xref: /openbmc/linux/net/core/filter.c (revision d0931f1d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 
85 static const struct bpf_func_proto *
86 bpf_sk_base_func_proto(enum bpf_func_id func_id);
87 
88 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
89 {
90 	if (in_compat_syscall()) {
91 		struct compat_sock_fprog f32;
92 
93 		if (len != sizeof(f32))
94 			return -EINVAL;
95 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
96 			return -EFAULT;
97 		memset(dst, 0, sizeof(*dst));
98 		dst->len = f32.len;
99 		dst->filter = compat_ptr(f32.filter);
100 	} else {
101 		if (len != sizeof(*dst))
102 			return -EINVAL;
103 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
104 			return -EFAULT;
105 	}
106 
107 	return 0;
108 }
109 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
110 
111 /**
112  *	sk_filter_trim_cap - run a packet through a socket filter
113  *	@sk: sock associated with &sk_buff
114  *	@skb: buffer to filter
115  *	@cap: limit on how short the eBPF program may trim the packet
116  *
117  * Run the eBPF program and then cut skb->data to correct size returned by
118  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
119  * than pkt_len we keep whole skb->data. This is the socket level
120  * wrapper to bpf_prog_run. It returns 0 if the packet should
121  * be accepted or -EPERM if the packet should be tossed.
122  *
123  */
124 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
125 {
126 	int err;
127 	struct sk_filter *filter;
128 
129 	/*
130 	 * If the skb was allocated from pfmemalloc reserves, only
131 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
132 	 * helping free memory
133 	 */
134 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
135 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
136 		return -ENOMEM;
137 	}
138 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
139 	if (err)
140 		return err;
141 
142 	err = security_sock_rcv_skb(sk, skb);
143 	if (err)
144 		return err;
145 
146 	rcu_read_lock();
147 	filter = rcu_dereference(sk->sk_filter);
148 	if (filter) {
149 		struct sock *save_sk = skb->sk;
150 		unsigned int pkt_len;
151 
152 		skb->sk = sk;
153 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
154 		skb->sk = save_sk;
155 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
156 	}
157 	rcu_read_unlock();
158 
159 	return err;
160 }
161 EXPORT_SYMBOL(sk_filter_trim_cap);
162 
163 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
164 {
165 	return skb_get_poff(skb);
166 }
167 
168 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
169 {
170 	struct nlattr *nla;
171 
172 	if (skb_is_nonlinear(skb))
173 		return 0;
174 
175 	if (skb->len < sizeof(struct nlattr))
176 		return 0;
177 
178 	if (a > skb->len - sizeof(struct nlattr))
179 		return 0;
180 
181 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
182 	if (nla)
183 		return (void *) nla - (void *) skb->data;
184 
185 	return 0;
186 }
187 
188 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
189 {
190 	struct nlattr *nla;
191 
192 	if (skb_is_nonlinear(skb))
193 		return 0;
194 
195 	if (skb->len < sizeof(struct nlattr))
196 		return 0;
197 
198 	if (a > skb->len - sizeof(struct nlattr))
199 		return 0;
200 
201 	nla = (struct nlattr *) &skb->data[a];
202 	if (nla->nla_len > skb->len - a)
203 		return 0;
204 
205 	nla = nla_find_nested(nla, x);
206 	if (nla)
207 		return (void *) nla - (void *) skb->data;
208 
209 	return 0;
210 }
211 
212 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
213 	   data, int, headlen, int, offset)
214 {
215 	u8 tmp, *ptr;
216 	const int len = sizeof(tmp);
217 
218 	if (offset >= 0) {
219 		if (headlen - offset >= len)
220 			return *(u8 *)(data + offset);
221 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
222 			return tmp;
223 	} else {
224 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
225 		if (likely(ptr))
226 			return *(u8 *)ptr;
227 	}
228 
229 	return -EFAULT;
230 }
231 
232 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
233 	   int, offset)
234 {
235 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
236 					 offset);
237 }
238 
239 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
240 	   data, int, headlen, int, offset)
241 {
242 	__be16 tmp, *ptr;
243 	const int len = sizeof(tmp);
244 
245 	if (offset >= 0) {
246 		if (headlen - offset >= len)
247 			return get_unaligned_be16(data + offset);
248 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
249 			return be16_to_cpu(tmp);
250 	} else {
251 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
252 		if (likely(ptr))
253 			return get_unaligned_be16(ptr);
254 	}
255 
256 	return -EFAULT;
257 }
258 
259 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
260 	   int, offset)
261 {
262 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
263 					  offset);
264 }
265 
266 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
267 	   data, int, headlen, int, offset)
268 {
269 	__be32 tmp, *ptr;
270 	const int len = sizeof(tmp);
271 
272 	if (likely(offset >= 0)) {
273 		if (headlen - offset >= len)
274 			return get_unaligned_be32(data + offset);
275 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
276 			return be32_to_cpu(tmp);
277 	} else {
278 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
279 		if (likely(ptr))
280 			return get_unaligned_be32(ptr);
281 	}
282 
283 	return -EFAULT;
284 }
285 
286 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
287 	   int, offset)
288 {
289 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
290 					  offset);
291 }
292 
293 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
294 			      struct bpf_insn *insn_buf)
295 {
296 	struct bpf_insn *insn = insn_buf;
297 
298 	switch (skb_field) {
299 	case SKF_AD_MARK:
300 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
301 
302 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
303 				      offsetof(struct sk_buff, mark));
304 		break;
305 
306 	case SKF_AD_PKTTYPE:
307 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
308 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
309 #ifdef __BIG_ENDIAN_BITFIELD
310 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
311 #endif
312 		break;
313 
314 	case SKF_AD_QUEUE:
315 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
316 
317 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318 				      offsetof(struct sk_buff, queue_mapping));
319 		break;
320 
321 	case SKF_AD_VLAN_TAG:
322 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
323 
324 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
325 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
326 				      offsetof(struct sk_buff, vlan_tci));
327 		break;
328 	case SKF_AD_VLAN_TAG_PRESENT:
329 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
330 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
331 				      offsetof(struct sk_buff, vlan_all));
332 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
333 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
334 		break;
335 	}
336 
337 	return insn - insn_buf;
338 }
339 
340 static bool convert_bpf_extensions(struct sock_filter *fp,
341 				   struct bpf_insn **insnp)
342 {
343 	struct bpf_insn *insn = *insnp;
344 	u32 cnt;
345 
346 	switch (fp->k) {
347 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
348 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
349 
350 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
351 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
352 				      offsetof(struct sk_buff, protocol));
353 		/* A = ntohs(A) [emitting a nop or swap16] */
354 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
355 		break;
356 
357 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
358 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
359 		insn += cnt - 1;
360 		break;
361 
362 	case SKF_AD_OFF + SKF_AD_IFINDEX:
363 	case SKF_AD_OFF + SKF_AD_HATYPE:
364 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
365 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
366 
367 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
368 				      BPF_REG_TMP, BPF_REG_CTX,
369 				      offsetof(struct sk_buff, dev));
370 		/* if (tmp != 0) goto pc + 1 */
371 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
372 		*insn++ = BPF_EXIT_INSN();
373 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
374 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
375 					    offsetof(struct net_device, ifindex));
376 		else
377 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
378 					    offsetof(struct net_device, type));
379 		break;
380 
381 	case SKF_AD_OFF + SKF_AD_MARK:
382 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
383 		insn += cnt - 1;
384 		break;
385 
386 	case SKF_AD_OFF + SKF_AD_RXHASH:
387 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
388 
389 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
390 				    offsetof(struct sk_buff, hash));
391 		break;
392 
393 	case SKF_AD_OFF + SKF_AD_QUEUE:
394 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
395 		insn += cnt - 1;
396 		break;
397 
398 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
399 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
400 					 BPF_REG_A, BPF_REG_CTX, insn);
401 		insn += cnt - 1;
402 		break;
403 
404 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
405 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
406 					 BPF_REG_A, BPF_REG_CTX, insn);
407 		insn += cnt - 1;
408 		break;
409 
410 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
411 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
412 
413 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
414 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
415 				      offsetof(struct sk_buff, vlan_proto));
416 		/* A = ntohs(A) [emitting a nop or swap16] */
417 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
418 		break;
419 
420 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
421 	case SKF_AD_OFF + SKF_AD_NLATTR:
422 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
423 	case SKF_AD_OFF + SKF_AD_CPU:
424 	case SKF_AD_OFF + SKF_AD_RANDOM:
425 		/* arg1 = CTX */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
427 		/* arg2 = A */
428 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
429 		/* arg3 = X */
430 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
431 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
432 		switch (fp->k) {
433 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
434 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
435 			break;
436 		case SKF_AD_OFF + SKF_AD_NLATTR:
437 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
438 			break;
439 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
441 			break;
442 		case SKF_AD_OFF + SKF_AD_CPU:
443 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
444 			break;
445 		case SKF_AD_OFF + SKF_AD_RANDOM:
446 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
447 			bpf_user_rnd_init_once();
448 			break;
449 		}
450 		break;
451 
452 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
453 		/* A ^= X */
454 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
455 		break;
456 
457 	default:
458 		/* This is just a dummy call to avoid letting the compiler
459 		 * evict __bpf_call_base() as an optimization. Placed here
460 		 * where no-one bothers.
461 		 */
462 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
463 		return false;
464 	}
465 
466 	*insnp = insn;
467 	return true;
468 }
469 
470 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
471 {
472 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
473 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
474 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
475 		      BPF_SIZE(fp->code) == BPF_W;
476 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
477 	const int ip_align = NET_IP_ALIGN;
478 	struct bpf_insn *insn = *insnp;
479 	int offset = fp->k;
480 
481 	if (!indirect &&
482 	    ((unaligned_ok && offset >= 0) ||
483 	     (!unaligned_ok && offset >= 0 &&
484 	      offset + ip_align >= 0 &&
485 	      offset + ip_align % size == 0))) {
486 		bool ldx_off_ok = offset <= S16_MAX;
487 
488 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
489 		if (offset)
490 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
491 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
492 				      size, 2 + endian + (!ldx_off_ok * 2));
493 		if (ldx_off_ok) {
494 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
495 					      BPF_REG_D, offset);
496 		} else {
497 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
498 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
499 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500 					      BPF_REG_TMP, 0);
501 		}
502 		if (endian)
503 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
504 		*insn++ = BPF_JMP_A(8);
505 	}
506 
507 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
508 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
509 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
510 	if (!indirect) {
511 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
512 	} else {
513 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
514 		if (fp->k)
515 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
516 	}
517 
518 	switch (BPF_SIZE(fp->code)) {
519 	case BPF_B:
520 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
521 		break;
522 	case BPF_H:
523 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
524 		break;
525 	case BPF_W:
526 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
527 		break;
528 	default:
529 		return false;
530 	}
531 
532 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
533 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
534 	*insn   = BPF_EXIT_INSN();
535 
536 	*insnp = insn;
537 	return true;
538 }
539 
540 /**
541  *	bpf_convert_filter - convert filter program
542  *	@prog: the user passed filter program
543  *	@len: the length of the user passed filter program
544  *	@new_prog: allocated 'struct bpf_prog' or NULL
545  *	@new_len: pointer to store length of converted program
546  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
547  *
548  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
549  * style extended BPF (eBPF).
550  * Conversion workflow:
551  *
552  * 1) First pass for calculating the new program length:
553  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
554  *
555  * 2) 2nd pass to remap in two passes: 1st pass finds new
556  *    jump offsets, 2nd pass remapping:
557  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
558  */
559 static int bpf_convert_filter(struct sock_filter *prog, int len,
560 			      struct bpf_prog *new_prog, int *new_len,
561 			      bool *seen_ld_abs)
562 {
563 	int new_flen = 0, pass = 0, target, i, stack_off;
564 	struct bpf_insn *new_insn, *first_insn = NULL;
565 	struct sock_filter *fp;
566 	int *addrs = NULL;
567 	u8 bpf_src;
568 
569 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
570 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
571 
572 	if (len <= 0 || len > BPF_MAXINSNS)
573 		return -EINVAL;
574 
575 	if (new_prog) {
576 		first_insn = new_prog->insnsi;
577 		addrs = kcalloc(len, sizeof(*addrs),
578 				GFP_KERNEL | __GFP_NOWARN);
579 		if (!addrs)
580 			return -ENOMEM;
581 	}
582 
583 do_pass:
584 	new_insn = first_insn;
585 	fp = prog;
586 
587 	/* Classic BPF related prologue emission. */
588 	if (new_prog) {
589 		/* Classic BPF expects A and X to be reset first. These need
590 		 * to be guaranteed to be the first two instructions.
591 		 */
592 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
593 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
594 
595 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
596 		 * In eBPF case it's done by the compiler, here we need to
597 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
598 		 */
599 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
600 		if (*seen_ld_abs) {
601 			/* For packet access in classic BPF, cache skb->data
602 			 * in callee-saved BPF R8 and skb->len - skb->data_len
603 			 * (headlen) in BPF R9. Since classic BPF is read-only
604 			 * on CTX, we only need to cache it once.
605 			 */
606 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
607 						  BPF_REG_D, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, data));
609 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
610 						  offsetof(struct sk_buff, len));
611 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
612 						  offsetof(struct sk_buff, data_len));
613 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
614 		}
615 	} else {
616 		new_insn += 3;
617 	}
618 
619 	for (i = 0; i < len; fp++, i++) {
620 		struct bpf_insn tmp_insns[32] = { };
621 		struct bpf_insn *insn = tmp_insns;
622 
623 		if (addrs)
624 			addrs[i] = new_insn - first_insn;
625 
626 		switch (fp->code) {
627 		/* All arithmetic insns and skb loads map as-is. */
628 		case BPF_ALU | BPF_ADD | BPF_X:
629 		case BPF_ALU | BPF_ADD | BPF_K:
630 		case BPF_ALU | BPF_SUB | BPF_X:
631 		case BPF_ALU | BPF_SUB | BPF_K:
632 		case BPF_ALU | BPF_AND | BPF_X:
633 		case BPF_ALU | BPF_AND | BPF_K:
634 		case BPF_ALU | BPF_OR | BPF_X:
635 		case BPF_ALU | BPF_OR | BPF_K:
636 		case BPF_ALU | BPF_LSH | BPF_X:
637 		case BPF_ALU | BPF_LSH | BPF_K:
638 		case BPF_ALU | BPF_RSH | BPF_X:
639 		case BPF_ALU | BPF_RSH | BPF_K:
640 		case BPF_ALU | BPF_XOR | BPF_X:
641 		case BPF_ALU | BPF_XOR | BPF_K:
642 		case BPF_ALU | BPF_MUL | BPF_X:
643 		case BPF_ALU | BPF_MUL | BPF_K:
644 		case BPF_ALU | BPF_DIV | BPF_X:
645 		case BPF_ALU | BPF_DIV | BPF_K:
646 		case BPF_ALU | BPF_MOD | BPF_X:
647 		case BPF_ALU | BPF_MOD | BPF_K:
648 		case BPF_ALU | BPF_NEG:
649 		case BPF_LD | BPF_ABS | BPF_W:
650 		case BPF_LD | BPF_ABS | BPF_H:
651 		case BPF_LD | BPF_ABS | BPF_B:
652 		case BPF_LD | BPF_IND | BPF_W:
653 		case BPF_LD | BPF_IND | BPF_H:
654 		case BPF_LD | BPF_IND | BPF_B:
655 			/* Check for overloaded BPF extension and
656 			 * directly convert it if found, otherwise
657 			 * just move on with mapping.
658 			 */
659 			if (BPF_CLASS(fp->code) == BPF_LD &&
660 			    BPF_MODE(fp->code) == BPF_ABS &&
661 			    convert_bpf_extensions(fp, &insn))
662 				break;
663 			if (BPF_CLASS(fp->code) == BPF_LD &&
664 			    convert_bpf_ld_abs(fp, &insn)) {
665 				*seen_ld_abs = true;
666 				break;
667 			}
668 
669 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
670 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
671 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
672 				/* Error with exception code on div/mod by 0.
673 				 * For cBPF programs, this was always return 0.
674 				 */
675 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
676 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
677 				*insn++ = BPF_EXIT_INSN();
678 			}
679 
680 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
681 			break;
682 
683 		/* Jump transformation cannot use BPF block macros
684 		 * everywhere as offset calculation and target updates
685 		 * require a bit more work than the rest, i.e. jump
686 		 * opcodes map as-is, but offsets need adjustment.
687 		 */
688 
689 #define BPF_EMIT_JMP							\
690 	do {								\
691 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
692 		s32 off;						\
693 									\
694 		if (target >= len || target < 0)			\
695 			goto err;					\
696 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
697 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
698 		off -= insn - tmp_insns;				\
699 		/* Reject anything not fitting into insn->off. */	\
700 		if (off < off_min || off > off_max)			\
701 			goto err;					\
702 		insn->off = off;					\
703 	} while (0)
704 
705 		case BPF_JMP | BPF_JA:
706 			target = i + fp->k + 1;
707 			insn->code = fp->code;
708 			BPF_EMIT_JMP;
709 			break;
710 
711 		case BPF_JMP | BPF_JEQ | BPF_K:
712 		case BPF_JMP | BPF_JEQ | BPF_X:
713 		case BPF_JMP | BPF_JSET | BPF_K:
714 		case BPF_JMP | BPF_JSET | BPF_X:
715 		case BPF_JMP | BPF_JGT | BPF_K:
716 		case BPF_JMP | BPF_JGT | BPF_X:
717 		case BPF_JMP | BPF_JGE | BPF_K:
718 		case BPF_JMP | BPF_JGE | BPF_X:
719 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
720 				/* BPF immediates are signed, zero extend
721 				 * immediate into tmp register and use it
722 				 * in compare insn.
723 				 */
724 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
725 
726 				insn->dst_reg = BPF_REG_A;
727 				insn->src_reg = BPF_REG_TMP;
728 				bpf_src = BPF_X;
729 			} else {
730 				insn->dst_reg = BPF_REG_A;
731 				insn->imm = fp->k;
732 				bpf_src = BPF_SRC(fp->code);
733 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
734 			}
735 
736 			/* Common case where 'jump_false' is next insn. */
737 			if (fp->jf == 0) {
738 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
739 				target = i + fp->jt + 1;
740 				BPF_EMIT_JMP;
741 				break;
742 			}
743 
744 			/* Convert some jumps when 'jump_true' is next insn. */
745 			if (fp->jt == 0) {
746 				switch (BPF_OP(fp->code)) {
747 				case BPF_JEQ:
748 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
749 					break;
750 				case BPF_JGT:
751 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
752 					break;
753 				case BPF_JGE:
754 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
755 					break;
756 				default:
757 					goto jmp_rest;
758 				}
759 
760 				target = i + fp->jf + 1;
761 				BPF_EMIT_JMP;
762 				break;
763 			}
764 jmp_rest:
765 			/* Other jumps are mapped into two insns: Jxx and JA. */
766 			target = i + fp->jt + 1;
767 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
768 			BPF_EMIT_JMP;
769 			insn++;
770 
771 			insn->code = BPF_JMP | BPF_JA;
772 			target = i + fp->jf + 1;
773 			BPF_EMIT_JMP;
774 			break;
775 
776 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
777 		case BPF_LDX | BPF_MSH | BPF_B: {
778 			struct sock_filter tmp = {
779 				.code	= BPF_LD | BPF_ABS | BPF_B,
780 				.k	= fp->k,
781 			};
782 
783 			*seen_ld_abs = true;
784 
785 			/* X = A */
786 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
787 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
788 			convert_bpf_ld_abs(&tmp, &insn);
789 			insn++;
790 			/* A &= 0xf */
791 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
792 			/* A <<= 2 */
793 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
794 			/* tmp = X */
795 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
796 			/* X = A */
797 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
798 			/* A = tmp */
799 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
800 			break;
801 		}
802 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
803 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
804 		 */
805 		case BPF_RET | BPF_A:
806 		case BPF_RET | BPF_K:
807 			if (BPF_RVAL(fp->code) == BPF_K)
808 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
809 							0, fp->k);
810 			*insn = BPF_EXIT_INSN();
811 			break;
812 
813 		/* Store to stack. */
814 		case BPF_ST:
815 		case BPF_STX:
816 			stack_off = fp->k * 4  + 4;
817 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
818 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
819 					    -stack_off);
820 			/* check_load_and_stores() verifies that classic BPF can
821 			 * load from stack only after write, so tracking
822 			 * stack_depth for ST|STX insns is enough
823 			 */
824 			if (new_prog && new_prog->aux->stack_depth < stack_off)
825 				new_prog->aux->stack_depth = stack_off;
826 			break;
827 
828 		/* Load from stack. */
829 		case BPF_LD | BPF_MEM:
830 		case BPF_LDX | BPF_MEM:
831 			stack_off = fp->k * 4  + 4;
832 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
833 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
834 					    -stack_off);
835 			break;
836 
837 		/* A = K or X = K */
838 		case BPF_LD | BPF_IMM:
839 		case BPF_LDX | BPF_IMM:
840 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
841 					      BPF_REG_A : BPF_REG_X, fp->k);
842 			break;
843 
844 		/* X = A */
845 		case BPF_MISC | BPF_TAX:
846 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
847 			break;
848 
849 		/* A = X */
850 		case BPF_MISC | BPF_TXA:
851 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
852 			break;
853 
854 		/* A = skb->len or X = skb->len */
855 		case BPF_LD | BPF_W | BPF_LEN:
856 		case BPF_LDX | BPF_W | BPF_LEN:
857 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
858 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
859 					    offsetof(struct sk_buff, len));
860 			break;
861 
862 		/* Access seccomp_data fields. */
863 		case BPF_LDX | BPF_ABS | BPF_W:
864 			/* A = *(u32 *) (ctx + K) */
865 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
866 			break;
867 
868 		/* Unknown instruction. */
869 		default:
870 			goto err;
871 		}
872 
873 		insn++;
874 		if (new_prog)
875 			memcpy(new_insn, tmp_insns,
876 			       sizeof(*insn) * (insn - tmp_insns));
877 		new_insn += insn - tmp_insns;
878 	}
879 
880 	if (!new_prog) {
881 		/* Only calculating new length. */
882 		*new_len = new_insn - first_insn;
883 		if (*seen_ld_abs)
884 			*new_len += 4; /* Prologue bits. */
885 		return 0;
886 	}
887 
888 	pass++;
889 	if (new_flen != new_insn - first_insn) {
890 		new_flen = new_insn - first_insn;
891 		if (pass > 2)
892 			goto err;
893 		goto do_pass;
894 	}
895 
896 	kfree(addrs);
897 	BUG_ON(*new_len != new_flen);
898 	return 0;
899 err:
900 	kfree(addrs);
901 	return -EINVAL;
902 }
903 
904 /* Security:
905  *
906  * As we dont want to clear mem[] array for each packet going through
907  * __bpf_prog_run(), we check that filter loaded by user never try to read
908  * a cell if not previously written, and we check all branches to be sure
909  * a malicious user doesn't try to abuse us.
910  */
911 static int check_load_and_stores(const struct sock_filter *filter, int flen)
912 {
913 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
914 	int pc, ret = 0;
915 
916 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
917 
918 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
919 	if (!masks)
920 		return -ENOMEM;
921 
922 	memset(masks, 0xff, flen * sizeof(*masks));
923 
924 	for (pc = 0; pc < flen; pc++) {
925 		memvalid &= masks[pc];
926 
927 		switch (filter[pc].code) {
928 		case BPF_ST:
929 		case BPF_STX:
930 			memvalid |= (1 << filter[pc].k);
931 			break;
932 		case BPF_LD | BPF_MEM:
933 		case BPF_LDX | BPF_MEM:
934 			if (!(memvalid & (1 << filter[pc].k))) {
935 				ret = -EINVAL;
936 				goto error;
937 			}
938 			break;
939 		case BPF_JMP | BPF_JA:
940 			/* A jump must set masks on target */
941 			masks[pc + 1 + filter[pc].k] &= memvalid;
942 			memvalid = ~0;
943 			break;
944 		case BPF_JMP | BPF_JEQ | BPF_K:
945 		case BPF_JMP | BPF_JEQ | BPF_X:
946 		case BPF_JMP | BPF_JGE | BPF_K:
947 		case BPF_JMP | BPF_JGE | BPF_X:
948 		case BPF_JMP | BPF_JGT | BPF_K:
949 		case BPF_JMP | BPF_JGT | BPF_X:
950 		case BPF_JMP | BPF_JSET | BPF_K:
951 		case BPF_JMP | BPF_JSET | BPF_X:
952 			/* A jump must set masks on targets */
953 			masks[pc + 1 + filter[pc].jt] &= memvalid;
954 			masks[pc + 1 + filter[pc].jf] &= memvalid;
955 			memvalid = ~0;
956 			break;
957 		}
958 	}
959 error:
960 	kfree(masks);
961 	return ret;
962 }
963 
964 static bool chk_code_allowed(u16 code_to_probe)
965 {
966 	static const bool codes[] = {
967 		/* 32 bit ALU operations */
968 		[BPF_ALU | BPF_ADD | BPF_K] = true,
969 		[BPF_ALU | BPF_ADD | BPF_X] = true,
970 		[BPF_ALU | BPF_SUB | BPF_K] = true,
971 		[BPF_ALU | BPF_SUB | BPF_X] = true,
972 		[BPF_ALU | BPF_MUL | BPF_K] = true,
973 		[BPF_ALU | BPF_MUL | BPF_X] = true,
974 		[BPF_ALU | BPF_DIV | BPF_K] = true,
975 		[BPF_ALU | BPF_DIV | BPF_X] = true,
976 		[BPF_ALU | BPF_MOD | BPF_K] = true,
977 		[BPF_ALU | BPF_MOD | BPF_X] = true,
978 		[BPF_ALU | BPF_AND | BPF_K] = true,
979 		[BPF_ALU | BPF_AND | BPF_X] = true,
980 		[BPF_ALU | BPF_OR | BPF_K] = true,
981 		[BPF_ALU | BPF_OR | BPF_X] = true,
982 		[BPF_ALU | BPF_XOR | BPF_K] = true,
983 		[BPF_ALU | BPF_XOR | BPF_X] = true,
984 		[BPF_ALU | BPF_LSH | BPF_K] = true,
985 		[BPF_ALU | BPF_LSH | BPF_X] = true,
986 		[BPF_ALU | BPF_RSH | BPF_K] = true,
987 		[BPF_ALU | BPF_RSH | BPF_X] = true,
988 		[BPF_ALU | BPF_NEG] = true,
989 		/* Load instructions */
990 		[BPF_LD | BPF_W | BPF_ABS] = true,
991 		[BPF_LD | BPF_H | BPF_ABS] = true,
992 		[BPF_LD | BPF_B | BPF_ABS] = true,
993 		[BPF_LD | BPF_W | BPF_LEN] = true,
994 		[BPF_LD | BPF_W | BPF_IND] = true,
995 		[BPF_LD | BPF_H | BPF_IND] = true,
996 		[BPF_LD | BPF_B | BPF_IND] = true,
997 		[BPF_LD | BPF_IMM] = true,
998 		[BPF_LD | BPF_MEM] = true,
999 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1000 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1001 		[BPF_LDX | BPF_IMM] = true,
1002 		[BPF_LDX | BPF_MEM] = true,
1003 		/* Store instructions */
1004 		[BPF_ST] = true,
1005 		[BPF_STX] = true,
1006 		/* Misc instructions */
1007 		[BPF_MISC | BPF_TAX] = true,
1008 		[BPF_MISC | BPF_TXA] = true,
1009 		/* Return instructions */
1010 		[BPF_RET | BPF_K] = true,
1011 		[BPF_RET | BPF_A] = true,
1012 		/* Jump instructions */
1013 		[BPF_JMP | BPF_JA] = true,
1014 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1015 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1016 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1017 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1018 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1019 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1020 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1021 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1022 	};
1023 
1024 	if (code_to_probe >= ARRAY_SIZE(codes))
1025 		return false;
1026 
1027 	return codes[code_to_probe];
1028 }
1029 
1030 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1031 				unsigned int flen)
1032 {
1033 	if (filter == NULL)
1034 		return false;
1035 	if (flen == 0 || flen > BPF_MAXINSNS)
1036 		return false;
1037 
1038 	return true;
1039 }
1040 
1041 /**
1042  *	bpf_check_classic - verify socket filter code
1043  *	@filter: filter to verify
1044  *	@flen: length of filter
1045  *
1046  * Check the user's filter code. If we let some ugly
1047  * filter code slip through kaboom! The filter must contain
1048  * no references or jumps that are out of range, no illegal
1049  * instructions, and must end with a RET instruction.
1050  *
1051  * All jumps are forward as they are not signed.
1052  *
1053  * Returns 0 if the rule set is legal or -EINVAL if not.
1054  */
1055 static int bpf_check_classic(const struct sock_filter *filter,
1056 			     unsigned int flen)
1057 {
1058 	bool anc_found;
1059 	int pc;
1060 
1061 	/* Check the filter code now */
1062 	for (pc = 0; pc < flen; pc++) {
1063 		const struct sock_filter *ftest = &filter[pc];
1064 
1065 		/* May we actually operate on this code? */
1066 		if (!chk_code_allowed(ftest->code))
1067 			return -EINVAL;
1068 
1069 		/* Some instructions need special checks */
1070 		switch (ftest->code) {
1071 		case BPF_ALU | BPF_DIV | BPF_K:
1072 		case BPF_ALU | BPF_MOD | BPF_K:
1073 			/* Check for division by zero */
1074 			if (ftest->k == 0)
1075 				return -EINVAL;
1076 			break;
1077 		case BPF_ALU | BPF_LSH | BPF_K:
1078 		case BPF_ALU | BPF_RSH | BPF_K:
1079 			if (ftest->k >= 32)
1080 				return -EINVAL;
1081 			break;
1082 		case BPF_LD | BPF_MEM:
1083 		case BPF_LDX | BPF_MEM:
1084 		case BPF_ST:
1085 		case BPF_STX:
1086 			/* Check for invalid memory addresses */
1087 			if (ftest->k >= BPF_MEMWORDS)
1088 				return -EINVAL;
1089 			break;
1090 		case BPF_JMP | BPF_JA:
1091 			/* Note, the large ftest->k might cause loops.
1092 			 * Compare this with conditional jumps below,
1093 			 * where offsets are limited. --ANK (981016)
1094 			 */
1095 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1096 				return -EINVAL;
1097 			break;
1098 		case BPF_JMP | BPF_JEQ | BPF_K:
1099 		case BPF_JMP | BPF_JEQ | BPF_X:
1100 		case BPF_JMP | BPF_JGE | BPF_K:
1101 		case BPF_JMP | BPF_JGE | BPF_X:
1102 		case BPF_JMP | BPF_JGT | BPF_K:
1103 		case BPF_JMP | BPF_JGT | BPF_X:
1104 		case BPF_JMP | BPF_JSET | BPF_K:
1105 		case BPF_JMP | BPF_JSET | BPF_X:
1106 			/* Both conditionals must be safe */
1107 			if (pc + ftest->jt + 1 >= flen ||
1108 			    pc + ftest->jf + 1 >= flen)
1109 				return -EINVAL;
1110 			break;
1111 		case BPF_LD | BPF_W | BPF_ABS:
1112 		case BPF_LD | BPF_H | BPF_ABS:
1113 		case BPF_LD | BPF_B | BPF_ABS:
1114 			anc_found = false;
1115 			if (bpf_anc_helper(ftest) & BPF_ANC)
1116 				anc_found = true;
1117 			/* Ancillary operation unknown or unsupported */
1118 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1119 				return -EINVAL;
1120 		}
1121 	}
1122 
1123 	/* Last instruction must be a RET code */
1124 	switch (filter[flen - 1].code) {
1125 	case BPF_RET | BPF_K:
1126 	case BPF_RET | BPF_A:
1127 		return check_load_and_stores(filter, flen);
1128 	}
1129 
1130 	return -EINVAL;
1131 }
1132 
1133 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1134 				      const struct sock_fprog *fprog)
1135 {
1136 	unsigned int fsize = bpf_classic_proglen(fprog);
1137 	struct sock_fprog_kern *fkprog;
1138 
1139 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1140 	if (!fp->orig_prog)
1141 		return -ENOMEM;
1142 
1143 	fkprog = fp->orig_prog;
1144 	fkprog->len = fprog->len;
1145 
1146 	fkprog->filter = kmemdup(fp->insns, fsize,
1147 				 GFP_KERNEL | __GFP_NOWARN);
1148 	if (!fkprog->filter) {
1149 		kfree(fp->orig_prog);
1150 		return -ENOMEM;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 static void bpf_release_orig_filter(struct bpf_prog *fp)
1157 {
1158 	struct sock_fprog_kern *fprog = fp->orig_prog;
1159 
1160 	if (fprog) {
1161 		kfree(fprog->filter);
1162 		kfree(fprog);
1163 	}
1164 }
1165 
1166 static void __bpf_prog_release(struct bpf_prog *prog)
1167 {
1168 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1169 		bpf_prog_put(prog);
1170 	} else {
1171 		bpf_release_orig_filter(prog);
1172 		bpf_prog_free(prog);
1173 	}
1174 }
1175 
1176 static void __sk_filter_release(struct sk_filter *fp)
1177 {
1178 	__bpf_prog_release(fp->prog);
1179 	kfree(fp);
1180 }
1181 
1182 /**
1183  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1184  *	@rcu: rcu_head that contains the sk_filter to free
1185  */
1186 static void sk_filter_release_rcu(struct rcu_head *rcu)
1187 {
1188 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1189 
1190 	__sk_filter_release(fp);
1191 }
1192 
1193 /**
1194  *	sk_filter_release - release a socket filter
1195  *	@fp: filter to remove
1196  *
1197  *	Remove a filter from a socket and release its resources.
1198  */
1199 static void sk_filter_release(struct sk_filter *fp)
1200 {
1201 	if (refcount_dec_and_test(&fp->refcnt))
1202 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1203 }
1204 
1205 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1206 {
1207 	u32 filter_size = bpf_prog_size(fp->prog->len);
1208 
1209 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1210 	sk_filter_release(fp);
1211 }
1212 
1213 /* try to charge the socket memory if there is space available
1214  * return true on success
1215  */
1216 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1217 {
1218 	u32 filter_size = bpf_prog_size(fp->prog->len);
1219 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1220 
1221 	/* same check as in sock_kmalloc() */
1222 	if (filter_size <= optmem_max &&
1223 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1224 		atomic_add(filter_size, &sk->sk_omem_alloc);
1225 		return true;
1226 	}
1227 	return false;
1228 }
1229 
1230 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1231 {
1232 	if (!refcount_inc_not_zero(&fp->refcnt))
1233 		return false;
1234 
1235 	if (!__sk_filter_charge(sk, fp)) {
1236 		sk_filter_release(fp);
1237 		return false;
1238 	}
1239 	return true;
1240 }
1241 
1242 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1243 {
1244 	struct sock_filter *old_prog;
1245 	struct bpf_prog *old_fp;
1246 	int err, new_len, old_len = fp->len;
1247 	bool seen_ld_abs = false;
1248 
1249 	/* We are free to overwrite insns et al right here as it won't be used at
1250 	 * this point in time anymore internally after the migration to the eBPF
1251 	 * instruction representation.
1252 	 */
1253 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1254 		     sizeof(struct bpf_insn));
1255 
1256 	/* Conversion cannot happen on overlapping memory areas,
1257 	 * so we need to keep the user BPF around until the 2nd
1258 	 * pass. At this time, the user BPF is stored in fp->insns.
1259 	 */
1260 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1261 			   GFP_KERNEL | __GFP_NOWARN);
1262 	if (!old_prog) {
1263 		err = -ENOMEM;
1264 		goto out_err;
1265 	}
1266 
1267 	/* 1st pass: calculate the new program length. */
1268 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1269 				 &seen_ld_abs);
1270 	if (err)
1271 		goto out_err_free;
1272 
1273 	/* Expand fp for appending the new filter representation. */
1274 	old_fp = fp;
1275 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1276 	if (!fp) {
1277 		/* The old_fp is still around in case we couldn't
1278 		 * allocate new memory, so uncharge on that one.
1279 		 */
1280 		fp = old_fp;
1281 		err = -ENOMEM;
1282 		goto out_err_free;
1283 	}
1284 
1285 	fp->len = new_len;
1286 
1287 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1288 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1289 				 &seen_ld_abs);
1290 	if (err)
1291 		/* 2nd bpf_convert_filter() can fail only if it fails
1292 		 * to allocate memory, remapping must succeed. Note,
1293 		 * that at this time old_fp has already been released
1294 		 * by krealloc().
1295 		 */
1296 		goto out_err_free;
1297 
1298 	fp = bpf_prog_select_runtime(fp, &err);
1299 	if (err)
1300 		goto out_err_free;
1301 
1302 	kfree(old_prog);
1303 	return fp;
1304 
1305 out_err_free:
1306 	kfree(old_prog);
1307 out_err:
1308 	__bpf_prog_release(fp);
1309 	return ERR_PTR(err);
1310 }
1311 
1312 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1313 					   bpf_aux_classic_check_t trans)
1314 {
1315 	int err;
1316 
1317 	fp->bpf_func = NULL;
1318 	fp->jited = 0;
1319 
1320 	err = bpf_check_classic(fp->insns, fp->len);
1321 	if (err) {
1322 		__bpf_prog_release(fp);
1323 		return ERR_PTR(err);
1324 	}
1325 
1326 	/* There might be additional checks and transformations
1327 	 * needed on classic filters, f.e. in case of seccomp.
1328 	 */
1329 	if (trans) {
1330 		err = trans(fp->insns, fp->len);
1331 		if (err) {
1332 			__bpf_prog_release(fp);
1333 			return ERR_PTR(err);
1334 		}
1335 	}
1336 
1337 	/* Probe if we can JIT compile the filter and if so, do
1338 	 * the compilation of the filter.
1339 	 */
1340 	bpf_jit_compile(fp);
1341 
1342 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1343 	 * for the optimized interpreter.
1344 	 */
1345 	if (!fp->jited)
1346 		fp = bpf_migrate_filter(fp);
1347 
1348 	return fp;
1349 }
1350 
1351 /**
1352  *	bpf_prog_create - create an unattached filter
1353  *	@pfp: the unattached filter that is created
1354  *	@fprog: the filter program
1355  *
1356  * Create a filter independent of any socket. We first run some
1357  * sanity checks on it to make sure it does not explode on us later.
1358  * If an error occurs or there is insufficient memory for the filter
1359  * a negative errno code is returned. On success the return is zero.
1360  */
1361 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1362 {
1363 	unsigned int fsize = bpf_classic_proglen(fprog);
1364 	struct bpf_prog *fp;
1365 
1366 	/* Make sure new filter is there and in the right amounts. */
1367 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1368 		return -EINVAL;
1369 
1370 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1371 	if (!fp)
1372 		return -ENOMEM;
1373 
1374 	memcpy(fp->insns, fprog->filter, fsize);
1375 
1376 	fp->len = fprog->len;
1377 	/* Since unattached filters are not copied back to user
1378 	 * space through sk_get_filter(), we do not need to hold
1379 	 * a copy here, and can spare us the work.
1380 	 */
1381 	fp->orig_prog = NULL;
1382 
1383 	/* bpf_prepare_filter() already takes care of freeing
1384 	 * memory in case something goes wrong.
1385 	 */
1386 	fp = bpf_prepare_filter(fp, NULL);
1387 	if (IS_ERR(fp))
1388 		return PTR_ERR(fp);
1389 
1390 	*pfp = fp;
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(bpf_prog_create);
1394 
1395 /**
1396  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1397  *	@pfp: the unattached filter that is created
1398  *	@fprog: the filter program
1399  *	@trans: post-classic verifier transformation handler
1400  *	@save_orig: save classic BPF program
1401  *
1402  * This function effectively does the same as bpf_prog_create(), only
1403  * that it builds up its insns buffer from user space provided buffer.
1404  * It also allows for passing a bpf_aux_classic_check_t handler.
1405  */
1406 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1407 			      bpf_aux_classic_check_t trans, bool save_orig)
1408 {
1409 	unsigned int fsize = bpf_classic_proglen(fprog);
1410 	struct bpf_prog *fp;
1411 	int err;
1412 
1413 	/* Make sure new filter is there and in the right amounts. */
1414 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1415 		return -EINVAL;
1416 
1417 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1418 	if (!fp)
1419 		return -ENOMEM;
1420 
1421 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1422 		__bpf_prog_free(fp);
1423 		return -EFAULT;
1424 	}
1425 
1426 	fp->len = fprog->len;
1427 	fp->orig_prog = NULL;
1428 
1429 	if (save_orig) {
1430 		err = bpf_prog_store_orig_filter(fp, fprog);
1431 		if (err) {
1432 			__bpf_prog_free(fp);
1433 			return -ENOMEM;
1434 		}
1435 	}
1436 
1437 	/* bpf_prepare_filter() already takes care of freeing
1438 	 * memory in case something goes wrong.
1439 	 */
1440 	fp = bpf_prepare_filter(fp, trans);
1441 	if (IS_ERR(fp))
1442 		return PTR_ERR(fp);
1443 
1444 	*pfp = fp;
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1448 
1449 void bpf_prog_destroy(struct bpf_prog *fp)
1450 {
1451 	__bpf_prog_release(fp);
1452 }
1453 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1454 
1455 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1456 {
1457 	struct sk_filter *fp, *old_fp;
1458 
1459 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1460 	if (!fp)
1461 		return -ENOMEM;
1462 
1463 	fp->prog = prog;
1464 
1465 	if (!__sk_filter_charge(sk, fp)) {
1466 		kfree(fp);
1467 		return -ENOMEM;
1468 	}
1469 	refcount_set(&fp->refcnt, 1);
1470 
1471 	old_fp = rcu_dereference_protected(sk->sk_filter,
1472 					   lockdep_sock_is_held(sk));
1473 	rcu_assign_pointer(sk->sk_filter, fp);
1474 
1475 	if (old_fp)
1476 		sk_filter_uncharge(sk, old_fp);
1477 
1478 	return 0;
1479 }
1480 
1481 static
1482 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1483 {
1484 	unsigned int fsize = bpf_classic_proglen(fprog);
1485 	struct bpf_prog *prog;
1486 	int err;
1487 
1488 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1489 		return ERR_PTR(-EPERM);
1490 
1491 	/* Make sure new filter is there and in the right amounts. */
1492 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1493 		return ERR_PTR(-EINVAL);
1494 
1495 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1496 	if (!prog)
1497 		return ERR_PTR(-ENOMEM);
1498 
1499 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1500 		__bpf_prog_free(prog);
1501 		return ERR_PTR(-EFAULT);
1502 	}
1503 
1504 	prog->len = fprog->len;
1505 
1506 	err = bpf_prog_store_orig_filter(prog, fprog);
1507 	if (err) {
1508 		__bpf_prog_free(prog);
1509 		return ERR_PTR(-ENOMEM);
1510 	}
1511 
1512 	/* bpf_prepare_filter() already takes care of freeing
1513 	 * memory in case something goes wrong.
1514 	 */
1515 	return bpf_prepare_filter(prog, NULL);
1516 }
1517 
1518 /**
1519  *	sk_attach_filter - attach a socket filter
1520  *	@fprog: the filter program
1521  *	@sk: the socket to use
1522  *
1523  * Attach the user's filter code. We first run some sanity checks on
1524  * it to make sure it does not explode on us later. If an error
1525  * occurs or there is insufficient memory for the filter a negative
1526  * errno code is returned. On success the return is zero.
1527  */
1528 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1529 {
1530 	struct bpf_prog *prog = __get_filter(fprog, sk);
1531 	int err;
1532 
1533 	if (IS_ERR(prog))
1534 		return PTR_ERR(prog);
1535 
1536 	err = __sk_attach_prog(prog, sk);
1537 	if (err < 0) {
1538 		__bpf_prog_release(prog);
1539 		return err;
1540 	}
1541 
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(sk_attach_filter);
1545 
1546 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1547 {
1548 	struct bpf_prog *prog = __get_filter(fprog, sk);
1549 	int err;
1550 
1551 	if (IS_ERR(prog))
1552 		return PTR_ERR(prog);
1553 
1554 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1555 		err = -ENOMEM;
1556 	else
1557 		err = reuseport_attach_prog(sk, prog);
1558 
1559 	if (err)
1560 		__bpf_prog_release(prog);
1561 
1562 	return err;
1563 }
1564 
1565 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1566 {
1567 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1568 		return ERR_PTR(-EPERM);
1569 
1570 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1571 }
1572 
1573 int sk_attach_bpf(u32 ufd, struct sock *sk)
1574 {
1575 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1576 	int err;
1577 
1578 	if (IS_ERR(prog))
1579 		return PTR_ERR(prog);
1580 
1581 	err = __sk_attach_prog(prog, sk);
1582 	if (err < 0) {
1583 		bpf_prog_put(prog);
1584 		return err;
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1591 {
1592 	struct bpf_prog *prog;
1593 	int err;
1594 
1595 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1596 		return -EPERM;
1597 
1598 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1599 	if (PTR_ERR(prog) == -EINVAL)
1600 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1601 	if (IS_ERR(prog))
1602 		return PTR_ERR(prog);
1603 
1604 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1605 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1606 		 * bpf prog (e.g. sockmap).  It depends on the
1607 		 * limitation imposed by bpf_prog_load().
1608 		 * Hence, sysctl_optmem_max is not checked.
1609 		 */
1610 		if ((sk->sk_type != SOCK_STREAM &&
1611 		     sk->sk_type != SOCK_DGRAM) ||
1612 		    (sk->sk_protocol != IPPROTO_UDP &&
1613 		     sk->sk_protocol != IPPROTO_TCP) ||
1614 		    (sk->sk_family != AF_INET &&
1615 		     sk->sk_family != AF_INET6)) {
1616 			err = -ENOTSUPP;
1617 			goto err_prog_put;
1618 		}
1619 	} else {
1620 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1621 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1622 			err = -ENOMEM;
1623 			goto err_prog_put;
1624 		}
1625 	}
1626 
1627 	err = reuseport_attach_prog(sk, prog);
1628 err_prog_put:
1629 	if (err)
1630 		bpf_prog_put(prog);
1631 
1632 	return err;
1633 }
1634 
1635 void sk_reuseport_prog_free(struct bpf_prog *prog)
1636 {
1637 	if (!prog)
1638 		return;
1639 
1640 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1641 		bpf_prog_put(prog);
1642 	else
1643 		bpf_prog_destroy(prog);
1644 }
1645 
1646 struct bpf_scratchpad {
1647 	union {
1648 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1649 		u8     buff[MAX_BPF_STACK];
1650 	};
1651 };
1652 
1653 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1654 
1655 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1656 					  unsigned int write_len)
1657 {
1658 	return skb_ensure_writable(skb, write_len);
1659 }
1660 
1661 static inline int bpf_try_make_writable(struct sk_buff *skb,
1662 					unsigned int write_len)
1663 {
1664 	int err = __bpf_try_make_writable(skb, write_len);
1665 
1666 	bpf_compute_data_pointers(skb);
1667 	return err;
1668 }
1669 
1670 static int bpf_try_make_head_writable(struct sk_buff *skb)
1671 {
1672 	return bpf_try_make_writable(skb, skb_headlen(skb));
1673 }
1674 
1675 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1676 {
1677 	if (skb_at_tc_ingress(skb))
1678 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1679 }
1680 
1681 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1682 {
1683 	if (skb_at_tc_ingress(skb))
1684 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1685 }
1686 
1687 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1688 	   const void *, from, u32, len, u64, flags)
1689 {
1690 	void *ptr;
1691 
1692 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1693 		return -EINVAL;
1694 	if (unlikely(offset > INT_MAX))
1695 		return -EFAULT;
1696 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1697 		return -EFAULT;
1698 
1699 	ptr = skb->data + offset;
1700 	if (flags & BPF_F_RECOMPUTE_CSUM)
1701 		__skb_postpull_rcsum(skb, ptr, len, offset);
1702 
1703 	memcpy(ptr, from, len);
1704 
1705 	if (flags & BPF_F_RECOMPUTE_CSUM)
1706 		__skb_postpush_rcsum(skb, ptr, len, offset);
1707 	if (flags & BPF_F_INVALIDATE_HASH)
1708 		skb_clear_hash(skb);
1709 
1710 	return 0;
1711 }
1712 
1713 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1714 	.func		= bpf_skb_store_bytes,
1715 	.gpl_only	= false,
1716 	.ret_type	= RET_INTEGER,
1717 	.arg1_type	= ARG_PTR_TO_CTX,
1718 	.arg2_type	= ARG_ANYTHING,
1719 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1720 	.arg4_type	= ARG_CONST_SIZE,
1721 	.arg5_type	= ARG_ANYTHING,
1722 };
1723 
1724 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1725 	   void *, to, u32, len)
1726 {
1727 	void *ptr;
1728 
1729 	if (unlikely(offset > INT_MAX))
1730 		goto err_clear;
1731 
1732 	ptr = skb_header_pointer(skb, offset, len, to);
1733 	if (unlikely(!ptr))
1734 		goto err_clear;
1735 	if (ptr != to)
1736 		memcpy(to, ptr, len);
1737 
1738 	return 0;
1739 err_clear:
1740 	memset(to, 0, len);
1741 	return -EFAULT;
1742 }
1743 
1744 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1745 	.func		= bpf_skb_load_bytes,
1746 	.gpl_only	= false,
1747 	.ret_type	= RET_INTEGER,
1748 	.arg1_type	= ARG_PTR_TO_CTX,
1749 	.arg2_type	= ARG_ANYTHING,
1750 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1751 	.arg4_type	= ARG_CONST_SIZE,
1752 };
1753 
1754 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1755 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1756 	   void *, to, u32, len)
1757 {
1758 	void *ptr;
1759 
1760 	if (unlikely(offset > 0xffff))
1761 		goto err_clear;
1762 
1763 	if (unlikely(!ctx->skb))
1764 		goto err_clear;
1765 
1766 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1767 	if (unlikely(!ptr))
1768 		goto err_clear;
1769 	if (ptr != to)
1770 		memcpy(to, ptr, len);
1771 
1772 	return 0;
1773 err_clear:
1774 	memset(to, 0, len);
1775 	return -EFAULT;
1776 }
1777 
1778 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1779 	.func		= bpf_flow_dissector_load_bytes,
1780 	.gpl_only	= false,
1781 	.ret_type	= RET_INTEGER,
1782 	.arg1_type	= ARG_PTR_TO_CTX,
1783 	.arg2_type	= ARG_ANYTHING,
1784 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1785 	.arg4_type	= ARG_CONST_SIZE,
1786 };
1787 
1788 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1789 	   u32, offset, void *, to, u32, len, u32, start_header)
1790 {
1791 	u8 *end = skb_tail_pointer(skb);
1792 	u8 *start, *ptr;
1793 
1794 	if (unlikely(offset > 0xffff))
1795 		goto err_clear;
1796 
1797 	switch (start_header) {
1798 	case BPF_HDR_START_MAC:
1799 		if (unlikely(!skb_mac_header_was_set(skb)))
1800 			goto err_clear;
1801 		start = skb_mac_header(skb);
1802 		break;
1803 	case BPF_HDR_START_NET:
1804 		start = skb_network_header(skb);
1805 		break;
1806 	default:
1807 		goto err_clear;
1808 	}
1809 
1810 	ptr = start + offset;
1811 
1812 	if (likely(ptr + len <= end)) {
1813 		memcpy(to, ptr, len);
1814 		return 0;
1815 	}
1816 
1817 err_clear:
1818 	memset(to, 0, len);
1819 	return -EFAULT;
1820 }
1821 
1822 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1823 	.func		= bpf_skb_load_bytes_relative,
1824 	.gpl_only	= false,
1825 	.ret_type	= RET_INTEGER,
1826 	.arg1_type	= ARG_PTR_TO_CTX,
1827 	.arg2_type	= ARG_ANYTHING,
1828 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1829 	.arg4_type	= ARG_CONST_SIZE,
1830 	.arg5_type	= ARG_ANYTHING,
1831 };
1832 
1833 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1834 {
1835 	/* Idea is the following: should the needed direct read/write
1836 	 * test fail during runtime, we can pull in more data and redo
1837 	 * again, since implicitly, we invalidate previous checks here.
1838 	 *
1839 	 * Or, since we know how much we need to make read/writeable,
1840 	 * this can be done once at the program beginning for direct
1841 	 * access case. By this we overcome limitations of only current
1842 	 * headroom being accessible.
1843 	 */
1844 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1845 }
1846 
1847 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1848 	.func		= bpf_skb_pull_data,
1849 	.gpl_only	= false,
1850 	.ret_type	= RET_INTEGER,
1851 	.arg1_type	= ARG_PTR_TO_CTX,
1852 	.arg2_type	= ARG_ANYTHING,
1853 };
1854 
1855 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1856 {
1857 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1858 }
1859 
1860 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1861 	.func		= bpf_sk_fullsock,
1862 	.gpl_only	= false,
1863 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1864 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1865 };
1866 
1867 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1868 					   unsigned int write_len)
1869 {
1870 	return __bpf_try_make_writable(skb, write_len);
1871 }
1872 
1873 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1874 {
1875 	/* Idea is the following: should the needed direct read/write
1876 	 * test fail during runtime, we can pull in more data and redo
1877 	 * again, since implicitly, we invalidate previous checks here.
1878 	 *
1879 	 * Or, since we know how much we need to make read/writeable,
1880 	 * this can be done once at the program beginning for direct
1881 	 * access case. By this we overcome limitations of only current
1882 	 * headroom being accessible.
1883 	 */
1884 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1885 }
1886 
1887 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1888 	.func		= sk_skb_pull_data,
1889 	.gpl_only	= false,
1890 	.ret_type	= RET_INTEGER,
1891 	.arg1_type	= ARG_PTR_TO_CTX,
1892 	.arg2_type	= ARG_ANYTHING,
1893 };
1894 
1895 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1896 	   u64, from, u64, to, u64, flags)
1897 {
1898 	__sum16 *ptr;
1899 
1900 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1901 		return -EINVAL;
1902 	if (unlikely(offset > 0xffff || offset & 1))
1903 		return -EFAULT;
1904 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1905 		return -EFAULT;
1906 
1907 	ptr = (__sum16 *)(skb->data + offset);
1908 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1909 	case 0:
1910 		if (unlikely(from != 0))
1911 			return -EINVAL;
1912 
1913 		csum_replace_by_diff(ptr, to);
1914 		break;
1915 	case 2:
1916 		csum_replace2(ptr, from, to);
1917 		break;
1918 	case 4:
1919 		csum_replace4(ptr, from, to);
1920 		break;
1921 	default:
1922 		return -EINVAL;
1923 	}
1924 
1925 	return 0;
1926 }
1927 
1928 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1929 	.func		= bpf_l3_csum_replace,
1930 	.gpl_only	= false,
1931 	.ret_type	= RET_INTEGER,
1932 	.arg1_type	= ARG_PTR_TO_CTX,
1933 	.arg2_type	= ARG_ANYTHING,
1934 	.arg3_type	= ARG_ANYTHING,
1935 	.arg4_type	= ARG_ANYTHING,
1936 	.arg5_type	= ARG_ANYTHING,
1937 };
1938 
1939 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1940 	   u64, from, u64, to, u64, flags)
1941 {
1942 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1943 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1944 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1945 	__sum16 *ptr;
1946 
1947 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1948 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1949 		return -EINVAL;
1950 	if (unlikely(offset > 0xffff || offset & 1))
1951 		return -EFAULT;
1952 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1953 		return -EFAULT;
1954 
1955 	ptr = (__sum16 *)(skb->data + offset);
1956 	if (is_mmzero && !do_mforce && !*ptr)
1957 		return 0;
1958 
1959 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1960 	case 0:
1961 		if (unlikely(from != 0))
1962 			return -EINVAL;
1963 
1964 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1965 		break;
1966 	case 2:
1967 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1968 		break;
1969 	case 4:
1970 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1971 		break;
1972 	default:
1973 		return -EINVAL;
1974 	}
1975 
1976 	if (is_mmzero && !*ptr)
1977 		*ptr = CSUM_MANGLED_0;
1978 	return 0;
1979 }
1980 
1981 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1982 	.func		= bpf_l4_csum_replace,
1983 	.gpl_only	= false,
1984 	.ret_type	= RET_INTEGER,
1985 	.arg1_type	= ARG_PTR_TO_CTX,
1986 	.arg2_type	= ARG_ANYTHING,
1987 	.arg3_type	= ARG_ANYTHING,
1988 	.arg4_type	= ARG_ANYTHING,
1989 	.arg5_type	= ARG_ANYTHING,
1990 };
1991 
1992 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1993 	   __be32 *, to, u32, to_size, __wsum, seed)
1994 {
1995 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1996 	u32 diff_size = from_size + to_size;
1997 	int i, j = 0;
1998 
1999 	/* This is quite flexible, some examples:
2000 	 *
2001 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2002 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2003 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2004 	 *
2005 	 * Even for diffing, from_size and to_size don't need to be equal.
2006 	 */
2007 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2008 		     diff_size > sizeof(sp->diff)))
2009 		return -EINVAL;
2010 
2011 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2012 		sp->diff[j] = ~from[i];
2013 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2014 		sp->diff[j] = to[i];
2015 
2016 	return csum_partial(sp->diff, diff_size, seed);
2017 }
2018 
2019 static const struct bpf_func_proto bpf_csum_diff_proto = {
2020 	.func		= bpf_csum_diff,
2021 	.gpl_only	= false,
2022 	.pkt_access	= true,
2023 	.ret_type	= RET_INTEGER,
2024 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2026 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2027 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2028 	.arg5_type	= ARG_ANYTHING,
2029 };
2030 
2031 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2032 {
2033 	/* The interface is to be used in combination with bpf_csum_diff()
2034 	 * for direct packet writes. csum rotation for alignment as well
2035 	 * as emulating csum_sub() can be done from the eBPF program.
2036 	 */
2037 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2038 		return (skb->csum = csum_add(skb->csum, csum));
2039 
2040 	return -ENOTSUPP;
2041 }
2042 
2043 static const struct bpf_func_proto bpf_csum_update_proto = {
2044 	.func		= bpf_csum_update,
2045 	.gpl_only	= false,
2046 	.ret_type	= RET_INTEGER,
2047 	.arg1_type	= ARG_PTR_TO_CTX,
2048 	.arg2_type	= ARG_ANYTHING,
2049 };
2050 
2051 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2052 {
2053 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2054 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2055 	 * is passed as flags, for example.
2056 	 */
2057 	switch (level) {
2058 	case BPF_CSUM_LEVEL_INC:
2059 		__skb_incr_checksum_unnecessary(skb);
2060 		break;
2061 	case BPF_CSUM_LEVEL_DEC:
2062 		__skb_decr_checksum_unnecessary(skb);
2063 		break;
2064 	case BPF_CSUM_LEVEL_RESET:
2065 		__skb_reset_checksum_unnecessary(skb);
2066 		break;
2067 	case BPF_CSUM_LEVEL_QUERY:
2068 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2069 		       skb->csum_level : -EACCES;
2070 	default:
2071 		return -EINVAL;
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 static const struct bpf_func_proto bpf_csum_level_proto = {
2078 	.func		= bpf_csum_level,
2079 	.gpl_only	= false,
2080 	.ret_type	= RET_INTEGER,
2081 	.arg1_type	= ARG_PTR_TO_CTX,
2082 	.arg2_type	= ARG_ANYTHING,
2083 };
2084 
2085 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2086 {
2087 	return dev_forward_skb_nomtu(dev, skb);
2088 }
2089 
2090 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2091 				      struct sk_buff *skb)
2092 {
2093 	int ret = ____dev_forward_skb(dev, skb, false);
2094 
2095 	if (likely(!ret)) {
2096 		skb->dev = dev;
2097 		ret = netif_rx(skb);
2098 	}
2099 
2100 	return ret;
2101 }
2102 
2103 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105 	int ret;
2106 
2107 	if (dev_xmit_recursion()) {
2108 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2109 		kfree_skb(skb);
2110 		return -ENETDOWN;
2111 	}
2112 
2113 	skb->dev = dev;
2114 	skb_clear_tstamp(skb);
2115 
2116 	dev_xmit_recursion_inc();
2117 	ret = dev_queue_xmit(skb);
2118 	dev_xmit_recursion_dec();
2119 
2120 	return ret;
2121 }
2122 
2123 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2124 				 u32 flags)
2125 {
2126 	unsigned int mlen = skb_network_offset(skb);
2127 
2128 	if (unlikely(skb->len <= mlen)) {
2129 		kfree_skb(skb);
2130 		return -ERANGE;
2131 	}
2132 
2133 	if (mlen) {
2134 		__skb_pull(skb, mlen);
2135 
2136 		/* At ingress, the mac header has already been pulled once.
2137 		 * At egress, skb_pospull_rcsum has to be done in case that
2138 		 * the skb is originated from ingress (i.e. a forwarded skb)
2139 		 * to ensure that rcsum starts at net header.
2140 		 */
2141 		if (!skb_at_tc_ingress(skb))
2142 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2143 	}
2144 	skb_pop_mac_header(skb);
2145 	skb_reset_mac_len(skb);
2146 	return flags & BPF_F_INGRESS ?
2147 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2148 }
2149 
2150 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2151 				 u32 flags)
2152 {
2153 	/* Verify that a link layer header is carried */
2154 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2155 		kfree_skb(skb);
2156 		return -ERANGE;
2157 	}
2158 
2159 	bpf_push_mac_rcsum(skb);
2160 	return flags & BPF_F_INGRESS ?
2161 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2162 }
2163 
2164 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2165 			  u32 flags)
2166 {
2167 	if (dev_is_mac_header_xmit(dev))
2168 		return __bpf_redirect_common(skb, dev, flags);
2169 	else
2170 		return __bpf_redirect_no_mac(skb, dev, flags);
2171 }
2172 
2173 #if IS_ENABLED(CONFIG_IPV6)
2174 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2175 			    struct net_device *dev, struct bpf_nh_params *nh)
2176 {
2177 	u32 hh_len = LL_RESERVED_SPACE(dev);
2178 	const struct in6_addr *nexthop;
2179 	struct dst_entry *dst = NULL;
2180 	struct neighbour *neigh;
2181 
2182 	if (dev_xmit_recursion()) {
2183 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2184 		goto out_drop;
2185 	}
2186 
2187 	skb->dev = dev;
2188 	skb_clear_tstamp(skb);
2189 
2190 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2191 		skb = skb_expand_head(skb, hh_len);
2192 		if (!skb)
2193 			return -ENOMEM;
2194 	}
2195 
2196 	rcu_read_lock_bh();
2197 	if (!nh) {
2198 		dst = skb_dst(skb);
2199 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2200 				      &ipv6_hdr(skb)->daddr);
2201 	} else {
2202 		nexthop = &nh->ipv6_nh;
2203 	}
2204 	neigh = ip_neigh_gw6(dev, nexthop);
2205 	if (likely(!IS_ERR(neigh))) {
2206 		int ret;
2207 
2208 		sock_confirm_neigh(skb, neigh);
2209 		dev_xmit_recursion_inc();
2210 		ret = neigh_output(neigh, skb, false);
2211 		dev_xmit_recursion_dec();
2212 		rcu_read_unlock_bh();
2213 		return ret;
2214 	}
2215 	rcu_read_unlock_bh();
2216 	if (dst)
2217 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2218 out_drop:
2219 	kfree_skb(skb);
2220 	return -ENETDOWN;
2221 }
2222 
2223 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2224 				   struct bpf_nh_params *nh)
2225 {
2226 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2227 	struct net *net = dev_net(dev);
2228 	int err, ret = NET_XMIT_DROP;
2229 
2230 	if (!nh) {
2231 		struct dst_entry *dst;
2232 		struct flowi6 fl6 = {
2233 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2234 			.flowi6_mark  = skb->mark,
2235 			.flowlabel    = ip6_flowinfo(ip6h),
2236 			.flowi6_oif   = dev->ifindex,
2237 			.flowi6_proto = ip6h->nexthdr,
2238 			.daddr	      = ip6h->daddr,
2239 			.saddr	      = ip6h->saddr,
2240 		};
2241 
2242 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2243 		if (IS_ERR(dst))
2244 			goto out_drop;
2245 
2246 		skb_dst_set(skb, dst);
2247 	} else if (nh->nh_family != AF_INET6) {
2248 		goto out_drop;
2249 	}
2250 
2251 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2252 	if (unlikely(net_xmit_eval(err)))
2253 		dev->stats.tx_errors++;
2254 	else
2255 		ret = NET_XMIT_SUCCESS;
2256 	goto out_xmit;
2257 out_drop:
2258 	dev->stats.tx_errors++;
2259 	kfree_skb(skb);
2260 out_xmit:
2261 	return ret;
2262 }
2263 #else
2264 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2265 				   struct bpf_nh_params *nh)
2266 {
2267 	kfree_skb(skb);
2268 	return NET_XMIT_DROP;
2269 }
2270 #endif /* CONFIG_IPV6 */
2271 
2272 #if IS_ENABLED(CONFIG_INET)
2273 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2274 			    struct net_device *dev, struct bpf_nh_params *nh)
2275 {
2276 	u32 hh_len = LL_RESERVED_SPACE(dev);
2277 	struct neighbour *neigh;
2278 	bool is_v6gw = false;
2279 
2280 	if (dev_xmit_recursion()) {
2281 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2282 		goto out_drop;
2283 	}
2284 
2285 	skb->dev = dev;
2286 	skb_clear_tstamp(skb);
2287 
2288 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2289 		skb = skb_expand_head(skb, hh_len);
2290 		if (!skb)
2291 			return -ENOMEM;
2292 	}
2293 
2294 	rcu_read_lock_bh();
2295 	if (!nh) {
2296 		struct dst_entry *dst = skb_dst(skb);
2297 		struct rtable *rt = container_of(dst, struct rtable, dst);
2298 
2299 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2300 	} else if (nh->nh_family == AF_INET6) {
2301 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2302 		is_v6gw = true;
2303 	} else if (nh->nh_family == AF_INET) {
2304 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2305 	} else {
2306 		rcu_read_unlock_bh();
2307 		goto out_drop;
2308 	}
2309 
2310 	if (likely(!IS_ERR(neigh))) {
2311 		int ret;
2312 
2313 		sock_confirm_neigh(skb, neigh);
2314 		dev_xmit_recursion_inc();
2315 		ret = neigh_output(neigh, skb, is_v6gw);
2316 		dev_xmit_recursion_dec();
2317 		rcu_read_unlock_bh();
2318 		return ret;
2319 	}
2320 	rcu_read_unlock_bh();
2321 out_drop:
2322 	kfree_skb(skb);
2323 	return -ENETDOWN;
2324 }
2325 
2326 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2327 				   struct bpf_nh_params *nh)
2328 {
2329 	const struct iphdr *ip4h = ip_hdr(skb);
2330 	struct net *net = dev_net(dev);
2331 	int err, ret = NET_XMIT_DROP;
2332 
2333 	if (!nh) {
2334 		struct flowi4 fl4 = {
2335 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2336 			.flowi4_mark  = skb->mark,
2337 			.flowi4_tos   = RT_TOS(ip4h->tos),
2338 			.flowi4_oif   = dev->ifindex,
2339 			.flowi4_proto = ip4h->protocol,
2340 			.daddr	      = ip4h->daddr,
2341 			.saddr	      = ip4h->saddr,
2342 		};
2343 		struct rtable *rt;
2344 
2345 		rt = ip_route_output_flow(net, &fl4, NULL);
2346 		if (IS_ERR(rt))
2347 			goto out_drop;
2348 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2349 			ip_rt_put(rt);
2350 			goto out_drop;
2351 		}
2352 
2353 		skb_dst_set(skb, &rt->dst);
2354 	}
2355 
2356 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2357 	if (unlikely(net_xmit_eval(err)))
2358 		dev->stats.tx_errors++;
2359 	else
2360 		ret = NET_XMIT_SUCCESS;
2361 	goto out_xmit;
2362 out_drop:
2363 	dev->stats.tx_errors++;
2364 	kfree_skb(skb);
2365 out_xmit:
2366 	return ret;
2367 }
2368 #else
2369 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2370 				   struct bpf_nh_params *nh)
2371 {
2372 	kfree_skb(skb);
2373 	return NET_XMIT_DROP;
2374 }
2375 #endif /* CONFIG_INET */
2376 
2377 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2378 				struct bpf_nh_params *nh)
2379 {
2380 	struct ethhdr *ethh = eth_hdr(skb);
2381 
2382 	if (unlikely(skb->mac_header >= skb->network_header))
2383 		goto out;
2384 	bpf_push_mac_rcsum(skb);
2385 	if (is_multicast_ether_addr(ethh->h_dest))
2386 		goto out;
2387 
2388 	skb_pull(skb, sizeof(*ethh));
2389 	skb_unset_mac_header(skb);
2390 	skb_reset_network_header(skb);
2391 
2392 	if (skb->protocol == htons(ETH_P_IP))
2393 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2394 	else if (skb->protocol == htons(ETH_P_IPV6))
2395 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2396 out:
2397 	kfree_skb(skb);
2398 	return -ENOTSUPP;
2399 }
2400 
2401 /* Internal, non-exposed redirect flags. */
2402 enum {
2403 	BPF_F_NEIGH	= (1ULL << 1),
2404 	BPF_F_PEER	= (1ULL << 2),
2405 	BPF_F_NEXTHOP	= (1ULL << 3),
2406 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2407 };
2408 
2409 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2410 {
2411 	struct net_device *dev;
2412 	struct sk_buff *clone;
2413 	int ret;
2414 
2415 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2416 		return -EINVAL;
2417 
2418 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2419 	if (unlikely(!dev))
2420 		return -EINVAL;
2421 
2422 	clone = skb_clone(skb, GFP_ATOMIC);
2423 	if (unlikely(!clone))
2424 		return -ENOMEM;
2425 
2426 	/* For direct write, we need to keep the invariant that the skbs
2427 	 * we're dealing with need to be uncloned. Should uncloning fail
2428 	 * here, we need to free the just generated clone to unclone once
2429 	 * again.
2430 	 */
2431 	ret = bpf_try_make_head_writable(skb);
2432 	if (unlikely(ret)) {
2433 		kfree_skb(clone);
2434 		return -ENOMEM;
2435 	}
2436 
2437 	return __bpf_redirect(clone, dev, flags);
2438 }
2439 
2440 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2441 	.func           = bpf_clone_redirect,
2442 	.gpl_only       = false,
2443 	.ret_type       = RET_INTEGER,
2444 	.arg1_type      = ARG_PTR_TO_CTX,
2445 	.arg2_type      = ARG_ANYTHING,
2446 	.arg3_type      = ARG_ANYTHING,
2447 };
2448 
2449 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2450 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2451 
2452 int skb_do_redirect(struct sk_buff *skb)
2453 {
2454 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2455 	struct net *net = dev_net(skb->dev);
2456 	struct net_device *dev;
2457 	u32 flags = ri->flags;
2458 
2459 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2460 	ri->tgt_index = 0;
2461 	ri->flags = 0;
2462 	if (unlikely(!dev))
2463 		goto out_drop;
2464 	if (flags & BPF_F_PEER) {
2465 		const struct net_device_ops *ops = dev->netdev_ops;
2466 
2467 		if (unlikely(!ops->ndo_get_peer_dev ||
2468 			     !skb_at_tc_ingress(skb)))
2469 			goto out_drop;
2470 		dev = ops->ndo_get_peer_dev(dev);
2471 		if (unlikely(!dev ||
2472 			     !(dev->flags & IFF_UP) ||
2473 			     net_eq(net, dev_net(dev))))
2474 			goto out_drop;
2475 		skb->dev = dev;
2476 		return -EAGAIN;
2477 	}
2478 	return flags & BPF_F_NEIGH ?
2479 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2480 				    &ri->nh : NULL) :
2481 	       __bpf_redirect(skb, dev, flags);
2482 out_drop:
2483 	kfree_skb(skb);
2484 	return -EINVAL;
2485 }
2486 
2487 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2488 {
2489 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2490 
2491 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2492 		return TC_ACT_SHOT;
2493 
2494 	ri->flags = flags;
2495 	ri->tgt_index = ifindex;
2496 
2497 	return TC_ACT_REDIRECT;
2498 }
2499 
2500 static const struct bpf_func_proto bpf_redirect_proto = {
2501 	.func           = bpf_redirect,
2502 	.gpl_only       = false,
2503 	.ret_type       = RET_INTEGER,
2504 	.arg1_type      = ARG_ANYTHING,
2505 	.arg2_type      = ARG_ANYTHING,
2506 };
2507 
2508 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2509 {
2510 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2511 
2512 	if (unlikely(flags))
2513 		return TC_ACT_SHOT;
2514 
2515 	ri->flags = BPF_F_PEER;
2516 	ri->tgt_index = ifindex;
2517 
2518 	return TC_ACT_REDIRECT;
2519 }
2520 
2521 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2522 	.func           = bpf_redirect_peer,
2523 	.gpl_only       = false,
2524 	.ret_type       = RET_INTEGER,
2525 	.arg1_type      = ARG_ANYTHING,
2526 	.arg2_type      = ARG_ANYTHING,
2527 };
2528 
2529 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2530 	   int, plen, u64, flags)
2531 {
2532 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2533 
2534 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2535 		return TC_ACT_SHOT;
2536 
2537 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2538 	ri->tgt_index = ifindex;
2539 
2540 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2541 	if (plen)
2542 		memcpy(&ri->nh, params, sizeof(ri->nh));
2543 
2544 	return TC_ACT_REDIRECT;
2545 }
2546 
2547 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2548 	.func		= bpf_redirect_neigh,
2549 	.gpl_only	= false,
2550 	.ret_type	= RET_INTEGER,
2551 	.arg1_type	= ARG_ANYTHING,
2552 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2553 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2554 	.arg4_type	= ARG_ANYTHING,
2555 };
2556 
2557 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2558 {
2559 	msg->apply_bytes = bytes;
2560 	return 0;
2561 }
2562 
2563 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2564 	.func           = bpf_msg_apply_bytes,
2565 	.gpl_only       = false,
2566 	.ret_type       = RET_INTEGER,
2567 	.arg1_type	= ARG_PTR_TO_CTX,
2568 	.arg2_type      = ARG_ANYTHING,
2569 };
2570 
2571 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2572 {
2573 	msg->cork_bytes = bytes;
2574 	return 0;
2575 }
2576 
2577 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2578 	.func           = bpf_msg_cork_bytes,
2579 	.gpl_only       = false,
2580 	.ret_type       = RET_INTEGER,
2581 	.arg1_type	= ARG_PTR_TO_CTX,
2582 	.arg2_type      = ARG_ANYTHING,
2583 };
2584 
2585 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2586 	   u32, end, u64, flags)
2587 {
2588 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2589 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2590 	struct scatterlist *sge;
2591 	u8 *raw, *to, *from;
2592 	struct page *page;
2593 
2594 	if (unlikely(flags || end <= start))
2595 		return -EINVAL;
2596 
2597 	/* First find the starting scatterlist element */
2598 	i = msg->sg.start;
2599 	do {
2600 		offset += len;
2601 		len = sk_msg_elem(msg, i)->length;
2602 		if (start < offset + len)
2603 			break;
2604 		sk_msg_iter_var_next(i);
2605 	} while (i != msg->sg.end);
2606 
2607 	if (unlikely(start >= offset + len))
2608 		return -EINVAL;
2609 
2610 	first_sge = i;
2611 	/* The start may point into the sg element so we need to also
2612 	 * account for the headroom.
2613 	 */
2614 	bytes_sg_total = start - offset + bytes;
2615 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2616 		goto out;
2617 
2618 	/* At this point we need to linearize multiple scatterlist
2619 	 * elements or a single shared page. Either way we need to
2620 	 * copy into a linear buffer exclusively owned by BPF. Then
2621 	 * place the buffer in the scatterlist and fixup the original
2622 	 * entries by removing the entries now in the linear buffer
2623 	 * and shifting the remaining entries. For now we do not try
2624 	 * to copy partial entries to avoid complexity of running out
2625 	 * of sg_entry slots. The downside is reading a single byte
2626 	 * will copy the entire sg entry.
2627 	 */
2628 	do {
2629 		copy += sk_msg_elem(msg, i)->length;
2630 		sk_msg_iter_var_next(i);
2631 		if (bytes_sg_total <= copy)
2632 			break;
2633 	} while (i != msg->sg.end);
2634 	last_sge = i;
2635 
2636 	if (unlikely(bytes_sg_total > copy))
2637 		return -EINVAL;
2638 
2639 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2640 			   get_order(copy));
2641 	if (unlikely(!page))
2642 		return -ENOMEM;
2643 
2644 	raw = page_address(page);
2645 	i = first_sge;
2646 	do {
2647 		sge = sk_msg_elem(msg, i);
2648 		from = sg_virt(sge);
2649 		len = sge->length;
2650 		to = raw + poffset;
2651 
2652 		memcpy(to, from, len);
2653 		poffset += len;
2654 		sge->length = 0;
2655 		put_page(sg_page(sge));
2656 
2657 		sk_msg_iter_var_next(i);
2658 	} while (i != last_sge);
2659 
2660 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2661 
2662 	/* To repair sg ring we need to shift entries. If we only
2663 	 * had a single entry though we can just replace it and
2664 	 * be done. Otherwise walk the ring and shift the entries.
2665 	 */
2666 	WARN_ON_ONCE(last_sge == first_sge);
2667 	shift = last_sge > first_sge ?
2668 		last_sge - first_sge - 1 :
2669 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2670 	if (!shift)
2671 		goto out;
2672 
2673 	i = first_sge;
2674 	sk_msg_iter_var_next(i);
2675 	do {
2676 		u32 move_from;
2677 
2678 		if (i + shift >= NR_MSG_FRAG_IDS)
2679 			move_from = i + shift - NR_MSG_FRAG_IDS;
2680 		else
2681 			move_from = i + shift;
2682 		if (move_from == msg->sg.end)
2683 			break;
2684 
2685 		msg->sg.data[i] = msg->sg.data[move_from];
2686 		msg->sg.data[move_from].length = 0;
2687 		msg->sg.data[move_from].page_link = 0;
2688 		msg->sg.data[move_from].offset = 0;
2689 		sk_msg_iter_var_next(i);
2690 	} while (1);
2691 
2692 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2693 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2694 		      msg->sg.end - shift;
2695 out:
2696 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2697 	msg->data_end = msg->data + bytes;
2698 	return 0;
2699 }
2700 
2701 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2702 	.func		= bpf_msg_pull_data,
2703 	.gpl_only	= false,
2704 	.ret_type	= RET_INTEGER,
2705 	.arg1_type	= ARG_PTR_TO_CTX,
2706 	.arg2_type	= ARG_ANYTHING,
2707 	.arg3_type	= ARG_ANYTHING,
2708 	.arg4_type	= ARG_ANYTHING,
2709 };
2710 
2711 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2712 	   u32, len, u64, flags)
2713 {
2714 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2715 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2716 	u8 *raw, *to, *from;
2717 	struct page *page;
2718 
2719 	if (unlikely(flags))
2720 		return -EINVAL;
2721 
2722 	if (unlikely(len == 0))
2723 		return 0;
2724 
2725 	/* First find the starting scatterlist element */
2726 	i = msg->sg.start;
2727 	do {
2728 		offset += l;
2729 		l = sk_msg_elem(msg, i)->length;
2730 
2731 		if (start < offset + l)
2732 			break;
2733 		sk_msg_iter_var_next(i);
2734 	} while (i != msg->sg.end);
2735 
2736 	if (start >= offset + l)
2737 		return -EINVAL;
2738 
2739 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2740 
2741 	/* If no space available will fallback to copy, we need at
2742 	 * least one scatterlist elem available to push data into
2743 	 * when start aligns to the beginning of an element or two
2744 	 * when it falls inside an element. We handle the start equals
2745 	 * offset case because its the common case for inserting a
2746 	 * header.
2747 	 */
2748 	if (!space || (space == 1 && start != offset))
2749 		copy = msg->sg.data[i].length;
2750 
2751 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2752 			   get_order(copy + len));
2753 	if (unlikely(!page))
2754 		return -ENOMEM;
2755 
2756 	if (copy) {
2757 		int front, back;
2758 
2759 		raw = page_address(page);
2760 
2761 		psge = sk_msg_elem(msg, i);
2762 		front = start - offset;
2763 		back = psge->length - front;
2764 		from = sg_virt(psge);
2765 
2766 		if (front)
2767 			memcpy(raw, from, front);
2768 
2769 		if (back) {
2770 			from += front;
2771 			to = raw + front + len;
2772 
2773 			memcpy(to, from, back);
2774 		}
2775 
2776 		put_page(sg_page(psge));
2777 	} else if (start - offset) {
2778 		psge = sk_msg_elem(msg, i);
2779 		rsge = sk_msg_elem_cpy(msg, i);
2780 
2781 		psge->length = start - offset;
2782 		rsge.length -= psge->length;
2783 		rsge.offset += start;
2784 
2785 		sk_msg_iter_var_next(i);
2786 		sg_unmark_end(psge);
2787 		sg_unmark_end(&rsge);
2788 		sk_msg_iter_next(msg, end);
2789 	}
2790 
2791 	/* Slot(s) to place newly allocated data */
2792 	new = i;
2793 
2794 	/* Shift one or two slots as needed */
2795 	if (!copy) {
2796 		sge = sk_msg_elem_cpy(msg, i);
2797 
2798 		sk_msg_iter_var_next(i);
2799 		sg_unmark_end(&sge);
2800 		sk_msg_iter_next(msg, end);
2801 
2802 		nsge = sk_msg_elem_cpy(msg, i);
2803 		if (rsge.length) {
2804 			sk_msg_iter_var_next(i);
2805 			nnsge = sk_msg_elem_cpy(msg, i);
2806 		}
2807 
2808 		while (i != msg->sg.end) {
2809 			msg->sg.data[i] = sge;
2810 			sge = nsge;
2811 			sk_msg_iter_var_next(i);
2812 			if (rsge.length) {
2813 				nsge = nnsge;
2814 				nnsge = sk_msg_elem_cpy(msg, i);
2815 			} else {
2816 				nsge = sk_msg_elem_cpy(msg, i);
2817 			}
2818 		}
2819 	}
2820 
2821 	/* Place newly allocated data buffer */
2822 	sk_mem_charge(msg->sk, len);
2823 	msg->sg.size += len;
2824 	__clear_bit(new, msg->sg.copy);
2825 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2826 	if (rsge.length) {
2827 		get_page(sg_page(&rsge));
2828 		sk_msg_iter_var_next(new);
2829 		msg->sg.data[new] = rsge;
2830 	}
2831 
2832 	sk_msg_compute_data_pointers(msg);
2833 	return 0;
2834 }
2835 
2836 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2837 	.func		= bpf_msg_push_data,
2838 	.gpl_only	= false,
2839 	.ret_type	= RET_INTEGER,
2840 	.arg1_type	= ARG_PTR_TO_CTX,
2841 	.arg2_type	= ARG_ANYTHING,
2842 	.arg3_type	= ARG_ANYTHING,
2843 	.arg4_type	= ARG_ANYTHING,
2844 };
2845 
2846 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2847 {
2848 	int prev;
2849 
2850 	do {
2851 		prev = i;
2852 		sk_msg_iter_var_next(i);
2853 		msg->sg.data[prev] = msg->sg.data[i];
2854 	} while (i != msg->sg.end);
2855 
2856 	sk_msg_iter_prev(msg, end);
2857 }
2858 
2859 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2860 {
2861 	struct scatterlist tmp, sge;
2862 
2863 	sk_msg_iter_next(msg, end);
2864 	sge = sk_msg_elem_cpy(msg, i);
2865 	sk_msg_iter_var_next(i);
2866 	tmp = sk_msg_elem_cpy(msg, i);
2867 
2868 	while (i != msg->sg.end) {
2869 		msg->sg.data[i] = sge;
2870 		sk_msg_iter_var_next(i);
2871 		sge = tmp;
2872 		tmp = sk_msg_elem_cpy(msg, i);
2873 	}
2874 }
2875 
2876 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2877 	   u32, len, u64, flags)
2878 {
2879 	u32 i = 0, l = 0, space, offset = 0;
2880 	u64 last = start + len;
2881 	int pop;
2882 
2883 	if (unlikely(flags))
2884 		return -EINVAL;
2885 
2886 	/* First find the starting scatterlist element */
2887 	i = msg->sg.start;
2888 	do {
2889 		offset += l;
2890 		l = sk_msg_elem(msg, i)->length;
2891 
2892 		if (start < offset + l)
2893 			break;
2894 		sk_msg_iter_var_next(i);
2895 	} while (i != msg->sg.end);
2896 
2897 	/* Bounds checks: start and pop must be inside message */
2898 	if (start >= offset + l || last >= msg->sg.size)
2899 		return -EINVAL;
2900 
2901 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2902 
2903 	pop = len;
2904 	/* --------------| offset
2905 	 * -| start      |-------- len -------|
2906 	 *
2907 	 *  |----- a ----|-------- pop -------|----- b ----|
2908 	 *  |______________________________________________| length
2909 	 *
2910 	 *
2911 	 * a:   region at front of scatter element to save
2912 	 * b:   region at back of scatter element to save when length > A + pop
2913 	 * pop: region to pop from element, same as input 'pop' here will be
2914 	 *      decremented below per iteration.
2915 	 *
2916 	 * Two top-level cases to handle when start != offset, first B is non
2917 	 * zero and second B is zero corresponding to when a pop includes more
2918 	 * than one element.
2919 	 *
2920 	 * Then if B is non-zero AND there is no space allocate space and
2921 	 * compact A, B regions into page. If there is space shift ring to
2922 	 * the rigth free'ing the next element in ring to place B, leaving
2923 	 * A untouched except to reduce length.
2924 	 */
2925 	if (start != offset) {
2926 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2927 		int a = start;
2928 		int b = sge->length - pop - a;
2929 
2930 		sk_msg_iter_var_next(i);
2931 
2932 		if (pop < sge->length - a) {
2933 			if (space) {
2934 				sge->length = a;
2935 				sk_msg_shift_right(msg, i);
2936 				nsge = sk_msg_elem(msg, i);
2937 				get_page(sg_page(sge));
2938 				sg_set_page(nsge,
2939 					    sg_page(sge),
2940 					    b, sge->offset + pop + a);
2941 			} else {
2942 				struct page *page, *orig;
2943 				u8 *to, *from;
2944 
2945 				page = alloc_pages(__GFP_NOWARN |
2946 						   __GFP_COMP   | GFP_ATOMIC,
2947 						   get_order(a + b));
2948 				if (unlikely(!page))
2949 					return -ENOMEM;
2950 
2951 				sge->length = a;
2952 				orig = sg_page(sge);
2953 				from = sg_virt(sge);
2954 				to = page_address(page);
2955 				memcpy(to, from, a);
2956 				memcpy(to + a, from + a + pop, b);
2957 				sg_set_page(sge, page, a + b, 0);
2958 				put_page(orig);
2959 			}
2960 			pop = 0;
2961 		} else if (pop >= sge->length - a) {
2962 			pop -= (sge->length - a);
2963 			sge->length = a;
2964 		}
2965 	}
2966 
2967 	/* From above the current layout _must_ be as follows,
2968 	 *
2969 	 * -| offset
2970 	 * -| start
2971 	 *
2972 	 *  |---- pop ---|---------------- b ------------|
2973 	 *  |____________________________________________| length
2974 	 *
2975 	 * Offset and start of the current msg elem are equal because in the
2976 	 * previous case we handled offset != start and either consumed the
2977 	 * entire element and advanced to the next element OR pop == 0.
2978 	 *
2979 	 * Two cases to handle here are first pop is less than the length
2980 	 * leaving some remainder b above. Simply adjust the element's layout
2981 	 * in this case. Or pop >= length of the element so that b = 0. In this
2982 	 * case advance to next element decrementing pop.
2983 	 */
2984 	while (pop) {
2985 		struct scatterlist *sge = sk_msg_elem(msg, i);
2986 
2987 		if (pop < sge->length) {
2988 			sge->length -= pop;
2989 			sge->offset += pop;
2990 			pop = 0;
2991 		} else {
2992 			pop -= sge->length;
2993 			sk_msg_shift_left(msg, i);
2994 		}
2995 		sk_msg_iter_var_next(i);
2996 	}
2997 
2998 	sk_mem_uncharge(msg->sk, len - pop);
2999 	msg->sg.size -= (len - pop);
3000 	sk_msg_compute_data_pointers(msg);
3001 	return 0;
3002 }
3003 
3004 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3005 	.func		= bpf_msg_pop_data,
3006 	.gpl_only	= false,
3007 	.ret_type	= RET_INTEGER,
3008 	.arg1_type	= ARG_PTR_TO_CTX,
3009 	.arg2_type	= ARG_ANYTHING,
3010 	.arg3_type	= ARG_ANYTHING,
3011 	.arg4_type	= ARG_ANYTHING,
3012 };
3013 
3014 #ifdef CONFIG_CGROUP_NET_CLASSID
3015 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3016 {
3017 	return __task_get_classid(current);
3018 }
3019 
3020 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3021 	.func		= bpf_get_cgroup_classid_curr,
3022 	.gpl_only	= false,
3023 	.ret_type	= RET_INTEGER,
3024 };
3025 
3026 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3027 {
3028 	struct sock *sk = skb_to_full_sk(skb);
3029 
3030 	if (!sk || !sk_fullsock(sk))
3031 		return 0;
3032 
3033 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3034 }
3035 
3036 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3037 	.func		= bpf_skb_cgroup_classid,
3038 	.gpl_only	= false,
3039 	.ret_type	= RET_INTEGER,
3040 	.arg1_type	= ARG_PTR_TO_CTX,
3041 };
3042 #endif
3043 
3044 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3045 {
3046 	return task_get_classid(skb);
3047 }
3048 
3049 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3050 	.func           = bpf_get_cgroup_classid,
3051 	.gpl_only       = false,
3052 	.ret_type       = RET_INTEGER,
3053 	.arg1_type      = ARG_PTR_TO_CTX,
3054 };
3055 
3056 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3057 {
3058 	return dst_tclassid(skb);
3059 }
3060 
3061 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3062 	.func           = bpf_get_route_realm,
3063 	.gpl_only       = false,
3064 	.ret_type       = RET_INTEGER,
3065 	.arg1_type      = ARG_PTR_TO_CTX,
3066 };
3067 
3068 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3069 {
3070 	/* If skb_clear_hash() was called due to mangling, we can
3071 	 * trigger SW recalculation here. Later access to hash
3072 	 * can then use the inline skb->hash via context directly
3073 	 * instead of calling this helper again.
3074 	 */
3075 	return skb_get_hash(skb);
3076 }
3077 
3078 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3079 	.func		= bpf_get_hash_recalc,
3080 	.gpl_only	= false,
3081 	.ret_type	= RET_INTEGER,
3082 	.arg1_type	= ARG_PTR_TO_CTX,
3083 };
3084 
3085 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3086 {
3087 	/* After all direct packet write, this can be used once for
3088 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3089 	 */
3090 	skb_clear_hash(skb);
3091 	return 0;
3092 }
3093 
3094 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3095 	.func		= bpf_set_hash_invalid,
3096 	.gpl_only	= false,
3097 	.ret_type	= RET_INTEGER,
3098 	.arg1_type	= ARG_PTR_TO_CTX,
3099 };
3100 
3101 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3102 {
3103 	/* Set user specified hash as L4(+), so that it gets returned
3104 	 * on skb_get_hash() call unless BPF prog later on triggers a
3105 	 * skb_clear_hash().
3106 	 */
3107 	__skb_set_sw_hash(skb, hash, true);
3108 	return 0;
3109 }
3110 
3111 static const struct bpf_func_proto bpf_set_hash_proto = {
3112 	.func		= bpf_set_hash,
3113 	.gpl_only	= false,
3114 	.ret_type	= RET_INTEGER,
3115 	.arg1_type	= ARG_PTR_TO_CTX,
3116 	.arg2_type	= ARG_ANYTHING,
3117 };
3118 
3119 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3120 	   u16, vlan_tci)
3121 {
3122 	int ret;
3123 
3124 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3125 		     vlan_proto != htons(ETH_P_8021AD)))
3126 		vlan_proto = htons(ETH_P_8021Q);
3127 
3128 	bpf_push_mac_rcsum(skb);
3129 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3130 	bpf_pull_mac_rcsum(skb);
3131 
3132 	bpf_compute_data_pointers(skb);
3133 	return ret;
3134 }
3135 
3136 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3137 	.func           = bpf_skb_vlan_push,
3138 	.gpl_only       = false,
3139 	.ret_type       = RET_INTEGER,
3140 	.arg1_type      = ARG_PTR_TO_CTX,
3141 	.arg2_type      = ARG_ANYTHING,
3142 	.arg3_type      = ARG_ANYTHING,
3143 };
3144 
3145 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3146 {
3147 	int ret;
3148 
3149 	bpf_push_mac_rcsum(skb);
3150 	ret = skb_vlan_pop(skb);
3151 	bpf_pull_mac_rcsum(skb);
3152 
3153 	bpf_compute_data_pointers(skb);
3154 	return ret;
3155 }
3156 
3157 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3158 	.func           = bpf_skb_vlan_pop,
3159 	.gpl_only       = false,
3160 	.ret_type       = RET_INTEGER,
3161 	.arg1_type      = ARG_PTR_TO_CTX,
3162 };
3163 
3164 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3165 {
3166 	/* Caller already did skb_cow() with len as headroom,
3167 	 * so no need to do it here.
3168 	 */
3169 	skb_push(skb, len);
3170 	memmove(skb->data, skb->data + len, off);
3171 	memset(skb->data + off, 0, len);
3172 
3173 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3174 	 * needed here as it does not change the skb->csum
3175 	 * result for checksum complete when summing over
3176 	 * zeroed blocks.
3177 	 */
3178 	return 0;
3179 }
3180 
3181 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3182 {
3183 	/* skb_ensure_writable() is not needed here, as we're
3184 	 * already working on an uncloned skb.
3185 	 */
3186 	if (unlikely(!pskb_may_pull(skb, off + len)))
3187 		return -ENOMEM;
3188 
3189 	skb_postpull_rcsum(skb, skb->data + off, len);
3190 	memmove(skb->data + len, skb->data, off);
3191 	__skb_pull(skb, len);
3192 
3193 	return 0;
3194 }
3195 
3196 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3197 {
3198 	bool trans_same = skb->transport_header == skb->network_header;
3199 	int ret;
3200 
3201 	/* There's no need for __skb_push()/__skb_pull() pair to
3202 	 * get to the start of the mac header as we're guaranteed
3203 	 * to always start from here under eBPF.
3204 	 */
3205 	ret = bpf_skb_generic_push(skb, off, len);
3206 	if (likely(!ret)) {
3207 		skb->mac_header -= len;
3208 		skb->network_header -= len;
3209 		if (trans_same)
3210 			skb->transport_header = skb->network_header;
3211 	}
3212 
3213 	return ret;
3214 }
3215 
3216 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3217 {
3218 	bool trans_same = skb->transport_header == skb->network_header;
3219 	int ret;
3220 
3221 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3222 	ret = bpf_skb_generic_pop(skb, off, len);
3223 	if (likely(!ret)) {
3224 		skb->mac_header += len;
3225 		skb->network_header += len;
3226 		if (trans_same)
3227 			skb->transport_header = skb->network_header;
3228 	}
3229 
3230 	return ret;
3231 }
3232 
3233 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3234 {
3235 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3236 	u32 off = skb_mac_header_len(skb);
3237 	int ret;
3238 
3239 	ret = skb_cow(skb, len_diff);
3240 	if (unlikely(ret < 0))
3241 		return ret;
3242 
3243 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3244 	if (unlikely(ret < 0))
3245 		return ret;
3246 
3247 	if (skb_is_gso(skb)) {
3248 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3249 
3250 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3251 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3252 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3253 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3254 		}
3255 	}
3256 
3257 	skb->protocol = htons(ETH_P_IPV6);
3258 	skb_clear_hash(skb);
3259 
3260 	return 0;
3261 }
3262 
3263 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3264 {
3265 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3266 	u32 off = skb_mac_header_len(skb);
3267 	int ret;
3268 
3269 	ret = skb_unclone(skb, GFP_ATOMIC);
3270 	if (unlikely(ret < 0))
3271 		return ret;
3272 
3273 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3274 	if (unlikely(ret < 0))
3275 		return ret;
3276 
3277 	if (skb_is_gso(skb)) {
3278 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3279 
3280 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3281 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3282 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3283 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3284 		}
3285 	}
3286 
3287 	skb->protocol = htons(ETH_P_IP);
3288 	skb_clear_hash(skb);
3289 
3290 	return 0;
3291 }
3292 
3293 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3294 {
3295 	__be16 from_proto = skb->protocol;
3296 
3297 	if (from_proto == htons(ETH_P_IP) &&
3298 	      to_proto == htons(ETH_P_IPV6))
3299 		return bpf_skb_proto_4_to_6(skb);
3300 
3301 	if (from_proto == htons(ETH_P_IPV6) &&
3302 	      to_proto == htons(ETH_P_IP))
3303 		return bpf_skb_proto_6_to_4(skb);
3304 
3305 	return -ENOTSUPP;
3306 }
3307 
3308 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3309 	   u64, flags)
3310 {
3311 	int ret;
3312 
3313 	if (unlikely(flags))
3314 		return -EINVAL;
3315 
3316 	/* General idea is that this helper does the basic groundwork
3317 	 * needed for changing the protocol, and eBPF program fills the
3318 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3319 	 * and other helpers, rather than passing a raw buffer here.
3320 	 *
3321 	 * The rationale is to keep this minimal and without a need to
3322 	 * deal with raw packet data. F.e. even if we would pass buffers
3323 	 * here, the program still needs to call the bpf_lX_csum_replace()
3324 	 * helpers anyway. Plus, this way we keep also separation of
3325 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3326 	 * care of stores.
3327 	 *
3328 	 * Currently, additional options and extension header space are
3329 	 * not supported, but flags register is reserved so we can adapt
3330 	 * that. For offloads, we mark packet as dodgy, so that headers
3331 	 * need to be verified first.
3332 	 */
3333 	ret = bpf_skb_proto_xlat(skb, proto);
3334 	bpf_compute_data_pointers(skb);
3335 	return ret;
3336 }
3337 
3338 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3339 	.func		= bpf_skb_change_proto,
3340 	.gpl_only	= false,
3341 	.ret_type	= RET_INTEGER,
3342 	.arg1_type	= ARG_PTR_TO_CTX,
3343 	.arg2_type	= ARG_ANYTHING,
3344 	.arg3_type	= ARG_ANYTHING,
3345 };
3346 
3347 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3348 {
3349 	/* We only allow a restricted subset to be changed for now. */
3350 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3351 		     !skb_pkt_type_ok(pkt_type)))
3352 		return -EINVAL;
3353 
3354 	skb->pkt_type = pkt_type;
3355 	return 0;
3356 }
3357 
3358 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3359 	.func		= bpf_skb_change_type,
3360 	.gpl_only	= false,
3361 	.ret_type	= RET_INTEGER,
3362 	.arg1_type	= ARG_PTR_TO_CTX,
3363 	.arg2_type	= ARG_ANYTHING,
3364 };
3365 
3366 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3367 {
3368 	switch (skb->protocol) {
3369 	case htons(ETH_P_IP):
3370 		return sizeof(struct iphdr);
3371 	case htons(ETH_P_IPV6):
3372 		return sizeof(struct ipv6hdr);
3373 	default:
3374 		return ~0U;
3375 	}
3376 }
3377 
3378 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3379 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3380 
3381 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3382 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3383 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3384 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3385 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3386 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3387 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3388 
3389 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3390 			    u64 flags)
3391 {
3392 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3393 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3394 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3395 	unsigned int gso_type = SKB_GSO_DODGY;
3396 	int ret;
3397 
3398 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3399 		/* udp gso_size delineates datagrams, only allow if fixed */
3400 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3401 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3402 			return -ENOTSUPP;
3403 	}
3404 
3405 	ret = skb_cow_head(skb, len_diff);
3406 	if (unlikely(ret < 0))
3407 		return ret;
3408 
3409 	if (encap) {
3410 		if (skb->protocol != htons(ETH_P_IP) &&
3411 		    skb->protocol != htons(ETH_P_IPV6))
3412 			return -ENOTSUPP;
3413 
3414 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3415 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3416 			return -EINVAL;
3417 
3418 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3419 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3420 			return -EINVAL;
3421 
3422 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3423 		    inner_mac_len < ETH_HLEN)
3424 			return -EINVAL;
3425 
3426 		if (skb->encapsulation)
3427 			return -EALREADY;
3428 
3429 		mac_len = skb->network_header - skb->mac_header;
3430 		inner_net = skb->network_header;
3431 		if (inner_mac_len > len_diff)
3432 			return -EINVAL;
3433 		inner_trans = skb->transport_header;
3434 	}
3435 
3436 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3437 	if (unlikely(ret < 0))
3438 		return ret;
3439 
3440 	if (encap) {
3441 		skb->inner_mac_header = inner_net - inner_mac_len;
3442 		skb->inner_network_header = inner_net;
3443 		skb->inner_transport_header = inner_trans;
3444 
3445 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3446 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3447 		else
3448 			skb_set_inner_protocol(skb, skb->protocol);
3449 
3450 		skb->encapsulation = 1;
3451 		skb_set_network_header(skb, mac_len);
3452 
3453 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3454 			gso_type |= SKB_GSO_UDP_TUNNEL;
3455 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3456 			gso_type |= SKB_GSO_GRE;
3457 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3458 			gso_type |= SKB_GSO_IPXIP6;
3459 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3460 			gso_type |= SKB_GSO_IPXIP4;
3461 
3462 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3463 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3464 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3465 					sizeof(struct ipv6hdr) :
3466 					sizeof(struct iphdr);
3467 
3468 			skb_set_transport_header(skb, mac_len + nh_len);
3469 		}
3470 
3471 		/* Match skb->protocol to new outer l3 protocol */
3472 		if (skb->protocol == htons(ETH_P_IP) &&
3473 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3474 			skb->protocol = htons(ETH_P_IPV6);
3475 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3476 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3477 			skb->protocol = htons(ETH_P_IP);
3478 	}
3479 
3480 	if (skb_is_gso(skb)) {
3481 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3482 
3483 		/* Due to header grow, MSS needs to be downgraded. */
3484 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3485 			skb_decrease_gso_size(shinfo, len_diff);
3486 
3487 		/* Header must be checked, and gso_segs recomputed. */
3488 		shinfo->gso_type |= gso_type;
3489 		shinfo->gso_segs = 0;
3490 	}
3491 
3492 	return 0;
3493 }
3494 
3495 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3496 			      u64 flags)
3497 {
3498 	int ret;
3499 
3500 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3501 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3502 		return -EINVAL;
3503 
3504 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3505 		/* udp gso_size delineates datagrams, only allow if fixed */
3506 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3507 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3508 			return -ENOTSUPP;
3509 	}
3510 
3511 	ret = skb_unclone(skb, GFP_ATOMIC);
3512 	if (unlikely(ret < 0))
3513 		return ret;
3514 
3515 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3516 	if (unlikely(ret < 0))
3517 		return ret;
3518 
3519 	if (skb_is_gso(skb)) {
3520 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3521 
3522 		/* Due to header shrink, MSS can be upgraded. */
3523 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3524 			skb_increase_gso_size(shinfo, len_diff);
3525 
3526 		/* Header must be checked, and gso_segs recomputed. */
3527 		shinfo->gso_type |= SKB_GSO_DODGY;
3528 		shinfo->gso_segs = 0;
3529 	}
3530 
3531 	return 0;
3532 }
3533 
3534 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3535 
3536 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3537 	   u32, mode, u64, flags)
3538 {
3539 	u32 len_diff_abs = abs(len_diff);
3540 	bool shrink = len_diff < 0;
3541 	int ret = 0;
3542 
3543 	if (unlikely(flags || mode))
3544 		return -EINVAL;
3545 	if (unlikely(len_diff_abs > 0xfffU))
3546 		return -EFAULT;
3547 
3548 	if (!shrink) {
3549 		ret = skb_cow(skb, len_diff);
3550 		if (unlikely(ret < 0))
3551 			return ret;
3552 		__skb_push(skb, len_diff_abs);
3553 		memset(skb->data, 0, len_diff_abs);
3554 	} else {
3555 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3556 			return -ENOMEM;
3557 		__skb_pull(skb, len_diff_abs);
3558 	}
3559 	if (tls_sw_has_ctx_rx(skb->sk)) {
3560 		struct strp_msg *rxm = strp_msg(skb);
3561 
3562 		rxm->full_len += len_diff;
3563 	}
3564 	return ret;
3565 }
3566 
3567 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3568 	.func		= sk_skb_adjust_room,
3569 	.gpl_only	= false,
3570 	.ret_type	= RET_INTEGER,
3571 	.arg1_type	= ARG_PTR_TO_CTX,
3572 	.arg2_type	= ARG_ANYTHING,
3573 	.arg3_type	= ARG_ANYTHING,
3574 	.arg4_type	= ARG_ANYTHING,
3575 };
3576 
3577 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3578 	   u32, mode, u64, flags)
3579 {
3580 	u32 len_cur, len_diff_abs = abs(len_diff);
3581 	u32 len_min = bpf_skb_net_base_len(skb);
3582 	u32 len_max = BPF_SKB_MAX_LEN;
3583 	__be16 proto = skb->protocol;
3584 	bool shrink = len_diff < 0;
3585 	u32 off;
3586 	int ret;
3587 
3588 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3589 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3590 		return -EINVAL;
3591 	if (unlikely(len_diff_abs > 0xfffU))
3592 		return -EFAULT;
3593 	if (unlikely(proto != htons(ETH_P_IP) &&
3594 		     proto != htons(ETH_P_IPV6)))
3595 		return -ENOTSUPP;
3596 
3597 	off = skb_mac_header_len(skb);
3598 	switch (mode) {
3599 	case BPF_ADJ_ROOM_NET:
3600 		off += bpf_skb_net_base_len(skb);
3601 		break;
3602 	case BPF_ADJ_ROOM_MAC:
3603 		break;
3604 	default:
3605 		return -ENOTSUPP;
3606 	}
3607 
3608 	len_cur = skb->len - skb_network_offset(skb);
3609 	if ((shrink && (len_diff_abs >= len_cur ||
3610 			len_cur - len_diff_abs < len_min)) ||
3611 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3612 			 !skb_is_gso(skb))))
3613 		return -ENOTSUPP;
3614 
3615 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3616 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3617 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3618 		__skb_reset_checksum_unnecessary(skb);
3619 
3620 	bpf_compute_data_pointers(skb);
3621 	return ret;
3622 }
3623 
3624 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3625 	.func		= bpf_skb_adjust_room,
3626 	.gpl_only	= false,
3627 	.ret_type	= RET_INTEGER,
3628 	.arg1_type	= ARG_PTR_TO_CTX,
3629 	.arg2_type	= ARG_ANYTHING,
3630 	.arg3_type	= ARG_ANYTHING,
3631 	.arg4_type	= ARG_ANYTHING,
3632 };
3633 
3634 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3635 {
3636 	u32 min_len = skb_network_offset(skb);
3637 
3638 	if (skb_transport_header_was_set(skb))
3639 		min_len = skb_transport_offset(skb);
3640 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3641 		min_len = skb_checksum_start_offset(skb) +
3642 			  skb->csum_offset + sizeof(__sum16);
3643 	return min_len;
3644 }
3645 
3646 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3647 {
3648 	unsigned int old_len = skb->len;
3649 	int ret;
3650 
3651 	ret = __skb_grow_rcsum(skb, new_len);
3652 	if (!ret)
3653 		memset(skb->data + old_len, 0, new_len - old_len);
3654 	return ret;
3655 }
3656 
3657 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3658 {
3659 	return __skb_trim_rcsum(skb, new_len);
3660 }
3661 
3662 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3663 					u64 flags)
3664 {
3665 	u32 max_len = BPF_SKB_MAX_LEN;
3666 	u32 min_len = __bpf_skb_min_len(skb);
3667 	int ret;
3668 
3669 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3670 		return -EINVAL;
3671 	if (skb->encapsulation)
3672 		return -ENOTSUPP;
3673 
3674 	/* The basic idea of this helper is that it's performing the
3675 	 * needed work to either grow or trim an skb, and eBPF program
3676 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3677 	 * bpf_lX_csum_replace() and others rather than passing a raw
3678 	 * buffer here. This one is a slow path helper and intended
3679 	 * for replies with control messages.
3680 	 *
3681 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3682 	 * minimal and without protocol specifics so that we are able
3683 	 * to separate concerns as in bpf_skb_store_bytes() should only
3684 	 * be the one responsible for writing buffers.
3685 	 *
3686 	 * It's really expected to be a slow path operation here for
3687 	 * control message replies, so we're implicitly linearizing,
3688 	 * uncloning and drop offloads from the skb by this.
3689 	 */
3690 	ret = __bpf_try_make_writable(skb, skb->len);
3691 	if (!ret) {
3692 		if (new_len > skb->len)
3693 			ret = bpf_skb_grow_rcsum(skb, new_len);
3694 		else if (new_len < skb->len)
3695 			ret = bpf_skb_trim_rcsum(skb, new_len);
3696 		if (!ret && skb_is_gso(skb))
3697 			skb_gso_reset(skb);
3698 	}
3699 	return ret;
3700 }
3701 
3702 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3703 	   u64, flags)
3704 {
3705 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3706 
3707 	bpf_compute_data_pointers(skb);
3708 	return ret;
3709 }
3710 
3711 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3712 	.func		= bpf_skb_change_tail,
3713 	.gpl_only	= false,
3714 	.ret_type	= RET_INTEGER,
3715 	.arg1_type	= ARG_PTR_TO_CTX,
3716 	.arg2_type	= ARG_ANYTHING,
3717 	.arg3_type	= ARG_ANYTHING,
3718 };
3719 
3720 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3721 	   u64, flags)
3722 {
3723 	return __bpf_skb_change_tail(skb, new_len, flags);
3724 }
3725 
3726 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3727 	.func		= sk_skb_change_tail,
3728 	.gpl_only	= false,
3729 	.ret_type	= RET_INTEGER,
3730 	.arg1_type	= ARG_PTR_TO_CTX,
3731 	.arg2_type	= ARG_ANYTHING,
3732 	.arg3_type	= ARG_ANYTHING,
3733 };
3734 
3735 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3736 					u64 flags)
3737 {
3738 	u32 max_len = BPF_SKB_MAX_LEN;
3739 	u32 new_len = skb->len + head_room;
3740 	int ret;
3741 
3742 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3743 		     new_len < skb->len))
3744 		return -EINVAL;
3745 
3746 	ret = skb_cow(skb, head_room);
3747 	if (likely(!ret)) {
3748 		/* Idea for this helper is that we currently only
3749 		 * allow to expand on mac header. This means that
3750 		 * skb->protocol network header, etc, stay as is.
3751 		 * Compared to bpf_skb_change_tail(), we're more
3752 		 * flexible due to not needing to linearize or
3753 		 * reset GSO. Intention for this helper is to be
3754 		 * used by an L3 skb that needs to push mac header
3755 		 * for redirection into L2 device.
3756 		 */
3757 		__skb_push(skb, head_room);
3758 		memset(skb->data, 0, head_room);
3759 		skb_reset_mac_header(skb);
3760 		skb_reset_mac_len(skb);
3761 	}
3762 
3763 	return ret;
3764 }
3765 
3766 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3767 	   u64, flags)
3768 {
3769 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3770 
3771 	bpf_compute_data_pointers(skb);
3772 	return ret;
3773 }
3774 
3775 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3776 	.func		= bpf_skb_change_head,
3777 	.gpl_only	= false,
3778 	.ret_type	= RET_INTEGER,
3779 	.arg1_type	= ARG_PTR_TO_CTX,
3780 	.arg2_type	= ARG_ANYTHING,
3781 	.arg3_type	= ARG_ANYTHING,
3782 };
3783 
3784 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3785 	   u64, flags)
3786 {
3787 	return __bpf_skb_change_head(skb, head_room, flags);
3788 }
3789 
3790 static const struct bpf_func_proto sk_skb_change_head_proto = {
3791 	.func		= sk_skb_change_head,
3792 	.gpl_only	= false,
3793 	.ret_type	= RET_INTEGER,
3794 	.arg1_type	= ARG_PTR_TO_CTX,
3795 	.arg2_type	= ARG_ANYTHING,
3796 	.arg3_type	= ARG_ANYTHING,
3797 };
3798 
3799 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3800 {
3801 	return xdp_get_buff_len(xdp);
3802 }
3803 
3804 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3805 	.func		= bpf_xdp_get_buff_len,
3806 	.gpl_only	= false,
3807 	.ret_type	= RET_INTEGER,
3808 	.arg1_type	= ARG_PTR_TO_CTX,
3809 };
3810 
3811 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3812 
3813 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3814 	.func		= bpf_xdp_get_buff_len,
3815 	.gpl_only	= false,
3816 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3817 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3818 };
3819 
3820 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3821 {
3822 	return xdp_data_meta_unsupported(xdp) ? 0 :
3823 	       xdp->data - xdp->data_meta;
3824 }
3825 
3826 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3827 {
3828 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3829 	unsigned long metalen = xdp_get_metalen(xdp);
3830 	void *data_start = xdp_frame_end + metalen;
3831 	void *data = xdp->data + offset;
3832 
3833 	if (unlikely(data < data_start ||
3834 		     data > xdp->data_end - ETH_HLEN))
3835 		return -EINVAL;
3836 
3837 	if (metalen)
3838 		memmove(xdp->data_meta + offset,
3839 			xdp->data_meta, metalen);
3840 	xdp->data_meta += offset;
3841 	xdp->data = data;
3842 
3843 	return 0;
3844 }
3845 
3846 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3847 	.func		= bpf_xdp_adjust_head,
3848 	.gpl_only	= false,
3849 	.ret_type	= RET_INTEGER,
3850 	.arg1_type	= ARG_PTR_TO_CTX,
3851 	.arg2_type	= ARG_ANYTHING,
3852 };
3853 
3854 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3855 			     void *buf, unsigned long len, bool flush)
3856 {
3857 	unsigned long ptr_len, ptr_off = 0;
3858 	skb_frag_t *next_frag, *end_frag;
3859 	struct skb_shared_info *sinfo;
3860 	void *src, *dst;
3861 	u8 *ptr_buf;
3862 
3863 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3864 		src = flush ? buf : xdp->data + off;
3865 		dst = flush ? xdp->data + off : buf;
3866 		memcpy(dst, src, len);
3867 		return;
3868 	}
3869 
3870 	sinfo = xdp_get_shared_info_from_buff(xdp);
3871 	end_frag = &sinfo->frags[sinfo->nr_frags];
3872 	next_frag = &sinfo->frags[0];
3873 
3874 	ptr_len = xdp->data_end - xdp->data;
3875 	ptr_buf = xdp->data;
3876 
3877 	while (true) {
3878 		if (off < ptr_off + ptr_len) {
3879 			unsigned long copy_off = off - ptr_off;
3880 			unsigned long copy_len = min(len, ptr_len - copy_off);
3881 
3882 			src = flush ? buf : ptr_buf + copy_off;
3883 			dst = flush ? ptr_buf + copy_off : buf;
3884 			memcpy(dst, src, copy_len);
3885 
3886 			off += copy_len;
3887 			len -= copy_len;
3888 			buf += copy_len;
3889 		}
3890 
3891 		if (!len || next_frag == end_frag)
3892 			break;
3893 
3894 		ptr_off += ptr_len;
3895 		ptr_buf = skb_frag_address(next_frag);
3896 		ptr_len = skb_frag_size(next_frag);
3897 		next_frag++;
3898 	}
3899 }
3900 
3901 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3902 {
3903 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3904 	u32 size = xdp->data_end - xdp->data;
3905 	void *addr = xdp->data;
3906 	int i;
3907 
3908 	if (unlikely(offset > 0xffff || len > 0xffff))
3909 		return ERR_PTR(-EFAULT);
3910 
3911 	if (offset + len > xdp_get_buff_len(xdp))
3912 		return ERR_PTR(-EINVAL);
3913 
3914 	if (offset < size) /* linear area */
3915 		goto out;
3916 
3917 	offset -= size;
3918 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3919 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3920 
3921 		if  (offset < frag_size) {
3922 			addr = skb_frag_address(&sinfo->frags[i]);
3923 			size = frag_size;
3924 			break;
3925 		}
3926 		offset -= frag_size;
3927 	}
3928 out:
3929 	return offset + len <= size ? addr + offset : NULL;
3930 }
3931 
3932 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3933 	   void *, buf, u32, len)
3934 {
3935 	void *ptr;
3936 
3937 	ptr = bpf_xdp_pointer(xdp, offset, len);
3938 	if (IS_ERR(ptr))
3939 		return PTR_ERR(ptr);
3940 
3941 	if (!ptr)
3942 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3943 	else
3944 		memcpy(buf, ptr, len);
3945 
3946 	return 0;
3947 }
3948 
3949 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3950 	.func		= bpf_xdp_load_bytes,
3951 	.gpl_only	= false,
3952 	.ret_type	= RET_INTEGER,
3953 	.arg1_type	= ARG_PTR_TO_CTX,
3954 	.arg2_type	= ARG_ANYTHING,
3955 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3956 	.arg4_type	= ARG_CONST_SIZE,
3957 };
3958 
3959 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3960 	   void *, buf, u32, len)
3961 {
3962 	void *ptr;
3963 
3964 	ptr = bpf_xdp_pointer(xdp, offset, len);
3965 	if (IS_ERR(ptr))
3966 		return PTR_ERR(ptr);
3967 
3968 	if (!ptr)
3969 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
3970 	else
3971 		memcpy(ptr, buf, len);
3972 
3973 	return 0;
3974 }
3975 
3976 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
3977 	.func		= bpf_xdp_store_bytes,
3978 	.gpl_only	= false,
3979 	.ret_type	= RET_INTEGER,
3980 	.arg1_type	= ARG_PTR_TO_CTX,
3981 	.arg2_type	= ARG_ANYTHING,
3982 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3983 	.arg4_type	= ARG_CONST_SIZE,
3984 };
3985 
3986 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
3987 {
3988 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3989 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
3990 	struct xdp_rxq_info *rxq = xdp->rxq;
3991 	unsigned int tailroom;
3992 
3993 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
3994 		return -EOPNOTSUPP;
3995 
3996 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
3997 	if (unlikely(offset > tailroom))
3998 		return -EINVAL;
3999 
4000 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4001 	skb_frag_size_add(frag, offset);
4002 	sinfo->xdp_frags_size += offset;
4003 
4004 	return 0;
4005 }
4006 
4007 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4008 {
4009 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4010 	int i, n_frags_free = 0, len_free = 0;
4011 
4012 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4013 		return -EINVAL;
4014 
4015 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4016 		skb_frag_t *frag = &sinfo->frags[i];
4017 		int shrink = min_t(int, offset, skb_frag_size(frag));
4018 
4019 		len_free += shrink;
4020 		offset -= shrink;
4021 
4022 		if (skb_frag_size(frag) == shrink) {
4023 			struct page *page = skb_frag_page(frag);
4024 
4025 			__xdp_return(page_address(page), &xdp->rxq->mem,
4026 				     false, NULL);
4027 			n_frags_free++;
4028 		} else {
4029 			skb_frag_size_sub(frag, shrink);
4030 			break;
4031 		}
4032 	}
4033 	sinfo->nr_frags -= n_frags_free;
4034 	sinfo->xdp_frags_size -= len_free;
4035 
4036 	if (unlikely(!sinfo->nr_frags)) {
4037 		xdp_buff_clear_frags_flag(xdp);
4038 		xdp->data_end -= offset;
4039 	}
4040 
4041 	return 0;
4042 }
4043 
4044 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4045 {
4046 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4047 	void *data_end = xdp->data_end + offset;
4048 
4049 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4050 		if (offset < 0)
4051 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4052 
4053 		return bpf_xdp_frags_increase_tail(xdp, offset);
4054 	}
4055 
4056 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4057 	if (unlikely(data_end > data_hard_end))
4058 		return -EINVAL;
4059 
4060 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
4061 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4062 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4063 		return -EINVAL;
4064 	}
4065 
4066 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4067 		return -EINVAL;
4068 
4069 	/* Clear memory area on grow, can contain uninit kernel memory */
4070 	if (offset > 0)
4071 		memset(xdp->data_end, 0, offset);
4072 
4073 	xdp->data_end = data_end;
4074 
4075 	return 0;
4076 }
4077 
4078 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4079 	.func		= bpf_xdp_adjust_tail,
4080 	.gpl_only	= false,
4081 	.ret_type	= RET_INTEGER,
4082 	.arg1_type	= ARG_PTR_TO_CTX,
4083 	.arg2_type	= ARG_ANYTHING,
4084 };
4085 
4086 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4087 {
4088 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4089 	void *meta = xdp->data_meta + offset;
4090 	unsigned long metalen = xdp->data - meta;
4091 
4092 	if (xdp_data_meta_unsupported(xdp))
4093 		return -ENOTSUPP;
4094 	if (unlikely(meta < xdp_frame_end ||
4095 		     meta > xdp->data))
4096 		return -EINVAL;
4097 	if (unlikely(xdp_metalen_invalid(metalen)))
4098 		return -EACCES;
4099 
4100 	xdp->data_meta = meta;
4101 
4102 	return 0;
4103 }
4104 
4105 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4106 	.func		= bpf_xdp_adjust_meta,
4107 	.gpl_only	= false,
4108 	.ret_type	= RET_INTEGER,
4109 	.arg1_type	= ARG_PTR_TO_CTX,
4110 	.arg2_type	= ARG_ANYTHING,
4111 };
4112 
4113 /**
4114  * DOC: xdp redirect
4115  *
4116  * XDP_REDIRECT works by a three-step process, implemented in the functions
4117  * below:
4118  *
4119  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4120  *    of the redirect and store it (along with some other metadata) in a per-CPU
4121  *    struct bpf_redirect_info.
4122  *
4123  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4124  *    call xdp_do_redirect() which will use the information in struct
4125  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4126  *    bulk queue structure.
4127  *
4128  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4129  *    which will flush all the different bulk queues, thus completing the
4130  *    redirect.
4131  */
4132 /*
4133  * Pointers to the map entries will be kept around for this whole sequence of
4134  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4135  * the core code; instead, the RCU protection relies on everything happening
4136  * inside a single NAPI poll sequence, which means it's between a pair of calls
4137  * to local_bh_disable()/local_bh_enable().
4138  *
4139  * The map entries are marked as __rcu and the map code makes sure to
4140  * dereference those pointers with rcu_dereference_check() in a way that works
4141  * for both sections that to hold an rcu_read_lock() and sections that are
4142  * called from NAPI without a separate rcu_read_lock(). The code below does not
4143  * use RCU annotations, but relies on those in the map code.
4144  */
4145 void xdp_do_flush(void)
4146 {
4147 	__dev_flush();
4148 	__cpu_map_flush();
4149 	__xsk_map_flush();
4150 }
4151 EXPORT_SYMBOL_GPL(xdp_do_flush);
4152 
4153 void bpf_clear_redirect_map(struct bpf_map *map)
4154 {
4155 	struct bpf_redirect_info *ri;
4156 	int cpu;
4157 
4158 	for_each_possible_cpu(cpu) {
4159 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4160 		/* Avoid polluting remote cacheline due to writes if
4161 		 * not needed. Once we pass this test, we need the
4162 		 * cmpxchg() to make sure it hasn't been changed in
4163 		 * the meantime by remote CPU.
4164 		 */
4165 		if (unlikely(READ_ONCE(ri->map) == map))
4166 			cmpxchg(&ri->map, map, NULL);
4167 	}
4168 }
4169 
4170 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4171 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4172 
4173 u32 xdp_master_redirect(struct xdp_buff *xdp)
4174 {
4175 	struct net_device *master, *slave;
4176 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4177 
4178 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4179 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4180 	if (slave && slave != xdp->rxq->dev) {
4181 		/* The target device is different from the receiving device, so
4182 		 * redirect it to the new device.
4183 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4184 		 * drivers to unmap the packet from their rx ring.
4185 		 */
4186 		ri->tgt_index = slave->ifindex;
4187 		ri->map_id = INT_MAX;
4188 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4189 		return XDP_REDIRECT;
4190 	}
4191 	return XDP_TX;
4192 }
4193 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4194 
4195 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4196 					struct net_device *dev,
4197 					struct xdp_buff *xdp,
4198 					struct bpf_prog *xdp_prog)
4199 {
4200 	enum bpf_map_type map_type = ri->map_type;
4201 	void *fwd = ri->tgt_value;
4202 	u32 map_id = ri->map_id;
4203 	int err;
4204 
4205 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4206 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4207 
4208 	err = __xsk_map_redirect(fwd, xdp);
4209 	if (unlikely(err))
4210 		goto err;
4211 
4212 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4213 	return 0;
4214 err:
4215 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4216 	return err;
4217 }
4218 
4219 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4220 						   struct net_device *dev,
4221 						   struct xdp_frame *xdpf,
4222 						   struct bpf_prog *xdp_prog)
4223 {
4224 	enum bpf_map_type map_type = ri->map_type;
4225 	void *fwd = ri->tgt_value;
4226 	u32 map_id = ri->map_id;
4227 	struct bpf_map *map;
4228 	int err;
4229 
4230 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4231 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4232 
4233 	if (unlikely(!xdpf)) {
4234 		err = -EOVERFLOW;
4235 		goto err;
4236 	}
4237 
4238 	switch (map_type) {
4239 	case BPF_MAP_TYPE_DEVMAP:
4240 		fallthrough;
4241 	case BPF_MAP_TYPE_DEVMAP_HASH:
4242 		map = READ_ONCE(ri->map);
4243 		if (unlikely(map)) {
4244 			WRITE_ONCE(ri->map, NULL);
4245 			err = dev_map_enqueue_multi(xdpf, dev, map,
4246 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4247 		} else {
4248 			err = dev_map_enqueue(fwd, xdpf, dev);
4249 		}
4250 		break;
4251 	case BPF_MAP_TYPE_CPUMAP:
4252 		err = cpu_map_enqueue(fwd, xdpf, dev);
4253 		break;
4254 	case BPF_MAP_TYPE_UNSPEC:
4255 		if (map_id == INT_MAX) {
4256 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4257 			if (unlikely(!fwd)) {
4258 				err = -EINVAL;
4259 				break;
4260 			}
4261 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4262 			break;
4263 		}
4264 		fallthrough;
4265 	default:
4266 		err = -EBADRQC;
4267 	}
4268 
4269 	if (unlikely(err))
4270 		goto err;
4271 
4272 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4273 	return 0;
4274 err:
4275 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4276 	return err;
4277 }
4278 
4279 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4280 		    struct bpf_prog *xdp_prog)
4281 {
4282 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4283 	enum bpf_map_type map_type = ri->map_type;
4284 
4285 	/* XDP_REDIRECT is not fully supported yet for xdp frags since
4286 	 * not all XDP capable drivers can map non-linear xdp_frame in
4287 	 * ndo_xdp_xmit.
4288 	 */
4289 	if (unlikely(xdp_buff_has_frags(xdp) &&
4290 		     map_type != BPF_MAP_TYPE_CPUMAP))
4291 		return -EOPNOTSUPP;
4292 
4293 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4294 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4295 
4296 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4297 				       xdp_prog);
4298 }
4299 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4300 
4301 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4302 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4303 {
4304 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4305 	enum bpf_map_type map_type = ri->map_type;
4306 
4307 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4308 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4309 
4310 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4311 }
4312 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4313 
4314 static int xdp_do_generic_redirect_map(struct net_device *dev,
4315 				       struct sk_buff *skb,
4316 				       struct xdp_buff *xdp,
4317 				       struct bpf_prog *xdp_prog,
4318 				       void *fwd,
4319 				       enum bpf_map_type map_type, u32 map_id)
4320 {
4321 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4322 	struct bpf_map *map;
4323 	int err;
4324 
4325 	switch (map_type) {
4326 	case BPF_MAP_TYPE_DEVMAP:
4327 		fallthrough;
4328 	case BPF_MAP_TYPE_DEVMAP_HASH:
4329 		map = READ_ONCE(ri->map);
4330 		if (unlikely(map)) {
4331 			WRITE_ONCE(ri->map, NULL);
4332 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4333 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4334 		} else {
4335 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4336 		}
4337 		if (unlikely(err))
4338 			goto err;
4339 		break;
4340 	case BPF_MAP_TYPE_XSKMAP:
4341 		err = xsk_generic_rcv(fwd, xdp);
4342 		if (err)
4343 			goto err;
4344 		consume_skb(skb);
4345 		break;
4346 	case BPF_MAP_TYPE_CPUMAP:
4347 		err = cpu_map_generic_redirect(fwd, skb);
4348 		if (unlikely(err))
4349 			goto err;
4350 		break;
4351 	default:
4352 		err = -EBADRQC;
4353 		goto err;
4354 	}
4355 
4356 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4357 	return 0;
4358 err:
4359 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4360 	return err;
4361 }
4362 
4363 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4364 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4365 {
4366 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4367 	enum bpf_map_type map_type = ri->map_type;
4368 	void *fwd = ri->tgt_value;
4369 	u32 map_id = ri->map_id;
4370 	int err;
4371 
4372 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4373 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4374 
4375 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4376 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4377 		if (unlikely(!fwd)) {
4378 			err = -EINVAL;
4379 			goto err;
4380 		}
4381 
4382 		err = xdp_ok_fwd_dev(fwd, skb->len);
4383 		if (unlikely(err))
4384 			goto err;
4385 
4386 		skb->dev = fwd;
4387 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4388 		generic_xdp_tx(skb, xdp_prog);
4389 		return 0;
4390 	}
4391 
4392 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4393 err:
4394 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4395 	return err;
4396 }
4397 
4398 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4399 {
4400 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4401 
4402 	if (unlikely(flags))
4403 		return XDP_ABORTED;
4404 
4405 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4406 	 * by map_idr) is used for ifindex based XDP redirect.
4407 	 */
4408 	ri->tgt_index = ifindex;
4409 	ri->map_id = INT_MAX;
4410 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4411 
4412 	return XDP_REDIRECT;
4413 }
4414 
4415 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4416 	.func           = bpf_xdp_redirect,
4417 	.gpl_only       = false,
4418 	.ret_type       = RET_INTEGER,
4419 	.arg1_type      = ARG_ANYTHING,
4420 	.arg2_type      = ARG_ANYTHING,
4421 };
4422 
4423 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4424 	   u64, flags)
4425 {
4426 	return map->ops->map_redirect(map, key, flags);
4427 }
4428 
4429 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4430 	.func           = bpf_xdp_redirect_map,
4431 	.gpl_only       = false,
4432 	.ret_type       = RET_INTEGER,
4433 	.arg1_type      = ARG_CONST_MAP_PTR,
4434 	.arg2_type      = ARG_ANYTHING,
4435 	.arg3_type      = ARG_ANYTHING,
4436 };
4437 
4438 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4439 				  unsigned long off, unsigned long len)
4440 {
4441 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4442 
4443 	if (unlikely(!ptr))
4444 		return len;
4445 	if (ptr != dst_buff)
4446 		memcpy(dst_buff, ptr, len);
4447 
4448 	return 0;
4449 }
4450 
4451 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4452 	   u64, flags, void *, meta, u64, meta_size)
4453 {
4454 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4455 
4456 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4457 		return -EINVAL;
4458 	if (unlikely(!skb || skb_size > skb->len))
4459 		return -EFAULT;
4460 
4461 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4462 				bpf_skb_copy);
4463 }
4464 
4465 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4466 	.func		= bpf_skb_event_output,
4467 	.gpl_only	= true,
4468 	.ret_type	= RET_INTEGER,
4469 	.arg1_type	= ARG_PTR_TO_CTX,
4470 	.arg2_type	= ARG_CONST_MAP_PTR,
4471 	.arg3_type	= ARG_ANYTHING,
4472 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4473 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4474 };
4475 
4476 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4477 
4478 const struct bpf_func_proto bpf_skb_output_proto = {
4479 	.func		= bpf_skb_event_output,
4480 	.gpl_only	= true,
4481 	.ret_type	= RET_INTEGER,
4482 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4483 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4484 	.arg2_type	= ARG_CONST_MAP_PTR,
4485 	.arg3_type	= ARG_ANYTHING,
4486 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4487 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4488 };
4489 
4490 static unsigned short bpf_tunnel_key_af(u64 flags)
4491 {
4492 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4493 }
4494 
4495 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4496 	   u32, size, u64, flags)
4497 {
4498 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4499 	u8 compat[sizeof(struct bpf_tunnel_key)];
4500 	void *to_orig = to;
4501 	int err;
4502 
4503 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4504 					 BPF_F_TUNINFO_FLAGS)))) {
4505 		err = -EINVAL;
4506 		goto err_clear;
4507 	}
4508 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4509 		err = -EPROTO;
4510 		goto err_clear;
4511 	}
4512 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4513 		err = -EINVAL;
4514 		switch (size) {
4515 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4516 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4517 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4518 			goto set_compat;
4519 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4520 			/* Fixup deprecated structure layouts here, so we have
4521 			 * a common path later on.
4522 			 */
4523 			if (ip_tunnel_info_af(info) != AF_INET)
4524 				goto err_clear;
4525 set_compat:
4526 			to = (struct bpf_tunnel_key *)compat;
4527 			break;
4528 		default:
4529 			goto err_clear;
4530 		}
4531 	}
4532 
4533 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4534 	to->tunnel_tos = info->key.tos;
4535 	to->tunnel_ttl = info->key.ttl;
4536 	if (flags & BPF_F_TUNINFO_FLAGS)
4537 		to->tunnel_flags = info->key.tun_flags;
4538 	else
4539 		to->tunnel_ext = 0;
4540 
4541 	if (flags & BPF_F_TUNINFO_IPV6) {
4542 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4543 		       sizeof(to->remote_ipv6));
4544 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4545 		       sizeof(to->local_ipv6));
4546 		to->tunnel_label = be32_to_cpu(info->key.label);
4547 	} else {
4548 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4549 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4550 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4551 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4552 		to->tunnel_label = 0;
4553 	}
4554 
4555 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4556 		memcpy(to_orig, to, size);
4557 
4558 	return 0;
4559 err_clear:
4560 	memset(to_orig, 0, size);
4561 	return err;
4562 }
4563 
4564 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4565 	.func		= bpf_skb_get_tunnel_key,
4566 	.gpl_only	= false,
4567 	.ret_type	= RET_INTEGER,
4568 	.arg1_type	= ARG_PTR_TO_CTX,
4569 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4570 	.arg3_type	= ARG_CONST_SIZE,
4571 	.arg4_type	= ARG_ANYTHING,
4572 };
4573 
4574 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4575 {
4576 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4577 	int err;
4578 
4579 	if (unlikely(!info ||
4580 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4581 		err = -ENOENT;
4582 		goto err_clear;
4583 	}
4584 	if (unlikely(size < info->options_len)) {
4585 		err = -ENOMEM;
4586 		goto err_clear;
4587 	}
4588 
4589 	ip_tunnel_info_opts_get(to, info);
4590 	if (size > info->options_len)
4591 		memset(to + info->options_len, 0, size - info->options_len);
4592 
4593 	return info->options_len;
4594 err_clear:
4595 	memset(to, 0, size);
4596 	return err;
4597 }
4598 
4599 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4600 	.func		= bpf_skb_get_tunnel_opt,
4601 	.gpl_only	= false,
4602 	.ret_type	= RET_INTEGER,
4603 	.arg1_type	= ARG_PTR_TO_CTX,
4604 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4605 	.arg3_type	= ARG_CONST_SIZE,
4606 };
4607 
4608 static struct metadata_dst __percpu *md_dst;
4609 
4610 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4611 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4612 {
4613 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4614 	u8 compat[sizeof(struct bpf_tunnel_key)];
4615 	struct ip_tunnel_info *info;
4616 
4617 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4618 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4619 		return -EINVAL;
4620 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4621 		switch (size) {
4622 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4623 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4624 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4625 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4626 			/* Fixup deprecated structure layouts here, so we have
4627 			 * a common path later on.
4628 			 */
4629 			memcpy(compat, from, size);
4630 			memset(compat + size, 0, sizeof(compat) - size);
4631 			from = (const struct bpf_tunnel_key *) compat;
4632 			break;
4633 		default:
4634 			return -EINVAL;
4635 		}
4636 	}
4637 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4638 		     from->tunnel_ext))
4639 		return -EINVAL;
4640 
4641 	skb_dst_drop(skb);
4642 	dst_hold((struct dst_entry *) md);
4643 	skb_dst_set(skb, (struct dst_entry *) md);
4644 
4645 	info = &md->u.tun_info;
4646 	memset(info, 0, sizeof(*info));
4647 	info->mode = IP_TUNNEL_INFO_TX;
4648 
4649 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4650 	if (flags & BPF_F_DONT_FRAGMENT)
4651 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4652 	if (flags & BPF_F_ZERO_CSUM_TX)
4653 		info->key.tun_flags &= ~TUNNEL_CSUM;
4654 	if (flags & BPF_F_SEQ_NUMBER)
4655 		info->key.tun_flags |= TUNNEL_SEQ;
4656 
4657 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4658 	info->key.tos = from->tunnel_tos;
4659 	info->key.ttl = from->tunnel_ttl;
4660 
4661 	if (flags & BPF_F_TUNINFO_IPV6) {
4662 		info->mode |= IP_TUNNEL_INFO_IPV6;
4663 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4664 		       sizeof(from->remote_ipv6));
4665 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4666 		       sizeof(from->local_ipv6));
4667 		info->key.label = cpu_to_be32(from->tunnel_label) &
4668 				  IPV6_FLOWLABEL_MASK;
4669 	} else {
4670 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4671 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4672 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4673 	}
4674 
4675 	return 0;
4676 }
4677 
4678 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4679 	.func		= bpf_skb_set_tunnel_key,
4680 	.gpl_only	= false,
4681 	.ret_type	= RET_INTEGER,
4682 	.arg1_type	= ARG_PTR_TO_CTX,
4683 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4684 	.arg3_type	= ARG_CONST_SIZE,
4685 	.arg4_type	= ARG_ANYTHING,
4686 };
4687 
4688 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4689 	   const u8 *, from, u32, size)
4690 {
4691 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4692 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4693 
4694 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4695 		return -EINVAL;
4696 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4697 		return -ENOMEM;
4698 
4699 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4700 
4701 	return 0;
4702 }
4703 
4704 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4705 	.func		= bpf_skb_set_tunnel_opt,
4706 	.gpl_only	= false,
4707 	.ret_type	= RET_INTEGER,
4708 	.arg1_type	= ARG_PTR_TO_CTX,
4709 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4710 	.arg3_type	= ARG_CONST_SIZE,
4711 };
4712 
4713 static const struct bpf_func_proto *
4714 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4715 {
4716 	if (!md_dst) {
4717 		struct metadata_dst __percpu *tmp;
4718 
4719 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4720 						METADATA_IP_TUNNEL,
4721 						GFP_KERNEL);
4722 		if (!tmp)
4723 			return NULL;
4724 		if (cmpxchg(&md_dst, NULL, tmp))
4725 			metadata_dst_free_percpu(tmp);
4726 	}
4727 
4728 	switch (which) {
4729 	case BPF_FUNC_skb_set_tunnel_key:
4730 		return &bpf_skb_set_tunnel_key_proto;
4731 	case BPF_FUNC_skb_set_tunnel_opt:
4732 		return &bpf_skb_set_tunnel_opt_proto;
4733 	default:
4734 		return NULL;
4735 	}
4736 }
4737 
4738 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4739 	   u32, idx)
4740 {
4741 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4742 	struct cgroup *cgrp;
4743 	struct sock *sk;
4744 
4745 	sk = skb_to_full_sk(skb);
4746 	if (!sk || !sk_fullsock(sk))
4747 		return -ENOENT;
4748 	if (unlikely(idx >= array->map.max_entries))
4749 		return -E2BIG;
4750 
4751 	cgrp = READ_ONCE(array->ptrs[idx]);
4752 	if (unlikely(!cgrp))
4753 		return -EAGAIN;
4754 
4755 	return sk_under_cgroup_hierarchy(sk, cgrp);
4756 }
4757 
4758 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4759 	.func		= bpf_skb_under_cgroup,
4760 	.gpl_only	= false,
4761 	.ret_type	= RET_INTEGER,
4762 	.arg1_type	= ARG_PTR_TO_CTX,
4763 	.arg2_type	= ARG_CONST_MAP_PTR,
4764 	.arg3_type	= ARG_ANYTHING,
4765 };
4766 
4767 #ifdef CONFIG_SOCK_CGROUP_DATA
4768 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4769 {
4770 	struct cgroup *cgrp;
4771 
4772 	sk = sk_to_full_sk(sk);
4773 	if (!sk || !sk_fullsock(sk))
4774 		return 0;
4775 
4776 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4777 	return cgroup_id(cgrp);
4778 }
4779 
4780 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4781 {
4782 	return __bpf_sk_cgroup_id(skb->sk);
4783 }
4784 
4785 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4786 	.func           = bpf_skb_cgroup_id,
4787 	.gpl_only       = false,
4788 	.ret_type       = RET_INTEGER,
4789 	.arg1_type      = ARG_PTR_TO_CTX,
4790 };
4791 
4792 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4793 					      int ancestor_level)
4794 {
4795 	struct cgroup *ancestor;
4796 	struct cgroup *cgrp;
4797 
4798 	sk = sk_to_full_sk(sk);
4799 	if (!sk || !sk_fullsock(sk))
4800 		return 0;
4801 
4802 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4803 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4804 	if (!ancestor)
4805 		return 0;
4806 
4807 	return cgroup_id(ancestor);
4808 }
4809 
4810 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4811 	   ancestor_level)
4812 {
4813 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4814 }
4815 
4816 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4817 	.func           = bpf_skb_ancestor_cgroup_id,
4818 	.gpl_only       = false,
4819 	.ret_type       = RET_INTEGER,
4820 	.arg1_type      = ARG_PTR_TO_CTX,
4821 	.arg2_type      = ARG_ANYTHING,
4822 };
4823 
4824 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4825 {
4826 	return __bpf_sk_cgroup_id(sk);
4827 }
4828 
4829 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4830 	.func           = bpf_sk_cgroup_id,
4831 	.gpl_only       = false,
4832 	.ret_type       = RET_INTEGER,
4833 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4834 };
4835 
4836 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4837 {
4838 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4839 }
4840 
4841 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4842 	.func           = bpf_sk_ancestor_cgroup_id,
4843 	.gpl_only       = false,
4844 	.ret_type       = RET_INTEGER,
4845 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4846 	.arg2_type      = ARG_ANYTHING,
4847 };
4848 #endif
4849 
4850 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4851 				  unsigned long off, unsigned long len)
4852 {
4853 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4854 
4855 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4856 	return 0;
4857 }
4858 
4859 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4860 	   u64, flags, void *, meta, u64, meta_size)
4861 {
4862 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4863 
4864 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4865 		return -EINVAL;
4866 
4867 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4868 		return -EFAULT;
4869 
4870 	return bpf_event_output(map, flags, meta, meta_size, xdp,
4871 				xdp_size, bpf_xdp_copy);
4872 }
4873 
4874 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4875 	.func		= bpf_xdp_event_output,
4876 	.gpl_only	= true,
4877 	.ret_type	= RET_INTEGER,
4878 	.arg1_type	= ARG_PTR_TO_CTX,
4879 	.arg2_type	= ARG_CONST_MAP_PTR,
4880 	.arg3_type	= ARG_ANYTHING,
4881 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4882 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4883 };
4884 
4885 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4886 
4887 const struct bpf_func_proto bpf_xdp_output_proto = {
4888 	.func		= bpf_xdp_event_output,
4889 	.gpl_only	= true,
4890 	.ret_type	= RET_INTEGER,
4891 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4892 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4893 	.arg2_type	= ARG_CONST_MAP_PTR,
4894 	.arg3_type	= ARG_ANYTHING,
4895 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4896 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4897 };
4898 
4899 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4900 {
4901 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4902 }
4903 
4904 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4905 	.func           = bpf_get_socket_cookie,
4906 	.gpl_only       = false,
4907 	.ret_type       = RET_INTEGER,
4908 	.arg1_type      = ARG_PTR_TO_CTX,
4909 };
4910 
4911 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4912 {
4913 	return __sock_gen_cookie(ctx->sk);
4914 }
4915 
4916 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4917 	.func		= bpf_get_socket_cookie_sock_addr,
4918 	.gpl_only	= false,
4919 	.ret_type	= RET_INTEGER,
4920 	.arg1_type	= ARG_PTR_TO_CTX,
4921 };
4922 
4923 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4924 {
4925 	return __sock_gen_cookie(ctx);
4926 }
4927 
4928 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4929 	.func		= bpf_get_socket_cookie_sock,
4930 	.gpl_only	= false,
4931 	.ret_type	= RET_INTEGER,
4932 	.arg1_type	= ARG_PTR_TO_CTX,
4933 };
4934 
4935 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4936 {
4937 	return sk ? sock_gen_cookie(sk) : 0;
4938 }
4939 
4940 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4941 	.func		= bpf_get_socket_ptr_cookie,
4942 	.gpl_only	= false,
4943 	.ret_type	= RET_INTEGER,
4944 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4945 };
4946 
4947 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4948 {
4949 	return __sock_gen_cookie(ctx->sk);
4950 }
4951 
4952 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4953 	.func		= bpf_get_socket_cookie_sock_ops,
4954 	.gpl_only	= false,
4955 	.ret_type	= RET_INTEGER,
4956 	.arg1_type	= ARG_PTR_TO_CTX,
4957 };
4958 
4959 static u64 __bpf_get_netns_cookie(struct sock *sk)
4960 {
4961 	const struct net *net = sk ? sock_net(sk) : &init_net;
4962 
4963 	return net->net_cookie;
4964 }
4965 
4966 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4967 {
4968 	return __bpf_get_netns_cookie(ctx);
4969 }
4970 
4971 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4972 	.func		= bpf_get_netns_cookie_sock,
4973 	.gpl_only	= false,
4974 	.ret_type	= RET_INTEGER,
4975 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4976 };
4977 
4978 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4979 {
4980 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4981 }
4982 
4983 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4984 	.func		= bpf_get_netns_cookie_sock_addr,
4985 	.gpl_only	= false,
4986 	.ret_type	= RET_INTEGER,
4987 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4988 };
4989 
4990 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4991 {
4992 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4993 }
4994 
4995 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4996 	.func		= bpf_get_netns_cookie_sock_ops,
4997 	.gpl_only	= false,
4998 	.ret_type	= RET_INTEGER,
4999 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5000 };
5001 
5002 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5003 {
5004 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5005 }
5006 
5007 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5008 	.func		= bpf_get_netns_cookie_sk_msg,
5009 	.gpl_only	= false,
5010 	.ret_type	= RET_INTEGER,
5011 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5012 };
5013 
5014 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5015 {
5016 	struct sock *sk = sk_to_full_sk(skb->sk);
5017 	kuid_t kuid;
5018 
5019 	if (!sk || !sk_fullsock(sk))
5020 		return overflowuid;
5021 	kuid = sock_net_uid(sock_net(sk), sk);
5022 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5023 }
5024 
5025 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5026 	.func           = bpf_get_socket_uid,
5027 	.gpl_only       = false,
5028 	.ret_type       = RET_INTEGER,
5029 	.arg1_type      = ARG_PTR_TO_CTX,
5030 };
5031 
5032 static int sol_socket_sockopt(struct sock *sk, int optname,
5033 			      char *optval, int *optlen,
5034 			      bool getopt)
5035 {
5036 	switch (optname) {
5037 	case SO_REUSEADDR:
5038 	case SO_SNDBUF:
5039 	case SO_RCVBUF:
5040 	case SO_KEEPALIVE:
5041 	case SO_PRIORITY:
5042 	case SO_REUSEPORT:
5043 	case SO_RCVLOWAT:
5044 	case SO_MARK:
5045 	case SO_MAX_PACING_RATE:
5046 	case SO_BINDTOIFINDEX:
5047 	case SO_TXREHASH:
5048 		if (*optlen != sizeof(int))
5049 			return -EINVAL;
5050 		break;
5051 	case SO_BINDTODEVICE:
5052 		break;
5053 	default:
5054 		return -EINVAL;
5055 	}
5056 
5057 	if (getopt) {
5058 		if (optname == SO_BINDTODEVICE)
5059 			return -EINVAL;
5060 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5061 				     KERNEL_SOCKPTR(optval),
5062 				     KERNEL_SOCKPTR(optlen));
5063 	}
5064 
5065 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5066 			     KERNEL_SOCKPTR(optval), *optlen);
5067 }
5068 
5069 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5070 				  char *optval, int optlen)
5071 {
5072 	struct tcp_sock *tp = tcp_sk(sk);
5073 	unsigned long timeout;
5074 	int val;
5075 
5076 	if (optlen != sizeof(int))
5077 		return -EINVAL;
5078 
5079 	val = *(int *)optval;
5080 
5081 	/* Only some options are supported */
5082 	switch (optname) {
5083 	case TCP_BPF_IW:
5084 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5085 			return -EINVAL;
5086 		tcp_snd_cwnd_set(tp, val);
5087 		break;
5088 	case TCP_BPF_SNDCWND_CLAMP:
5089 		if (val <= 0)
5090 			return -EINVAL;
5091 		tp->snd_cwnd_clamp = val;
5092 		tp->snd_ssthresh = val;
5093 		break;
5094 	case TCP_BPF_DELACK_MAX:
5095 		timeout = usecs_to_jiffies(val);
5096 		if (timeout > TCP_DELACK_MAX ||
5097 		    timeout < TCP_TIMEOUT_MIN)
5098 			return -EINVAL;
5099 		inet_csk(sk)->icsk_delack_max = timeout;
5100 		break;
5101 	case TCP_BPF_RTO_MIN:
5102 		timeout = usecs_to_jiffies(val);
5103 		if (timeout > TCP_RTO_MIN ||
5104 		    timeout < TCP_TIMEOUT_MIN)
5105 			return -EINVAL;
5106 		inet_csk(sk)->icsk_rto_min = timeout;
5107 		break;
5108 	default:
5109 		return -EINVAL;
5110 	}
5111 
5112 	return 0;
5113 }
5114 
5115 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5116 				      int *optlen, bool getopt)
5117 {
5118 	struct tcp_sock *tp;
5119 	int ret;
5120 
5121 	if (*optlen < 2)
5122 		return -EINVAL;
5123 
5124 	if (getopt) {
5125 		if (!inet_csk(sk)->icsk_ca_ops)
5126 			return -EINVAL;
5127 		/* BPF expects NULL-terminated tcp-cc string */
5128 		optval[--(*optlen)] = '\0';
5129 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5130 					 KERNEL_SOCKPTR(optval),
5131 					 KERNEL_SOCKPTR(optlen));
5132 	}
5133 
5134 	/* "cdg" is the only cc that alloc a ptr
5135 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5136 	 * overwrite this ptr after switching to cdg.
5137 	 */
5138 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5139 		return -ENOTSUPP;
5140 
5141 	/* It stops this looping
5142 	 *
5143 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5144 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5145 	 *
5146 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5147 	 * in order to break the loop when both .init
5148 	 * are the same bpf prog.
5149 	 *
5150 	 * This applies even the second bpf_setsockopt(tcp_cc)
5151 	 * does not cause a loop.  This limits only the first
5152 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5153 	 * pick a fallback cc (eg. peer does not support ECN)
5154 	 * and the second '.init' cannot fallback to
5155 	 * another.
5156 	 */
5157 	tp = tcp_sk(sk);
5158 	if (tp->bpf_chg_cc_inprogress)
5159 		return -EBUSY;
5160 
5161 	tp->bpf_chg_cc_inprogress = 1;
5162 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5163 				KERNEL_SOCKPTR(optval), *optlen);
5164 	tp->bpf_chg_cc_inprogress = 0;
5165 	return ret;
5166 }
5167 
5168 static int sol_tcp_sockopt(struct sock *sk, int optname,
5169 			   char *optval, int *optlen,
5170 			   bool getopt)
5171 {
5172 	if (sk->sk_prot->setsockopt != tcp_setsockopt)
5173 		return -EINVAL;
5174 
5175 	switch (optname) {
5176 	case TCP_NODELAY:
5177 	case TCP_MAXSEG:
5178 	case TCP_KEEPIDLE:
5179 	case TCP_KEEPINTVL:
5180 	case TCP_KEEPCNT:
5181 	case TCP_SYNCNT:
5182 	case TCP_WINDOW_CLAMP:
5183 	case TCP_THIN_LINEAR_TIMEOUTS:
5184 	case TCP_USER_TIMEOUT:
5185 	case TCP_NOTSENT_LOWAT:
5186 	case TCP_SAVE_SYN:
5187 		if (*optlen != sizeof(int))
5188 			return -EINVAL;
5189 		break;
5190 	case TCP_CONGESTION:
5191 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5192 	case TCP_SAVED_SYN:
5193 		if (*optlen < 1)
5194 			return -EINVAL;
5195 		break;
5196 	default:
5197 		if (getopt)
5198 			return -EINVAL;
5199 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5200 	}
5201 
5202 	if (getopt) {
5203 		if (optname == TCP_SAVED_SYN) {
5204 			struct tcp_sock *tp = tcp_sk(sk);
5205 
5206 			if (!tp->saved_syn ||
5207 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5208 				return -EINVAL;
5209 			memcpy(optval, tp->saved_syn->data, *optlen);
5210 			/* It cannot free tp->saved_syn here because it
5211 			 * does not know if the user space still needs it.
5212 			 */
5213 			return 0;
5214 		}
5215 
5216 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5217 					 KERNEL_SOCKPTR(optval),
5218 					 KERNEL_SOCKPTR(optlen));
5219 	}
5220 
5221 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5222 				 KERNEL_SOCKPTR(optval), *optlen);
5223 }
5224 
5225 static int sol_ip_sockopt(struct sock *sk, int optname,
5226 			  char *optval, int *optlen,
5227 			  bool getopt)
5228 {
5229 	if (sk->sk_family != AF_INET)
5230 		return -EINVAL;
5231 
5232 	switch (optname) {
5233 	case IP_TOS:
5234 		if (*optlen != sizeof(int))
5235 			return -EINVAL;
5236 		break;
5237 	default:
5238 		return -EINVAL;
5239 	}
5240 
5241 	if (getopt)
5242 		return do_ip_getsockopt(sk, SOL_IP, optname,
5243 					KERNEL_SOCKPTR(optval),
5244 					KERNEL_SOCKPTR(optlen));
5245 
5246 	return do_ip_setsockopt(sk, SOL_IP, optname,
5247 				KERNEL_SOCKPTR(optval), *optlen);
5248 }
5249 
5250 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5251 			    char *optval, int *optlen,
5252 			    bool getopt)
5253 {
5254 	if (sk->sk_family != AF_INET6)
5255 		return -EINVAL;
5256 
5257 	switch (optname) {
5258 	case IPV6_TCLASS:
5259 	case IPV6_AUTOFLOWLABEL:
5260 		if (*optlen != sizeof(int))
5261 			return -EINVAL;
5262 		break;
5263 	default:
5264 		return -EINVAL;
5265 	}
5266 
5267 	if (getopt)
5268 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5269 						      KERNEL_SOCKPTR(optval),
5270 						      KERNEL_SOCKPTR(optlen));
5271 
5272 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5273 					      KERNEL_SOCKPTR(optval), *optlen);
5274 }
5275 
5276 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5277 			    char *optval, int optlen)
5278 {
5279 	if (!sk_fullsock(sk))
5280 		return -EINVAL;
5281 
5282 	if (level == SOL_SOCKET)
5283 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5284 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5285 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5286 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5287 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5288 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5289 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5290 
5291 	return -EINVAL;
5292 }
5293 
5294 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5295 			   char *optval, int optlen)
5296 {
5297 	if (sk_fullsock(sk))
5298 		sock_owned_by_me(sk);
5299 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5300 }
5301 
5302 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5303 			    char *optval, int optlen)
5304 {
5305 	int err, saved_optlen = optlen;
5306 
5307 	if (!sk_fullsock(sk)) {
5308 		err = -EINVAL;
5309 		goto done;
5310 	}
5311 
5312 	if (level == SOL_SOCKET)
5313 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5314 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5315 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5316 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5317 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5318 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5319 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5320 	else
5321 		err = -EINVAL;
5322 
5323 done:
5324 	if (err)
5325 		optlen = 0;
5326 	if (optlen < saved_optlen)
5327 		memset(optval + optlen, 0, saved_optlen - optlen);
5328 	return err;
5329 }
5330 
5331 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5332 			   char *optval, int optlen)
5333 {
5334 	if (sk_fullsock(sk))
5335 		sock_owned_by_me(sk);
5336 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5337 }
5338 
5339 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5340 	   int, optname, char *, optval, int, optlen)
5341 {
5342 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5343 }
5344 
5345 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5346 	.func		= bpf_sk_setsockopt,
5347 	.gpl_only	= false,
5348 	.ret_type	= RET_INTEGER,
5349 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5350 	.arg2_type	= ARG_ANYTHING,
5351 	.arg3_type	= ARG_ANYTHING,
5352 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5353 	.arg5_type	= ARG_CONST_SIZE,
5354 };
5355 
5356 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5357 	   int, optname, char *, optval, int, optlen)
5358 {
5359 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5360 }
5361 
5362 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5363 	.func		= bpf_sk_getsockopt,
5364 	.gpl_only	= false,
5365 	.ret_type	= RET_INTEGER,
5366 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5367 	.arg2_type	= ARG_ANYTHING,
5368 	.arg3_type	= ARG_ANYTHING,
5369 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5370 	.arg5_type	= ARG_CONST_SIZE,
5371 };
5372 
5373 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5374 	   int, optname, char *, optval, int, optlen)
5375 {
5376 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5377 }
5378 
5379 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5380 	.func		= bpf_unlocked_sk_setsockopt,
5381 	.gpl_only	= false,
5382 	.ret_type	= RET_INTEGER,
5383 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5384 	.arg2_type	= ARG_ANYTHING,
5385 	.arg3_type	= ARG_ANYTHING,
5386 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5387 	.arg5_type	= ARG_CONST_SIZE,
5388 };
5389 
5390 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5391 	   int, optname, char *, optval, int, optlen)
5392 {
5393 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5394 }
5395 
5396 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5397 	.func		= bpf_unlocked_sk_getsockopt,
5398 	.gpl_only	= false,
5399 	.ret_type	= RET_INTEGER,
5400 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5401 	.arg2_type	= ARG_ANYTHING,
5402 	.arg3_type	= ARG_ANYTHING,
5403 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5404 	.arg5_type	= ARG_CONST_SIZE,
5405 };
5406 
5407 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5408 	   int, level, int, optname, char *, optval, int, optlen)
5409 {
5410 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5411 }
5412 
5413 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5414 	.func		= bpf_sock_addr_setsockopt,
5415 	.gpl_only	= false,
5416 	.ret_type	= RET_INTEGER,
5417 	.arg1_type	= ARG_PTR_TO_CTX,
5418 	.arg2_type	= ARG_ANYTHING,
5419 	.arg3_type	= ARG_ANYTHING,
5420 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5421 	.arg5_type	= ARG_CONST_SIZE,
5422 };
5423 
5424 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5425 	   int, level, int, optname, char *, optval, int, optlen)
5426 {
5427 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5428 }
5429 
5430 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5431 	.func		= bpf_sock_addr_getsockopt,
5432 	.gpl_only	= false,
5433 	.ret_type	= RET_INTEGER,
5434 	.arg1_type	= ARG_PTR_TO_CTX,
5435 	.arg2_type	= ARG_ANYTHING,
5436 	.arg3_type	= ARG_ANYTHING,
5437 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5438 	.arg5_type	= ARG_CONST_SIZE,
5439 };
5440 
5441 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5442 	   int, level, int, optname, char *, optval, int, optlen)
5443 {
5444 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5445 }
5446 
5447 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5448 	.func		= bpf_sock_ops_setsockopt,
5449 	.gpl_only	= false,
5450 	.ret_type	= RET_INTEGER,
5451 	.arg1_type	= ARG_PTR_TO_CTX,
5452 	.arg2_type	= ARG_ANYTHING,
5453 	.arg3_type	= ARG_ANYTHING,
5454 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5455 	.arg5_type	= ARG_CONST_SIZE,
5456 };
5457 
5458 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5459 				int optname, const u8 **start)
5460 {
5461 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5462 	const u8 *hdr_start;
5463 	int ret;
5464 
5465 	if (syn_skb) {
5466 		/* sk is a request_sock here */
5467 
5468 		if (optname == TCP_BPF_SYN) {
5469 			hdr_start = syn_skb->data;
5470 			ret = tcp_hdrlen(syn_skb);
5471 		} else if (optname == TCP_BPF_SYN_IP) {
5472 			hdr_start = skb_network_header(syn_skb);
5473 			ret = skb_network_header_len(syn_skb) +
5474 				tcp_hdrlen(syn_skb);
5475 		} else {
5476 			/* optname == TCP_BPF_SYN_MAC */
5477 			hdr_start = skb_mac_header(syn_skb);
5478 			ret = skb_mac_header_len(syn_skb) +
5479 				skb_network_header_len(syn_skb) +
5480 				tcp_hdrlen(syn_skb);
5481 		}
5482 	} else {
5483 		struct sock *sk = bpf_sock->sk;
5484 		struct saved_syn *saved_syn;
5485 
5486 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5487 			/* synack retransmit. bpf_sock->syn_skb will
5488 			 * not be available.  It has to resort to
5489 			 * saved_syn (if it is saved).
5490 			 */
5491 			saved_syn = inet_reqsk(sk)->saved_syn;
5492 		else
5493 			saved_syn = tcp_sk(sk)->saved_syn;
5494 
5495 		if (!saved_syn)
5496 			return -ENOENT;
5497 
5498 		if (optname == TCP_BPF_SYN) {
5499 			hdr_start = saved_syn->data +
5500 				saved_syn->mac_hdrlen +
5501 				saved_syn->network_hdrlen;
5502 			ret = saved_syn->tcp_hdrlen;
5503 		} else if (optname == TCP_BPF_SYN_IP) {
5504 			hdr_start = saved_syn->data +
5505 				saved_syn->mac_hdrlen;
5506 			ret = saved_syn->network_hdrlen +
5507 				saved_syn->tcp_hdrlen;
5508 		} else {
5509 			/* optname == TCP_BPF_SYN_MAC */
5510 
5511 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5512 			if (!saved_syn->mac_hdrlen)
5513 				return -ENOENT;
5514 
5515 			hdr_start = saved_syn->data;
5516 			ret = saved_syn->mac_hdrlen +
5517 				saved_syn->network_hdrlen +
5518 				saved_syn->tcp_hdrlen;
5519 		}
5520 	}
5521 
5522 	*start = hdr_start;
5523 	return ret;
5524 }
5525 
5526 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5527 	   int, level, int, optname, char *, optval, int, optlen)
5528 {
5529 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5530 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5531 		int ret, copy_len = 0;
5532 		const u8 *start;
5533 
5534 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5535 		if (ret > 0) {
5536 			copy_len = ret;
5537 			if (optlen < copy_len) {
5538 				copy_len = optlen;
5539 				ret = -ENOSPC;
5540 			}
5541 
5542 			memcpy(optval, start, copy_len);
5543 		}
5544 
5545 		/* Zero out unused buffer at the end */
5546 		memset(optval + copy_len, 0, optlen - copy_len);
5547 
5548 		return ret;
5549 	}
5550 
5551 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5552 }
5553 
5554 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5555 	.func		= bpf_sock_ops_getsockopt,
5556 	.gpl_only	= false,
5557 	.ret_type	= RET_INTEGER,
5558 	.arg1_type	= ARG_PTR_TO_CTX,
5559 	.arg2_type	= ARG_ANYTHING,
5560 	.arg3_type	= ARG_ANYTHING,
5561 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5562 	.arg5_type	= ARG_CONST_SIZE,
5563 };
5564 
5565 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5566 	   int, argval)
5567 {
5568 	struct sock *sk = bpf_sock->sk;
5569 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5570 
5571 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5572 		return -EINVAL;
5573 
5574 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5575 
5576 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5577 }
5578 
5579 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5580 	.func		= bpf_sock_ops_cb_flags_set,
5581 	.gpl_only	= false,
5582 	.ret_type	= RET_INTEGER,
5583 	.arg1_type	= ARG_PTR_TO_CTX,
5584 	.arg2_type	= ARG_ANYTHING,
5585 };
5586 
5587 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5588 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5589 
5590 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5591 	   int, addr_len)
5592 {
5593 #ifdef CONFIG_INET
5594 	struct sock *sk = ctx->sk;
5595 	u32 flags = BIND_FROM_BPF;
5596 	int err;
5597 
5598 	err = -EINVAL;
5599 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5600 		return err;
5601 	if (addr->sa_family == AF_INET) {
5602 		if (addr_len < sizeof(struct sockaddr_in))
5603 			return err;
5604 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5605 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5606 		return __inet_bind(sk, addr, addr_len, flags);
5607 #if IS_ENABLED(CONFIG_IPV6)
5608 	} else if (addr->sa_family == AF_INET6) {
5609 		if (addr_len < SIN6_LEN_RFC2133)
5610 			return err;
5611 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5612 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5613 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5614 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5615 		 */
5616 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5617 #endif /* CONFIG_IPV6 */
5618 	}
5619 #endif /* CONFIG_INET */
5620 
5621 	return -EAFNOSUPPORT;
5622 }
5623 
5624 static const struct bpf_func_proto bpf_bind_proto = {
5625 	.func		= bpf_bind,
5626 	.gpl_only	= false,
5627 	.ret_type	= RET_INTEGER,
5628 	.arg1_type	= ARG_PTR_TO_CTX,
5629 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5630 	.arg3_type	= ARG_CONST_SIZE,
5631 };
5632 
5633 #ifdef CONFIG_XFRM
5634 
5635 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5636     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5637 
5638 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5639 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5640 
5641 #endif
5642 
5643 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5644 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5645 {
5646 	const struct sec_path *sp = skb_sec_path(skb);
5647 	const struct xfrm_state *x;
5648 
5649 	if (!sp || unlikely(index >= sp->len || flags))
5650 		goto err_clear;
5651 
5652 	x = sp->xvec[index];
5653 
5654 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5655 		goto err_clear;
5656 
5657 	to->reqid = x->props.reqid;
5658 	to->spi = x->id.spi;
5659 	to->family = x->props.family;
5660 	to->ext = 0;
5661 
5662 	if (to->family == AF_INET6) {
5663 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5664 		       sizeof(to->remote_ipv6));
5665 	} else {
5666 		to->remote_ipv4 = x->props.saddr.a4;
5667 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5668 	}
5669 
5670 	return 0;
5671 err_clear:
5672 	memset(to, 0, size);
5673 	return -EINVAL;
5674 }
5675 
5676 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5677 	.func		= bpf_skb_get_xfrm_state,
5678 	.gpl_only	= false,
5679 	.ret_type	= RET_INTEGER,
5680 	.arg1_type	= ARG_PTR_TO_CTX,
5681 	.arg2_type	= ARG_ANYTHING,
5682 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5683 	.arg4_type	= ARG_CONST_SIZE,
5684 	.arg5_type	= ARG_ANYTHING,
5685 };
5686 #endif
5687 
5688 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5689 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5690 				  const struct neighbour *neigh,
5691 				  const struct net_device *dev, u32 mtu)
5692 {
5693 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5694 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5695 	params->h_vlan_TCI = 0;
5696 	params->h_vlan_proto = 0;
5697 	if (mtu)
5698 		params->mtu_result = mtu; /* union with tot_len */
5699 
5700 	return 0;
5701 }
5702 #endif
5703 
5704 #if IS_ENABLED(CONFIG_INET)
5705 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5706 			       u32 flags, bool check_mtu)
5707 {
5708 	struct fib_nh_common *nhc;
5709 	struct in_device *in_dev;
5710 	struct neighbour *neigh;
5711 	struct net_device *dev;
5712 	struct fib_result res;
5713 	struct flowi4 fl4;
5714 	u32 mtu = 0;
5715 	int err;
5716 
5717 	dev = dev_get_by_index_rcu(net, params->ifindex);
5718 	if (unlikely(!dev))
5719 		return -ENODEV;
5720 
5721 	/* verify forwarding is enabled on this interface */
5722 	in_dev = __in_dev_get_rcu(dev);
5723 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5724 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5725 
5726 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5727 		fl4.flowi4_iif = 1;
5728 		fl4.flowi4_oif = params->ifindex;
5729 	} else {
5730 		fl4.flowi4_iif = params->ifindex;
5731 		fl4.flowi4_oif = 0;
5732 	}
5733 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5734 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5735 	fl4.flowi4_flags = 0;
5736 
5737 	fl4.flowi4_proto = params->l4_protocol;
5738 	fl4.daddr = params->ipv4_dst;
5739 	fl4.saddr = params->ipv4_src;
5740 	fl4.fl4_sport = params->sport;
5741 	fl4.fl4_dport = params->dport;
5742 	fl4.flowi4_multipath_hash = 0;
5743 
5744 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5745 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5746 		struct fib_table *tb;
5747 
5748 		tb = fib_get_table(net, tbid);
5749 		if (unlikely(!tb))
5750 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5751 
5752 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5753 	} else {
5754 		fl4.flowi4_mark = 0;
5755 		fl4.flowi4_secid = 0;
5756 		fl4.flowi4_tun_key.tun_id = 0;
5757 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5758 
5759 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5760 	}
5761 
5762 	if (err) {
5763 		/* map fib lookup errors to RTN_ type */
5764 		if (err == -EINVAL)
5765 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5766 		if (err == -EHOSTUNREACH)
5767 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5768 		if (err == -EACCES)
5769 			return BPF_FIB_LKUP_RET_PROHIBIT;
5770 
5771 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5772 	}
5773 
5774 	if (res.type != RTN_UNICAST)
5775 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5776 
5777 	if (fib_info_num_path(res.fi) > 1)
5778 		fib_select_path(net, &res, &fl4, NULL);
5779 
5780 	if (check_mtu) {
5781 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5782 		if (params->tot_len > mtu) {
5783 			params->mtu_result = mtu; /* union with tot_len */
5784 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5785 		}
5786 	}
5787 
5788 	nhc = res.nhc;
5789 
5790 	/* do not handle lwt encaps right now */
5791 	if (nhc->nhc_lwtstate)
5792 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5793 
5794 	dev = nhc->nhc_dev;
5795 
5796 	params->rt_metric = res.fi->fib_priority;
5797 	params->ifindex = dev->ifindex;
5798 
5799 	/* xdp and cls_bpf programs are run in RCU-bh so
5800 	 * rcu_read_lock_bh is not needed here
5801 	 */
5802 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5803 		if (nhc->nhc_gw_family)
5804 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5805 
5806 		neigh = __ipv4_neigh_lookup_noref(dev,
5807 						 (__force u32)params->ipv4_dst);
5808 	} else {
5809 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5810 
5811 		params->family = AF_INET6;
5812 		*dst = nhc->nhc_gw.ipv6;
5813 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5814 	}
5815 
5816 	if (!neigh)
5817 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5818 
5819 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5820 }
5821 #endif
5822 
5823 #if IS_ENABLED(CONFIG_IPV6)
5824 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5825 			       u32 flags, bool check_mtu)
5826 {
5827 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5828 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5829 	struct fib6_result res = {};
5830 	struct neighbour *neigh;
5831 	struct net_device *dev;
5832 	struct inet6_dev *idev;
5833 	struct flowi6 fl6;
5834 	int strict = 0;
5835 	int oif, err;
5836 	u32 mtu = 0;
5837 
5838 	/* link local addresses are never forwarded */
5839 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5840 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5841 
5842 	dev = dev_get_by_index_rcu(net, params->ifindex);
5843 	if (unlikely(!dev))
5844 		return -ENODEV;
5845 
5846 	idev = __in6_dev_get_safely(dev);
5847 	if (unlikely(!idev || !idev->cnf.forwarding))
5848 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5849 
5850 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5851 		fl6.flowi6_iif = 1;
5852 		oif = fl6.flowi6_oif = params->ifindex;
5853 	} else {
5854 		oif = fl6.flowi6_iif = params->ifindex;
5855 		fl6.flowi6_oif = 0;
5856 		strict = RT6_LOOKUP_F_HAS_SADDR;
5857 	}
5858 	fl6.flowlabel = params->flowinfo;
5859 	fl6.flowi6_scope = 0;
5860 	fl6.flowi6_flags = 0;
5861 	fl6.mp_hash = 0;
5862 
5863 	fl6.flowi6_proto = params->l4_protocol;
5864 	fl6.daddr = *dst;
5865 	fl6.saddr = *src;
5866 	fl6.fl6_sport = params->sport;
5867 	fl6.fl6_dport = params->dport;
5868 
5869 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5870 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5871 		struct fib6_table *tb;
5872 
5873 		tb = ipv6_stub->fib6_get_table(net, tbid);
5874 		if (unlikely(!tb))
5875 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5876 
5877 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5878 						   strict);
5879 	} else {
5880 		fl6.flowi6_mark = 0;
5881 		fl6.flowi6_secid = 0;
5882 		fl6.flowi6_tun_key.tun_id = 0;
5883 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5884 
5885 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5886 	}
5887 
5888 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5889 		     res.f6i == net->ipv6.fib6_null_entry))
5890 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5891 
5892 	switch (res.fib6_type) {
5893 	/* only unicast is forwarded */
5894 	case RTN_UNICAST:
5895 		break;
5896 	case RTN_BLACKHOLE:
5897 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5898 	case RTN_UNREACHABLE:
5899 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5900 	case RTN_PROHIBIT:
5901 		return BPF_FIB_LKUP_RET_PROHIBIT;
5902 	default:
5903 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5904 	}
5905 
5906 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5907 				    fl6.flowi6_oif != 0, NULL, strict);
5908 
5909 	if (check_mtu) {
5910 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5911 		if (params->tot_len > mtu) {
5912 			params->mtu_result = mtu; /* union with tot_len */
5913 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5914 		}
5915 	}
5916 
5917 	if (res.nh->fib_nh_lws)
5918 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5919 
5920 	if (res.nh->fib_nh_gw_family)
5921 		*dst = res.nh->fib_nh_gw6;
5922 
5923 	dev = res.nh->fib_nh_dev;
5924 	params->rt_metric = res.f6i->fib6_metric;
5925 	params->ifindex = dev->ifindex;
5926 
5927 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5928 	 * not needed here.
5929 	 */
5930 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5931 	if (!neigh)
5932 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5933 
5934 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5935 }
5936 #endif
5937 
5938 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5939 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5940 {
5941 	if (plen < sizeof(*params))
5942 		return -EINVAL;
5943 
5944 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5945 		return -EINVAL;
5946 
5947 	switch (params->family) {
5948 #if IS_ENABLED(CONFIG_INET)
5949 	case AF_INET:
5950 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5951 					   flags, true);
5952 #endif
5953 #if IS_ENABLED(CONFIG_IPV6)
5954 	case AF_INET6:
5955 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5956 					   flags, true);
5957 #endif
5958 	}
5959 	return -EAFNOSUPPORT;
5960 }
5961 
5962 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5963 	.func		= bpf_xdp_fib_lookup,
5964 	.gpl_only	= true,
5965 	.ret_type	= RET_INTEGER,
5966 	.arg1_type      = ARG_PTR_TO_CTX,
5967 	.arg2_type      = ARG_PTR_TO_MEM,
5968 	.arg3_type      = ARG_CONST_SIZE,
5969 	.arg4_type	= ARG_ANYTHING,
5970 };
5971 
5972 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5973 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5974 {
5975 	struct net *net = dev_net(skb->dev);
5976 	int rc = -EAFNOSUPPORT;
5977 	bool check_mtu = false;
5978 
5979 	if (plen < sizeof(*params))
5980 		return -EINVAL;
5981 
5982 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5983 		return -EINVAL;
5984 
5985 	if (params->tot_len)
5986 		check_mtu = true;
5987 
5988 	switch (params->family) {
5989 #if IS_ENABLED(CONFIG_INET)
5990 	case AF_INET:
5991 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5992 		break;
5993 #endif
5994 #if IS_ENABLED(CONFIG_IPV6)
5995 	case AF_INET6:
5996 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5997 		break;
5998 #endif
5999 	}
6000 
6001 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6002 		struct net_device *dev;
6003 
6004 		/* When tot_len isn't provided by user, check skb
6005 		 * against MTU of FIB lookup resulting net_device
6006 		 */
6007 		dev = dev_get_by_index_rcu(net, params->ifindex);
6008 		if (!is_skb_forwardable(dev, skb))
6009 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6010 
6011 		params->mtu_result = dev->mtu; /* union with tot_len */
6012 	}
6013 
6014 	return rc;
6015 }
6016 
6017 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6018 	.func		= bpf_skb_fib_lookup,
6019 	.gpl_only	= true,
6020 	.ret_type	= RET_INTEGER,
6021 	.arg1_type      = ARG_PTR_TO_CTX,
6022 	.arg2_type      = ARG_PTR_TO_MEM,
6023 	.arg3_type      = ARG_CONST_SIZE,
6024 	.arg4_type	= ARG_ANYTHING,
6025 };
6026 
6027 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6028 					    u32 ifindex)
6029 {
6030 	struct net *netns = dev_net(dev_curr);
6031 
6032 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6033 	if (ifindex == 0)
6034 		return dev_curr;
6035 
6036 	return dev_get_by_index_rcu(netns, ifindex);
6037 }
6038 
6039 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6040 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6041 {
6042 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6043 	struct net_device *dev = skb->dev;
6044 	int skb_len, dev_len;
6045 	int mtu;
6046 
6047 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6048 		return -EINVAL;
6049 
6050 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6051 		return -EINVAL;
6052 
6053 	dev = __dev_via_ifindex(dev, ifindex);
6054 	if (unlikely(!dev))
6055 		return -ENODEV;
6056 
6057 	mtu = READ_ONCE(dev->mtu);
6058 
6059 	dev_len = mtu + dev->hard_header_len;
6060 
6061 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6062 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6063 
6064 	skb_len += len_diff; /* minus result pass check */
6065 	if (skb_len <= dev_len) {
6066 		ret = BPF_MTU_CHK_RET_SUCCESS;
6067 		goto out;
6068 	}
6069 	/* At this point, skb->len exceed MTU, but as it include length of all
6070 	 * segments, it can still be below MTU.  The SKB can possibly get
6071 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6072 	 * must choose if segs are to be MTU checked.
6073 	 */
6074 	if (skb_is_gso(skb)) {
6075 		ret = BPF_MTU_CHK_RET_SUCCESS;
6076 
6077 		if (flags & BPF_MTU_CHK_SEGS &&
6078 		    !skb_gso_validate_network_len(skb, mtu))
6079 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6080 	}
6081 out:
6082 	/* BPF verifier guarantees valid pointer */
6083 	*mtu_len = mtu;
6084 
6085 	return ret;
6086 }
6087 
6088 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6089 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6090 {
6091 	struct net_device *dev = xdp->rxq->dev;
6092 	int xdp_len = xdp->data_end - xdp->data;
6093 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6094 	int mtu, dev_len;
6095 
6096 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6097 	if (unlikely(flags))
6098 		return -EINVAL;
6099 
6100 	dev = __dev_via_ifindex(dev, ifindex);
6101 	if (unlikely(!dev))
6102 		return -ENODEV;
6103 
6104 	mtu = READ_ONCE(dev->mtu);
6105 
6106 	/* Add L2-header as dev MTU is L3 size */
6107 	dev_len = mtu + dev->hard_header_len;
6108 
6109 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6110 	if (*mtu_len)
6111 		xdp_len = *mtu_len + dev->hard_header_len;
6112 
6113 	xdp_len += len_diff; /* minus result pass check */
6114 	if (xdp_len > dev_len)
6115 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6116 
6117 	/* BPF verifier guarantees valid pointer */
6118 	*mtu_len = mtu;
6119 
6120 	return ret;
6121 }
6122 
6123 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6124 	.func		= bpf_skb_check_mtu,
6125 	.gpl_only	= true,
6126 	.ret_type	= RET_INTEGER,
6127 	.arg1_type      = ARG_PTR_TO_CTX,
6128 	.arg2_type      = ARG_ANYTHING,
6129 	.arg3_type      = ARG_PTR_TO_INT,
6130 	.arg4_type      = ARG_ANYTHING,
6131 	.arg5_type      = ARG_ANYTHING,
6132 };
6133 
6134 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6135 	.func		= bpf_xdp_check_mtu,
6136 	.gpl_only	= true,
6137 	.ret_type	= RET_INTEGER,
6138 	.arg1_type      = ARG_PTR_TO_CTX,
6139 	.arg2_type      = ARG_ANYTHING,
6140 	.arg3_type      = ARG_PTR_TO_INT,
6141 	.arg4_type      = ARG_ANYTHING,
6142 	.arg5_type      = ARG_ANYTHING,
6143 };
6144 
6145 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6146 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6147 {
6148 	int err;
6149 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6150 
6151 	if (!seg6_validate_srh(srh, len, false))
6152 		return -EINVAL;
6153 
6154 	switch (type) {
6155 	case BPF_LWT_ENCAP_SEG6_INLINE:
6156 		if (skb->protocol != htons(ETH_P_IPV6))
6157 			return -EBADMSG;
6158 
6159 		err = seg6_do_srh_inline(skb, srh);
6160 		break;
6161 	case BPF_LWT_ENCAP_SEG6:
6162 		skb_reset_inner_headers(skb);
6163 		skb->encapsulation = 1;
6164 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6165 		break;
6166 	default:
6167 		return -EINVAL;
6168 	}
6169 
6170 	bpf_compute_data_pointers(skb);
6171 	if (err)
6172 		return err;
6173 
6174 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6175 
6176 	return seg6_lookup_nexthop(skb, NULL, 0);
6177 }
6178 #endif /* CONFIG_IPV6_SEG6_BPF */
6179 
6180 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6181 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6182 			     bool ingress)
6183 {
6184 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6185 }
6186 #endif
6187 
6188 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6189 	   u32, len)
6190 {
6191 	switch (type) {
6192 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6193 	case BPF_LWT_ENCAP_SEG6:
6194 	case BPF_LWT_ENCAP_SEG6_INLINE:
6195 		return bpf_push_seg6_encap(skb, type, hdr, len);
6196 #endif
6197 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6198 	case BPF_LWT_ENCAP_IP:
6199 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6200 #endif
6201 	default:
6202 		return -EINVAL;
6203 	}
6204 }
6205 
6206 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6207 	   void *, hdr, u32, len)
6208 {
6209 	switch (type) {
6210 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6211 	case BPF_LWT_ENCAP_IP:
6212 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6213 #endif
6214 	default:
6215 		return -EINVAL;
6216 	}
6217 }
6218 
6219 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6220 	.func		= bpf_lwt_in_push_encap,
6221 	.gpl_only	= false,
6222 	.ret_type	= RET_INTEGER,
6223 	.arg1_type	= ARG_PTR_TO_CTX,
6224 	.arg2_type	= ARG_ANYTHING,
6225 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6226 	.arg4_type	= ARG_CONST_SIZE
6227 };
6228 
6229 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6230 	.func		= bpf_lwt_xmit_push_encap,
6231 	.gpl_only	= false,
6232 	.ret_type	= RET_INTEGER,
6233 	.arg1_type	= ARG_PTR_TO_CTX,
6234 	.arg2_type	= ARG_ANYTHING,
6235 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6236 	.arg4_type	= ARG_CONST_SIZE
6237 };
6238 
6239 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6240 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6241 	   const void *, from, u32, len)
6242 {
6243 	struct seg6_bpf_srh_state *srh_state =
6244 		this_cpu_ptr(&seg6_bpf_srh_states);
6245 	struct ipv6_sr_hdr *srh = srh_state->srh;
6246 	void *srh_tlvs, *srh_end, *ptr;
6247 	int srhoff = 0;
6248 
6249 	if (srh == NULL)
6250 		return -EINVAL;
6251 
6252 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6253 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6254 
6255 	ptr = skb->data + offset;
6256 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6257 		srh_state->valid = false;
6258 	else if (ptr < (void *)&srh->flags ||
6259 		 ptr + len > (void *)&srh->segments)
6260 		return -EFAULT;
6261 
6262 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6263 		return -EFAULT;
6264 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6265 		return -EINVAL;
6266 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6267 
6268 	memcpy(skb->data + offset, from, len);
6269 	return 0;
6270 }
6271 
6272 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6273 	.func		= bpf_lwt_seg6_store_bytes,
6274 	.gpl_only	= false,
6275 	.ret_type	= RET_INTEGER,
6276 	.arg1_type	= ARG_PTR_TO_CTX,
6277 	.arg2_type	= ARG_ANYTHING,
6278 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6279 	.arg4_type	= ARG_CONST_SIZE
6280 };
6281 
6282 static void bpf_update_srh_state(struct sk_buff *skb)
6283 {
6284 	struct seg6_bpf_srh_state *srh_state =
6285 		this_cpu_ptr(&seg6_bpf_srh_states);
6286 	int srhoff = 0;
6287 
6288 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6289 		srh_state->srh = NULL;
6290 	} else {
6291 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6292 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6293 		srh_state->valid = true;
6294 	}
6295 }
6296 
6297 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6298 	   u32, action, void *, param, u32, param_len)
6299 {
6300 	struct seg6_bpf_srh_state *srh_state =
6301 		this_cpu_ptr(&seg6_bpf_srh_states);
6302 	int hdroff = 0;
6303 	int err;
6304 
6305 	switch (action) {
6306 	case SEG6_LOCAL_ACTION_END_X:
6307 		if (!seg6_bpf_has_valid_srh(skb))
6308 			return -EBADMSG;
6309 		if (param_len != sizeof(struct in6_addr))
6310 			return -EINVAL;
6311 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6312 	case SEG6_LOCAL_ACTION_END_T:
6313 		if (!seg6_bpf_has_valid_srh(skb))
6314 			return -EBADMSG;
6315 		if (param_len != sizeof(int))
6316 			return -EINVAL;
6317 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6318 	case SEG6_LOCAL_ACTION_END_DT6:
6319 		if (!seg6_bpf_has_valid_srh(skb))
6320 			return -EBADMSG;
6321 		if (param_len != sizeof(int))
6322 			return -EINVAL;
6323 
6324 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6325 			return -EBADMSG;
6326 		if (!pskb_pull(skb, hdroff))
6327 			return -EBADMSG;
6328 
6329 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6330 		skb_reset_network_header(skb);
6331 		skb_reset_transport_header(skb);
6332 		skb->encapsulation = 0;
6333 
6334 		bpf_compute_data_pointers(skb);
6335 		bpf_update_srh_state(skb);
6336 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6337 	case SEG6_LOCAL_ACTION_END_B6:
6338 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6339 			return -EBADMSG;
6340 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6341 					  param, param_len);
6342 		if (!err)
6343 			bpf_update_srh_state(skb);
6344 
6345 		return err;
6346 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6347 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6348 			return -EBADMSG;
6349 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6350 					  param, param_len);
6351 		if (!err)
6352 			bpf_update_srh_state(skb);
6353 
6354 		return err;
6355 	default:
6356 		return -EINVAL;
6357 	}
6358 }
6359 
6360 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6361 	.func		= bpf_lwt_seg6_action,
6362 	.gpl_only	= false,
6363 	.ret_type	= RET_INTEGER,
6364 	.arg1_type	= ARG_PTR_TO_CTX,
6365 	.arg2_type	= ARG_ANYTHING,
6366 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6367 	.arg4_type	= ARG_CONST_SIZE
6368 };
6369 
6370 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6371 	   s32, len)
6372 {
6373 	struct seg6_bpf_srh_state *srh_state =
6374 		this_cpu_ptr(&seg6_bpf_srh_states);
6375 	struct ipv6_sr_hdr *srh = srh_state->srh;
6376 	void *srh_end, *srh_tlvs, *ptr;
6377 	struct ipv6hdr *hdr;
6378 	int srhoff = 0;
6379 	int ret;
6380 
6381 	if (unlikely(srh == NULL))
6382 		return -EINVAL;
6383 
6384 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6385 			((srh->first_segment + 1) << 4));
6386 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6387 			srh_state->hdrlen);
6388 	ptr = skb->data + offset;
6389 
6390 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6391 		return -EFAULT;
6392 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6393 		return -EFAULT;
6394 
6395 	if (len > 0) {
6396 		ret = skb_cow_head(skb, len);
6397 		if (unlikely(ret < 0))
6398 			return ret;
6399 
6400 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6401 	} else {
6402 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6403 	}
6404 
6405 	bpf_compute_data_pointers(skb);
6406 	if (unlikely(ret < 0))
6407 		return ret;
6408 
6409 	hdr = (struct ipv6hdr *)skb->data;
6410 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6411 
6412 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6413 		return -EINVAL;
6414 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6415 	srh_state->hdrlen += len;
6416 	srh_state->valid = false;
6417 	return 0;
6418 }
6419 
6420 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6421 	.func		= bpf_lwt_seg6_adjust_srh,
6422 	.gpl_only	= false,
6423 	.ret_type	= RET_INTEGER,
6424 	.arg1_type	= ARG_PTR_TO_CTX,
6425 	.arg2_type	= ARG_ANYTHING,
6426 	.arg3_type	= ARG_ANYTHING,
6427 };
6428 #endif /* CONFIG_IPV6_SEG6_BPF */
6429 
6430 #ifdef CONFIG_INET
6431 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6432 			      int dif, int sdif, u8 family, u8 proto)
6433 {
6434 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6435 	bool refcounted = false;
6436 	struct sock *sk = NULL;
6437 
6438 	if (family == AF_INET) {
6439 		__be32 src4 = tuple->ipv4.saddr;
6440 		__be32 dst4 = tuple->ipv4.daddr;
6441 
6442 		if (proto == IPPROTO_TCP)
6443 			sk = __inet_lookup(net, hinfo, NULL, 0,
6444 					   src4, tuple->ipv4.sport,
6445 					   dst4, tuple->ipv4.dport,
6446 					   dif, sdif, &refcounted);
6447 		else
6448 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6449 					       dst4, tuple->ipv4.dport,
6450 					       dif, sdif, net->ipv4.udp_table, NULL);
6451 #if IS_ENABLED(CONFIG_IPV6)
6452 	} else {
6453 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6454 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6455 
6456 		if (proto == IPPROTO_TCP)
6457 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6458 					    src6, tuple->ipv6.sport,
6459 					    dst6, ntohs(tuple->ipv6.dport),
6460 					    dif, sdif, &refcounted);
6461 		else if (likely(ipv6_bpf_stub))
6462 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6463 							    src6, tuple->ipv6.sport,
6464 							    dst6, tuple->ipv6.dport,
6465 							    dif, sdif,
6466 							    net->ipv4.udp_table, NULL);
6467 #endif
6468 	}
6469 
6470 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6471 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6472 		sk = NULL;
6473 	}
6474 	return sk;
6475 }
6476 
6477 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6478  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6479  */
6480 static struct sock *
6481 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6482 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6483 		 u64 flags)
6484 {
6485 	struct sock *sk = NULL;
6486 	struct net *net;
6487 	u8 family;
6488 	int sdif;
6489 
6490 	if (len == sizeof(tuple->ipv4))
6491 		family = AF_INET;
6492 	else if (len == sizeof(tuple->ipv6))
6493 		family = AF_INET6;
6494 	else
6495 		return NULL;
6496 
6497 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6498 		goto out;
6499 
6500 	if (family == AF_INET)
6501 		sdif = inet_sdif(skb);
6502 	else
6503 		sdif = inet6_sdif(skb);
6504 
6505 	if ((s32)netns_id < 0) {
6506 		net = caller_net;
6507 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6508 	} else {
6509 		net = get_net_ns_by_id(caller_net, netns_id);
6510 		if (unlikely(!net))
6511 			goto out;
6512 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6513 		put_net(net);
6514 	}
6515 
6516 out:
6517 	return sk;
6518 }
6519 
6520 static struct sock *
6521 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6522 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6523 		u64 flags)
6524 {
6525 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6526 					   ifindex, proto, netns_id, flags);
6527 
6528 	if (sk) {
6529 		struct sock *sk2 = sk_to_full_sk(sk);
6530 
6531 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6532 		 * sock refcnt is decremented to prevent a request_sock leak.
6533 		 */
6534 		if (!sk_fullsock(sk2))
6535 			sk2 = NULL;
6536 		if (sk2 != sk) {
6537 			sock_gen_put(sk);
6538 			/* Ensure there is no need to bump sk2 refcnt */
6539 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6540 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6541 				return NULL;
6542 			}
6543 			sk = sk2;
6544 		}
6545 	}
6546 
6547 	return sk;
6548 }
6549 
6550 static struct sock *
6551 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6552 	       u8 proto, u64 netns_id, u64 flags)
6553 {
6554 	struct net *caller_net;
6555 	int ifindex;
6556 
6557 	if (skb->dev) {
6558 		caller_net = dev_net(skb->dev);
6559 		ifindex = skb->dev->ifindex;
6560 	} else {
6561 		caller_net = sock_net(skb->sk);
6562 		ifindex = 0;
6563 	}
6564 
6565 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6566 				netns_id, flags);
6567 }
6568 
6569 static struct sock *
6570 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6571 	      u8 proto, u64 netns_id, u64 flags)
6572 {
6573 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6574 					 flags);
6575 
6576 	if (sk) {
6577 		struct sock *sk2 = sk_to_full_sk(sk);
6578 
6579 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6580 		 * sock refcnt is decremented to prevent a request_sock leak.
6581 		 */
6582 		if (!sk_fullsock(sk2))
6583 			sk2 = NULL;
6584 		if (sk2 != sk) {
6585 			sock_gen_put(sk);
6586 			/* Ensure there is no need to bump sk2 refcnt */
6587 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6588 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6589 				return NULL;
6590 			}
6591 			sk = sk2;
6592 		}
6593 	}
6594 
6595 	return sk;
6596 }
6597 
6598 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6599 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6600 {
6601 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6602 					     netns_id, flags);
6603 }
6604 
6605 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6606 	.func		= bpf_skc_lookup_tcp,
6607 	.gpl_only	= false,
6608 	.pkt_access	= true,
6609 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6610 	.arg1_type	= ARG_PTR_TO_CTX,
6611 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6612 	.arg3_type	= ARG_CONST_SIZE,
6613 	.arg4_type	= ARG_ANYTHING,
6614 	.arg5_type	= ARG_ANYTHING,
6615 };
6616 
6617 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6618 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6619 {
6620 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6621 					    netns_id, flags);
6622 }
6623 
6624 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6625 	.func		= bpf_sk_lookup_tcp,
6626 	.gpl_only	= false,
6627 	.pkt_access	= true,
6628 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6629 	.arg1_type	= ARG_PTR_TO_CTX,
6630 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6631 	.arg3_type	= ARG_CONST_SIZE,
6632 	.arg4_type	= ARG_ANYTHING,
6633 	.arg5_type	= ARG_ANYTHING,
6634 };
6635 
6636 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6637 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6638 {
6639 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6640 					    netns_id, flags);
6641 }
6642 
6643 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6644 	.func		= bpf_sk_lookup_udp,
6645 	.gpl_only	= false,
6646 	.pkt_access	= true,
6647 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6648 	.arg1_type	= ARG_PTR_TO_CTX,
6649 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6650 	.arg3_type	= ARG_CONST_SIZE,
6651 	.arg4_type	= ARG_ANYTHING,
6652 	.arg5_type	= ARG_ANYTHING,
6653 };
6654 
6655 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6656 {
6657 	if (sk && sk_is_refcounted(sk))
6658 		sock_gen_put(sk);
6659 	return 0;
6660 }
6661 
6662 static const struct bpf_func_proto bpf_sk_release_proto = {
6663 	.func		= bpf_sk_release,
6664 	.gpl_only	= false,
6665 	.ret_type	= RET_INTEGER,
6666 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6667 };
6668 
6669 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6670 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6671 {
6672 	struct net *caller_net = dev_net(ctx->rxq->dev);
6673 	int ifindex = ctx->rxq->dev->ifindex;
6674 
6675 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6676 					      ifindex, IPPROTO_UDP, netns_id,
6677 					      flags);
6678 }
6679 
6680 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6681 	.func           = bpf_xdp_sk_lookup_udp,
6682 	.gpl_only       = false,
6683 	.pkt_access     = true,
6684 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6685 	.arg1_type      = ARG_PTR_TO_CTX,
6686 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6687 	.arg3_type      = ARG_CONST_SIZE,
6688 	.arg4_type      = ARG_ANYTHING,
6689 	.arg5_type      = ARG_ANYTHING,
6690 };
6691 
6692 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6693 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6694 {
6695 	struct net *caller_net = dev_net(ctx->rxq->dev);
6696 	int ifindex = ctx->rxq->dev->ifindex;
6697 
6698 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6699 					       ifindex, IPPROTO_TCP, netns_id,
6700 					       flags);
6701 }
6702 
6703 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6704 	.func           = bpf_xdp_skc_lookup_tcp,
6705 	.gpl_only       = false,
6706 	.pkt_access     = true,
6707 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6708 	.arg1_type      = ARG_PTR_TO_CTX,
6709 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6710 	.arg3_type      = ARG_CONST_SIZE,
6711 	.arg4_type      = ARG_ANYTHING,
6712 	.arg5_type      = ARG_ANYTHING,
6713 };
6714 
6715 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6716 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6717 {
6718 	struct net *caller_net = dev_net(ctx->rxq->dev);
6719 	int ifindex = ctx->rxq->dev->ifindex;
6720 
6721 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6722 					      ifindex, IPPROTO_TCP, netns_id,
6723 					      flags);
6724 }
6725 
6726 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6727 	.func           = bpf_xdp_sk_lookup_tcp,
6728 	.gpl_only       = false,
6729 	.pkt_access     = true,
6730 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6731 	.arg1_type      = ARG_PTR_TO_CTX,
6732 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6733 	.arg3_type      = ARG_CONST_SIZE,
6734 	.arg4_type      = ARG_ANYTHING,
6735 	.arg5_type      = ARG_ANYTHING,
6736 };
6737 
6738 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6739 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6740 {
6741 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6742 					       sock_net(ctx->sk), 0,
6743 					       IPPROTO_TCP, netns_id, flags);
6744 }
6745 
6746 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6747 	.func		= bpf_sock_addr_skc_lookup_tcp,
6748 	.gpl_only	= false,
6749 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6750 	.arg1_type	= ARG_PTR_TO_CTX,
6751 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6752 	.arg3_type	= ARG_CONST_SIZE,
6753 	.arg4_type	= ARG_ANYTHING,
6754 	.arg5_type	= ARG_ANYTHING,
6755 };
6756 
6757 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6758 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6759 {
6760 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6761 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6762 					      netns_id, flags);
6763 }
6764 
6765 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6766 	.func		= bpf_sock_addr_sk_lookup_tcp,
6767 	.gpl_only	= false,
6768 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6769 	.arg1_type	= ARG_PTR_TO_CTX,
6770 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6771 	.arg3_type	= ARG_CONST_SIZE,
6772 	.arg4_type	= ARG_ANYTHING,
6773 	.arg5_type	= ARG_ANYTHING,
6774 };
6775 
6776 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6777 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6778 {
6779 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6780 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6781 					      netns_id, flags);
6782 }
6783 
6784 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6785 	.func		= bpf_sock_addr_sk_lookup_udp,
6786 	.gpl_only	= false,
6787 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6788 	.arg1_type	= ARG_PTR_TO_CTX,
6789 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6790 	.arg3_type	= ARG_CONST_SIZE,
6791 	.arg4_type	= ARG_ANYTHING,
6792 	.arg5_type	= ARG_ANYTHING,
6793 };
6794 
6795 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6796 				  struct bpf_insn_access_aux *info)
6797 {
6798 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6799 					  icsk_retransmits))
6800 		return false;
6801 
6802 	if (off % size != 0)
6803 		return false;
6804 
6805 	switch (off) {
6806 	case offsetof(struct bpf_tcp_sock, bytes_received):
6807 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6808 		return size == sizeof(__u64);
6809 	default:
6810 		return size == sizeof(__u32);
6811 	}
6812 }
6813 
6814 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6815 				    const struct bpf_insn *si,
6816 				    struct bpf_insn *insn_buf,
6817 				    struct bpf_prog *prog, u32 *target_size)
6818 {
6819 	struct bpf_insn *insn = insn_buf;
6820 
6821 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6822 	do {								\
6823 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6824 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6825 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6826 				      si->dst_reg, si->src_reg,		\
6827 				      offsetof(struct tcp_sock, FIELD)); \
6828 	} while (0)
6829 
6830 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6831 	do {								\
6832 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6833 					  FIELD) >			\
6834 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6835 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6836 					struct inet_connection_sock,	\
6837 					FIELD),				\
6838 				      si->dst_reg, si->src_reg,		\
6839 				      offsetof(				\
6840 					struct inet_connection_sock,	\
6841 					FIELD));			\
6842 	} while (0)
6843 
6844 	if (insn > insn_buf)
6845 		return insn - insn_buf;
6846 
6847 	switch (si->off) {
6848 	case offsetof(struct bpf_tcp_sock, rtt_min):
6849 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6850 			     sizeof(struct minmax));
6851 		BUILD_BUG_ON(sizeof(struct minmax) <
6852 			     sizeof(struct minmax_sample));
6853 
6854 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6855 				      offsetof(struct tcp_sock, rtt_min) +
6856 				      offsetof(struct minmax_sample, v));
6857 		break;
6858 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6859 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6860 		break;
6861 	case offsetof(struct bpf_tcp_sock, srtt_us):
6862 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6863 		break;
6864 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6865 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6866 		break;
6867 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6868 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6869 		break;
6870 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6871 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6872 		break;
6873 	case offsetof(struct bpf_tcp_sock, snd_una):
6874 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6875 		break;
6876 	case offsetof(struct bpf_tcp_sock, mss_cache):
6877 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6878 		break;
6879 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6880 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6881 		break;
6882 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6883 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6884 		break;
6885 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6886 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6887 		break;
6888 	case offsetof(struct bpf_tcp_sock, packets_out):
6889 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6890 		break;
6891 	case offsetof(struct bpf_tcp_sock, retrans_out):
6892 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6893 		break;
6894 	case offsetof(struct bpf_tcp_sock, total_retrans):
6895 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6896 		break;
6897 	case offsetof(struct bpf_tcp_sock, segs_in):
6898 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6899 		break;
6900 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6901 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6902 		break;
6903 	case offsetof(struct bpf_tcp_sock, segs_out):
6904 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6905 		break;
6906 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6907 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6908 		break;
6909 	case offsetof(struct bpf_tcp_sock, lost_out):
6910 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6911 		break;
6912 	case offsetof(struct bpf_tcp_sock, sacked_out):
6913 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6914 		break;
6915 	case offsetof(struct bpf_tcp_sock, bytes_received):
6916 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6917 		break;
6918 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6919 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6920 		break;
6921 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6922 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6923 		break;
6924 	case offsetof(struct bpf_tcp_sock, delivered):
6925 		BPF_TCP_SOCK_GET_COMMON(delivered);
6926 		break;
6927 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6928 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6929 		break;
6930 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6931 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6932 		break;
6933 	}
6934 
6935 	return insn - insn_buf;
6936 }
6937 
6938 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6939 {
6940 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6941 		return (unsigned long)sk;
6942 
6943 	return (unsigned long)NULL;
6944 }
6945 
6946 const struct bpf_func_proto bpf_tcp_sock_proto = {
6947 	.func		= bpf_tcp_sock,
6948 	.gpl_only	= false,
6949 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6950 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6951 };
6952 
6953 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6954 {
6955 	sk = sk_to_full_sk(sk);
6956 
6957 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6958 		return (unsigned long)sk;
6959 
6960 	return (unsigned long)NULL;
6961 }
6962 
6963 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6964 	.func		= bpf_get_listener_sock,
6965 	.gpl_only	= false,
6966 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6967 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6968 };
6969 
6970 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6971 {
6972 	unsigned int iphdr_len;
6973 
6974 	switch (skb_protocol(skb, true)) {
6975 	case cpu_to_be16(ETH_P_IP):
6976 		iphdr_len = sizeof(struct iphdr);
6977 		break;
6978 	case cpu_to_be16(ETH_P_IPV6):
6979 		iphdr_len = sizeof(struct ipv6hdr);
6980 		break;
6981 	default:
6982 		return 0;
6983 	}
6984 
6985 	if (skb_headlen(skb) < iphdr_len)
6986 		return 0;
6987 
6988 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6989 		return 0;
6990 
6991 	return INET_ECN_set_ce(skb);
6992 }
6993 
6994 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6995 				  struct bpf_insn_access_aux *info)
6996 {
6997 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6998 		return false;
6999 
7000 	if (off % size != 0)
7001 		return false;
7002 
7003 	switch (off) {
7004 	default:
7005 		return size == sizeof(__u32);
7006 	}
7007 }
7008 
7009 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7010 				    const struct bpf_insn *si,
7011 				    struct bpf_insn *insn_buf,
7012 				    struct bpf_prog *prog, u32 *target_size)
7013 {
7014 	struct bpf_insn *insn = insn_buf;
7015 
7016 #define BPF_XDP_SOCK_GET(FIELD)						\
7017 	do {								\
7018 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7019 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7020 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7021 				      si->dst_reg, si->src_reg,		\
7022 				      offsetof(struct xdp_sock, FIELD)); \
7023 	} while (0)
7024 
7025 	switch (si->off) {
7026 	case offsetof(struct bpf_xdp_sock, queue_id):
7027 		BPF_XDP_SOCK_GET(queue_id);
7028 		break;
7029 	}
7030 
7031 	return insn - insn_buf;
7032 }
7033 
7034 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7035 	.func           = bpf_skb_ecn_set_ce,
7036 	.gpl_only       = false,
7037 	.ret_type       = RET_INTEGER,
7038 	.arg1_type      = ARG_PTR_TO_CTX,
7039 };
7040 
7041 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7042 	   struct tcphdr *, th, u32, th_len)
7043 {
7044 #ifdef CONFIG_SYN_COOKIES
7045 	u32 cookie;
7046 	int ret;
7047 
7048 	if (unlikely(!sk || th_len < sizeof(*th)))
7049 		return -EINVAL;
7050 
7051 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7052 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7053 		return -EINVAL;
7054 
7055 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7056 		return -EINVAL;
7057 
7058 	if (!th->ack || th->rst || th->syn)
7059 		return -ENOENT;
7060 
7061 	if (unlikely(iph_len < sizeof(struct iphdr)))
7062 		return -EINVAL;
7063 
7064 	if (tcp_synq_no_recent_overflow(sk))
7065 		return -ENOENT;
7066 
7067 	cookie = ntohl(th->ack_seq) - 1;
7068 
7069 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7070 	 * same offset so we can cast to the shorter header (struct iphdr).
7071 	 */
7072 	switch (((struct iphdr *)iph)->version) {
7073 	case 4:
7074 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7075 			return -EINVAL;
7076 
7077 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7078 		break;
7079 
7080 #if IS_BUILTIN(CONFIG_IPV6)
7081 	case 6:
7082 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7083 			return -EINVAL;
7084 
7085 		if (sk->sk_family != AF_INET6)
7086 			return -EINVAL;
7087 
7088 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7089 		break;
7090 #endif /* CONFIG_IPV6 */
7091 
7092 	default:
7093 		return -EPROTONOSUPPORT;
7094 	}
7095 
7096 	if (ret > 0)
7097 		return 0;
7098 
7099 	return -ENOENT;
7100 #else
7101 	return -ENOTSUPP;
7102 #endif
7103 }
7104 
7105 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7106 	.func		= bpf_tcp_check_syncookie,
7107 	.gpl_only	= true,
7108 	.pkt_access	= true,
7109 	.ret_type	= RET_INTEGER,
7110 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7111 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7112 	.arg3_type	= ARG_CONST_SIZE,
7113 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7114 	.arg5_type	= ARG_CONST_SIZE,
7115 };
7116 
7117 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7118 	   struct tcphdr *, th, u32, th_len)
7119 {
7120 #ifdef CONFIG_SYN_COOKIES
7121 	u32 cookie;
7122 	u16 mss;
7123 
7124 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7125 		return -EINVAL;
7126 
7127 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7128 		return -EINVAL;
7129 
7130 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7131 		return -ENOENT;
7132 
7133 	if (!th->syn || th->ack || th->fin || th->rst)
7134 		return -EINVAL;
7135 
7136 	if (unlikely(iph_len < sizeof(struct iphdr)))
7137 		return -EINVAL;
7138 
7139 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7140 	 * same offset so we can cast to the shorter header (struct iphdr).
7141 	 */
7142 	switch (((struct iphdr *)iph)->version) {
7143 	case 4:
7144 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7145 			return -EINVAL;
7146 
7147 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7148 		break;
7149 
7150 #if IS_BUILTIN(CONFIG_IPV6)
7151 	case 6:
7152 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7153 			return -EINVAL;
7154 
7155 		if (sk->sk_family != AF_INET6)
7156 			return -EINVAL;
7157 
7158 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7159 		break;
7160 #endif /* CONFIG_IPV6 */
7161 
7162 	default:
7163 		return -EPROTONOSUPPORT;
7164 	}
7165 	if (mss == 0)
7166 		return -ENOENT;
7167 
7168 	return cookie | ((u64)mss << 32);
7169 #else
7170 	return -EOPNOTSUPP;
7171 #endif /* CONFIG_SYN_COOKIES */
7172 }
7173 
7174 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7175 	.func		= bpf_tcp_gen_syncookie,
7176 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7177 	.pkt_access	= true,
7178 	.ret_type	= RET_INTEGER,
7179 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7180 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7181 	.arg3_type	= ARG_CONST_SIZE,
7182 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7183 	.arg5_type	= ARG_CONST_SIZE,
7184 };
7185 
7186 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7187 {
7188 	if (!sk || flags != 0)
7189 		return -EINVAL;
7190 	if (!skb_at_tc_ingress(skb))
7191 		return -EOPNOTSUPP;
7192 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7193 		return -ENETUNREACH;
7194 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7195 		return -ESOCKTNOSUPPORT;
7196 	if (sk_is_refcounted(sk) &&
7197 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7198 		return -ENOENT;
7199 
7200 	skb_orphan(skb);
7201 	skb->sk = sk;
7202 	skb->destructor = sock_pfree;
7203 
7204 	return 0;
7205 }
7206 
7207 static const struct bpf_func_proto bpf_sk_assign_proto = {
7208 	.func		= bpf_sk_assign,
7209 	.gpl_only	= false,
7210 	.ret_type	= RET_INTEGER,
7211 	.arg1_type      = ARG_PTR_TO_CTX,
7212 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7213 	.arg3_type	= ARG_ANYTHING,
7214 };
7215 
7216 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7217 				    u8 search_kind, const u8 *magic,
7218 				    u8 magic_len, bool *eol)
7219 {
7220 	u8 kind, kind_len;
7221 
7222 	*eol = false;
7223 
7224 	while (op < opend) {
7225 		kind = op[0];
7226 
7227 		if (kind == TCPOPT_EOL) {
7228 			*eol = true;
7229 			return ERR_PTR(-ENOMSG);
7230 		} else if (kind == TCPOPT_NOP) {
7231 			op++;
7232 			continue;
7233 		}
7234 
7235 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7236 			/* Something is wrong in the received header.
7237 			 * Follow the TCP stack's tcp_parse_options()
7238 			 * and just bail here.
7239 			 */
7240 			return ERR_PTR(-EFAULT);
7241 
7242 		kind_len = op[1];
7243 		if (search_kind == kind) {
7244 			if (!magic_len)
7245 				return op;
7246 
7247 			if (magic_len > kind_len - 2)
7248 				return ERR_PTR(-ENOMSG);
7249 
7250 			if (!memcmp(&op[2], magic, magic_len))
7251 				return op;
7252 		}
7253 
7254 		op += kind_len;
7255 	}
7256 
7257 	return ERR_PTR(-ENOMSG);
7258 }
7259 
7260 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7261 	   void *, search_res, u32, len, u64, flags)
7262 {
7263 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7264 	const u8 *op, *opend, *magic, *search = search_res;
7265 	u8 search_kind, search_len, copy_len, magic_len;
7266 	int ret;
7267 
7268 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7269 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7270 	 * and this helper disallow loading them also.
7271 	 */
7272 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7273 		return -EINVAL;
7274 
7275 	search_kind = search[0];
7276 	search_len = search[1];
7277 
7278 	if (search_len > len || search_kind == TCPOPT_NOP ||
7279 	    search_kind == TCPOPT_EOL)
7280 		return -EINVAL;
7281 
7282 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7283 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7284 		if (search_len != 4 && search_len != 6)
7285 			return -EINVAL;
7286 		magic = &search[2];
7287 		magic_len = search_len - 2;
7288 	} else {
7289 		if (search_len)
7290 			return -EINVAL;
7291 		magic = NULL;
7292 		magic_len = 0;
7293 	}
7294 
7295 	if (load_syn) {
7296 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7297 		if (ret < 0)
7298 			return ret;
7299 
7300 		opend = op + ret;
7301 		op += sizeof(struct tcphdr);
7302 	} else {
7303 		if (!bpf_sock->skb ||
7304 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7305 			/* This bpf_sock->op cannot call this helper */
7306 			return -EPERM;
7307 
7308 		opend = bpf_sock->skb_data_end;
7309 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7310 	}
7311 
7312 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7313 				&eol);
7314 	if (IS_ERR(op))
7315 		return PTR_ERR(op);
7316 
7317 	copy_len = op[1];
7318 	ret = copy_len;
7319 	if (copy_len > len) {
7320 		ret = -ENOSPC;
7321 		copy_len = len;
7322 	}
7323 
7324 	memcpy(search_res, op, copy_len);
7325 	return ret;
7326 }
7327 
7328 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7329 	.func		= bpf_sock_ops_load_hdr_opt,
7330 	.gpl_only	= false,
7331 	.ret_type	= RET_INTEGER,
7332 	.arg1_type	= ARG_PTR_TO_CTX,
7333 	.arg2_type	= ARG_PTR_TO_MEM,
7334 	.arg3_type	= ARG_CONST_SIZE,
7335 	.arg4_type	= ARG_ANYTHING,
7336 };
7337 
7338 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7339 	   const void *, from, u32, len, u64, flags)
7340 {
7341 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7342 	const u8 *op, *new_op, *magic = NULL;
7343 	struct sk_buff *skb;
7344 	bool eol;
7345 
7346 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7347 		return -EPERM;
7348 
7349 	if (len < 2 || flags)
7350 		return -EINVAL;
7351 
7352 	new_op = from;
7353 	new_kind = new_op[0];
7354 	new_kind_len = new_op[1];
7355 
7356 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7357 	    new_kind == TCPOPT_EOL)
7358 		return -EINVAL;
7359 
7360 	if (new_kind_len > bpf_sock->remaining_opt_len)
7361 		return -ENOSPC;
7362 
7363 	/* 253 is another experimental kind */
7364 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7365 		if (new_kind_len < 4)
7366 			return -EINVAL;
7367 		/* Match for the 2 byte magic also.
7368 		 * RFC 6994: the magic could be 2 or 4 bytes.
7369 		 * Hence, matching by 2 byte only is on the
7370 		 * conservative side but it is the right
7371 		 * thing to do for the 'search-for-duplication'
7372 		 * purpose.
7373 		 */
7374 		magic = &new_op[2];
7375 		magic_len = 2;
7376 	}
7377 
7378 	/* Check for duplication */
7379 	skb = bpf_sock->skb;
7380 	op = skb->data + sizeof(struct tcphdr);
7381 	opend = bpf_sock->skb_data_end;
7382 
7383 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7384 				&eol);
7385 	if (!IS_ERR(op))
7386 		return -EEXIST;
7387 
7388 	if (PTR_ERR(op) != -ENOMSG)
7389 		return PTR_ERR(op);
7390 
7391 	if (eol)
7392 		/* The option has been ended.  Treat it as no more
7393 		 * header option can be written.
7394 		 */
7395 		return -ENOSPC;
7396 
7397 	/* No duplication found.  Store the header option. */
7398 	memcpy(opend, from, new_kind_len);
7399 
7400 	bpf_sock->remaining_opt_len -= new_kind_len;
7401 	bpf_sock->skb_data_end += new_kind_len;
7402 
7403 	return 0;
7404 }
7405 
7406 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7407 	.func		= bpf_sock_ops_store_hdr_opt,
7408 	.gpl_only	= false,
7409 	.ret_type	= RET_INTEGER,
7410 	.arg1_type	= ARG_PTR_TO_CTX,
7411 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7412 	.arg3_type	= ARG_CONST_SIZE,
7413 	.arg4_type	= ARG_ANYTHING,
7414 };
7415 
7416 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7417 	   u32, len, u64, flags)
7418 {
7419 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7420 		return -EPERM;
7421 
7422 	if (flags || len < 2)
7423 		return -EINVAL;
7424 
7425 	if (len > bpf_sock->remaining_opt_len)
7426 		return -ENOSPC;
7427 
7428 	bpf_sock->remaining_opt_len -= len;
7429 
7430 	return 0;
7431 }
7432 
7433 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7434 	.func		= bpf_sock_ops_reserve_hdr_opt,
7435 	.gpl_only	= false,
7436 	.ret_type	= RET_INTEGER,
7437 	.arg1_type	= ARG_PTR_TO_CTX,
7438 	.arg2_type	= ARG_ANYTHING,
7439 	.arg3_type	= ARG_ANYTHING,
7440 };
7441 
7442 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7443 	   u64, tstamp, u32, tstamp_type)
7444 {
7445 	/* skb_clear_delivery_time() is done for inet protocol */
7446 	if (skb->protocol != htons(ETH_P_IP) &&
7447 	    skb->protocol != htons(ETH_P_IPV6))
7448 		return -EOPNOTSUPP;
7449 
7450 	switch (tstamp_type) {
7451 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7452 		if (!tstamp)
7453 			return -EINVAL;
7454 		skb->tstamp = tstamp;
7455 		skb->mono_delivery_time = 1;
7456 		break;
7457 	case BPF_SKB_TSTAMP_UNSPEC:
7458 		if (tstamp)
7459 			return -EINVAL;
7460 		skb->tstamp = 0;
7461 		skb->mono_delivery_time = 0;
7462 		break;
7463 	default:
7464 		return -EINVAL;
7465 	}
7466 
7467 	return 0;
7468 }
7469 
7470 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7471 	.func           = bpf_skb_set_tstamp,
7472 	.gpl_only       = false,
7473 	.ret_type       = RET_INTEGER,
7474 	.arg1_type      = ARG_PTR_TO_CTX,
7475 	.arg2_type      = ARG_ANYTHING,
7476 	.arg3_type      = ARG_ANYTHING,
7477 };
7478 
7479 #ifdef CONFIG_SYN_COOKIES
7480 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7481 	   struct tcphdr *, th, u32, th_len)
7482 {
7483 	u32 cookie;
7484 	u16 mss;
7485 
7486 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7487 		return -EINVAL;
7488 
7489 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7490 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7491 
7492 	return cookie | ((u64)mss << 32);
7493 }
7494 
7495 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7496 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7497 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7498 	.pkt_access	= true,
7499 	.ret_type	= RET_INTEGER,
7500 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7501 	.arg1_size	= sizeof(struct iphdr),
7502 	.arg2_type	= ARG_PTR_TO_MEM,
7503 	.arg3_type	= ARG_CONST_SIZE,
7504 };
7505 
7506 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7507 	   struct tcphdr *, th, u32, th_len)
7508 {
7509 #if IS_BUILTIN(CONFIG_IPV6)
7510 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7511 		sizeof(struct ipv6hdr);
7512 	u32 cookie;
7513 	u16 mss;
7514 
7515 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7516 		return -EINVAL;
7517 
7518 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7519 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7520 
7521 	return cookie | ((u64)mss << 32);
7522 #else
7523 	return -EPROTONOSUPPORT;
7524 #endif
7525 }
7526 
7527 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7528 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7529 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7530 	.pkt_access	= true,
7531 	.ret_type	= RET_INTEGER,
7532 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7533 	.arg1_size	= sizeof(struct ipv6hdr),
7534 	.arg2_type	= ARG_PTR_TO_MEM,
7535 	.arg3_type	= ARG_CONST_SIZE,
7536 };
7537 
7538 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7539 	   struct tcphdr *, th)
7540 {
7541 	u32 cookie = ntohl(th->ack_seq) - 1;
7542 
7543 	if (__cookie_v4_check(iph, th, cookie) > 0)
7544 		return 0;
7545 
7546 	return -EACCES;
7547 }
7548 
7549 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7550 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7551 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7552 	.pkt_access	= true,
7553 	.ret_type	= RET_INTEGER,
7554 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7555 	.arg1_size	= sizeof(struct iphdr),
7556 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7557 	.arg2_size	= sizeof(struct tcphdr),
7558 };
7559 
7560 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7561 	   struct tcphdr *, th)
7562 {
7563 #if IS_BUILTIN(CONFIG_IPV6)
7564 	u32 cookie = ntohl(th->ack_seq) - 1;
7565 
7566 	if (__cookie_v6_check(iph, th, cookie) > 0)
7567 		return 0;
7568 
7569 	return -EACCES;
7570 #else
7571 	return -EPROTONOSUPPORT;
7572 #endif
7573 }
7574 
7575 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7576 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7577 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7578 	.pkt_access	= true,
7579 	.ret_type	= RET_INTEGER,
7580 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7581 	.arg1_size	= sizeof(struct ipv6hdr),
7582 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7583 	.arg2_size	= sizeof(struct tcphdr),
7584 };
7585 #endif /* CONFIG_SYN_COOKIES */
7586 
7587 #endif /* CONFIG_INET */
7588 
7589 bool bpf_helper_changes_pkt_data(void *func)
7590 {
7591 	if (func == bpf_skb_vlan_push ||
7592 	    func == bpf_skb_vlan_pop ||
7593 	    func == bpf_skb_store_bytes ||
7594 	    func == bpf_skb_change_proto ||
7595 	    func == bpf_skb_change_head ||
7596 	    func == sk_skb_change_head ||
7597 	    func == bpf_skb_change_tail ||
7598 	    func == sk_skb_change_tail ||
7599 	    func == bpf_skb_adjust_room ||
7600 	    func == sk_skb_adjust_room ||
7601 	    func == bpf_skb_pull_data ||
7602 	    func == sk_skb_pull_data ||
7603 	    func == bpf_clone_redirect ||
7604 	    func == bpf_l3_csum_replace ||
7605 	    func == bpf_l4_csum_replace ||
7606 	    func == bpf_xdp_adjust_head ||
7607 	    func == bpf_xdp_adjust_meta ||
7608 	    func == bpf_msg_pull_data ||
7609 	    func == bpf_msg_push_data ||
7610 	    func == bpf_msg_pop_data ||
7611 	    func == bpf_xdp_adjust_tail ||
7612 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7613 	    func == bpf_lwt_seg6_store_bytes ||
7614 	    func == bpf_lwt_seg6_adjust_srh ||
7615 	    func == bpf_lwt_seg6_action ||
7616 #endif
7617 #ifdef CONFIG_INET
7618 	    func == bpf_sock_ops_store_hdr_opt ||
7619 #endif
7620 	    func == bpf_lwt_in_push_encap ||
7621 	    func == bpf_lwt_xmit_push_encap)
7622 		return true;
7623 
7624 	return false;
7625 }
7626 
7627 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7628 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7629 
7630 static const struct bpf_func_proto *
7631 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7632 {
7633 	const struct bpf_func_proto *func_proto;
7634 
7635 	func_proto = cgroup_common_func_proto(func_id, prog);
7636 	if (func_proto)
7637 		return func_proto;
7638 
7639 	func_proto = cgroup_current_func_proto(func_id, prog);
7640 	if (func_proto)
7641 		return func_proto;
7642 
7643 	switch (func_id) {
7644 	case BPF_FUNC_get_socket_cookie:
7645 		return &bpf_get_socket_cookie_sock_proto;
7646 	case BPF_FUNC_get_netns_cookie:
7647 		return &bpf_get_netns_cookie_sock_proto;
7648 	case BPF_FUNC_perf_event_output:
7649 		return &bpf_event_output_data_proto;
7650 	case BPF_FUNC_sk_storage_get:
7651 		return &bpf_sk_storage_get_cg_sock_proto;
7652 	case BPF_FUNC_ktime_get_coarse_ns:
7653 		return &bpf_ktime_get_coarse_ns_proto;
7654 	default:
7655 		return bpf_base_func_proto(func_id);
7656 	}
7657 }
7658 
7659 static const struct bpf_func_proto *
7660 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7661 {
7662 	const struct bpf_func_proto *func_proto;
7663 
7664 	func_proto = cgroup_common_func_proto(func_id, prog);
7665 	if (func_proto)
7666 		return func_proto;
7667 
7668 	func_proto = cgroup_current_func_proto(func_id, prog);
7669 	if (func_proto)
7670 		return func_proto;
7671 
7672 	switch (func_id) {
7673 	case BPF_FUNC_bind:
7674 		switch (prog->expected_attach_type) {
7675 		case BPF_CGROUP_INET4_CONNECT:
7676 		case BPF_CGROUP_INET6_CONNECT:
7677 			return &bpf_bind_proto;
7678 		default:
7679 			return NULL;
7680 		}
7681 	case BPF_FUNC_get_socket_cookie:
7682 		return &bpf_get_socket_cookie_sock_addr_proto;
7683 	case BPF_FUNC_get_netns_cookie:
7684 		return &bpf_get_netns_cookie_sock_addr_proto;
7685 	case BPF_FUNC_perf_event_output:
7686 		return &bpf_event_output_data_proto;
7687 #ifdef CONFIG_INET
7688 	case BPF_FUNC_sk_lookup_tcp:
7689 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7690 	case BPF_FUNC_sk_lookup_udp:
7691 		return &bpf_sock_addr_sk_lookup_udp_proto;
7692 	case BPF_FUNC_sk_release:
7693 		return &bpf_sk_release_proto;
7694 	case BPF_FUNC_skc_lookup_tcp:
7695 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7696 #endif /* CONFIG_INET */
7697 	case BPF_FUNC_sk_storage_get:
7698 		return &bpf_sk_storage_get_proto;
7699 	case BPF_FUNC_sk_storage_delete:
7700 		return &bpf_sk_storage_delete_proto;
7701 	case BPF_FUNC_setsockopt:
7702 		switch (prog->expected_attach_type) {
7703 		case BPF_CGROUP_INET4_BIND:
7704 		case BPF_CGROUP_INET6_BIND:
7705 		case BPF_CGROUP_INET4_CONNECT:
7706 		case BPF_CGROUP_INET6_CONNECT:
7707 		case BPF_CGROUP_UDP4_RECVMSG:
7708 		case BPF_CGROUP_UDP6_RECVMSG:
7709 		case BPF_CGROUP_UDP4_SENDMSG:
7710 		case BPF_CGROUP_UDP6_SENDMSG:
7711 		case BPF_CGROUP_INET4_GETPEERNAME:
7712 		case BPF_CGROUP_INET6_GETPEERNAME:
7713 		case BPF_CGROUP_INET4_GETSOCKNAME:
7714 		case BPF_CGROUP_INET6_GETSOCKNAME:
7715 			return &bpf_sock_addr_setsockopt_proto;
7716 		default:
7717 			return NULL;
7718 		}
7719 	case BPF_FUNC_getsockopt:
7720 		switch (prog->expected_attach_type) {
7721 		case BPF_CGROUP_INET4_BIND:
7722 		case BPF_CGROUP_INET6_BIND:
7723 		case BPF_CGROUP_INET4_CONNECT:
7724 		case BPF_CGROUP_INET6_CONNECT:
7725 		case BPF_CGROUP_UDP4_RECVMSG:
7726 		case BPF_CGROUP_UDP6_RECVMSG:
7727 		case BPF_CGROUP_UDP4_SENDMSG:
7728 		case BPF_CGROUP_UDP6_SENDMSG:
7729 		case BPF_CGROUP_INET4_GETPEERNAME:
7730 		case BPF_CGROUP_INET6_GETPEERNAME:
7731 		case BPF_CGROUP_INET4_GETSOCKNAME:
7732 		case BPF_CGROUP_INET6_GETSOCKNAME:
7733 			return &bpf_sock_addr_getsockopt_proto;
7734 		default:
7735 			return NULL;
7736 		}
7737 	default:
7738 		return bpf_sk_base_func_proto(func_id);
7739 	}
7740 }
7741 
7742 static const struct bpf_func_proto *
7743 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7744 {
7745 	switch (func_id) {
7746 	case BPF_FUNC_skb_load_bytes:
7747 		return &bpf_skb_load_bytes_proto;
7748 	case BPF_FUNC_skb_load_bytes_relative:
7749 		return &bpf_skb_load_bytes_relative_proto;
7750 	case BPF_FUNC_get_socket_cookie:
7751 		return &bpf_get_socket_cookie_proto;
7752 	case BPF_FUNC_get_socket_uid:
7753 		return &bpf_get_socket_uid_proto;
7754 	case BPF_FUNC_perf_event_output:
7755 		return &bpf_skb_event_output_proto;
7756 	default:
7757 		return bpf_sk_base_func_proto(func_id);
7758 	}
7759 }
7760 
7761 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7762 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7763 
7764 static const struct bpf_func_proto *
7765 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7766 {
7767 	const struct bpf_func_proto *func_proto;
7768 
7769 	func_proto = cgroup_common_func_proto(func_id, prog);
7770 	if (func_proto)
7771 		return func_proto;
7772 
7773 	switch (func_id) {
7774 	case BPF_FUNC_sk_fullsock:
7775 		return &bpf_sk_fullsock_proto;
7776 	case BPF_FUNC_sk_storage_get:
7777 		return &bpf_sk_storage_get_proto;
7778 	case BPF_FUNC_sk_storage_delete:
7779 		return &bpf_sk_storage_delete_proto;
7780 	case BPF_FUNC_perf_event_output:
7781 		return &bpf_skb_event_output_proto;
7782 #ifdef CONFIG_SOCK_CGROUP_DATA
7783 	case BPF_FUNC_skb_cgroup_id:
7784 		return &bpf_skb_cgroup_id_proto;
7785 	case BPF_FUNC_skb_ancestor_cgroup_id:
7786 		return &bpf_skb_ancestor_cgroup_id_proto;
7787 	case BPF_FUNC_sk_cgroup_id:
7788 		return &bpf_sk_cgroup_id_proto;
7789 	case BPF_FUNC_sk_ancestor_cgroup_id:
7790 		return &bpf_sk_ancestor_cgroup_id_proto;
7791 #endif
7792 #ifdef CONFIG_INET
7793 	case BPF_FUNC_sk_lookup_tcp:
7794 		return &bpf_sk_lookup_tcp_proto;
7795 	case BPF_FUNC_sk_lookup_udp:
7796 		return &bpf_sk_lookup_udp_proto;
7797 	case BPF_FUNC_sk_release:
7798 		return &bpf_sk_release_proto;
7799 	case BPF_FUNC_skc_lookup_tcp:
7800 		return &bpf_skc_lookup_tcp_proto;
7801 	case BPF_FUNC_tcp_sock:
7802 		return &bpf_tcp_sock_proto;
7803 	case BPF_FUNC_get_listener_sock:
7804 		return &bpf_get_listener_sock_proto;
7805 	case BPF_FUNC_skb_ecn_set_ce:
7806 		return &bpf_skb_ecn_set_ce_proto;
7807 #endif
7808 	default:
7809 		return sk_filter_func_proto(func_id, prog);
7810 	}
7811 }
7812 
7813 static const struct bpf_func_proto *
7814 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7815 {
7816 	switch (func_id) {
7817 	case BPF_FUNC_skb_store_bytes:
7818 		return &bpf_skb_store_bytes_proto;
7819 	case BPF_FUNC_skb_load_bytes:
7820 		return &bpf_skb_load_bytes_proto;
7821 	case BPF_FUNC_skb_load_bytes_relative:
7822 		return &bpf_skb_load_bytes_relative_proto;
7823 	case BPF_FUNC_skb_pull_data:
7824 		return &bpf_skb_pull_data_proto;
7825 	case BPF_FUNC_csum_diff:
7826 		return &bpf_csum_diff_proto;
7827 	case BPF_FUNC_csum_update:
7828 		return &bpf_csum_update_proto;
7829 	case BPF_FUNC_csum_level:
7830 		return &bpf_csum_level_proto;
7831 	case BPF_FUNC_l3_csum_replace:
7832 		return &bpf_l3_csum_replace_proto;
7833 	case BPF_FUNC_l4_csum_replace:
7834 		return &bpf_l4_csum_replace_proto;
7835 	case BPF_FUNC_clone_redirect:
7836 		return &bpf_clone_redirect_proto;
7837 	case BPF_FUNC_get_cgroup_classid:
7838 		return &bpf_get_cgroup_classid_proto;
7839 	case BPF_FUNC_skb_vlan_push:
7840 		return &bpf_skb_vlan_push_proto;
7841 	case BPF_FUNC_skb_vlan_pop:
7842 		return &bpf_skb_vlan_pop_proto;
7843 	case BPF_FUNC_skb_change_proto:
7844 		return &bpf_skb_change_proto_proto;
7845 	case BPF_FUNC_skb_change_type:
7846 		return &bpf_skb_change_type_proto;
7847 	case BPF_FUNC_skb_adjust_room:
7848 		return &bpf_skb_adjust_room_proto;
7849 	case BPF_FUNC_skb_change_tail:
7850 		return &bpf_skb_change_tail_proto;
7851 	case BPF_FUNC_skb_change_head:
7852 		return &bpf_skb_change_head_proto;
7853 	case BPF_FUNC_skb_get_tunnel_key:
7854 		return &bpf_skb_get_tunnel_key_proto;
7855 	case BPF_FUNC_skb_set_tunnel_key:
7856 		return bpf_get_skb_set_tunnel_proto(func_id);
7857 	case BPF_FUNC_skb_get_tunnel_opt:
7858 		return &bpf_skb_get_tunnel_opt_proto;
7859 	case BPF_FUNC_skb_set_tunnel_opt:
7860 		return bpf_get_skb_set_tunnel_proto(func_id);
7861 	case BPF_FUNC_redirect:
7862 		return &bpf_redirect_proto;
7863 	case BPF_FUNC_redirect_neigh:
7864 		return &bpf_redirect_neigh_proto;
7865 	case BPF_FUNC_redirect_peer:
7866 		return &bpf_redirect_peer_proto;
7867 	case BPF_FUNC_get_route_realm:
7868 		return &bpf_get_route_realm_proto;
7869 	case BPF_FUNC_get_hash_recalc:
7870 		return &bpf_get_hash_recalc_proto;
7871 	case BPF_FUNC_set_hash_invalid:
7872 		return &bpf_set_hash_invalid_proto;
7873 	case BPF_FUNC_set_hash:
7874 		return &bpf_set_hash_proto;
7875 	case BPF_FUNC_perf_event_output:
7876 		return &bpf_skb_event_output_proto;
7877 	case BPF_FUNC_get_smp_processor_id:
7878 		return &bpf_get_smp_processor_id_proto;
7879 	case BPF_FUNC_skb_under_cgroup:
7880 		return &bpf_skb_under_cgroup_proto;
7881 	case BPF_FUNC_get_socket_cookie:
7882 		return &bpf_get_socket_cookie_proto;
7883 	case BPF_FUNC_get_socket_uid:
7884 		return &bpf_get_socket_uid_proto;
7885 	case BPF_FUNC_fib_lookup:
7886 		return &bpf_skb_fib_lookup_proto;
7887 	case BPF_FUNC_check_mtu:
7888 		return &bpf_skb_check_mtu_proto;
7889 	case BPF_FUNC_sk_fullsock:
7890 		return &bpf_sk_fullsock_proto;
7891 	case BPF_FUNC_sk_storage_get:
7892 		return &bpf_sk_storage_get_proto;
7893 	case BPF_FUNC_sk_storage_delete:
7894 		return &bpf_sk_storage_delete_proto;
7895 #ifdef CONFIG_XFRM
7896 	case BPF_FUNC_skb_get_xfrm_state:
7897 		return &bpf_skb_get_xfrm_state_proto;
7898 #endif
7899 #ifdef CONFIG_CGROUP_NET_CLASSID
7900 	case BPF_FUNC_skb_cgroup_classid:
7901 		return &bpf_skb_cgroup_classid_proto;
7902 #endif
7903 #ifdef CONFIG_SOCK_CGROUP_DATA
7904 	case BPF_FUNC_skb_cgroup_id:
7905 		return &bpf_skb_cgroup_id_proto;
7906 	case BPF_FUNC_skb_ancestor_cgroup_id:
7907 		return &bpf_skb_ancestor_cgroup_id_proto;
7908 #endif
7909 #ifdef CONFIG_INET
7910 	case BPF_FUNC_sk_lookup_tcp:
7911 		return &bpf_sk_lookup_tcp_proto;
7912 	case BPF_FUNC_sk_lookup_udp:
7913 		return &bpf_sk_lookup_udp_proto;
7914 	case BPF_FUNC_sk_release:
7915 		return &bpf_sk_release_proto;
7916 	case BPF_FUNC_tcp_sock:
7917 		return &bpf_tcp_sock_proto;
7918 	case BPF_FUNC_get_listener_sock:
7919 		return &bpf_get_listener_sock_proto;
7920 	case BPF_FUNC_skc_lookup_tcp:
7921 		return &bpf_skc_lookup_tcp_proto;
7922 	case BPF_FUNC_tcp_check_syncookie:
7923 		return &bpf_tcp_check_syncookie_proto;
7924 	case BPF_FUNC_skb_ecn_set_ce:
7925 		return &bpf_skb_ecn_set_ce_proto;
7926 	case BPF_FUNC_tcp_gen_syncookie:
7927 		return &bpf_tcp_gen_syncookie_proto;
7928 	case BPF_FUNC_sk_assign:
7929 		return &bpf_sk_assign_proto;
7930 	case BPF_FUNC_skb_set_tstamp:
7931 		return &bpf_skb_set_tstamp_proto;
7932 #ifdef CONFIG_SYN_COOKIES
7933 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7934 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7935 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7936 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7937 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7938 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7939 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7940 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7941 #endif
7942 #endif
7943 	default:
7944 		return bpf_sk_base_func_proto(func_id);
7945 	}
7946 }
7947 
7948 static const struct bpf_func_proto *
7949 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7950 {
7951 	switch (func_id) {
7952 	case BPF_FUNC_perf_event_output:
7953 		return &bpf_xdp_event_output_proto;
7954 	case BPF_FUNC_get_smp_processor_id:
7955 		return &bpf_get_smp_processor_id_proto;
7956 	case BPF_FUNC_csum_diff:
7957 		return &bpf_csum_diff_proto;
7958 	case BPF_FUNC_xdp_adjust_head:
7959 		return &bpf_xdp_adjust_head_proto;
7960 	case BPF_FUNC_xdp_adjust_meta:
7961 		return &bpf_xdp_adjust_meta_proto;
7962 	case BPF_FUNC_redirect:
7963 		return &bpf_xdp_redirect_proto;
7964 	case BPF_FUNC_redirect_map:
7965 		return &bpf_xdp_redirect_map_proto;
7966 	case BPF_FUNC_xdp_adjust_tail:
7967 		return &bpf_xdp_adjust_tail_proto;
7968 	case BPF_FUNC_xdp_get_buff_len:
7969 		return &bpf_xdp_get_buff_len_proto;
7970 	case BPF_FUNC_xdp_load_bytes:
7971 		return &bpf_xdp_load_bytes_proto;
7972 	case BPF_FUNC_xdp_store_bytes:
7973 		return &bpf_xdp_store_bytes_proto;
7974 	case BPF_FUNC_fib_lookup:
7975 		return &bpf_xdp_fib_lookup_proto;
7976 	case BPF_FUNC_check_mtu:
7977 		return &bpf_xdp_check_mtu_proto;
7978 #ifdef CONFIG_INET
7979 	case BPF_FUNC_sk_lookup_udp:
7980 		return &bpf_xdp_sk_lookup_udp_proto;
7981 	case BPF_FUNC_sk_lookup_tcp:
7982 		return &bpf_xdp_sk_lookup_tcp_proto;
7983 	case BPF_FUNC_sk_release:
7984 		return &bpf_sk_release_proto;
7985 	case BPF_FUNC_skc_lookup_tcp:
7986 		return &bpf_xdp_skc_lookup_tcp_proto;
7987 	case BPF_FUNC_tcp_check_syncookie:
7988 		return &bpf_tcp_check_syncookie_proto;
7989 	case BPF_FUNC_tcp_gen_syncookie:
7990 		return &bpf_tcp_gen_syncookie_proto;
7991 #ifdef CONFIG_SYN_COOKIES
7992 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7993 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7994 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7995 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7996 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7997 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7998 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7999 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8000 #endif
8001 #endif
8002 	default:
8003 		return bpf_sk_base_func_proto(func_id);
8004 	}
8005 
8006 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8007 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8008 	 * kfuncs are defined in two different modules, and we want to be able
8009 	 * to use them interchangably with the same BTF type ID. Because modules
8010 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8011 	 * referenced in the vmlinux BTF or the verifier will get confused about
8012 	 * the different types. So we add this dummy type reference which will
8013 	 * be included in vmlinux BTF, allowing both modules to refer to the
8014 	 * same type ID.
8015 	 */
8016 	BTF_TYPE_EMIT(struct nf_conn___init);
8017 #endif
8018 }
8019 
8020 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8021 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8022 
8023 static const struct bpf_func_proto *
8024 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8025 {
8026 	const struct bpf_func_proto *func_proto;
8027 
8028 	func_proto = cgroup_common_func_proto(func_id, prog);
8029 	if (func_proto)
8030 		return func_proto;
8031 
8032 	switch (func_id) {
8033 	case BPF_FUNC_setsockopt:
8034 		return &bpf_sock_ops_setsockopt_proto;
8035 	case BPF_FUNC_getsockopt:
8036 		return &bpf_sock_ops_getsockopt_proto;
8037 	case BPF_FUNC_sock_ops_cb_flags_set:
8038 		return &bpf_sock_ops_cb_flags_set_proto;
8039 	case BPF_FUNC_sock_map_update:
8040 		return &bpf_sock_map_update_proto;
8041 	case BPF_FUNC_sock_hash_update:
8042 		return &bpf_sock_hash_update_proto;
8043 	case BPF_FUNC_get_socket_cookie:
8044 		return &bpf_get_socket_cookie_sock_ops_proto;
8045 	case BPF_FUNC_perf_event_output:
8046 		return &bpf_event_output_data_proto;
8047 	case BPF_FUNC_sk_storage_get:
8048 		return &bpf_sk_storage_get_proto;
8049 	case BPF_FUNC_sk_storage_delete:
8050 		return &bpf_sk_storage_delete_proto;
8051 	case BPF_FUNC_get_netns_cookie:
8052 		return &bpf_get_netns_cookie_sock_ops_proto;
8053 #ifdef CONFIG_INET
8054 	case BPF_FUNC_load_hdr_opt:
8055 		return &bpf_sock_ops_load_hdr_opt_proto;
8056 	case BPF_FUNC_store_hdr_opt:
8057 		return &bpf_sock_ops_store_hdr_opt_proto;
8058 	case BPF_FUNC_reserve_hdr_opt:
8059 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8060 	case BPF_FUNC_tcp_sock:
8061 		return &bpf_tcp_sock_proto;
8062 #endif /* CONFIG_INET */
8063 	default:
8064 		return bpf_sk_base_func_proto(func_id);
8065 	}
8066 }
8067 
8068 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8069 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8070 
8071 static const struct bpf_func_proto *
8072 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8073 {
8074 	switch (func_id) {
8075 	case BPF_FUNC_msg_redirect_map:
8076 		return &bpf_msg_redirect_map_proto;
8077 	case BPF_FUNC_msg_redirect_hash:
8078 		return &bpf_msg_redirect_hash_proto;
8079 	case BPF_FUNC_msg_apply_bytes:
8080 		return &bpf_msg_apply_bytes_proto;
8081 	case BPF_FUNC_msg_cork_bytes:
8082 		return &bpf_msg_cork_bytes_proto;
8083 	case BPF_FUNC_msg_pull_data:
8084 		return &bpf_msg_pull_data_proto;
8085 	case BPF_FUNC_msg_push_data:
8086 		return &bpf_msg_push_data_proto;
8087 	case BPF_FUNC_msg_pop_data:
8088 		return &bpf_msg_pop_data_proto;
8089 	case BPF_FUNC_perf_event_output:
8090 		return &bpf_event_output_data_proto;
8091 	case BPF_FUNC_get_current_uid_gid:
8092 		return &bpf_get_current_uid_gid_proto;
8093 	case BPF_FUNC_get_current_pid_tgid:
8094 		return &bpf_get_current_pid_tgid_proto;
8095 	case BPF_FUNC_sk_storage_get:
8096 		return &bpf_sk_storage_get_proto;
8097 	case BPF_FUNC_sk_storage_delete:
8098 		return &bpf_sk_storage_delete_proto;
8099 	case BPF_FUNC_get_netns_cookie:
8100 		return &bpf_get_netns_cookie_sk_msg_proto;
8101 #ifdef CONFIG_CGROUPS
8102 	case BPF_FUNC_get_current_cgroup_id:
8103 		return &bpf_get_current_cgroup_id_proto;
8104 	case BPF_FUNC_get_current_ancestor_cgroup_id:
8105 		return &bpf_get_current_ancestor_cgroup_id_proto;
8106 #endif
8107 #ifdef CONFIG_CGROUP_NET_CLASSID
8108 	case BPF_FUNC_get_cgroup_classid:
8109 		return &bpf_get_cgroup_classid_curr_proto;
8110 #endif
8111 	default:
8112 		return bpf_sk_base_func_proto(func_id);
8113 	}
8114 }
8115 
8116 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8117 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8118 
8119 static const struct bpf_func_proto *
8120 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8121 {
8122 	switch (func_id) {
8123 	case BPF_FUNC_skb_store_bytes:
8124 		return &bpf_skb_store_bytes_proto;
8125 	case BPF_FUNC_skb_load_bytes:
8126 		return &bpf_skb_load_bytes_proto;
8127 	case BPF_FUNC_skb_pull_data:
8128 		return &sk_skb_pull_data_proto;
8129 	case BPF_FUNC_skb_change_tail:
8130 		return &sk_skb_change_tail_proto;
8131 	case BPF_FUNC_skb_change_head:
8132 		return &sk_skb_change_head_proto;
8133 	case BPF_FUNC_skb_adjust_room:
8134 		return &sk_skb_adjust_room_proto;
8135 	case BPF_FUNC_get_socket_cookie:
8136 		return &bpf_get_socket_cookie_proto;
8137 	case BPF_FUNC_get_socket_uid:
8138 		return &bpf_get_socket_uid_proto;
8139 	case BPF_FUNC_sk_redirect_map:
8140 		return &bpf_sk_redirect_map_proto;
8141 	case BPF_FUNC_sk_redirect_hash:
8142 		return &bpf_sk_redirect_hash_proto;
8143 	case BPF_FUNC_perf_event_output:
8144 		return &bpf_skb_event_output_proto;
8145 #ifdef CONFIG_INET
8146 	case BPF_FUNC_sk_lookup_tcp:
8147 		return &bpf_sk_lookup_tcp_proto;
8148 	case BPF_FUNC_sk_lookup_udp:
8149 		return &bpf_sk_lookup_udp_proto;
8150 	case BPF_FUNC_sk_release:
8151 		return &bpf_sk_release_proto;
8152 	case BPF_FUNC_skc_lookup_tcp:
8153 		return &bpf_skc_lookup_tcp_proto;
8154 #endif
8155 	default:
8156 		return bpf_sk_base_func_proto(func_id);
8157 	}
8158 }
8159 
8160 static const struct bpf_func_proto *
8161 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8162 {
8163 	switch (func_id) {
8164 	case BPF_FUNC_skb_load_bytes:
8165 		return &bpf_flow_dissector_load_bytes_proto;
8166 	default:
8167 		return bpf_sk_base_func_proto(func_id);
8168 	}
8169 }
8170 
8171 static const struct bpf_func_proto *
8172 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8173 {
8174 	switch (func_id) {
8175 	case BPF_FUNC_skb_load_bytes:
8176 		return &bpf_skb_load_bytes_proto;
8177 	case BPF_FUNC_skb_pull_data:
8178 		return &bpf_skb_pull_data_proto;
8179 	case BPF_FUNC_csum_diff:
8180 		return &bpf_csum_diff_proto;
8181 	case BPF_FUNC_get_cgroup_classid:
8182 		return &bpf_get_cgroup_classid_proto;
8183 	case BPF_FUNC_get_route_realm:
8184 		return &bpf_get_route_realm_proto;
8185 	case BPF_FUNC_get_hash_recalc:
8186 		return &bpf_get_hash_recalc_proto;
8187 	case BPF_FUNC_perf_event_output:
8188 		return &bpf_skb_event_output_proto;
8189 	case BPF_FUNC_get_smp_processor_id:
8190 		return &bpf_get_smp_processor_id_proto;
8191 	case BPF_FUNC_skb_under_cgroup:
8192 		return &bpf_skb_under_cgroup_proto;
8193 	default:
8194 		return bpf_sk_base_func_proto(func_id);
8195 	}
8196 }
8197 
8198 static const struct bpf_func_proto *
8199 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8200 {
8201 	switch (func_id) {
8202 	case BPF_FUNC_lwt_push_encap:
8203 		return &bpf_lwt_in_push_encap_proto;
8204 	default:
8205 		return lwt_out_func_proto(func_id, prog);
8206 	}
8207 }
8208 
8209 static const struct bpf_func_proto *
8210 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8211 {
8212 	switch (func_id) {
8213 	case BPF_FUNC_skb_get_tunnel_key:
8214 		return &bpf_skb_get_tunnel_key_proto;
8215 	case BPF_FUNC_skb_set_tunnel_key:
8216 		return bpf_get_skb_set_tunnel_proto(func_id);
8217 	case BPF_FUNC_skb_get_tunnel_opt:
8218 		return &bpf_skb_get_tunnel_opt_proto;
8219 	case BPF_FUNC_skb_set_tunnel_opt:
8220 		return bpf_get_skb_set_tunnel_proto(func_id);
8221 	case BPF_FUNC_redirect:
8222 		return &bpf_redirect_proto;
8223 	case BPF_FUNC_clone_redirect:
8224 		return &bpf_clone_redirect_proto;
8225 	case BPF_FUNC_skb_change_tail:
8226 		return &bpf_skb_change_tail_proto;
8227 	case BPF_FUNC_skb_change_head:
8228 		return &bpf_skb_change_head_proto;
8229 	case BPF_FUNC_skb_store_bytes:
8230 		return &bpf_skb_store_bytes_proto;
8231 	case BPF_FUNC_csum_update:
8232 		return &bpf_csum_update_proto;
8233 	case BPF_FUNC_csum_level:
8234 		return &bpf_csum_level_proto;
8235 	case BPF_FUNC_l3_csum_replace:
8236 		return &bpf_l3_csum_replace_proto;
8237 	case BPF_FUNC_l4_csum_replace:
8238 		return &bpf_l4_csum_replace_proto;
8239 	case BPF_FUNC_set_hash_invalid:
8240 		return &bpf_set_hash_invalid_proto;
8241 	case BPF_FUNC_lwt_push_encap:
8242 		return &bpf_lwt_xmit_push_encap_proto;
8243 	default:
8244 		return lwt_out_func_proto(func_id, prog);
8245 	}
8246 }
8247 
8248 static const struct bpf_func_proto *
8249 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8250 {
8251 	switch (func_id) {
8252 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8253 	case BPF_FUNC_lwt_seg6_store_bytes:
8254 		return &bpf_lwt_seg6_store_bytes_proto;
8255 	case BPF_FUNC_lwt_seg6_action:
8256 		return &bpf_lwt_seg6_action_proto;
8257 	case BPF_FUNC_lwt_seg6_adjust_srh:
8258 		return &bpf_lwt_seg6_adjust_srh_proto;
8259 #endif
8260 	default:
8261 		return lwt_out_func_proto(func_id, prog);
8262 	}
8263 }
8264 
8265 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8266 				    const struct bpf_prog *prog,
8267 				    struct bpf_insn_access_aux *info)
8268 {
8269 	const int size_default = sizeof(__u32);
8270 
8271 	if (off < 0 || off >= sizeof(struct __sk_buff))
8272 		return false;
8273 
8274 	/* The verifier guarantees that size > 0. */
8275 	if (off % size != 0)
8276 		return false;
8277 
8278 	switch (off) {
8279 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8280 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8281 			return false;
8282 		break;
8283 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8284 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8285 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8286 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8287 	case bpf_ctx_range(struct __sk_buff, data):
8288 	case bpf_ctx_range(struct __sk_buff, data_meta):
8289 	case bpf_ctx_range(struct __sk_buff, data_end):
8290 		if (size != size_default)
8291 			return false;
8292 		break;
8293 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8294 		return false;
8295 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8296 		if (type == BPF_WRITE || size != sizeof(__u64))
8297 			return false;
8298 		break;
8299 	case bpf_ctx_range(struct __sk_buff, tstamp):
8300 		if (size != sizeof(__u64))
8301 			return false;
8302 		break;
8303 	case offsetof(struct __sk_buff, sk):
8304 		if (type == BPF_WRITE || size != sizeof(__u64))
8305 			return false;
8306 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8307 		break;
8308 	case offsetof(struct __sk_buff, tstamp_type):
8309 		return false;
8310 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8311 		/* Explicitly prohibit access to padding in __sk_buff. */
8312 		return false;
8313 	default:
8314 		/* Only narrow read access allowed for now. */
8315 		if (type == BPF_WRITE) {
8316 			if (size != size_default)
8317 				return false;
8318 		} else {
8319 			bpf_ctx_record_field_size(info, size_default);
8320 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8321 				return false;
8322 		}
8323 	}
8324 
8325 	return true;
8326 }
8327 
8328 static bool sk_filter_is_valid_access(int off, int size,
8329 				      enum bpf_access_type type,
8330 				      const struct bpf_prog *prog,
8331 				      struct bpf_insn_access_aux *info)
8332 {
8333 	switch (off) {
8334 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8335 	case bpf_ctx_range(struct __sk_buff, data):
8336 	case bpf_ctx_range(struct __sk_buff, data_meta):
8337 	case bpf_ctx_range(struct __sk_buff, data_end):
8338 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8339 	case bpf_ctx_range(struct __sk_buff, tstamp):
8340 	case bpf_ctx_range(struct __sk_buff, wire_len):
8341 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8342 		return false;
8343 	}
8344 
8345 	if (type == BPF_WRITE) {
8346 		switch (off) {
8347 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8348 			break;
8349 		default:
8350 			return false;
8351 		}
8352 	}
8353 
8354 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8355 }
8356 
8357 static bool cg_skb_is_valid_access(int off, int size,
8358 				   enum bpf_access_type type,
8359 				   const struct bpf_prog *prog,
8360 				   struct bpf_insn_access_aux *info)
8361 {
8362 	switch (off) {
8363 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8364 	case bpf_ctx_range(struct __sk_buff, data_meta):
8365 	case bpf_ctx_range(struct __sk_buff, wire_len):
8366 		return false;
8367 	case bpf_ctx_range(struct __sk_buff, data):
8368 	case bpf_ctx_range(struct __sk_buff, data_end):
8369 		if (!bpf_capable())
8370 			return false;
8371 		break;
8372 	}
8373 
8374 	if (type == BPF_WRITE) {
8375 		switch (off) {
8376 		case bpf_ctx_range(struct __sk_buff, mark):
8377 		case bpf_ctx_range(struct __sk_buff, priority):
8378 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8379 			break;
8380 		case bpf_ctx_range(struct __sk_buff, tstamp):
8381 			if (!bpf_capable())
8382 				return false;
8383 			break;
8384 		default:
8385 			return false;
8386 		}
8387 	}
8388 
8389 	switch (off) {
8390 	case bpf_ctx_range(struct __sk_buff, data):
8391 		info->reg_type = PTR_TO_PACKET;
8392 		break;
8393 	case bpf_ctx_range(struct __sk_buff, data_end):
8394 		info->reg_type = PTR_TO_PACKET_END;
8395 		break;
8396 	}
8397 
8398 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8399 }
8400 
8401 static bool lwt_is_valid_access(int off, int size,
8402 				enum bpf_access_type type,
8403 				const struct bpf_prog *prog,
8404 				struct bpf_insn_access_aux *info)
8405 {
8406 	switch (off) {
8407 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8408 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8409 	case bpf_ctx_range(struct __sk_buff, data_meta):
8410 	case bpf_ctx_range(struct __sk_buff, tstamp):
8411 	case bpf_ctx_range(struct __sk_buff, wire_len):
8412 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8413 		return false;
8414 	}
8415 
8416 	if (type == BPF_WRITE) {
8417 		switch (off) {
8418 		case bpf_ctx_range(struct __sk_buff, mark):
8419 		case bpf_ctx_range(struct __sk_buff, priority):
8420 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8421 			break;
8422 		default:
8423 			return false;
8424 		}
8425 	}
8426 
8427 	switch (off) {
8428 	case bpf_ctx_range(struct __sk_buff, data):
8429 		info->reg_type = PTR_TO_PACKET;
8430 		break;
8431 	case bpf_ctx_range(struct __sk_buff, data_end):
8432 		info->reg_type = PTR_TO_PACKET_END;
8433 		break;
8434 	}
8435 
8436 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8437 }
8438 
8439 /* Attach type specific accesses */
8440 static bool __sock_filter_check_attach_type(int off,
8441 					    enum bpf_access_type access_type,
8442 					    enum bpf_attach_type attach_type)
8443 {
8444 	switch (off) {
8445 	case offsetof(struct bpf_sock, bound_dev_if):
8446 	case offsetof(struct bpf_sock, mark):
8447 	case offsetof(struct bpf_sock, priority):
8448 		switch (attach_type) {
8449 		case BPF_CGROUP_INET_SOCK_CREATE:
8450 		case BPF_CGROUP_INET_SOCK_RELEASE:
8451 			goto full_access;
8452 		default:
8453 			return false;
8454 		}
8455 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8456 		switch (attach_type) {
8457 		case BPF_CGROUP_INET4_POST_BIND:
8458 			goto read_only;
8459 		default:
8460 			return false;
8461 		}
8462 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8463 		switch (attach_type) {
8464 		case BPF_CGROUP_INET6_POST_BIND:
8465 			goto read_only;
8466 		default:
8467 			return false;
8468 		}
8469 	case bpf_ctx_range(struct bpf_sock, src_port):
8470 		switch (attach_type) {
8471 		case BPF_CGROUP_INET4_POST_BIND:
8472 		case BPF_CGROUP_INET6_POST_BIND:
8473 			goto read_only;
8474 		default:
8475 			return false;
8476 		}
8477 	}
8478 read_only:
8479 	return access_type == BPF_READ;
8480 full_access:
8481 	return true;
8482 }
8483 
8484 bool bpf_sock_common_is_valid_access(int off, int size,
8485 				     enum bpf_access_type type,
8486 				     struct bpf_insn_access_aux *info)
8487 {
8488 	switch (off) {
8489 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8490 		return false;
8491 	default:
8492 		return bpf_sock_is_valid_access(off, size, type, info);
8493 	}
8494 }
8495 
8496 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8497 			      struct bpf_insn_access_aux *info)
8498 {
8499 	const int size_default = sizeof(__u32);
8500 	int field_size;
8501 
8502 	if (off < 0 || off >= sizeof(struct bpf_sock))
8503 		return false;
8504 	if (off % size != 0)
8505 		return false;
8506 
8507 	switch (off) {
8508 	case offsetof(struct bpf_sock, state):
8509 	case offsetof(struct bpf_sock, family):
8510 	case offsetof(struct bpf_sock, type):
8511 	case offsetof(struct bpf_sock, protocol):
8512 	case offsetof(struct bpf_sock, src_port):
8513 	case offsetof(struct bpf_sock, rx_queue_mapping):
8514 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8515 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8516 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8517 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8518 		bpf_ctx_record_field_size(info, size_default);
8519 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8520 	case bpf_ctx_range(struct bpf_sock, dst_port):
8521 		field_size = size == size_default ?
8522 			size_default : sizeof_field(struct bpf_sock, dst_port);
8523 		bpf_ctx_record_field_size(info, field_size);
8524 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8525 	case offsetofend(struct bpf_sock, dst_port) ...
8526 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8527 		return false;
8528 	}
8529 
8530 	return size == size_default;
8531 }
8532 
8533 static bool sock_filter_is_valid_access(int off, int size,
8534 					enum bpf_access_type type,
8535 					const struct bpf_prog *prog,
8536 					struct bpf_insn_access_aux *info)
8537 {
8538 	if (!bpf_sock_is_valid_access(off, size, type, info))
8539 		return false;
8540 	return __sock_filter_check_attach_type(off, type,
8541 					       prog->expected_attach_type);
8542 }
8543 
8544 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8545 			     const struct bpf_prog *prog)
8546 {
8547 	/* Neither direct read nor direct write requires any preliminary
8548 	 * action.
8549 	 */
8550 	return 0;
8551 }
8552 
8553 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8554 				const struct bpf_prog *prog, int drop_verdict)
8555 {
8556 	struct bpf_insn *insn = insn_buf;
8557 
8558 	if (!direct_write)
8559 		return 0;
8560 
8561 	/* if (!skb->cloned)
8562 	 *       goto start;
8563 	 *
8564 	 * (Fast-path, otherwise approximation that we might be
8565 	 *  a clone, do the rest in helper.)
8566 	 */
8567 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8568 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8569 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8570 
8571 	/* ret = bpf_skb_pull_data(skb, 0); */
8572 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8573 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8574 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8575 			       BPF_FUNC_skb_pull_data);
8576 	/* if (!ret)
8577 	 *      goto restore;
8578 	 * return TC_ACT_SHOT;
8579 	 */
8580 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8581 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8582 	*insn++ = BPF_EXIT_INSN();
8583 
8584 	/* restore: */
8585 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8586 	/* start: */
8587 	*insn++ = prog->insnsi[0];
8588 
8589 	return insn - insn_buf;
8590 }
8591 
8592 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8593 			  struct bpf_insn *insn_buf)
8594 {
8595 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8596 	struct bpf_insn *insn = insn_buf;
8597 
8598 	if (!indirect) {
8599 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8600 	} else {
8601 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8602 		if (orig->imm)
8603 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8604 	}
8605 	/* We're guaranteed here that CTX is in R6. */
8606 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8607 
8608 	switch (BPF_SIZE(orig->code)) {
8609 	case BPF_B:
8610 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8611 		break;
8612 	case BPF_H:
8613 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8614 		break;
8615 	case BPF_W:
8616 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8617 		break;
8618 	}
8619 
8620 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8621 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8622 	*insn++ = BPF_EXIT_INSN();
8623 
8624 	return insn - insn_buf;
8625 }
8626 
8627 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8628 			       const struct bpf_prog *prog)
8629 {
8630 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8631 }
8632 
8633 static bool tc_cls_act_is_valid_access(int off, int size,
8634 				       enum bpf_access_type type,
8635 				       const struct bpf_prog *prog,
8636 				       struct bpf_insn_access_aux *info)
8637 {
8638 	if (type == BPF_WRITE) {
8639 		switch (off) {
8640 		case bpf_ctx_range(struct __sk_buff, mark):
8641 		case bpf_ctx_range(struct __sk_buff, tc_index):
8642 		case bpf_ctx_range(struct __sk_buff, priority):
8643 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8644 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8645 		case bpf_ctx_range(struct __sk_buff, tstamp):
8646 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8647 			break;
8648 		default:
8649 			return false;
8650 		}
8651 	}
8652 
8653 	switch (off) {
8654 	case bpf_ctx_range(struct __sk_buff, data):
8655 		info->reg_type = PTR_TO_PACKET;
8656 		break;
8657 	case bpf_ctx_range(struct __sk_buff, data_meta):
8658 		info->reg_type = PTR_TO_PACKET_META;
8659 		break;
8660 	case bpf_ctx_range(struct __sk_buff, data_end):
8661 		info->reg_type = PTR_TO_PACKET_END;
8662 		break;
8663 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8664 		return false;
8665 	case offsetof(struct __sk_buff, tstamp_type):
8666 		/* The convert_ctx_access() on reading and writing
8667 		 * __sk_buff->tstamp depends on whether the bpf prog
8668 		 * has used __sk_buff->tstamp_type or not.
8669 		 * Thus, we need to set prog->tstamp_type_access
8670 		 * earlier during is_valid_access() here.
8671 		 */
8672 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8673 		return size == sizeof(__u8);
8674 	}
8675 
8676 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8677 }
8678 
8679 DEFINE_MUTEX(nf_conn_btf_access_lock);
8680 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8681 
8682 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8683 			      const struct bpf_reg_state *reg,
8684 			      int off, int size, enum bpf_access_type atype,
8685 			      u32 *next_btf_id, enum bpf_type_flag *flag);
8686 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8687 
8688 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8689 					const struct bpf_reg_state *reg,
8690 					int off, int size, enum bpf_access_type atype,
8691 					u32 *next_btf_id, enum bpf_type_flag *flag)
8692 {
8693 	int ret = -EACCES;
8694 
8695 	if (atype == BPF_READ)
8696 		return btf_struct_access(log, reg, off, size, atype, next_btf_id, flag);
8697 
8698 	mutex_lock(&nf_conn_btf_access_lock);
8699 	if (nfct_btf_struct_access)
8700 		ret = nfct_btf_struct_access(log, reg, off, size, atype, next_btf_id, flag);
8701 	mutex_unlock(&nf_conn_btf_access_lock);
8702 
8703 	return ret;
8704 }
8705 
8706 static bool __is_valid_xdp_access(int off, int size)
8707 {
8708 	if (off < 0 || off >= sizeof(struct xdp_md))
8709 		return false;
8710 	if (off % size != 0)
8711 		return false;
8712 	if (size != sizeof(__u32))
8713 		return false;
8714 
8715 	return true;
8716 }
8717 
8718 static bool xdp_is_valid_access(int off, int size,
8719 				enum bpf_access_type type,
8720 				const struct bpf_prog *prog,
8721 				struct bpf_insn_access_aux *info)
8722 {
8723 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8724 		switch (off) {
8725 		case offsetof(struct xdp_md, egress_ifindex):
8726 			return false;
8727 		}
8728 	}
8729 
8730 	if (type == BPF_WRITE) {
8731 		if (bpf_prog_is_dev_bound(prog->aux)) {
8732 			switch (off) {
8733 			case offsetof(struct xdp_md, rx_queue_index):
8734 				return __is_valid_xdp_access(off, size);
8735 			}
8736 		}
8737 		return false;
8738 	}
8739 
8740 	switch (off) {
8741 	case offsetof(struct xdp_md, data):
8742 		info->reg_type = PTR_TO_PACKET;
8743 		break;
8744 	case offsetof(struct xdp_md, data_meta):
8745 		info->reg_type = PTR_TO_PACKET_META;
8746 		break;
8747 	case offsetof(struct xdp_md, data_end):
8748 		info->reg_type = PTR_TO_PACKET_END;
8749 		break;
8750 	}
8751 
8752 	return __is_valid_xdp_access(off, size);
8753 }
8754 
8755 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8756 {
8757 	const u32 act_max = XDP_REDIRECT;
8758 
8759 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8760 		     act > act_max ? "Illegal" : "Driver unsupported",
8761 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8762 }
8763 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8764 
8765 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8766 				 const struct bpf_reg_state *reg,
8767 				 int off, int size, enum bpf_access_type atype,
8768 				 u32 *next_btf_id, enum bpf_type_flag *flag)
8769 {
8770 	int ret = -EACCES;
8771 
8772 	if (atype == BPF_READ)
8773 		return btf_struct_access(log, reg, off, size, atype, next_btf_id, flag);
8774 
8775 	mutex_lock(&nf_conn_btf_access_lock);
8776 	if (nfct_btf_struct_access)
8777 		ret = nfct_btf_struct_access(log, reg, off, size, atype, next_btf_id, flag);
8778 	mutex_unlock(&nf_conn_btf_access_lock);
8779 
8780 	return ret;
8781 }
8782 
8783 static bool sock_addr_is_valid_access(int off, int size,
8784 				      enum bpf_access_type type,
8785 				      const struct bpf_prog *prog,
8786 				      struct bpf_insn_access_aux *info)
8787 {
8788 	const int size_default = sizeof(__u32);
8789 
8790 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8791 		return false;
8792 	if (off % size != 0)
8793 		return false;
8794 
8795 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8796 	 * versa.
8797 	 */
8798 	switch (off) {
8799 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8800 		switch (prog->expected_attach_type) {
8801 		case BPF_CGROUP_INET4_BIND:
8802 		case BPF_CGROUP_INET4_CONNECT:
8803 		case BPF_CGROUP_INET4_GETPEERNAME:
8804 		case BPF_CGROUP_INET4_GETSOCKNAME:
8805 		case BPF_CGROUP_UDP4_SENDMSG:
8806 		case BPF_CGROUP_UDP4_RECVMSG:
8807 			break;
8808 		default:
8809 			return false;
8810 		}
8811 		break;
8812 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8813 		switch (prog->expected_attach_type) {
8814 		case BPF_CGROUP_INET6_BIND:
8815 		case BPF_CGROUP_INET6_CONNECT:
8816 		case BPF_CGROUP_INET6_GETPEERNAME:
8817 		case BPF_CGROUP_INET6_GETSOCKNAME:
8818 		case BPF_CGROUP_UDP6_SENDMSG:
8819 		case BPF_CGROUP_UDP6_RECVMSG:
8820 			break;
8821 		default:
8822 			return false;
8823 		}
8824 		break;
8825 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8826 		switch (prog->expected_attach_type) {
8827 		case BPF_CGROUP_UDP4_SENDMSG:
8828 			break;
8829 		default:
8830 			return false;
8831 		}
8832 		break;
8833 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8834 				msg_src_ip6[3]):
8835 		switch (prog->expected_attach_type) {
8836 		case BPF_CGROUP_UDP6_SENDMSG:
8837 			break;
8838 		default:
8839 			return false;
8840 		}
8841 		break;
8842 	}
8843 
8844 	switch (off) {
8845 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8846 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8847 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8848 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8849 				msg_src_ip6[3]):
8850 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8851 		if (type == BPF_READ) {
8852 			bpf_ctx_record_field_size(info, size_default);
8853 
8854 			if (bpf_ctx_wide_access_ok(off, size,
8855 						   struct bpf_sock_addr,
8856 						   user_ip6))
8857 				return true;
8858 
8859 			if (bpf_ctx_wide_access_ok(off, size,
8860 						   struct bpf_sock_addr,
8861 						   msg_src_ip6))
8862 				return true;
8863 
8864 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8865 				return false;
8866 		} else {
8867 			if (bpf_ctx_wide_access_ok(off, size,
8868 						   struct bpf_sock_addr,
8869 						   user_ip6))
8870 				return true;
8871 
8872 			if (bpf_ctx_wide_access_ok(off, size,
8873 						   struct bpf_sock_addr,
8874 						   msg_src_ip6))
8875 				return true;
8876 
8877 			if (size != size_default)
8878 				return false;
8879 		}
8880 		break;
8881 	case offsetof(struct bpf_sock_addr, sk):
8882 		if (type != BPF_READ)
8883 			return false;
8884 		if (size != sizeof(__u64))
8885 			return false;
8886 		info->reg_type = PTR_TO_SOCKET;
8887 		break;
8888 	default:
8889 		if (type == BPF_READ) {
8890 			if (size != size_default)
8891 				return false;
8892 		} else {
8893 			return false;
8894 		}
8895 	}
8896 
8897 	return true;
8898 }
8899 
8900 static bool sock_ops_is_valid_access(int off, int size,
8901 				     enum bpf_access_type type,
8902 				     const struct bpf_prog *prog,
8903 				     struct bpf_insn_access_aux *info)
8904 {
8905 	const int size_default = sizeof(__u32);
8906 
8907 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8908 		return false;
8909 
8910 	/* The verifier guarantees that size > 0. */
8911 	if (off % size != 0)
8912 		return false;
8913 
8914 	if (type == BPF_WRITE) {
8915 		switch (off) {
8916 		case offsetof(struct bpf_sock_ops, reply):
8917 		case offsetof(struct bpf_sock_ops, sk_txhash):
8918 			if (size != size_default)
8919 				return false;
8920 			break;
8921 		default:
8922 			return false;
8923 		}
8924 	} else {
8925 		switch (off) {
8926 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8927 					bytes_acked):
8928 			if (size != sizeof(__u64))
8929 				return false;
8930 			break;
8931 		case offsetof(struct bpf_sock_ops, sk):
8932 			if (size != sizeof(__u64))
8933 				return false;
8934 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8935 			break;
8936 		case offsetof(struct bpf_sock_ops, skb_data):
8937 			if (size != sizeof(__u64))
8938 				return false;
8939 			info->reg_type = PTR_TO_PACKET;
8940 			break;
8941 		case offsetof(struct bpf_sock_ops, skb_data_end):
8942 			if (size != sizeof(__u64))
8943 				return false;
8944 			info->reg_type = PTR_TO_PACKET_END;
8945 			break;
8946 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8947 			bpf_ctx_record_field_size(info, size_default);
8948 			return bpf_ctx_narrow_access_ok(off, size,
8949 							size_default);
8950 		case offsetof(struct bpf_sock_ops, skb_hwtstamp):
8951 			if (size != sizeof(__u64))
8952 				return false;
8953 			break;
8954 		default:
8955 			if (size != size_default)
8956 				return false;
8957 			break;
8958 		}
8959 	}
8960 
8961 	return true;
8962 }
8963 
8964 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8965 			   const struct bpf_prog *prog)
8966 {
8967 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8968 }
8969 
8970 static bool sk_skb_is_valid_access(int off, int size,
8971 				   enum bpf_access_type type,
8972 				   const struct bpf_prog *prog,
8973 				   struct bpf_insn_access_aux *info)
8974 {
8975 	switch (off) {
8976 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8977 	case bpf_ctx_range(struct __sk_buff, data_meta):
8978 	case bpf_ctx_range(struct __sk_buff, tstamp):
8979 	case bpf_ctx_range(struct __sk_buff, wire_len):
8980 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8981 		return false;
8982 	}
8983 
8984 	if (type == BPF_WRITE) {
8985 		switch (off) {
8986 		case bpf_ctx_range(struct __sk_buff, tc_index):
8987 		case bpf_ctx_range(struct __sk_buff, priority):
8988 			break;
8989 		default:
8990 			return false;
8991 		}
8992 	}
8993 
8994 	switch (off) {
8995 	case bpf_ctx_range(struct __sk_buff, mark):
8996 		return false;
8997 	case bpf_ctx_range(struct __sk_buff, data):
8998 		info->reg_type = PTR_TO_PACKET;
8999 		break;
9000 	case bpf_ctx_range(struct __sk_buff, data_end):
9001 		info->reg_type = PTR_TO_PACKET_END;
9002 		break;
9003 	}
9004 
9005 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9006 }
9007 
9008 static bool sk_msg_is_valid_access(int off, int size,
9009 				   enum bpf_access_type type,
9010 				   const struct bpf_prog *prog,
9011 				   struct bpf_insn_access_aux *info)
9012 {
9013 	if (type == BPF_WRITE)
9014 		return false;
9015 
9016 	if (off % size != 0)
9017 		return false;
9018 
9019 	switch (off) {
9020 	case offsetof(struct sk_msg_md, data):
9021 		info->reg_type = PTR_TO_PACKET;
9022 		if (size != sizeof(__u64))
9023 			return false;
9024 		break;
9025 	case offsetof(struct sk_msg_md, data_end):
9026 		info->reg_type = PTR_TO_PACKET_END;
9027 		if (size != sizeof(__u64))
9028 			return false;
9029 		break;
9030 	case offsetof(struct sk_msg_md, sk):
9031 		if (size != sizeof(__u64))
9032 			return false;
9033 		info->reg_type = PTR_TO_SOCKET;
9034 		break;
9035 	case bpf_ctx_range(struct sk_msg_md, family):
9036 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9037 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9038 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9039 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9040 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9041 	case bpf_ctx_range(struct sk_msg_md, local_port):
9042 	case bpf_ctx_range(struct sk_msg_md, size):
9043 		if (size != sizeof(__u32))
9044 			return false;
9045 		break;
9046 	default:
9047 		return false;
9048 	}
9049 	return true;
9050 }
9051 
9052 static bool flow_dissector_is_valid_access(int off, int size,
9053 					   enum bpf_access_type type,
9054 					   const struct bpf_prog *prog,
9055 					   struct bpf_insn_access_aux *info)
9056 {
9057 	const int size_default = sizeof(__u32);
9058 
9059 	if (off < 0 || off >= sizeof(struct __sk_buff))
9060 		return false;
9061 
9062 	if (type == BPF_WRITE)
9063 		return false;
9064 
9065 	switch (off) {
9066 	case bpf_ctx_range(struct __sk_buff, data):
9067 		if (size != size_default)
9068 			return false;
9069 		info->reg_type = PTR_TO_PACKET;
9070 		return true;
9071 	case bpf_ctx_range(struct __sk_buff, data_end):
9072 		if (size != size_default)
9073 			return false;
9074 		info->reg_type = PTR_TO_PACKET_END;
9075 		return true;
9076 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9077 		if (size != sizeof(__u64))
9078 			return false;
9079 		info->reg_type = PTR_TO_FLOW_KEYS;
9080 		return true;
9081 	default:
9082 		return false;
9083 	}
9084 }
9085 
9086 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9087 					     const struct bpf_insn *si,
9088 					     struct bpf_insn *insn_buf,
9089 					     struct bpf_prog *prog,
9090 					     u32 *target_size)
9091 
9092 {
9093 	struct bpf_insn *insn = insn_buf;
9094 
9095 	switch (si->off) {
9096 	case offsetof(struct __sk_buff, data):
9097 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9098 				      si->dst_reg, si->src_reg,
9099 				      offsetof(struct bpf_flow_dissector, data));
9100 		break;
9101 
9102 	case offsetof(struct __sk_buff, data_end):
9103 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9104 				      si->dst_reg, si->src_reg,
9105 				      offsetof(struct bpf_flow_dissector, data_end));
9106 		break;
9107 
9108 	case offsetof(struct __sk_buff, flow_keys):
9109 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9110 				      si->dst_reg, si->src_reg,
9111 				      offsetof(struct bpf_flow_dissector, flow_keys));
9112 		break;
9113 	}
9114 
9115 	return insn - insn_buf;
9116 }
9117 
9118 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9119 						     struct bpf_insn *insn)
9120 {
9121 	__u8 value_reg = si->dst_reg;
9122 	__u8 skb_reg = si->src_reg;
9123 	/* AX is needed because src_reg and dst_reg could be the same */
9124 	__u8 tmp_reg = BPF_REG_AX;
9125 
9126 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9127 			      PKT_VLAN_PRESENT_OFFSET);
9128 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9129 				SKB_MONO_DELIVERY_TIME_MASK, 2);
9130 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9131 	*insn++ = BPF_JMP_A(1);
9132 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9133 
9134 	return insn;
9135 }
9136 
9137 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9138 						  struct bpf_insn *insn)
9139 {
9140 	/* si->dst_reg = skb_shinfo(SKB); */
9141 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9142 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9143 			      BPF_REG_AX, skb_reg,
9144 			      offsetof(struct sk_buff, end));
9145 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9146 			      dst_reg, skb_reg,
9147 			      offsetof(struct sk_buff, head));
9148 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9149 #else
9150 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9151 			      dst_reg, skb_reg,
9152 			      offsetof(struct sk_buff, end));
9153 #endif
9154 
9155 	return insn;
9156 }
9157 
9158 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9159 						const struct bpf_insn *si,
9160 						struct bpf_insn *insn)
9161 {
9162 	__u8 value_reg = si->dst_reg;
9163 	__u8 skb_reg = si->src_reg;
9164 
9165 #ifdef CONFIG_NET_CLS_ACT
9166 	/* If the tstamp_type is read,
9167 	 * the bpf prog is aware the tstamp could have delivery time.
9168 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9169 	 */
9170 	if (!prog->tstamp_type_access) {
9171 		/* AX is needed because src_reg and dst_reg could be the same */
9172 		__u8 tmp_reg = BPF_REG_AX;
9173 
9174 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9175 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9176 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9177 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9178 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9179 		/* skb->tc_at_ingress && skb->mono_delivery_time,
9180 		 * read 0 as the (rcv) timestamp.
9181 		 */
9182 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9183 		*insn++ = BPF_JMP_A(1);
9184 	}
9185 #endif
9186 
9187 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9188 			      offsetof(struct sk_buff, tstamp));
9189 	return insn;
9190 }
9191 
9192 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9193 						 const struct bpf_insn *si,
9194 						 struct bpf_insn *insn)
9195 {
9196 	__u8 value_reg = si->src_reg;
9197 	__u8 skb_reg = si->dst_reg;
9198 
9199 #ifdef CONFIG_NET_CLS_ACT
9200 	/* If the tstamp_type is read,
9201 	 * the bpf prog is aware the tstamp could have delivery time.
9202 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9203 	 * Otherwise, writing at ingress will have to clear the
9204 	 * mono_delivery_time bit also.
9205 	 */
9206 	if (!prog->tstamp_type_access) {
9207 		__u8 tmp_reg = BPF_REG_AX;
9208 
9209 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9210 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9211 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9212 		/* goto <store> */
9213 		*insn++ = BPF_JMP_A(2);
9214 		/* <clear>: mono_delivery_time */
9215 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9216 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9217 	}
9218 #endif
9219 
9220 	/* <store>: skb->tstamp = tstamp */
9221 	*insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9222 			      offsetof(struct sk_buff, tstamp));
9223 	return insn;
9224 }
9225 
9226 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9227 				  const struct bpf_insn *si,
9228 				  struct bpf_insn *insn_buf,
9229 				  struct bpf_prog *prog, u32 *target_size)
9230 {
9231 	struct bpf_insn *insn = insn_buf;
9232 	int off;
9233 
9234 	switch (si->off) {
9235 	case offsetof(struct __sk_buff, len):
9236 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9237 				      bpf_target_off(struct sk_buff, len, 4,
9238 						     target_size));
9239 		break;
9240 
9241 	case offsetof(struct __sk_buff, protocol):
9242 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9243 				      bpf_target_off(struct sk_buff, protocol, 2,
9244 						     target_size));
9245 		break;
9246 
9247 	case offsetof(struct __sk_buff, vlan_proto):
9248 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9249 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9250 						     target_size));
9251 		break;
9252 
9253 	case offsetof(struct __sk_buff, priority):
9254 		if (type == BPF_WRITE)
9255 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9256 					      bpf_target_off(struct sk_buff, priority, 4,
9257 							     target_size));
9258 		else
9259 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9260 					      bpf_target_off(struct sk_buff, priority, 4,
9261 							     target_size));
9262 		break;
9263 
9264 	case offsetof(struct __sk_buff, ingress_ifindex):
9265 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9266 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9267 						     target_size));
9268 		break;
9269 
9270 	case offsetof(struct __sk_buff, ifindex):
9271 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9272 				      si->dst_reg, si->src_reg,
9273 				      offsetof(struct sk_buff, dev));
9274 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9275 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9276 				      bpf_target_off(struct net_device, ifindex, 4,
9277 						     target_size));
9278 		break;
9279 
9280 	case offsetof(struct __sk_buff, hash):
9281 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9282 				      bpf_target_off(struct sk_buff, hash, 4,
9283 						     target_size));
9284 		break;
9285 
9286 	case offsetof(struct __sk_buff, mark):
9287 		if (type == BPF_WRITE)
9288 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9289 					      bpf_target_off(struct sk_buff, mark, 4,
9290 							     target_size));
9291 		else
9292 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9293 					      bpf_target_off(struct sk_buff, mark, 4,
9294 							     target_size));
9295 		break;
9296 
9297 	case offsetof(struct __sk_buff, pkt_type):
9298 		*target_size = 1;
9299 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9300 				      PKT_TYPE_OFFSET);
9301 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9302 #ifdef __BIG_ENDIAN_BITFIELD
9303 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9304 #endif
9305 		break;
9306 
9307 	case offsetof(struct __sk_buff, queue_mapping):
9308 		if (type == BPF_WRITE) {
9309 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9310 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9311 					      bpf_target_off(struct sk_buff,
9312 							     queue_mapping,
9313 							     2, target_size));
9314 		} else {
9315 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9316 					      bpf_target_off(struct sk_buff,
9317 							     queue_mapping,
9318 							     2, target_size));
9319 		}
9320 		break;
9321 
9322 	case offsetof(struct __sk_buff, vlan_present):
9323 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9324 				      bpf_target_off(struct sk_buff,
9325 						     vlan_all, 4, target_size));
9326 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9327 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9328 		break;
9329 
9330 	case offsetof(struct __sk_buff, vlan_tci):
9331 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9332 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9333 						     target_size));
9334 		break;
9335 
9336 	case offsetof(struct __sk_buff, cb[0]) ...
9337 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9338 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9339 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9340 			      offsetof(struct qdisc_skb_cb, data)) %
9341 			     sizeof(__u64));
9342 
9343 		prog->cb_access = 1;
9344 		off  = si->off;
9345 		off -= offsetof(struct __sk_buff, cb[0]);
9346 		off += offsetof(struct sk_buff, cb);
9347 		off += offsetof(struct qdisc_skb_cb, data);
9348 		if (type == BPF_WRITE)
9349 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9350 					      si->src_reg, off);
9351 		else
9352 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9353 					      si->src_reg, off);
9354 		break;
9355 
9356 	case offsetof(struct __sk_buff, tc_classid):
9357 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9358 
9359 		off  = si->off;
9360 		off -= offsetof(struct __sk_buff, tc_classid);
9361 		off += offsetof(struct sk_buff, cb);
9362 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9363 		*target_size = 2;
9364 		if (type == BPF_WRITE)
9365 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9366 					      si->src_reg, off);
9367 		else
9368 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9369 					      si->src_reg, off);
9370 		break;
9371 
9372 	case offsetof(struct __sk_buff, data):
9373 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9374 				      si->dst_reg, si->src_reg,
9375 				      offsetof(struct sk_buff, data));
9376 		break;
9377 
9378 	case offsetof(struct __sk_buff, data_meta):
9379 		off  = si->off;
9380 		off -= offsetof(struct __sk_buff, data_meta);
9381 		off += offsetof(struct sk_buff, cb);
9382 		off += offsetof(struct bpf_skb_data_end, data_meta);
9383 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9384 				      si->src_reg, off);
9385 		break;
9386 
9387 	case offsetof(struct __sk_buff, data_end):
9388 		off  = si->off;
9389 		off -= offsetof(struct __sk_buff, data_end);
9390 		off += offsetof(struct sk_buff, cb);
9391 		off += offsetof(struct bpf_skb_data_end, data_end);
9392 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9393 				      si->src_reg, off);
9394 		break;
9395 
9396 	case offsetof(struct __sk_buff, tc_index):
9397 #ifdef CONFIG_NET_SCHED
9398 		if (type == BPF_WRITE)
9399 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9400 					      bpf_target_off(struct sk_buff, tc_index, 2,
9401 							     target_size));
9402 		else
9403 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9404 					      bpf_target_off(struct sk_buff, tc_index, 2,
9405 							     target_size));
9406 #else
9407 		*target_size = 2;
9408 		if (type == BPF_WRITE)
9409 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9410 		else
9411 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9412 #endif
9413 		break;
9414 
9415 	case offsetof(struct __sk_buff, napi_id):
9416 #if defined(CONFIG_NET_RX_BUSY_POLL)
9417 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9418 				      bpf_target_off(struct sk_buff, napi_id, 4,
9419 						     target_size));
9420 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9421 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9422 #else
9423 		*target_size = 4;
9424 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9425 #endif
9426 		break;
9427 	case offsetof(struct __sk_buff, family):
9428 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9429 
9430 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9431 				      si->dst_reg, si->src_reg,
9432 				      offsetof(struct sk_buff, sk));
9433 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9434 				      bpf_target_off(struct sock_common,
9435 						     skc_family,
9436 						     2, target_size));
9437 		break;
9438 	case offsetof(struct __sk_buff, remote_ip4):
9439 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9440 
9441 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9442 				      si->dst_reg, si->src_reg,
9443 				      offsetof(struct sk_buff, sk));
9444 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9445 				      bpf_target_off(struct sock_common,
9446 						     skc_daddr,
9447 						     4, target_size));
9448 		break;
9449 	case offsetof(struct __sk_buff, local_ip4):
9450 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9451 					  skc_rcv_saddr) != 4);
9452 
9453 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9454 				      si->dst_reg, si->src_reg,
9455 				      offsetof(struct sk_buff, sk));
9456 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9457 				      bpf_target_off(struct sock_common,
9458 						     skc_rcv_saddr,
9459 						     4, target_size));
9460 		break;
9461 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9462 	     offsetof(struct __sk_buff, remote_ip6[3]):
9463 #if IS_ENABLED(CONFIG_IPV6)
9464 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9465 					  skc_v6_daddr.s6_addr32[0]) != 4);
9466 
9467 		off = si->off;
9468 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9469 
9470 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9471 				      si->dst_reg, si->src_reg,
9472 				      offsetof(struct sk_buff, sk));
9473 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9474 				      offsetof(struct sock_common,
9475 					       skc_v6_daddr.s6_addr32[0]) +
9476 				      off);
9477 #else
9478 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9479 #endif
9480 		break;
9481 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9482 	     offsetof(struct __sk_buff, local_ip6[3]):
9483 #if IS_ENABLED(CONFIG_IPV6)
9484 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9485 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9486 
9487 		off = si->off;
9488 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9489 
9490 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9491 				      si->dst_reg, si->src_reg,
9492 				      offsetof(struct sk_buff, sk));
9493 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9494 				      offsetof(struct sock_common,
9495 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9496 				      off);
9497 #else
9498 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9499 #endif
9500 		break;
9501 
9502 	case offsetof(struct __sk_buff, remote_port):
9503 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9504 
9505 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9506 				      si->dst_reg, si->src_reg,
9507 				      offsetof(struct sk_buff, sk));
9508 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9509 				      bpf_target_off(struct sock_common,
9510 						     skc_dport,
9511 						     2, target_size));
9512 #ifndef __BIG_ENDIAN_BITFIELD
9513 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9514 #endif
9515 		break;
9516 
9517 	case offsetof(struct __sk_buff, local_port):
9518 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9519 
9520 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9521 				      si->dst_reg, si->src_reg,
9522 				      offsetof(struct sk_buff, sk));
9523 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9524 				      bpf_target_off(struct sock_common,
9525 						     skc_num, 2, target_size));
9526 		break;
9527 
9528 	case offsetof(struct __sk_buff, tstamp):
9529 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9530 
9531 		if (type == BPF_WRITE)
9532 			insn = bpf_convert_tstamp_write(prog, si, insn);
9533 		else
9534 			insn = bpf_convert_tstamp_read(prog, si, insn);
9535 		break;
9536 
9537 	case offsetof(struct __sk_buff, tstamp_type):
9538 		insn = bpf_convert_tstamp_type_read(si, insn);
9539 		break;
9540 
9541 	case offsetof(struct __sk_buff, gso_segs):
9542 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9543 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9544 				      si->dst_reg, si->dst_reg,
9545 				      bpf_target_off(struct skb_shared_info,
9546 						     gso_segs, 2,
9547 						     target_size));
9548 		break;
9549 	case offsetof(struct __sk_buff, gso_size):
9550 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9551 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9552 				      si->dst_reg, si->dst_reg,
9553 				      bpf_target_off(struct skb_shared_info,
9554 						     gso_size, 2,
9555 						     target_size));
9556 		break;
9557 	case offsetof(struct __sk_buff, wire_len):
9558 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9559 
9560 		off = si->off;
9561 		off -= offsetof(struct __sk_buff, wire_len);
9562 		off += offsetof(struct sk_buff, cb);
9563 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9564 		*target_size = 4;
9565 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9566 		break;
9567 
9568 	case offsetof(struct __sk_buff, sk):
9569 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9570 				      si->dst_reg, si->src_reg,
9571 				      offsetof(struct sk_buff, sk));
9572 		break;
9573 	case offsetof(struct __sk_buff, hwtstamp):
9574 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9575 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9576 
9577 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9578 		*insn++ = BPF_LDX_MEM(BPF_DW,
9579 				      si->dst_reg, si->dst_reg,
9580 				      bpf_target_off(struct skb_shared_info,
9581 						     hwtstamps, 8,
9582 						     target_size));
9583 		break;
9584 	}
9585 
9586 	return insn - insn_buf;
9587 }
9588 
9589 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9590 				const struct bpf_insn *si,
9591 				struct bpf_insn *insn_buf,
9592 				struct bpf_prog *prog, u32 *target_size)
9593 {
9594 	struct bpf_insn *insn = insn_buf;
9595 	int off;
9596 
9597 	switch (si->off) {
9598 	case offsetof(struct bpf_sock, bound_dev_if):
9599 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9600 
9601 		if (type == BPF_WRITE)
9602 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9603 					offsetof(struct sock, sk_bound_dev_if));
9604 		else
9605 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9606 				      offsetof(struct sock, sk_bound_dev_if));
9607 		break;
9608 
9609 	case offsetof(struct bpf_sock, mark):
9610 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9611 
9612 		if (type == BPF_WRITE)
9613 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9614 					offsetof(struct sock, sk_mark));
9615 		else
9616 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9617 				      offsetof(struct sock, sk_mark));
9618 		break;
9619 
9620 	case offsetof(struct bpf_sock, priority):
9621 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9622 
9623 		if (type == BPF_WRITE)
9624 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9625 					offsetof(struct sock, sk_priority));
9626 		else
9627 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9628 				      offsetof(struct sock, sk_priority));
9629 		break;
9630 
9631 	case offsetof(struct bpf_sock, family):
9632 		*insn++ = BPF_LDX_MEM(
9633 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9634 			si->dst_reg, si->src_reg,
9635 			bpf_target_off(struct sock_common,
9636 				       skc_family,
9637 				       sizeof_field(struct sock_common,
9638 						    skc_family),
9639 				       target_size));
9640 		break;
9641 
9642 	case offsetof(struct bpf_sock, type):
9643 		*insn++ = BPF_LDX_MEM(
9644 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9645 			si->dst_reg, si->src_reg,
9646 			bpf_target_off(struct sock, sk_type,
9647 				       sizeof_field(struct sock, sk_type),
9648 				       target_size));
9649 		break;
9650 
9651 	case offsetof(struct bpf_sock, protocol):
9652 		*insn++ = BPF_LDX_MEM(
9653 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9654 			si->dst_reg, si->src_reg,
9655 			bpf_target_off(struct sock, sk_protocol,
9656 				       sizeof_field(struct sock, sk_protocol),
9657 				       target_size));
9658 		break;
9659 
9660 	case offsetof(struct bpf_sock, src_ip4):
9661 		*insn++ = BPF_LDX_MEM(
9662 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9663 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9664 				       sizeof_field(struct sock_common,
9665 						    skc_rcv_saddr),
9666 				       target_size));
9667 		break;
9668 
9669 	case offsetof(struct bpf_sock, dst_ip4):
9670 		*insn++ = BPF_LDX_MEM(
9671 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9672 			bpf_target_off(struct sock_common, skc_daddr,
9673 				       sizeof_field(struct sock_common,
9674 						    skc_daddr),
9675 				       target_size));
9676 		break;
9677 
9678 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9679 #if IS_ENABLED(CONFIG_IPV6)
9680 		off = si->off;
9681 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9682 		*insn++ = BPF_LDX_MEM(
9683 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9684 			bpf_target_off(
9685 				struct sock_common,
9686 				skc_v6_rcv_saddr.s6_addr32[0],
9687 				sizeof_field(struct sock_common,
9688 					     skc_v6_rcv_saddr.s6_addr32[0]),
9689 				target_size) + off);
9690 #else
9691 		(void)off;
9692 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9693 #endif
9694 		break;
9695 
9696 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9697 #if IS_ENABLED(CONFIG_IPV6)
9698 		off = si->off;
9699 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9700 		*insn++ = BPF_LDX_MEM(
9701 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9702 			bpf_target_off(struct sock_common,
9703 				       skc_v6_daddr.s6_addr32[0],
9704 				       sizeof_field(struct sock_common,
9705 						    skc_v6_daddr.s6_addr32[0]),
9706 				       target_size) + off);
9707 #else
9708 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9709 		*target_size = 4;
9710 #endif
9711 		break;
9712 
9713 	case offsetof(struct bpf_sock, src_port):
9714 		*insn++ = BPF_LDX_MEM(
9715 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9716 			si->dst_reg, si->src_reg,
9717 			bpf_target_off(struct sock_common, skc_num,
9718 				       sizeof_field(struct sock_common,
9719 						    skc_num),
9720 				       target_size));
9721 		break;
9722 
9723 	case offsetof(struct bpf_sock, dst_port):
9724 		*insn++ = BPF_LDX_MEM(
9725 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9726 			si->dst_reg, si->src_reg,
9727 			bpf_target_off(struct sock_common, skc_dport,
9728 				       sizeof_field(struct sock_common,
9729 						    skc_dport),
9730 				       target_size));
9731 		break;
9732 
9733 	case offsetof(struct bpf_sock, state):
9734 		*insn++ = BPF_LDX_MEM(
9735 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9736 			si->dst_reg, si->src_reg,
9737 			bpf_target_off(struct sock_common, skc_state,
9738 				       sizeof_field(struct sock_common,
9739 						    skc_state),
9740 				       target_size));
9741 		break;
9742 	case offsetof(struct bpf_sock, rx_queue_mapping):
9743 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9744 		*insn++ = BPF_LDX_MEM(
9745 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9746 			si->dst_reg, si->src_reg,
9747 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9748 				       sizeof_field(struct sock,
9749 						    sk_rx_queue_mapping),
9750 				       target_size));
9751 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9752 				      1);
9753 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9754 #else
9755 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9756 		*target_size = 2;
9757 #endif
9758 		break;
9759 	}
9760 
9761 	return insn - insn_buf;
9762 }
9763 
9764 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9765 					 const struct bpf_insn *si,
9766 					 struct bpf_insn *insn_buf,
9767 					 struct bpf_prog *prog, u32 *target_size)
9768 {
9769 	struct bpf_insn *insn = insn_buf;
9770 
9771 	switch (si->off) {
9772 	case offsetof(struct __sk_buff, ifindex):
9773 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9774 				      si->dst_reg, si->src_reg,
9775 				      offsetof(struct sk_buff, dev));
9776 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9777 				      bpf_target_off(struct net_device, ifindex, 4,
9778 						     target_size));
9779 		break;
9780 	default:
9781 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9782 					      target_size);
9783 	}
9784 
9785 	return insn - insn_buf;
9786 }
9787 
9788 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9789 				  const struct bpf_insn *si,
9790 				  struct bpf_insn *insn_buf,
9791 				  struct bpf_prog *prog, u32 *target_size)
9792 {
9793 	struct bpf_insn *insn = insn_buf;
9794 
9795 	switch (si->off) {
9796 	case offsetof(struct xdp_md, data):
9797 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9798 				      si->dst_reg, si->src_reg,
9799 				      offsetof(struct xdp_buff, data));
9800 		break;
9801 	case offsetof(struct xdp_md, data_meta):
9802 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9803 				      si->dst_reg, si->src_reg,
9804 				      offsetof(struct xdp_buff, data_meta));
9805 		break;
9806 	case offsetof(struct xdp_md, data_end):
9807 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9808 				      si->dst_reg, si->src_reg,
9809 				      offsetof(struct xdp_buff, data_end));
9810 		break;
9811 	case offsetof(struct xdp_md, ingress_ifindex):
9812 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9813 				      si->dst_reg, si->src_reg,
9814 				      offsetof(struct xdp_buff, rxq));
9815 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9816 				      si->dst_reg, si->dst_reg,
9817 				      offsetof(struct xdp_rxq_info, dev));
9818 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9819 				      offsetof(struct net_device, ifindex));
9820 		break;
9821 	case offsetof(struct xdp_md, rx_queue_index):
9822 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9823 				      si->dst_reg, si->src_reg,
9824 				      offsetof(struct xdp_buff, rxq));
9825 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9826 				      offsetof(struct xdp_rxq_info,
9827 					       queue_index));
9828 		break;
9829 	case offsetof(struct xdp_md, egress_ifindex):
9830 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9831 				      si->dst_reg, si->src_reg,
9832 				      offsetof(struct xdp_buff, txq));
9833 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9834 				      si->dst_reg, si->dst_reg,
9835 				      offsetof(struct xdp_txq_info, dev));
9836 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9837 				      offsetof(struct net_device, ifindex));
9838 		break;
9839 	}
9840 
9841 	return insn - insn_buf;
9842 }
9843 
9844 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9845  * context Structure, F is Field in context structure that contains a pointer
9846  * to Nested Structure of type NS that has the field NF.
9847  *
9848  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9849  * sure that SIZE is not greater than actual size of S.F.NF.
9850  *
9851  * If offset OFF is provided, the load happens from that offset relative to
9852  * offset of NF.
9853  */
9854 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9855 	do {								       \
9856 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9857 				      si->src_reg, offsetof(S, F));	       \
9858 		*insn++ = BPF_LDX_MEM(					       \
9859 			SIZE, si->dst_reg, si->dst_reg,			       \
9860 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9861 				       target_size)			       \
9862 				+ OFF);					       \
9863 	} while (0)
9864 
9865 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9866 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9867 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9868 
9869 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9870  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9871  *
9872  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9873  * "register" since two registers available in convert_ctx_access are not
9874  * enough: we can't override neither SRC, since it contains value to store, nor
9875  * DST since it contains pointer to context that may be used by later
9876  * instructions. But we need a temporary place to save pointer to nested
9877  * structure whose field we want to store to.
9878  */
9879 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9880 	do {								       \
9881 		int tmp_reg = BPF_REG_9;				       \
9882 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9883 			--tmp_reg;					       \
9884 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9885 			--tmp_reg;					       \
9886 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9887 				      offsetof(S, TF));			       \
9888 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9889 				      si->dst_reg, offsetof(S, F));	       \
9890 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
9891 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9892 				       target_size)			       \
9893 				+ OFF);					       \
9894 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9895 				      offsetof(S, TF));			       \
9896 	} while (0)
9897 
9898 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9899 						      TF)		       \
9900 	do {								       \
9901 		if (type == BPF_WRITE) {				       \
9902 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9903 							 OFF, TF);	       \
9904 		} else {						       \
9905 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9906 				S, NS, F, NF, SIZE, OFF);  \
9907 		}							       \
9908 	} while (0)
9909 
9910 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9911 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9912 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9913 
9914 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9915 					const struct bpf_insn *si,
9916 					struct bpf_insn *insn_buf,
9917 					struct bpf_prog *prog, u32 *target_size)
9918 {
9919 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9920 	struct bpf_insn *insn = insn_buf;
9921 
9922 	switch (si->off) {
9923 	case offsetof(struct bpf_sock_addr, user_family):
9924 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9925 					    struct sockaddr, uaddr, sa_family);
9926 		break;
9927 
9928 	case offsetof(struct bpf_sock_addr, user_ip4):
9929 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9930 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9931 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9932 		break;
9933 
9934 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9935 		off = si->off;
9936 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9937 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9938 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9939 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9940 			tmp_reg);
9941 		break;
9942 
9943 	case offsetof(struct bpf_sock_addr, user_port):
9944 		/* To get port we need to know sa_family first and then treat
9945 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9946 		 * Though we can simplify since port field has same offset and
9947 		 * size in both structures.
9948 		 * Here we check this invariant and use just one of the
9949 		 * structures if it's true.
9950 		 */
9951 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9952 			     offsetof(struct sockaddr_in6, sin6_port));
9953 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9954 			     sizeof_field(struct sockaddr_in6, sin6_port));
9955 		/* Account for sin6_port being smaller than user_port. */
9956 		port_size = min(port_size, BPF_LDST_BYTES(si));
9957 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9958 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9959 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9960 		break;
9961 
9962 	case offsetof(struct bpf_sock_addr, family):
9963 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9964 					    struct sock, sk, sk_family);
9965 		break;
9966 
9967 	case offsetof(struct bpf_sock_addr, type):
9968 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9969 					    struct sock, sk, sk_type);
9970 		break;
9971 
9972 	case offsetof(struct bpf_sock_addr, protocol):
9973 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9974 					    struct sock, sk, sk_protocol);
9975 		break;
9976 
9977 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9978 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9979 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9980 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9981 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9982 		break;
9983 
9984 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9985 				msg_src_ip6[3]):
9986 		off = si->off;
9987 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9988 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9989 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9990 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9991 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9992 		break;
9993 	case offsetof(struct bpf_sock_addr, sk):
9994 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9995 				      si->dst_reg, si->src_reg,
9996 				      offsetof(struct bpf_sock_addr_kern, sk));
9997 		break;
9998 	}
9999 
10000 	return insn - insn_buf;
10001 }
10002 
10003 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10004 				       const struct bpf_insn *si,
10005 				       struct bpf_insn *insn_buf,
10006 				       struct bpf_prog *prog,
10007 				       u32 *target_size)
10008 {
10009 	struct bpf_insn *insn = insn_buf;
10010 	int off;
10011 
10012 /* Helper macro for adding read access to tcp_sock or sock fields. */
10013 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10014 	do {								      \
10015 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10016 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10017 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10018 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10019 			reg--;						      \
10020 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10021 			reg--;						      \
10022 		if (si->dst_reg == si->src_reg) {			      \
10023 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10024 					  offsetof(struct bpf_sock_ops_kern,  \
10025 					  temp));			      \
10026 			fullsock_reg = reg;				      \
10027 			jmp += 2;					      \
10028 		}							      \
10029 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10030 						struct bpf_sock_ops_kern,     \
10031 						is_fullsock),		      \
10032 				      fullsock_reg, si->src_reg,	      \
10033 				      offsetof(struct bpf_sock_ops_kern,      \
10034 					       is_fullsock));		      \
10035 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10036 		if (si->dst_reg == si->src_reg)				      \
10037 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10038 				      offsetof(struct bpf_sock_ops_kern,      \
10039 				      temp));				      \
10040 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10041 						struct bpf_sock_ops_kern, sk),\
10042 				      si->dst_reg, si->src_reg,		      \
10043 				      offsetof(struct bpf_sock_ops_kern, sk));\
10044 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10045 						       OBJ_FIELD),	      \
10046 				      si->dst_reg, si->dst_reg,		      \
10047 				      offsetof(OBJ, OBJ_FIELD));	      \
10048 		if (si->dst_reg == si->src_reg)	{			      \
10049 			*insn++ = BPF_JMP_A(1);				      \
10050 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10051 				      offsetof(struct bpf_sock_ops_kern,      \
10052 				      temp));				      \
10053 		}							      \
10054 	} while (0)
10055 
10056 #define SOCK_OPS_GET_SK()							      \
10057 	do {								      \
10058 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10059 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10060 			reg--;						      \
10061 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10062 			reg--;						      \
10063 		if (si->dst_reg == si->src_reg) {			      \
10064 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10065 					  offsetof(struct bpf_sock_ops_kern,  \
10066 					  temp));			      \
10067 			fullsock_reg = reg;				      \
10068 			jmp += 2;					      \
10069 		}							      \
10070 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10071 						struct bpf_sock_ops_kern,     \
10072 						is_fullsock),		      \
10073 				      fullsock_reg, si->src_reg,	      \
10074 				      offsetof(struct bpf_sock_ops_kern,      \
10075 					       is_fullsock));		      \
10076 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10077 		if (si->dst_reg == si->src_reg)				      \
10078 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10079 				      offsetof(struct bpf_sock_ops_kern,      \
10080 				      temp));				      \
10081 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10082 						struct bpf_sock_ops_kern, sk),\
10083 				      si->dst_reg, si->src_reg,		      \
10084 				      offsetof(struct bpf_sock_ops_kern, sk));\
10085 		if (si->dst_reg == si->src_reg)	{			      \
10086 			*insn++ = BPF_JMP_A(1);				      \
10087 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10088 				      offsetof(struct bpf_sock_ops_kern,      \
10089 				      temp));				      \
10090 		}							      \
10091 	} while (0)
10092 
10093 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10094 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10095 
10096 /* Helper macro for adding write access to tcp_sock or sock fields.
10097  * The macro is called with two registers, dst_reg which contains a pointer
10098  * to ctx (context) and src_reg which contains the value that should be
10099  * stored. However, we need an additional register since we cannot overwrite
10100  * dst_reg because it may be used later in the program.
10101  * Instead we "borrow" one of the other register. We first save its value
10102  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10103  * it at the end of the macro.
10104  */
10105 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10106 	do {								      \
10107 		int reg = BPF_REG_9;					      \
10108 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10109 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10110 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10111 			reg--;						      \
10112 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10113 			reg--;						      \
10114 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10115 				      offsetof(struct bpf_sock_ops_kern,      \
10116 					       temp));			      \
10117 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10118 						struct bpf_sock_ops_kern,     \
10119 						is_fullsock),		      \
10120 				      reg, si->dst_reg,			      \
10121 				      offsetof(struct bpf_sock_ops_kern,      \
10122 					       is_fullsock));		      \
10123 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10124 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10125 						struct bpf_sock_ops_kern, sk),\
10126 				      reg, si->dst_reg,			      \
10127 				      offsetof(struct bpf_sock_ops_kern, sk));\
10128 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
10129 				      reg, si->src_reg,			      \
10130 				      offsetof(OBJ, OBJ_FIELD));	      \
10131 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10132 				      offsetof(struct bpf_sock_ops_kern,      \
10133 					       temp));			      \
10134 	} while (0)
10135 
10136 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10137 	do {								      \
10138 		if (TYPE == BPF_WRITE)					      \
10139 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10140 		else							      \
10141 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10142 	} while (0)
10143 
10144 	if (insn > insn_buf)
10145 		return insn - insn_buf;
10146 
10147 	switch (si->off) {
10148 	case offsetof(struct bpf_sock_ops, op):
10149 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10150 						       op),
10151 				      si->dst_reg, si->src_reg,
10152 				      offsetof(struct bpf_sock_ops_kern, op));
10153 		break;
10154 
10155 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10156 	     offsetof(struct bpf_sock_ops, replylong[3]):
10157 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10158 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10159 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10160 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10161 		off = si->off;
10162 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10163 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10164 		if (type == BPF_WRITE)
10165 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10166 					      off);
10167 		else
10168 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10169 					      off);
10170 		break;
10171 
10172 	case offsetof(struct bpf_sock_ops, family):
10173 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10174 
10175 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10176 					      struct bpf_sock_ops_kern, sk),
10177 				      si->dst_reg, si->src_reg,
10178 				      offsetof(struct bpf_sock_ops_kern, sk));
10179 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10180 				      offsetof(struct sock_common, skc_family));
10181 		break;
10182 
10183 	case offsetof(struct bpf_sock_ops, remote_ip4):
10184 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10185 
10186 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10187 						struct bpf_sock_ops_kern, sk),
10188 				      si->dst_reg, si->src_reg,
10189 				      offsetof(struct bpf_sock_ops_kern, sk));
10190 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10191 				      offsetof(struct sock_common, skc_daddr));
10192 		break;
10193 
10194 	case offsetof(struct bpf_sock_ops, local_ip4):
10195 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10196 					  skc_rcv_saddr) != 4);
10197 
10198 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10199 					      struct bpf_sock_ops_kern, sk),
10200 				      si->dst_reg, si->src_reg,
10201 				      offsetof(struct bpf_sock_ops_kern, sk));
10202 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10203 				      offsetof(struct sock_common,
10204 					       skc_rcv_saddr));
10205 		break;
10206 
10207 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10208 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10209 #if IS_ENABLED(CONFIG_IPV6)
10210 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10211 					  skc_v6_daddr.s6_addr32[0]) != 4);
10212 
10213 		off = si->off;
10214 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10215 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10216 						struct bpf_sock_ops_kern, sk),
10217 				      si->dst_reg, si->src_reg,
10218 				      offsetof(struct bpf_sock_ops_kern, sk));
10219 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10220 				      offsetof(struct sock_common,
10221 					       skc_v6_daddr.s6_addr32[0]) +
10222 				      off);
10223 #else
10224 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10225 #endif
10226 		break;
10227 
10228 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10229 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10230 #if IS_ENABLED(CONFIG_IPV6)
10231 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10232 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10233 
10234 		off = si->off;
10235 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10236 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10237 						struct bpf_sock_ops_kern, sk),
10238 				      si->dst_reg, si->src_reg,
10239 				      offsetof(struct bpf_sock_ops_kern, sk));
10240 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10241 				      offsetof(struct sock_common,
10242 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10243 				      off);
10244 #else
10245 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10246 #endif
10247 		break;
10248 
10249 	case offsetof(struct bpf_sock_ops, remote_port):
10250 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10251 
10252 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10253 						struct bpf_sock_ops_kern, sk),
10254 				      si->dst_reg, si->src_reg,
10255 				      offsetof(struct bpf_sock_ops_kern, sk));
10256 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10257 				      offsetof(struct sock_common, skc_dport));
10258 #ifndef __BIG_ENDIAN_BITFIELD
10259 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10260 #endif
10261 		break;
10262 
10263 	case offsetof(struct bpf_sock_ops, local_port):
10264 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10265 
10266 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10267 						struct bpf_sock_ops_kern, sk),
10268 				      si->dst_reg, si->src_reg,
10269 				      offsetof(struct bpf_sock_ops_kern, sk));
10270 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10271 				      offsetof(struct sock_common, skc_num));
10272 		break;
10273 
10274 	case offsetof(struct bpf_sock_ops, is_fullsock):
10275 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10276 						struct bpf_sock_ops_kern,
10277 						is_fullsock),
10278 				      si->dst_reg, si->src_reg,
10279 				      offsetof(struct bpf_sock_ops_kern,
10280 					       is_fullsock));
10281 		break;
10282 
10283 	case offsetof(struct bpf_sock_ops, state):
10284 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10285 
10286 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10287 						struct bpf_sock_ops_kern, sk),
10288 				      si->dst_reg, si->src_reg,
10289 				      offsetof(struct bpf_sock_ops_kern, sk));
10290 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10291 				      offsetof(struct sock_common, skc_state));
10292 		break;
10293 
10294 	case offsetof(struct bpf_sock_ops, rtt_min):
10295 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10296 			     sizeof(struct minmax));
10297 		BUILD_BUG_ON(sizeof(struct minmax) <
10298 			     sizeof(struct minmax_sample));
10299 
10300 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10301 						struct bpf_sock_ops_kern, sk),
10302 				      si->dst_reg, si->src_reg,
10303 				      offsetof(struct bpf_sock_ops_kern, sk));
10304 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10305 				      offsetof(struct tcp_sock, rtt_min) +
10306 				      sizeof_field(struct minmax_sample, t));
10307 		break;
10308 
10309 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10310 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10311 				   struct tcp_sock);
10312 		break;
10313 
10314 	case offsetof(struct bpf_sock_ops, sk_txhash):
10315 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10316 					  struct sock, type);
10317 		break;
10318 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10319 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10320 		break;
10321 	case offsetof(struct bpf_sock_ops, srtt_us):
10322 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10323 		break;
10324 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10325 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10326 		break;
10327 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10328 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10329 		break;
10330 	case offsetof(struct bpf_sock_ops, snd_nxt):
10331 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10332 		break;
10333 	case offsetof(struct bpf_sock_ops, snd_una):
10334 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10335 		break;
10336 	case offsetof(struct bpf_sock_ops, mss_cache):
10337 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10338 		break;
10339 	case offsetof(struct bpf_sock_ops, ecn_flags):
10340 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10341 		break;
10342 	case offsetof(struct bpf_sock_ops, rate_delivered):
10343 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10344 		break;
10345 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10346 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10347 		break;
10348 	case offsetof(struct bpf_sock_ops, packets_out):
10349 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10350 		break;
10351 	case offsetof(struct bpf_sock_ops, retrans_out):
10352 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10353 		break;
10354 	case offsetof(struct bpf_sock_ops, total_retrans):
10355 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10356 		break;
10357 	case offsetof(struct bpf_sock_ops, segs_in):
10358 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10359 		break;
10360 	case offsetof(struct bpf_sock_ops, data_segs_in):
10361 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10362 		break;
10363 	case offsetof(struct bpf_sock_ops, segs_out):
10364 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10365 		break;
10366 	case offsetof(struct bpf_sock_ops, data_segs_out):
10367 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10368 		break;
10369 	case offsetof(struct bpf_sock_ops, lost_out):
10370 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10371 		break;
10372 	case offsetof(struct bpf_sock_ops, sacked_out):
10373 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10374 		break;
10375 	case offsetof(struct bpf_sock_ops, bytes_received):
10376 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10377 		break;
10378 	case offsetof(struct bpf_sock_ops, bytes_acked):
10379 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10380 		break;
10381 	case offsetof(struct bpf_sock_ops, sk):
10382 		SOCK_OPS_GET_SK();
10383 		break;
10384 	case offsetof(struct bpf_sock_ops, skb_data_end):
10385 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10386 						       skb_data_end),
10387 				      si->dst_reg, si->src_reg,
10388 				      offsetof(struct bpf_sock_ops_kern,
10389 					       skb_data_end));
10390 		break;
10391 	case offsetof(struct bpf_sock_ops, skb_data):
10392 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10393 						       skb),
10394 				      si->dst_reg, si->src_reg,
10395 				      offsetof(struct bpf_sock_ops_kern,
10396 					       skb));
10397 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10398 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10399 				      si->dst_reg, si->dst_reg,
10400 				      offsetof(struct sk_buff, data));
10401 		break;
10402 	case offsetof(struct bpf_sock_ops, skb_len):
10403 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10404 						       skb),
10405 				      si->dst_reg, si->src_reg,
10406 				      offsetof(struct bpf_sock_ops_kern,
10407 					       skb));
10408 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10409 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10410 				      si->dst_reg, si->dst_reg,
10411 				      offsetof(struct sk_buff, len));
10412 		break;
10413 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10414 		off = offsetof(struct sk_buff, cb);
10415 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10416 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10417 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10418 						       skb),
10419 				      si->dst_reg, si->src_reg,
10420 				      offsetof(struct bpf_sock_ops_kern,
10421 					       skb));
10422 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10423 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10424 						       tcp_flags),
10425 				      si->dst_reg, si->dst_reg, off);
10426 		break;
10427 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10428 		struct bpf_insn *jmp_on_null_skb;
10429 
10430 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10431 						       skb),
10432 				      si->dst_reg, si->src_reg,
10433 				      offsetof(struct bpf_sock_ops_kern,
10434 					       skb));
10435 		/* Reserve one insn to test skb == NULL */
10436 		jmp_on_null_skb = insn++;
10437 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10438 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10439 				      bpf_target_off(struct skb_shared_info,
10440 						     hwtstamps, 8,
10441 						     target_size));
10442 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10443 					       insn - jmp_on_null_skb - 1);
10444 		break;
10445 	}
10446 	}
10447 	return insn - insn_buf;
10448 }
10449 
10450 /* data_end = skb->data + skb_headlen() */
10451 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10452 						    struct bpf_insn *insn)
10453 {
10454 	int reg;
10455 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10456 			   offsetof(struct sk_skb_cb, temp_reg);
10457 
10458 	if (si->src_reg == si->dst_reg) {
10459 		/* We need an extra register, choose and save a register. */
10460 		reg = BPF_REG_9;
10461 		if (si->src_reg == reg || si->dst_reg == reg)
10462 			reg--;
10463 		if (si->src_reg == reg || si->dst_reg == reg)
10464 			reg--;
10465 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10466 	} else {
10467 		reg = si->dst_reg;
10468 	}
10469 
10470 	/* reg = skb->data */
10471 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10472 			      reg, si->src_reg,
10473 			      offsetof(struct sk_buff, data));
10474 	/* AX = skb->len */
10475 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10476 			      BPF_REG_AX, si->src_reg,
10477 			      offsetof(struct sk_buff, len));
10478 	/* reg = skb->data + skb->len */
10479 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10480 	/* AX = skb->data_len */
10481 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10482 			      BPF_REG_AX, si->src_reg,
10483 			      offsetof(struct sk_buff, data_len));
10484 
10485 	/* reg = skb->data + skb->len - skb->data_len */
10486 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10487 
10488 	if (si->src_reg == si->dst_reg) {
10489 		/* Restore the saved register */
10490 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10491 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10492 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10493 	}
10494 
10495 	return insn;
10496 }
10497 
10498 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10499 				     const struct bpf_insn *si,
10500 				     struct bpf_insn *insn_buf,
10501 				     struct bpf_prog *prog, u32 *target_size)
10502 {
10503 	struct bpf_insn *insn = insn_buf;
10504 	int off;
10505 
10506 	switch (si->off) {
10507 	case offsetof(struct __sk_buff, data_end):
10508 		insn = bpf_convert_data_end_access(si, insn);
10509 		break;
10510 	case offsetof(struct __sk_buff, cb[0]) ...
10511 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10512 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10513 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10514 			      offsetof(struct sk_skb_cb, data)) %
10515 			     sizeof(__u64));
10516 
10517 		prog->cb_access = 1;
10518 		off  = si->off;
10519 		off -= offsetof(struct __sk_buff, cb[0]);
10520 		off += offsetof(struct sk_buff, cb);
10521 		off += offsetof(struct sk_skb_cb, data);
10522 		if (type == BPF_WRITE)
10523 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10524 					      si->src_reg, off);
10525 		else
10526 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10527 					      si->src_reg, off);
10528 		break;
10529 
10530 
10531 	default:
10532 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10533 					      target_size);
10534 	}
10535 
10536 	return insn - insn_buf;
10537 }
10538 
10539 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10540 				     const struct bpf_insn *si,
10541 				     struct bpf_insn *insn_buf,
10542 				     struct bpf_prog *prog, u32 *target_size)
10543 {
10544 	struct bpf_insn *insn = insn_buf;
10545 #if IS_ENABLED(CONFIG_IPV6)
10546 	int off;
10547 #endif
10548 
10549 	/* convert ctx uses the fact sg element is first in struct */
10550 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10551 
10552 	switch (si->off) {
10553 	case offsetof(struct sk_msg_md, data):
10554 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10555 				      si->dst_reg, si->src_reg,
10556 				      offsetof(struct sk_msg, data));
10557 		break;
10558 	case offsetof(struct sk_msg_md, data_end):
10559 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10560 				      si->dst_reg, si->src_reg,
10561 				      offsetof(struct sk_msg, data_end));
10562 		break;
10563 	case offsetof(struct sk_msg_md, family):
10564 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10565 
10566 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10567 					      struct sk_msg, sk),
10568 				      si->dst_reg, si->src_reg,
10569 				      offsetof(struct sk_msg, sk));
10570 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10571 				      offsetof(struct sock_common, skc_family));
10572 		break;
10573 
10574 	case offsetof(struct sk_msg_md, remote_ip4):
10575 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10576 
10577 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10578 						struct sk_msg, sk),
10579 				      si->dst_reg, si->src_reg,
10580 				      offsetof(struct sk_msg, sk));
10581 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10582 				      offsetof(struct sock_common, skc_daddr));
10583 		break;
10584 
10585 	case offsetof(struct sk_msg_md, local_ip4):
10586 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10587 					  skc_rcv_saddr) != 4);
10588 
10589 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10590 					      struct sk_msg, sk),
10591 				      si->dst_reg, si->src_reg,
10592 				      offsetof(struct sk_msg, sk));
10593 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10594 				      offsetof(struct sock_common,
10595 					       skc_rcv_saddr));
10596 		break;
10597 
10598 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10599 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10600 #if IS_ENABLED(CONFIG_IPV6)
10601 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10602 					  skc_v6_daddr.s6_addr32[0]) != 4);
10603 
10604 		off = si->off;
10605 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10606 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10607 						struct sk_msg, sk),
10608 				      si->dst_reg, si->src_reg,
10609 				      offsetof(struct sk_msg, sk));
10610 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10611 				      offsetof(struct sock_common,
10612 					       skc_v6_daddr.s6_addr32[0]) +
10613 				      off);
10614 #else
10615 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10616 #endif
10617 		break;
10618 
10619 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10620 	     offsetof(struct sk_msg_md, local_ip6[3]):
10621 #if IS_ENABLED(CONFIG_IPV6)
10622 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10623 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10624 
10625 		off = si->off;
10626 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10627 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10628 						struct sk_msg, sk),
10629 				      si->dst_reg, si->src_reg,
10630 				      offsetof(struct sk_msg, sk));
10631 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10632 				      offsetof(struct sock_common,
10633 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10634 				      off);
10635 #else
10636 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10637 #endif
10638 		break;
10639 
10640 	case offsetof(struct sk_msg_md, remote_port):
10641 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10642 
10643 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10644 						struct sk_msg, sk),
10645 				      si->dst_reg, si->src_reg,
10646 				      offsetof(struct sk_msg, sk));
10647 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10648 				      offsetof(struct sock_common, skc_dport));
10649 #ifndef __BIG_ENDIAN_BITFIELD
10650 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10651 #endif
10652 		break;
10653 
10654 	case offsetof(struct sk_msg_md, local_port):
10655 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10656 
10657 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10658 						struct sk_msg, sk),
10659 				      si->dst_reg, si->src_reg,
10660 				      offsetof(struct sk_msg, sk));
10661 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10662 				      offsetof(struct sock_common, skc_num));
10663 		break;
10664 
10665 	case offsetof(struct sk_msg_md, size):
10666 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10667 				      si->dst_reg, si->src_reg,
10668 				      offsetof(struct sk_msg_sg, size));
10669 		break;
10670 
10671 	case offsetof(struct sk_msg_md, sk):
10672 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10673 				      si->dst_reg, si->src_reg,
10674 				      offsetof(struct sk_msg, sk));
10675 		break;
10676 	}
10677 
10678 	return insn - insn_buf;
10679 }
10680 
10681 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10682 	.get_func_proto		= sk_filter_func_proto,
10683 	.is_valid_access	= sk_filter_is_valid_access,
10684 	.convert_ctx_access	= bpf_convert_ctx_access,
10685 	.gen_ld_abs		= bpf_gen_ld_abs,
10686 };
10687 
10688 const struct bpf_prog_ops sk_filter_prog_ops = {
10689 	.test_run		= bpf_prog_test_run_skb,
10690 };
10691 
10692 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10693 	.get_func_proto		= tc_cls_act_func_proto,
10694 	.is_valid_access	= tc_cls_act_is_valid_access,
10695 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10696 	.gen_prologue		= tc_cls_act_prologue,
10697 	.gen_ld_abs		= bpf_gen_ld_abs,
10698 	.btf_struct_access	= tc_cls_act_btf_struct_access,
10699 };
10700 
10701 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10702 	.test_run		= bpf_prog_test_run_skb,
10703 };
10704 
10705 const struct bpf_verifier_ops xdp_verifier_ops = {
10706 	.get_func_proto		= xdp_func_proto,
10707 	.is_valid_access	= xdp_is_valid_access,
10708 	.convert_ctx_access	= xdp_convert_ctx_access,
10709 	.gen_prologue		= bpf_noop_prologue,
10710 	.btf_struct_access	= xdp_btf_struct_access,
10711 };
10712 
10713 const struct bpf_prog_ops xdp_prog_ops = {
10714 	.test_run		= bpf_prog_test_run_xdp,
10715 };
10716 
10717 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10718 	.get_func_proto		= cg_skb_func_proto,
10719 	.is_valid_access	= cg_skb_is_valid_access,
10720 	.convert_ctx_access	= bpf_convert_ctx_access,
10721 };
10722 
10723 const struct bpf_prog_ops cg_skb_prog_ops = {
10724 	.test_run		= bpf_prog_test_run_skb,
10725 };
10726 
10727 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10728 	.get_func_proto		= lwt_in_func_proto,
10729 	.is_valid_access	= lwt_is_valid_access,
10730 	.convert_ctx_access	= bpf_convert_ctx_access,
10731 };
10732 
10733 const struct bpf_prog_ops lwt_in_prog_ops = {
10734 	.test_run		= bpf_prog_test_run_skb,
10735 };
10736 
10737 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10738 	.get_func_proto		= lwt_out_func_proto,
10739 	.is_valid_access	= lwt_is_valid_access,
10740 	.convert_ctx_access	= bpf_convert_ctx_access,
10741 };
10742 
10743 const struct bpf_prog_ops lwt_out_prog_ops = {
10744 	.test_run		= bpf_prog_test_run_skb,
10745 };
10746 
10747 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10748 	.get_func_proto		= lwt_xmit_func_proto,
10749 	.is_valid_access	= lwt_is_valid_access,
10750 	.convert_ctx_access	= bpf_convert_ctx_access,
10751 	.gen_prologue		= tc_cls_act_prologue,
10752 };
10753 
10754 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10755 	.test_run		= bpf_prog_test_run_skb,
10756 };
10757 
10758 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10759 	.get_func_proto		= lwt_seg6local_func_proto,
10760 	.is_valid_access	= lwt_is_valid_access,
10761 	.convert_ctx_access	= bpf_convert_ctx_access,
10762 };
10763 
10764 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10765 	.test_run		= bpf_prog_test_run_skb,
10766 };
10767 
10768 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10769 	.get_func_proto		= sock_filter_func_proto,
10770 	.is_valid_access	= sock_filter_is_valid_access,
10771 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10772 };
10773 
10774 const struct bpf_prog_ops cg_sock_prog_ops = {
10775 };
10776 
10777 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10778 	.get_func_proto		= sock_addr_func_proto,
10779 	.is_valid_access	= sock_addr_is_valid_access,
10780 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10781 };
10782 
10783 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10784 };
10785 
10786 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10787 	.get_func_proto		= sock_ops_func_proto,
10788 	.is_valid_access	= sock_ops_is_valid_access,
10789 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10790 };
10791 
10792 const struct bpf_prog_ops sock_ops_prog_ops = {
10793 };
10794 
10795 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10796 	.get_func_proto		= sk_skb_func_proto,
10797 	.is_valid_access	= sk_skb_is_valid_access,
10798 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10799 	.gen_prologue		= sk_skb_prologue,
10800 };
10801 
10802 const struct bpf_prog_ops sk_skb_prog_ops = {
10803 };
10804 
10805 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10806 	.get_func_proto		= sk_msg_func_proto,
10807 	.is_valid_access	= sk_msg_is_valid_access,
10808 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10809 	.gen_prologue		= bpf_noop_prologue,
10810 };
10811 
10812 const struct bpf_prog_ops sk_msg_prog_ops = {
10813 };
10814 
10815 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10816 	.get_func_proto		= flow_dissector_func_proto,
10817 	.is_valid_access	= flow_dissector_is_valid_access,
10818 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10819 };
10820 
10821 const struct bpf_prog_ops flow_dissector_prog_ops = {
10822 	.test_run		= bpf_prog_test_run_flow_dissector,
10823 };
10824 
10825 int sk_detach_filter(struct sock *sk)
10826 {
10827 	int ret = -ENOENT;
10828 	struct sk_filter *filter;
10829 
10830 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10831 		return -EPERM;
10832 
10833 	filter = rcu_dereference_protected(sk->sk_filter,
10834 					   lockdep_sock_is_held(sk));
10835 	if (filter) {
10836 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10837 		sk_filter_uncharge(sk, filter);
10838 		ret = 0;
10839 	}
10840 
10841 	return ret;
10842 }
10843 EXPORT_SYMBOL_GPL(sk_detach_filter);
10844 
10845 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10846 {
10847 	struct sock_fprog_kern *fprog;
10848 	struct sk_filter *filter;
10849 	int ret = 0;
10850 
10851 	sockopt_lock_sock(sk);
10852 	filter = rcu_dereference_protected(sk->sk_filter,
10853 					   lockdep_sock_is_held(sk));
10854 	if (!filter)
10855 		goto out;
10856 
10857 	/* We're copying the filter that has been originally attached,
10858 	 * so no conversion/decode needed anymore. eBPF programs that
10859 	 * have no original program cannot be dumped through this.
10860 	 */
10861 	ret = -EACCES;
10862 	fprog = filter->prog->orig_prog;
10863 	if (!fprog)
10864 		goto out;
10865 
10866 	ret = fprog->len;
10867 	if (!len)
10868 		/* User space only enquires number of filter blocks. */
10869 		goto out;
10870 
10871 	ret = -EINVAL;
10872 	if (len < fprog->len)
10873 		goto out;
10874 
10875 	ret = -EFAULT;
10876 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
10877 		goto out;
10878 
10879 	/* Instead of bytes, the API requests to return the number
10880 	 * of filter blocks.
10881 	 */
10882 	ret = fprog->len;
10883 out:
10884 	sockopt_release_sock(sk);
10885 	return ret;
10886 }
10887 
10888 #ifdef CONFIG_INET
10889 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10890 				    struct sock_reuseport *reuse,
10891 				    struct sock *sk, struct sk_buff *skb,
10892 				    struct sock *migrating_sk,
10893 				    u32 hash)
10894 {
10895 	reuse_kern->skb = skb;
10896 	reuse_kern->sk = sk;
10897 	reuse_kern->selected_sk = NULL;
10898 	reuse_kern->migrating_sk = migrating_sk;
10899 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10900 	reuse_kern->hash = hash;
10901 	reuse_kern->reuseport_id = reuse->reuseport_id;
10902 	reuse_kern->bind_inany = reuse->bind_inany;
10903 }
10904 
10905 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10906 				  struct bpf_prog *prog, struct sk_buff *skb,
10907 				  struct sock *migrating_sk,
10908 				  u32 hash)
10909 {
10910 	struct sk_reuseport_kern reuse_kern;
10911 	enum sk_action action;
10912 
10913 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10914 	action = bpf_prog_run(prog, &reuse_kern);
10915 
10916 	if (action == SK_PASS)
10917 		return reuse_kern.selected_sk;
10918 	else
10919 		return ERR_PTR(-ECONNREFUSED);
10920 }
10921 
10922 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10923 	   struct bpf_map *, map, void *, key, u32, flags)
10924 {
10925 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10926 	struct sock_reuseport *reuse;
10927 	struct sock *selected_sk;
10928 
10929 	selected_sk = map->ops->map_lookup_elem(map, key);
10930 	if (!selected_sk)
10931 		return -ENOENT;
10932 
10933 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10934 	if (!reuse) {
10935 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10936 		if (sk_is_refcounted(selected_sk))
10937 			sock_put(selected_sk);
10938 
10939 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
10940 		 * The only (!reuse) case here is - the sk has already been
10941 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
10942 		 *
10943 		 * Other maps (e.g. sock_map) do not provide this guarantee and
10944 		 * the sk may never be in the reuseport group to begin with.
10945 		 */
10946 		return is_sockarray ? -ENOENT : -EINVAL;
10947 	}
10948 
10949 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10950 		struct sock *sk = reuse_kern->sk;
10951 
10952 		if (sk->sk_protocol != selected_sk->sk_protocol)
10953 			return -EPROTOTYPE;
10954 		else if (sk->sk_family != selected_sk->sk_family)
10955 			return -EAFNOSUPPORT;
10956 
10957 		/* Catch all. Likely bound to a different sockaddr. */
10958 		return -EBADFD;
10959 	}
10960 
10961 	reuse_kern->selected_sk = selected_sk;
10962 
10963 	return 0;
10964 }
10965 
10966 static const struct bpf_func_proto sk_select_reuseport_proto = {
10967 	.func           = sk_select_reuseport,
10968 	.gpl_only       = false,
10969 	.ret_type       = RET_INTEGER,
10970 	.arg1_type	= ARG_PTR_TO_CTX,
10971 	.arg2_type      = ARG_CONST_MAP_PTR,
10972 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
10973 	.arg4_type	= ARG_ANYTHING,
10974 };
10975 
10976 BPF_CALL_4(sk_reuseport_load_bytes,
10977 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10978 	   void *, to, u32, len)
10979 {
10980 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10981 }
10982 
10983 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10984 	.func		= sk_reuseport_load_bytes,
10985 	.gpl_only	= false,
10986 	.ret_type	= RET_INTEGER,
10987 	.arg1_type	= ARG_PTR_TO_CTX,
10988 	.arg2_type	= ARG_ANYTHING,
10989 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10990 	.arg4_type	= ARG_CONST_SIZE,
10991 };
10992 
10993 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10994 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10995 	   void *, to, u32, len, u32, start_header)
10996 {
10997 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10998 					       len, start_header);
10999 }
11000 
11001 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11002 	.func		= sk_reuseport_load_bytes_relative,
11003 	.gpl_only	= false,
11004 	.ret_type	= RET_INTEGER,
11005 	.arg1_type	= ARG_PTR_TO_CTX,
11006 	.arg2_type	= ARG_ANYTHING,
11007 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11008 	.arg4_type	= ARG_CONST_SIZE,
11009 	.arg5_type	= ARG_ANYTHING,
11010 };
11011 
11012 static const struct bpf_func_proto *
11013 sk_reuseport_func_proto(enum bpf_func_id func_id,
11014 			const struct bpf_prog *prog)
11015 {
11016 	switch (func_id) {
11017 	case BPF_FUNC_sk_select_reuseport:
11018 		return &sk_select_reuseport_proto;
11019 	case BPF_FUNC_skb_load_bytes:
11020 		return &sk_reuseport_load_bytes_proto;
11021 	case BPF_FUNC_skb_load_bytes_relative:
11022 		return &sk_reuseport_load_bytes_relative_proto;
11023 	case BPF_FUNC_get_socket_cookie:
11024 		return &bpf_get_socket_ptr_cookie_proto;
11025 	case BPF_FUNC_ktime_get_coarse_ns:
11026 		return &bpf_ktime_get_coarse_ns_proto;
11027 	default:
11028 		return bpf_base_func_proto(func_id);
11029 	}
11030 }
11031 
11032 static bool
11033 sk_reuseport_is_valid_access(int off, int size,
11034 			     enum bpf_access_type type,
11035 			     const struct bpf_prog *prog,
11036 			     struct bpf_insn_access_aux *info)
11037 {
11038 	const u32 size_default = sizeof(__u32);
11039 
11040 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11041 	    off % size || type != BPF_READ)
11042 		return false;
11043 
11044 	switch (off) {
11045 	case offsetof(struct sk_reuseport_md, data):
11046 		info->reg_type = PTR_TO_PACKET;
11047 		return size == sizeof(__u64);
11048 
11049 	case offsetof(struct sk_reuseport_md, data_end):
11050 		info->reg_type = PTR_TO_PACKET_END;
11051 		return size == sizeof(__u64);
11052 
11053 	case offsetof(struct sk_reuseport_md, hash):
11054 		return size == size_default;
11055 
11056 	case offsetof(struct sk_reuseport_md, sk):
11057 		info->reg_type = PTR_TO_SOCKET;
11058 		return size == sizeof(__u64);
11059 
11060 	case offsetof(struct sk_reuseport_md, migrating_sk):
11061 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11062 		return size == sizeof(__u64);
11063 
11064 	/* Fields that allow narrowing */
11065 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11066 		if (size < sizeof_field(struct sk_buff, protocol))
11067 			return false;
11068 		fallthrough;
11069 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11070 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11071 	case bpf_ctx_range(struct sk_reuseport_md, len):
11072 		bpf_ctx_record_field_size(info, size_default);
11073 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11074 
11075 	default:
11076 		return false;
11077 	}
11078 }
11079 
11080 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11081 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11082 			      si->dst_reg, si->src_reg,			\
11083 			      bpf_target_off(struct sk_reuseport_kern, F, \
11084 					     sizeof_field(struct sk_reuseport_kern, F), \
11085 					     target_size));		\
11086 	})
11087 
11088 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11089 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11090 				    struct sk_buff,			\
11091 				    skb,				\
11092 				    SKB_FIELD)
11093 
11094 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11095 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11096 				    struct sock,			\
11097 				    sk,					\
11098 				    SK_FIELD)
11099 
11100 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11101 					   const struct bpf_insn *si,
11102 					   struct bpf_insn *insn_buf,
11103 					   struct bpf_prog *prog,
11104 					   u32 *target_size)
11105 {
11106 	struct bpf_insn *insn = insn_buf;
11107 
11108 	switch (si->off) {
11109 	case offsetof(struct sk_reuseport_md, data):
11110 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11111 		break;
11112 
11113 	case offsetof(struct sk_reuseport_md, len):
11114 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11115 		break;
11116 
11117 	case offsetof(struct sk_reuseport_md, eth_protocol):
11118 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11119 		break;
11120 
11121 	case offsetof(struct sk_reuseport_md, ip_protocol):
11122 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11123 		break;
11124 
11125 	case offsetof(struct sk_reuseport_md, data_end):
11126 		SK_REUSEPORT_LOAD_FIELD(data_end);
11127 		break;
11128 
11129 	case offsetof(struct sk_reuseport_md, hash):
11130 		SK_REUSEPORT_LOAD_FIELD(hash);
11131 		break;
11132 
11133 	case offsetof(struct sk_reuseport_md, bind_inany):
11134 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11135 		break;
11136 
11137 	case offsetof(struct sk_reuseport_md, sk):
11138 		SK_REUSEPORT_LOAD_FIELD(sk);
11139 		break;
11140 
11141 	case offsetof(struct sk_reuseport_md, migrating_sk):
11142 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11143 		break;
11144 	}
11145 
11146 	return insn - insn_buf;
11147 }
11148 
11149 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11150 	.get_func_proto		= sk_reuseport_func_proto,
11151 	.is_valid_access	= sk_reuseport_is_valid_access,
11152 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11153 };
11154 
11155 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11156 };
11157 
11158 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11159 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11160 
11161 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11162 	   struct sock *, sk, u64, flags)
11163 {
11164 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11165 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11166 		return -EINVAL;
11167 	if (unlikely(sk && sk_is_refcounted(sk)))
11168 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11169 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11170 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11171 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11172 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11173 
11174 	/* Check if socket is suitable for packet L3/L4 protocol */
11175 	if (sk && sk->sk_protocol != ctx->protocol)
11176 		return -EPROTOTYPE;
11177 	if (sk && sk->sk_family != ctx->family &&
11178 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11179 		return -EAFNOSUPPORT;
11180 
11181 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11182 		return -EEXIST;
11183 
11184 	/* Select socket as lookup result */
11185 	ctx->selected_sk = sk;
11186 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11187 	return 0;
11188 }
11189 
11190 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11191 	.func		= bpf_sk_lookup_assign,
11192 	.gpl_only	= false,
11193 	.ret_type	= RET_INTEGER,
11194 	.arg1_type	= ARG_PTR_TO_CTX,
11195 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11196 	.arg3_type	= ARG_ANYTHING,
11197 };
11198 
11199 static const struct bpf_func_proto *
11200 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11201 {
11202 	switch (func_id) {
11203 	case BPF_FUNC_perf_event_output:
11204 		return &bpf_event_output_data_proto;
11205 	case BPF_FUNC_sk_assign:
11206 		return &bpf_sk_lookup_assign_proto;
11207 	case BPF_FUNC_sk_release:
11208 		return &bpf_sk_release_proto;
11209 	default:
11210 		return bpf_sk_base_func_proto(func_id);
11211 	}
11212 }
11213 
11214 static bool sk_lookup_is_valid_access(int off, int size,
11215 				      enum bpf_access_type type,
11216 				      const struct bpf_prog *prog,
11217 				      struct bpf_insn_access_aux *info)
11218 {
11219 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11220 		return false;
11221 	if (off % size != 0)
11222 		return false;
11223 	if (type != BPF_READ)
11224 		return false;
11225 
11226 	switch (off) {
11227 	case offsetof(struct bpf_sk_lookup, sk):
11228 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11229 		return size == sizeof(__u64);
11230 
11231 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11232 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11233 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11234 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11235 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11236 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11237 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11238 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11239 		bpf_ctx_record_field_size(info, sizeof(__u32));
11240 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11241 
11242 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11243 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11244 		if (size == sizeof(__u32))
11245 			return true;
11246 		bpf_ctx_record_field_size(info, sizeof(__be16));
11247 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11248 
11249 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11250 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11251 		/* Allow access to zero padding for backward compatibility */
11252 		bpf_ctx_record_field_size(info, sizeof(__u16));
11253 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11254 
11255 	default:
11256 		return false;
11257 	}
11258 }
11259 
11260 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11261 					const struct bpf_insn *si,
11262 					struct bpf_insn *insn_buf,
11263 					struct bpf_prog *prog,
11264 					u32 *target_size)
11265 {
11266 	struct bpf_insn *insn = insn_buf;
11267 
11268 	switch (si->off) {
11269 	case offsetof(struct bpf_sk_lookup, sk):
11270 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11271 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11272 		break;
11273 
11274 	case offsetof(struct bpf_sk_lookup, family):
11275 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11276 				      bpf_target_off(struct bpf_sk_lookup_kern,
11277 						     family, 2, target_size));
11278 		break;
11279 
11280 	case offsetof(struct bpf_sk_lookup, protocol):
11281 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11282 				      bpf_target_off(struct bpf_sk_lookup_kern,
11283 						     protocol, 2, target_size));
11284 		break;
11285 
11286 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11287 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11288 				      bpf_target_off(struct bpf_sk_lookup_kern,
11289 						     v4.saddr, 4, target_size));
11290 		break;
11291 
11292 	case offsetof(struct bpf_sk_lookup, local_ip4):
11293 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11294 				      bpf_target_off(struct bpf_sk_lookup_kern,
11295 						     v4.daddr, 4, target_size));
11296 		break;
11297 
11298 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11299 				remote_ip6[0], remote_ip6[3]): {
11300 #if IS_ENABLED(CONFIG_IPV6)
11301 		int off = si->off;
11302 
11303 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11304 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11305 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11306 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11307 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11308 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11309 #else
11310 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11311 #endif
11312 		break;
11313 	}
11314 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11315 				local_ip6[0], local_ip6[3]): {
11316 #if IS_ENABLED(CONFIG_IPV6)
11317 		int off = si->off;
11318 
11319 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11320 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11321 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11322 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11323 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11324 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11325 #else
11326 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11327 #endif
11328 		break;
11329 	}
11330 	case offsetof(struct bpf_sk_lookup, remote_port):
11331 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11332 				      bpf_target_off(struct bpf_sk_lookup_kern,
11333 						     sport, 2, target_size));
11334 		break;
11335 
11336 	case offsetofend(struct bpf_sk_lookup, remote_port):
11337 		*target_size = 2;
11338 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11339 		break;
11340 
11341 	case offsetof(struct bpf_sk_lookup, local_port):
11342 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11343 				      bpf_target_off(struct bpf_sk_lookup_kern,
11344 						     dport, 2, target_size));
11345 		break;
11346 
11347 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11348 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11349 				      bpf_target_off(struct bpf_sk_lookup_kern,
11350 						     ingress_ifindex, 4, target_size));
11351 		break;
11352 	}
11353 
11354 	return insn - insn_buf;
11355 }
11356 
11357 const struct bpf_prog_ops sk_lookup_prog_ops = {
11358 	.test_run = bpf_prog_test_run_sk_lookup,
11359 };
11360 
11361 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11362 	.get_func_proto		= sk_lookup_func_proto,
11363 	.is_valid_access	= sk_lookup_is_valid_access,
11364 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11365 };
11366 
11367 #endif /* CONFIG_INET */
11368 
11369 DEFINE_BPF_DISPATCHER(xdp)
11370 
11371 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11372 {
11373 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11374 }
11375 
11376 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11377 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11378 BTF_SOCK_TYPE_xxx
11379 #undef BTF_SOCK_TYPE
11380 
11381 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11382 {
11383 	/* tcp6_sock type is not generated in dwarf and hence btf,
11384 	 * trigger an explicit type generation here.
11385 	 */
11386 	BTF_TYPE_EMIT(struct tcp6_sock);
11387 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11388 	    sk->sk_family == AF_INET6)
11389 		return (unsigned long)sk;
11390 
11391 	return (unsigned long)NULL;
11392 }
11393 
11394 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11395 	.func			= bpf_skc_to_tcp6_sock,
11396 	.gpl_only		= false,
11397 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11398 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11399 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11400 };
11401 
11402 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11403 {
11404 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11405 		return (unsigned long)sk;
11406 
11407 	return (unsigned long)NULL;
11408 }
11409 
11410 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11411 	.func			= bpf_skc_to_tcp_sock,
11412 	.gpl_only		= false,
11413 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11414 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11415 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11416 };
11417 
11418 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11419 {
11420 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11421 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11422 	 */
11423 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11424 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11425 
11426 #ifdef CONFIG_INET
11427 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11428 		return (unsigned long)sk;
11429 #endif
11430 
11431 #if IS_BUILTIN(CONFIG_IPV6)
11432 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11433 		return (unsigned long)sk;
11434 #endif
11435 
11436 	return (unsigned long)NULL;
11437 }
11438 
11439 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11440 	.func			= bpf_skc_to_tcp_timewait_sock,
11441 	.gpl_only		= false,
11442 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11443 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11444 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11445 };
11446 
11447 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11448 {
11449 #ifdef CONFIG_INET
11450 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11451 		return (unsigned long)sk;
11452 #endif
11453 
11454 #if IS_BUILTIN(CONFIG_IPV6)
11455 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11456 		return (unsigned long)sk;
11457 #endif
11458 
11459 	return (unsigned long)NULL;
11460 }
11461 
11462 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11463 	.func			= bpf_skc_to_tcp_request_sock,
11464 	.gpl_only		= false,
11465 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11466 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11467 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11468 };
11469 
11470 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11471 {
11472 	/* udp6_sock type is not generated in dwarf and hence btf,
11473 	 * trigger an explicit type generation here.
11474 	 */
11475 	BTF_TYPE_EMIT(struct udp6_sock);
11476 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11477 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11478 		return (unsigned long)sk;
11479 
11480 	return (unsigned long)NULL;
11481 }
11482 
11483 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11484 	.func			= bpf_skc_to_udp6_sock,
11485 	.gpl_only		= false,
11486 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11487 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11488 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11489 };
11490 
11491 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11492 {
11493 	/* unix_sock type is not generated in dwarf and hence btf,
11494 	 * trigger an explicit type generation here.
11495 	 */
11496 	BTF_TYPE_EMIT(struct unix_sock);
11497 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11498 		return (unsigned long)sk;
11499 
11500 	return (unsigned long)NULL;
11501 }
11502 
11503 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11504 	.func			= bpf_skc_to_unix_sock,
11505 	.gpl_only		= false,
11506 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11507 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11508 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11509 };
11510 
11511 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11512 {
11513 	BTF_TYPE_EMIT(struct mptcp_sock);
11514 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11515 }
11516 
11517 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11518 	.func		= bpf_skc_to_mptcp_sock,
11519 	.gpl_only	= false,
11520 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11521 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11522 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11523 };
11524 
11525 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11526 {
11527 	return (unsigned long)sock_from_file(file);
11528 }
11529 
11530 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11531 BTF_ID(struct, socket)
11532 BTF_ID(struct, file)
11533 
11534 const struct bpf_func_proto bpf_sock_from_file_proto = {
11535 	.func		= bpf_sock_from_file,
11536 	.gpl_only	= false,
11537 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11538 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11539 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11540 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11541 };
11542 
11543 static const struct bpf_func_proto *
11544 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11545 {
11546 	const struct bpf_func_proto *func;
11547 
11548 	switch (func_id) {
11549 	case BPF_FUNC_skc_to_tcp6_sock:
11550 		func = &bpf_skc_to_tcp6_sock_proto;
11551 		break;
11552 	case BPF_FUNC_skc_to_tcp_sock:
11553 		func = &bpf_skc_to_tcp_sock_proto;
11554 		break;
11555 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11556 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11557 		break;
11558 	case BPF_FUNC_skc_to_tcp_request_sock:
11559 		func = &bpf_skc_to_tcp_request_sock_proto;
11560 		break;
11561 	case BPF_FUNC_skc_to_udp6_sock:
11562 		func = &bpf_skc_to_udp6_sock_proto;
11563 		break;
11564 	case BPF_FUNC_skc_to_unix_sock:
11565 		func = &bpf_skc_to_unix_sock_proto;
11566 		break;
11567 	case BPF_FUNC_skc_to_mptcp_sock:
11568 		func = &bpf_skc_to_mptcp_sock_proto;
11569 		break;
11570 	case BPF_FUNC_ktime_get_coarse_ns:
11571 		return &bpf_ktime_get_coarse_ns_proto;
11572 	default:
11573 		return bpf_base_func_proto(func_id);
11574 	}
11575 
11576 	if (!perfmon_capable())
11577 		return NULL;
11578 
11579 	return func;
11580 }
11581