARG_ANYTHING,
1805 	.arg4_type	= ARG_ANYTHING,
1806 	.arg5_type	= ARG_ANYTHING,
1807 };
1808 
1809 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1810 	   u64, from, u64, to, u64, flags)
1811 {
1812 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1813 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1814 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1815 	__sum16 *ptr;
1816 
1817 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1818 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1819 		return -EINVAL;
1820 	if (unlikely(offset > 0xffff || offset & 1))
1821 		return -EFAULT;
1822 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1823 		return -EFAULT;
1824 
1825 	ptr = (__sum16 *)(skb->data + offset);
1826 	if (is_mmzero && !do_mforce && !*ptr)
1827 		return 0;
1828 
1829 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1830 	case 0:
1831 		if (unlikely(from != 0))
1832 			return -EINVAL;
1833 
1834 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1835 		break;
1836 	case 2:
1837 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1838 		break;
1839 	case 4:
1840 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1841 		break;
1842 	default:
1843 		return -EINVAL;
1844 	}
1845 
1846 	if (is_mmzero && !*ptr)
1847 		*ptr = CSUM_MANGLED_0;
1848 	return 0;
1849 }
1850 
1851 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1852 	.func		= bpf_l4_csum_replace,
1853 	.gpl_only	= false,
1854 	.ret_type	= RET_INTEGER,
1855 	.arg1_type	= ARG_PTR_TO_CTX,
1856 	.arg2_type	= ARG_ANYTHING,
1857 	.arg3_type	= ARG_ANYTHING,
1858 	.arg4_type	= ARG_ANYTHING,
1859 	.arg5_type	= ARG_ANYTHING,
1860 };
1861 
1862 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1863 	   __be32 *, to, u32, to_size, __wsum, seed)
1864 {
1865 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1866 	u32 diff_size = from_size + to_size;
1867 	int i, j = 0;
1868 
1869 	/* This is quite flexible, some examples:
1870 	 *
1871 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1872 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1873 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1874 	 *
1875 	 * Even for diffing, from_size and to_size don't need to be equal.
1876 	 */
1877 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1878 		     diff_size > sizeof(sp->diff)))
1879 		return -EINVAL;
1880 
1881 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1882 		sp->diff[j] = ~from[i];
1883 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1884 		sp->diff[j] = to[i];
1885 
1886 	return csum_partial(sp->diff, diff_size, seed);
1887 }
1888 
1889 static const struct bpf_func_proto bpf_csum_diff_proto = {
1890 	.func		= bpf_csum_diff,
1891 	.gpl_only	= false,
1892 	.pkt_access	= true,
1893 	.ret_type	= RET_INTEGER,
1894 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1895 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1896 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
1897 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1898 	.arg5_type	= ARG_ANYTHING,
1899 };
1900 
1901 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1902 {
1903 	/* The interface is to be used in combination with bpf_csum_diff()
1904 	 * for direct packet writes. csum rotation for alignment as well
1905 	 * as emulating csum_sub() can be done from the eBPF program.
1906 	 */
1907 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1908 		return (skb->csum = csum_add(skb->csum, csum));
1909 
1910 	return -ENOTSUPP;
1911 }
1912 
1913 static const struct bpf_func_proto bpf_csum_update_proto = {
1914 	.func		= bpf_csum_update,
1915 	.gpl_only	= false,
1916 	.ret_type	= RET_INTEGER,
1917 	.arg1_type	= ARG_PTR_TO_CTX,
1918 	.arg2_type	= ARG_ANYTHING,
1919 };
1920 
1921 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1922 {
1923 	return dev_forward_skb(dev, skb);
1924 }
1925 
1926 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1927 				      struct sk_buff *skb)
1928 {
1929 	int ret = ____dev_forward_skb(dev, skb);
1930 
1931 	if (likely(!ret)) {
1932 		skb->dev = dev;
1933 		ret = netif_rx(skb);
1934 	}
1935 
1936 	return ret;
1937 }
1938 
1939 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
1940 {
1941 	int ret;
1942 
1943 	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
1944 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
1945 		kfree_skb(skb);
1946 		return -ENETDOWN;
1947 	}
1948 
1949 	skb->dev = dev;
1950 
1951 	__this_cpu_inc(xmit_recursion);
1952 	ret = dev_queue_xmit(skb);
1953 	__this_cpu_dec(xmit_recursion);
1954 
1955 	return ret;
1956 }
1957 
1958 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
1959 				 u32 flags)
1960 {
1961 	/* skb->mac_len is not set on normal egress */
1962 	unsigned int mlen = skb->network_header - skb->mac_header;
1963 
1964 	__skb_pull(skb, mlen);
1965 
1966 	/* At ingress, the mac header has already been pulled once.
1967 	 * At egress, skb_pospull_rcsum has to be done in case that
1968 	 * the skb is originated from ingress (i.e. a forwarded skb)
1969 	 * to ensure that rcsum starts at net header.
1970 	 */
1971 	if (!skb_at_tc_ingress(skb))
1972 		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
1973 	skb_pop_mac_header(skb);
1974 	skb_reset_mac_len(skb);
1975 	return flags & BPF_F_INGRESS ?
1976 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
1977 }
1978 
1979 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
1980 				 u32 flags)
1981 {
1982 	/* Verify that a link layer header is carried */
1983 	if (unlikely(skb->mac_header >= skb->network_header)) {
1984 		kfree_skb(skb);
1985 		return -ERANGE;
1986 	}
1987 
1988 	bpf_push_mac_rcsum(skb);
1989 	return flags & BPF_F_INGRESS ?
1990 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1991 }
1992 
1993 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
1994 			  u32 flags)
1995 {
1996 	if (dev_is_mac_header_xmit(dev))
1997 		return __bpf_redirect_common(skb, dev, flags);
1998 	else
1999 		return __bpf_redirect_no_mac(skb, dev, flags);
2000 }
2001 
2002 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2003 {
2004 	struct net_device *dev;
2005 	struct sk_buff *clone;
2006 	int ret;
2007 
2008 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2009 		return -EINVAL;
2010 
2011 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2012 	if (unlikely(!dev))
2013 		return -EINVAL;
2014 
2015 	clone = skb_clone(skb, GFP_ATOMIC);
2016 	if (unlikely(!clone))
2017 		return -ENOMEM;
2018 
2019 	/* For direct write, we need to keep the invariant that the skbs
2020 	 * we're dealing with need to be uncloned. Should uncloning fail
2021 	 * here, we need to free the just generated clone to unclone once
2022 	 * again.
2023 	 */
2024 	ret = bpf_try_make_head_writable(skb);
2025 	if (unlikely(ret)) {
2026 		kfree_skb(clone);
2027 		return -ENOMEM;
2028 	}
2029 
2030 	return __bpf_redirect(clone, dev, flags);
2031 }
2032 
2033 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2034 	.func           = bpf_clone_redirect,
2035 	.gpl_only       = false,
2036 	.ret_type       = RET_INTEGER,
2037 	.arg1_type      = ARG_PTR_TO_CTX,
2038 	.arg2_type      = ARG_ANYTHING,
2039 	.arg3_type      = ARG_ANYTHING,
2040 };
2041 
2042 struct redirect_info {
2043 	u32 ifindex;
2044 	u32 flags;
2045 	struct bpf_map *map;
2046 	struct bpf_map *map_to_flush;
2047 	unsigned long   map_owner;
2048 };
2049 
2050 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
2051 
2052 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2053 {
2054 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2055 
2056 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2057 		return TC_ACT_SHOT;
2058 
2059 	ri->ifindex = ifindex;
2060 	ri->flags = flags;
2061 
2062 	return TC_ACT_REDIRECT;
2063 }
2064 
2065 int skb_do_redirect(struct sk_buff *skb)
2066 {
2067 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2068 	struct net_device *dev;
2069 
2070 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
2071 	ri->ifindex = 0;
2072 	if (unlikely(!dev)) {
2073 		kfree_skb(skb);
2074 		return -EINVAL;
2075 	}
2076 
2077 	return __bpf_redirect(skb, dev, ri->flags);
2078 }
2079 
2080 static const struct bpf_func_proto bpf_redirect_proto = {
2081 	.func           = bpf_redirect,
2082 	.gpl_only       = false,
2083 	.ret_type       = RET_INTEGER,
2084 	.arg1_type      = ARG_ANYTHING,
2085 	.arg2_type      = ARG_ANYTHING,
2086 };
2087 
2088 BPF_CALL_4(bpf_sk_redirect_hash, struct sk_buff *, skb,
2089 	   struct bpf_map *, map, void *, key, u64, flags)
2090 {
2091 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2092 
2093 	/* If user passes invalid input drop the packet. */
2094 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2095 		return SK_DROP;
2096 
2097 	tcb->bpf.flags = flags;
2098 	tcb->bpf.sk_redir = __sock_hash_lookup_elem(map, key);
2099 	if (!tcb->bpf.sk_redir)
2100 		return SK_DROP;
2101 
2102 	return SK_PASS;
2103 }
2104 
2105 static const struct bpf_func_proto bpf_sk_redirect_hash_proto = {
2106 	.func           = bpf_sk_redirect_hash,
2107 	.gpl_only       = false,
2108 	.ret_type       = RET_INTEGER,
2109 	.arg1_type	= ARG_PTR_TO_CTX,
2110 	.arg2_type      = ARG_CONST_MAP_PTR,
2111 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
2112 	.arg4_type      = ARG_ANYTHING,
2113 };
2114 
2115 BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
2116 	   struct bpf_map *, map, u32, key, u64, flags)
2117 {
2118 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2119 
2120 	/* If user passes invalid input drop the packet. */
2121 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2122 		return SK_DROP;
2123 
2124 	tcb->bpf.flags = flags;
2125 	tcb->bpf.sk_redir = __sock_map_lookup_elem(map, key);
2126 	if (!tcb->bpf.sk_redir)
2127 		return SK_DROP;
2128 
2129 	return SK_PASS;
2130 }
2131 
2132 struct sock *do_sk_redirect_map(struct sk_buff *skb)
2133 {
2134 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2135 
2136 	return tcb->bpf.sk_redir;
2137 }
2138 
2139 static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
2140 	.func           = bpf_sk_redirect_map,
2141 	.gpl_only       = false,
2142 	.ret_type       = RET_INTEGER,
2143 	.arg1_type	= ARG_PTR_TO_CTX,
2144 	.arg2_type      = ARG_CONST_MAP_PTR,
2145 	.arg3_type      = ARG_ANYTHING,
2146 	.arg4_type      = ARG_ANYTHING,
2147 };
2148 
2149 BPF_CALL_4(bpf_msg_redirect_hash, struct sk_msg_buff *, msg,
2150 	   struct bpf_map *, map, void *, key, u64, flags)
2151 {
2152 	/* If user passes invalid input drop the packet. */
2153 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2154 		return SK_DROP;
2155 
2156 	msg->flags = flags;
2157 	msg->sk_redir = __sock_hash_lookup_elem(map, key);
2158 	if (!msg->sk_redir)
2159 		return SK_DROP;
2160 
2161 	return SK_PASS;
2162 }
2163 
2164 static const struct bpf_func_proto bpf_msg_redirect_hash_proto = {
2165 	.func           = bpf_msg_redirect_hash,
2166 	.gpl_only       = false,
2167 	.ret_type       = RET_INTEGER,
2168 	.arg1_type	= ARG_PTR_TO_CTX,
2169 	.arg2_type      = ARG_CONST_MAP_PTR,
2170 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
2171 	.arg4_type      = ARG_ANYTHING,
2172 };
2173 
2174 BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg,
2175 	   struct bpf_map *, map, u32, key, u64, flags)
2176 {
2177 	/* If user passes invalid input drop the packet. */
2178 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2179 		return SK_DROP;
2180 
2181 	msg->flags = flags;
2182 	msg->sk_redir = __sock_map_lookup_elem(map, key);
2183 	if (!msg->sk_redir)
2184 		return SK_DROP;
2185 
2186 	return SK_PASS;
2187 }
2188 
2189 struct sock *do_msg_redirect_map(struct sk_msg_buff *msg)
2190 {
2191 	return msg->sk_redir;
2192 }
2193 
2194 static const struct bpf_func_proto bpf_msg_redirect_map_proto = {
2195 	.func           = bpf_msg_redirect_map,
2196 	.gpl_only       = false,
2197 	.ret_type       = RET_INTEGER,
2198 	.arg1_type	= ARG_PTR_TO_CTX,
2199 	.arg2_type      = ARG_CONST_MAP_PTR,
2200 	.arg3_type      = ARG_ANYTHING,
2201 	.arg4_type      = ARG_ANYTHING,
2202 };
2203 
2204 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes)
2205 {
2206 	msg->apply_bytes = bytes;
2207 	return 0;
2208 }
2209 
2210 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2211 	.func           = bpf_msg_apply_bytes,
2212 	.gpl_only       = false,
2213 	.ret_type       = RET_INTEGER,
2214 	.arg1_type	= ARG_PTR_TO_CTX,
2215 	.arg2_type      = ARG_ANYTHING,
2216 };
2217 
2218 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes)
2219 {
2220 	msg->cork_bytes = bytes;
2221 	return 0;
2222 }
2223 
2224 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2225 	.func           = bpf_msg_cork_bytes,
2226 	.gpl_only       = false,
2227 	.ret_type       = RET_INTEGER,
2228 	.arg1_type	= ARG_PTR_TO_CTX,
2229 	.arg2_type      = ARG_ANYTHING,
2230 };
2231 
2232 BPF_CALL_4(bpf_msg_pull_data,
2233 	   struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags)
2234 {
2235 	unsigned int len = 0, offset = 0, copy = 0;
2236 	struct scatterlist *sg = msg->sg_data;
2237 	int first_sg, last_sg, i, shift;
2238 	unsigned char *p, *to, *from;
2239 	int bytes = end - start;
2240 	struct page *page;
2241 
2242 	if (unlikely(flags || end <= start))
2243 		return -EINVAL;
2244 
2245 	/* First find the starting scatterlist element */
2246 	i = msg->sg_start;
2247 	do {
2248 		len = sg[i].length;
2249 		offset += len;
2250 		if (start < offset + len)
2251 			break;
2252 		i++;
2253 		if (i == MAX_SKB_FRAGS)
2254 			i = 0;
2255 	} while (i != msg->sg_end);
2256 
2257 	if (unlikely(start >= offset + len))
2258 		return -EINVAL;
2259 
2260 	if (!msg->sg_copy[i] && bytes <= len)
2261 		goto out;
2262 
2263 	first_sg = i;
2264 
2265 	/* At this point we need to linearize multiple scatterlist
2266 	 * elements or a single shared page. Either way we need to
2267 	 * copy into a linear buffer exclusively owned by BPF. Then
2268 	 * place the buffer in the scatterlist and fixup the original
2269 	 * entries by removing the entries now in the linear buffer
2270 	 * and shifting the remaining entries. For now we do not try
2271 	 * to copy partial entries to avoid complexity of running out
2272 	 * of sg_entry slots. The downside is reading a single byte
2273 	 * will copy the entire sg entry.
2274 	 */
2275 	do {
2276 		copy += sg[i].length;
2277 		i++;
2278 		if (i == MAX_SKB_FRAGS)
2279 			i = 0;
2280 		if (bytes < copy)
2281 			break;
2282 	} while (i != msg->sg_end);
2283 	last_sg = i;
2284 
2285 	if (unlikely(copy < end - start))
2286 		return -EINVAL;
2287 
2288 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC, get_order(copy));
2289 	if (unlikely(!page))
2290 		return -ENOMEM;
2291 	p = page_address(page);
2292 	offset = 0;
2293 
2294 	i = first_sg;
2295 	do {
2296 		from = sg_virt(&sg[i]);
2297 		len = sg[i].length;
2298 		to = p + offset;
2299 
2300 		memcpy(to, from, len);
2301 		offset += len;
2302 		sg[i].length = 0;
2303 		put_page(sg_page(&sg[i]));
2304 
2305 		i++;
2306 		if (i == MAX_SKB_FRAGS)
2307 			i = 0;
2308 	} while (i != last_sg);
2309 
2310 	sg[first_sg].length = copy;
2311 	sg_set_page(&sg[first_sg], page, copy, 0);
2312 
2313 	/* To repair sg ring we need to shift entries. If we only
2314 	 * had a single entry though we can just replace it and
2315 	 * be done. Otherwise walk the ring and shift the entries.
2316 	 */
2317 	shift = last_sg - first_sg - 1;
2318 	if (!shift)
2319 		goto out;
2320 
2321 	i = first_sg + 1;
2322 	do {
2323 		int move_from;
2324 
2325 		if (i + shift >= MAX_SKB_FRAGS)
2326 			move_from = i + shift - MAX_SKB_FRAGS;
2327 		else
2328 			move_from = i + shift;
2329 
2330 		if (move_from == msg->sg_end)
2331 			break;
2332 
2333 		sg[i] = sg[move_from];
2334 		sg[move_from].length = 0;
2335 		sg[move_from].page_link = 0;
2336 		sg[move_from].offset = 0;
2337 
2338 		i++;
2339 		if (i == MAX_SKB_FRAGS)
2340 			i = 0;
2341 	} while (1);
2342 	msg->sg_end -= shift;
2343 	if (msg->sg_end < 0)
2344 		msg->sg_end += MAX_SKB_FRAGS;
2345 out:
2346 	msg->data = sg_virt(&sg[i]) + start - offset;
2347 	msg->data_end = msg->data + bytes;
2348 
2349 	return 0;
2350 }
2351 
2352 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2353 	.func		= bpf_msg_pull_data,
2354 	.gpl_only	= false,
2355 	.ret_type	= RET_INTEGER,
2356 	.arg1_type	= ARG_PTR_TO_CTX,
2357 	.arg2_type	= ARG_ANYTHING,
2358 	.arg3_type	= ARG_ANYTHING,
2359 	.arg4_type	= ARG_ANYTHING,
2360 };
2361 
2362 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2363 {
2364 	return task_get_classid(skb);
2365 }
2366 
2367 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2368 	.func           = bpf_get_cgroup_classid,
2369 	.gpl_only       = false,
2370 	.ret_type       = RET_INTEGER,
2371 	.arg1_type      = ARG_PTR_TO_CTX,
2372 };
2373 
2374 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2375 {
2376 	return dst_tclassid(skb);
2377 }
2378 
2379 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2380 	.func           = bpf_get_route_realm,
2381 	.gpl_only       = false,
2382 	.ret_type       = RET_INTEGER,
2383 	.arg1_type      = ARG_PTR_TO_CTX,
2384 };
2385 
2386 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2387 {
2388 	/* If skb_clear_hash() was called due to mangling, we can
2389 	 * trigger SW recalculation here. Later access to hash
2390 	 * can then use the inline skb->hash via context directly
2391 	 * instead of calling this helper again.
2392 	 */
2393 	return skb_get_hash(skb);
2394 }
2395 
2396 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2397 	.func		= bpf_get_hash_recalc,
2398 	.gpl_only	= false,
2399 	.ret_type	= RET_INTEGER,
2400 	.arg1_type	= ARG_PTR_TO_CTX,
2401 };
2402 
2403 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2404 {
2405 	/* After all direct packet write, this can be used once for
2406 	 * triggering a lazy recalc on next skb_get_hash() invocation.
2407 	 */
2408 	skb_clear_hash(skb);
2409 	return 0;
2410 }
2411 
2412 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2413 	.func		= bpf_set_hash_invalid,
2414 	.gpl_only	= false,
2415 	.ret_type	= RET_INTEGER,
2416 	.arg1_type	= ARG_PTR_TO_CTX,
2417 };
2418 
2419 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2420 {
2421 	/* Set user specified hash as L4(+), so that it gets returned
2422 	 * on skb_get_hash() call unless BPF prog later on triggers a
2423 	 * skb_clear_hash().
2424 	 */
2425 	__skb_set_sw_hash(skb, hash, true);
2426 	return 0;
2427 }
2428 
2429 static const struct bpf_func_proto bpf_set_hash_proto = {
2430 	.func		= bpf_set_hash,
2431 	.gpl_only	= false,
2432 	.ret_type	= RET_INTEGER,
2433 	.arg1_type	= ARG_PTR_TO_CTX,
2434 	.arg2_type	= ARG_ANYTHING,
2435 };
2436 
2437 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2438 	   u16, vlan_tci)
2439 {
2440 	int ret;
2441 
2442 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2443 		     vlan_proto != htons(ETH_P_8021AD)))
2444 		vlan_proto = htons(ETH_P_8021Q);
2445 
2446 	bpf_push_mac_rcsum(skb);
2447 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2448 	bpf_pull_mac_rcsum(skb);
2449 
2450 	bpf_compute_data_pointers(skb);
2451 	return ret;
2452 }
2453 
2454 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2455 	.func           = bpf_skb_vlan_push,
2456 	.gpl_only       = false,
2457 	.ret_type       = RET_INTEGER,
2458 	.arg1_type      = ARG_PTR_TO_CTX,
2459 	.arg2_type      = ARG_ANYTHING,
2460 	.arg3_type      = ARG_ANYTHING,
2461 };
2462 
2463 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2464 {
2465 	int ret;
2466 
2467 	bpf_push_mac_rcsum(skb);
2468 	ret = skb_vlan_pop(skb);
2469 	bpf_pull_mac_rcsum(skb);
2470 
2471 	bpf_compute_data_pointers(skb);
2472 	return ret;
2473 }
2474 
2475 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2476 	.func           = bpf_skb_vlan_pop,
2477 	.gpl_only       = false,
2478 	.ret_type       = RET_INTEGER,
2479 	.arg1_type      = ARG_PTR_TO_CTX,
2480 };
2481 
2482 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2483 {
2484 	/* Caller already did skb_cow() with len as headroom,
2485 	 * so no need to do it here.
2486 	 */
2487 	skb_push(skb, len);
2488 	memmove(skb->data, skb->data + len, off);
2489 	memset(skb->data + off, 0, len);
2490 
2491 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
2492 	 * needed here as it does not change the skb->csum
2493 	 * result for checksum complete when summing over
2494 	 * zeroed blocks.
2495 	 */
2496 	return 0;
2497 }
2498 
2499 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2500 {
2501 	/* skb_ensure_writable() is not needed here, as we're
2502 	 * already working on an uncloned skb.
2503 	 */
2504 	if (unlikely(!pskb_may_pull(skb, off + len)))
2505 		return -ENOMEM;
2506 
2507 	skb_postpull_rcsum(skb, skb->data + off, len);
2508 	memmove(skb->data + len, skb->data, off);
2509 	__skb_pull(skb, len);
2510 
2511 	return 0;
2512 }
2513 
2514 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2515 {
2516 	bool trans_same = skb->transport_header == skb->network_header;
2517 	int ret;
2518 
2519 	/* There's no need for __skb_push()/__skb_pull() pair to
2520 	 * get to the start of the mac header as we're guaranteed
2521 	 * to always start from here under eBPF.
2522 	 */
2523 	ret = bpf_skb_generic_push(skb, off, len);
2524 	if (likely(!ret)) {
2525 		skb->mac_header -= len;
2526 		skb->network_header -= len;
2527 		if (trans_same)
2528 			skb->transport_header = skb->network_header;
2529 	}
2530 
2531 	return ret;
2532 }
2533 
2534 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2535 {
2536 	bool trans_same = skb->transport_header == skb->network_header;
2537 	int ret;
2538 
2539 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
2540 	ret = bpf_skb_generic_pop(skb, off, len);
2541 	if (likely(!ret)) {
2542 		skb->mac_header += len;
2543 		skb->network_header += len;
2544 		if (trans_same)
2545 			skb->transport_header = skb->network_header;
2546 	}
2547 
2548 	return ret;
2549 }
2550 
2551 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2552 {
2553 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2554 	u32 off = skb_mac_header_len(skb);
2555 	int ret;
2556 
2557 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2558 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2559 		return -ENOTSUPP;
2560 
2561 	ret = skb_cow(skb, len_diff);
2562 	if (unlikely(ret < 0))
2563 		return ret;
2564 
2565 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2566 	if (unlikely(ret < 0))
2567 		return ret;
2568 
2569 	if (skb_is_gso(skb)) {
2570 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2571 
2572 		/* SKB_GSO_TCPV4 needs to be changed into
2573 		 * SKB_GSO_TCPV6.
2574 		 */
2575 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
2576 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
2577 			shinfo->gso_type |=  SKB_GSO_TCPV6;
2578 		}
2579 
2580 		/* Due to IPv6 header, MSS needs to be downgraded. */
2581 		skb_decrease_gso_size(shinfo, len_diff);
2582 		/* Header must be checked, and gso_segs recomputed. */
2583 		shinfo->gso_type |= SKB_GSO_DODGY;
2584 		shinfo->gso_segs = 0;
2585 	}
2586 
2587 	skb->protocol = htons(ETH_P_IPV6);
2588 	skb_clear_hash(skb);
2589 
2590 	return 0;
2591 }
2592 
2593 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2594 {
2595 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2596 	u32 off = skb_mac_header_len(skb);
2597 	int ret;
2598 
2599 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2600 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2601 		return -ENOTSUPP;
2602 
2603 	ret = skb_unclone(skb, GFP_ATOMIC);
2604 	if (unlikely(ret < 0))
2605 		return ret;
2606 
2607 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2608 	if (unlikely(ret < 0))
2609 		return ret;
2610 
2611 	if (skb_is_gso(skb)) {
2612 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2613 
2614 		/* SKB_GSO_TCPV6 needs to be changed into
2615 		 * SKB_GSO_TCPV4.
2616 		 */
2617 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
2618 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
2619 			shinfo->gso_type |=  SKB_GSO_TCPV4;
2620 		}
2621 
2622 		/* Due to IPv4 header, MSS can be upgraded. */
2623 		skb_increase_gso_size(shinfo, len_diff);
2624 		/* Header must be checked, and gso_segs recomputed. */
2625 		shinfo->gso_type |= SKB_GSO_DODGY;
2626 		shinfo->gso_segs = 0;
2627 	}
2628 
2629 	skb->protocol = htons(ETH_P_IP);
2630 	skb_clear_hash(skb);
2631 
2632 	return 0;
2633 }
2634 
2635 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2636 {
2637 	__be16 from_proto = skb->protocol;
2638 
2639 	if (from_proto == htons(ETH_P_IP) &&
2640 	      to_proto == htons(ETH_P_IPV6))
2641 		return bpf_skb_proto_4_to_6(skb);
2642 
2643 	if (from_proto == htons(ETH_P_IPV6) &&
2644 	      to_proto == htons(ETH_P_IP))
2645 		return bpf_skb_proto_6_to_4(skb);
2646 
2647 	return -ENOTSUPP;
2648 }
2649 
2650 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2651 	   u64, flags)
2652 {
2653 	int ret;
2654 
2655 	if (unlikely(flags))
2656 		return -EINVAL;
2657 
2658 	/* General idea is that this helper does the basic groundwork
2659 	 * needed for changing the protocol, and eBPF program fills the
2660 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2661 	 * and other helpers, rather than passing a raw buffer here.
2662 	 *
2663 	 * The rationale is to keep this minimal and without a need to
2664 	 * deal with raw packet data. F.e. even if we would pass buffers
2665 	 * here, the program still needs to call the bpf_lX_csum_replace()
2666 	 * helpers anyway. Plus, this way we keep also separation of
2667 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
2668 	 * care of stores.
2669 	 *
2670 	 * Currently, additional options and extension header space are
2671 	 * not supported, but flags register is reserved so we can adapt
2672 	 * that. For offloads, we mark packet as dodgy, so that headers
2673 	 * need to be verified first.
2674 	 */
2675 	ret = bpf_skb_proto_xlat(skb, proto);
2676 	bpf_compute_data_pointers(skb);
2677 	return ret;
2678 }
2679 
2680 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2681 	.func		= bpf_skb_change_proto,
2682 	.gpl_only	= false,
2683 	.ret_type	= RET_INTEGER,
2684 	.arg1_type	= ARG_PTR_TO_CTX,
2685 	.arg2_type	= ARG_ANYTHING,
2686 	.arg3_type	= ARG_ANYTHING,
2687 };
2688 
2689 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2690 {
2691 	/* We only allow a restricted subset to be changed for now. */
2692 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2693 		     !skb_pkt_type_ok(pkt_type)))
2694 		return -EINVAL;
2695 
2696 	skb->pkt_type = pkt_type;
2697 	return 0;
2698 }
2699 
2700 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2701 	.func		= bpf_skb_change_type,
2702 	.gpl_only	= false,
2703 	.ret_type	= RET_INTEGER,
2704 	.arg1_type	= ARG_PTR_TO_CTX,
2705 	.arg2_type	= ARG_ANYTHING,
2706 };
2707 
2708 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2709 {
2710 	switch (skb->protocol) {
2711 	case htons(ETH_P_IP):
2712 		return sizeof(struct iphdr);
2713 	case htons(ETH_P_IPV6):
2714 		return sizeof(struct ipv6hdr);
2715 	default:
2716 		return ~0U;
2717 	}
2718 }
2719 
2720 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2721 {
2722 	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2723 	int ret;
2724 
2725 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2726 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2727 		return -ENOTSUPP;
2728 
2729 	ret = skb_cow(skb, len_diff);
2730 	if (unlikely(ret < 0))
2731 		return ret;
2732 
2733 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2734 	if (unlikely(ret < 0))
2735 		return ret;
2736 
2737 	if (skb_is_gso(skb)) {
2738 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2739 
2740 		/* Due to header grow, MSS needs to be downgraded. */
2741 		skb_decrease_gso_size(shinfo, len_diff);
2742 		/* Header must be checked, and gso_segs recomputed. */
2743 		shinfo->gso_type |= SKB_GSO_DODGY;
2744 		shinfo->gso_segs = 0;
2745 	}
2746 
2747 	return 0;
2748 }
2749 
2750 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2751 {
2752 	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2753 	int ret;
2754 
2755 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2756 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2757 		return -ENOTSUPP;
2758 
2759 	ret = skb_unclone(skb, GFP_ATOMIC);
2760 	if (unlikely(ret < 0))
2761 		return ret;
2762 
2763 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2764 	if (unlikely(ret < 0))
2765 		return ret;
2766 
2767 	if (skb_is_gso(skb)) {
2768 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2769 
2770 		/* Due to header shrink, MSS can be upgraded. */
2771 		skb_increase_gso_size(shinfo, len_diff);
2772 		/* Header must be checked, and gso_segs recomputed. */
2773 		shinfo->gso_type |= SKB_GSO_DODGY;
2774 		shinfo->gso_segs = 0;
2775 	}
2776 
2777 	return 0;
2778 }
2779 
2780 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2781 {
2782 	return skb->dev->mtu + skb->dev->hard_header_len;
2783 }
2784 
2785 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2786 {
2787 	bool trans_same = skb->transport_header == skb->network_header;
2788 	u32 len_cur, len_diff_abs = abs(len_diff);
2789 	u32 len_min = bpf_skb_net_base_len(skb);
2790 	u32 len_max = __bpf_skb_max_len(skb);
2791 	__be16 proto = skb->protocol;
2792 	bool shrink = len_diff < 0;
2793 	int ret;
2794 
2795 	if (unlikely(len_diff_abs > 0xfffU))
2796 		return -EFAULT;
2797 	if (unlikely(proto != htons(ETH_P_IP) &&
2798 		     proto != htons(ETH_P_IPV6)))
2799 		return -ENOTSUPP;
2800 
2801 	len_cur = skb->len - skb_network_offset(skb);
2802 	if (skb_transport_header_was_set(skb) && !trans_same)
2803 		len_cur = skb_network_header_len(skb);
2804 	if ((shrink && (len_diff_abs >= len_cur ||
2805 			len_cur - len_diff_abs < len_min)) ||
2806 	    (!shrink && (skb->len + len_diff_abs > len_max &&
2807 			 !skb_is_gso(skb))))
2808 		return -ENOTSUPP;
2809 
2810 	ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2811 		       bpf_skb_net_grow(skb, len_diff_abs);
2812 
2813 	bpf_compute_data_pointers(skb);
2814 	return ret;
2815 }
2816 
2817 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2818 	   u32, mode, u64, flags)
2819 {
2820 	if (unlikely(flags))
2821 		return -EINVAL;
2822 	if (likely(mode == BPF_ADJ_ROOM_NET))
2823 		return bpf_skb_adjust_net(skb, len_diff);
2824 
2825 	return -ENOTSUPP;
2826 }
2827 
2828 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2829 	.func		= bpf_skb_adjust_room,
2830 	.gpl_only	= false,
2831 	.ret_type	= RET_INTEGER,
2832 	.arg1_type	= ARG_PTR_TO_CTX,
2833 	.arg2_type	= ARG_ANYTHING,
2834 	.arg3_type	= ARG_ANYTHING,
2835 	.arg4_type	= ARG_ANYTHING,
2836 };
2837 
2838 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2839 {
2840 	u32 min_len = skb_network_offset(skb);
2841 
2842 	if (skb_transport_header_was_set(skb))
2843 		min_len = skb_transport_offset(skb);
2844 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2845 		min_len = skb_checksum_start_offset(skb) +
2846 			  skb->csum_offset + sizeof(__sum16);
2847 	return min_len;
2848 }
2849 
2850 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2851 {
2852 	unsigned int old_len = skb->len;
2853 	int ret;
2854 
2855 	ret = __skb_grow_rcsum(skb, new_len);
2856 	if (!ret)
2857 		memset(skb->data + old_len, 0, new_len - old_len);
2858 	return ret;
2859 }
2860 
2861 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2862 {
2863 	return __skb_trim_rcsum(skb, new_len);
2864 }
2865 
2866 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2867 	   u64, flags)
2868 {
2869 	u32 max_len = __bpf_skb_max_len(skb);
2870 	u32 min_len = __bpf_skb_min_len(skb);
2871 	int ret;
2872 
2873 	if (unlikely(flags || new_len > max_len || new_len < min_len))
2874 		return -EINVAL;
2875 	if (skb->encapsulation)
2876 		return -ENOTSUPP;
2877 
2878 	/* The basic idea of this helper is that it's performing the
2879 	 * needed work to either grow or trim an skb, and eBPF program
2880 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
2881 	 * bpf_lX_csum_replace() and others rather than passing a raw
2882 	 * buffer here. This one is a slow path helper and intended
2883 	 * for replies with control messages.
2884 	 *
2885 	 * Like in bpf_skb_change_proto(), we want to keep this rather
2886 	 * minimal and without protocol specifics so that we are able
2887 	 * to separate concerns as in bpf_skb_store_bytes() should only
2888 	 * be the one responsible for writing buffers.
2889 	 *
2890 	 * It's really expected to be a slow path operation here for
2891 	 * control message replies, so we're implicitly linearizing,
2892 	 * uncloning and drop offloads from the skb by this.
2893 	 */
2894 	ret = __bpf_try_make_writable(skb, skb->len);
2895 	if (!ret) {
2896 		if (new_len > skb->len)
2897 			ret = bpf_skb_grow_rcsum(skb, new_len);
2898 		else if (new_len < skb->len)
2899 			ret = bpf_skb_trim_rcsum(skb, new_len);
2900 		if (!ret && skb_is_gso(skb))
2901 			skb_gso_reset(skb);
2902 	}
2903 
2904 	bpf_compute_data_pointers(skb);
2905 	return ret;
2906 }
2907 
2908 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2909 	.func		= bpf_skb_change_tail,
2910 	.gpl_only	= false,
2911 	.ret_type	= RET_INTEGER,
2912 	.arg1_type	= ARG_PTR_TO_CTX,
2913 	.arg2_type	= ARG_ANYTHING,
2914 	.arg3_type	= ARG_ANYTHING,
2915 };
2916 
2917 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
2918 	   u64, flags)
2919 {
2920 	u32 max_len = __bpf_skb_max_len(skb);
2921 	u32 new_len = skb->len + head_room;
2922 	int ret;
2923 
2924 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
2925 		     new_len < skb->len))
2926 		return -EINVAL;
2927 
2928 	ret = skb_cow(skb, head_room);
2929 	if (likely(!ret)) {
2930 		/* Idea for this helper is that we currently only
2931 		 * allow to expand on mac header. This means that
2932 		 * skb->protocol network header, etc, stay as is.
2933 		 * Compared to bpf_skb_change_tail(), we're more
2934 		 * flexible due to not needing to linearize or
2935 		 * reset GSO. Intention for this helper is to be
2936 		 * used by an L3 skb that needs to push mac header
2937 		 * for redirection into L2 device.
2938 		 */
2939 		__skb_push(skb, head_room);
2940 		memset(skb->data, 0, head_room);
2941 		skb_reset_mac_header(skb);
2942 	}
2943 
2944 	bpf_compute_data_pointers(skb);
2945 	return 0;
2946 }
2947 
2948 static const struct bpf_func_proto bpf_skb_change_head_proto = {
2949 	.func		= bpf_skb_change_head,
2950 	.gpl_only	= false,
2951 	.ret_type	= RET_INTEGER,
2952 	.arg1_type	= ARG_PTR_TO_CTX,
2953 	.arg2_type	= ARG_ANYTHING,
2954 	.arg3_type	= ARG_ANYTHING,
2955 };
2956 
2957 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
2958 {
2959 	return xdp_data_meta_unsupported(xdp) ? 0 :
2960 	       xdp->data - xdp->data_meta;
2961 }
2962 
2963 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
2964 {
2965 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
2966 	unsigned long metalen = xdp_get_metalen(xdp);
2967 	void *data_start = xdp_frame_end + metalen;
2968 	void *data = xdp->data + offset;
2969 
2970 	if (unlikely(data < data_start ||
2971 		     data > xdp->data_end - ETH_HLEN))
2972 		return -EINVAL;
2973 
2974 	if (metalen)
2975 		memmove(xdp->data_meta + offset,
2976 			xdp->data_meta, metalen);
2977 	xdp->data_meta += offset;
2978 	xdp->data = data;
2979 
2980 	return 0;
2981 }
2982 
2983 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
2984 	.func		= bpf_xdp_adjust_head,
2985 	.gpl_only	= false,
2986 	.ret_type	= RET_INTEGER,
2987 	.arg1_type	= ARG_PTR_TO_CTX,
2988 	.arg2_type	= ARG_ANYTHING,
2989 };
2990 
2991 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
2992 {
2993 	void *data_end = xdp->data_end + offset;
2994 
2995 	/* only shrinking is allowed for now. */
2996 	if (unlikely(offset >= 0))
2997 		return -EINVAL;
2998 
2999 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3000 		return -EINVAL;
3001 
3002 	xdp->data_end = data_end;
3003 
3004 	return 0;
3005 }
3006 
3007 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3008 	.func		= bpf_xdp_adjust_tail,
3009 	.gpl_only	= false,
3010 	.ret_type	= RET_INTEGER,
3011 	.arg1_type	= ARG_PTR_TO_CTX,
3012 	.arg2_type	= ARG_ANYTHING,
3013 };
3014 
3015 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3016 {
3017 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3018 	void *meta = xdp->data_meta + offset;
3019 	unsigned long metalen = xdp->data - meta;
3020 
3021 	if (xdp_data_meta_unsupported(xdp))
3022 		return -ENOTSUPP;
3023 	if (unlikely(meta < xdp_frame_end ||
3024 		     meta > xdp->data))
3025 		return -EINVAL;
3026 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3027 		     (metalen > 32)))
3028 		return -EACCES;
3029 
3030 	xdp->data_meta = meta;
3031 
3032 	return 0;
3033 }
3034 
3035 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3036 	.func		= bpf_xdp_adjust_meta,
3037 	.gpl_only	= false,
3038 	.ret_type	= RET_INTEGER,
3039 	.arg1_type	= ARG_PTR_TO_CTX,
3040 	.arg2_type	= ARG_ANYTHING,
3041 };
3042 
3043 static int __bpf_tx_xdp(struct net_device *dev,
3044 			struct bpf_map *map,
3045 			struct xdp_buff *xdp,
3046 			u32 index)
3047 {
3048 	struct xdp_frame *xdpf;
3049 	int sent;
3050 
3051 	if (!dev->netdev_ops->ndo_xdp_xmit) {
3052 		return -EOPNOTSUPP;
3053 	}
3054 
3055 	xdpf = convert_to_xdp_frame(xdp);
3056 	if (unlikely(!xdpf))
3057 		return -EOVERFLOW;
3058 
3059 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3060 	if (sent <= 0)
3061 		return sent;
3062 	return 0;
3063 }
3064 
3065 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3066 			    struct bpf_map *map,
3067 			    struct xdp_buff *xdp,
3068 			    u32 index)
3069 {
3070 	int err;
3071 
3072 	switch (map->map_type) {
3073 	case BPF_MAP_TYPE_DEVMAP: {
3074 		struct bpf_dtab_netdev *dst = fwd;
3075 
3076 		err = dev_map_enqueue(dst, xdp, dev_rx);
3077 		if (err)
3078 			return err;
3079 		__dev_map_insert_ctx(map, index);
3080 		break;
3081 	}
3082 	case BPF_MAP_TYPE_CPUMAP: {
3083 		struct bpf_cpu_map_entry *rcpu = fwd;
3084 
3085 		err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3086 		if (err)
3087 			return err;
3088 		__cpu_map_insert_ctx(map, index);
3089 		break;
3090 	}
3091 	case BPF_MAP_TYPE_XSKMAP: {
3092 		struct xdp_sock *xs = fwd;
3093 
3094 		err = __xsk_map_redirect(map, xdp, xs);
3095 		return err;
3096 	}
3097 	default:
3098 		break;
3099 	}
3100 	return 0;
3101 }
3102 
3103 void xdp_do_flush_map(void)
3104 {
3105 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3106 	struct bpf_map *map = ri->map_to_flush;
3107 
3108 	ri->map_to_flush = NULL;
3109 	if (map) {
3110 		switch (map->map_type) {
3111 		case BPF_MAP_TYPE_DEVMAP:
3112 			__dev_map_flush(map);
3113 			break;
3114 		case BPF_MAP_TYPE_CPUMAP:
3115 			__cpu_map_flush(map);
3116 			break;
3117 		case BPF_MAP_TYPE_XSKMAP:
3118 			__xsk_map_flush(map);
3119 			break;
3120 		default:
3121 			break;
3122 		}
3123 	}
3124 }
3125 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3126 
3127 static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3128 {
3129 	switch (map->map_type) {
3130 	case BPF_MAP_TYPE_DEVMAP:
3131 		return __dev_map_lookup_elem(map, index);
3132 	case BPF_MAP_TYPE_CPUMAP:
3133 		return __cpu_map_lookup_elem(map, index);
3134 	case BPF_MAP_TYPE_XSKMAP:
3135 		return __xsk_map_lookup_elem(map, index);
3136 	default:
3137 		return NULL;
3138 	}
3139 }
3140 
3141 static inline bool xdp_map_invalid(const struct bpf_prog *xdp_prog,
3142 				   unsigned long aux)
3143 {
3144 	return (unsigned long)xdp_prog->aux != aux;
3145 }
3146 
3147 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3148 			       struct bpf_prog *xdp_prog)
3149 {
3150 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3151 	unsigned long map_owner = ri->map_owner;
3152 	struct bpf_map *map = ri->map;
3153 	u32 index = ri->ifindex;
3154 	void *fwd = NULL;
3155 	int err;
3156 
3157 	ri->ifindex = 0;
3158 	ri->map = NULL;
3159 	ri->map_owner = 0;
3160 
3161 	if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
3162 		err = -EFAULT;
3163 		map = NULL;
3164 		goto err;
3165 	}
3166 
3167 	fwd = __xdp_map_lookup_elem(map, index);
3168 	if (!fwd) {
3169 		err = -EINVAL;
3170 		goto err;
3171 	}
3172 	if (ri->map_to_flush && ri->map_to_flush != map)
3173 		xdp_do_flush_map();
3174 
3175 	err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3176 	if (unlikely(err))
3177 		goto err;
3178 
3179 	ri->map_to_flush = map;
3180 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3181 	return 0;
3182 err:
3183 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3184 	return err;
3185 }
3186 
3187 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3188 		    struct bpf_prog *xdp_prog)
3189 {
3190 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3191 	struct net_device *fwd;
3192 	u32 index = ri->ifindex;
3193 	int err;
3194 
3195 	if (ri->map)
3196 		return xdp_do_redirect_map(dev, xdp, xdp_prog);
3197 
3198 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3199 	ri->ifindex = 0;
3200 	if (unlikely(!fwd)) {
3201 		err = -EINVAL;
3202 		goto err;
3203 	}
3204 
3205 	err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3206 	if (unlikely(err))
3207 		goto err;
3208 
3209 	_trace_xdp_redirect(dev, xdp_prog, index);
3210 	return 0;
3211 err:
3212 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3213 	return err;
3214 }
3215 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3216 
3217 static int xdp_do_generic_redirect_map(struct net_device *dev,
3218 				       struct sk_buff *skb,
3219 				       struct xdp_buff *xdp,
3220 				       struct bpf_prog *xdp_prog)
3221 {
3222 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3223 	unsigned long map_owner = ri->map_owner;
3224 	struct bpf_map *map = ri->map;
3225 	u32 index = ri->ifindex;
3226 	void *fwd = NULL;
3227 	int err = 0;
3228 
3229 	ri->ifindex = 0;
3230 	ri->map = NULL;
3231 	ri->map_owner = 0;
3232 
3233 	if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
3234 		err = -EFAULT;
3235 		map = NULL;
3236 		goto err;
3237 	}
3238 	fwd = __xdp_map_lookup_elem(map, index);
3239 	if (unlikely(!fwd)) {
3240 		err = -EINVAL;
3241 		goto err;
3242 	}
3243 
3244 	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
3245 		struct bpf_dtab_netdev *dst = fwd;
3246 
3247 		err = dev_map_generic_redirect(dst, skb, xdp_prog);
3248 		if (unlikely(err))
3249 			goto err;
3250 	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3251 		struct xdp_sock *xs = fwd;
3252 
3253 		err = xsk_generic_rcv(xs, xdp);
3254 		if (err)
3255 			goto err;
3256 		consume_skb(skb);
3257 	} else {
3258 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3259 		err = -EBADRQC;
3260 		goto err;
3261 	}
3262 
3263 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3264 	return 0;
3265 err:
3266 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3267 	return err;
3268 }
3269 
3270 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3271 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3272 {
3273 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3274 	u32 index = ri->ifindex;
3275 	struct net_device *fwd;
3276 	int err = 0;
3277 
3278 	if (ri->map)
3279 		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog);
3280 
3281 	ri->ifindex = 0;
3282 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3283 	if (unlikely(!fwd)) {
3284 		err = -EINVAL;
3285 		goto err;
3286 	}
3287 
3288 	if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
3289 		goto err;
3290 
3291 	skb->dev = fwd;
3292 	_trace_xdp_redirect(dev, xdp_prog, index);
3293 	generic_xdp_tx(skb, xdp_prog);
3294 	return 0;
3295 err:
3296 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3297 	return err;
3298 }
3299 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3300 
3301 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3302 {
3303 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3304 
3305 	if (unlikely(flags))
3306 		return XDP_ABORTED;
3307 
3308 	ri->ifindex = ifindex;
3309 	ri->flags = flags;
3310 	ri->map = NULL;
3311 	ri->map_owner = 0;
3312 
3313 	return XDP_REDIRECT;
3314 }
3315 
3316 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3317 	.func           = bpf_xdp_redirect,
3318 	.gpl_only       = false,
3319 	.ret_type       = RET_INTEGER,
3320 	.arg1_type      = ARG_ANYTHING,
3321 	.arg2_type      = ARG_ANYTHING,
3322 };
3323 
3324 BPF_CALL_4(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags,
3325 	   unsigned long, map_owner)
3326 {
3327 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3328 
3329 	if (unlikely(flags))
3330 		return XDP_ABORTED;
3331 
3332 	ri->ifindex = ifindex;
3333 	ri->flags = flags;
3334 	ri->map = map;
3335 	ri->map_owner = map_owner;
3336 
3337 	return XDP_REDIRECT;
3338 }
3339 
3340 /* Note, arg4 is hidden from users and populated by the verifier
3341  * with the right pointer.
3342  */
3343 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3344 	.func           = bpf_xdp_redirect_map,
3345 	.gpl_only       = false,
3346 	.ret_type       = RET_INTEGER,
3347 	.arg1_type      = ARG_CONST_MAP_PTR,
3348 	.arg2_type      = ARG_ANYTHING,
3349 	.arg3_type      = ARG_ANYTHING,
3350 };
3351 
3352 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3353 				  unsigned long off, unsigned long len)
3354 {
3355 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3356 
3357 	if (unlikely(!ptr))
3358 		return len;
3359 	if (ptr != dst_buff)
3360 		memcpy(dst_buff, ptr, len);
3361 
3362 	return 0;
3363 }
3364 
3365 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3366 	   u64, flags, void *, meta, u64, meta_size)
3367 {
3368 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3369 
3370 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3371 		return -EINVAL;
3372 	if (unlikely(skb_size > skb->len))
3373 		return -EFAULT;
3374 
3375 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3376 				bpf_skb_copy);
3377 }
3378 
3379 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3380 	.func		= bpf_skb_event_output,
3381 	.gpl_only	= true,
3382 	.ret_type	= RET_INTEGER,
3383 	.arg1_type	= ARG_PTR_TO_CTX,
3384 	.arg2_type	= ARG_CONST_MAP_PTR,
3385 	.arg3_type	= ARG_ANYTHING,
3386 	.arg4_type	= ARG_PTR_TO_MEM,
3387 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3388 };
3389 
3390 static unsigned short bpf_tunnel_key_af(u64 flags)
3391 {
3392 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3393 }
3394 
3395 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3396 	   u32, size, u64, flags)
3397 {
3398 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3399 	u8 compat[sizeof(struct bpf_tunnel_key)];
3400 	void *to_orig = to;
3401 	int err;
3402 
3403 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3404 		err = -EINVAL;
3405 		goto err_clear;
3406 	}
3407 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3408 		err = -EPROTO;
3409 		goto err_clear;
3410 	}
3411 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3412 		err = -EINVAL;
3413 		switch (size) {
3414 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3415 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3416 			goto set_compat;
3417 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3418 			/* Fixup deprecated structure layouts here, so we have
3419 			 * a common path later on.
3420 			 */
3421 			if (ip_tunnel_info_af(info) != AF_INET)
3422 				goto err_clear;
3423 set_compat:
3424 			to = (struct bpf_tunnel_key *)compat;
3425 			break;
3426 		default:
3427 			goto err_clear;
3428 		}
3429 	}
3430 
3431 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
3432 	to->tunnel_tos = info->key.tos;
3433 	to->tunnel_ttl = info->key.ttl;
3434 	to->tunnel_ext = 0;
3435 
3436 	if (flags & BPF_F_TUNINFO_IPV6) {
3437 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3438 		       sizeof(to->remote_ipv6));
3439 		to->tunnel_label = be32_to_cpu(info->key.label);
3440 	} else {
3441 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3442 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3443 		to->tunnel_label = 0;
3444 	}
3445 
3446 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3447 		memcpy(to_orig, to, size);
3448 
3449 	return 0;
3450 err_clear:
3451 	memset(to_orig, 0, size);
3452 	return err;
3453 }
3454 
3455 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3456 	.func		= bpf_skb_get_tunnel_key,
3457 	.gpl_only	= false,
3458 	.ret_type	= RET_INTEGER,
3459 	.arg1_type	= ARG_PTR_TO_CTX,
3460 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3461 	.arg3_type	= ARG_CONST_SIZE,
3462 	.arg4_type	= ARG_ANYTHING,
3463 };
3464 
3465 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3466 {
3467 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3468 	int err;
3469 
3470 	if (unlikely(!info ||
3471 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3472 		err = -ENOENT;
3473 		goto err_clear;
3474 	}
3475 	if (unlikely(size < info->options_len)) {
3476 		err = -ENOMEM;
3477 		goto err_clear;
3478 	}
3479 
3480 	ip_tunnel_info_opts_get(to, info);
3481 	if (size > info->options_len)
3482 		memset(to + info->options_len, 0, size - info->options_len);
3483 
3484 	return info->options_len;
3485 err_clear:
3486 	memset(to, 0, size);
3487 	return err;
3488 }
3489 
3490 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3491 	.func		= bpf_skb_get_tunnel_opt,
3492 	.gpl_only	= false,
3493 	.ret_type	= RET_INTEGER,
3494 	.arg1_type	= ARG_PTR_TO_CTX,
3495 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3496 	.arg3_type	= ARG_CONST_SIZE,
3497 };
3498 
3499 static struct metadata_dst __percpu *md_dst;
3500 
3501 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3502 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3503 {
3504 	struct metadata_dst *md = this_cpu_ptr(md_dst);
3505 	u8 compat[sizeof(struct bpf_tunnel_key)];
3506 	struct ip_tunnel_info *info;
3507 
3508 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3509 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3510 		return -EINVAL;
3511 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3512 		switch (size) {
3513 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3514 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3515 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3516 			/* Fixup deprecated structure layouts here, so we have
3517 			 * a common path later on.
3518 			 */
3519 			memcpy(compat, from, size);
3520 			memset(compat + size, 0, sizeof(compat) - size);
3521 			from = (const struct bpf_tunnel_key *) compat;
3522 			break;
3523 		default:
3524 			return -EINVAL;
3525 		}
3526 	}
3527 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3528 		     from->tunnel_ext))
3529 		return -EINVAL;
3530 
3531 	skb_dst_drop(skb);
3532 	dst_hold((struct dst_entry *) md);
3533 	skb_dst_set(skb, (struct dst_entry *) md);
3534 
3535 	info = &md->u.tun_info;
3536 	memset(info, 0, sizeof(*info));
3537 	info->mode = IP_TUNNEL_INFO_TX;
3538 
3539 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3540 	if (flags & BPF_F_DONT_FRAGMENT)
3541 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3542 	if (flags & BPF_F_ZERO_CSUM_TX)
3543 		info->key.tun_flags &= ~TUNNEL_CSUM;
3544 	if (flags & BPF_F_SEQ_NUMBER)
3545 		info->key.tun_flags |= TUNNEL_SEQ;
3546 
3547 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3548 	info->key.tos = from->tunnel_tos;
3549 	info->key.ttl = from->tunnel_ttl;
3550 
3551 	if (flags & BPF_F_TUNINFO_IPV6) {
3552 		info->mode |= IP_TUNNEL_INFO_IPV6;
3553 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3554 		       sizeof(from->remote_ipv6));
3555 		info->key.label = cpu_to_be32(from->tunnel_label) &
3556 				  IPV6_FLOWLABEL_MASK;
3557 	} else {
3558 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3559 	}
3560 
3561 	return 0;
3562 }
3563 
3564 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3565 	.func		= bpf_skb_set_tunnel_key,
3566 	.gpl_only	= false,
3567 	.ret_type	= RET_INTEGER,
3568 	.arg1_type	= ARG_PTR_TO_CTX,
3569 	.arg2_type	= ARG_PTR_TO_MEM,
3570 	.arg3_type	= ARG_CONST_SIZE,
3571 	.arg4_type	= ARG_ANYTHING,
3572 };
3573 
3574 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3575 	   const u8 *, from, u32, size)
3576 {
3577 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
3578 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
3579 
3580 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3581 		return -EINVAL;
3582 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3583 		return -ENOMEM;
3584 
3585 	ip_tunnel_info_opts_set(info, from, size);
3586 
3587 	return 0;
3588 }
3589 
3590 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3591 	.func		= bpf_skb_set_tunnel_opt,
3592 	.gpl_only	= false,
3593 	.ret_type	= RET_INTEGER,
3594 	.arg1_type	= ARG_PTR_TO_CTX,
3595 	.arg2_type	= ARG_PTR_TO_MEM,
3596 	.arg3_type	= ARG_CONST_SIZE,
3597 };
3598 
3599 static const struct bpf_func_proto *
3600 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3601 {
3602 	if (!md_dst) {
3603 		struct metadata_dst __percpu *tmp;
3604 
3605 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3606 						METADATA_IP_TUNNEL,
3607 						GFP_KERNEL);
3608 		if (!tmp)
3609 			return NULL;
3610 		if (cmpxchg(&md_dst, NULL, tmp))
3611 			metadata_dst_free_percpu(tmp);
3612 	}
3613 
3614 	switch (which) {
3615 	case BPF_FUNC_skb_set_tunnel_key:
3616 		return &bpf_skb_set_tunnel_key_proto;
3617 	case BPF_FUNC_skb_set_tunnel_opt:
3618 		return &bpf_skb_set_tunnel_opt_proto;
3619 	default:
3620 		return NULL;
3621 	}
3622 }
3623 
3624 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3625 	   u32, idx)
3626 {
3627 	struct bpf_array *array = container_of(map, struct bpf_array, map);
3628 	struct cgroup *cgrp;
3629 	struct sock *sk;
3630 
3631 	sk = skb_to_full_sk(skb);
3632 	if (!sk || !sk_fullsock(sk))
3633 		return -ENOENT;
3634 	if (unlikely(idx >= array->map.max_entries))
3635 		return -E2BIG;
3636 
3637 	cgrp = READ_ONCE(array->ptrs[idx]);
3638 	if (unlikely(!cgrp))
3639 		return -EAGAIN;
3640 
3641 	return sk_under_cgroup_hierarchy(sk, cgrp);
3642 }
3643 
3644 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3645 	.func		= bpf_skb_under_cgroup,
3646 	.gpl_only	= false,
3647 	.ret_type	= RET_INTEGER,
3648 	.arg1_type	= ARG_PTR_TO_CTX,
3649 	.arg2_type	= ARG_CONST_MAP_PTR,
3650 	.arg3_type	= ARG_ANYTHING,
3651 };
3652 
3653 #ifdef CONFIG_SOCK_CGROUP_DATA
3654 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
3655 {
3656 	struct sock *sk = skb_to_full_sk(skb);
3657 	struct cgroup *cgrp;
3658 
3659 	if (!sk || !sk_fullsock(sk))
3660 		return 0;
3661 
3662 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3663 	return cgrp->kn->id.id;
3664 }
3665 
3666 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
3667 	.func           = bpf_skb_cgroup_id,
3668 	.gpl_only       = false,
3669 	.ret_type       = RET_INTEGER,
3670 	.arg1_type      = ARG_PTR_TO_CTX,
3671 };
3672 #endif
3673 
3674 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3675 				  unsigned long off, unsigned long len)
3676 {
3677 	memcpy(dst_buff, src_buff + off, len);
3678 	return 0;
3679 }
3680 
3681 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3682 	   u64, flags, void *, meta, u64, meta_size)
3683 {
3684 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3685 
3686 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3687 		return -EINVAL;
3688 	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
3689 		return -EFAULT;
3690 
3691 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
3692 				xdp_size, bpf_xdp_copy);
3693 }
3694 
3695 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
3696 	.func		= bpf_xdp_event_output,
3697 	.gpl_only	= true,
3698 	.ret_type	= RET_INTEGER,
3699 	.arg1_type	= ARG_PTR_TO_CTX,
3700 	.arg2_type	= ARG_CONST_MAP_PTR,
3701 	.arg3_type	= ARG_ANYTHING,
3702 	.arg4_type	= ARG_PTR_TO_MEM,
3703 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3704 };
3705 
3706 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
3707 {
3708 	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
3709 }
3710 
3711 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
3712 	.func           = bpf_get_socket_cookie,
3713 	.gpl_only       = false,
3714 	.ret_type       = RET_INTEGER,
3715 	.arg1_type      = ARG_PTR_TO_CTX,
3716 };
3717 
3718 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
3719 {
3720 	struct sock *sk = sk_to_full_sk(skb->sk);
3721 	kuid_t kuid;
3722 
3723 	if (!sk || !sk_fullsock(sk))
3724 		return overflowuid;
3725 	kuid = sock_net_uid(sock_net(sk), sk);
3726 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
3727 }
3728 
3729 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
3730 	.func           = bpf_get_socket_uid,
3731 	.gpl_only       = false,
3732 	.ret_type       = RET_INTEGER,
3733 	.arg1_type      = ARG_PTR_TO_CTX,
3734 };
3735 
3736 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3737 	   int, level, int, optname, char *, optval, int, optlen)
3738 {
3739 	struct sock *sk = bpf_sock->sk;
3740 	int ret = 0;
3741 	int val;
3742 
3743 	if (!sk_fullsock(sk))
3744 		return -EINVAL;
3745 
3746 	if (level == SOL_SOCKET) {
3747 		if (optlen != sizeof(int))
3748 			return -EINVAL;
3749 		val = *((int *)optval);
3750 
3751 		/* Only some socketops are supported */
3752 		switch (optname) {
3753 		case SO_RCVBUF:
3754 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
3755 			sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
3756 			break;
3757 		case SO_SNDBUF:
3758 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
3759 			sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
3760 			break;
3761 		case SO_MAX_PACING_RATE:
3762 			sk->sk_max_pacing_rate = val;
3763 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
3764 						 sk->sk_max_pacing_rate);
3765 			break;
3766 		case SO_PRIORITY:
3767 			sk->sk_priority = val;
3768 			break;
3769 		case SO_RCVLOWAT:
3770 			if (val < 0)
3771 				val = INT_MAX;
3772 			sk->sk_rcvlowat = val ? : 1;
3773 			break;
3774 		case SO_MARK:
3775 			sk->sk_mark = val;
3776 			break;
3777 		default:
3778 			ret = -EINVAL;
3779 		}
3780 #ifdef CONFIG_INET
3781 	} else if (level == SOL_IP) {
3782 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3783 			return -EINVAL;
3784 
3785 		val = *((int *)optval);
3786 		/* Only some options are supported */
3787 		switch (optname) {
3788 		case IP_TOS:
3789 			if (val < -1 || val > 0xff) {
3790 				ret = -EINVAL;
3791 			} else {
3792 				struct inet_sock *inet = inet_sk(sk);
3793 
3794 				if (val == -1)
3795 					val = 0;
3796 				inet->tos = val;
3797 			}
3798 			break;
3799 		default:
3800 			ret = -EINVAL;
3801 		}
3802 #if IS_ENABLED(CONFIG_IPV6)
3803 	} else if (level == SOL_IPV6) {
3804 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3805 			return -EINVAL;
3806 
3807 		val = *((int *)optval);
3808 		/* Only some options are supported */
3809 		switch (optname) {
3810 		case IPV6_TCLASS:
3811 			if (val < -1 || val > 0xff) {
3812 				ret = -EINVAL;
3813 			} else {
3814 				struct ipv6_pinfo *np = inet6_sk(sk);
3815 
3816 				if (val == -1)
3817 					val = 0;
3818 				np->tclass = val;
3819 			}
3820 			break;
3821 		default:
3822 			ret = -EINVAL;
3823 		}
3824 #endif
3825 	} else if (level == SOL_TCP &&
3826 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
3827 		if (optname == TCP_CONGESTION) {
3828 			char name[TCP_CA_NAME_MAX];
3829 			bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3830 
3831 			strncpy(name, optval, min_t(long, optlen,
3832 						    TCP_CA_NAME_MAX-1));
3833 			name[TCP_CA_NAME_MAX-1] = 0;
3834 			ret = tcp_set_congestion_control(sk, name, false,
3835 							 reinit);
3836 		} else {
3837 			struct tcp_sock *tp = tcp_sk(sk);
3838 
3839 			if (optlen != sizeof(int))
3840 				return -EINVAL;
3841 
3842 			val = *((int *)optval);
3843 			/* Only some options are supported */
3844 			switch (optname) {
3845 			case TCP_BPF_IW:
3846 				if (val <= 0 || tp->data_segs_out > 0)
3847 					ret = -EINVAL;
3848 				else
3849 					tp->snd_cwnd = val;
3850 				break;
3851 			case TCP_BPF_SNDCWND_CLAMP:
3852 				if (val <= 0) {
3853 					ret = -EINVAL;
3854 				} else {
3855 					tp->snd_cwnd_clamp = val;
3856 					tp->snd_ssthresh = val;
3857 				}
3858 				break;
3859 			default:
3860 				ret = -EINVAL;
3861 			}
3862 		}
3863 #endif
3864 	} else {
3865 		ret = -EINVAL;
3866 	}
3867 	return ret;
3868 }
3869 
3870 static const struct bpf_func_proto bpf_setsockopt_proto = {
3871 	.func		= bpf_setsockopt,
3872 	.gpl_only	= false,
3873 	.ret_type	= RET_INTEGER,
3874 	.arg1_type	= ARG_PTR_TO_CTX,
3875 	.arg2_type	= ARG_ANYTHING,
3876 	.arg3_type	= ARG_ANYTHING,
3877 	.arg4_type	= ARG_PTR_TO_MEM,
3878 	.arg5_type	= ARG_CONST_SIZE,
3879 };
3880 
3881 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3882 	   int, level, int, optname, char *, optval, int, optlen)
3883 {
3884 	struct sock *sk = bpf_sock->sk;
3885 
3886 	if (!sk_fullsock(sk))
3887 		goto err_clear;
3888 
3889 #ifdef CONFIG_INET
3890 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
3891 		if (optname == TCP_CONGESTION) {
3892 			struct inet_connection_sock *icsk = inet_csk(sk);
3893 
3894 			if (!icsk->icsk_ca_ops || optlen <= 1)
3895 				goto err_clear;
3896 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
3897 			optval[optlen - 1] = 0;
3898 		} else {
3899 			goto err_clear;
3900 		}
3901 	} else if (level == SOL_IP) {
3902 		struct inet_sock *inet = inet_sk(sk);
3903 
3904 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3905 			goto err_clear;
3906 
3907 		/* Only some options are supported */
3908 		switch (optname) {
3909 		case IP_TOS:
3910 			*((int *)optval) = (int)inet->tos;
3911 			break;
3912 		default:
3913 			goto err_clear;
3914 		}
3915 #if IS_ENABLED(CONFIG_IPV6)
3916 	} else if (level == SOL_IPV6) {
3917 		struct ipv6_pinfo *np = inet6_sk(sk);
3918 
3919 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3920 			goto err_clear;
3921 
3922 		/* Only some options are supported */
3923 		switch (optname) {
3924 		case IPV6_TCLASS:
3925 			*((int *)optval) = (int)np->tclass;
3926 			break;
3927 		default:
3928 			goto err_clear;
3929 		}
3930 #endif
3931 	} else {
3932 		goto err_clear;
3933 	}
3934 	return 0;
3935 #endif
3936 err_clear:
3937 	memset(optval, 0, optlen);
3938 	return -EINVAL;
3939 }
3940 
3941 static const struct bpf_func_proto bpf_getsockopt_proto = {
3942 	.func		= bpf_getsockopt,
3943 	.gpl_only	= false,
3944 	.ret_type	= RET_INTEGER,
3945 	.arg1_type	= ARG_PTR_TO_CTX,
3946 	.arg2_type	= ARG_ANYTHING,
3947 	.arg3_type	= ARG_ANYTHING,
3948 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
3949 	.arg5_type	= ARG_CONST_SIZE,
3950 };
3951 
3952 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
3953 	   int, argval)
3954 {
3955 	struct sock *sk = bpf_sock->sk;
3956 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
3957 
3958 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
3959 		return -EINVAL;
3960 
3961 	if (val)
3962 		tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
3963 
3964 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
3965 }
3966 
3967 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
3968 	.func		= bpf_sock_ops_cb_flags_set,
3969 	.gpl_only	= false,
3970 	.ret_type	= RET_INTEGER,
3971 	.arg1_type	= ARG_PTR_TO_CTX,
3972 	.arg2_type	= ARG_ANYTHING,
3973 };
3974 
3975 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
3976 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
3977 
3978 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
3979 	   int, addr_len)
3980 {
3981 #ifdef CONFIG_INET
3982 	struct sock *sk = ctx->sk;
3983 	int err;
3984 
3985 	/* Binding to port can be expensive so it's prohibited in the helper.
3986 	 * Only binding to IP is supported.
3987 	 */
3988 	err = -EINVAL;
3989 	if (addr->sa_family == AF_INET) {
3990 		if (addr_len < sizeof(struct sockaddr_in))
3991 			return err;
3992 		if (((struct sockaddr_in *)addr)->sin_port != htons(0))
3993 			return err;
3994 		return __inet_bind(sk, addr, addr_len, true, false);
3995 #if IS_ENABLED(CONFIG_IPV6)
3996 	} else if (addr->sa_family == AF_INET6) {
3997 		if (addr_len < SIN6_LEN_RFC2133)
3998 			return err;
3999 		if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4000 			return err;
4001 		/* ipv6_bpf_stub cannot be NULL, since it's called from
4002 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4003 		 */
4004 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4005 #endif /* CONFIG_IPV6 */
4006 	}
4007 #endif /* CONFIG_INET */
4008 
4009 	return -EAFNOSUPPORT;
4010 }
4011 
4012 static const struct bpf_func_proto bpf_bind_proto = {
4013 	.func		= bpf_bind,
4014 	.gpl_only	= false,
4015 	.ret_type	= RET_INTEGER,
4016 	.arg1_type	= ARG_PTR_TO_CTX,
4017 	.arg2_type	= ARG_PTR_TO_MEM,
4018 	.arg3_type	= ARG_CONST_SIZE,
4019 };
4020 
4021 #ifdef CONFIG_XFRM
4022 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4023 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
4024 {
4025 	const struct sec_path *sp = skb_sec_path(skb);
4026 	const struct xfrm_state *x;
4027 
4028 	if (!sp || unlikely(index >= sp->len || flags))
4029 		goto err_clear;
4030 
4031 	x = sp->xvec[index];
4032 
4033 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4034 		goto err_clear;
4035 
4036 	to->reqid = x->props.reqid;
4037 	to->spi = x->id.spi;
4038 	to->family = x->props.family;
4039 	to->ext = 0;
4040 
4041 	if (to->family == AF_INET6) {
4042 		memcpy(to->remote_ipv6, x->props.saddr.a6,
4043 		       sizeof(to->remote_ipv6));
4044 	} else {
4045 		to->remote_ipv4 = x->props.saddr.a4;
4046 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4047 	}
4048 
4049 	return 0;
4050 err_clear:
4051 	memset(to, 0, size);
4052 	return -EINVAL;
4053 }
4054 
4055 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4056 	.func		= bpf_skb_get_xfrm_state,
4057 	.gpl_only	= false,
4058 	.ret_type	= RET_INTEGER,
4059 	.arg1_type	= ARG_PTR_TO_CTX,
4060 	.arg2_type	= ARG_ANYTHING,
4061 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4062 	.arg4_type	= ARG_CONST_SIZE,
4063 	.arg5_type	= ARG_ANYTHING,
4064 };
4065 #endif
4066 
4067 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4068 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4069 				  const struct neighbour *neigh,
4070 				  const struct net_device *dev)
4071 {
4072 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
4073 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4074 	params->h_vlan_TCI = 0;
4075 	params->h_vlan_proto = 0;
4076 	params->ifindex = dev->ifindex;
4077 
4078 	return 0;
4079 }
4080 #endif
4081 
4082 #if IS_ENABLED(CONFIG_INET)
4083 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4084 			       u32 flags, bool check_mtu)
4085 {
4086 	struct in_device *in_dev;
4087 	struct neighbour *neigh;
4088 	struct net_device *dev;
4089 	struct fib_result res;
4090 	struct fib_nh *nh;
4091 	struct flowi4 fl4;
4092 	int err;
4093 	u32 mtu;
4094 
4095 	dev = dev_get_by_index_rcu(net, params->ifindex);
4096 	if (unlikely(!dev))
4097 		return -ENODEV;
4098 
4099 	/* verify forwarding is enabled on this interface */
4100 	in_dev = __in_dev_get_rcu(dev);
4101 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4102 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4103 
4104 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4105 		fl4.flowi4_iif = 1;
4106 		fl4.flowi4_oif = params->ifindex;
4107 	} else {
4108 		fl4.flowi4_iif = params->ifindex;
4109 		fl4.flowi4_oif = 0;
4110 	}
4111 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4112 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4113 	fl4.flowi4_flags = 0;
4114 
4115 	fl4.flowi4_proto = params->l4_protocol;
4116 	fl4.daddr = params->ipv4_dst;
4117 	fl4.saddr = params->ipv4_src;
4118 	fl4.fl4_sport = params->sport;
4119 	fl4.fl4_dport = params->dport;
4120 
4121 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4122 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4123 		struct fib_table *tb;
4124 
4125 		tb = fib_get_table(net, tbid);
4126 		if (unlikely(!tb))
4127 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4128 
4129 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4130 	} else {
4131 		fl4.flowi4_mark = 0;
4132 		fl4.flowi4_secid = 0;
4133 		fl4.flowi4_tun_key.tun_id = 0;
4134 		fl4.flowi4_uid = sock_net_uid(net, NULL);
4135 
4136 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4137 	}
4138 
4139 	if (err) {
4140 		/* map fib lookup errors to RTN_ type */
4141 		if (err == -EINVAL)
4142 			return BPF_FIB_LKUP_RET_BLACKHOLE;
4143 		if (err == -EHOSTUNREACH)
4144 			return BPF_FIB_LKUP_RET_UNREACHABLE;
4145 		if (err == -EACCES)
4146 			return BPF_FIB_LKUP_RET_PROHIBIT;
4147 
4148 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4149 	}
4150 
4151 	if (res.type != RTN_UNICAST)
4152 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4153 
4154 	if (res.fi->fib_nhs > 1)
4155 		fib_select_path(net, &res, &fl4, NULL);
4156 
4157 	if (check_mtu) {
4158 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4159 		if (params->tot_len > mtu)
4160 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4161 	}
4162 
4163 	nh = &res.fi->fib_nh[res.nh_sel];
4164 
4165 	/* do not handle lwt encaps right now */
4166 	if (nh->nh_lwtstate)
4167 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4168 
4169 	dev = nh->nh_dev;
4170 	if (nh->nh_gw)
4171 		params->ipv4_dst = nh->nh_gw;
4172 
4173 	params->rt_metric = res.fi->fib_priority;
4174 
4175 	/* xdp and cls_bpf programs are run in RCU-bh so
4176 	 * rcu_read_lock_bh is not needed here
4177 	 */
4178 	neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst);
4179 	if (!neigh)
4180 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4181 
4182 	return bpf_fib_set_fwd_params(params, neigh, dev);
4183 }
4184 #endif
4185 
4186 #if IS_ENABLED(CONFIG_IPV6)
4187 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4188 			       u32 flags, bool check_mtu)
4189 {
4190 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4191 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4192 	struct neighbour *neigh;
4193 	struct net_device *dev;
4194 	struct inet6_dev *idev;
4195 	struct fib6_info *f6i;
4196 	struct flowi6 fl6;
4197 	int strict = 0;
4198 	int oif;
4199 	u32 mtu;
4200 
4201 	/* link local addresses are never forwarded */
4202 	if (rt6_need_strict(dst) || rt6_need_strict(src))
4203 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4204 
4205 	dev = dev_get_by_index_rcu(net, params->ifindex);
4206 	if (unlikely(!dev))
4207 		return -ENODEV;
4208 
4209 	idev = __in6_dev_get_safely(dev);
4210 	if (unlikely(!idev || !net->ipv6.devconf_all->forwarding))
4211 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4212 
4213 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4214 		fl6.flowi6_iif = 1;
4215 		oif = fl6.flowi6_oif = params->ifindex;
4216 	} else {
4217 		oif = fl6.flowi6_iif = params->ifindex;
4218 		fl6.flowi6_oif = 0;
4219 		strict = RT6_LOOKUP_F_HAS_SADDR;
4220 	}
4221 	fl6.flowlabel = params->flowinfo;
4222 	fl6.flowi6_scope = 0;
4223 	fl6.flowi6_flags = 0;
4224 	fl6.mp_hash = 0;
4225 
4226 	fl6.flowi6_proto = params->l4_protocol;
4227 	fl6.daddr = *dst;
4228 	fl6.saddr = *src;
4229 	fl6.fl6_sport = params->sport;
4230 	fl6.fl6_dport = params->dport;
4231 
4232 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4233 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4234 		struct fib6_table *tb;
4235 
4236 		tb = ipv6_stub->fib6_get_table(net, tbid);
4237 		if (unlikely(!tb))
4238 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4239 
4240 		f6i = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, strict);
4241 	} else {
4242 		fl6.flowi6_mark = 0;
4243 		fl6.flowi6_secid = 0;
4244 		fl6.flowi6_tun_key.tun_id = 0;
4245 		fl6.flowi6_uid = sock_net_uid(net, NULL);
4246 
4247 		f6i = ipv6_stub->fib6_lookup(net, oif, &fl6, strict);
4248 	}
4249 
4250 	if (unlikely(IS_ERR_OR_NULL(f6i) || f6i == net->ipv6.fib6_null_entry))
4251 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4252 
4253 	if (unlikely(f6i->fib6_flags & RTF_REJECT)) {
4254 		switch (f6i->fib6_type) {
4255 		case RTN_BLACKHOLE:
4256 			return BPF_FIB_LKUP_RET_BLACKHOLE;
4257 		case RTN_UNREACHABLE:
4258 			return BPF_FIB_LKUP_RET_UNREACHABLE;
4259 		case RTN_PROHIBIT:
4260 			return BPF_FIB_LKUP_RET_PROHIBIT;
4261 		default:
4262 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4263 		}
4264 	}
4265 
4266 	if (f6i->fib6_type != RTN_UNICAST)
4267 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4268 
4269 	if (f6i->fib6_nsiblings && fl6.flowi6_oif == 0)
4270 		f6i = ipv6_stub->fib6_multipath_select(net, f6i, &fl6,
4271 						       fl6.flowi6_oif, NULL,
4272 						       strict);
4273 
4274 	if (check_mtu) {
4275 		mtu = ipv6_stub->ip6_mtu_from_fib6(f6i, dst, src);
4276 		if (params->tot_len > mtu)
4277 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4278 	}
4279 
4280 	if (f6i->fib6_nh.nh_lwtstate)
4281 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4282 
4283 	if (f6i->fib6_flags & RTF_GATEWAY)
4284 		*dst = f6i->fib6_nh.nh_gw;
4285 
4286 	dev = f6i->fib6_nh.nh_dev;
4287 	params->rt_metric = f6i->fib6_metric;
4288 
4289 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4290 	 * not needed here. Can not use __ipv6_neigh_lookup_noref here
4291 	 * because we need to get nd_tbl via the stub
4292 	 */
4293 	neigh = ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128,
4294 				      ndisc_hashfn, dst, dev);
4295 	if (!neigh)
4296 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4297 
4298 	return bpf_fib_set_fwd_params(params, neigh, dev);
4299 }
4300 #endif
4301 
4302 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4303 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
4304 {
4305 	if (plen < sizeof(*params))
4306 		return -EINVAL;
4307 
4308 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4309 		return -EINVAL;
4310 
4311 	switch (params->family) {
4312 #if IS_ENABLED(CONFIG_INET)
4313 	case AF_INET:
4314 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4315 					   flags, true);
4316 #endif
4317 #if IS_ENABLED(CONFIG_IPV6)
4318 	case AF_INET6:
4319 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4320 					   flags, true);
4321 #endif
4322 	}
4323 	return -EAFNOSUPPORT;
4324 }
4325 
4326 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4327 	.func		= bpf_xdp_fib_lookup,
4328 	.gpl_only	= true,
4329 	.ret_type	= RET_INTEGER,
4330 	.arg1_type      = ARG_PTR_TO_CTX,
4331 	.arg2_type      = ARG_PTR_TO_MEM,
4332 	.arg3_type      = ARG_CONST_SIZE,
4333 	.arg4_type	= ARG_ANYTHING,
4334 };
4335 
4336 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4337 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
4338 {
4339 	struct net *net = dev_net(skb->dev);
4340 	int rc = -EAFNOSUPPORT;
4341 
4342 	if (plen < sizeof(*params))
4343 		return -EINVAL;
4344 
4345 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4346 		return -EINVAL;
4347 
4348 	switch (params->family) {
4349 #if IS_ENABLED(CONFIG_INET)
4350 	case AF_INET:
4351 		rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4352 		break;
4353 #endif
4354 #if IS_ENABLED(CONFIG_IPV6)
4355 	case AF_INET6:
4356 		rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4357 		break;
4358 #endif
4359 	}
4360 
4361 	if (!rc) {
4362 		struct net_device *dev;
4363 
4364 		dev = dev_get_by_index_rcu(net, params->ifindex);
4365 		if (!is_skb_forwardable(dev, skb))
4366 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4367 	}
4368 
4369 	return rc;
4370 }
4371 
4372 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4373 	.func		= bpf_skb_fib_lookup,
4374 	.gpl_only	= true,
4375 	.ret_type	= RET_INTEGER,
4376 	.arg1_type      = ARG_PTR_TO_CTX,
4377 	.arg2_type      = ARG_PTR_TO_MEM,
4378 	.arg3_type      = ARG_CONST_SIZE,
4379 	.arg4_type	= ARG_ANYTHING,
4380 };
4381 
4382 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4383 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4384 {
4385 	int err;
4386 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4387 
4388 	if (!seg6_validate_srh(srh, len))
4389 		return -EINVAL;
4390 
4391 	switch (type) {
4392 	case BPF_LWT_ENCAP_SEG6_INLINE:
4393 		if (skb->protocol != htons(ETH_P_IPV6))
4394 			return -EBADMSG;
4395 
4396 		err = seg6_do_srh_inline(skb, srh);
4397 		break;
4398 	case BPF_LWT_ENCAP_SEG6:
4399 		skb_reset_inner_headers(skb);
4400 		skb->encapsulation = 1;
4401 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4402 		break;
4403 	default:
4404 		return -EINVAL;
4405 	}
4406 
4407 	bpf_compute_data_pointers(skb);
4408 	if (err)
4409 		return err;
4410 
4411 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4412 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4413 
4414 	return seg6_lookup_nexthop(skb, NULL, 0);
4415 }
4416 #endif /* CONFIG_IPV6_SEG6_BPF */
4417 
4418 BPF_CALL_4(bpf_lwt_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4419 	   u32, len)
4420 {
4421 	switch (type) {
4422 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4423 	case BPF_LWT_ENCAP_SEG6:
4424 	case BPF_LWT_ENCAP_SEG6_INLINE:
4425 		return bpf_push_seg6_encap(skb, type, hdr, len);
4426 #endif
4427 	default:
4428 		return -EINVAL;
4429 	}
4430 }
4431 
4432 static const struct bpf_func_proto bpf_lwt_push_encap_proto = {
4433 	.func		= bpf_lwt_push_encap,
4434 	.gpl_only	= false,
4435 	.ret_type	= RET_INTEGER,
4436 	.arg1_type	= ARG_PTR_TO_CTX,
4437 	.arg2_type	= ARG_ANYTHING,
4438 	.arg3_type	= ARG_PTR_TO_MEM,
4439 	.arg4_type	= ARG_CONST_SIZE
4440 };
4441 
4442 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
4443 	   const void *, from, u32, len)
4444 {
4445 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4446 	struct seg6_bpf_srh_state *srh_state =
4447 		this_cpu_ptr(&seg6_bpf_srh_states);
4448 	void *srh_tlvs, *srh_end, *ptr;
4449 	struct ipv6_sr_hdr *srh;
4450 	int srhoff = 0;
4451 
4452 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4453 		return -EINVAL;
4454 
4455 	srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4456 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
4457 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
4458 
4459 	ptr = skb->data + offset;
4460 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
4461 		srh_state->valid = 0;
4462 	else if (ptr < (void *)&srh->flags ||
4463 		 ptr + len > (void *)&srh->segments)
4464 		return -EFAULT;
4465 
4466 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
4467 		return -EFAULT;
4468 
4469 	memcpy(skb->data + offset, from, len);
4470 	return 0;
4471 #else /* CONFIG_IPV6_SEG6_BPF */
4472 	return -EOPNOTSUPP;
4473 #endif
4474 }
4475 
4476 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
4477 	.func		= bpf_lwt_seg6_store_bytes,
4478 	.gpl_only	= false,
4479 	.ret_type	= RET_INTEGER,
4480 	.arg1_type	= ARG_PTR_TO_CTX,
4481 	.arg2_type	= ARG_ANYTHING,
4482 	.arg3_type	= ARG_PTR_TO_MEM,
4483 	.arg4_type	= ARG_CONST_SIZE
4484 };
4485 
4486 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
4487 	   u32, action, void *, param, u32, param_len)
4488 {
4489 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4490 	struct seg6_bpf_srh_state *srh_state =
4491 		this_cpu_ptr(&seg6_bpf_srh_states);
4492 	struct ipv6_sr_hdr *srh;
4493 	int srhoff = 0;
4494 	int err;
4495 
4496 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4497 		return -EINVAL;
4498 	srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4499 
4500 	if (!srh_state->valid) {
4501 		if (unlikely((srh_state->hdrlen & 7) != 0))
4502 			return -EBADMSG;
4503 
4504 		srh->hdrlen = (u8)(srh_state->hdrlen >> 3);
4505 		if (unlikely(!seg6_validate_srh(srh, (srh->hdrlen + 1) << 3)))
4506 			return -EBADMSG;
4507 
4508 		srh_state->valid = 1;
4509 	}
4510 
4511 	switch (action) {
4512 	case SEG6_LOCAL_ACTION_END_X:
4513 		if (param_len != sizeof(struct in6_addr))
4514 			return -EINVAL;
4515 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
4516 	case SEG6_LOCAL_ACTION_END_T:
4517 		if (param_len != sizeof(int))
4518 			return -EINVAL;
4519 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4520 	case SEG6_LOCAL_ACTION_END_B6:
4521 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
4522 					  param, param_len);
4523 		if (!err)
4524 			srh_state->hdrlen =
4525 				((struct ipv6_sr_hdr *)param)->hdrlen << 3;
4526 		return err;
4527 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
4528 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
4529 					  param, param_len);
4530 		if (!err)
4531 			srh_state->hdrlen =
4532 				((struct ipv6_sr_hdr *)param)->hdrlen << 3;
4533 		return err;
4534 	default:
4535 		return -EINVAL;
4536 	}
4537 #else /* CONFIG_IPV6_SEG6_BPF */
4538 	return -EOPNOTSUPP;
4539 #endif
4540 }
4541 
4542 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
4543 	.func		= bpf_lwt_seg6_action,
4544 	.gpl_only	= false,
4545 	.ret_type	= RET_INTEGER,
4546 	.arg1_type	= ARG_PTR_TO_CTX,
4547 	.arg2_type	= ARG_ANYTHING,
4548 	.arg3_type	= ARG_PTR_TO_MEM,
4549 	.arg4_type	= ARG_CONST_SIZE
4550 };
4551 
4552 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
4553 	   s32, len)
4554 {
4555 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4556 	struct seg6_bpf_srh_state *srh_state =
4557 		this_cpu_ptr(&seg6_bpf_srh_states);
4558 	void *srh_end, *srh_tlvs, *ptr;
4559 	struct ipv6_sr_hdr *srh;
4560 	struct ipv6hdr *hdr;
4561 	int srhoff = 0;
4562 	int ret;
4563 
4564 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4565 		return -EINVAL;
4566 	srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4567 
4568 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
4569 			((srh->first_segment + 1) << 4));
4570 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
4571 			srh_state->hdrlen);
4572 	ptr = skb->data + offset;
4573 
4574 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
4575 		return -EFAULT;
4576 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
4577 		return -EFAULT;
4578 
4579 	if (len > 0) {
4580 		ret = skb_cow_head(skb, len);
4581 		if (unlikely(ret < 0))
4582 			return ret;
4583 
4584 		ret = bpf_skb_net_hdr_push(skb, offset, len);
4585 	} else {
4586 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
4587 	}
4588 
4589 	bpf_compute_data_pointers(skb);
4590 	if (unlikely(ret < 0))
4591 		return ret;
4592 
4593 	hdr = (struct ipv6hdr *)skb->data;
4594 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4595 
4596 	srh_state->hdrlen += len;
4597 	srh_state->valid = 0;
4598 	return 0;
4599 #else /* CONFIG_IPV6_SEG6_BPF */
4600 	return -EOPNOTSUPP;
4601 #endif
4602 }
4603 
4604 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
4605 	.func		= bpf_lwt_seg6_adjust_srh,
4606 	.gpl_only	= false,
4607 	.ret_type	= RET_INTEGER,
4608 	.arg1_type	= ARG_PTR_TO_CTX,
4609 	.arg2_type	= ARG_ANYTHING,
4610 	.arg3_type	= ARG_ANYTHING,
4611 };
4612 
4613 bool bpf_helper_changes_pkt_data(void *func)
4614 {
4615 	if (func == bpf_skb_vlan_push ||
4616 	    func == bpf_skb_vlan_pop ||
4617 	    func == bpf_skb_store_bytes ||
4618 	    func == bpf_skb_change_proto ||
4619 	    func == bpf_skb_change_head ||
4620 	    func == bpf_skb_change_tail ||
4621 	    func == bpf_skb_adjust_room ||
4622 	    func == bpf_skb_pull_data ||
4623 	    func == bpf_clone_redirect ||
4624 	    func == bpf_l3_csum_replace ||
4625 	    func == bpf_l4_csum_replace ||
4626 	    func == bpf_xdp_adjust_head ||
4627 	    func == bpf_xdp_adjust_meta ||
4628 	    func == bpf_msg_pull_data ||
4629 	    func == bpf_xdp_adjust_tail ||
4630 	    func == bpf_lwt_push_encap ||
4631 	    func == bpf_lwt_seg6_store_bytes ||
4632 	    func == bpf_lwt_seg6_adjust_srh ||
4633 	    func == bpf_lwt_seg6_action
4634 	    )
4635 		return true;
4636 
4637 	return false;
4638 }
4639 
4640 static const struct bpf_func_proto *
4641 bpf_base_func_proto(enum bpf_func_id func_id)
4642 {
4643 	switch (func_id) {
4644 	case BPF_FUNC_map_lookup_elem:
4645 		return &bpf_map_lookup_elem_proto;
4646 	case BPF_FUNC_map_update_elem:
4647 		return &bpf_map_update_elem_proto;
4648 	case BPF_FUNC_map_delete_elem:
4649 		return &bpf_map_delete_elem_proto;
4650 	case BPF_FUNC_get_prandom_u32:
4651 		return &bpf_get_prandom_u32_proto;
4652 	case BPF_FUNC_get_smp_processor_id:
4653 		return &bpf_get_raw_smp_processor_id_proto;
4654 	case BPF_FUNC_get_numa_node_id:
4655 		return &bpf_get_numa_node_id_proto;
4656 	case BPF_FUNC_tail_call:
4657 		return &bpf_tail_call_proto;
4658 	case BPF_FUNC_ktime_get_ns:
4659 		return &bpf_ktime_get_ns_proto;
4660 	case BPF_FUNC_trace_printk:
4661 		if (capable(CAP_SYS_ADMIN))
4662 			return bpf_get_trace_printk_proto();
4663 	default:
4664 		return NULL;
4665 	}
4666 }
4667 
4668 static const struct bpf_func_proto *
4669 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4670 {
4671 	switch (func_id) {
4672 	/* inet and inet6 sockets are created in a process
4673 	 * context so there is always a valid uid/gid
4674 	 */
4675 	case BPF_FUNC_get_current_uid_gid:
4676 		return &bpf_get_current_uid_gid_proto;
4677 	default:
4678 		return bpf_base_func_proto(func_id);
4679 	}
4680 }
4681 
4682 static const struct bpf_func_proto *
4683 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4684 {
4685 	switch (func_id) {
4686 	/* inet and inet6 sockets are created in a process
4687 	 * context so there is always a valid uid/gid
4688 	 */
4689 	case BPF_FUNC_get_current_uid_gid:
4690 		return &bpf_get_current_uid_gid_proto;
4691 	case BPF_FUNC_bind:
4692 		switch (prog->expected_attach_type) {
4693 		case BPF_CGROUP_INET4_CONNECT:
4694 		case BPF_CGROUP_INET6_CONNECT:
4695 			return &bpf_bind_proto;
4696 		default:
4697 			return NULL;
4698 		}
4699 	default:
4700 		return bpf_base_func_proto(func_id);
4701 	}
4702 }
4703 
4704 static const struct bpf_func_proto *
4705 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4706 {
4707 	switch (func_id) {
4708 	case BPF_FUNC_skb_load_bytes:
4709 		return &bpf_skb_load_bytes_proto;
4710 	case BPF_FUNC_skb_load_bytes_relative:
4711 		return &bpf_skb_load_bytes_relative_proto;
4712 	case BPF_FUNC_get_socket_cookie:
4713 		return &bpf_get_socket_cookie_proto;
4714 	case BPF_FUNC_get_socket_uid:
4715 		return &bpf_get_socket_uid_proto;
4716 	default:
4717 		return bpf_base_func_proto(func_id);
4718 	}
4719 }
4720 
4721 static const struct bpf_func_proto *
4722 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4723 {
4724 	switch (func_id) {
4725 	case BPF_FUNC_skb_store_bytes:
4726 		return &bpf_skb_store_bytes_proto;
4727 	case BPF_FUNC_skb_load_bytes:
4728 		return &bpf_skb_load_bytes_proto;
4729 	case BPF_FUNC_skb_load_bytes_relative:
4730 		return &bpf_skb_load_bytes_relative_proto;
4731 	case BPF_FUNC_skb_pull_data:
4732 		return &bpf_skb_pull_data_proto;
4733 	case BPF_FUNC_csum_diff:
4734 		return &bpf_csum_diff_proto;
4735 	case BPF_FUNC_csum_update:
4736 		return &bpf_csum_update_proto;
4737 	case BPF_FUNC_l3_csum_replace:
4738 		return &bpf_l3_csum_replace_proto;
4739 	case BPF_FUNC_l4_csum_replace:
4740 		return &bpf_l4_csum_replace_proto;
4741 	case BPF_FUNC_clone_redirect:
4742 		return &bpf_clone_redirect_proto;
4743 	case BPF_FUNC_get_cgroup_classid:
4744 		return &bpf_get_cgroup_classid_proto;
4745 	case BPF_FUNC_skb_vlan_push:
4746 		return &bpf_skb_vlan_push_proto;
4747 	case BPF_FUNC_skb_vlan_pop:
4748 		return &bpf_skb_vlan_pop_proto;
4749 	case BPF_FUNC_skb_change_proto:
4750 		return &bpf_skb_change_proto_proto;
4751 	case BPF_FUNC_skb_change_type:
4752 		return &bpf_skb_change_type_proto;
4753 	case BPF_FUNC_skb_adjust_room:
4754 		return &bpf_skb_adjust_room_proto;
4755 	case BPF_FUNC_skb_change_tail:
4756 		return &bpf_skb_change_tail_proto;
4757 	case BPF_FUNC_skb_get_tunnel_key:
4758 		return &bpf_skb_get_tunnel_key_proto;
4759 	case BPF_FUNC_skb_set_tunnel_key:
4760 		return bpf_get_skb_set_tunnel_proto(func_id);
4761 	case BPF_FUNC_skb_get_tunnel_opt:
4762 		return &bpf_skb_get_tunnel_opt_proto;
4763 	case BPF_FUNC_skb_set_tunnel_opt:
4764 		return bpf_get_skb_set_tunnel_proto(func_id);
4765 	case BPF_FUNC_redirect:
4766 		return &bpf_redirect_proto;
4767 	case BPF_FUNC_get_route_realm:
4768 		return &bpf_get_route_realm_proto;
4769 	case BPF_FUNC_get_hash_recalc:
4770 		return &bpf_get_hash_recalc_proto;
4771 	case BPF_FUNC_set_hash_invalid:
4772 		return &bpf_set_hash_invalid_proto;
4773 	case BPF_FUNC_set_hash:
4774 		return &bpf_set_hash_proto;
4775 	case BPF_FUNC_perf_event_output:
4776 		return &bpf_skb_event_output_proto;
4777 	case BPF_FUNC_get_smp_processor_id:
4778 		return &bpf_get_smp_processor_id_proto;
4779 	case BPF_FUNC_skb_under_cgroup:
4780 		return &bpf_skb_under_cgroup_proto;
4781 	case BPF_FUNC_get_socket_cookie:
4782 		return &bpf_get_socket_cookie_proto;
4783 	case BPF_FUNC_get_socket_uid:
4784 		return &bpf_get_socket_uid_proto;
4785 	case BPF_FUNC_fib_lookup:
4786 		return &bpf_skb_fib_lookup_proto;
4787 #ifdef CONFIG_XFRM
4788 	case BPF_FUNC_skb_get_xfrm_state:
4789 		return &bpf_skb_get_xfrm_state_proto;
4790 #endif
4791 #ifdef CONFIG_SOCK_CGROUP_DATA
4792 	case BPF_FUNC_skb_cgroup_id:
4793 		return &bpf_skb_cgroup_id_proto;
4794 #endif
4795 	default:
4796 		return bpf_base_func_proto(func_id);
4797 	}
4798 }
4799 
4800 static const struct bpf_func_proto *
4801 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4802 {
4803 	switch (func_id) {
4804 	case BPF_FUNC_perf_event_output:
4805 		return &bpf_xdp_event_output_proto;
4806 	case BPF_FUNC_get_smp_processor_id:
4807 		return &bpf_get_smp_processor_id_proto;
4808 	case BPF_FUNC_csum_diff:
4809 		return &bpf_csum_diff_proto;
4810 	case BPF_FUNC_xdp_adjust_head:
4811 		return &bpf_xdp_adjust_head_proto;
4812 	case BPF_FUNC_xdp_adjust_meta:
4813 		return &bpf_xdp_adjust_meta_proto;
4814 	case BPF_FUNC_redirect:
4815 		return &bpf_xdp_redirect_proto;
4816 	case BPF_FUNC_redirect_map:
4817 		return &bpf_xdp_redirect_map_proto;
4818 	case BPF_FUNC_xdp_adjust_tail:
4819 		return &bpf_xdp_adjust_tail_proto;
4820 	case BPF_FUNC_fib_lookup:
4821 		return &bpf_xdp_fib_lookup_proto;
4822 	default:
4823 		return bpf_base_func_proto(func_id);
4824 	}
4825 }
4826 
4827 static const struct bpf_func_proto *
4828 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4829 {
4830 	switch (func_id) {
4831 	case BPF_FUNC_setsockopt:
4832 		return &bpf_setsockopt_proto;
4833 	case BPF_FUNC_getsockopt:
4834 		return &bpf_getsockopt_proto;
4835 	case BPF_FUNC_sock_ops_cb_flags_set:
4836 		return &bpf_sock_ops_cb_flags_set_proto;
4837 	case BPF_FUNC_sock_map_update:
4838 		return &bpf_sock_map_update_proto;
4839 	case BPF_FUNC_sock_hash_update:
4840 		return &bpf_sock_hash_update_proto;
4841 	default:
4842 		return bpf_base_func_proto(func_id);
4843 	}
4844 }
4845 
4846 static const struct bpf_func_proto *
4847 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4848 {
4849 	switch (func_id) {
4850 	case BPF_FUNC_msg_redirect_map:
4851 		return &bpf_msg_redirect_map_proto;
4852 	case BPF_FUNC_msg_redirect_hash:
4853 		return &bpf_msg_redirect_hash_proto;
4854 	case BPF_FUNC_msg_apply_bytes:
4855 		return &bpf_msg_apply_bytes_proto;
4856 	case BPF_FUNC_msg_cork_bytes:
4857 		return &bpf_msg_cork_bytes_proto;
4858 	case BPF_FUNC_msg_pull_data:
4859 		return &bpf_msg_pull_data_proto;
4860 	default:
4861 		return bpf_base_func_proto(func_id);
4862 	}
4863 }
4864 
4865 static const struct bpf_func_proto *
4866 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4867 {
4868 	switch (func_id) {
4869 	case BPF_FUNC_skb_store_bytes:
4870 		return &bpf_skb_store_bytes_proto;
4871 	case BPF_FUNC_skb_load_bytes:
4872 		return &bpf_skb_load_bytes_proto;
4873 	case BPF_FUNC_skb_pull_data:
4874 		return &bpf_skb_pull_data_proto;
4875 	case BPF_FUNC_skb_change_tail:
4876 		return &bpf_skb_change_tail_proto;
4877 	case BPF_FUNC_skb_change_head:
4878 		return &bpf_skb_change_head_proto;
4879 	case BPF_FUNC_get_socket_cookie:
4880 		return &bpf_get_socket_cookie_proto;
4881 	case BPF_FUNC_get_socket_uid:
4882 		return &bpf_get_socket_uid_proto;
4883 	case BPF_FUNC_sk_redirect_map:
4884 		return &bpf_sk_redirect_map_proto;
4885 	case BPF_FUNC_sk_redirect_hash:
4886 		return &bpf_sk_redirect_hash_proto;
4887 	default:
4888 		return bpf_base_func_proto(func_id);
4889 	}
4890 }
4891 
4892 static const struct bpf_func_proto *
4893 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4894 {
4895 	switch (func_id) {
4896 	case BPF_FUNC_skb_load_bytes:
4897 		return &bpf_skb_load_bytes_proto;
4898 	case BPF_FUNC_skb_pull_data:
4899 		return &bpf_skb_pull_data_proto;
4900 	case BPF_FUNC_csum_diff:
4901 		return &bpf_csum_diff_proto;
4902 	case BPF_FUNC_get_cgroup_classid:
4903 		return &bpf_get_cgroup_classid_proto;
4904 	case BPF_FUNC_get_route_realm:
4905 		return &bpf_get_route_realm_proto;
4906 	case BPF_FUNC_get_hash_recalc:
4907 		return &bpf_get_hash_recalc_proto;
4908 	case BPF_FUNC_perf_event_output:
4909 		return &bpf_skb_event_output_proto;
4910 	case BPF_FUNC_get_smp_processor_id:
4911 		return &bpf_get_smp_processor_id_proto;
4912 	case BPF_FUNC_skb_under_cgroup:
4913 		return &bpf_skb_under_cgroup_proto;
4914 	default:
4915 		return bpf_base_func_proto(func_id);
4916 	}
4917 }
4918 
4919 static const struct bpf_func_proto *
4920 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4921 {
4922 	switch (func_id) {
4923 	case BPF_FUNC_lwt_push_encap:
4924 		return &bpf_lwt_push_encap_proto;
4925 	default:
4926 		return lwt_out_func_proto(func_id, prog);
4927 	}
4928 }
4929 
4930 static const struct bpf_func_proto *
4931 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4932 {
4933 	switch (func_id) {
4934 	case BPF_FUNC_skb_get_tunnel_key:
4935 		return &bpf_skb_get_tunnel_key_proto;
4936 	case BPF_FUNC_skb_set_tunnel_key:
4937 		return bpf_get_skb_set_tunnel_proto(func_id);
4938 	case BPF_FUNC_skb_get_tunnel_opt:
4939 		return &bpf_skb_get_tunnel_opt_proto;
4940 	case BPF_FUNC_skb_set_tunnel_opt:
4941 		return bpf_get_skb_set_tunnel_proto(func_id);
4942 	case BPF_FUNC_redirect:
4943 		return &bpf_redirect_proto;
4944 	case BPF_FUNC_clone_redirect:
4945 		return &bpf_clone_redirect_proto;
4946 	case BPF_FUNC_skb_change_tail:
4947 		return &bpf_skb_change_tail_proto;
4948 	case BPF_FUNC_skb_change_head:
4949 		return &bpf_skb_change_head_proto;
4950 	case BPF_FUNC_skb_store_bytes:
4951 		return &bpf_skb_store_bytes_proto;
4952 	case BPF_FUNC_csum_update:
4953 		return &bpf_csum_update_proto;
4954 	case BPF_FUNC_l3_csum_replace:
4955 		return &bpf_l3_csum_replace_proto;
4956 	case BPF_FUNC_l4_csum_replace:
4957 		return &bpf_l4_csum_replace_proto;
4958 	case BPF_FUNC_set_hash_invalid:
4959 		return &bpf_set_hash_invalid_proto;
4960 	default:
4961 		return lwt_out_func_proto(func_id, prog);
4962 	}
4963 }
4964 
4965 static const struct bpf_func_proto *
4966 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4967 {
4968 	switch (func_id) {
4969 	case BPF_FUNC_lwt_seg6_store_bytes:
4970 		return &bpf_lwt_seg6_store_bytes_proto;
4971 	case BPF_FUNC_lwt_seg6_action:
4972 		return &bpf_lwt_seg6_action_proto;
4973 	case BPF_FUNC_lwt_seg6_adjust_srh:
4974 		return &bpf_lwt_seg6_adjust_srh_proto;
4975 	default:
4976 		return lwt_out_func_proto(func_id, prog);
4977 	}
4978 }
4979 
4980 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
4981 				    const struct bpf_prog *prog,
4982 				    struct bpf_insn_access_aux *info)
4983 {
4984 	const int size_default = sizeof(__u32);
4985 
4986 	if (off < 0 || off >= sizeof(struct __sk_buff))
4987 		return false;
4988 
4989 	/* The verifier guarantees that size > 0. */
4990 	if (off % size != 0)
4991 		return false;
4992 
4993 	switch (off) {
4994 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4995 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
4996 			return false;
4997 		break;
4998 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
4999 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
5000 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
5001 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
5002 	case bpf_ctx_range(struct __sk_buff, data):
5003 	case bpf_ctx_range(struct __sk_buff, data_meta):
5004 	case bpf_ctx_range(struct __sk_buff, data_end):
5005 		if (size != size_default)
5006 			return false;
5007 		break;
5008 	default:
5009 		/* Only narrow read access allowed for now. */
5010 		if (type == BPF_WRITE) {
5011 			if (size != size_default)
5012 				return false;
5013 		} else {
5014 			bpf_ctx_record_field_size(info, size_default);
5015 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5016 				return false;
5017 		}
5018 	}
5019 
5020 	return true;
5021 }
5022 
5023 static bool sk_filter_is_valid_access(int off, int size,
5024 				      enum bpf_access_type type,
5025 				      const struct bpf_prog *prog,
5026 				      struct bpf_insn_access_aux *info)
5027 {
5028 	switch (off) {
5029 	case bpf_ctx_range(struct __sk_buff, tc_classid):
5030 	case bpf_ctx_range(struct __sk_buff, data):
5031 	case bpf_ctx_range(struct __sk_buff, data_meta):
5032 	case bpf_ctx_range(struct __sk_buff, data_end):
5033 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5034 		return false;
5035 	}
5036 
5037 	if (type == BPF_WRITE) {
5038 		switch (off) {
5039 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5040 			break;
5041 		default:
5042 			return false;
5043 		}
5044 	}
5045 
5046 	return bpf_skb_is_valid_access(off, size, type, prog, info);
5047 }
5048 
5049 static bool lwt_is_valid_access(int off, int size,
5050 				enum bpf_access_type type,
5051 				const struct bpf_prog *prog,
5052 				struct bpf_insn_access_aux *info)
5053 {
5054 	switch (off) {
5055 	case bpf_ctx_range(struct __sk_buff, tc_classid):
5056 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5057 	case bpf_ctx_range(struct __sk_buff, data_meta):
5058 		return false;
5059 	}
5060 
5061 	if (type == BPF_WRITE) {
5062 		switch (off) {
5063 		case bpf_ctx_range(struct __sk_buff, mark):
5064 		case bpf_ctx_range(struct __sk_buff, priority):
5065 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5066 			break;
5067 		default:
5068 			return false;
5069 		}
5070 	}
5071 
5072 	switch (off) {
5073 	case bpf_ctx_range(struct __sk_buff, data):
5074 		info->reg_type = PTR_TO_PACKET;
5075 		break;
5076 	case bpf_ctx_range(struct __sk_buff, data_end):
5077 		info->reg_type = PTR_TO_PACKET_END;
5078 		break;
5079 	}
5080 
5081 	return bpf_skb_is_valid_access(off, size, type, prog, info);
5082 }
5083 
5084 /* Attach type specific accesses */
5085 static bool __sock_filter_check_attach_type(int off,
5086 					    enum bpf_access_type access_type,
5087 					    enum bpf_attach_type attach_type)
5088 {
5089 	switch (off) {
5090 	case offsetof(struct bpf_sock, bound_dev_if):
5091 	case offsetof(struct bpf_sock, mark):
5092 	case offsetof(struct bpf_sock, priority):
5093 		switch (attach_type) {
5094 		case BPF_CGROUP_INET_SOCK_CREATE:
5095 			goto full_access;
5096 		default:
5097 			return false;
5098 		}
5099 	case bpf_ctx_range(struct bpf_sock, src_ip4):
5100 		switch (attach_type) {
5101 		case BPF_CGROUP_INET4_POST_BIND:
5102 			goto read_only;
5103 		default:
5104 			return false;
5105 		}
5106 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5107 		switch (attach_type) {
5108 		case BPF_CGROUP_INET6_POST_BIND:
5109 			goto read_only;
5110 		default:
5111 			return false;
5112 		}
5113 	case bpf_ctx_range(struct bpf_sock, src_port):
5114 		switch (attach_type) {
5115 		case BPF_CGROUP_INET4_POST_BIND:
5116 		case BPF_CGROUP_INET6_POST_BIND:
5117 			goto read_only;
5118 		default:
5119 			return false;
5120 		}
5121 	}
5122 read_only:
5123 	return access_type == BPF_READ;
5124 full_access:
5125 	return true;
5126 }
5127 
5128 static bool __sock_filter_check_size(int off, int size,
5129 				     struct bpf_insn_access_aux *info)
5130 {
5131 	const int size_default = sizeof(__u32);
5132 
5133 	switch (off) {
5134 	case bpf_ctx_range(struct bpf_sock, src_ip4):
5135 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5136 		bpf_ctx_record_field_size(info, size_default);
5137 		return bpf_ctx_narrow_access_ok(off, size, size_default);
5138 	}
5139 
5140 	return size == size_default;
5141 }
5142 
5143 static bool sock_filter_is_valid_access(int off, int size,
5144 					enum bpf_access_type type,
5145 					const struct bpf_prog *prog,
5146 					struct bpf_insn_access_aux *info)
5147 {
5148 	if (off < 0 || off >= sizeof(struct bpf_sock))
5149 		return false;
5150 	if (off % size != 0)
5151 		return false;
5152 	if (!__sock_filter_check_attach_type(off, type,
5153 					     prog->expected_attach_type))
5154 		return false;
5155 	if (!__sock_filter_check_size(off, size, info))
5156 		return false;
5157 	return true;
5158 }
5159 
5160 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
5161 				const struct bpf_prog *prog, int drop_verdict)
5162 {
5163 	struct bpf_insn *insn = insn_buf;
5164 
5165 	if (!direct_write)
5166 		return 0;
5167 
5168 	/* if (!skb->cloned)
5169 	 *       goto start;
5170 	 *
5171 	 * (Fast-path, otherwise approximation that we might be
5172 	 *  a clone, do the rest in helper.)
5173 	 */
5174 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
5175 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
5176 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
5177 
5178 	/* ret = bpf_skb_pull_data(skb, 0); */
5179 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
5180 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
5181 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
5182 			       BPF_FUNC_skb_pull_data);
5183 	/* if (!ret)
5184 	 *      goto restore;
5185 	 * return TC_ACT_SHOT;
5186 	 */
5187 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
5188 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
5189 	*insn++ = BPF_EXIT_INSN();
5190 
5191 	/* restore: */
5192 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
5193 	/* start: */
5194 	*insn++ = prog->insnsi[0];
5195 
5196 	return insn - insn_buf;
5197 }
5198 
5199 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
5200 			  struct bpf_insn *insn_buf)
5201 {
5202 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
5203 	struct bpf_insn *insn = insn_buf;
5204 
5205 	/* We're guaranteed here that CTX is in R6. */
5206 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
5207 	if (!indirect) {
5208 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
5209 	} else {
5210 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
5211 		if (orig->imm)
5212 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
5213 	}
5214 
5215 	switch (BPF_SIZE(orig->code)) {
5216 	case BPF_B:
5217 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
5218 		break;
5219 	case BPF_H:
5220 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
5221 		break;
5222 	case BPF_W:
5223 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
5224 		break;
5225 	}
5226 
5227 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
5228 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
5229 	*insn++ = BPF_EXIT_INSN();
5230 
5231 	return insn - insn_buf;
5232 }
5233 
5234 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
5235 			       const struct bpf_prog *prog)
5236 {
5237 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
5238 }
5239 
5240 static bool tc_cls_act_is_valid_access(int off, int size,
5241 				       enum bpf_access_type type,
5242 				       const struct bpf_prog *prog,
5243 				       struct bpf_insn_access_aux *info)
5244 {
5245 	if (type == BPF_WRITE) {
5246 		switch (off) {
5247 		case bpf_ctx_range(struct __sk_buff, mark):
5248 		case bpf_ctx_range(struct __sk_buff, tc_index):
5249 		case bpf_ctx_range(struct __sk_buff, priority):
5250 		case bpf_ctx_range(struct __sk_buff, tc_classid):
5251 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5252 			break;
5253 		default:
5254 			return false;
5255 		}
5256 	}
5257 
5258 	switch (off) {
5259 	case bpf_ctx_range(struct __sk_buff, data):
5260 		info->reg_type = PTR_TO_PACKET;
5261 		break;
5262 	case bpf_ctx_range(struct __sk_buff, data_meta):
5263 		info->reg_type = PTR_TO_PACKET_META;
5264 		break;
5265 	case bpf_ctx_range(struct __sk_buff, data_end):
5266 		info->reg_type = PTR_TO_PACKET_END;
5267 		break;
5268 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5269 		return false;
5270 	}
5271 
5272 	return bpf_skb_is_valid_access(off, size, type, prog, info);
5273 }
5274 
5275 static bool __is_valid_xdp_access(int off, int size)
5276 {
5277 	if (off < 0 || off >= sizeof(struct xdp_md))
5278 		return false;
5279 	if (off % size != 0)
5280 		return false;
5281 	if (size != sizeof(__u32))
5282 		return false;
5283 
5284 	return true;
5285 }
5286 
5287 static bool xdp_is_valid_access(int off, int size,
5288 				enum bpf_access_type type,
5289 				const struct bpf_prog *prog,
5290 				struct bpf_insn_access_aux *info)
5291 {
5292 	if (type == BPF_WRITE) {
5293 		if (bpf_prog_is_dev_bound(prog->aux)) {
5294 			switch (off) {
5295 			case offsetof(struct xdp_md, rx_queue_index):
5296 				return __is_valid_xdp_access(off, size);
5297 			}
5298 		}
5299 		return false;
5300 	}
5301 
5302 	switch (off) {
5303 	case offsetof(struct xdp_md, data):
5304 		info->reg_type = PTR_TO_PACKET;
5305 		break;
5306 	case offsetof(struct xdp_md, data_meta):
5307 		info->reg_type = PTR_TO_PACKET_META;
5308 		break;
5309 	case offsetof(struct xdp_md, data_end):
5310 		info->reg_type = PTR_TO_PACKET_END;
5311 		break;
5312 	}
5313 
5314 	return __is_valid_xdp_access(off, size);
5315 }
5316 
5317 void bpf_warn_invalid_xdp_action(u32 act)
5318 {
5319 	const u32 act_max = XDP_REDIRECT;
5320 
5321 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
5322 		  act > act_max ? "Illegal" : "Driver unsupported",
5323 		  act);
5324 }
5325 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
5326 
5327 static bool sock_addr_is_valid_access(int off, int size,
5328 				      enum bpf_access_type type,
5329 				      const struct bpf_prog *prog,
5330 				      struct bpf_insn_access_aux *info)
5331 {
5332 	const int size_default = sizeof(__u32);
5333 
5334 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
5335 		return false;
5336 	if (off % size != 0)
5337 		return false;
5338 
5339 	/* Disallow access to IPv6 fields from IPv4 contex and vise
5340 	 * versa.
5341 	 */
5342 	switch (off) {
5343 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
5344 		switch (prog->expected_attach_type) {
5345 		case BPF_CGROUP_INET4_BIND:
5346 		case BPF_CGROUP_INET4_CONNECT:
5347 		case BPF_CGROUP_UDP4_SENDMSG:
5348 			break;
5349 		default:
5350 			return false;
5351 		}
5352 		break;
5353 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5354 		switch (prog->expected_attach_type) {
5355 		case BPF_CGROUP_INET6_BIND:
5356 		case BPF_CGROUP_INET6_CONNECT:
5357 		case BPF_CGROUP_UDP6_SENDMSG:
5358 			break;
5359 		default:
5360 			return false;
5361 		}
5362 		break;
5363 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
5364 		switch (prog->expected_attach_type) {
5365 		case BPF_CGROUP_UDP4_SENDMSG:
5366 			break;
5367 		default:
5368 			return false;
5369 		}
5370 		break;
5371 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
5372 				msg_src_ip6[3]):
5373 		switch (prog->expected_attach_type) {
5374 		case BPF_CGROUP_UDP6_SENDMSG:
5375 			break;
5376 		default:
5377 			return false;
5378 		}
5379 		break;
5380 	}
5381 
5382 	switch (off) {
5383 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
5384 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5385 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
5386 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
5387 				msg_src_ip6[3]):
5388 		/* Only narrow read access allowed for now. */
5389 		if (type == BPF_READ) {
5390 			bpf_ctx_record_field_size(info, size_default);
5391 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5392 				return false;
5393 		} else {
5394 			if (size != size_default)
5395 				return false;
5396 		}
5397 		break;
5398 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
5399 		if (size != size_default)
5400 			return false;
5401 		break;
5402 	default:
5403 		if (type == BPF_READ) {
5404 			if (size != size_default)
5405 				return false;
5406 		} else {
5407 			return false;
5408 		}
5409 	}
5410 
5411 	return true;
5412 }
5413 
5414 static bool sock_ops_is_valid_access(int off, int size,
5415 				     enum bpf_access_type type,
5416 				     const struct bpf_prog *prog,
5417 				     struct bpf_insn_access_aux *info)
5418 {
5419 	const int size_default = sizeof(__u32);
5420 
5421 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
5422 		return false;
5423 
5424 	/* The verifier guarantees that size > 0. */
5425 	if (off % size != 0)
5426 		return false;
5427 
5428 	if (type == BPF_WRITE) {
5429 		switch (off) {
5430 		case offsetof(struct bpf_sock_ops, reply):
5431 		case offsetof(struct bpf_sock_ops, sk_txhash):
5432 			if (size != size_default)
5433 				return false;
5434 			break;
5435 		default:
5436 			return false;
5437 		}
5438 	} else {
5439 		switch (off) {
5440 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
5441 					bytes_acked):
5442 			if (size != sizeof(__u64))
5443 				return false;
5444 			break;
5445 		default:
5446 			if (size != size_default)
5447 				return false;
5448 			break;
5449 		}
5450 	}
5451 
5452 	return true;
5453 }
5454 
5455 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
5456 			   const struct bpf_prog *prog)
5457 {
5458 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
5459 }
5460 
5461 static bool sk_skb_is_valid_access(int off, int size,
5462 				   enum bpf_access_type type,
5463 				   const struct bpf_prog *prog,
5464 				   struct bpf_insn_access_aux *info)
5465 {
5466 	switch (off) {
5467 	case bpf_ctx_range(struct __sk_buff, tc_classid):
5468 	case bpf_ctx_range(struct __sk_buff, data_meta):
5469 		return false;
5470 	}
5471 
5472 	if (type == BPF_WRITE) {
5473 		switch (off) {
5474 		case bpf_ctx_range(struct __sk_buff, tc_index):
5475 		case bpf_ctx_range(struct __sk_buff, priority):
5476 			break;
5477 		default:
5478 			return false;
5479 		}
5480 	}
5481 
5482 	switch (off) {
5483 	case bpf_ctx_range(struct __sk_buff, mark):
5484 		return false;
5485 	case bpf_ctx_range(struct __sk_buff, data):
5486 		info->reg_type = PTR_TO_PACKET;
5487 		break;
5488 	case bpf_ctx_range(struct __sk_buff, data_end):
5489 		info->reg_type = PTR_TO_PACKET_END;
5490 		break;
5491 	}
5492 
5493 	return bpf_skb_is_valid_access(off, size, type, prog, info);
5494 }
5495 
5496 static bool sk_msg_is_valid_access(int off, int size,
5497 				   enum bpf_access_type type,
5498 				   const struct bpf_prog *prog,
5499 				   struct bpf_insn_access_aux *info)
5500 {
5501 	if (type == BPF_WRITE)
5502 		return false;
5503 
5504 	switch (off) {
5505 	case offsetof(struct sk_msg_md, data):
5506 		info->reg_type = PTR_TO_PACKET;
5507 		if (size != sizeof(__u64))
5508 			return false;
5509 		break;
5510 	case offsetof(struct sk_msg_md, data_end):
5511 		info->reg_type = PTR_TO_PACKET_END;
5512 		if (size != sizeof(__u64))
5513 			return false;
5514 		break;
5515 	default:
5516 		if (size != sizeof(__u32))
5517 			return false;
5518 	}
5519 
5520 	if (off < 0 || off >= sizeof(struct sk_msg_md))
5521 		return false;
5522 	if (off % size != 0)
5523 		return false;
5524 
5525 	return true;
5526 }
5527 
5528 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
5529 				  const struct bpf_insn *si,
5530 				  struct bpf_insn *insn_buf,
5531 				  struct bpf_prog *prog, u32 *target_size)
5532 {
5533 	struct bpf_insn *insn = insn_buf;
5534 	int off;
5535 
5536 	switch (si->off) {
5537 	case offsetof(struct __sk_buff, len):
5538 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5539 				      bpf_target_off(struct sk_buff, len, 4,
5540 						     target_size));
5541 		break;
5542 
5543 	case offsetof(struct __sk_buff, protocol):
5544 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5545 				      bpf_target_off(struct sk_buff, protocol, 2,
5546 						     target_size));
5547 		break;
5548 
5549 	case offsetof(struct __sk_buff, vlan_proto):
5550 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5551 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
5552 						     target_size));
5553 		break;
5554 
5555 	case offsetof(struct __sk_buff, priority):
5556 		if (type == BPF_WRITE)
5557 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5558 					      bpf_target_off(struct sk_buff, priority, 4,
5559 							     target_size));
5560 		else
5561 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5562 					      bpf_target_off(struct sk_buff, priority, 4,
5563 							     target_size));
5564 		break;
5565 
5566 	case offsetof(struct __sk_buff, ingress_ifindex):
5567 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5568 				      bpf_target_off(struct sk_buff, skb_iif, 4,
5569 						     target_size));
5570 		break;
5571 
5572 	case offsetof(struct __sk_buff, ifindex):
5573 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
5574 				      si->dst_reg, si->src_reg,
5575 				      offsetof(struct sk_buff, dev));
5576 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
5577 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5578 				      bpf_target_off(struct net_device, ifindex, 4,
5579 						     target_size));
5580 		break;
5581 
5582 	case offsetof(struct __sk_buff, hash):
5583 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5584 				      bpf_target_off(struct sk_buff, hash, 4,
5585 						     target_size));
5586 		break;
5587 
5588 	case offsetof(struct __sk_buff, mark):
5589 		if (type == BPF_WRITE)
5590 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5591 					      bpf_target_off(struct sk_buff, mark, 4,
5592 							     target_size));
5593 		else
5594 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5595 					      bpf_target_off(struct sk_buff, mark, 4,
5596 							     target_size));
5597 		break;
5598 
5599 	case offsetof(struct __sk_buff, pkt_type):
5600 		*target_size = 1;
5601 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
5602 				      PKT_TYPE_OFFSET());
5603 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
5604 #ifdef __BIG_ENDIAN_BITFIELD
5605 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
5606 #endif
5607 		break;
5608 
5609 	case offsetof(struct __sk_buff, queue_mapping):
5610 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5611 				      bpf_target_off(struct sk_buff, queue_mapping, 2,
5612 						     target_size));
5613 		break;
5614 
5615 	case offsetof(struct __sk_buff, vlan_present):
5616 	case offsetof(struct __sk_buff, vlan_tci):
5617 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
5618 
5619 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5620 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
5621 						     target_size));
5622 		if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
5623 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
5624 						~VLAN_TAG_PRESENT);
5625 		} else {
5626 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
5627 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
5628 		}
5629 		break;
5630 
5631 	case offsetof(struct __sk_buff, cb[0]) ...
5632 	     offsetofend(struct __sk_buff, cb[4]) - 1:
5633 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
5634 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
5635 			      offsetof(struct qdisc_skb_cb, data)) %
5636 			     sizeof(__u64));
5637 
5638 		prog->cb_access = 1;
5639 		off  = si->off;
5640 		off -= offsetof(struct __sk_buff, cb[0]);
5641 		off += offsetof(struct sk_buff, cb);
5642 		off += offsetof(struct qdisc_skb_cb, data);
5643 		if (type == BPF_WRITE)
5644 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
5645 					      si->src_reg, off);
5646 		else
5647 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
5648 					      si->src_reg, off);
5649 		break;
5650 
5651 	case offsetof(struct __sk_buff, tc_classid):
5652 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
5653 
5654 		off  = si->off;
5655 		off -= offsetof(struct __sk_buff, tc_classid);
5656 		off += offsetof(struct sk_buff, cb);
5657 		off += offsetof(struct qdisc_skb_cb, tc_classid);
5658 		*target_size = 2;
5659 		if (type == BPF_WRITE)
5660 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
5661 					      si->src_reg, off);
5662 		else
5663 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
5664 					      si->src_reg, off);
5665 		break;
5666 
5667 	case offsetof(struct __sk_buff, data):
5668 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
5669 				      si->dst_reg, si->src_reg,
5670 				      offsetof(struct sk_buff, data));
5671 		break;
5672 
5673 	case offsetof(struct __sk_buff, data_meta):
5674 		off  = si->off;
5675 		off -= offsetof(struct __sk_buff, data_meta);
5676 		off += offsetof(struct sk_buff, cb);
5677 		off += offsetof(struct bpf_skb_data_end, data_meta);
5678 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5679 				      si->src_reg, off);
5680 		break;
5681 
5682 	case offsetof(struct __sk_buff, data_end):
5683 		off  = si->off;
5684 		off -= offsetof(struct __sk_buff, data_end);
5685 		off += offsetof(struct sk_buff, cb);
5686 		off += offsetof(struct bpf_skb_data_end, data_end);
5687 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5688 				      si->src_reg, off);
5689 		break;
5690 
5691 	case offsetof(struct __sk_buff, tc_index):
5692 #ifdef CONFIG_NET_SCHED
5693 		if (type == BPF_WRITE)
5694 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
5695 					      bpf_target_off(struct sk_buff, tc_index, 2,
5696 							     target_size));
5697 		else
5698 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5699 					      bpf_target_off(struct sk_buff, tc_index, 2,
5700 							     target_size));
5701 #else
5702 		*target_size = 2;
5703 		if (type == BPF_WRITE)
5704 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
5705 		else
5706 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5707 #endif
5708 		break;
5709 
5710 	case offsetof(struct __sk_buff, napi_id):
5711 #if defined(CONFIG_NET_RX_BUSY_POLL)
5712 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5713 				      bpf_target_off(struct sk_buff, napi_id, 4,
5714 						     target_size));
5715 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
5716 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5717 #else
5718 		*target_size = 4;
5719 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5720 #endif
5721 		break;
5722 	case offsetof(struct __sk_buff, family):
5723 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
5724 
5725 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5726 				      si->dst_reg, si->src_reg,
5727 				      offsetof(struct sk_buff, sk));
5728 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5729 				      bpf_target_off(struct sock_common,
5730 						     skc_family,
5731 						     2, target_size));
5732 		break;
5733 	case offsetof(struct __sk_buff, remote_ip4):
5734 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
5735 
5736 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5737 				      si->dst_reg, si->src_reg,
5738 				      offsetof(struct sk_buff, sk));
5739 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5740 				      bpf_target_off(struct sock_common,
5741 						     skc_daddr,
5742 						     4, target_size));
5743 		break;
5744 	case offsetof(struct __sk_buff, local_ip4):
5745 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5746 					  skc_rcv_saddr) != 4);
5747 
5748 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5749 				      si->dst_reg, si->src_reg,
5750 				      offsetof(struct sk_buff, sk));
5751 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5752 				      bpf_target_off(struct sock_common,
5753 						     skc_rcv_saddr,
5754 						     4, target_size));
5755 		break;
5756 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
5757 	     offsetof(struct __sk_buff, remote_ip6[3]):
5758 #if IS_ENABLED(CONFIG_IPV6)
5759 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5760 					  skc_v6_daddr.s6_addr32[0]) != 4);
5761 
5762 		off = si->off;
5763 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
5764 
5765 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5766 				      si->dst_reg, si->src_reg,
5767 				      offsetof(struct sk_buff, sk));
5768 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5769 				      offsetof(struct sock_common,
5770 					       skc_v6_daddr.s6_addr32[0]) +
5771 				      off);
5772 #else
5773 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5774 #endif
5775 		break;
5776 	case offsetof(struct __sk_buff, local_ip6[0]) ...
5777 	     offsetof(struct __sk_buff, local_ip6[3]):
5778 #if IS_ENABLED(CONFIG_IPV6)
5779 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5780 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
5781 
5782 		off = si->off;
5783 		off -= offsetof(struct __sk_buff, local_ip6[0]);
5784 
5785 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5786 				      si->dst_reg, si->src_reg,
5787 				      offsetof(struct sk_buff, sk));
5788 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5789 				      offsetof(struct sock_common,
5790 					       skc_v6_rcv_saddr.s6_addr32[0]) +
5791 				      off);
5792 #else
5793 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5794 #endif
5795 		break;
5796 
5797 	case offsetof(struct __sk_buff, remote_port):
5798 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
5799 
5800 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5801 				      si->dst_reg, si->src_reg,
5802 				      offsetof(struct sk_buff, sk));
5803 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5804 				      bpf_target_off(struct sock_common,
5805 						     skc_dport,
5806 						     2, target_size));
5807 #ifndef __BIG_ENDIAN_BITFIELD
5808 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
5809 #endif
5810 		break;
5811 
5812 	case offsetof(struct __sk_buff, local_port):
5813 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
5814 
5815 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5816 				      si->dst_reg, si->src_reg,
5817 				      offsetof(struct sk_buff, sk));
5818 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5819 				      bpf_target_off(struct sock_common,
5820 						     skc_num, 2, target_size));
5821 		break;
5822 	}
5823 
5824 	return insn - insn_buf;
5825 }
5826 
5827 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
5828 					  const struct bpf_insn *si,
5829 					  struct bpf_insn *insn_buf,
5830 					  struct bpf_prog *prog, u32 *target_size)
5831 {
5832 	struct bpf_insn *insn = insn_buf;
5833 	int off;
5834 
5835 	switch (si->off) {
5836 	case offsetof(struct bpf_sock, bound_dev_if):
5837 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
5838 
5839 		if (type == BPF_WRITE)
5840 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5841 					offsetof(struct sock, sk_bound_dev_if));
5842 		else
5843 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5844 				      offsetof(struct sock, sk_bound_dev_if));
5845 		break;
5846 
5847 	case offsetof(struct bpf_sock, mark):
5848 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
5849 
5850 		if (type == BPF_WRITE)
5851 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5852 					offsetof(struct sock, sk_mark));
5853 		else
5854 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5855 				      offsetof(struct sock, sk_mark));
5856 		break;
5857 
5858 	case offsetof(struct bpf_sock, priority):
5859 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
5860 
5861 		if (type == BPF_WRITE)
5862 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5863 					offsetof(struct sock, sk_priority));
5864 		else
5865 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5866 				      offsetof(struct sock, sk_priority));
5867 		break;
5868 
5869 	case offsetof(struct bpf_sock, family):
5870 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
5871 
5872 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5873 				      offsetof(struct sock, sk_family));
5874 		break;
5875 
5876 	case offsetof(struct bpf_sock, type):
5877 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5878 				      offsetof(struct sock, __sk_flags_offset));
5879 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
5880 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
5881 		break;
5882 
5883 	case offsetof(struct bpf_sock, protocol):
5884 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5885 				      offsetof(struct sock, __sk_flags_offset));
5886 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
5887 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
5888 		break;
5889 
5890 	case offsetof(struct bpf_sock, src_ip4):
5891 		*insn++ = BPF_LDX_MEM(
5892 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
5893 			bpf_target_off(struct sock_common, skc_rcv_saddr,
5894 				       FIELD_SIZEOF(struct sock_common,
5895 						    skc_rcv_saddr),
5896 				       target_size));
5897 		break;
5898 
5899 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5900 #if IS_ENABLED(CONFIG_IPV6)
5901 		off = si->off;
5902 		off -= offsetof(struct bpf_sock, src_ip6[0]);
5903 		*insn++ = BPF_LDX_MEM(
5904 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
5905 			bpf_target_off(
5906 				struct sock_common,
5907 				skc_v6_rcv_saddr.s6_addr32[0],
5908 				FIELD_SIZEOF(struct sock_common,
5909 					     skc_v6_rcv_saddr.s6_addr32[0]),
5910 				target_size) + off);
5911 #else
5912 		(void)off;
5913 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5914 #endif
5915 		break;
5916 
5917 	case offsetof(struct bpf_sock, src_port):
5918 		*insn++ = BPF_LDX_MEM(
5919 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
5920 			si->dst_reg, si->src_reg,
5921 			bpf_target_off(struct sock_common, skc_num,
5922 				       FIELD_SIZEOF(struct sock_common,
5923 						    skc_num),
5924 				       target_size));
5925 		break;
5926 	}
5927 
5928 	return insn - insn_buf;
5929 }
5930 
5931 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
5932 					 const struct bpf_insn *si,
5933 					 struct bpf_insn *insn_buf,
5934 					 struct bpf_prog *prog, u32 *target_size)
5935 {
5936 	struct bpf_insn *insn = insn_buf;
5937 
5938 	switch (si->off) {
5939 	case offsetof(struct __sk_buff, ifindex):
5940 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
5941 				      si->dst_reg, si->src_reg,
5942 				      offsetof(struct sk_buff, dev));
5943 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5944 				      bpf_target_off(struct net_device, ifindex, 4,
5945 						     target_size));
5946 		break;
5947 	default:
5948 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
5949 					      target_size);
5950 	}
5951 
5952 	return insn - insn_buf;
5953 }
5954 
5955 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
5956 				  const struct bpf_insn *si,
5957 				  struct bpf_insn *insn_buf,
5958 				  struct bpf_prog *prog, u32 *target_size)
5959 {
5960 	struct bpf_insn *insn = insn_buf;
5961 
5962 	switch (si->off) {
5963 	case offsetof(struct xdp_md, data):
5964 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
5965 				      si->dst_reg, si->src_reg,
5966 				      offsetof(struct xdp_buff, data));
5967 		break;
5968 	case offsetof(struct xdp_md, data_meta):
5969 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
5970 				      si->dst_reg, si->src_reg,
5971 				      offsetof(struct xdp_buff, data_meta));
5972 		break;
5973 	case offsetof(struct xdp_md, data_end):
5974 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
5975 				      si->dst_reg, si->src_reg,
5976 				      offsetof(struct xdp_buff, data_end));
5977 		break;
5978 	case offsetof(struct xdp_md, ingress_ifindex):
5979 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
5980 				      si->dst_reg, si->src_reg,
5981 				      offsetof(struct xdp_buff, rxq));
5982 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
5983 				      si->dst_reg, si->dst_reg,
5984 				      offsetof(struct xdp_rxq_info, dev));
5985 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5986 				      offsetof(struct net_device, ifindex));
5987 		break;
5988 	case offsetof(struct xdp_md, rx_queue_index):
5989 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
5990 				      si->dst_reg, si->src_reg,
5991 				      offsetof(struct xdp_buff, rxq));
5992 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5993 				      offsetof(struct xdp_rxq_info,
5994 					       queue_index));
5995 		break;
5996 	}
5997 
5998 	return insn - insn_buf;
5999 }
6000 
6001 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
6002  * context Structure, F is Field in context structure that contains a pointer
6003  * to Nested Structure of type NS that has the field NF.
6004  *
6005  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
6006  * sure that SIZE is not greater than actual size of S.F.NF.
6007  *
6008  * If offset OFF is provided, the load happens from that offset relative to
6009  * offset of NF.
6010  */
6011 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
6012 	do {								       \
6013 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
6014 				      si->src_reg, offsetof(S, F));	       \
6015 		*insn++ = BPF_LDX_MEM(					       \
6016 			SIZE, si->dst_reg, si->dst_reg,			       \
6017 			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
6018 				       target_size)			       \
6019 				+ OFF);					       \
6020 	} while (0)
6021 
6022 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
6023 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
6024 					     BPF_FIELD_SIZEOF(NS, NF), 0)
6025 
6026 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
6027  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
6028  *
6029  * It doesn't support SIZE argument though since narrow stores are not
6030  * supported for now.
6031  *
6032  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
6033  * "register" since two registers available in convert_ctx_access are not
6034  * enough: we can't override neither SRC, since it contains value to store, nor
6035  * DST since it contains pointer to context that may be used by later
6036  * instructions. But we need a temporary place to save pointer to nested
6037  * structure whose field we want to store to.
6038  */
6039 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF)		       \
6040 	do {								       \
6041 		int tmp_reg = BPF_REG_9;				       \
6042 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
6043 			--tmp_reg;					       \
6044 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
6045 			--tmp_reg;					       \
6046 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
6047 				      offsetof(S, TF));			       \
6048 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
6049 				      si->dst_reg, offsetof(S, F));	       \
6050 		*insn++ = BPF_STX_MEM(					       \
6051 			BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg,	       \
6052 			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
6053 				       target_size)			       \
6054 				+ OFF);					       \
6055 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
6056 				      offsetof(S, TF));			       \
6057 	} while (0)
6058 
6059 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
6060 						      TF)		       \
6061 	do {								       \
6062 		if (type == BPF_WRITE) {				       \
6063 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF,    \
6064 							 TF);		       \
6065 		} else {						       \
6066 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
6067 				S, NS, F, NF, SIZE, OFF);  \
6068 		}							       \
6069 	} while (0)
6070 
6071 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
6072 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
6073 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
6074 
6075 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
6076 					const struct bpf_insn *si,
6077 					struct bpf_insn *insn_buf,
6078 					struct bpf_prog *prog, u32 *target_size)
6079 {
6080 	struct bpf_insn *insn = insn_buf;
6081 	int off;
6082 
6083 	switch (si->off) {
6084 	case offsetof(struct bpf_sock_addr, user_family):
6085 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6086 					    struct sockaddr, uaddr, sa_family);
6087 		break;
6088 
6089 	case offsetof(struct bpf_sock_addr, user_ip4):
6090 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6091 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
6092 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
6093 		break;
6094 
6095 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6096 		off = si->off;
6097 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
6098 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6099 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
6100 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
6101 			tmp_reg);
6102 		break;
6103 
6104 	case offsetof(struct bpf_sock_addr, user_port):
6105 		/* To get port we need to know sa_family first and then treat
6106 		 * sockaddr as either sockaddr_in or sockaddr_in6.
6107 		 * Though we can simplify since port field has same offset and
6108 		 * size in both structures.
6109 		 * Here we check this invariant and use just one of the
6110 		 * structures if it's true.
6111 		 */
6112 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
6113 			     offsetof(struct sockaddr_in6, sin6_port));
6114 		BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
6115 			     FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
6116 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
6117 						     struct sockaddr_in6, uaddr,
6118 						     sin6_port, tmp_reg);
6119 		break;
6120 
6121 	case offsetof(struct bpf_sock_addr, family):
6122 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6123 					    struct sock, sk, sk_family);
6124 		break;
6125 
6126 	case offsetof(struct bpf_sock_addr, type):
6127 		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
6128 			struct bpf_sock_addr_kern, struct sock, sk,
6129 			__sk_flags_offset, BPF_W, 0);
6130 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
6131 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
6132 		break;
6133 
6134 	case offsetof(struct bpf_sock_addr, protocol):
6135 		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
6136 			struct bpf_sock_addr_kern, struct sock, sk,
6137 			__sk_flags_offset, BPF_W, 0);
6138 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
6139 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
6140 					SK_FL_PROTO_SHIFT);
6141 		break;
6142 
6143 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
6144 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
6145 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6146 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
6147 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
6148 		break;
6149 
6150 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6151 				msg_src_ip6[3]):
6152 		off = si->off;
6153 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
6154 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
6155 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6156 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
6157 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
6158 		break;
6159 	}
6160 
6161 	return insn - insn_buf;
6162 }
6163 
6164 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
6165 				       const struct bpf_insn *si,
6166 				       struct bpf_insn *insn_buf,
6167 				       struct bpf_prog *prog,
6168 				       u32 *target_size)
6169 {
6170 	struct bpf_insn *insn = insn_buf;
6171 	int off;
6172 
6173 	switch (si->off) {
6174 	case offsetof(struct bpf_sock_ops, op) ...
6175 	     offsetof(struct bpf_sock_ops, replylong[3]):
6176 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
6177 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
6178 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
6179 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
6180 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
6181 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
6182 		off = si->off;
6183 		off -= offsetof(struct bpf_sock_ops, op);
6184 		off += offsetof(struct bpf_sock_ops_kern, op);
6185 		if (type == BPF_WRITE)
6186 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6187 					      off);
6188 		else
6189 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6190 					      off);
6191 		break;
6192 
6193 	case offsetof(struct bpf_sock_ops, family):
6194 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6195 
6196 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6197 					      struct bpf_sock_ops_kern, sk),
6198 				      si->dst_reg, si->src_reg,
6199 				      offsetof(struct bpf_sock_ops_kern, sk));
6200 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6201 				      offsetof(struct sock_common, skc_family));
6202 		break;
6203 
6204 	case offsetof(struct bpf_sock_ops, remote_ip4):
6205 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6206 
6207 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6208 						struct bpf_sock_ops_kern, sk),
6209 				      si->dst_reg, si->src_reg,
6210 				      offsetof(struct bpf_sock_ops_kern, sk));
6211 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6212 				      offsetof(struct sock_common, skc_daddr));
6213 		break;
6214 
6215 	case offsetof(struct bpf_sock_ops, local_ip4):
6216 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6217 					  skc_rcv_saddr) != 4);
6218 
6219 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6220 					      struct bpf_sock_ops_kern, sk),
6221 				      si->dst_reg, si->src_reg,
6222 				      offsetof(struct bpf_sock_ops_kern, sk));
6223 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6224 				      offsetof(struct sock_common,
6225 					       skc_rcv_saddr));
6226 		break;
6227 
6228 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
6229 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
6230 #if IS_ENABLED(CONFIG_IPV6)
6231 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6232 					  skc_v6_daddr.s6_addr32[0]) != 4);
6233 
6234 		off = si->off;
6235 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
6236 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6237 						struct bpf_sock_ops_kern, sk),
6238 				      si->dst_reg, si->src_reg,
6239 				      offsetof(struct bpf_sock_ops_kern, sk));
6240 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6241 				      offsetof(struct sock_common,
6242 					       skc_v6_daddr.s6_addr32[0]) +
6243 				      off);
6244 #else
6245 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6246 #endif
6247 		break;
6248 
6249 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
6250 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
6251 #if IS_ENABLED(CONFIG_IPV6)
6252 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6253 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6254 
6255 		off = si->off;
6256 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
6257 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6258 						struct bpf_sock_ops_kern, sk),
6259 				      si->dst_reg, si->src_reg,
6260 				      offsetof(struct bpf_sock_ops_kern, sk));
6261 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6262 				      offsetof(struct sock_common,
6263 					       skc_v6_rcv_saddr.s6_addr32[0]) +
6264 				      off);
6265 #else
6266 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6267 #endif
6268 		break;
6269 
6270 	case offsetof(struct bpf_sock_ops, remote_port):
6271 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6272 
6273 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6274 						struct bpf_sock_ops_kern, sk),
6275 				      si->dst_reg, si->src_reg,
6276 				      offsetof(struct bpf_sock_ops_kern, sk));
6277 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6278 				      offsetof(struct sock_common, skc_dport));
6279 #ifndef __BIG_ENDIAN_BITFIELD
6280 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6281 #endif
6282 		break;
6283 
6284 	case offsetof(struct bpf_sock_ops, local_port):
6285 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6286 
6287 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6288 						struct bpf_sock_ops_kern, sk),
6289 				      si->dst_reg, si->src_reg,
6290 				      offsetof(struct bpf_sock_ops_kern, sk));
6291 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6292 				      offsetof(struct sock_common, skc_num));
6293 		break;
6294 
6295 	case offsetof(struct bpf_sock_ops, is_fullsock):
6296 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6297 						struct bpf_sock_ops_kern,
6298 						is_fullsock),
6299 				      si->dst_reg, si->src_reg,
6300 				      offsetof(struct bpf_sock_ops_kern,
6301 					       is_fullsock));
6302 		break;
6303 
6304 	case offsetof(struct bpf_sock_ops, state):
6305 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
6306 
6307 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6308 						struct bpf_sock_ops_kern, sk),
6309 				      si->dst_reg, si->src_reg,
6310 				      offsetof(struct bpf_sock_ops_kern, sk));
6311 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
6312 				      offsetof(struct sock_common, skc_state));
6313 		break;
6314 
6315 	case offsetof(struct bpf_sock_ops, rtt_min):
6316 		BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
6317 			     sizeof(struct minmax));
6318 		BUILD_BUG_ON(sizeof(struct minmax) <
6319 			     sizeof(struct minmax_sample));
6320 
6321 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6322 						struct bpf_sock_ops_kern, sk),
6323 				      si->dst_reg, si->src_reg,
6324 				      offsetof(struct bpf_sock_ops_kern, sk));
6325 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6326 				      offsetof(struct tcp_sock, rtt_min) +
6327 				      FIELD_SIZEOF(struct minmax_sample, t));
6328 		break;
6329 
6330 /* Helper macro for adding read access to tcp_sock or sock fields. */
6331 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
6332 	do {								      \
6333 		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
6334 			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
6335 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
6336 						struct bpf_sock_ops_kern,     \
6337 						is_fullsock),		      \
6338 				      si->dst_reg, si->src_reg,		      \
6339 				      offsetof(struct bpf_sock_ops_kern,      \
6340 					       is_fullsock));		      \
6341 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);	      \
6342 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
6343 						struct bpf_sock_ops_kern, sk),\
6344 				      si->dst_reg, si->src_reg,		      \
6345 				      offsetof(struct bpf_sock_ops_kern, sk));\
6346 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
6347 						       OBJ_FIELD),	      \
6348 				      si->dst_reg, si->dst_reg,		      \
6349 				      offsetof(OBJ, OBJ_FIELD));	      \
6350 	} while (0)
6351 
6352 /* Helper macro for adding write access to tcp_sock or sock fields.
6353  * The macro is called with two registers, dst_reg which contains a pointer
6354  * to ctx (context) and src_reg which contains the value that should be
6355  * stored. However, we need an additional register since we cannot overwrite
6356  * dst_reg because it may be used later in the program.
6357  * Instead we "borrow" one of the other register. We first save its value
6358  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
6359  * it at the end of the macro.
6360  */
6361 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
6362 	do {								      \
6363 		int reg = BPF_REG_9;					      \
6364 		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
6365 			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
6366 		if (si->dst_reg == reg || si->src_reg == reg)		      \
6367 			reg--;						      \
6368 		if (si->dst_reg == reg || si->src_reg == reg)		      \
6369 			reg--;						      \
6370 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
6371 				      offsetof(struct bpf_sock_ops_kern,      \
6372 					       temp));			      \
6373 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
6374 						struct bpf_sock_ops_kern,     \
6375 						is_fullsock),		      \
6376 				      reg, si->dst_reg,			      \
6377 				      offsetof(struct bpf_sock_ops_kern,      \
6378 					       is_fullsock));		      \
6379 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
6380 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
6381 						struct bpf_sock_ops_kern, sk),\
6382 				      reg, si->dst_reg,			      \
6383 				      offsetof(struct bpf_sock_ops_kern, sk));\
6384 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
6385 				      reg, si->src_reg,			      \
6386 				      offsetof(OBJ, OBJ_FIELD));	      \
6387 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
6388 				      offsetof(struct bpf_sock_ops_kern,      \
6389 					       temp));			      \
6390 	} while (0)
6391 
6392 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
6393 	do {								      \
6394 		if (TYPE == BPF_WRITE)					      \
6395 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
6396 		else							      \
6397 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
6398 	} while (0)
6399 
6400 	case offsetof(struct bpf_sock_ops, snd_cwnd):
6401 		SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
6402 		break;
6403 
6404 	case offsetof(struct bpf_sock_ops, srtt_us):
6405 		SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
6406 		break;
6407 
6408 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
6409 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
6410 				   struct tcp_sock);
6411 		break;
6412 
6413 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
6414 		SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
6415 		break;
6416 
6417 	case offsetof(struct bpf_sock_ops, rcv_nxt):
6418 		SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
6419 		break;
6420 
6421 	case offsetof(struct bpf_sock_ops, snd_nxt):
6422 		SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
6423 		break;
6424 
6425 	case offsetof(struct bpf_sock_ops, snd_una):
6426 		SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
6427 		break;
6428 
6429 	case offsetof(struct bpf_sock_ops, mss_cache):
6430 		SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
6431 		break;
6432 
6433 	case offsetof(struct bpf_sock_ops, ecn_flags):
6434 		SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
6435 		break;
6436 
6437 	case offsetof(struct bpf_sock_ops, rate_delivered):
6438 		SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
6439 				   struct tcp_sock);
6440 		break;
6441 
6442 	case offsetof(struct bpf_sock_ops, rate_interval_us):
6443 		SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
6444 				   struct tcp_sock);
6445 		break;
6446 
6447 	case offsetof(struct bpf_sock_ops, packets_out):
6448 		SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
6449 		break;
6450 
6451 	case offsetof(struct bpf_sock_ops, retrans_out):
6452 		SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
6453 		break;
6454 
6455 	case offsetof(struct bpf_sock_ops, total_retrans):
6456 		SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
6457 				   struct tcp_sock);
6458 		break;
6459 
6460 	case offsetof(struct bpf_sock_ops, segs_in):
6461 		SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
6462 		break;
6463 
6464 	case offsetof(struct bpf_sock_ops, data_segs_in):
6465 		SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
6466 		break;
6467 
6468 	case offsetof(struct bpf_sock_ops, segs_out):
6469 		SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
6470 		break;
6471 
6472 	case offsetof(struct bpf_sock_ops, data_segs_out):
6473 		SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
6474 				   struct tcp_sock);
6475 		break;
6476 
6477 	case offsetof(struct bpf_sock_ops, lost_out):
6478 		SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
6479 		break;
6480 
6481 	case offsetof(struct bpf_sock_ops, sacked_out):
6482 		SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
6483 		break;
6484 
6485 	case offsetof(struct bpf_sock_ops, sk_txhash):
6486 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
6487 					  struct sock, type);
6488 		break;
6489 
6490 	case offsetof(struct bpf_sock_ops, bytes_received):
6491 		SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
6492 				   struct tcp_sock);
6493 		break;
6494 
6495 	case offsetof(struct bpf_sock_ops, bytes_acked):
6496 		SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
6497 		break;
6498 
6499 	}
6500 	return insn - insn_buf;
6501 }
6502 
6503 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
6504 				     const struct bpf_insn *si,
6505 				     struct bpf_insn *insn_buf,
6506 				     struct bpf_prog *prog, u32 *target_size)
6507 {
6508 	struct bpf_insn *insn = insn_buf;
6509 	int off;
6510 
6511 	switch (si->off) {
6512 	case offsetof(struct __sk_buff, data_end):
6513 		off  = si->off;
6514 		off -= offsetof(struct __sk_buff, data_end);
6515 		off += offsetof(struct sk_buff, cb);
6516 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
6517 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6518 				      si->src_reg, off);
6519 		break;
6520 	default:
6521 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
6522 					      target_size);
6523 	}
6524 
6525 	return insn - insn_buf;
6526 }
6527 
6528 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
6529 				     const struct bpf_insn *si,
6530 				     struct bpf_insn *insn_buf,
6531 				     struct bpf_prog *prog, u32 *target_size)
6532 {
6533 	struct bpf_insn *insn = insn_buf;
6534 #if IS_ENABLED(CONFIG_IPV6)
6535 	int off;
6536 #endif
6537 
6538 	switch (si->off) {
6539 	case offsetof(struct sk_msg_md, data):
6540 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data),
6541 				      si->dst_reg, si->src_reg,
6542 				      offsetof(struct sk_msg_buff, data));
6543 		break;
6544 	case offsetof(struct sk_msg_md, data_end):
6545 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data_end),
6546 				      si->dst_reg, si->src_reg,
6547 				      offsetof(struct sk_msg_buff, data_end));
6548 		break;
6549 	case offsetof(struct sk_msg_md, family):
6550 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6551 
6552 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6553 					      struct sk_msg_buff, sk),
6554 				      si->dst_reg, si->src_reg,
6555 				      offsetof(struct sk_msg_buff, sk));
6556 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6557 				      offsetof(struct sock_common, skc_family));
6558 		break;
6559 
6560 	case offsetof(struct sk_msg_md, remote_ip4):
6561 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6562 
6563 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6564 						struct sk_msg_buff, sk),
6565 				      si->dst_reg, si->src_reg,
6566 				      offsetof(struct sk_msg_buff, sk));
6567 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6568 				      offsetof(struct sock_common, skc_daddr));
6569 		break;
6570 
6571 	case offsetof(struct sk_msg_md, local_ip4):
6572 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6573 					  skc_rcv_saddr) != 4);
6574 
6575 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6576 					      struct sk_msg_buff, sk),
6577 				      si->dst_reg, si->src_reg,
6578 				      offsetof(struct sk_msg_buff, sk));
6579 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6580 				      offsetof(struct sock_common,
6581 					       skc_rcv_saddr));
6582 		break;
6583 
6584 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
6585 	     offsetof(struct sk_msg_md, remote_ip6[3]):
6586 #if IS_ENABLED(CONFIG_IPV6)
6587 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6588 					  skc_v6_daddr.s6_addr32[0]) != 4);
6589 
6590 		off = si->off;
6591 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
6592 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6593 						struct sk_msg_buff, sk),
6594 				      si->dst_reg, si->src_reg,
6595 				      offsetof(struct sk_msg_buff, sk));
6596 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6597 				      offsetof(struct sock_common,
6598 					       skc_v6_daddr.s6_addr32[0]) +
6599 				      off);
6600 #else
6601 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6602 #endif
6603 		break;
6604 
6605 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
6606 	     offsetof(struct sk_msg_md, local_ip6[3]):
6607 #if IS_ENABLED(CONFIG_IPV6)
6608 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6609 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6610 
6611 		off = si->off;
6612 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
6613 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6614 						struct sk_msg_buff, sk),
6615 				      si->dst_reg, si->src_reg,
6616 				      offsetof(struct sk_msg_buff, sk));
6617 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6618 				      offsetof(struct sock_common,
6619 					       skc_v6_rcv_saddr.s6_addr32[0]) +
6620 				      off);
6621 #else
6622 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6623 #endif
6624 		break;
6625 
6626 	case offsetof(struct sk_msg_md, remote_port):
6627 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6628 
6629 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6630 						struct sk_msg_buff, sk),
6631 				      si->dst_reg, si->src_reg,
6632 				      offsetof(struct sk_msg_buff, sk));
6633 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6634 				      offsetof(struct sock_common, skc_dport));
6635 #ifndef __BIG_ENDIAN_BITFIELD
6636 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6637 #endif
6638 		break;
6639 
6640 	case offsetof(struct sk_msg_md, local_port):
6641 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6642 
6643 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6644 						struct sk_msg_buff, sk),
6645 				      si->dst_reg, si->src_reg,
6646 				      offsetof(struct sk_msg_buff, sk));
6647 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6648 				      offsetof(struct sock_common, skc_num));
6649 		break;
6650 	}
6651 
6652 	return insn - insn_buf;
6653 }
6654 
6655 const struct bpf_verifier_ops sk_filter_verifier_ops = {
6656 	.get_func_proto		= sk_filter_func_proto,
6657 	.is_valid_access	= sk_filter_is_valid_access,
6658 	.convert_ctx_access	= bpf_convert_ctx_access,
6659 	.gen_ld_abs		= bpf_gen_ld_abs,
6660 };
6661 
6662 const struct bpf_prog_ops sk_filter_prog_ops = {
6663 	.test_run		= bpf_prog_test_run_skb,
6664 };
6665 
6666 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
6667 	.get_func_proto		= tc_cls_act_func_proto,
6668 	.is_valid_access	= tc_cls_act_is_valid_access,
6669 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
6670 	.gen_prologue		= tc_cls_act_prologue,
6671 	.gen_ld_abs		= bpf_gen_ld_abs,
6672 };
6673 
6674 const struct bpf_prog_ops tc_cls_act_prog_ops = {
6675 	.test_run		= bpf_prog_test_run_skb,
6676 };
6677 
6678 const struct bpf_verifier_ops xdp_verifier_ops = {
6679 	.get_func_proto		= xdp_func_proto,
6680 	.is_valid_access	= xdp_is_valid_access,
6681 	.convert_ctx_access	= xdp_convert_ctx_access,
6682 };
6683 
6684 const struct bpf_prog_ops xdp_prog_ops = {
6685 	.test_run		= bpf_prog_test_run_xdp,
6686 };
6687 
6688 const struct bpf_verifier_ops cg_skb_verifier_ops = {
6689 	.get_func_proto		= sk_filter_func_proto,
6690 	.is_valid_access	= sk_filter_is_valid_access,
6691 	.convert_ctx_access	= bpf_convert_ctx_access,
6692 };
6693 
6694 const struct bpf_prog_ops cg_skb_prog_ops = {
6695 	.test_run		= bpf_prog_test_run_skb,
6696 };
6697 
6698 const struct bpf_verifier_ops lwt_in_verifier_ops = {
6699 	.get_func_proto		= lwt_in_func_proto,
6700 	.is_valid_access	= lwt_is_valid_access,
6701 	.convert_ctx_access	= bpf_convert_ctx_access,
6702 };
6703 
6704 const struct bpf_prog_ops lwt_in_prog_ops = {
6705 	.test_run		= bpf_prog_test_run_skb,
6706 };
6707 
6708 const struct bpf_verifier_ops lwt_out_verifier_ops = {
6709 	.get_func_proto		= lwt_out_func_proto,
6710 	.is_valid_access	= lwt_is_valid_access,
6711 	.convert_ctx_access	= bpf_convert_ctx_access,
6712 };
6713 
6714 const struct bpf_prog_ops lwt_out_prog_ops = {
6715 	.test_run		= bpf_prog_test_run_skb,
6716 };
6717 
6718 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
6719 	.get_func_proto		= lwt_xmit_func_proto,
6720 	.is_valid_access	= lwt_is_valid_access,
6721 	.convert_ctx_access	= bpf_convert_ctx_access,
6722 	.gen_prologue		= tc_cls_act_prologue,
6723 };
6724 
6725 const struct bpf_prog_ops lwt_xmit_prog_ops = {
6726 	.test_run		= bpf_prog_test_run_skb,
6727 };
6728 
6729 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
6730 	.get_func_proto		= lwt_seg6local_func_proto,
6731 	.is_valid_access	= lwt_is_valid_access,
6732 	.convert_ctx_access	= bpf_convert_ctx_access,
6733 };
6734 
6735 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
6736 	.test_run		= bpf_prog_test_run_skb,
6737 };
6738 
6739 const struct bpf_verifier_ops cg_sock_verifier_ops = {
6740 	.get_func_proto		= sock_filter_func_proto,
6741 	.is_valid_access	= sock_filter_is_valid_access,
6742 	.convert_ctx_access	= sock_filter_convert_ctx_access,
6743 };
6744 
6745 const struct bpf_prog_ops cg_sock_prog_ops = {
6746 };
6747 
6748 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
6749 	.get_func_proto		= sock_addr_func_proto,
6750 	.is_valid_access	= sock_addr_is_valid_access,
6751 	.convert_ctx_access	= sock_addr_convert_ctx_access,
6752 };
6753 
6754 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
6755 };
6756 
6757 const struct bpf_verifier_ops sock_ops_verifier_ops = {
6758 	.get_func_proto		= sock_ops_func_proto,
6759 	.is_valid_access	= sock_ops_is_valid_access,
6760 	.convert_ctx_access	= sock_ops_convert_ctx_access,
6761 };
6762 
6763 const struct bpf_prog_ops sock_ops_prog_ops = {
6764 };
6765 
6766 const struct bpf_verifier_ops sk_skb_verifier_ops = {
6767 	.get_func_proto		= sk_skb_func_proto,
6768 	.is_valid_access	= sk_skb_is_valid_access,
6769 	.convert_ctx_access	= sk_skb_convert_ctx_access,
6770 	.gen_prologue		= sk_skb_prologue,
6771 };
6772 
6773 const struct bpf_prog_ops sk_skb_prog_ops = {
6774 };
6775 
6776 const struct bpf_verifier_ops sk_msg_verifier_ops = {
6777 	.get_func_proto		= sk_msg_func_proto,
6778 	.is_valid_access	= sk_msg_is_valid_access,
6779 	.convert_ctx_access	= sk_msg_convert_ctx_access,
6780 };
6781 
6782 const struct bpf_prog_ops sk_msg_prog_ops = {
6783 };
6784 
6785 int sk_detach_filter(struct sock *sk)
6786 {
6787 	int ret = -ENOENT;
6788 	struct sk_filter *filter;
6789 
6790 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
6791 		return -EPERM;
6792 
6793 	filter = rcu_dereference_protected(sk->sk_filter,
6794 					   lockdep_sock_is_held(sk));
6795 	if (filter) {
6796 		RCU_INIT_POINTER(sk->sk_filter, NULL);
6797 		sk_filter_uncharge(sk, filter);
6798 		ret = 0;
6799 	}
6800 
6801 	return ret;
6802 }
6803 EXPORT_SYMBOL_GPL(sk_detach_filter);
6804 
6805 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
6806 		  unsigned int len)
6807 {
6808 	struct sock_fprog_kern *fprog;
6809 	struct sk_filter *filter;
6810 	int ret = 0;
6811 
6812 	lock_sock(sk);
6813 	filter = rcu_dereference_protected(sk->sk_filter,
6814 					   lockdep_sock_is_held(sk));
6815 	if (!filter)
6816 		goto out;
6817 
6818 	/* We're copying the filter that has been originally attached,
6819 	 * so no conversion/decode needed anymore. eBPF programs that
6820 	 * have no original program cannot be dumped through this.
6821 	 */
6822 	ret = -EACCES;
6823 	fprog = filter->prog->orig_prog;
6824 	if (!fprog)
6825 		goto out;
6826 
6827 	ret = fprog->len;
6828 	if (!len)
6829 		/* User space only enquires number of filter blocks. */
6830 		goto out;
6831 
6832 	ret = -EINVAL;
6833 	if (len < fprog->len)
6834 		goto out;
6835 
6836 	ret = -EFAULT;
6837 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
6838 		goto out;
6839 
6840 	/* Instead of bytes, the API requests to return the number
6841 	 * of filter blocks.
6842 	 */
6843 	ret = fprog->len;
6844 out:
6845 	release_sock(sk);
6846 	return ret;
6847 }
6848