xref: /openbmc/linux/net/core/filter.c (revision d28bcd53)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/ip.h>
37 #include <net/protocol.h>
38 #include <net/netlink.h>
39 #include <linux/skbuff.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 
58 /**
59  *	sk_filter_trim_cap - run a packet through a socket filter
60  *	@sk: sock associated with &sk_buff
61  *	@skb: buffer to filter
62  *	@cap: limit on how short the eBPF program may trim the packet
63  *
64  * Run the eBPF program and then cut skb->data to correct size returned by
65  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
66  * than pkt_len we keep whole skb->data. This is the socket level
67  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
68  * be accepted or -EPERM if the packet should be tossed.
69  *
70  */
71 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
72 {
73 	int err;
74 	struct sk_filter *filter;
75 
76 	/*
77 	 * If the skb was allocated from pfmemalloc reserves, only
78 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
79 	 * helping free memory
80 	 */
81 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
82 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
83 		return -ENOMEM;
84 	}
85 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
86 	if (err)
87 		return err;
88 
89 	err = security_sock_rcv_skb(sk, skb);
90 	if (err)
91 		return err;
92 
93 	rcu_read_lock();
94 	filter = rcu_dereference(sk->sk_filter);
95 	if (filter) {
96 		struct sock *save_sk = skb->sk;
97 		unsigned int pkt_len;
98 
99 		skb->sk = sk;
100 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
101 		skb->sk = save_sk;
102 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
103 	}
104 	rcu_read_unlock();
105 
106 	return err;
107 }
108 EXPORT_SYMBOL(sk_filter_trim_cap);
109 
110 BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
111 {
112 	return skb_get_poff(skb);
113 }
114 
115 BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
116 {
117 	struct nlattr *nla;
118 
119 	if (skb_is_nonlinear(skb))
120 		return 0;
121 
122 	if (skb->len < sizeof(struct nlattr))
123 		return 0;
124 
125 	if (a > skb->len - sizeof(struct nlattr))
126 		return 0;
127 
128 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
129 	if (nla)
130 		return (void *) nla - (void *) skb->data;
131 
132 	return 0;
133 }
134 
135 BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
136 {
137 	struct nlattr *nla;
138 
139 	if (skb_is_nonlinear(skb))
140 		return 0;
141 
142 	if (skb->len < sizeof(struct nlattr))
143 		return 0;
144 
145 	if (a > skb->len - sizeof(struct nlattr))
146 		return 0;
147 
148 	nla = (struct nlattr *) &skb->data[a];
149 	if (nla->nla_len > skb->len - a)
150 		return 0;
151 
152 	nla = nla_find_nested(nla, x);
153 	if (nla)
154 		return (void *) nla - (void *) skb->data;
155 
156 	return 0;
157 }
158 
159 BPF_CALL_0(__get_raw_cpu_id)
160 {
161 	return raw_smp_processor_id();
162 }
163 
164 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
165 	.func		= __get_raw_cpu_id,
166 	.gpl_only	= false,
167 	.ret_type	= RET_INTEGER,
168 };
169 
170 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
171 			      struct bpf_insn *insn_buf)
172 {
173 	struct bpf_insn *insn = insn_buf;
174 
175 	switch (skb_field) {
176 	case SKF_AD_MARK:
177 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
178 
179 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
180 				      offsetof(struct sk_buff, mark));
181 		break;
182 
183 	case SKF_AD_PKTTYPE:
184 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
185 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
186 #ifdef __BIG_ENDIAN_BITFIELD
187 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
188 #endif
189 		break;
190 
191 	case SKF_AD_QUEUE:
192 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
193 
194 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
195 				      offsetof(struct sk_buff, queue_mapping));
196 		break;
197 
198 	case SKF_AD_VLAN_TAG:
199 	case SKF_AD_VLAN_TAG_PRESENT:
200 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
201 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
202 
203 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
204 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
205 				      offsetof(struct sk_buff, vlan_tci));
206 		if (skb_field == SKF_AD_VLAN_TAG) {
207 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
208 						~VLAN_TAG_PRESENT);
209 		} else {
210 			/* dst_reg >>= 12 */
211 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
212 			/* dst_reg &= 1 */
213 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
214 		}
215 		break;
216 	}
217 
218 	return insn - insn_buf;
219 }
220 
221 static bool convert_bpf_extensions(struct sock_filter *fp,
222 				   struct bpf_insn **insnp)
223 {
224 	struct bpf_insn *insn = *insnp;
225 	u32 cnt;
226 
227 	switch (fp->k) {
228 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
229 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
230 
231 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
232 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
233 				      offsetof(struct sk_buff, protocol));
234 		/* A = ntohs(A) [emitting a nop or swap16] */
235 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
236 		break;
237 
238 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
239 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
240 		insn += cnt - 1;
241 		break;
242 
243 	case SKF_AD_OFF + SKF_AD_IFINDEX:
244 	case SKF_AD_OFF + SKF_AD_HATYPE:
245 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
246 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
247 
248 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
249 				      BPF_REG_TMP, BPF_REG_CTX,
250 				      offsetof(struct sk_buff, dev));
251 		/* if (tmp != 0) goto pc + 1 */
252 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
253 		*insn++ = BPF_EXIT_INSN();
254 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
255 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
256 					    offsetof(struct net_device, ifindex));
257 		else
258 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
259 					    offsetof(struct net_device, type));
260 		break;
261 
262 	case SKF_AD_OFF + SKF_AD_MARK:
263 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
264 		insn += cnt - 1;
265 		break;
266 
267 	case SKF_AD_OFF + SKF_AD_RXHASH:
268 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
269 
270 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
271 				    offsetof(struct sk_buff, hash));
272 		break;
273 
274 	case SKF_AD_OFF + SKF_AD_QUEUE:
275 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
276 		insn += cnt - 1;
277 		break;
278 
279 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
280 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
281 					 BPF_REG_A, BPF_REG_CTX, insn);
282 		insn += cnt - 1;
283 		break;
284 
285 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
286 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
287 					 BPF_REG_A, BPF_REG_CTX, insn);
288 		insn += cnt - 1;
289 		break;
290 
291 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
292 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
293 
294 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
295 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
296 				      offsetof(struct sk_buff, vlan_proto));
297 		/* A = ntohs(A) [emitting a nop or swap16] */
298 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
299 		break;
300 
301 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
302 	case SKF_AD_OFF + SKF_AD_NLATTR:
303 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
304 	case SKF_AD_OFF + SKF_AD_CPU:
305 	case SKF_AD_OFF + SKF_AD_RANDOM:
306 		/* arg1 = CTX */
307 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
308 		/* arg2 = A */
309 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
310 		/* arg3 = X */
311 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
312 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
313 		switch (fp->k) {
314 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
315 			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
316 			break;
317 		case SKF_AD_OFF + SKF_AD_NLATTR:
318 			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
319 			break;
320 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
321 			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
322 			break;
323 		case SKF_AD_OFF + SKF_AD_CPU:
324 			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
325 			break;
326 		case SKF_AD_OFF + SKF_AD_RANDOM:
327 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
328 			bpf_user_rnd_init_once();
329 			break;
330 		}
331 		break;
332 
333 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
334 		/* A ^= X */
335 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
336 		break;
337 
338 	default:
339 		/* This is just a dummy call to avoid letting the compiler
340 		 * evict __bpf_call_base() as an optimization. Placed here
341 		 * where no-one bothers.
342 		 */
343 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
344 		return false;
345 	}
346 
347 	*insnp = insn;
348 	return true;
349 }
350 
351 /**
352  *	bpf_convert_filter - convert filter program
353  *	@prog: the user passed filter program
354  *	@len: the length of the user passed filter program
355  *	@new_prog: buffer where converted program will be stored
356  *	@new_len: pointer to store length of converted program
357  *
358  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
359  * style extended BPF (eBPF).
360  * Conversion workflow:
361  *
362  * 1) First pass for calculating the new program length:
363  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
364  *
365  * 2) 2nd pass to remap in two passes: 1st pass finds new
366  *    jump offsets, 2nd pass remapping:
367  *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
368  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
369  */
370 static int bpf_convert_filter(struct sock_filter *prog, int len,
371 			      struct bpf_insn *new_prog, int *new_len)
372 {
373 	int new_flen = 0, pass = 0, target, i;
374 	struct bpf_insn *new_insn;
375 	struct sock_filter *fp;
376 	int *addrs = NULL;
377 	u8 bpf_src;
378 
379 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
380 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
381 
382 	if (len <= 0 || len > BPF_MAXINSNS)
383 		return -EINVAL;
384 
385 	if (new_prog) {
386 		addrs = kcalloc(len, sizeof(*addrs),
387 				GFP_KERNEL | __GFP_NOWARN);
388 		if (!addrs)
389 			return -ENOMEM;
390 	}
391 
392 do_pass:
393 	new_insn = new_prog;
394 	fp = prog;
395 
396 	/* Classic BPF related prologue emission. */
397 	if (new_insn) {
398 		/* Classic BPF expects A and X to be reset first. These need
399 		 * to be guaranteed to be the first two instructions.
400 		 */
401 		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
402 		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
403 
404 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
405 		 * In eBPF case it's done by the compiler, here we need to
406 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
407 		 */
408 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
409 	} else {
410 		new_insn += 3;
411 	}
412 
413 	for (i = 0; i < len; fp++, i++) {
414 		struct bpf_insn tmp_insns[6] = { };
415 		struct bpf_insn *insn = tmp_insns;
416 
417 		if (addrs)
418 			addrs[i] = new_insn - new_prog;
419 
420 		switch (fp->code) {
421 		/* All arithmetic insns and skb loads map as-is. */
422 		case BPF_ALU | BPF_ADD | BPF_X:
423 		case BPF_ALU | BPF_ADD | BPF_K:
424 		case BPF_ALU | BPF_SUB | BPF_X:
425 		case BPF_ALU | BPF_SUB | BPF_K:
426 		case BPF_ALU | BPF_AND | BPF_X:
427 		case BPF_ALU | BPF_AND | BPF_K:
428 		case BPF_ALU | BPF_OR | BPF_X:
429 		case BPF_ALU | BPF_OR | BPF_K:
430 		case BPF_ALU | BPF_LSH | BPF_X:
431 		case BPF_ALU | BPF_LSH | BPF_K:
432 		case BPF_ALU | BPF_RSH | BPF_X:
433 		case BPF_ALU | BPF_RSH | BPF_K:
434 		case BPF_ALU | BPF_XOR | BPF_X:
435 		case BPF_ALU | BPF_XOR | BPF_K:
436 		case BPF_ALU | BPF_MUL | BPF_X:
437 		case BPF_ALU | BPF_MUL | BPF_K:
438 		case BPF_ALU | BPF_DIV | BPF_X:
439 		case BPF_ALU | BPF_DIV | BPF_K:
440 		case BPF_ALU | BPF_MOD | BPF_X:
441 		case BPF_ALU | BPF_MOD | BPF_K:
442 		case BPF_ALU | BPF_NEG:
443 		case BPF_LD | BPF_ABS | BPF_W:
444 		case BPF_LD | BPF_ABS | BPF_H:
445 		case BPF_LD | BPF_ABS | BPF_B:
446 		case BPF_LD | BPF_IND | BPF_W:
447 		case BPF_LD | BPF_IND | BPF_H:
448 		case BPF_LD | BPF_IND | BPF_B:
449 			/* Check for overloaded BPF extension and
450 			 * directly convert it if found, otherwise
451 			 * just move on with mapping.
452 			 */
453 			if (BPF_CLASS(fp->code) == BPF_LD &&
454 			    BPF_MODE(fp->code) == BPF_ABS &&
455 			    convert_bpf_extensions(fp, &insn))
456 				break;
457 
458 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
459 			break;
460 
461 		/* Jump transformation cannot use BPF block macros
462 		 * everywhere as offset calculation and target updates
463 		 * require a bit more work than the rest, i.e. jump
464 		 * opcodes map as-is, but offsets need adjustment.
465 		 */
466 
467 #define BPF_EMIT_JMP							\
468 	do {								\
469 		if (target >= len || target < 0)			\
470 			goto err;					\
471 		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
472 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
473 		insn->off -= insn - tmp_insns;				\
474 	} while (0)
475 
476 		case BPF_JMP | BPF_JA:
477 			target = i + fp->k + 1;
478 			insn->code = fp->code;
479 			BPF_EMIT_JMP;
480 			break;
481 
482 		case BPF_JMP | BPF_JEQ | BPF_K:
483 		case BPF_JMP | BPF_JEQ | BPF_X:
484 		case BPF_JMP | BPF_JSET | BPF_K:
485 		case BPF_JMP | BPF_JSET | BPF_X:
486 		case BPF_JMP | BPF_JGT | BPF_K:
487 		case BPF_JMP | BPF_JGT | BPF_X:
488 		case BPF_JMP | BPF_JGE | BPF_K:
489 		case BPF_JMP | BPF_JGE | BPF_X:
490 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
491 				/* BPF immediates are signed, zero extend
492 				 * immediate into tmp register and use it
493 				 * in compare insn.
494 				 */
495 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
496 
497 				insn->dst_reg = BPF_REG_A;
498 				insn->src_reg = BPF_REG_TMP;
499 				bpf_src = BPF_X;
500 			} else {
501 				insn->dst_reg = BPF_REG_A;
502 				insn->imm = fp->k;
503 				bpf_src = BPF_SRC(fp->code);
504 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
505 			}
506 
507 			/* Common case where 'jump_false' is next insn. */
508 			if (fp->jf == 0) {
509 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
510 				target = i + fp->jt + 1;
511 				BPF_EMIT_JMP;
512 				break;
513 			}
514 
515 			/* Convert JEQ into JNE when 'jump_true' is next insn. */
516 			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
517 				insn->code = BPF_JMP | BPF_JNE | bpf_src;
518 				target = i + fp->jf + 1;
519 				BPF_EMIT_JMP;
520 				break;
521 			}
522 
523 			/* Other jumps are mapped into two insns: Jxx and JA. */
524 			target = i + fp->jt + 1;
525 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
526 			BPF_EMIT_JMP;
527 			insn++;
528 
529 			insn->code = BPF_JMP | BPF_JA;
530 			target = i + fp->jf + 1;
531 			BPF_EMIT_JMP;
532 			break;
533 
534 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
535 		case BPF_LDX | BPF_MSH | BPF_B:
536 			/* tmp = A */
537 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
538 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
539 			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
540 			/* A &= 0xf */
541 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
542 			/* A <<= 2 */
543 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
544 			/* X = A */
545 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
546 			/* A = tmp */
547 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
548 			break;
549 
550 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
551 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
552 		 */
553 		case BPF_RET | BPF_A:
554 		case BPF_RET | BPF_K:
555 			if (BPF_RVAL(fp->code) == BPF_K)
556 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
557 							0, fp->k);
558 			*insn = BPF_EXIT_INSN();
559 			break;
560 
561 		/* Store to stack. */
562 		case BPF_ST:
563 		case BPF_STX:
564 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
565 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
566 					    -(BPF_MEMWORDS - fp->k) * 4);
567 			break;
568 
569 		/* Load from stack. */
570 		case BPF_LD | BPF_MEM:
571 		case BPF_LDX | BPF_MEM:
572 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
573 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
574 					    -(BPF_MEMWORDS - fp->k) * 4);
575 			break;
576 
577 		/* A = K or X = K */
578 		case BPF_LD | BPF_IMM:
579 		case BPF_LDX | BPF_IMM:
580 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
581 					      BPF_REG_A : BPF_REG_X, fp->k);
582 			break;
583 
584 		/* X = A */
585 		case BPF_MISC | BPF_TAX:
586 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
587 			break;
588 
589 		/* A = X */
590 		case BPF_MISC | BPF_TXA:
591 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
592 			break;
593 
594 		/* A = skb->len or X = skb->len */
595 		case BPF_LD | BPF_W | BPF_LEN:
596 		case BPF_LDX | BPF_W | BPF_LEN:
597 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
598 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
599 					    offsetof(struct sk_buff, len));
600 			break;
601 
602 		/* Access seccomp_data fields. */
603 		case BPF_LDX | BPF_ABS | BPF_W:
604 			/* A = *(u32 *) (ctx + K) */
605 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
606 			break;
607 
608 		/* Unknown instruction. */
609 		default:
610 			goto err;
611 		}
612 
613 		insn++;
614 		if (new_prog)
615 			memcpy(new_insn, tmp_insns,
616 			       sizeof(*insn) * (insn - tmp_insns));
617 		new_insn += insn - tmp_insns;
618 	}
619 
620 	if (!new_prog) {
621 		/* Only calculating new length. */
622 		*new_len = new_insn - new_prog;
623 		return 0;
624 	}
625 
626 	pass++;
627 	if (new_flen != new_insn - new_prog) {
628 		new_flen = new_insn - new_prog;
629 		if (pass > 2)
630 			goto err;
631 		goto do_pass;
632 	}
633 
634 	kfree(addrs);
635 	BUG_ON(*new_len != new_flen);
636 	return 0;
637 err:
638 	kfree(addrs);
639 	return -EINVAL;
640 }
641 
642 /* Security:
643  *
644  * As we dont want to clear mem[] array for each packet going through
645  * __bpf_prog_run(), we check that filter loaded by user never try to read
646  * a cell if not previously written, and we check all branches to be sure
647  * a malicious user doesn't try to abuse us.
648  */
649 static int check_load_and_stores(const struct sock_filter *filter, int flen)
650 {
651 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
652 	int pc, ret = 0;
653 
654 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
655 
656 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
657 	if (!masks)
658 		return -ENOMEM;
659 
660 	memset(masks, 0xff, flen * sizeof(*masks));
661 
662 	for (pc = 0; pc < flen; pc++) {
663 		memvalid &= masks[pc];
664 
665 		switch (filter[pc].code) {
666 		case BPF_ST:
667 		case BPF_STX:
668 			memvalid |= (1 << filter[pc].k);
669 			break;
670 		case BPF_LD | BPF_MEM:
671 		case BPF_LDX | BPF_MEM:
672 			if (!(memvalid & (1 << filter[pc].k))) {
673 				ret = -EINVAL;
674 				goto error;
675 			}
676 			break;
677 		case BPF_JMP | BPF_JA:
678 			/* A jump must set masks on target */
679 			masks[pc + 1 + filter[pc].k] &= memvalid;
680 			memvalid = ~0;
681 			break;
682 		case BPF_JMP | BPF_JEQ | BPF_K:
683 		case BPF_JMP | BPF_JEQ | BPF_X:
684 		case BPF_JMP | BPF_JGE | BPF_K:
685 		case BPF_JMP | BPF_JGE | BPF_X:
686 		case BPF_JMP | BPF_JGT | BPF_K:
687 		case BPF_JMP | BPF_JGT | BPF_X:
688 		case BPF_JMP | BPF_JSET | BPF_K:
689 		case BPF_JMP | BPF_JSET | BPF_X:
690 			/* A jump must set masks on targets */
691 			masks[pc + 1 + filter[pc].jt] &= memvalid;
692 			masks[pc + 1 + filter[pc].jf] &= memvalid;
693 			memvalid = ~0;
694 			break;
695 		}
696 	}
697 error:
698 	kfree(masks);
699 	return ret;
700 }
701 
702 static bool chk_code_allowed(u16 code_to_probe)
703 {
704 	static const bool codes[] = {
705 		/* 32 bit ALU operations */
706 		[BPF_ALU | BPF_ADD | BPF_K] = true,
707 		[BPF_ALU | BPF_ADD | BPF_X] = true,
708 		[BPF_ALU | BPF_SUB | BPF_K] = true,
709 		[BPF_ALU | BPF_SUB | BPF_X] = true,
710 		[BPF_ALU | BPF_MUL | BPF_K] = true,
711 		[BPF_ALU | BPF_MUL | BPF_X] = true,
712 		[BPF_ALU | BPF_DIV | BPF_K] = true,
713 		[BPF_ALU | BPF_DIV | BPF_X] = true,
714 		[BPF_ALU | BPF_MOD | BPF_K] = true,
715 		[BPF_ALU | BPF_MOD | BPF_X] = true,
716 		[BPF_ALU | BPF_AND | BPF_K] = true,
717 		[BPF_ALU | BPF_AND | BPF_X] = true,
718 		[BPF_ALU | BPF_OR | BPF_K] = true,
719 		[BPF_ALU | BPF_OR | BPF_X] = true,
720 		[BPF_ALU | BPF_XOR | BPF_K] = true,
721 		[BPF_ALU | BPF_XOR | BPF_X] = true,
722 		[BPF_ALU | BPF_LSH | BPF_K] = true,
723 		[BPF_ALU | BPF_LSH | BPF_X] = true,
724 		[BPF_ALU | BPF_RSH | BPF_K] = true,
725 		[BPF_ALU | BPF_RSH | BPF_X] = true,
726 		[BPF_ALU | BPF_NEG] = true,
727 		/* Load instructions */
728 		[BPF_LD | BPF_W | BPF_ABS] = true,
729 		[BPF_LD | BPF_H | BPF_ABS] = true,
730 		[BPF_LD | BPF_B | BPF_ABS] = true,
731 		[BPF_LD | BPF_W | BPF_LEN] = true,
732 		[BPF_LD | BPF_W | BPF_IND] = true,
733 		[BPF_LD | BPF_H | BPF_IND] = true,
734 		[BPF_LD | BPF_B | BPF_IND] = true,
735 		[BPF_LD | BPF_IMM] = true,
736 		[BPF_LD | BPF_MEM] = true,
737 		[BPF_LDX | BPF_W | BPF_LEN] = true,
738 		[BPF_LDX | BPF_B | BPF_MSH] = true,
739 		[BPF_LDX | BPF_IMM] = true,
740 		[BPF_LDX | BPF_MEM] = true,
741 		/* Store instructions */
742 		[BPF_ST] = true,
743 		[BPF_STX] = true,
744 		/* Misc instructions */
745 		[BPF_MISC | BPF_TAX] = true,
746 		[BPF_MISC | BPF_TXA] = true,
747 		/* Return instructions */
748 		[BPF_RET | BPF_K] = true,
749 		[BPF_RET | BPF_A] = true,
750 		/* Jump instructions */
751 		[BPF_JMP | BPF_JA] = true,
752 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
753 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
754 		[BPF_JMP | BPF_JGE | BPF_K] = true,
755 		[BPF_JMP | BPF_JGE | BPF_X] = true,
756 		[BPF_JMP | BPF_JGT | BPF_K] = true,
757 		[BPF_JMP | BPF_JGT | BPF_X] = true,
758 		[BPF_JMP | BPF_JSET | BPF_K] = true,
759 		[BPF_JMP | BPF_JSET | BPF_X] = true,
760 	};
761 
762 	if (code_to_probe >= ARRAY_SIZE(codes))
763 		return false;
764 
765 	return codes[code_to_probe];
766 }
767 
768 static bool bpf_check_basics_ok(const struct sock_filter *filter,
769 				unsigned int flen)
770 {
771 	if (filter == NULL)
772 		return false;
773 	if (flen == 0 || flen > BPF_MAXINSNS)
774 		return false;
775 
776 	return true;
777 }
778 
779 /**
780  *	bpf_check_classic - verify socket filter code
781  *	@filter: filter to verify
782  *	@flen: length of filter
783  *
784  * Check the user's filter code. If we let some ugly
785  * filter code slip through kaboom! The filter must contain
786  * no references or jumps that are out of range, no illegal
787  * instructions, and must end with a RET instruction.
788  *
789  * All jumps are forward as they are not signed.
790  *
791  * Returns 0 if the rule set is legal or -EINVAL if not.
792  */
793 static int bpf_check_classic(const struct sock_filter *filter,
794 			     unsigned int flen)
795 {
796 	bool anc_found;
797 	int pc;
798 
799 	/* Check the filter code now */
800 	for (pc = 0; pc < flen; pc++) {
801 		const struct sock_filter *ftest = &filter[pc];
802 
803 		/* May we actually operate on this code? */
804 		if (!chk_code_allowed(ftest->code))
805 			return -EINVAL;
806 
807 		/* Some instructions need special checks */
808 		switch (ftest->code) {
809 		case BPF_ALU | BPF_DIV | BPF_K:
810 		case BPF_ALU | BPF_MOD | BPF_K:
811 			/* Check for division by zero */
812 			if (ftest->k == 0)
813 				return -EINVAL;
814 			break;
815 		case BPF_ALU | BPF_LSH | BPF_K:
816 		case BPF_ALU | BPF_RSH | BPF_K:
817 			if (ftest->k >= 32)
818 				return -EINVAL;
819 			break;
820 		case BPF_LD | BPF_MEM:
821 		case BPF_LDX | BPF_MEM:
822 		case BPF_ST:
823 		case BPF_STX:
824 			/* Check for invalid memory addresses */
825 			if (ftest->k >= BPF_MEMWORDS)
826 				return -EINVAL;
827 			break;
828 		case BPF_JMP | BPF_JA:
829 			/* Note, the large ftest->k might cause loops.
830 			 * Compare this with conditional jumps below,
831 			 * where offsets are limited. --ANK (981016)
832 			 */
833 			if (ftest->k >= (unsigned int)(flen - pc - 1))
834 				return -EINVAL;
835 			break;
836 		case BPF_JMP | BPF_JEQ | BPF_K:
837 		case BPF_JMP | BPF_JEQ | BPF_X:
838 		case BPF_JMP | BPF_JGE | BPF_K:
839 		case BPF_JMP | BPF_JGE | BPF_X:
840 		case BPF_JMP | BPF_JGT | BPF_K:
841 		case BPF_JMP | BPF_JGT | BPF_X:
842 		case BPF_JMP | BPF_JSET | BPF_K:
843 		case BPF_JMP | BPF_JSET | BPF_X:
844 			/* Both conditionals must be safe */
845 			if (pc + ftest->jt + 1 >= flen ||
846 			    pc + ftest->jf + 1 >= flen)
847 				return -EINVAL;
848 			break;
849 		case BPF_LD | BPF_W | BPF_ABS:
850 		case BPF_LD | BPF_H | BPF_ABS:
851 		case BPF_LD | BPF_B | BPF_ABS:
852 			anc_found = false;
853 			if (bpf_anc_helper(ftest) & BPF_ANC)
854 				anc_found = true;
855 			/* Ancillary operation unknown or unsupported */
856 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
857 				return -EINVAL;
858 		}
859 	}
860 
861 	/* Last instruction must be a RET code */
862 	switch (filter[flen - 1].code) {
863 	case BPF_RET | BPF_K:
864 	case BPF_RET | BPF_A:
865 		return check_load_and_stores(filter, flen);
866 	}
867 
868 	return -EINVAL;
869 }
870 
871 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
872 				      const struct sock_fprog *fprog)
873 {
874 	unsigned int fsize = bpf_classic_proglen(fprog);
875 	struct sock_fprog_kern *fkprog;
876 
877 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
878 	if (!fp->orig_prog)
879 		return -ENOMEM;
880 
881 	fkprog = fp->orig_prog;
882 	fkprog->len = fprog->len;
883 
884 	fkprog->filter = kmemdup(fp->insns, fsize,
885 				 GFP_KERNEL | __GFP_NOWARN);
886 	if (!fkprog->filter) {
887 		kfree(fp->orig_prog);
888 		return -ENOMEM;
889 	}
890 
891 	return 0;
892 }
893 
894 static void bpf_release_orig_filter(struct bpf_prog *fp)
895 {
896 	struct sock_fprog_kern *fprog = fp->orig_prog;
897 
898 	if (fprog) {
899 		kfree(fprog->filter);
900 		kfree(fprog);
901 	}
902 }
903 
904 static void __bpf_prog_release(struct bpf_prog *prog)
905 {
906 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
907 		bpf_prog_put(prog);
908 	} else {
909 		bpf_release_orig_filter(prog);
910 		bpf_prog_free(prog);
911 	}
912 }
913 
914 static void __sk_filter_release(struct sk_filter *fp)
915 {
916 	__bpf_prog_release(fp->prog);
917 	kfree(fp);
918 }
919 
920 /**
921  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
922  *	@rcu: rcu_head that contains the sk_filter to free
923  */
924 static void sk_filter_release_rcu(struct rcu_head *rcu)
925 {
926 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
927 
928 	__sk_filter_release(fp);
929 }
930 
931 /**
932  *	sk_filter_release - release a socket filter
933  *	@fp: filter to remove
934  *
935  *	Remove a filter from a socket and release its resources.
936  */
937 static void sk_filter_release(struct sk_filter *fp)
938 {
939 	if (refcount_dec_and_test(&fp->refcnt))
940 		call_rcu(&fp->rcu, sk_filter_release_rcu);
941 }
942 
943 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
944 {
945 	u32 filter_size = bpf_prog_size(fp->prog->len);
946 
947 	atomic_sub(filter_size, &sk->sk_omem_alloc);
948 	sk_filter_release(fp);
949 }
950 
951 /* try to charge the socket memory if there is space available
952  * return true on success
953  */
954 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
955 {
956 	u32 filter_size = bpf_prog_size(fp->prog->len);
957 
958 	/* same check as in sock_kmalloc() */
959 	if (filter_size <= sysctl_optmem_max &&
960 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
961 		atomic_add(filter_size, &sk->sk_omem_alloc);
962 		return true;
963 	}
964 	return false;
965 }
966 
967 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
968 {
969 	bool ret = __sk_filter_charge(sk, fp);
970 	if (ret)
971 		refcount_inc(&fp->refcnt);
972 	return ret;
973 }
974 
975 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
976 {
977 	struct sock_filter *old_prog;
978 	struct bpf_prog *old_fp;
979 	int err, new_len, old_len = fp->len;
980 
981 	/* We are free to overwrite insns et al right here as it
982 	 * won't be used at this point in time anymore internally
983 	 * after the migration to the internal BPF instruction
984 	 * representation.
985 	 */
986 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
987 		     sizeof(struct bpf_insn));
988 
989 	/* Conversion cannot happen on overlapping memory areas,
990 	 * so we need to keep the user BPF around until the 2nd
991 	 * pass. At this time, the user BPF is stored in fp->insns.
992 	 */
993 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
994 			   GFP_KERNEL | __GFP_NOWARN);
995 	if (!old_prog) {
996 		err = -ENOMEM;
997 		goto out_err;
998 	}
999 
1000 	/* 1st pass: calculate the new program length. */
1001 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
1002 	if (err)
1003 		goto out_err_free;
1004 
1005 	/* Expand fp for appending the new filter representation. */
1006 	old_fp = fp;
1007 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1008 	if (!fp) {
1009 		/* The old_fp is still around in case we couldn't
1010 		 * allocate new memory, so uncharge on that one.
1011 		 */
1012 		fp = old_fp;
1013 		err = -ENOMEM;
1014 		goto out_err_free;
1015 	}
1016 
1017 	fp->len = new_len;
1018 
1019 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1020 	err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
1021 	if (err)
1022 		/* 2nd bpf_convert_filter() can fail only if it fails
1023 		 * to allocate memory, remapping must succeed. Note,
1024 		 * that at this time old_fp has already been released
1025 		 * by krealloc().
1026 		 */
1027 		goto out_err_free;
1028 
1029 	/* We are guaranteed to never error here with cBPF to eBPF
1030 	 * transitions, since there's no issue with type compatibility
1031 	 * checks on program arrays.
1032 	 */
1033 	fp = bpf_prog_select_runtime(fp, &err);
1034 
1035 	kfree(old_prog);
1036 	return fp;
1037 
1038 out_err_free:
1039 	kfree(old_prog);
1040 out_err:
1041 	__bpf_prog_release(fp);
1042 	return ERR_PTR(err);
1043 }
1044 
1045 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1046 					   bpf_aux_classic_check_t trans)
1047 {
1048 	int err;
1049 
1050 	fp->bpf_func = NULL;
1051 	fp->jited = 0;
1052 
1053 	err = bpf_check_classic(fp->insns, fp->len);
1054 	if (err) {
1055 		__bpf_prog_release(fp);
1056 		return ERR_PTR(err);
1057 	}
1058 
1059 	/* There might be additional checks and transformations
1060 	 * needed on classic filters, f.e. in case of seccomp.
1061 	 */
1062 	if (trans) {
1063 		err = trans(fp->insns, fp->len);
1064 		if (err) {
1065 			__bpf_prog_release(fp);
1066 			return ERR_PTR(err);
1067 		}
1068 	}
1069 
1070 	/* Probe if we can JIT compile the filter and if so, do
1071 	 * the compilation of the filter.
1072 	 */
1073 	bpf_jit_compile(fp);
1074 
1075 	/* JIT compiler couldn't process this filter, so do the
1076 	 * internal BPF translation for the optimized interpreter.
1077 	 */
1078 	if (!fp->jited)
1079 		fp = bpf_migrate_filter(fp);
1080 
1081 	return fp;
1082 }
1083 
1084 /**
1085  *	bpf_prog_create - create an unattached filter
1086  *	@pfp: the unattached filter that is created
1087  *	@fprog: the filter program
1088  *
1089  * Create a filter independent of any socket. We first run some
1090  * sanity checks on it to make sure it does not explode on us later.
1091  * If an error occurs or there is insufficient memory for the filter
1092  * a negative errno code is returned. On success the return is zero.
1093  */
1094 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1095 {
1096 	unsigned int fsize = bpf_classic_proglen(fprog);
1097 	struct bpf_prog *fp;
1098 
1099 	/* Make sure new filter is there and in the right amounts. */
1100 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1101 		return -EINVAL;
1102 
1103 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1104 	if (!fp)
1105 		return -ENOMEM;
1106 
1107 	memcpy(fp->insns, fprog->filter, fsize);
1108 
1109 	fp->len = fprog->len;
1110 	/* Since unattached filters are not copied back to user
1111 	 * space through sk_get_filter(), we do not need to hold
1112 	 * a copy here, and can spare us the work.
1113 	 */
1114 	fp->orig_prog = NULL;
1115 
1116 	/* bpf_prepare_filter() already takes care of freeing
1117 	 * memory in case something goes wrong.
1118 	 */
1119 	fp = bpf_prepare_filter(fp, NULL);
1120 	if (IS_ERR(fp))
1121 		return PTR_ERR(fp);
1122 
1123 	*pfp = fp;
1124 	return 0;
1125 }
1126 EXPORT_SYMBOL_GPL(bpf_prog_create);
1127 
1128 /**
1129  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1130  *	@pfp: the unattached filter that is created
1131  *	@fprog: the filter program
1132  *	@trans: post-classic verifier transformation handler
1133  *	@save_orig: save classic BPF program
1134  *
1135  * This function effectively does the same as bpf_prog_create(), only
1136  * that it builds up its insns buffer from user space provided buffer.
1137  * It also allows for passing a bpf_aux_classic_check_t handler.
1138  */
1139 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1140 			      bpf_aux_classic_check_t trans, bool save_orig)
1141 {
1142 	unsigned int fsize = bpf_classic_proglen(fprog);
1143 	struct bpf_prog *fp;
1144 	int err;
1145 
1146 	/* Make sure new filter is there and in the right amounts. */
1147 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1148 		return -EINVAL;
1149 
1150 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1151 	if (!fp)
1152 		return -ENOMEM;
1153 
1154 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1155 		__bpf_prog_free(fp);
1156 		return -EFAULT;
1157 	}
1158 
1159 	fp->len = fprog->len;
1160 	fp->orig_prog = NULL;
1161 
1162 	if (save_orig) {
1163 		err = bpf_prog_store_orig_filter(fp, fprog);
1164 		if (err) {
1165 			__bpf_prog_free(fp);
1166 			return -ENOMEM;
1167 		}
1168 	}
1169 
1170 	/* bpf_prepare_filter() already takes care of freeing
1171 	 * memory in case something goes wrong.
1172 	 */
1173 	fp = bpf_prepare_filter(fp, trans);
1174 	if (IS_ERR(fp))
1175 		return PTR_ERR(fp);
1176 
1177 	*pfp = fp;
1178 	return 0;
1179 }
1180 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1181 
1182 void bpf_prog_destroy(struct bpf_prog *fp)
1183 {
1184 	__bpf_prog_release(fp);
1185 }
1186 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1187 
1188 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1189 {
1190 	struct sk_filter *fp, *old_fp;
1191 
1192 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1193 	if (!fp)
1194 		return -ENOMEM;
1195 
1196 	fp->prog = prog;
1197 
1198 	if (!__sk_filter_charge(sk, fp)) {
1199 		kfree(fp);
1200 		return -ENOMEM;
1201 	}
1202 	refcount_set(&fp->refcnt, 1);
1203 
1204 	old_fp = rcu_dereference_protected(sk->sk_filter,
1205 					   lockdep_sock_is_held(sk));
1206 	rcu_assign_pointer(sk->sk_filter, fp);
1207 
1208 	if (old_fp)
1209 		sk_filter_uncharge(sk, old_fp);
1210 
1211 	return 0;
1212 }
1213 
1214 static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1215 {
1216 	struct bpf_prog *old_prog;
1217 	int err;
1218 
1219 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1220 		return -ENOMEM;
1221 
1222 	if (sk_unhashed(sk) && sk->sk_reuseport) {
1223 		err = reuseport_alloc(sk);
1224 		if (err)
1225 			return err;
1226 	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1227 		/* The socket wasn't bound with SO_REUSEPORT */
1228 		return -EINVAL;
1229 	}
1230 
1231 	old_prog = reuseport_attach_prog(sk, prog);
1232 	if (old_prog)
1233 		bpf_prog_destroy(old_prog);
1234 
1235 	return 0;
1236 }
1237 
1238 static
1239 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1240 {
1241 	unsigned int fsize = bpf_classic_proglen(fprog);
1242 	struct bpf_prog *prog;
1243 	int err;
1244 
1245 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1246 		return ERR_PTR(-EPERM);
1247 
1248 	/* Make sure new filter is there and in the right amounts. */
1249 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1250 		return ERR_PTR(-EINVAL);
1251 
1252 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1253 	if (!prog)
1254 		return ERR_PTR(-ENOMEM);
1255 
1256 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1257 		__bpf_prog_free(prog);
1258 		return ERR_PTR(-EFAULT);
1259 	}
1260 
1261 	prog->len = fprog->len;
1262 
1263 	err = bpf_prog_store_orig_filter(prog, fprog);
1264 	if (err) {
1265 		__bpf_prog_free(prog);
1266 		return ERR_PTR(-ENOMEM);
1267 	}
1268 
1269 	/* bpf_prepare_filter() already takes care of freeing
1270 	 * memory in case something goes wrong.
1271 	 */
1272 	return bpf_prepare_filter(prog, NULL);
1273 }
1274 
1275 /**
1276  *	sk_attach_filter - attach a socket filter
1277  *	@fprog: the filter program
1278  *	@sk: the socket to use
1279  *
1280  * Attach the user's filter code. We first run some sanity checks on
1281  * it to make sure it does not explode on us later. If an error
1282  * occurs or there is insufficient memory for the filter a negative
1283  * errno code is returned. On success the return is zero.
1284  */
1285 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1286 {
1287 	struct bpf_prog *prog = __get_filter(fprog, sk);
1288 	int err;
1289 
1290 	if (IS_ERR(prog))
1291 		return PTR_ERR(prog);
1292 
1293 	err = __sk_attach_prog(prog, sk);
1294 	if (err < 0) {
1295 		__bpf_prog_release(prog);
1296 		return err;
1297 	}
1298 
1299 	return 0;
1300 }
1301 EXPORT_SYMBOL_GPL(sk_attach_filter);
1302 
1303 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1304 {
1305 	struct bpf_prog *prog = __get_filter(fprog, sk);
1306 	int err;
1307 
1308 	if (IS_ERR(prog))
1309 		return PTR_ERR(prog);
1310 
1311 	err = __reuseport_attach_prog(prog, sk);
1312 	if (err < 0) {
1313 		__bpf_prog_release(prog);
1314 		return err;
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1321 {
1322 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1323 		return ERR_PTR(-EPERM);
1324 
1325 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1326 }
1327 
1328 int sk_attach_bpf(u32 ufd, struct sock *sk)
1329 {
1330 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1331 	int err;
1332 
1333 	if (IS_ERR(prog))
1334 		return PTR_ERR(prog);
1335 
1336 	err = __sk_attach_prog(prog, sk);
1337 	if (err < 0) {
1338 		bpf_prog_put(prog);
1339 		return err;
1340 	}
1341 
1342 	return 0;
1343 }
1344 
1345 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1346 {
1347 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1348 	int err;
1349 
1350 	if (IS_ERR(prog))
1351 		return PTR_ERR(prog);
1352 
1353 	err = __reuseport_attach_prog(prog, sk);
1354 	if (err < 0) {
1355 		bpf_prog_put(prog);
1356 		return err;
1357 	}
1358 
1359 	return 0;
1360 }
1361 
1362 struct bpf_scratchpad {
1363 	union {
1364 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1365 		u8     buff[MAX_BPF_STACK];
1366 	};
1367 };
1368 
1369 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1370 
1371 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1372 					  unsigned int write_len)
1373 {
1374 	return skb_ensure_writable(skb, write_len);
1375 }
1376 
1377 static inline int bpf_try_make_writable(struct sk_buff *skb,
1378 					unsigned int write_len)
1379 {
1380 	int err = __bpf_try_make_writable(skb, write_len);
1381 
1382 	bpf_compute_data_end(skb);
1383 	return err;
1384 }
1385 
1386 static int bpf_try_make_head_writable(struct sk_buff *skb)
1387 {
1388 	return bpf_try_make_writable(skb, skb_headlen(skb));
1389 }
1390 
1391 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1392 {
1393 	if (skb_at_tc_ingress(skb))
1394 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1395 }
1396 
1397 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1398 {
1399 	if (skb_at_tc_ingress(skb))
1400 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1401 }
1402 
1403 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1404 	   const void *, from, u32, len, u64, flags)
1405 {
1406 	void *ptr;
1407 
1408 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1409 		return -EINVAL;
1410 	if (unlikely(offset > 0xffff))
1411 		return -EFAULT;
1412 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1413 		return -EFAULT;
1414 
1415 	ptr = skb->data + offset;
1416 	if (flags & BPF_F_RECOMPUTE_CSUM)
1417 		__skb_postpull_rcsum(skb, ptr, len, offset);
1418 
1419 	memcpy(ptr, from, len);
1420 
1421 	if (flags & BPF_F_RECOMPUTE_CSUM)
1422 		__skb_postpush_rcsum(skb, ptr, len, offset);
1423 	if (flags & BPF_F_INVALIDATE_HASH)
1424 		skb_clear_hash(skb);
1425 
1426 	return 0;
1427 }
1428 
1429 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1430 	.func		= bpf_skb_store_bytes,
1431 	.gpl_only	= false,
1432 	.ret_type	= RET_INTEGER,
1433 	.arg1_type	= ARG_PTR_TO_CTX,
1434 	.arg2_type	= ARG_ANYTHING,
1435 	.arg3_type	= ARG_PTR_TO_MEM,
1436 	.arg4_type	= ARG_CONST_SIZE,
1437 	.arg5_type	= ARG_ANYTHING,
1438 };
1439 
1440 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1441 	   void *, to, u32, len)
1442 {
1443 	void *ptr;
1444 
1445 	if (unlikely(offset > 0xffff))
1446 		goto err_clear;
1447 
1448 	ptr = skb_header_pointer(skb, offset, len, to);
1449 	if (unlikely(!ptr))
1450 		goto err_clear;
1451 	if (ptr != to)
1452 		memcpy(to, ptr, len);
1453 
1454 	return 0;
1455 err_clear:
1456 	memset(to, 0, len);
1457 	return -EFAULT;
1458 }
1459 
1460 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1461 	.func		= bpf_skb_load_bytes,
1462 	.gpl_only	= false,
1463 	.ret_type	= RET_INTEGER,
1464 	.arg1_type	= ARG_PTR_TO_CTX,
1465 	.arg2_type	= ARG_ANYTHING,
1466 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1467 	.arg4_type	= ARG_CONST_SIZE,
1468 };
1469 
1470 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1471 {
1472 	/* Idea is the following: should the needed direct read/write
1473 	 * test fail during runtime, we can pull in more data and redo
1474 	 * again, since implicitly, we invalidate previous checks here.
1475 	 *
1476 	 * Or, since we know how much we need to make read/writeable,
1477 	 * this can be done once at the program beginning for direct
1478 	 * access case. By this we overcome limitations of only current
1479 	 * headroom being accessible.
1480 	 */
1481 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1482 }
1483 
1484 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1485 	.func		= bpf_skb_pull_data,
1486 	.gpl_only	= false,
1487 	.ret_type	= RET_INTEGER,
1488 	.arg1_type	= ARG_PTR_TO_CTX,
1489 	.arg2_type	= ARG_ANYTHING,
1490 };
1491 
1492 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1493 	   u64, from, u64, to, u64, flags)
1494 {
1495 	__sum16 *ptr;
1496 
1497 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1498 		return -EINVAL;
1499 	if (unlikely(offset > 0xffff || offset & 1))
1500 		return -EFAULT;
1501 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1502 		return -EFAULT;
1503 
1504 	ptr = (__sum16 *)(skb->data + offset);
1505 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1506 	case 0:
1507 		if (unlikely(from != 0))
1508 			return -EINVAL;
1509 
1510 		csum_replace_by_diff(ptr, to);
1511 		break;
1512 	case 2:
1513 		csum_replace2(ptr, from, to);
1514 		break;
1515 	case 4:
1516 		csum_replace4(ptr, from, to);
1517 		break;
1518 	default:
1519 		return -EINVAL;
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1526 	.func		= bpf_l3_csum_replace,
1527 	.gpl_only	= false,
1528 	.ret_type	= RET_INTEGER,
1529 	.arg1_type	= ARG_PTR_TO_CTX,
1530 	.arg2_type	= ARG_ANYTHING,
1531 	.arg3_type	= ARG_ANYTHING,
1532 	.arg4_type	= ARG_ANYTHING,
1533 	.arg5_type	= ARG_ANYTHING,
1534 };
1535 
1536 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1537 	   u64, from, u64, to, u64, flags)
1538 {
1539 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1540 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1541 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1542 	__sum16 *ptr;
1543 
1544 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1545 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1546 		return -EINVAL;
1547 	if (unlikely(offset > 0xffff || offset & 1))
1548 		return -EFAULT;
1549 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1550 		return -EFAULT;
1551 
1552 	ptr = (__sum16 *)(skb->data + offset);
1553 	if (is_mmzero && !do_mforce && !*ptr)
1554 		return 0;
1555 
1556 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1557 	case 0:
1558 		if (unlikely(from != 0))
1559 			return -EINVAL;
1560 
1561 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1562 		break;
1563 	case 2:
1564 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1565 		break;
1566 	case 4:
1567 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1568 		break;
1569 	default:
1570 		return -EINVAL;
1571 	}
1572 
1573 	if (is_mmzero && !*ptr)
1574 		*ptr = CSUM_MANGLED_0;
1575 	return 0;
1576 }
1577 
1578 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1579 	.func		= bpf_l4_csum_replace,
1580 	.gpl_only	= false,
1581 	.ret_type	= RET_INTEGER,
1582 	.arg1_type	= ARG_PTR_TO_CTX,
1583 	.arg2_type	= ARG_ANYTHING,
1584 	.arg3_type	= ARG_ANYTHING,
1585 	.arg4_type	= ARG_ANYTHING,
1586 	.arg5_type	= ARG_ANYTHING,
1587 };
1588 
1589 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1590 	   __be32 *, to, u32, to_size, __wsum, seed)
1591 {
1592 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1593 	u32 diff_size = from_size + to_size;
1594 	int i, j = 0;
1595 
1596 	/* This is quite flexible, some examples:
1597 	 *
1598 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1599 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1600 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1601 	 *
1602 	 * Even for diffing, from_size and to_size don't need to be equal.
1603 	 */
1604 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1605 		     diff_size > sizeof(sp->diff)))
1606 		return -EINVAL;
1607 
1608 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1609 		sp->diff[j] = ~from[i];
1610 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1611 		sp->diff[j] = to[i];
1612 
1613 	return csum_partial(sp->diff, diff_size, seed);
1614 }
1615 
1616 static const struct bpf_func_proto bpf_csum_diff_proto = {
1617 	.func		= bpf_csum_diff,
1618 	.gpl_only	= false,
1619 	.pkt_access	= true,
1620 	.ret_type	= RET_INTEGER,
1621 	.arg1_type	= ARG_PTR_TO_MEM,
1622 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1623 	.arg3_type	= ARG_PTR_TO_MEM,
1624 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1625 	.arg5_type	= ARG_ANYTHING,
1626 };
1627 
1628 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1629 {
1630 	/* The interface is to be used in combination with bpf_csum_diff()
1631 	 * for direct packet writes. csum rotation for alignment as well
1632 	 * as emulating csum_sub() can be done from the eBPF program.
1633 	 */
1634 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1635 		return (skb->csum = csum_add(skb->csum, csum));
1636 
1637 	return -ENOTSUPP;
1638 }
1639 
1640 static const struct bpf_func_proto bpf_csum_update_proto = {
1641 	.func		= bpf_csum_update,
1642 	.gpl_only	= false,
1643 	.ret_type	= RET_INTEGER,
1644 	.arg1_type	= ARG_PTR_TO_CTX,
1645 	.arg2_type	= ARG_ANYTHING,
1646 };
1647 
1648 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1649 {
1650 	return dev_forward_skb(dev, skb);
1651 }
1652 
1653 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1654 				      struct sk_buff *skb)
1655 {
1656 	int ret = ____dev_forward_skb(dev, skb);
1657 
1658 	if (likely(!ret)) {
1659 		skb->dev = dev;
1660 		ret = netif_rx(skb);
1661 	}
1662 
1663 	return ret;
1664 }
1665 
1666 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
1667 {
1668 	int ret;
1669 
1670 	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
1671 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
1672 		kfree_skb(skb);
1673 		return -ENETDOWN;
1674 	}
1675 
1676 	skb->dev = dev;
1677 
1678 	__this_cpu_inc(xmit_recursion);
1679 	ret = dev_queue_xmit(skb);
1680 	__this_cpu_dec(xmit_recursion);
1681 
1682 	return ret;
1683 }
1684 
1685 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
1686 				 u32 flags)
1687 {
1688 	/* skb->mac_len is not set on normal egress */
1689 	unsigned int mlen = skb->network_header - skb->mac_header;
1690 
1691 	__skb_pull(skb, mlen);
1692 
1693 	/* At ingress, the mac header has already been pulled once.
1694 	 * At egress, skb_pospull_rcsum has to be done in case that
1695 	 * the skb is originated from ingress (i.e. a forwarded skb)
1696 	 * to ensure that rcsum starts at net header.
1697 	 */
1698 	if (!skb_at_tc_ingress(skb))
1699 		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
1700 	skb_pop_mac_header(skb);
1701 	skb_reset_mac_len(skb);
1702 	return flags & BPF_F_INGRESS ?
1703 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
1704 }
1705 
1706 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
1707 				 u32 flags)
1708 {
1709 	/* Verify that a link layer header is carried */
1710 	if (unlikely(skb->mac_header >= skb->network_header)) {
1711 		kfree_skb(skb);
1712 		return -ERANGE;
1713 	}
1714 
1715 	bpf_push_mac_rcsum(skb);
1716 	return flags & BPF_F_INGRESS ?
1717 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1718 }
1719 
1720 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
1721 			  u32 flags)
1722 {
1723 	if (dev_is_mac_header_xmit(dev))
1724 		return __bpf_redirect_common(skb, dev, flags);
1725 	else
1726 		return __bpf_redirect_no_mac(skb, dev, flags);
1727 }
1728 
1729 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1730 {
1731 	struct net_device *dev;
1732 	struct sk_buff *clone;
1733 	int ret;
1734 
1735 	if (unlikely(flags & ~(BPF_F_INGRESS)))
1736 		return -EINVAL;
1737 
1738 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1739 	if (unlikely(!dev))
1740 		return -EINVAL;
1741 
1742 	clone = skb_clone(skb, GFP_ATOMIC);
1743 	if (unlikely(!clone))
1744 		return -ENOMEM;
1745 
1746 	/* For direct write, we need to keep the invariant that the skbs
1747 	 * we're dealing with need to be uncloned. Should uncloning fail
1748 	 * here, we need to free the just generated clone to unclone once
1749 	 * again.
1750 	 */
1751 	ret = bpf_try_make_head_writable(skb);
1752 	if (unlikely(ret)) {
1753 		kfree_skb(clone);
1754 		return -ENOMEM;
1755 	}
1756 
1757 	return __bpf_redirect(clone, dev, flags);
1758 }
1759 
1760 static const struct bpf_func_proto bpf_clone_redirect_proto = {
1761 	.func           = bpf_clone_redirect,
1762 	.gpl_only       = false,
1763 	.ret_type       = RET_INTEGER,
1764 	.arg1_type      = ARG_PTR_TO_CTX,
1765 	.arg2_type      = ARG_ANYTHING,
1766 	.arg3_type      = ARG_ANYTHING,
1767 };
1768 
1769 struct redirect_info {
1770 	u32 ifindex;
1771 	u32 flags;
1772 };
1773 
1774 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1775 
1776 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1777 {
1778 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1779 
1780 	if (unlikely(flags & ~(BPF_F_INGRESS)))
1781 		return TC_ACT_SHOT;
1782 
1783 	ri->ifindex = ifindex;
1784 	ri->flags = flags;
1785 
1786 	return TC_ACT_REDIRECT;
1787 }
1788 
1789 int skb_do_redirect(struct sk_buff *skb)
1790 {
1791 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1792 	struct net_device *dev;
1793 
1794 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1795 	ri->ifindex = 0;
1796 	if (unlikely(!dev)) {
1797 		kfree_skb(skb);
1798 		return -EINVAL;
1799 	}
1800 
1801 	return __bpf_redirect(skb, dev, ri->flags);
1802 }
1803 
1804 static const struct bpf_func_proto bpf_redirect_proto = {
1805 	.func           = bpf_redirect,
1806 	.gpl_only       = false,
1807 	.ret_type       = RET_INTEGER,
1808 	.arg1_type      = ARG_ANYTHING,
1809 	.arg2_type      = ARG_ANYTHING,
1810 };
1811 
1812 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
1813 {
1814 	return task_get_classid(skb);
1815 }
1816 
1817 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1818 	.func           = bpf_get_cgroup_classid,
1819 	.gpl_only       = false,
1820 	.ret_type       = RET_INTEGER,
1821 	.arg1_type      = ARG_PTR_TO_CTX,
1822 };
1823 
1824 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
1825 {
1826 	return dst_tclassid(skb);
1827 }
1828 
1829 static const struct bpf_func_proto bpf_get_route_realm_proto = {
1830 	.func           = bpf_get_route_realm,
1831 	.gpl_only       = false,
1832 	.ret_type       = RET_INTEGER,
1833 	.arg1_type      = ARG_PTR_TO_CTX,
1834 };
1835 
1836 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
1837 {
1838 	/* If skb_clear_hash() was called due to mangling, we can
1839 	 * trigger SW recalculation here. Later access to hash
1840 	 * can then use the inline skb->hash via context directly
1841 	 * instead of calling this helper again.
1842 	 */
1843 	return skb_get_hash(skb);
1844 }
1845 
1846 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
1847 	.func		= bpf_get_hash_recalc,
1848 	.gpl_only	= false,
1849 	.ret_type	= RET_INTEGER,
1850 	.arg1_type	= ARG_PTR_TO_CTX,
1851 };
1852 
1853 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
1854 {
1855 	/* After all direct packet write, this can be used once for
1856 	 * triggering a lazy recalc on next skb_get_hash() invocation.
1857 	 */
1858 	skb_clear_hash(skb);
1859 	return 0;
1860 }
1861 
1862 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
1863 	.func		= bpf_set_hash_invalid,
1864 	.gpl_only	= false,
1865 	.ret_type	= RET_INTEGER,
1866 	.arg1_type	= ARG_PTR_TO_CTX,
1867 };
1868 
1869 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
1870 	   u16, vlan_tci)
1871 {
1872 	int ret;
1873 
1874 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1875 		     vlan_proto != htons(ETH_P_8021AD)))
1876 		vlan_proto = htons(ETH_P_8021Q);
1877 
1878 	bpf_push_mac_rcsum(skb);
1879 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
1880 	bpf_pull_mac_rcsum(skb);
1881 
1882 	bpf_compute_data_end(skb);
1883 	return ret;
1884 }
1885 
1886 const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1887 	.func           = bpf_skb_vlan_push,
1888 	.gpl_only       = false,
1889 	.ret_type       = RET_INTEGER,
1890 	.arg1_type      = ARG_PTR_TO_CTX,
1891 	.arg2_type      = ARG_ANYTHING,
1892 	.arg3_type      = ARG_ANYTHING,
1893 };
1894 EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1895 
1896 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
1897 {
1898 	int ret;
1899 
1900 	bpf_push_mac_rcsum(skb);
1901 	ret = skb_vlan_pop(skb);
1902 	bpf_pull_mac_rcsum(skb);
1903 
1904 	bpf_compute_data_end(skb);
1905 	return ret;
1906 }
1907 
1908 const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
1909 	.func           = bpf_skb_vlan_pop,
1910 	.gpl_only       = false,
1911 	.ret_type       = RET_INTEGER,
1912 	.arg1_type      = ARG_PTR_TO_CTX,
1913 };
1914 EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1915 
1916 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
1917 {
1918 	/* Caller already did skb_cow() with len as headroom,
1919 	 * so no need to do it here.
1920 	 */
1921 	skb_push(skb, len);
1922 	memmove(skb->data, skb->data + len, off);
1923 	memset(skb->data + off, 0, len);
1924 
1925 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
1926 	 * needed here as it does not change the skb->csum
1927 	 * result for checksum complete when summing over
1928 	 * zeroed blocks.
1929 	 */
1930 	return 0;
1931 }
1932 
1933 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
1934 {
1935 	/* skb_ensure_writable() is not needed here, as we're
1936 	 * already working on an uncloned skb.
1937 	 */
1938 	if (unlikely(!pskb_may_pull(skb, off + len)))
1939 		return -ENOMEM;
1940 
1941 	skb_postpull_rcsum(skb, skb->data + off, len);
1942 	memmove(skb->data + len, skb->data, off);
1943 	__skb_pull(skb, len);
1944 
1945 	return 0;
1946 }
1947 
1948 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
1949 {
1950 	bool trans_same = skb->transport_header == skb->network_header;
1951 	int ret;
1952 
1953 	/* There's no need for __skb_push()/__skb_pull() pair to
1954 	 * get to the start of the mac header as we're guaranteed
1955 	 * to always start from here under eBPF.
1956 	 */
1957 	ret = bpf_skb_generic_push(skb, off, len);
1958 	if (likely(!ret)) {
1959 		skb->mac_header -= len;
1960 		skb->network_header -= len;
1961 		if (trans_same)
1962 			skb->transport_header = skb->network_header;
1963 	}
1964 
1965 	return ret;
1966 }
1967 
1968 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
1969 {
1970 	bool trans_same = skb->transport_header == skb->network_header;
1971 	int ret;
1972 
1973 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
1974 	ret = bpf_skb_generic_pop(skb, off, len);
1975 	if (likely(!ret)) {
1976 		skb->mac_header += len;
1977 		skb->network_header += len;
1978 		if (trans_same)
1979 			skb->transport_header = skb->network_header;
1980 	}
1981 
1982 	return ret;
1983 }
1984 
1985 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
1986 {
1987 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
1988 	u32 off = skb->network_header - skb->mac_header;
1989 	int ret;
1990 
1991 	ret = skb_cow(skb, len_diff);
1992 	if (unlikely(ret < 0))
1993 		return ret;
1994 
1995 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
1996 	if (unlikely(ret < 0))
1997 		return ret;
1998 
1999 	if (skb_is_gso(skb)) {
2000 		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV4 needs to
2001 		 * be changed into SKB_GSO_TCPV6.
2002 		 */
2003 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2004 			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV4;
2005 			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV6;
2006 		}
2007 
2008 		/* Due to IPv6 header, MSS needs to be downgraded. */
2009 		skb_shinfo(skb)->gso_size -= len_diff;
2010 		/* Header must be checked, and gso_segs recomputed. */
2011 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2012 		skb_shinfo(skb)->gso_segs = 0;
2013 	}
2014 
2015 	skb->protocol = htons(ETH_P_IPV6);
2016 	skb_clear_hash(skb);
2017 
2018 	return 0;
2019 }
2020 
2021 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2022 {
2023 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2024 	u32 off = skb->network_header - skb->mac_header;
2025 	int ret;
2026 
2027 	ret = skb_unclone(skb, GFP_ATOMIC);
2028 	if (unlikely(ret < 0))
2029 		return ret;
2030 
2031 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2032 	if (unlikely(ret < 0))
2033 		return ret;
2034 
2035 	if (skb_is_gso(skb)) {
2036 		/* SKB_GSO_UDP stays as is. SKB_GSO_TCPV6 needs to
2037 		 * be changed into SKB_GSO_TCPV4.
2038 		 */
2039 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
2040 			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV6;
2041 			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV4;
2042 		}
2043 
2044 		/* Due to IPv4 header, MSS can be upgraded. */
2045 		skb_shinfo(skb)->gso_size += len_diff;
2046 		/* Header must be checked, and gso_segs recomputed. */
2047 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2048 		skb_shinfo(skb)->gso_segs = 0;
2049 	}
2050 
2051 	skb->protocol = htons(ETH_P_IP);
2052 	skb_clear_hash(skb);
2053 
2054 	return 0;
2055 }
2056 
2057 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2058 {
2059 	__be16 from_proto = skb->protocol;
2060 
2061 	if (from_proto == htons(ETH_P_IP) &&
2062 	      to_proto == htons(ETH_P_IPV6))
2063 		return bpf_skb_proto_4_to_6(skb);
2064 
2065 	if (from_proto == htons(ETH_P_IPV6) &&
2066 	      to_proto == htons(ETH_P_IP))
2067 		return bpf_skb_proto_6_to_4(skb);
2068 
2069 	return -ENOTSUPP;
2070 }
2071 
2072 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2073 	   u64, flags)
2074 {
2075 	int ret;
2076 
2077 	if (unlikely(flags))
2078 		return -EINVAL;
2079 
2080 	/* General idea is that this helper does the basic groundwork
2081 	 * needed for changing the protocol, and eBPF program fills the
2082 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2083 	 * and other helpers, rather than passing a raw buffer here.
2084 	 *
2085 	 * The rationale is to keep this minimal and without a need to
2086 	 * deal with raw packet data. F.e. even if we would pass buffers
2087 	 * here, the program still needs to call the bpf_lX_csum_replace()
2088 	 * helpers anyway. Plus, this way we keep also separation of
2089 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
2090 	 * care of stores.
2091 	 *
2092 	 * Currently, additional options and extension header space are
2093 	 * not supported, but flags register is reserved so we can adapt
2094 	 * that. For offloads, we mark packet as dodgy, so that headers
2095 	 * need to be verified first.
2096 	 */
2097 	ret = bpf_skb_proto_xlat(skb, proto);
2098 	bpf_compute_data_end(skb);
2099 	return ret;
2100 }
2101 
2102 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2103 	.func		= bpf_skb_change_proto,
2104 	.gpl_only	= false,
2105 	.ret_type	= RET_INTEGER,
2106 	.arg1_type	= ARG_PTR_TO_CTX,
2107 	.arg2_type	= ARG_ANYTHING,
2108 	.arg3_type	= ARG_ANYTHING,
2109 };
2110 
2111 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2112 {
2113 	/* We only allow a restricted subset to be changed for now. */
2114 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2115 		     !skb_pkt_type_ok(pkt_type)))
2116 		return -EINVAL;
2117 
2118 	skb->pkt_type = pkt_type;
2119 	return 0;
2120 }
2121 
2122 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2123 	.func		= bpf_skb_change_type,
2124 	.gpl_only	= false,
2125 	.ret_type	= RET_INTEGER,
2126 	.arg1_type	= ARG_PTR_TO_CTX,
2127 	.arg2_type	= ARG_ANYTHING,
2128 };
2129 
2130 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2131 {
2132 	u32 min_len = skb_network_offset(skb);
2133 
2134 	if (skb_transport_header_was_set(skb))
2135 		min_len = skb_transport_offset(skb);
2136 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2137 		min_len = skb_checksum_start_offset(skb) +
2138 			  skb->csum_offset + sizeof(__sum16);
2139 	return min_len;
2140 }
2141 
2142 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2143 {
2144 	return skb->dev->mtu + skb->dev->hard_header_len;
2145 }
2146 
2147 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2148 {
2149 	unsigned int old_len = skb->len;
2150 	int ret;
2151 
2152 	ret = __skb_grow_rcsum(skb, new_len);
2153 	if (!ret)
2154 		memset(skb->data + old_len, 0, new_len - old_len);
2155 	return ret;
2156 }
2157 
2158 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2159 {
2160 	return __skb_trim_rcsum(skb, new_len);
2161 }
2162 
2163 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2164 	   u64, flags)
2165 {
2166 	u32 max_len = __bpf_skb_max_len(skb);
2167 	u32 min_len = __bpf_skb_min_len(skb);
2168 	int ret;
2169 
2170 	if (unlikely(flags || new_len > max_len || new_len < min_len))
2171 		return -EINVAL;
2172 	if (skb->encapsulation)
2173 		return -ENOTSUPP;
2174 
2175 	/* The basic idea of this helper is that it's performing the
2176 	 * needed work to either grow or trim an skb, and eBPF program
2177 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
2178 	 * bpf_lX_csum_replace() and others rather than passing a raw
2179 	 * buffer here. This one is a slow path helper and intended
2180 	 * for replies with control messages.
2181 	 *
2182 	 * Like in bpf_skb_change_proto(), we want to keep this rather
2183 	 * minimal and without protocol specifics so that we are able
2184 	 * to separate concerns as in bpf_skb_store_bytes() should only
2185 	 * be the one responsible for writing buffers.
2186 	 *
2187 	 * It's really expected to be a slow path operation here for
2188 	 * control message replies, so we're implicitly linearizing,
2189 	 * uncloning and drop offloads from the skb by this.
2190 	 */
2191 	ret = __bpf_try_make_writable(skb, skb->len);
2192 	if (!ret) {
2193 		if (new_len > skb->len)
2194 			ret = bpf_skb_grow_rcsum(skb, new_len);
2195 		else if (new_len < skb->len)
2196 			ret = bpf_skb_trim_rcsum(skb, new_len);
2197 		if (!ret && skb_is_gso(skb))
2198 			skb_gso_reset(skb);
2199 	}
2200 
2201 	bpf_compute_data_end(skb);
2202 	return ret;
2203 }
2204 
2205 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2206 	.func		= bpf_skb_change_tail,
2207 	.gpl_only	= false,
2208 	.ret_type	= RET_INTEGER,
2209 	.arg1_type	= ARG_PTR_TO_CTX,
2210 	.arg2_type	= ARG_ANYTHING,
2211 	.arg3_type	= ARG_ANYTHING,
2212 };
2213 
2214 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
2215 	   u64, flags)
2216 {
2217 	u32 max_len = __bpf_skb_max_len(skb);
2218 	u32 new_len = skb->len + head_room;
2219 	int ret;
2220 
2221 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
2222 		     new_len < skb->len))
2223 		return -EINVAL;
2224 
2225 	ret = skb_cow(skb, head_room);
2226 	if (likely(!ret)) {
2227 		/* Idea for this helper is that we currently only
2228 		 * allow to expand on mac header. This means that
2229 		 * skb->protocol network header, etc, stay as is.
2230 		 * Compared to bpf_skb_change_tail(), we're more
2231 		 * flexible due to not needing to linearize or
2232 		 * reset GSO. Intention for this helper is to be
2233 		 * used by an L3 skb that needs to push mac header
2234 		 * for redirection into L2 device.
2235 		 */
2236 		__skb_push(skb, head_room);
2237 		memset(skb->data, 0, head_room);
2238 		skb_reset_mac_header(skb);
2239 	}
2240 
2241 	bpf_compute_data_end(skb);
2242 	return 0;
2243 }
2244 
2245 static const struct bpf_func_proto bpf_skb_change_head_proto = {
2246 	.func		= bpf_skb_change_head,
2247 	.gpl_only	= false,
2248 	.ret_type	= RET_INTEGER,
2249 	.arg1_type	= ARG_PTR_TO_CTX,
2250 	.arg2_type	= ARG_ANYTHING,
2251 	.arg3_type	= ARG_ANYTHING,
2252 };
2253 
2254 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
2255 {
2256 	void *data = xdp->data + offset;
2257 
2258 	if (unlikely(data < xdp->data_hard_start ||
2259 		     data > xdp->data_end - ETH_HLEN))
2260 		return -EINVAL;
2261 
2262 	xdp->data = data;
2263 
2264 	return 0;
2265 }
2266 
2267 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
2268 	.func		= bpf_xdp_adjust_head,
2269 	.gpl_only	= false,
2270 	.ret_type	= RET_INTEGER,
2271 	.arg1_type	= ARG_PTR_TO_CTX,
2272 	.arg2_type	= ARG_ANYTHING,
2273 };
2274 
2275 bool bpf_helper_changes_pkt_data(void *func)
2276 {
2277 	if (func == bpf_skb_vlan_push ||
2278 	    func == bpf_skb_vlan_pop ||
2279 	    func == bpf_skb_store_bytes ||
2280 	    func == bpf_skb_change_proto ||
2281 	    func == bpf_skb_change_head ||
2282 	    func == bpf_skb_change_tail ||
2283 	    func == bpf_skb_pull_data ||
2284 	    func == bpf_clone_redirect ||
2285 	    func == bpf_l3_csum_replace ||
2286 	    func == bpf_l4_csum_replace ||
2287 	    func == bpf_xdp_adjust_head)
2288 		return true;
2289 
2290 	return false;
2291 }
2292 
2293 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
2294 				  unsigned long off, unsigned long len)
2295 {
2296 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
2297 
2298 	if (unlikely(!ptr))
2299 		return len;
2300 	if (ptr != dst_buff)
2301 		memcpy(dst_buff, ptr, len);
2302 
2303 	return 0;
2304 }
2305 
2306 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
2307 	   u64, flags, void *, meta, u64, meta_size)
2308 {
2309 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
2310 
2311 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
2312 		return -EINVAL;
2313 	if (unlikely(skb_size > skb->len))
2314 		return -EFAULT;
2315 
2316 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
2317 				bpf_skb_copy);
2318 }
2319 
2320 static const struct bpf_func_proto bpf_skb_event_output_proto = {
2321 	.func		= bpf_skb_event_output,
2322 	.gpl_only	= true,
2323 	.ret_type	= RET_INTEGER,
2324 	.arg1_type	= ARG_PTR_TO_CTX,
2325 	.arg2_type	= ARG_CONST_MAP_PTR,
2326 	.arg3_type	= ARG_ANYTHING,
2327 	.arg4_type	= ARG_PTR_TO_MEM,
2328 	.arg5_type	= ARG_CONST_SIZE,
2329 };
2330 
2331 static unsigned short bpf_tunnel_key_af(u64 flags)
2332 {
2333 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
2334 }
2335 
2336 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
2337 	   u32, size, u64, flags)
2338 {
2339 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2340 	u8 compat[sizeof(struct bpf_tunnel_key)];
2341 	void *to_orig = to;
2342 	int err;
2343 
2344 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
2345 		err = -EINVAL;
2346 		goto err_clear;
2347 	}
2348 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
2349 		err = -EPROTO;
2350 		goto err_clear;
2351 	}
2352 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2353 		err = -EINVAL;
2354 		switch (size) {
2355 		case offsetof(struct bpf_tunnel_key, tunnel_label):
2356 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2357 			goto set_compat;
2358 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
2359 			/* Fixup deprecated structure layouts here, so we have
2360 			 * a common path later on.
2361 			 */
2362 			if (ip_tunnel_info_af(info) != AF_INET)
2363 				goto err_clear;
2364 set_compat:
2365 			to = (struct bpf_tunnel_key *)compat;
2366 			break;
2367 		default:
2368 			goto err_clear;
2369 		}
2370 	}
2371 
2372 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
2373 	to->tunnel_tos = info->key.tos;
2374 	to->tunnel_ttl = info->key.ttl;
2375 
2376 	if (flags & BPF_F_TUNINFO_IPV6) {
2377 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
2378 		       sizeof(to->remote_ipv6));
2379 		to->tunnel_label = be32_to_cpu(info->key.label);
2380 	} else {
2381 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
2382 	}
2383 
2384 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
2385 		memcpy(to_orig, to, size);
2386 
2387 	return 0;
2388 err_clear:
2389 	memset(to_orig, 0, size);
2390 	return err;
2391 }
2392 
2393 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
2394 	.func		= bpf_skb_get_tunnel_key,
2395 	.gpl_only	= false,
2396 	.ret_type	= RET_INTEGER,
2397 	.arg1_type	= ARG_PTR_TO_CTX,
2398 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
2399 	.arg3_type	= ARG_CONST_SIZE,
2400 	.arg4_type	= ARG_ANYTHING,
2401 };
2402 
2403 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
2404 {
2405 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2406 	int err;
2407 
2408 	if (unlikely(!info ||
2409 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
2410 		err = -ENOENT;
2411 		goto err_clear;
2412 	}
2413 	if (unlikely(size < info->options_len)) {
2414 		err = -ENOMEM;
2415 		goto err_clear;
2416 	}
2417 
2418 	ip_tunnel_info_opts_get(to, info);
2419 	if (size > info->options_len)
2420 		memset(to + info->options_len, 0, size - info->options_len);
2421 
2422 	return info->options_len;
2423 err_clear:
2424 	memset(to, 0, size);
2425 	return err;
2426 }
2427 
2428 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
2429 	.func		= bpf_skb_get_tunnel_opt,
2430 	.gpl_only	= false,
2431 	.ret_type	= RET_INTEGER,
2432 	.arg1_type	= ARG_PTR_TO_CTX,
2433 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
2434 	.arg3_type	= ARG_CONST_SIZE,
2435 };
2436 
2437 static struct metadata_dst __percpu *md_dst;
2438 
2439 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
2440 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
2441 {
2442 	struct metadata_dst *md = this_cpu_ptr(md_dst);
2443 	u8 compat[sizeof(struct bpf_tunnel_key)];
2444 	struct ip_tunnel_info *info;
2445 
2446 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
2447 			       BPF_F_DONT_FRAGMENT)))
2448 		return -EINVAL;
2449 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2450 		switch (size) {
2451 		case offsetof(struct bpf_tunnel_key, tunnel_label):
2452 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2453 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
2454 			/* Fixup deprecated structure layouts here, so we have
2455 			 * a common path later on.
2456 			 */
2457 			memcpy(compat, from, size);
2458 			memset(compat + size, 0, sizeof(compat) - size);
2459 			from = (const struct bpf_tunnel_key *) compat;
2460 			break;
2461 		default:
2462 			return -EINVAL;
2463 		}
2464 	}
2465 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
2466 		     from->tunnel_ext))
2467 		return -EINVAL;
2468 
2469 	skb_dst_drop(skb);
2470 	dst_hold((struct dst_entry *) md);
2471 	skb_dst_set(skb, (struct dst_entry *) md);
2472 
2473 	info = &md->u.tun_info;
2474 	info->mode = IP_TUNNEL_INFO_TX;
2475 
2476 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
2477 	if (flags & BPF_F_DONT_FRAGMENT)
2478 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
2479 
2480 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
2481 	info->key.tos = from->tunnel_tos;
2482 	info->key.ttl = from->tunnel_ttl;
2483 
2484 	if (flags & BPF_F_TUNINFO_IPV6) {
2485 		info->mode |= IP_TUNNEL_INFO_IPV6;
2486 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
2487 		       sizeof(from->remote_ipv6));
2488 		info->key.label = cpu_to_be32(from->tunnel_label) &
2489 				  IPV6_FLOWLABEL_MASK;
2490 	} else {
2491 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
2492 		if (flags & BPF_F_ZERO_CSUM_TX)
2493 			info->key.tun_flags &= ~TUNNEL_CSUM;
2494 	}
2495 
2496 	return 0;
2497 }
2498 
2499 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
2500 	.func		= bpf_skb_set_tunnel_key,
2501 	.gpl_only	= false,
2502 	.ret_type	= RET_INTEGER,
2503 	.arg1_type	= ARG_PTR_TO_CTX,
2504 	.arg2_type	= ARG_PTR_TO_MEM,
2505 	.arg3_type	= ARG_CONST_SIZE,
2506 	.arg4_type	= ARG_ANYTHING,
2507 };
2508 
2509 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
2510 	   const u8 *, from, u32, size)
2511 {
2512 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
2513 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
2514 
2515 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
2516 		return -EINVAL;
2517 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
2518 		return -ENOMEM;
2519 
2520 	ip_tunnel_info_opts_set(info, from, size);
2521 
2522 	return 0;
2523 }
2524 
2525 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
2526 	.func		= bpf_skb_set_tunnel_opt,
2527 	.gpl_only	= false,
2528 	.ret_type	= RET_INTEGER,
2529 	.arg1_type	= ARG_PTR_TO_CTX,
2530 	.arg2_type	= ARG_PTR_TO_MEM,
2531 	.arg3_type	= ARG_CONST_SIZE,
2532 };
2533 
2534 static const struct bpf_func_proto *
2535 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
2536 {
2537 	if (!md_dst) {
2538 		/* Race is not possible, since it's called from verifier
2539 		 * that is holding verifier mutex.
2540 		 */
2541 		md_dst = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
2542 						   GFP_KERNEL);
2543 		if (!md_dst)
2544 			return NULL;
2545 	}
2546 
2547 	switch (which) {
2548 	case BPF_FUNC_skb_set_tunnel_key:
2549 		return &bpf_skb_set_tunnel_key_proto;
2550 	case BPF_FUNC_skb_set_tunnel_opt:
2551 		return &bpf_skb_set_tunnel_opt_proto;
2552 	default:
2553 		return NULL;
2554 	}
2555 }
2556 
2557 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
2558 	   u32, idx)
2559 {
2560 	struct bpf_array *array = container_of(map, struct bpf_array, map);
2561 	struct cgroup *cgrp;
2562 	struct sock *sk;
2563 
2564 	sk = skb_to_full_sk(skb);
2565 	if (!sk || !sk_fullsock(sk))
2566 		return -ENOENT;
2567 	if (unlikely(idx >= array->map.max_entries))
2568 		return -E2BIG;
2569 
2570 	cgrp = READ_ONCE(array->ptrs[idx]);
2571 	if (unlikely(!cgrp))
2572 		return -EAGAIN;
2573 
2574 	return sk_under_cgroup_hierarchy(sk, cgrp);
2575 }
2576 
2577 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
2578 	.func		= bpf_skb_under_cgroup,
2579 	.gpl_only	= false,
2580 	.ret_type	= RET_INTEGER,
2581 	.arg1_type	= ARG_PTR_TO_CTX,
2582 	.arg2_type	= ARG_CONST_MAP_PTR,
2583 	.arg3_type	= ARG_ANYTHING,
2584 };
2585 
2586 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
2587 				  unsigned long off, unsigned long len)
2588 {
2589 	memcpy(dst_buff, src_buff + off, len);
2590 	return 0;
2591 }
2592 
2593 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
2594 	   u64, flags, void *, meta, u64, meta_size)
2595 {
2596 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
2597 
2598 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
2599 		return -EINVAL;
2600 	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
2601 		return -EFAULT;
2602 
2603 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
2604 				xdp_size, bpf_xdp_copy);
2605 }
2606 
2607 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
2608 	.func		= bpf_xdp_event_output,
2609 	.gpl_only	= true,
2610 	.ret_type	= RET_INTEGER,
2611 	.arg1_type	= ARG_PTR_TO_CTX,
2612 	.arg2_type	= ARG_CONST_MAP_PTR,
2613 	.arg3_type	= ARG_ANYTHING,
2614 	.arg4_type	= ARG_PTR_TO_MEM,
2615 	.arg5_type	= ARG_CONST_SIZE,
2616 };
2617 
2618 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
2619 {
2620 	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
2621 }
2622 
2623 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
2624 	.func           = bpf_get_socket_cookie,
2625 	.gpl_only       = false,
2626 	.ret_type       = RET_INTEGER,
2627 	.arg1_type      = ARG_PTR_TO_CTX,
2628 };
2629 
2630 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
2631 {
2632 	struct sock *sk = sk_to_full_sk(skb->sk);
2633 	kuid_t kuid;
2634 
2635 	if (!sk || !sk_fullsock(sk))
2636 		return overflowuid;
2637 	kuid = sock_net_uid(sock_net(sk), sk);
2638 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
2639 }
2640 
2641 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
2642 	.func           = bpf_get_socket_uid,
2643 	.gpl_only       = false,
2644 	.ret_type       = RET_INTEGER,
2645 	.arg1_type      = ARG_PTR_TO_CTX,
2646 };
2647 
2648 static const struct bpf_func_proto *
2649 bpf_base_func_proto(enum bpf_func_id func_id)
2650 {
2651 	switch (func_id) {
2652 	case BPF_FUNC_map_lookup_elem:
2653 		return &bpf_map_lookup_elem_proto;
2654 	case BPF_FUNC_map_update_elem:
2655 		return &bpf_map_update_elem_proto;
2656 	case BPF_FUNC_map_delete_elem:
2657 		return &bpf_map_delete_elem_proto;
2658 	case BPF_FUNC_get_prandom_u32:
2659 		return &bpf_get_prandom_u32_proto;
2660 	case BPF_FUNC_get_smp_processor_id:
2661 		return &bpf_get_raw_smp_processor_id_proto;
2662 	case BPF_FUNC_get_numa_node_id:
2663 		return &bpf_get_numa_node_id_proto;
2664 	case BPF_FUNC_tail_call:
2665 		return &bpf_tail_call_proto;
2666 	case BPF_FUNC_ktime_get_ns:
2667 		return &bpf_ktime_get_ns_proto;
2668 	case BPF_FUNC_trace_printk:
2669 		if (capable(CAP_SYS_ADMIN))
2670 			return bpf_get_trace_printk_proto();
2671 	default:
2672 		return NULL;
2673 	}
2674 }
2675 
2676 static const struct bpf_func_proto *
2677 sk_filter_func_proto(enum bpf_func_id func_id)
2678 {
2679 	switch (func_id) {
2680 	case BPF_FUNC_skb_load_bytes:
2681 		return &bpf_skb_load_bytes_proto;
2682 	case BPF_FUNC_get_socket_cookie:
2683 		return &bpf_get_socket_cookie_proto;
2684 	case BPF_FUNC_get_socket_uid:
2685 		return &bpf_get_socket_uid_proto;
2686 	default:
2687 		return bpf_base_func_proto(func_id);
2688 	}
2689 }
2690 
2691 static const struct bpf_func_proto *
2692 tc_cls_act_func_proto(enum bpf_func_id func_id)
2693 {
2694 	switch (func_id) {
2695 	case BPF_FUNC_skb_store_bytes:
2696 		return &bpf_skb_store_bytes_proto;
2697 	case BPF_FUNC_skb_load_bytes:
2698 		return &bpf_skb_load_bytes_proto;
2699 	case BPF_FUNC_skb_pull_data:
2700 		return &bpf_skb_pull_data_proto;
2701 	case BPF_FUNC_csum_diff:
2702 		return &bpf_csum_diff_proto;
2703 	case BPF_FUNC_csum_update:
2704 		return &bpf_csum_update_proto;
2705 	case BPF_FUNC_l3_csum_replace:
2706 		return &bpf_l3_csum_replace_proto;
2707 	case BPF_FUNC_l4_csum_replace:
2708 		return &bpf_l4_csum_replace_proto;
2709 	case BPF_FUNC_clone_redirect:
2710 		return &bpf_clone_redirect_proto;
2711 	case BPF_FUNC_get_cgroup_classid:
2712 		return &bpf_get_cgroup_classid_proto;
2713 	case BPF_FUNC_skb_vlan_push:
2714 		return &bpf_skb_vlan_push_proto;
2715 	case BPF_FUNC_skb_vlan_pop:
2716 		return &bpf_skb_vlan_pop_proto;
2717 	case BPF_FUNC_skb_change_proto:
2718 		return &bpf_skb_change_proto_proto;
2719 	case BPF_FUNC_skb_change_type:
2720 		return &bpf_skb_change_type_proto;
2721 	case BPF_FUNC_skb_change_tail:
2722 		return &bpf_skb_change_tail_proto;
2723 	case BPF_FUNC_skb_get_tunnel_key:
2724 		return &bpf_skb_get_tunnel_key_proto;
2725 	case BPF_FUNC_skb_set_tunnel_key:
2726 		return bpf_get_skb_set_tunnel_proto(func_id);
2727 	case BPF_FUNC_skb_get_tunnel_opt:
2728 		return &bpf_skb_get_tunnel_opt_proto;
2729 	case BPF_FUNC_skb_set_tunnel_opt:
2730 		return bpf_get_skb_set_tunnel_proto(func_id);
2731 	case BPF_FUNC_redirect:
2732 		return &bpf_redirect_proto;
2733 	case BPF_FUNC_get_route_realm:
2734 		return &bpf_get_route_realm_proto;
2735 	case BPF_FUNC_get_hash_recalc:
2736 		return &bpf_get_hash_recalc_proto;
2737 	case BPF_FUNC_set_hash_invalid:
2738 		return &bpf_set_hash_invalid_proto;
2739 	case BPF_FUNC_perf_event_output:
2740 		return &bpf_skb_event_output_proto;
2741 	case BPF_FUNC_get_smp_processor_id:
2742 		return &bpf_get_smp_processor_id_proto;
2743 	case BPF_FUNC_skb_under_cgroup:
2744 		return &bpf_skb_under_cgroup_proto;
2745 	case BPF_FUNC_get_socket_cookie:
2746 		return &bpf_get_socket_cookie_proto;
2747 	case BPF_FUNC_get_socket_uid:
2748 		return &bpf_get_socket_uid_proto;
2749 	default:
2750 		return bpf_base_func_proto(func_id);
2751 	}
2752 }
2753 
2754 static const struct bpf_func_proto *
2755 xdp_func_proto(enum bpf_func_id func_id)
2756 {
2757 	switch (func_id) {
2758 	case BPF_FUNC_perf_event_output:
2759 		return &bpf_xdp_event_output_proto;
2760 	case BPF_FUNC_get_smp_processor_id:
2761 		return &bpf_get_smp_processor_id_proto;
2762 	case BPF_FUNC_xdp_adjust_head:
2763 		return &bpf_xdp_adjust_head_proto;
2764 	default:
2765 		return bpf_base_func_proto(func_id);
2766 	}
2767 }
2768 
2769 static const struct bpf_func_proto *
2770 cg_skb_func_proto(enum bpf_func_id func_id)
2771 {
2772 	return sk_filter_func_proto(func_id);
2773 }
2774 
2775 static const struct bpf_func_proto *
2776 lwt_inout_func_proto(enum bpf_func_id func_id)
2777 {
2778 	switch (func_id) {
2779 	case BPF_FUNC_skb_load_bytes:
2780 		return &bpf_skb_load_bytes_proto;
2781 	case BPF_FUNC_skb_pull_data:
2782 		return &bpf_skb_pull_data_proto;
2783 	case BPF_FUNC_csum_diff:
2784 		return &bpf_csum_diff_proto;
2785 	case BPF_FUNC_get_cgroup_classid:
2786 		return &bpf_get_cgroup_classid_proto;
2787 	case BPF_FUNC_get_route_realm:
2788 		return &bpf_get_route_realm_proto;
2789 	case BPF_FUNC_get_hash_recalc:
2790 		return &bpf_get_hash_recalc_proto;
2791 	case BPF_FUNC_perf_event_output:
2792 		return &bpf_skb_event_output_proto;
2793 	case BPF_FUNC_get_smp_processor_id:
2794 		return &bpf_get_smp_processor_id_proto;
2795 	case BPF_FUNC_skb_under_cgroup:
2796 		return &bpf_skb_under_cgroup_proto;
2797 	default:
2798 		return bpf_base_func_proto(func_id);
2799 	}
2800 }
2801 
2802 static const struct bpf_func_proto *
2803 lwt_xmit_func_proto(enum bpf_func_id func_id)
2804 {
2805 	switch (func_id) {
2806 	case BPF_FUNC_skb_get_tunnel_key:
2807 		return &bpf_skb_get_tunnel_key_proto;
2808 	case BPF_FUNC_skb_set_tunnel_key:
2809 		return bpf_get_skb_set_tunnel_proto(func_id);
2810 	case BPF_FUNC_skb_get_tunnel_opt:
2811 		return &bpf_skb_get_tunnel_opt_proto;
2812 	case BPF_FUNC_skb_set_tunnel_opt:
2813 		return bpf_get_skb_set_tunnel_proto(func_id);
2814 	case BPF_FUNC_redirect:
2815 		return &bpf_redirect_proto;
2816 	case BPF_FUNC_clone_redirect:
2817 		return &bpf_clone_redirect_proto;
2818 	case BPF_FUNC_skb_change_tail:
2819 		return &bpf_skb_change_tail_proto;
2820 	case BPF_FUNC_skb_change_head:
2821 		return &bpf_skb_change_head_proto;
2822 	case BPF_FUNC_skb_store_bytes:
2823 		return &bpf_skb_store_bytes_proto;
2824 	case BPF_FUNC_csum_update:
2825 		return &bpf_csum_update_proto;
2826 	case BPF_FUNC_l3_csum_replace:
2827 		return &bpf_l3_csum_replace_proto;
2828 	case BPF_FUNC_l4_csum_replace:
2829 		return &bpf_l4_csum_replace_proto;
2830 	case BPF_FUNC_set_hash_invalid:
2831 		return &bpf_set_hash_invalid_proto;
2832 	default:
2833 		return lwt_inout_func_proto(func_id);
2834 	}
2835 }
2836 
2837 static bool __is_valid_access(int off, int size)
2838 {
2839 	if (off < 0 || off >= sizeof(struct __sk_buff))
2840 		return false;
2841 
2842 	/* The verifier guarantees that size > 0. */
2843 	if (off % size != 0)
2844 		return false;
2845 
2846 	switch (off) {
2847 	case offsetof(struct __sk_buff, cb[0]) ...
2848 	     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
2849 		if (off + size >
2850 		    offsetof(struct __sk_buff, cb[4]) + sizeof(__u32))
2851 			return false;
2852 		break;
2853 	default:
2854 		if (size != sizeof(__u32))
2855 			return false;
2856 	}
2857 
2858 	return true;
2859 }
2860 
2861 static bool sk_filter_is_valid_access(int off, int size,
2862 				      enum bpf_access_type type,
2863 				      enum bpf_reg_type *reg_type)
2864 {
2865 	switch (off) {
2866 	case offsetof(struct __sk_buff, tc_classid):
2867 	case offsetof(struct __sk_buff, data):
2868 	case offsetof(struct __sk_buff, data_end):
2869 		return false;
2870 	}
2871 
2872 	if (type == BPF_WRITE) {
2873 		switch (off) {
2874 		case offsetof(struct __sk_buff, cb[0]) ...
2875 		     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
2876 			break;
2877 		default:
2878 			return false;
2879 		}
2880 	}
2881 
2882 	return __is_valid_access(off, size);
2883 }
2884 
2885 static bool lwt_is_valid_access(int off, int size,
2886 				enum bpf_access_type type,
2887 				enum bpf_reg_type *reg_type)
2888 {
2889 	switch (off) {
2890 	case offsetof(struct __sk_buff, tc_classid):
2891 		return false;
2892 	}
2893 
2894 	if (type == BPF_WRITE) {
2895 		switch (off) {
2896 		case offsetof(struct __sk_buff, mark):
2897 		case offsetof(struct __sk_buff, priority):
2898 		case offsetof(struct __sk_buff, cb[0]) ...
2899 		     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
2900 			break;
2901 		default:
2902 			return false;
2903 		}
2904 	}
2905 
2906 	switch (off) {
2907 	case offsetof(struct __sk_buff, data):
2908 		*reg_type = PTR_TO_PACKET;
2909 		break;
2910 	case offsetof(struct __sk_buff, data_end):
2911 		*reg_type = PTR_TO_PACKET_END;
2912 		break;
2913 	}
2914 
2915 	return __is_valid_access(off, size);
2916 }
2917 
2918 static bool sock_filter_is_valid_access(int off, int size,
2919 					enum bpf_access_type type,
2920 					enum bpf_reg_type *reg_type)
2921 {
2922 	if (type == BPF_WRITE) {
2923 		switch (off) {
2924 		case offsetof(struct bpf_sock, bound_dev_if):
2925 			break;
2926 		default:
2927 			return false;
2928 		}
2929 	}
2930 
2931 	if (off < 0 || off + size > sizeof(struct bpf_sock))
2932 		return false;
2933 	/* The verifier guarantees that size > 0. */
2934 	if (off % size != 0)
2935 		return false;
2936 	if (size != sizeof(__u32))
2937 		return false;
2938 
2939 	return true;
2940 }
2941 
2942 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
2943 			       const struct bpf_prog *prog)
2944 {
2945 	struct bpf_insn *insn = insn_buf;
2946 
2947 	if (!direct_write)
2948 		return 0;
2949 
2950 	/* if (!skb->cloned)
2951 	 *       goto start;
2952 	 *
2953 	 * (Fast-path, otherwise approximation that we might be
2954 	 *  a clone, do the rest in helper.)
2955 	 */
2956 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
2957 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
2958 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
2959 
2960 	/* ret = bpf_skb_pull_data(skb, 0); */
2961 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
2962 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
2963 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2964 			       BPF_FUNC_skb_pull_data);
2965 	/* if (!ret)
2966 	 *      goto restore;
2967 	 * return TC_ACT_SHOT;
2968 	 */
2969 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
2970 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, TC_ACT_SHOT);
2971 	*insn++ = BPF_EXIT_INSN();
2972 
2973 	/* restore: */
2974 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
2975 	/* start: */
2976 	*insn++ = prog->insnsi[0];
2977 
2978 	return insn - insn_buf;
2979 }
2980 
2981 static bool tc_cls_act_is_valid_access(int off, int size,
2982 				       enum bpf_access_type type,
2983 				       enum bpf_reg_type *reg_type)
2984 {
2985 	if (type == BPF_WRITE) {
2986 		switch (off) {
2987 		case offsetof(struct __sk_buff, mark):
2988 		case offsetof(struct __sk_buff, tc_index):
2989 		case offsetof(struct __sk_buff, priority):
2990 		case offsetof(struct __sk_buff, cb[0]) ...
2991 		     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
2992 		case offsetof(struct __sk_buff, tc_classid):
2993 			break;
2994 		default:
2995 			return false;
2996 		}
2997 	}
2998 
2999 	switch (off) {
3000 	case offsetof(struct __sk_buff, data):
3001 		*reg_type = PTR_TO_PACKET;
3002 		break;
3003 	case offsetof(struct __sk_buff, data_end):
3004 		*reg_type = PTR_TO_PACKET_END;
3005 		break;
3006 	}
3007 
3008 	return __is_valid_access(off, size);
3009 }
3010 
3011 static bool __is_valid_xdp_access(int off, int size)
3012 {
3013 	if (off < 0 || off >= sizeof(struct xdp_md))
3014 		return false;
3015 	if (off % size != 0)
3016 		return false;
3017 	if (size != sizeof(__u32))
3018 		return false;
3019 
3020 	return true;
3021 }
3022 
3023 static bool xdp_is_valid_access(int off, int size,
3024 				enum bpf_access_type type,
3025 				enum bpf_reg_type *reg_type)
3026 {
3027 	if (type == BPF_WRITE)
3028 		return false;
3029 
3030 	switch (off) {
3031 	case offsetof(struct xdp_md, data):
3032 		*reg_type = PTR_TO_PACKET;
3033 		break;
3034 	case offsetof(struct xdp_md, data_end):
3035 		*reg_type = PTR_TO_PACKET_END;
3036 		break;
3037 	}
3038 
3039 	return __is_valid_xdp_access(off, size);
3040 }
3041 
3042 void bpf_warn_invalid_xdp_action(u32 act)
3043 {
3044 	WARN_ONCE(1, "Illegal XDP return value %u, expect packet loss\n", act);
3045 }
3046 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
3047 
3048 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
3049 				  const struct bpf_insn *si,
3050 				  struct bpf_insn *insn_buf,
3051 				  struct bpf_prog *prog)
3052 {
3053 	struct bpf_insn *insn = insn_buf;
3054 	int off;
3055 
3056 	switch (si->off) {
3057 	case offsetof(struct __sk_buff, len):
3058 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
3059 
3060 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3061 				      offsetof(struct sk_buff, len));
3062 		break;
3063 
3064 	case offsetof(struct __sk_buff, protocol):
3065 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
3066 
3067 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3068 				      offsetof(struct sk_buff, protocol));
3069 		break;
3070 
3071 	case offsetof(struct __sk_buff, vlan_proto):
3072 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
3073 
3074 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3075 				      offsetof(struct sk_buff, vlan_proto));
3076 		break;
3077 
3078 	case offsetof(struct __sk_buff, priority):
3079 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);
3080 
3081 		if (type == BPF_WRITE)
3082 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3083 					      offsetof(struct sk_buff, priority));
3084 		else
3085 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3086 					      offsetof(struct sk_buff, priority));
3087 		break;
3088 
3089 	case offsetof(struct __sk_buff, ingress_ifindex):
3090 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);
3091 
3092 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3093 				      offsetof(struct sk_buff, skb_iif));
3094 		break;
3095 
3096 	case offsetof(struct __sk_buff, ifindex):
3097 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
3098 
3099 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3100 				      si->dst_reg, si->src_reg,
3101 				      offsetof(struct sk_buff, dev));
3102 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
3103 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3104 				      offsetof(struct net_device, ifindex));
3105 		break;
3106 
3107 	case offsetof(struct __sk_buff, hash):
3108 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
3109 
3110 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3111 				      offsetof(struct sk_buff, hash));
3112 		break;
3113 
3114 	case offsetof(struct __sk_buff, mark):
3115 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
3116 
3117 		if (type == BPF_WRITE)
3118 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3119 					      offsetof(struct sk_buff, mark));
3120 		else
3121 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3122 					      offsetof(struct sk_buff, mark));
3123 		break;
3124 
3125 	case offsetof(struct __sk_buff, pkt_type):
3126 		return convert_skb_access(SKF_AD_PKTTYPE, si->dst_reg,
3127 					  si->src_reg, insn);
3128 
3129 	case offsetof(struct __sk_buff, queue_mapping):
3130 		return convert_skb_access(SKF_AD_QUEUE, si->dst_reg,
3131 					  si->src_reg, insn);
3132 
3133 	case offsetof(struct __sk_buff, vlan_present):
3134 		return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
3135 					  si->dst_reg, si->src_reg, insn);
3136 
3137 	case offsetof(struct __sk_buff, vlan_tci):
3138 		return convert_skb_access(SKF_AD_VLAN_TAG,
3139 					  si->dst_reg, si->src_reg, insn);
3140 
3141 	case offsetof(struct __sk_buff, cb[0]) ...
3142 	     offsetof(struct __sk_buff, cb[4]) + sizeof(__u32) - 1:
3143 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
3144 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
3145 			      offsetof(struct qdisc_skb_cb, data)) %
3146 			     sizeof(__u64));
3147 
3148 		prog->cb_access = 1;
3149 		off  = si->off;
3150 		off -= offsetof(struct __sk_buff, cb[0]);
3151 		off += offsetof(struct sk_buff, cb);
3152 		off += offsetof(struct qdisc_skb_cb, data);
3153 		if (type == BPF_WRITE)
3154 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
3155 					      si->src_reg, off);
3156 		else
3157 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
3158 					      si->src_reg, off);
3159 		break;
3160 
3161 	case offsetof(struct __sk_buff, tc_classid):
3162 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
3163 
3164 		off  = si->off;
3165 		off -= offsetof(struct __sk_buff, tc_classid);
3166 		off += offsetof(struct sk_buff, cb);
3167 		off += offsetof(struct qdisc_skb_cb, tc_classid);
3168 		if (type == BPF_WRITE)
3169 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
3170 					      si->src_reg, off);
3171 		else
3172 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
3173 					      si->src_reg, off);
3174 		break;
3175 
3176 	case offsetof(struct __sk_buff, data):
3177 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
3178 				      si->dst_reg, si->src_reg,
3179 				      offsetof(struct sk_buff, data));
3180 		break;
3181 
3182 	case offsetof(struct __sk_buff, data_end):
3183 		off  = si->off;
3184 		off -= offsetof(struct __sk_buff, data_end);
3185 		off += offsetof(struct sk_buff, cb);
3186 		off += offsetof(struct bpf_skb_data_end, data_end);
3187 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
3188 				      si->src_reg, off);
3189 		break;
3190 
3191 	case offsetof(struct __sk_buff, tc_index):
3192 #ifdef CONFIG_NET_SCHED
3193 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);
3194 
3195 		if (type == BPF_WRITE)
3196 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
3197 					      offsetof(struct sk_buff, tc_index));
3198 		else
3199 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3200 					      offsetof(struct sk_buff, tc_index));
3201 #else
3202 		if (type == BPF_WRITE)
3203 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
3204 		else
3205 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3206 #endif
3207 		break;
3208 
3209 	case offsetof(struct __sk_buff, napi_id):
3210 #if defined(CONFIG_NET_RX_BUSY_POLL)
3211 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, napi_id) != 4);
3212 
3213 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3214 				      offsetof(struct sk_buff, napi_id));
3215 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
3216 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3217 #else
3218 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
3219 #endif
3220 		break;
3221 	}
3222 
3223 	return insn - insn_buf;
3224 }
3225 
3226 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
3227 					  const struct bpf_insn *si,
3228 					  struct bpf_insn *insn_buf,
3229 					  struct bpf_prog *prog)
3230 {
3231 	struct bpf_insn *insn = insn_buf;
3232 
3233 	switch (si->off) {
3234 	case offsetof(struct bpf_sock, bound_dev_if):
3235 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
3236 
3237 		if (type == BPF_WRITE)
3238 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3239 					offsetof(struct sock, sk_bound_dev_if));
3240 		else
3241 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3242 				      offsetof(struct sock, sk_bound_dev_if));
3243 		break;
3244 
3245 	case offsetof(struct bpf_sock, family):
3246 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
3247 
3248 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3249 				      offsetof(struct sock, sk_family));
3250 		break;
3251 
3252 	case offsetof(struct bpf_sock, type):
3253 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3254 				      offsetof(struct sock, __sk_flags_offset));
3255 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
3256 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
3257 		break;
3258 
3259 	case offsetof(struct bpf_sock, protocol):
3260 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3261 				      offsetof(struct sock, __sk_flags_offset));
3262 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
3263 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
3264 		break;
3265 	}
3266 
3267 	return insn - insn_buf;
3268 }
3269 
3270 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
3271 					 const struct bpf_insn *si,
3272 					 struct bpf_insn *insn_buf,
3273 					 struct bpf_prog *prog)
3274 {
3275 	struct bpf_insn *insn = insn_buf;
3276 
3277 	switch (si->off) {
3278 	case offsetof(struct __sk_buff, ifindex):
3279 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
3280 
3281 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3282 				      si->dst_reg, si->src_reg,
3283 				      offsetof(struct sk_buff, dev));
3284 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3285 				      offsetof(struct net_device, ifindex));
3286 		break;
3287 	default:
3288 		return bpf_convert_ctx_access(type, si, insn_buf, prog);
3289 	}
3290 
3291 	return insn - insn_buf;
3292 }
3293 
3294 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
3295 				  const struct bpf_insn *si,
3296 				  struct bpf_insn *insn_buf,
3297 				  struct bpf_prog *prog)
3298 {
3299 	struct bpf_insn *insn = insn_buf;
3300 
3301 	switch (si->off) {
3302 	case offsetof(struct xdp_md, data):
3303 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
3304 				      si->dst_reg, si->src_reg,
3305 				      offsetof(struct xdp_buff, data));
3306 		break;
3307 	case offsetof(struct xdp_md, data_end):
3308 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
3309 				      si->dst_reg, si->src_reg,
3310 				      offsetof(struct xdp_buff, data_end));
3311 		break;
3312 	}
3313 
3314 	return insn - insn_buf;
3315 }
3316 
3317 const struct bpf_verifier_ops sk_filter_prog_ops = {
3318 	.get_func_proto		= sk_filter_func_proto,
3319 	.is_valid_access	= sk_filter_is_valid_access,
3320 	.convert_ctx_access	= bpf_convert_ctx_access,
3321 };
3322 
3323 const struct bpf_verifier_ops tc_cls_act_prog_ops = {
3324 	.get_func_proto		= tc_cls_act_func_proto,
3325 	.is_valid_access	= tc_cls_act_is_valid_access,
3326 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
3327 	.gen_prologue		= tc_cls_act_prologue,
3328 	.test_run		= bpf_prog_test_run_skb,
3329 };
3330 
3331 const struct bpf_verifier_ops xdp_prog_ops = {
3332 	.get_func_proto		= xdp_func_proto,
3333 	.is_valid_access	= xdp_is_valid_access,
3334 	.convert_ctx_access	= xdp_convert_ctx_access,
3335 	.test_run		= bpf_prog_test_run_xdp,
3336 };
3337 
3338 const struct bpf_verifier_ops cg_skb_prog_ops = {
3339 	.get_func_proto		= cg_skb_func_proto,
3340 	.is_valid_access	= sk_filter_is_valid_access,
3341 	.convert_ctx_access	= bpf_convert_ctx_access,
3342 	.test_run		= bpf_prog_test_run_skb,
3343 };
3344 
3345 const struct bpf_verifier_ops lwt_inout_prog_ops = {
3346 	.get_func_proto		= lwt_inout_func_proto,
3347 	.is_valid_access	= lwt_is_valid_access,
3348 	.convert_ctx_access	= bpf_convert_ctx_access,
3349 	.test_run		= bpf_prog_test_run_skb,
3350 };
3351 
3352 const struct bpf_verifier_ops lwt_xmit_prog_ops = {
3353 	.get_func_proto		= lwt_xmit_func_proto,
3354 	.is_valid_access	= lwt_is_valid_access,
3355 	.convert_ctx_access	= bpf_convert_ctx_access,
3356 	.gen_prologue		= tc_cls_act_prologue,
3357 	.test_run		= bpf_prog_test_run_skb,
3358 };
3359 
3360 const struct bpf_verifier_ops cg_sock_prog_ops = {
3361 	.get_func_proto		= bpf_base_func_proto,
3362 	.is_valid_access	= sock_filter_is_valid_access,
3363 	.convert_ctx_access	= sock_filter_convert_ctx_access,
3364 };
3365 
3366 int sk_detach_filter(struct sock *sk)
3367 {
3368 	int ret = -ENOENT;
3369 	struct sk_filter *filter;
3370 
3371 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
3372 		return -EPERM;
3373 
3374 	filter = rcu_dereference_protected(sk->sk_filter,
3375 					   lockdep_sock_is_held(sk));
3376 	if (filter) {
3377 		RCU_INIT_POINTER(sk->sk_filter, NULL);
3378 		sk_filter_uncharge(sk, filter);
3379 		ret = 0;
3380 	}
3381 
3382 	return ret;
3383 }
3384 EXPORT_SYMBOL_GPL(sk_detach_filter);
3385 
3386 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
3387 		  unsigned int len)
3388 {
3389 	struct sock_fprog_kern *fprog;
3390 	struct sk_filter *filter;
3391 	int ret = 0;
3392 
3393 	lock_sock(sk);
3394 	filter = rcu_dereference_protected(sk->sk_filter,
3395 					   lockdep_sock_is_held(sk));
3396 	if (!filter)
3397 		goto out;
3398 
3399 	/* We're copying the filter that has been originally attached,
3400 	 * so no conversion/decode needed anymore. eBPF programs that
3401 	 * have no original program cannot be dumped through this.
3402 	 */
3403 	ret = -EACCES;
3404 	fprog = filter->prog->orig_prog;
3405 	if (!fprog)
3406 		goto out;
3407 
3408 	ret = fprog->len;
3409 	if (!len)
3410 		/* User space only enquires number of filter blocks. */
3411 		goto out;
3412 
3413 	ret = -EINVAL;
3414 	if (len < fprog->len)
3415 		goto out;
3416 
3417 	ret = -EFAULT;
3418 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
3419 		goto out;
3420 
3421 	/* Instead of bytes, the API requests to return the number
3422 	 * of filter blocks.
3423 	 */
3424 	ret = fprog->len;
3425 out:
3426 	release_sock(sk);
3427 	return ret;
3428 }
3429