xref: /openbmc/linux/net/core/filter.c (revision c5c87812)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 
81 static const struct bpf_func_proto *
82 bpf_sk_base_func_proto(enum bpf_func_id func_id);
83 
84 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
85 {
86 	if (in_compat_syscall()) {
87 		struct compat_sock_fprog f32;
88 
89 		if (len != sizeof(f32))
90 			return -EINVAL;
91 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
92 			return -EFAULT;
93 		memset(dst, 0, sizeof(*dst));
94 		dst->len = f32.len;
95 		dst->filter = compat_ptr(f32.filter);
96 	} else {
97 		if (len != sizeof(*dst))
98 			return -EINVAL;
99 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
100 			return -EFAULT;
101 	}
102 
103 	return 0;
104 }
105 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
106 
107 /**
108  *	sk_filter_trim_cap - run a packet through a socket filter
109  *	@sk: sock associated with &sk_buff
110  *	@skb: buffer to filter
111  *	@cap: limit on how short the eBPF program may trim the packet
112  *
113  * Run the eBPF program and then cut skb->data to correct size returned by
114  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
115  * than pkt_len we keep whole skb->data. This is the socket level
116  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
117  * be accepted or -EPERM if the packet should be tossed.
118  *
119  */
120 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
121 {
122 	int err;
123 	struct sk_filter *filter;
124 
125 	/*
126 	 * If the skb was allocated from pfmemalloc reserves, only
127 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
128 	 * helping free memory
129 	 */
130 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
131 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
132 		return -ENOMEM;
133 	}
134 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
135 	if (err)
136 		return err;
137 
138 	err = security_sock_rcv_skb(sk, skb);
139 	if (err)
140 		return err;
141 
142 	rcu_read_lock();
143 	filter = rcu_dereference(sk->sk_filter);
144 	if (filter) {
145 		struct sock *save_sk = skb->sk;
146 		unsigned int pkt_len;
147 
148 		skb->sk = sk;
149 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
150 		skb->sk = save_sk;
151 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
152 	}
153 	rcu_read_unlock();
154 
155 	return err;
156 }
157 EXPORT_SYMBOL(sk_filter_trim_cap);
158 
159 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
160 {
161 	return skb_get_poff(skb);
162 }
163 
164 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
165 {
166 	struct nlattr *nla;
167 
168 	if (skb_is_nonlinear(skb))
169 		return 0;
170 
171 	if (skb->len < sizeof(struct nlattr))
172 		return 0;
173 
174 	if (a > skb->len - sizeof(struct nlattr))
175 		return 0;
176 
177 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
178 	if (nla)
179 		return (void *) nla - (void *) skb->data;
180 
181 	return 0;
182 }
183 
184 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
185 {
186 	struct nlattr *nla;
187 
188 	if (skb_is_nonlinear(skb))
189 		return 0;
190 
191 	if (skb->len < sizeof(struct nlattr))
192 		return 0;
193 
194 	if (a > skb->len - sizeof(struct nlattr))
195 		return 0;
196 
197 	nla = (struct nlattr *) &skb->data[a];
198 	if (nla->nla_len > skb->len - a)
199 		return 0;
200 
201 	nla = nla_find_nested(nla, x);
202 	if (nla)
203 		return (void *) nla - (void *) skb->data;
204 
205 	return 0;
206 }
207 
208 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
209 	   data, int, headlen, int, offset)
210 {
211 	u8 tmp, *ptr;
212 	const int len = sizeof(tmp);
213 
214 	if (offset >= 0) {
215 		if (headlen - offset >= len)
216 			return *(u8 *)(data + offset);
217 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
218 			return tmp;
219 	} else {
220 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
221 		if (likely(ptr))
222 			return *(u8 *)ptr;
223 	}
224 
225 	return -EFAULT;
226 }
227 
228 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
229 	   int, offset)
230 {
231 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
232 					 offset);
233 }
234 
235 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
236 	   data, int, headlen, int, offset)
237 {
238 	u16 tmp, *ptr;
239 	const int len = sizeof(tmp);
240 
241 	if (offset >= 0) {
242 		if (headlen - offset >= len)
243 			return get_unaligned_be16(data + offset);
244 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
245 			return be16_to_cpu(tmp);
246 	} else {
247 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
248 		if (likely(ptr))
249 			return get_unaligned_be16(ptr);
250 	}
251 
252 	return -EFAULT;
253 }
254 
255 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
256 	   int, offset)
257 {
258 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
259 					  offset);
260 }
261 
262 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
263 	   data, int, headlen, int, offset)
264 {
265 	u32 tmp, *ptr;
266 	const int len = sizeof(tmp);
267 
268 	if (likely(offset >= 0)) {
269 		if (headlen - offset >= len)
270 			return get_unaligned_be32(data + offset);
271 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
272 			return be32_to_cpu(tmp);
273 	} else {
274 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
275 		if (likely(ptr))
276 			return get_unaligned_be32(ptr);
277 	}
278 
279 	return -EFAULT;
280 }
281 
282 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
283 	   int, offset)
284 {
285 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
286 					  offset);
287 }
288 
289 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
290 			      struct bpf_insn *insn_buf)
291 {
292 	struct bpf_insn *insn = insn_buf;
293 
294 	switch (skb_field) {
295 	case SKF_AD_MARK:
296 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
297 
298 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
299 				      offsetof(struct sk_buff, mark));
300 		break;
301 
302 	case SKF_AD_PKTTYPE:
303 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
304 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
305 #ifdef __BIG_ENDIAN_BITFIELD
306 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
307 #endif
308 		break;
309 
310 	case SKF_AD_QUEUE:
311 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
312 
313 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
314 				      offsetof(struct sk_buff, queue_mapping));
315 		break;
316 
317 	case SKF_AD_VLAN_TAG:
318 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
319 
320 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
321 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
322 				      offsetof(struct sk_buff, vlan_tci));
323 		break;
324 	case SKF_AD_VLAN_TAG_PRESENT:
325 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
326 		if (PKT_VLAN_PRESENT_BIT)
327 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
328 		if (PKT_VLAN_PRESENT_BIT < 7)
329 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
330 		break;
331 	}
332 
333 	return insn - insn_buf;
334 }
335 
336 static bool convert_bpf_extensions(struct sock_filter *fp,
337 				   struct bpf_insn **insnp)
338 {
339 	struct bpf_insn *insn = *insnp;
340 	u32 cnt;
341 
342 	switch (fp->k) {
343 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
344 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
345 
346 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
347 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
348 				      offsetof(struct sk_buff, protocol));
349 		/* A = ntohs(A) [emitting a nop or swap16] */
350 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
351 		break;
352 
353 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
354 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
355 		insn += cnt - 1;
356 		break;
357 
358 	case SKF_AD_OFF + SKF_AD_IFINDEX:
359 	case SKF_AD_OFF + SKF_AD_HATYPE:
360 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
361 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
362 
363 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
364 				      BPF_REG_TMP, BPF_REG_CTX,
365 				      offsetof(struct sk_buff, dev));
366 		/* if (tmp != 0) goto pc + 1 */
367 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
368 		*insn++ = BPF_EXIT_INSN();
369 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
370 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
371 					    offsetof(struct net_device, ifindex));
372 		else
373 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
374 					    offsetof(struct net_device, type));
375 		break;
376 
377 	case SKF_AD_OFF + SKF_AD_MARK:
378 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
379 		insn += cnt - 1;
380 		break;
381 
382 	case SKF_AD_OFF + SKF_AD_RXHASH:
383 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
384 
385 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
386 				    offsetof(struct sk_buff, hash));
387 		break;
388 
389 	case SKF_AD_OFF + SKF_AD_QUEUE:
390 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
391 		insn += cnt - 1;
392 		break;
393 
394 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
395 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
396 					 BPF_REG_A, BPF_REG_CTX, insn);
397 		insn += cnt - 1;
398 		break;
399 
400 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
401 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
402 					 BPF_REG_A, BPF_REG_CTX, insn);
403 		insn += cnt - 1;
404 		break;
405 
406 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
407 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
408 
409 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
410 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
411 				      offsetof(struct sk_buff, vlan_proto));
412 		/* A = ntohs(A) [emitting a nop or swap16] */
413 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
414 		break;
415 
416 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
417 	case SKF_AD_OFF + SKF_AD_NLATTR:
418 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
419 	case SKF_AD_OFF + SKF_AD_CPU:
420 	case SKF_AD_OFF + SKF_AD_RANDOM:
421 		/* arg1 = CTX */
422 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
423 		/* arg2 = A */
424 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
425 		/* arg3 = X */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
427 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
428 		switch (fp->k) {
429 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
430 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
431 			break;
432 		case SKF_AD_OFF + SKF_AD_NLATTR:
433 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
434 			break;
435 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
436 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
437 			break;
438 		case SKF_AD_OFF + SKF_AD_CPU:
439 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
440 			break;
441 		case SKF_AD_OFF + SKF_AD_RANDOM:
442 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
443 			bpf_user_rnd_init_once();
444 			break;
445 		}
446 		break;
447 
448 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
449 		/* A ^= X */
450 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
451 		break;
452 
453 	default:
454 		/* This is just a dummy call to avoid letting the compiler
455 		 * evict __bpf_call_base() as an optimization. Placed here
456 		 * where no-one bothers.
457 		 */
458 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
459 		return false;
460 	}
461 
462 	*insnp = insn;
463 	return true;
464 }
465 
466 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
467 {
468 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
469 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
470 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
471 		      BPF_SIZE(fp->code) == BPF_W;
472 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
473 	const int ip_align = NET_IP_ALIGN;
474 	struct bpf_insn *insn = *insnp;
475 	int offset = fp->k;
476 
477 	if (!indirect &&
478 	    ((unaligned_ok && offset >= 0) ||
479 	     (!unaligned_ok && offset >= 0 &&
480 	      offset + ip_align >= 0 &&
481 	      offset + ip_align % size == 0))) {
482 		bool ldx_off_ok = offset <= S16_MAX;
483 
484 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
485 		if (offset)
486 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
487 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
488 				      size, 2 + endian + (!ldx_off_ok * 2));
489 		if (ldx_off_ok) {
490 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
491 					      BPF_REG_D, offset);
492 		} else {
493 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
494 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
495 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
496 					      BPF_REG_TMP, 0);
497 		}
498 		if (endian)
499 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
500 		*insn++ = BPF_JMP_A(8);
501 	}
502 
503 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
504 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
506 	if (!indirect) {
507 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
508 	} else {
509 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
510 		if (fp->k)
511 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
512 	}
513 
514 	switch (BPF_SIZE(fp->code)) {
515 	case BPF_B:
516 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
517 		break;
518 	case BPF_H:
519 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
520 		break;
521 	case BPF_W:
522 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
523 		break;
524 	default:
525 		return false;
526 	}
527 
528 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
529 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
530 	*insn   = BPF_EXIT_INSN();
531 
532 	*insnp = insn;
533 	return true;
534 }
535 
536 /**
537  *	bpf_convert_filter - convert filter program
538  *	@prog: the user passed filter program
539  *	@len: the length of the user passed filter program
540  *	@new_prog: allocated 'struct bpf_prog' or NULL
541  *	@new_len: pointer to store length of converted program
542  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
543  *
544  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
545  * style extended BPF (eBPF).
546  * Conversion workflow:
547  *
548  * 1) First pass for calculating the new program length:
549  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
550  *
551  * 2) 2nd pass to remap in two passes: 1st pass finds new
552  *    jump offsets, 2nd pass remapping:
553  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
554  */
555 static int bpf_convert_filter(struct sock_filter *prog, int len,
556 			      struct bpf_prog *new_prog, int *new_len,
557 			      bool *seen_ld_abs)
558 {
559 	int new_flen = 0, pass = 0, target, i, stack_off;
560 	struct bpf_insn *new_insn, *first_insn = NULL;
561 	struct sock_filter *fp;
562 	int *addrs = NULL;
563 	u8 bpf_src;
564 
565 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
566 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
567 
568 	if (len <= 0 || len > BPF_MAXINSNS)
569 		return -EINVAL;
570 
571 	if (new_prog) {
572 		first_insn = new_prog->insnsi;
573 		addrs = kcalloc(len, sizeof(*addrs),
574 				GFP_KERNEL | __GFP_NOWARN);
575 		if (!addrs)
576 			return -ENOMEM;
577 	}
578 
579 do_pass:
580 	new_insn = first_insn;
581 	fp = prog;
582 
583 	/* Classic BPF related prologue emission. */
584 	if (new_prog) {
585 		/* Classic BPF expects A and X to be reset first. These need
586 		 * to be guaranteed to be the first two instructions.
587 		 */
588 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
589 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
590 
591 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
592 		 * In eBPF case it's done by the compiler, here we need to
593 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
594 		 */
595 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
596 		if (*seen_ld_abs) {
597 			/* For packet access in classic BPF, cache skb->data
598 			 * in callee-saved BPF R8 and skb->len - skb->data_len
599 			 * (headlen) in BPF R9. Since classic BPF is read-only
600 			 * on CTX, we only need to cache it once.
601 			 */
602 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
603 						  BPF_REG_D, BPF_REG_CTX,
604 						  offsetof(struct sk_buff, data));
605 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
606 						  offsetof(struct sk_buff, len));
607 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, data_len));
609 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
610 		}
611 	} else {
612 		new_insn += 3;
613 	}
614 
615 	for (i = 0; i < len; fp++, i++) {
616 		struct bpf_insn tmp_insns[32] = { };
617 		struct bpf_insn *insn = tmp_insns;
618 
619 		if (addrs)
620 			addrs[i] = new_insn - first_insn;
621 
622 		switch (fp->code) {
623 		/* All arithmetic insns and skb loads map as-is. */
624 		case BPF_ALU | BPF_ADD | BPF_X:
625 		case BPF_ALU | BPF_ADD | BPF_K:
626 		case BPF_ALU | BPF_SUB | BPF_X:
627 		case BPF_ALU | BPF_SUB | BPF_K:
628 		case BPF_ALU | BPF_AND | BPF_X:
629 		case BPF_ALU | BPF_AND | BPF_K:
630 		case BPF_ALU | BPF_OR | BPF_X:
631 		case BPF_ALU | BPF_OR | BPF_K:
632 		case BPF_ALU | BPF_LSH | BPF_X:
633 		case BPF_ALU | BPF_LSH | BPF_K:
634 		case BPF_ALU | BPF_RSH | BPF_X:
635 		case BPF_ALU | BPF_RSH | BPF_K:
636 		case BPF_ALU | BPF_XOR | BPF_X:
637 		case BPF_ALU | BPF_XOR | BPF_K:
638 		case BPF_ALU | BPF_MUL | BPF_X:
639 		case BPF_ALU | BPF_MUL | BPF_K:
640 		case BPF_ALU | BPF_DIV | BPF_X:
641 		case BPF_ALU | BPF_DIV | BPF_K:
642 		case BPF_ALU | BPF_MOD | BPF_X:
643 		case BPF_ALU | BPF_MOD | BPF_K:
644 		case BPF_ALU | BPF_NEG:
645 		case BPF_LD | BPF_ABS | BPF_W:
646 		case BPF_LD | BPF_ABS | BPF_H:
647 		case BPF_LD | BPF_ABS | BPF_B:
648 		case BPF_LD | BPF_IND | BPF_W:
649 		case BPF_LD | BPF_IND | BPF_H:
650 		case BPF_LD | BPF_IND | BPF_B:
651 			/* Check for overloaded BPF extension and
652 			 * directly convert it if found, otherwise
653 			 * just move on with mapping.
654 			 */
655 			if (BPF_CLASS(fp->code) == BPF_LD &&
656 			    BPF_MODE(fp->code) == BPF_ABS &&
657 			    convert_bpf_extensions(fp, &insn))
658 				break;
659 			if (BPF_CLASS(fp->code) == BPF_LD &&
660 			    convert_bpf_ld_abs(fp, &insn)) {
661 				*seen_ld_abs = true;
662 				break;
663 			}
664 
665 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
666 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
667 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
668 				/* Error with exception code on div/mod by 0.
669 				 * For cBPF programs, this was always return 0.
670 				 */
671 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
672 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
673 				*insn++ = BPF_EXIT_INSN();
674 			}
675 
676 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
677 			break;
678 
679 		/* Jump transformation cannot use BPF block macros
680 		 * everywhere as offset calculation and target updates
681 		 * require a bit more work than the rest, i.e. jump
682 		 * opcodes map as-is, but offsets need adjustment.
683 		 */
684 
685 #define BPF_EMIT_JMP							\
686 	do {								\
687 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
688 		s32 off;						\
689 									\
690 		if (target >= len || target < 0)			\
691 			goto err;					\
692 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
693 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
694 		off -= insn - tmp_insns;				\
695 		/* Reject anything not fitting into insn->off. */	\
696 		if (off < off_min || off > off_max)			\
697 			goto err;					\
698 		insn->off = off;					\
699 	} while (0)
700 
701 		case BPF_JMP | BPF_JA:
702 			target = i + fp->k + 1;
703 			insn->code = fp->code;
704 			BPF_EMIT_JMP;
705 			break;
706 
707 		case BPF_JMP | BPF_JEQ | BPF_K:
708 		case BPF_JMP | BPF_JEQ | BPF_X:
709 		case BPF_JMP | BPF_JSET | BPF_K:
710 		case BPF_JMP | BPF_JSET | BPF_X:
711 		case BPF_JMP | BPF_JGT | BPF_K:
712 		case BPF_JMP | BPF_JGT | BPF_X:
713 		case BPF_JMP | BPF_JGE | BPF_K:
714 		case BPF_JMP | BPF_JGE | BPF_X:
715 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
716 				/* BPF immediates are signed, zero extend
717 				 * immediate into tmp register and use it
718 				 * in compare insn.
719 				 */
720 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
721 
722 				insn->dst_reg = BPF_REG_A;
723 				insn->src_reg = BPF_REG_TMP;
724 				bpf_src = BPF_X;
725 			} else {
726 				insn->dst_reg = BPF_REG_A;
727 				insn->imm = fp->k;
728 				bpf_src = BPF_SRC(fp->code);
729 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
730 			}
731 
732 			/* Common case where 'jump_false' is next insn. */
733 			if (fp->jf == 0) {
734 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
735 				target = i + fp->jt + 1;
736 				BPF_EMIT_JMP;
737 				break;
738 			}
739 
740 			/* Convert some jumps when 'jump_true' is next insn. */
741 			if (fp->jt == 0) {
742 				switch (BPF_OP(fp->code)) {
743 				case BPF_JEQ:
744 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
745 					break;
746 				case BPF_JGT:
747 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
748 					break;
749 				case BPF_JGE:
750 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
751 					break;
752 				default:
753 					goto jmp_rest;
754 				}
755 
756 				target = i + fp->jf + 1;
757 				BPF_EMIT_JMP;
758 				break;
759 			}
760 jmp_rest:
761 			/* Other jumps are mapped into two insns: Jxx and JA. */
762 			target = i + fp->jt + 1;
763 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
764 			BPF_EMIT_JMP;
765 			insn++;
766 
767 			insn->code = BPF_JMP | BPF_JA;
768 			target = i + fp->jf + 1;
769 			BPF_EMIT_JMP;
770 			break;
771 
772 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
773 		case BPF_LDX | BPF_MSH | BPF_B: {
774 			struct sock_filter tmp = {
775 				.code	= BPF_LD | BPF_ABS | BPF_B,
776 				.k	= fp->k,
777 			};
778 
779 			*seen_ld_abs = true;
780 
781 			/* X = A */
782 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
783 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
784 			convert_bpf_ld_abs(&tmp, &insn);
785 			insn++;
786 			/* A &= 0xf */
787 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
788 			/* A <<= 2 */
789 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
790 			/* tmp = X */
791 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
792 			/* X = A */
793 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
794 			/* A = tmp */
795 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
796 			break;
797 		}
798 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
799 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
800 		 */
801 		case BPF_RET | BPF_A:
802 		case BPF_RET | BPF_K:
803 			if (BPF_RVAL(fp->code) == BPF_K)
804 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
805 							0, fp->k);
806 			*insn = BPF_EXIT_INSN();
807 			break;
808 
809 		/* Store to stack. */
810 		case BPF_ST:
811 		case BPF_STX:
812 			stack_off = fp->k * 4  + 4;
813 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
814 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
815 					    -stack_off);
816 			/* check_load_and_stores() verifies that classic BPF can
817 			 * load from stack only after write, so tracking
818 			 * stack_depth for ST|STX insns is enough
819 			 */
820 			if (new_prog && new_prog->aux->stack_depth < stack_off)
821 				new_prog->aux->stack_depth = stack_off;
822 			break;
823 
824 		/* Load from stack. */
825 		case BPF_LD | BPF_MEM:
826 		case BPF_LDX | BPF_MEM:
827 			stack_off = fp->k * 4  + 4;
828 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
829 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
830 					    -stack_off);
831 			break;
832 
833 		/* A = K or X = K */
834 		case BPF_LD | BPF_IMM:
835 		case BPF_LDX | BPF_IMM:
836 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
837 					      BPF_REG_A : BPF_REG_X, fp->k);
838 			break;
839 
840 		/* X = A */
841 		case BPF_MISC | BPF_TAX:
842 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
843 			break;
844 
845 		/* A = X */
846 		case BPF_MISC | BPF_TXA:
847 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
848 			break;
849 
850 		/* A = skb->len or X = skb->len */
851 		case BPF_LD | BPF_W | BPF_LEN:
852 		case BPF_LDX | BPF_W | BPF_LEN:
853 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
854 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
855 					    offsetof(struct sk_buff, len));
856 			break;
857 
858 		/* Access seccomp_data fields. */
859 		case BPF_LDX | BPF_ABS | BPF_W:
860 			/* A = *(u32 *) (ctx + K) */
861 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
862 			break;
863 
864 		/* Unknown instruction. */
865 		default:
866 			goto err;
867 		}
868 
869 		insn++;
870 		if (new_prog)
871 			memcpy(new_insn, tmp_insns,
872 			       sizeof(*insn) * (insn - tmp_insns));
873 		new_insn += insn - tmp_insns;
874 	}
875 
876 	if (!new_prog) {
877 		/* Only calculating new length. */
878 		*new_len = new_insn - first_insn;
879 		if (*seen_ld_abs)
880 			*new_len += 4; /* Prologue bits. */
881 		return 0;
882 	}
883 
884 	pass++;
885 	if (new_flen != new_insn - first_insn) {
886 		new_flen = new_insn - first_insn;
887 		if (pass > 2)
888 			goto err;
889 		goto do_pass;
890 	}
891 
892 	kfree(addrs);
893 	BUG_ON(*new_len != new_flen);
894 	return 0;
895 err:
896 	kfree(addrs);
897 	return -EINVAL;
898 }
899 
900 /* Security:
901  *
902  * As we dont want to clear mem[] array for each packet going through
903  * __bpf_prog_run(), we check that filter loaded by user never try to read
904  * a cell if not previously written, and we check all branches to be sure
905  * a malicious user doesn't try to abuse us.
906  */
907 static int check_load_and_stores(const struct sock_filter *filter, int flen)
908 {
909 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
910 	int pc, ret = 0;
911 
912 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
913 
914 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
915 	if (!masks)
916 		return -ENOMEM;
917 
918 	memset(masks, 0xff, flen * sizeof(*masks));
919 
920 	for (pc = 0; pc < flen; pc++) {
921 		memvalid &= masks[pc];
922 
923 		switch (filter[pc].code) {
924 		case BPF_ST:
925 		case BPF_STX:
926 			memvalid |= (1 << filter[pc].k);
927 			break;
928 		case BPF_LD | BPF_MEM:
929 		case BPF_LDX | BPF_MEM:
930 			if (!(memvalid & (1 << filter[pc].k))) {
931 				ret = -EINVAL;
932 				goto error;
933 			}
934 			break;
935 		case BPF_JMP | BPF_JA:
936 			/* A jump must set masks on target */
937 			masks[pc + 1 + filter[pc].k] &= memvalid;
938 			memvalid = ~0;
939 			break;
940 		case BPF_JMP | BPF_JEQ | BPF_K:
941 		case BPF_JMP | BPF_JEQ | BPF_X:
942 		case BPF_JMP | BPF_JGE | BPF_K:
943 		case BPF_JMP | BPF_JGE | BPF_X:
944 		case BPF_JMP | BPF_JGT | BPF_K:
945 		case BPF_JMP | BPF_JGT | BPF_X:
946 		case BPF_JMP | BPF_JSET | BPF_K:
947 		case BPF_JMP | BPF_JSET | BPF_X:
948 			/* A jump must set masks on targets */
949 			masks[pc + 1 + filter[pc].jt] &= memvalid;
950 			masks[pc + 1 + filter[pc].jf] &= memvalid;
951 			memvalid = ~0;
952 			break;
953 		}
954 	}
955 error:
956 	kfree(masks);
957 	return ret;
958 }
959 
960 static bool chk_code_allowed(u16 code_to_probe)
961 {
962 	static const bool codes[] = {
963 		/* 32 bit ALU operations */
964 		[BPF_ALU | BPF_ADD | BPF_K] = true,
965 		[BPF_ALU | BPF_ADD | BPF_X] = true,
966 		[BPF_ALU | BPF_SUB | BPF_K] = true,
967 		[BPF_ALU | BPF_SUB | BPF_X] = true,
968 		[BPF_ALU | BPF_MUL | BPF_K] = true,
969 		[BPF_ALU | BPF_MUL | BPF_X] = true,
970 		[BPF_ALU | BPF_DIV | BPF_K] = true,
971 		[BPF_ALU | BPF_DIV | BPF_X] = true,
972 		[BPF_ALU | BPF_MOD | BPF_K] = true,
973 		[BPF_ALU | BPF_MOD | BPF_X] = true,
974 		[BPF_ALU | BPF_AND | BPF_K] = true,
975 		[BPF_ALU | BPF_AND | BPF_X] = true,
976 		[BPF_ALU | BPF_OR | BPF_K] = true,
977 		[BPF_ALU | BPF_OR | BPF_X] = true,
978 		[BPF_ALU | BPF_XOR | BPF_K] = true,
979 		[BPF_ALU | BPF_XOR | BPF_X] = true,
980 		[BPF_ALU | BPF_LSH | BPF_K] = true,
981 		[BPF_ALU | BPF_LSH | BPF_X] = true,
982 		[BPF_ALU | BPF_RSH | BPF_K] = true,
983 		[BPF_ALU | BPF_RSH | BPF_X] = true,
984 		[BPF_ALU | BPF_NEG] = true,
985 		/* Load instructions */
986 		[BPF_LD | BPF_W | BPF_ABS] = true,
987 		[BPF_LD | BPF_H | BPF_ABS] = true,
988 		[BPF_LD | BPF_B | BPF_ABS] = true,
989 		[BPF_LD | BPF_W | BPF_LEN] = true,
990 		[BPF_LD | BPF_W | BPF_IND] = true,
991 		[BPF_LD | BPF_H | BPF_IND] = true,
992 		[BPF_LD | BPF_B | BPF_IND] = true,
993 		[BPF_LD | BPF_IMM] = true,
994 		[BPF_LD | BPF_MEM] = true,
995 		[BPF_LDX | BPF_W | BPF_LEN] = true,
996 		[BPF_LDX | BPF_B | BPF_MSH] = true,
997 		[BPF_LDX | BPF_IMM] = true,
998 		[BPF_LDX | BPF_MEM] = true,
999 		/* Store instructions */
1000 		[BPF_ST] = true,
1001 		[BPF_STX] = true,
1002 		/* Misc instructions */
1003 		[BPF_MISC | BPF_TAX] = true,
1004 		[BPF_MISC | BPF_TXA] = true,
1005 		/* Return instructions */
1006 		[BPF_RET | BPF_K] = true,
1007 		[BPF_RET | BPF_A] = true,
1008 		/* Jump instructions */
1009 		[BPF_JMP | BPF_JA] = true,
1010 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1011 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1012 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1013 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1014 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1015 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1016 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1017 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1018 	};
1019 
1020 	if (code_to_probe >= ARRAY_SIZE(codes))
1021 		return false;
1022 
1023 	return codes[code_to_probe];
1024 }
1025 
1026 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1027 				unsigned int flen)
1028 {
1029 	if (filter == NULL)
1030 		return false;
1031 	if (flen == 0 || flen > BPF_MAXINSNS)
1032 		return false;
1033 
1034 	return true;
1035 }
1036 
1037 /**
1038  *	bpf_check_classic - verify socket filter code
1039  *	@filter: filter to verify
1040  *	@flen: length of filter
1041  *
1042  * Check the user's filter code. If we let some ugly
1043  * filter code slip through kaboom! The filter must contain
1044  * no references or jumps that are out of range, no illegal
1045  * instructions, and must end with a RET instruction.
1046  *
1047  * All jumps are forward as they are not signed.
1048  *
1049  * Returns 0 if the rule set is legal or -EINVAL if not.
1050  */
1051 static int bpf_check_classic(const struct sock_filter *filter,
1052 			     unsigned int flen)
1053 {
1054 	bool anc_found;
1055 	int pc;
1056 
1057 	/* Check the filter code now */
1058 	for (pc = 0; pc < flen; pc++) {
1059 		const struct sock_filter *ftest = &filter[pc];
1060 
1061 		/* May we actually operate on this code? */
1062 		if (!chk_code_allowed(ftest->code))
1063 			return -EINVAL;
1064 
1065 		/* Some instructions need special checks */
1066 		switch (ftest->code) {
1067 		case BPF_ALU | BPF_DIV | BPF_K:
1068 		case BPF_ALU | BPF_MOD | BPF_K:
1069 			/* Check for division by zero */
1070 			if (ftest->k == 0)
1071 				return -EINVAL;
1072 			break;
1073 		case BPF_ALU | BPF_LSH | BPF_K:
1074 		case BPF_ALU | BPF_RSH | BPF_K:
1075 			if (ftest->k >= 32)
1076 				return -EINVAL;
1077 			break;
1078 		case BPF_LD | BPF_MEM:
1079 		case BPF_LDX | BPF_MEM:
1080 		case BPF_ST:
1081 		case BPF_STX:
1082 			/* Check for invalid memory addresses */
1083 			if (ftest->k >= BPF_MEMWORDS)
1084 				return -EINVAL;
1085 			break;
1086 		case BPF_JMP | BPF_JA:
1087 			/* Note, the large ftest->k might cause loops.
1088 			 * Compare this with conditional jumps below,
1089 			 * where offsets are limited. --ANK (981016)
1090 			 */
1091 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1092 				return -EINVAL;
1093 			break;
1094 		case BPF_JMP | BPF_JEQ | BPF_K:
1095 		case BPF_JMP | BPF_JEQ | BPF_X:
1096 		case BPF_JMP | BPF_JGE | BPF_K:
1097 		case BPF_JMP | BPF_JGE | BPF_X:
1098 		case BPF_JMP | BPF_JGT | BPF_K:
1099 		case BPF_JMP | BPF_JGT | BPF_X:
1100 		case BPF_JMP | BPF_JSET | BPF_K:
1101 		case BPF_JMP | BPF_JSET | BPF_X:
1102 			/* Both conditionals must be safe */
1103 			if (pc + ftest->jt + 1 >= flen ||
1104 			    pc + ftest->jf + 1 >= flen)
1105 				return -EINVAL;
1106 			break;
1107 		case BPF_LD | BPF_W | BPF_ABS:
1108 		case BPF_LD | BPF_H | BPF_ABS:
1109 		case BPF_LD | BPF_B | BPF_ABS:
1110 			anc_found = false;
1111 			if (bpf_anc_helper(ftest) & BPF_ANC)
1112 				anc_found = true;
1113 			/* Ancillary operation unknown or unsupported */
1114 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1115 				return -EINVAL;
1116 		}
1117 	}
1118 
1119 	/* Last instruction must be a RET code */
1120 	switch (filter[flen - 1].code) {
1121 	case BPF_RET | BPF_K:
1122 	case BPF_RET | BPF_A:
1123 		return check_load_and_stores(filter, flen);
1124 	}
1125 
1126 	return -EINVAL;
1127 }
1128 
1129 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1130 				      const struct sock_fprog *fprog)
1131 {
1132 	unsigned int fsize = bpf_classic_proglen(fprog);
1133 	struct sock_fprog_kern *fkprog;
1134 
1135 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1136 	if (!fp->orig_prog)
1137 		return -ENOMEM;
1138 
1139 	fkprog = fp->orig_prog;
1140 	fkprog->len = fprog->len;
1141 
1142 	fkprog->filter = kmemdup(fp->insns, fsize,
1143 				 GFP_KERNEL | __GFP_NOWARN);
1144 	if (!fkprog->filter) {
1145 		kfree(fp->orig_prog);
1146 		return -ENOMEM;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 static void bpf_release_orig_filter(struct bpf_prog *fp)
1153 {
1154 	struct sock_fprog_kern *fprog = fp->orig_prog;
1155 
1156 	if (fprog) {
1157 		kfree(fprog->filter);
1158 		kfree(fprog);
1159 	}
1160 }
1161 
1162 static void __bpf_prog_release(struct bpf_prog *prog)
1163 {
1164 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1165 		bpf_prog_put(prog);
1166 	} else {
1167 		bpf_release_orig_filter(prog);
1168 		bpf_prog_free(prog);
1169 	}
1170 }
1171 
1172 static void __sk_filter_release(struct sk_filter *fp)
1173 {
1174 	__bpf_prog_release(fp->prog);
1175 	kfree(fp);
1176 }
1177 
1178 /**
1179  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1180  *	@rcu: rcu_head that contains the sk_filter to free
1181  */
1182 static void sk_filter_release_rcu(struct rcu_head *rcu)
1183 {
1184 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1185 
1186 	__sk_filter_release(fp);
1187 }
1188 
1189 /**
1190  *	sk_filter_release - release a socket filter
1191  *	@fp: filter to remove
1192  *
1193  *	Remove a filter from a socket and release its resources.
1194  */
1195 static void sk_filter_release(struct sk_filter *fp)
1196 {
1197 	if (refcount_dec_and_test(&fp->refcnt))
1198 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1199 }
1200 
1201 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1202 {
1203 	u32 filter_size = bpf_prog_size(fp->prog->len);
1204 
1205 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1206 	sk_filter_release(fp);
1207 }
1208 
1209 /* try to charge the socket memory if there is space available
1210  * return true on success
1211  */
1212 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1213 {
1214 	u32 filter_size = bpf_prog_size(fp->prog->len);
1215 
1216 	/* same check as in sock_kmalloc() */
1217 	if (filter_size <= sysctl_optmem_max &&
1218 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1219 		atomic_add(filter_size, &sk->sk_omem_alloc);
1220 		return true;
1221 	}
1222 	return false;
1223 }
1224 
1225 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1226 {
1227 	if (!refcount_inc_not_zero(&fp->refcnt))
1228 		return false;
1229 
1230 	if (!__sk_filter_charge(sk, fp)) {
1231 		sk_filter_release(fp);
1232 		return false;
1233 	}
1234 	return true;
1235 }
1236 
1237 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1238 {
1239 	struct sock_filter *old_prog;
1240 	struct bpf_prog *old_fp;
1241 	int err, new_len, old_len = fp->len;
1242 	bool seen_ld_abs = false;
1243 
1244 	/* We are free to overwrite insns et al right here as it
1245 	 * won't be used at this point in time anymore internally
1246 	 * after the migration to the internal BPF instruction
1247 	 * representation.
1248 	 */
1249 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1250 		     sizeof(struct bpf_insn));
1251 
1252 	/* Conversion cannot happen on overlapping memory areas,
1253 	 * so we need to keep the user BPF around until the 2nd
1254 	 * pass. At this time, the user BPF is stored in fp->insns.
1255 	 */
1256 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1257 			   GFP_KERNEL | __GFP_NOWARN);
1258 	if (!old_prog) {
1259 		err = -ENOMEM;
1260 		goto out_err;
1261 	}
1262 
1263 	/* 1st pass: calculate the new program length. */
1264 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1265 				 &seen_ld_abs);
1266 	if (err)
1267 		goto out_err_free;
1268 
1269 	/* Expand fp for appending the new filter representation. */
1270 	old_fp = fp;
1271 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1272 	if (!fp) {
1273 		/* The old_fp is still around in case we couldn't
1274 		 * allocate new memory, so uncharge on that one.
1275 		 */
1276 		fp = old_fp;
1277 		err = -ENOMEM;
1278 		goto out_err_free;
1279 	}
1280 
1281 	fp->len = new_len;
1282 
1283 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1284 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1285 				 &seen_ld_abs);
1286 	if (err)
1287 		/* 2nd bpf_convert_filter() can fail only if it fails
1288 		 * to allocate memory, remapping must succeed. Note,
1289 		 * that at this time old_fp has already been released
1290 		 * by krealloc().
1291 		 */
1292 		goto out_err_free;
1293 
1294 	fp = bpf_prog_select_runtime(fp, &err);
1295 	if (err)
1296 		goto out_err_free;
1297 
1298 	kfree(old_prog);
1299 	return fp;
1300 
1301 out_err_free:
1302 	kfree(old_prog);
1303 out_err:
1304 	__bpf_prog_release(fp);
1305 	return ERR_PTR(err);
1306 }
1307 
1308 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1309 					   bpf_aux_classic_check_t trans)
1310 {
1311 	int err;
1312 
1313 	fp->bpf_func = NULL;
1314 	fp->jited = 0;
1315 
1316 	err = bpf_check_classic(fp->insns, fp->len);
1317 	if (err) {
1318 		__bpf_prog_release(fp);
1319 		return ERR_PTR(err);
1320 	}
1321 
1322 	/* There might be additional checks and transformations
1323 	 * needed on classic filters, f.e. in case of seccomp.
1324 	 */
1325 	if (trans) {
1326 		err = trans(fp->insns, fp->len);
1327 		if (err) {
1328 			__bpf_prog_release(fp);
1329 			return ERR_PTR(err);
1330 		}
1331 	}
1332 
1333 	/* Probe if we can JIT compile the filter and if so, do
1334 	 * the compilation of the filter.
1335 	 */
1336 	bpf_jit_compile(fp);
1337 
1338 	/* JIT compiler couldn't process this filter, so do the
1339 	 * internal BPF translation for the optimized interpreter.
1340 	 */
1341 	if (!fp->jited)
1342 		fp = bpf_migrate_filter(fp);
1343 
1344 	return fp;
1345 }
1346 
1347 /**
1348  *	bpf_prog_create - create an unattached filter
1349  *	@pfp: the unattached filter that is created
1350  *	@fprog: the filter program
1351  *
1352  * Create a filter independent of any socket. We first run some
1353  * sanity checks on it to make sure it does not explode on us later.
1354  * If an error occurs or there is insufficient memory for the filter
1355  * a negative errno code is returned. On success the return is zero.
1356  */
1357 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1358 {
1359 	unsigned int fsize = bpf_classic_proglen(fprog);
1360 	struct bpf_prog *fp;
1361 
1362 	/* Make sure new filter is there and in the right amounts. */
1363 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1364 		return -EINVAL;
1365 
1366 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1367 	if (!fp)
1368 		return -ENOMEM;
1369 
1370 	memcpy(fp->insns, fprog->filter, fsize);
1371 
1372 	fp->len = fprog->len;
1373 	/* Since unattached filters are not copied back to user
1374 	 * space through sk_get_filter(), we do not need to hold
1375 	 * a copy here, and can spare us the work.
1376 	 */
1377 	fp->orig_prog = NULL;
1378 
1379 	/* bpf_prepare_filter() already takes care of freeing
1380 	 * memory in case something goes wrong.
1381 	 */
1382 	fp = bpf_prepare_filter(fp, NULL);
1383 	if (IS_ERR(fp))
1384 		return PTR_ERR(fp);
1385 
1386 	*pfp = fp;
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(bpf_prog_create);
1390 
1391 /**
1392  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1393  *	@pfp: the unattached filter that is created
1394  *	@fprog: the filter program
1395  *	@trans: post-classic verifier transformation handler
1396  *	@save_orig: save classic BPF program
1397  *
1398  * This function effectively does the same as bpf_prog_create(), only
1399  * that it builds up its insns buffer from user space provided buffer.
1400  * It also allows for passing a bpf_aux_classic_check_t handler.
1401  */
1402 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1403 			      bpf_aux_classic_check_t trans, bool save_orig)
1404 {
1405 	unsigned int fsize = bpf_classic_proglen(fprog);
1406 	struct bpf_prog *fp;
1407 	int err;
1408 
1409 	/* Make sure new filter is there and in the right amounts. */
1410 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1411 		return -EINVAL;
1412 
1413 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1414 	if (!fp)
1415 		return -ENOMEM;
1416 
1417 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1418 		__bpf_prog_free(fp);
1419 		return -EFAULT;
1420 	}
1421 
1422 	fp->len = fprog->len;
1423 	fp->orig_prog = NULL;
1424 
1425 	if (save_orig) {
1426 		err = bpf_prog_store_orig_filter(fp, fprog);
1427 		if (err) {
1428 			__bpf_prog_free(fp);
1429 			return -ENOMEM;
1430 		}
1431 	}
1432 
1433 	/* bpf_prepare_filter() already takes care of freeing
1434 	 * memory in case something goes wrong.
1435 	 */
1436 	fp = bpf_prepare_filter(fp, trans);
1437 	if (IS_ERR(fp))
1438 		return PTR_ERR(fp);
1439 
1440 	*pfp = fp;
1441 	return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1444 
1445 void bpf_prog_destroy(struct bpf_prog *fp)
1446 {
1447 	__bpf_prog_release(fp);
1448 }
1449 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1450 
1451 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1452 {
1453 	struct sk_filter *fp, *old_fp;
1454 
1455 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1456 	if (!fp)
1457 		return -ENOMEM;
1458 
1459 	fp->prog = prog;
1460 
1461 	if (!__sk_filter_charge(sk, fp)) {
1462 		kfree(fp);
1463 		return -ENOMEM;
1464 	}
1465 	refcount_set(&fp->refcnt, 1);
1466 
1467 	old_fp = rcu_dereference_protected(sk->sk_filter,
1468 					   lockdep_sock_is_held(sk));
1469 	rcu_assign_pointer(sk->sk_filter, fp);
1470 
1471 	if (old_fp)
1472 		sk_filter_uncharge(sk, old_fp);
1473 
1474 	return 0;
1475 }
1476 
1477 static
1478 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1479 {
1480 	unsigned int fsize = bpf_classic_proglen(fprog);
1481 	struct bpf_prog *prog;
1482 	int err;
1483 
1484 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1485 		return ERR_PTR(-EPERM);
1486 
1487 	/* Make sure new filter is there and in the right amounts. */
1488 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1489 		return ERR_PTR(-EINVAL);
1490 
1491 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1492 	if (!prog)
1493 		return ERR_PTR(-ENOMEM);
1494 
1495 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1496 		__bpf_prog_free(prog);
1497 		return ERR_PTR(-EFAULT);
1498 	}
1499 
1500 	prog->len = fprog->len;
1501 
1502 	err = bpf_prog_store_orig_filter(prog, fprog);
1503 	if (err) {
1504 		__bpf_prog_free(prog);
1505 		return ERR_PTR(-ENOMEM);
1506 	}
1507 
1508 	/* bpf_prepare_filter() already takes care of freeing
1509 	 * memory in case something goes wrong.
1510 	 */
1511 	return bpf_prepare_filter(prog, NULL);
1512 }
1513 
1514 /**
1515  *	sk_attach_filter - attach a socket filter
1516  *	@fprog: the filter program
1517  *	@sk: the socket to use
1518  *
1519  * Attach the user's filter code. We first run some sanity checks on
1520  * it to make sure it does not explode on us later. If an error
1521  * occurs or there is insufficient memory for the filter a negative
1522  * errno code is returned. On success the return is zero.
1523  */
1524 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525 {
1526 	struct bpf_prog *prog = __get_filter(fprog, sk);
1527 	int err;
1528 
1529 	if (IS_ERR(prog))
1530 		return PTR_ERR(prog);
1531 
1532 	err = __sk_attach_prog(prog, sk);
1533 	if (err < 0) {
1534 		__bpf_prog_release(prog);
1535 		return err;
1536 	}
1537 
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(sk_attach_filter);
1541 
1542 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1543 {
1544 	struct bpf_prog *prog = __get_filter(fprog, sk);
1545 	int err;
1546 
1547 	if (IS_ERR(prog))
1548 		return PTR_ERR(prog);
1549 
1550 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1551 		err = -ENOMEM;
1552 	else
1553 		err = reuseport_attach_prog(sk, prog);
1554 
1555 	if (err)
1556 		__bpf_prog_release(prog);
1557 
1558 	return err;
1559 }
1560 
1561 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1562 {
1563 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1564 		return ERR_PTR(-EPERM);
1565 
1566 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1567 }
1568 
1569 int sk_attach_bpf(u32 ufd, struct sock *sk)
1570 {
1571 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1572 	int err;
1573 
1574 	if (IS_ERR(prog))
1575 		return PTR_ERR(prog);
1576 
1577 	err = __sk_attach_prog(prog, sk);
1578 	if (err < 0) {
1579 		bpf_prog_put(prog);
1580 		return err;
1581 	}
1582 
1583 	return 0;
1584 }
1585 
1586 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1587 {
1588 	struct bpf_prog *prog;
1589 	int err;
1590 
1591 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1592 		return -EPERM;
1593 
1594 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1595 	if (PTR_ERR(prog) == -EINVAL)
1596 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1597 	if (IS_ERR(prog))
1598 		return PTR_ERR(prog);
1599 
1600 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1601 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1602 		 * bpf prog (e.g. sockmap).  It depends on the
1603 		 * limitation imposed by bpf_prog_load().
1604 		 * Hence, sysctl_optmem_max is not checked.
1605 		 */
1606 		if ((sk->sk_type != SOCK_STREAM &&
1607 		     sk->sk_type != SOCK_DGRAM) ||
1608 		    (sk->sk_protocol != IPPROTO_UDP &&
1609 		     sk->sk_protocol != IPPROTO_TCP) ||
1610 		    (sk->sk_family != AF_INET &&
1611 		     sk->sk_family != AF_INET6)) {
1612 			err = -ENOTSUPP;
1613 			goto err_prog_put;
1614 		}
1615 	} else {
1616 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1617 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1618 			err = -ENOMEM;
1619 			goto err_prog_put;
1620 		}
1621 	}
1622 
1623 	err = reuseport_attach_prog(sk, prog);
1624 err_prog_put:
1625 	if (err)
1626 		bpf_prog_put(prog);
1627 
1628 	return err;
1629 }
1630 
1631 void sk_reuseport_prog_free(struct bpf_prog *prog)
1632 {
1633 	if (!prog)
1634 		return;
1635 
1636 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1637 		bpf_prog_put(prog);
1638 	else
1639 		bpf_prog_destroy(prog);
1640 }
1641 
1642 struct bpf_scratchpad {
1643 	union {
1644 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1645 		u8     buff[MAX_BPF_STACK];
1646 	};
1647 };
1648 
1649 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1650 
1651 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1652 					  unsigned int write_len)
1653 {
1654 	return skb_ensure_writable(skb, write_len);
1655 }
1656 
1657 static inline int bpf_try_make_writable(struct sk_buff *skb,
1658 					unsigned int write_len)
1659 {
1660 	int err = __bpf_try_make_writable(skb, write_len);
1661 
1662 	bpf_compute_data_pointers(skb);
1663 	return err;
1664 }
1665 
1666 static int bpf_try_make_head_writable(struct sk_buff *skb)
1667 {
1668 	return bpf_try_make_writable(skb, skb_headlen(skb));
1669 }
1670 
1671 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1672 {
1673 	if (skb_at_tc_ingress(skb))
1674 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1675 }
1676 
1677 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1678 {
1679 	if (skb_at_tc_ingress(skb))
1680 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1681 }
1682 
1683 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1684 	   const void *, from, u32, len, u64, flags)
1685 {
1686 	void *ptr;
1687 
1688 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1689 		return -EINVAL;
1690 	if (unlikely(offset > 0xffff))
1691 		return -EFAULT;
1692 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1693 		return -EFAULT;
1694 
1695 	ptr = skb->data + offset;
1696 	if (flags & BPF_F_RECOMPUTE_CSUM)
1697 		__skb_postpull_rcsum(skb, ptr, len, offset);
1698 
1699 	memcpy(ptr, from, len);
1700 
1701 	if (flags & BPF_F_RECOMPUTE_CSUM)
1702 		__skb_postpush_rcsum(skb, ptr, len, offset);
1703 	if (flags & BPF_F_INVALIDATE_HASH)
1704 		skb_clear_hash(skb);
1705 
1706 	return 0;
1707 }
1708 
1709 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1710 	.func		= bpf_skb_store_bytes,
1711 	.gpl_only	= false,
1712 	.ret_type	= RET_INTEGER,
1713 	.arg1_type	= ARG_PTR_TO_CTX,
1714 	.arg2_type	= ARG_ANYTHING,
1715 	.arg3_type	= ARG_PTR_TO_MEM,
1716 	.arg4_type	= ARG_CONST_SIZE,
1717 	.arg5_type	= ARG_ANYTHING,
1718 };
1719 
1720 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1721 	   void *, to, u32, len)
1722 {
1723 	void *ptr;
1724 
1725 	if (unlikely(offset > 0xffff))
1726 		goto err_clear;
1727 
1728 	ptr = skb_header_pointer(skb, offset, len, to);
1729 	if (unlikely(!ptr))
1730 		goto err_clear;
1731 	if (ptr != to)
1732 		memcpy(to, ptr, len);
1733 
1734 	return 0;
1735 err_clear:
1736 	memset(to, 0, len);
1737 	return -EFAULT;
1738 }
1739 
1740 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1741 	.func		= bpf_skb_load_bytes,
1742 	.gpl_only	= false,
1743 	.ret_type	= RET_INTEGER,
1744 	.arg1_type	= ARG_PTR_TO_CTX,
1745 	.arg2_type	= ARG_ANYTHING,
1746 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1747 	.arg4_type	= ARG_CONST_SIZE,
1748 };
1749 
1750 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1751 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1752 	   void *, to, u32, len)
1753 {
1754 	void *ptr;
1755 
1756 	if (unlikely(offset > 0xffff))
1757 		goto err_clear;
1758 
1759 	if (unlikely(!ctx->skb))
1760 		goto err_clear;
1761 
1762 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1763 	if (unlikely(!ptr))
1764 		goto err_clear;
1765 	if (ptr != to)
1766 		memcpy(to, ptr, len);
1767 
1768 	return 0;
1769 err_clear:
1770 	memset(to, 0, len);
1771 	return -EFAULT;
1772 }
1773 
1774 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1775 	.func		= bpf_flow_dissector_load_bytes,
1776 	.gpl_only	= false,
1777 	.ret_type	= RET_INTEGER,
1778 	.arg1_type	= ARG_PTR_TO_CTX,
1779 	.arg2_type	= ARG_ANYTHING,
1780 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1781 	.arg4_type	= ARG_CONST_SIZE,
1782 };
1783 
1784 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1785 	   u32, offset, void *, to, u32, len, u32, start_header)
1786 {
1787 	u8 *end = skb_tail_pointer(skb);
1788 	u8 *start, *ptr;
1789 
1790 	if (unlikely(offset > 0xffff))
1791 		goto err_clear;
1792 
1793 	switch (start_header) {
1794 	case BPF_HDR_START_MAC:
1795 		if (unlikely(!skb_mac_header_was_set(skb)))
1796 			goto err_clear;
1797 		start = skb_mac_header(skb);
1798 		break;
1799 	case BPF_HDR_START_NET:
1800 		start = skb_network_header(skb);
1801 		break;
1802 	default:
1803 		goto err_clear;
1804 	}
1805 
1806 	ptr = start + offset;
1807 
1808 	if (likely(ptr + len <= end)) {
1809 		memcpy(to, ptr, len);
1810 		return 0;
1811 	}
1812 
1813 err_clear:
1814 	memset(to, 0, len);
1815 	return -EFAULT;
1816 }
1817 
1818 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1819 	.func		= bpf_skb_load_bytes_relative,
1820 	.gpl_only	= false,
1821 	.ret_type	= RET_INTEGER,
1822 	.arg1_type	= ARG_PTR_TO_CTX,
1823 	.arg2_type	= ARG_ANYTHING,
1824 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1825 	.arg4_type	= ARG_CONST_SIZE,
1826 	.arg5_type	= ARG_ANYTHING,
1827 };
1828 
1829 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1830 {
1831 	/* Idea is the following: should the needed direct read/write
1832 	 * test fail during runtime, we can pull in more data and redo
1833 	 * again, since implicitly, we invalidate previous checks here.
1834 	 *
1835 	 * Or, since we know how much we need to make read/writeable,
1836 	 * this can be done once at the program beginning for direct
1837 	 * access case. By this we overcome limitations of only current
1838 	 * headroom being accessible.
1839 	 */
1840 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1841 }
1842 
1843 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1844 	.func		= bpf_skb_pull_data,
1845 	.gpl_only	= false,
1846 	.ret_type	= RET_INTEGER,
1847 	.arg1_type	= ARG_PTR_TO_CTX,
1848 	.arg2_type	= ARG_ANYTHING,
1849 };
1850 
1851 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1852 {
1853 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1854 }
1855 
1856 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1857 	.func		= bpf_sk_fullsock,
1858 	.gpl_only	= false,
1859 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1860 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1861 };
1862 
1863 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1864 					   unsigned int write_len)
1865 {
1866 	int err = __bpf_try_make_writable(skb, write_len);
1867 
1868 	bpf_compute_data_end_sk_skb(skb);
1869 	return err;
1870 }
1871 
1872 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1873 {
1874 	/* Idea is the following: should the needed direct read/write
1875 	 * test fail during runtime, we can pull in more data and redo
1876 	 * again, since implicitly, we invalidate previous checks here.
1877 	 *
1878 	 * Or, since we know how much we need to make read/writeable,
1879 	 * this can be done once at the program beginning for direct
1880 	 * access case. By this we overcome limitations of only current
1881 	 * headroom being accessible.
1882 	 */
1883 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1884 }
1885 
1886 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1887 	.func		= sk_skb_pull_data,
1888 	.gpl_only	= false,
1889 	.ret_type	= RET_INTEGER,
1890 	.arg1_type	= ARG_PTR_TO_CTX,
1891 	.arg2_type	= ARG_ANYTHING,
1892 };
1893 
1894 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1895 	   u64, from, u64, to, u64, flags)
1896 {
1897 	__sum16 *ptr;
1898 
1899 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1900 		return -EINVAL;
1901 	if (unlikely(offset > 0xffff || offset & 1))
1902 		return -EFAULT;
1903 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1904 		return -EFAULT;
1905 
1906 	ptr = (__sum16 *)(skb->data + offset);
1907 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1908 	case 0:
1909 		if (unlikely(from != 0))
1910 			return -EINVAL;
1911 
1912 		csum_replace_by_diff(ptr, to);
1913 		break;
1914 	case 2:
1915 		csum_replace2(ptr, from, to);
1916 		break;
1917 	case 4:
1918 		csum_replace4(ptr, from, to);
1919 		break;
1920 	default:
1921 		return -EINVAL;
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1928 	.func		= bpf_l3_csum_replace,
1929 	.gpl_only	= false,
1930 	.ret_type	= RET_INTEGER,
1931 	.arg1_type	= ARG_PTR_TO_CTX,
1932 	.arg2_type	= ARG_ANYTHING,
1933 	.arg3_type	= ARG_ANYTHING,
1934 	.arg4_type	= ARG_ANYTHING,
1935 	.arg5_type	= ARG_ANYTHING,
1936 };
1937 
1938 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1939 	   u64, from, u64, to, u64, flags)
1940 {
1941 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1942 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1943 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1944 	__sum16 *ptr;
1945 
1946 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1947 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1948 		return -EINVAL;
1949 	if (unlikely(offset > 0xffff || offset & 1))
1950 		return -EFAULT;
1951 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1952 		return -EFAULT;
1953 
1954 	ptr = (__sum16 *)(skb->data + offset);
1955 	if (is_mmzero && !do_mforce && !*ptr)
1956 		return 0;
1957 
1958 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1959 	case 0:
1960 		if (unlikely(from != 0))
1961 			return -EINVAL;
1962 
1963 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1964 		break;
1965 	case 2:
1966 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1967 		break;
1968 	case 4:
1969 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1970 		break;
1971 	default:
1972 		return -EINVAL;
1973 	}
1974 
1975 	if (is_mmzero && !*ptr)
1976 		*ptr = CSUM_MANGLED_0;
1977 	return 0;
1978 }
1979 
1980 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1981 	.func		= bpf_l4_csum_replace,
1982 	.gpl_only	= false,
1983 	.ret_type	= RET_INTEGER,
1984 	.arg1_type	= ARG_PTR_TO_CTX,
1985 	.arg2_type	= ARG_ANYTHING,
1986 	.arg3_type	= ARG_ANYTHING,
1987 	.arg4_type	= ARG_ANYTHING,
1988 	.arg5_type	= ARG_ANYTHING,
1989 };
1990 
1991 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1992 	   __be32 *, to, u32, to_size, __wsum, seed)
1993 {
1994 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1995 	u32 diff_size = from_size + to_size;
1996 	int i, j = 0;
1997 
1998 	/* This is quite flexible, some examples:
1999 	 *
2000 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2001 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2002 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2003 	 *
2004 	 * Even for diffing, from_size and to_size don't need to be equal.
2005 	 */
2006 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2007 		     diff_size > sizeof(sp->diff)))
2008 		return -EINVAL;
2009 
2010 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2011 		sp->diff[j] = ~from[i];
2012 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2013 		sp->diff[j] = to[i];
2014 
2015 	return csum_partial(sp->diff, diff_size, seed);
2016 }
2017 
2018 static const struct bpf_func_proto bpf_csum_diff_proto = {
2019 	.func		= bpf_csum_diff,
2020 	.gpl_only	= false,
2021 	.pkt_access	= true,
2022 	.ret_type	= RET_INTEGER,
2023 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
2024 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2025 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
2026 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2027 	.arg5_type	= ARG_ANYTHING,
2028 };
2029 
2030 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2031 {
2032 	/* The interface is to be used in combination with bpf_csum_diff()
2033 	 * for direct packet writes. csum rotation for alignment as well
2034 	 * as emulating csum_sub() can be done from the eBPF program.
2035 	 */
2036 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2037 		return (skb->csum = csum_add(skb->csum, csum));
2038 
2039 	return -ENOTSUPP;
2040 }
2041 
2042 static const struct bpf_func_proto bpf_csum_update_proto = {
2043 	.func		= bpf_csum_update,
2044 	.gpl_only	= false,
2045 	.ret_type	= RET_INTEGER,
2046 	.arg1_type	= ARG_PTR_TO_CTX,
2047 	.arg2_type	= ARG_ANYTHING,
2048 };
2049 
2050 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2051 {
2052 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2053 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2054 	 * is passed as flags, for example.
2055 	 */
2056 	switch (level) {
2057 	case BPF_CSUM_LEVEL_INC:
2058 		__skb_incr_checksum_unnecessary(skb);
2059 		break;
2060 	case BPF_CSUM_LEVEL_DEC:
2061 		__skb_decr_checksum_unnecessary(skb);
2062 		break;
2063 	case BPF_CSUM_LEVEL_RESET:
2064 		__skb_reset_checksum_unnecessary(skb);
2065 		break;
2066 	case BPF_CSUM_LEVEL_QUERY:
2067 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2068 		       skb->csum_level : -EACCES;
2069 	default:
2070 		return -EINVAL;
2071 	}
2072 
2073 	return 0;
2074 }
2075 
2076 static const struct bpf_func_proto bpf_csum_level_proto = {
2077 	.func		= bpf_csum_level,
2078 	.gpl_only	= false,
2079 	.ret_type	= RET_INTEGER,
2080 	.arg1_type	= ARG_PTR_TO_CTX,
2081 	.arg2_type	= ARG_ANYTHING,
2082 };
2083 
2084 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2085 {
2086 	return dev_forward_skb(dev, skb);
2087 }
2088 
2089 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2090 				      struct sk_buff *skb)
2091 {
2092 	int ret = ____dev_forward_skb(dev, skb);
2093 
2094 	if (likely(!ret)) {
2095 		skb->dev = dev;
2096 		ret = netif_rx(skb);
2097 	}
2098 
2099 	return ret;
2100 }
2101 
2102 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2103 {
2104 	int ret;
2105 
2106 	if (dev_xmit_recursion()) {
2107 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2108 		kfree_skb(skb);
2109 		return -ENETDOWN;
2110 	}
2111 
2112 	skb->dev = dev;
2113 	skb->tstamp = 0;
2114 
2115 	dev_xmit_recursion_inc();
2116 	ret = dev_queue_xmit(skb);
2117 	dev_xmit_recursion_dec();
2118 
2119 	return ret;
2120 }
2121 
2122 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2123 				 u32 flags)
2124 {
2125 	unsigned int mlen = skb_network_offset(skb);
2126 
2127 	if (mlen) {
2128 		__skb_pull(skb, mlen);
2129 
2130 		/* At ingress, the mac header has already been pulled once.
2131 		 * At egress, skb_pospull_rcsum has to be done in case that
2132 		 * the skb is originated from ingress (i.e. a forwarded skb)
2133 		 * to ensure that rcsum starts at net header.
2134 		 */
2135 		if (!skb_at_tc_ingress(skb))
2136 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2137 	}
2138 	skb_pop_mac_header(skb);
2139 	skb_reset_mac_len(skb);
2140 	return flags & BPF_F_INGRESS ?
2141 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2142 }
2143 
2144 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2145 				 u32 flags)
2146 {
2147 	/* Verify that a link layer header is carried */
2148 	if (unlikely(skb->mac_header >= skb->network_header)) {
2149 		kfree_skb(skb);
2150 		return -ERANGE;
2151 	}
2152 
2153 	bpf_push_mac_rcsum(skb);
2154 	return flags & BPF_F_INGRESS ?
2155 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2156 }
2157 
2158 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2159 			  u32 flags)
2160 {
2161 	if (dev_is_mac_header_xmit(dev))
2162 		return __bpf_redirect_common(skb, dev, flags);
2163 	else
2164 		return __bpf_redirect_no_mac(skb, dev, flags);
2165 }
2166 
2167 #if IS_ENABLED(CONFIG_IPV6)
2168 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2169 			    struct net_device *dev, struct bpf_nh_params *nh)
2170 {
2171 	u32 hh_len = LL_RESERVED_SPACE(dev);
2172 	const struct in6_addr *nexthop;
2173 	struct dst_entry *dst = NULL;
2174 	struct neighbour *neigh;
2175 
2176 	if (dev_xmit_recursion()) {
2177 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2178 		goto out_drop;
2179 	}
2180 
2181 	skb->dev = dev;
2182 	skb->tstamp = 0;
2183 
2184 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2185 		struct sk_buff *skb2;
2186 
2187 		skb2 = skb_realloc_headroom(skb, hh_len);
2188 		if (unlikely(!skb2)) {
2189 			kfree_skb(skb);
2190 			return -ENOMEM;
2191 		}
2192 		if (skb->sk)
2193 			skb_set_owner_w(skb2, skb->sk);
2194 		consume_skb(skb);
2195 		skb = skb2;
2196 	}
2197 
2198 	rcu_read_lock_bh();
2199 	if (!nh) {
2200 		dst = skb_dst(skb);
2201 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2202 				      &ipv6_hdr(skb)->daddr);
2203 	} else {
2204 		nexthop = &nh->ipv6_nh;
2205 	}
2206 	neigh = ip_neigh_gw6(dev, nexthop);
2207 	if (likely(!IS_ERR(neigh))) {
2208 		int ret;
2209 
2210 		sock_confirm_neigh(skb, neigh);
2211 		dev_xmit_recursion_inc();
2212 		ret = neigh_output(neigh, skb, false);
2213 		dev_xmit_recursion_dec();
2214 		rcu_read_unlock_bh();
2215 		return ret;
2216 	}
2217 	rcu_read_unlock_bh();
2218 	if (dst)
2219 		IP6_INC_STATS(dev_net(dst->dev),
2220 			      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2221 out_drop:
2222 	kfree_skb(skb);
2223 	return -ENETDOWN;
2224 }
2225 
2226 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2227 				   struct bpf_nh_params *nh)
2228 {
2229 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2230 	struct net *net = dev_net(dev);
2231 	int err, ret = NET_XMIT_DROP;
2232 
2233 	if (!nh) {
2234 		struct dst_entry *dst;
2235 		struct flowi6 fl6 = {
2236 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2237 			.flowi6_mark  = skb->mark,
2238 			.flowlabel    = ip6_flowinfo(ip6h),
2239 			.flowi6_oif   = dev->ifindex,
2240 			.flowi6_proto = ip6h->nexthdr,
2241 			.daddr	      = ip6h->daddr,
2242 			.saddr	      = ip6h->saddr,
2243 		};
2244 
2245 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2246 		if (IS_ERR(dst))
2247 			goto out_drop;
2248 
2249 		skb_dst_set(skb, dst);
2250 	} else if (nh->nh_family != AF_INET6) {
2251 		goto out_drop;
2252 	}
2253 
2254 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2255 	if (unlikely(net_xmit_eval(err)))
2256 		dev->stats.tx_errors++;
2257 	else
2258 		ret = NET_XMIT_SUCCESS;
2259 	goto out_xmit;
2260 out_drop:
2261 	dev->stats.tx_errors++;
2262 	kfree_skb(skb);
2263 out_xmit:
2264 	return ret;
2265 }
2266 #else
2267 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2268 				   struct bpf_nh_params *nh)
2269 {
2270 	kfree_skb(skb);
2271 	return NET_XMIT_DROP;
2272 }
2273 #endif /* CONFIG_IPV6 */
2274 
2275 #if IS_ENABLED(CONFIG_INET)
2276 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2277 			    struct net_device *dev, struct bpf_nh_params *nh)
2278 {
2279 	u32 hh_len = LL_RESERVED_SPACE(dev);
2280 	struct neighbour *neigh;
2281 	bool is_v6gw = false;
2282 
2283 	if (dev_xmit_recursion()) {
2284 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2285 		goto out_drop;
2286 	}
2287 
2288 	skb->dev = dev;
2289 	skb->tstamp = 0;
2290 
2291 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2292 		struct sk_buff *skb2;
2293 
2294 		skb2 = skb_realloc_headroom(skb, hh_len);
2295 		if (unlikely(!skb2)) {
2296 			kfree_skb(skb);
2297 			return -ENOMEM;
2298 		}
2299 		if (skb->sk)
2300 			skb_set_owner_w(skb2, skb->sk);
2301 		consume_skb(skb);
2302 		skb = skb2;
2303 	}
2304 
2305 	rcu_read_lock_bh();
2306 	if (!nh) {
2307 		struct dst_entry *dst = skb_dst(skb);
2308 		struct rtable *rt = container_of(dst, struct rtable, dst);
2309 
2310 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2311 	} else if (nh->nh_family == AF_INET6) {
2312 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2313 		is_v6gw = true;
2314 	} else if (nh->nh_family == AF_INET) {
2315 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2316 	} else {
2317 		rcu_read_unlock_bh();
2318 		goto out_drop;
2319 	}
2320 
2321 	if (likely(!IS_ERR(neigh))) {
2322 		int ret;
2323 
2324 		sock_confirm_neigh(skb, neigh);
2325 		dev_xmit_recursion_inc();
2326 		ret = neigh_output(neigh, skb, is_v6gw);
2327 		dev_xmit_recursion_dec();
2328 		rcu_read_unlock_bh();
2329 		return ret;
2330 	}
2331 	rcu_read_unlock_bh();
2332 out_drop:
2333 	kfree_skb(skb);
2334 	return -ENETDOWN;
2335 }
2336 
2337 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2338 				   struct bpf_nh_params *nh)
2339 {
2340 	const struct iphdr *ip4h = ip_hdr(skb);
2341 	struct net *net = dev_net(dev);
2342 	int err, ret = NET_XMIT_DROP;
2343 
2344 	if (!nh) {
2345 		struct flowi4 fl4 = {
2346 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2347 			.flowi4_mark  = skb->mark,
2348 			.flowi4_tos   = RT_TOS(ip4h->tos),
2349 			.flowi4_oif   = dev->ifindex,
2350 			.flowi4_proto = ip4h->protocol,
2351 			.daddr	      = ip4h->daddr,
2352 			.saddr	      = ip4h->saddr,
2353 		};
2354 		struct rtable *rt;
2355 
2356 		rt = ip_route_output_flow(net, &fl4, NULL);
2357 		if (IS_ERR(rt))
2358 			goto out_drop;
2359 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2360 			ip_rt_put(rt);
2361 			goto out_drop;
2362 		}
2363 
2364 		skb_dst_set(skb, &rt->dst);
2365 	}
2366 
2367 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2368 	if (unlikely(net_xmit_eval(err)))
2369 		dev->stats.tx_errors++;
2370 	else
2371 		ret = NET_XMIT_SUCCESS;
2372 	goto out_xmit;
2373 out_drop:
2374 	dev->stats.tx_errors++;
2375 	kfree_skb(skb);
2376 out_xmit:
2377 	return ret;
2378 }
2379 #else
2380 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2381 				   struct bpf_nh_params *nh)
2382 {
2383 	kfree_skb(skb);
2384 	return NET_XMIT_DROP;
2385 }
2386 #endif /* CONFIG_INET */
2387 
2388 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2389 				struct bpf_nh_params *nh)
2390 {
2391 	struct ethhdr *ethh = eth_hdr(skb);
2392 
2393 	if (unlikely(skb->mac_header >= skb->network_header))
2394 		goto out;
2395 	bpf_push_mac_rcsum(skb);
2396 	if (is_multicast_ether_addr(ethh->h_dest))
2397 		goto out;
2398 
2399 	skb_pull(skb, sizeof(*ethh));
2400 	skb_unset_mac_header(skb);
2401 	skb_reset_network_header(skb);
2402 
2403 	if (skb->protocol == htons(ETH_P_IP))
2404 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2405 	else if (skb->protocol == htons(ETH_P_IPV6))
2406 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2407 out:
2408 	kfree_skb(skb);
2409 	return -ENOTSUPP;
2410 }
2411 
2412 /* Internal, non-exposed redirect flags. */
2413 enum {
2414 	BPF_F_NEIGH	= (1ULL << 1),
2415 	BPF_F_PEER	= (1ULL << 2),
2416 	BPF_F_NEXTHOP	= (1ULL << 3),
2417 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2418 };
2419 
2420 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2421 {
2422 	struct net_device *dev;
2423 	struct sk_buff *clone;
2424 	int ret;
2425 
2426 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2427 		return -EINVAL;
2428 
2429 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2430 	if (unlikely(!dev))
2431 		return -EINVAL;
2432 
2433 	clone = skb_clone(skb, GFP_ATOMIC);
2434 	if (unlikely(!clone))
2435 		return -ENOMEM;
2436 
2437 	/* For direct write, we need to keep the invariant that the skbs
2438 	 * we're dealing with need to be uncloned. Should uncloning fail
2439 	 * here, we need to free the just generated clone to unclone once
2440 	 * again.
2441 	 */
2442 	ret = bpf_try_make_head_writable(skb);
2443 	if (unlikely(ret)) {
2444 		kfree_skb(clone);
2445 		return -ENOMEM;
2446 	}
2447 
2448 	return __bpf_redirect(clone, dev, flags);
2449 }
2450 
2451 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2452 	.func           = bpf_clone_redirect,
2453 	.gpl_only       = false,
2454 	.ret_type       = RET_INTEGER,
2455 	.arg1_type      = ARG_PTR_TO_CTX,
2456 	.arg2_type      = ARG_ANYTHING,
2457 	.arg3_type      = ARG_ANYTHING,
2458 };
2459 
2460 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2461 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2462 
2463 int skb_do_redirect(struct sk_buff *skb)
2464 {
2465 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2466 	struct net *net = dev_net(skb->dev);
2467 	struct net_device *dev;
2468 	u32 flags = ri->flags;
2469 
2470 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2471 	ri->tgt_index = 0;
2472 	ri->flags = 0;
2473 	if (unlikely(!dev))
2474 		goto out_drop;
2475 	if (flags & BPF_F_PEER) {
2476 		const struct net_device_ops *ops = dev->netdev_ops;
2477 
2478 		if (unlikely(!ops->ndo_get_peer_dev ||
2479 			     !skb_at_tc_ingress(skb)))
2480 			goto out_drop;
2481 		dev = ops->ndo_get_peer_dev(dev);
2482 		if (unlikely(!dev ||
2483 			     !is_skb_forwardable(dev, skb) ||
2484 			     net_eq(net, dev_net(dev))))
2485 			goto out_drop;
2486 		skb->dev = dev;
2487 		return -EAGAIN;
2488 	}
2489 	return flags & BPF_F_NEIGH ?
2490 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2491 				    &ri->nh : NULL) :
2492 	       __bpf_redirect(skb, dev, flags);
2493 out_drop:
2494 	kfree_skb(skb);
2495 	return -EINVAL;
2496 }
2497 
2498 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2499 {
2500 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2501 
2502 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2503 		return TC_ACT_SHOT;
2504 
2505 	ri->flags = flags;
2506 	ri->tgt_index = ifindex;
2507 
2508 	return TC_ACT_REDIRECT;
2509 }
2510 
2511 static const struct bpf_func_proto bpf_redirect_proto = {
2512 	.func           = bpf_redirect,
2513 	.gpl_only       = false,
2514 	.ret_type       = RET_INTEGER,
2515 	.arg1_type      = ARG_ANYTHING,
2516 	.arg2_type      = ARG_ANYTHING,
2517 };
2518 
2519 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2520 {
2521 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2522 
2523 	if (unlikely(flags))
2524 		return TC_ACT_SHOT;
2525 
2526 	ri->flags = BPF_F_PEER;
2527 	ri->tgt_index = ifindex;
2528 
2529 	return TC_ACT_REDIRECT;
2530 }
2531 
2532 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2533 	.func           = bpf_redirect_peer,
2534 	.gpl_only       = false,
2535 	.ret_type       = RET_INTEGER,
2536 	.arg1_type      = ARG_ANYTHING,
2537 	.arg2_type      = ARG_ANYTHING,
2538 };
2539 
2540 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2541 	   int, plen, u64, flags)
2542 {
2543 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2544 
2545 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2546 		return TC_ACT_SHOT;
2547 
2548 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2549 	ri->tgt_index = ifindex;
2550 
2551 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2552 	if (plen)
2553 		memcpy(&ri->nh, params, sizeof(ri->nh));
2554 
2555 	return TC_ACT_REDIRECT;
2556 }
2557 
2558 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2559 	.func		= bpf_redirect_neigh,
2560 	.gpl_only	= false,
2561 	.ret_type	= RET_INTEGER,
2562 	.arg1_type	= ARG_ANYTHING,
2563 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
2564 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2565 	.arg4_type	= ARG_ANYTHING,
2566 };
2567 
2568 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2569 {
2570 	msg->apply_bytes = bytes;
2571 	return 0;
2572 }
2573 
2574 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2575 	.func           = bpf_msg_apply_bytes,
2576 	.gpl_only       = false,
2577 	.ret_type       = RET_INTEGER,
2578 	.arg1_type	= ARG_PTR_TO_CTX,
2579 	.arg2_type      = ARG_ANYTHING,
2580 };
2581 
2582 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2583 {
2584 	msg->cork_bytes = bytes;
2585 	return 0;
2586 }
2587 
2588 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2589 	.func           = bpf_msg_cork_bytes,
2590 	.gpl_only       = false,
2591 	.ret_type       = RET_INTEGER,
2592 	.arg1_type	= ARG_PTR_TO_CTX,
2593 	.arg2_type      = ARG_ANYTHING,
2594 };
2595 
2596 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2597 	   u32, end, u64, flags)
2598 {
2599 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2600 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2601 	struct scatterlist *sge;
2602 	u8 *raw, *to, *from;
2603 	struct page *page;
2604 
2605 	if (unlikely(flags || end <= start))
2606 		return -EINVAL;
2607 
2608 	/* First find the starting scatterlist element */
2609 	i = msg->sg.start;
2610 	do {
2611 		offset += len;
2612 		len = sk_msg_elem(msg, i)->length;
2613 		if (start < offset + len)
2614 			break;
2615 		sk_msg_iter_var_next(i);
2616 	} while (i != msg->sg.end);
2617 
2618 	if (unlikely(start >= offset + len))
2619 		return -EINVAL;
2620 
2621 	first_sge = i;
2622 	/* The start may point into the sg element so we need to also
2623 	 * account for the headroom.
2624 	 */
2625 	bytes_sg_total = start - offset + bytes;
2626 	if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2627 		goto out;
2628 
2629 	/* At this point we need to linearize multiple scatterlist
2630 	 * elements or a single shared page. Either way we need to
2631 	 * copy into a linear buffer exclusively owned by BPF. Then
2632 	 * place the buffer in the scatterlist and fixup the original
2633 	 * entries by removing the entries now in the linear buffer
2634 	 * and shifting the remaining entries. For now we do not try
2635 	 * to copy partial entries to avoid complexity of running out
2636 	 * of sg_entry slots. The downside is reading a single byte
2637 	 * will copy the entire sg entry.
2638 	 */
2639 	do {
2640 		copy += sk_msg_elem(msg, i)->length;
2641 		sk_msg_iter_var_next(i);
2642 		if (bytes_sg_total <= copy)
2643 			break;
2644 	} while (i != msg->sg.end);
2645 	last_sge = i;
2646 
2647 	if (unlikely(bytes_sg_total > copy))
2648 		return -EINVAL;
2649 
2650 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2651 			   get_order(copy));
2652 	if (unlikely(!page))
2653 		return -ENOMEM;
2654 
2655 	raw = page_address(page);
2656 	i = first_sge;
2657 	do {
2658 		sge = sk_msg_elem(msg, i);
2659 		from = sg_virt(sge);
2660 		len = sge->length;
2661 		to = raw + poffset;
2662 
2663 		memcpy(to, from, len);
2664 		poffset += len;
2665 		sge->length = 0;
2666 		put_page(sg_page(sge));
2667 
2668 		sk_msg_iter_var_next(i);
2669 	} while (i != last_sge);
2670 
2671 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2672 
2673 	/* To repair sg ring we need to shift entries. If we only
2674 	 * had a single entry though we can just replace it and
2675 	 * be done. Otherwise walk the ring and shift the entries.
2676 	 */
2677 	WARN_ON_ONCE(last_sge == first_sge);
2678 	shift = last_sge > first_sge ?
2679 		last_sge - first_sge - 1 :
2680 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2681 	if (!shift)
2682 		goto out;
2683 
2684 	i = first_sge;
2685 	sk_msg_iter_var_next(i);
2686 	do {
2687 		u32 move_from;
2688 
2689 		if (i + shift >= NR_MSG_FRAG_IDS)
2690 			move_from = i + shift - NR_MSG_FRAG_IDS;
2691 		else
2692 			move_from = i + shift;
2693 		if (move_from == msg->sg.end)
2694 			break;
2695 
2696 		msg->sg.data[i] = msg->sg.data[move_from];
2697 		msg->sg.data[move_from].length = 0;
2698 		msg->sg.data[move_from].page_link = 0;
2699 		msg->sg.data[move_from].offset = 0;
2700 		sk_msg_iter_var_next(i);
2701 	} while (1);
2702 
2703 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2704 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2705 		      msg->sg.end - shift;
2706 out:
2707 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2708 	msg->data_end = msg->data + bytes;
2709 	return 0;
2710 }
2711 
2712 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2713 	.func		= bpf_msg_pull_data,
2714 	.gpl_only	= false,
2715 	.ret_type	= RET_INTEGER,
2716 	.arg1_type	= ARG_PTR_TO_CTX,
2717 	.arg2_type	= ARG_ANYTHING,
2718 	.arg3_type	= ARG_ANYTHING,
2719 	.arg4_type	= ARG_ANYTHING,
2720 };
2721 
2722 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2723 	   u32, len, u64, flags)
2724 {
2725 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2726 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2727 	u8 *raw, *to, *from;
2728 	struct page *page;
2729 
2730 	if (unlikely(flags))
2731 		return -EINVAL;
2732 
2733 	/* First find the starting scatterlist element */
2734 	i = msg->sg.start;
2735 	do {
2736 		offset += l;
2737 		l = sk_msg_elem(msg, i)->length;
2738 
2739 		if (start < offset + l)
2740 			break;
2741 		sk_msg_iter_var_next(i);
2742 	} while (i != msg->sg.end);
2743 
2744 	if (start >= offset + l)
2745 		return -EINVAL;
2746 
2747 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2748 
2749 	/* If no space available will fallback to copy, we need at
2750 	 * least one scatterlist elem available to push data into
2751 	 * when start aligns to the beginning of an element or two
2752 	 * when it falls inside an element. We handle the start equals
2753 	 * offset case because its the common case for inserting a
2754 	 * header.
2755 	 */
2756 	if (!space || (space == 1 && start != offset))
2757 		copy = msg->sg.data[i].length;
2758 
2759 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2760 			   get_order(copy + len));
2761 	if (unlikely(!page))
2762 		return -ENOMEM;
2763 
2764 	if (copy) {
2765 		int front, back;
2766 
2767 		raw = page_address(page);
2768 
2769 		psge = sk_msg_elem(msg, i);
2770 		front = start - offset;
2771 		back = psge->length - front;
2772 		from = sg_virt(psge);
2773 
2774 		if (front)
2775 			memcpy(raw, from, front);
2776 
2777 		if (back) {
2778 			from += front;
2779 			to = raw + front + len;
2780 
2781 			memcpy(to, from, back);
2782 		}
2783 
2784 		put_page(sg_page(psge));
2785 	} else if (start - offset) {
2786 		psge = sk_msg_elem(msg, i);
2787 		rsge = sk_msg_elem_cpy(msg, i);
2788 
2789 		psge->length = start - offset;
2790 		rsge.length -= psge->length;
2791 		rsge.offset += start;
2792 
2793 		sk_msg_iter_var_next(i);
2794 		sg_unmark_end(psge);
2795 		sg_unmark_end(&rsge);
2796 		sk_msg_iter_next(msg, end);
2797 	}
2798 
2799 	/* Slot(s) to place newly allocated data */
2800 	new = i;
2801 
2802 	/* Shift one or two slots as needed */
2803 	if (!copy) {
2804 		sge = sk_msg_elem_cpy(msg, i);
2805 
2806 		sk_msg_iter_var_next(i);
2807 		sg_unmark_end(&sge);
2808 		sk_msg_iter_next(msg, end);
2809 
2810 		nsge = sk_msg_elem_cpy(msg, i);
2811 		if (rsge.length) {
2812 			sk_msg_iter_var_next(i);
2813 			nnsge = sk_msg_elem_cpy(msg, i);
2814 		}
2815 
2816 		while (i != msg->sg.end) {
2817 			msg->sg.data[i] = sge;
2818 			sge = nsge;
2819 			sk_msg_iter_var_next(i);
2820 			if (rsge.length) {
2821 				nsge = nnsge;
2822 				nnsge = sk_msg_elem_cpy(msg, i);
2823 			} else {
2824 				nsge = sk_msg_elem_cpy(msg, i);
2825 			}
2826 		}
2827 	}
2828 
2829 	/* Place newly allocated data buffer */
2830 	sk_mem_charge(msg->sk, len);
2831 	msg->sg.size += len;
2832 	__clear_bit(new, &msg->sg.copy);
2833 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2834 	if (rsge.length) {
2835 		get_page(sg_page(&rsge));
2836 		sk_msg_iter_var_next(new);
2837 		msg->sg.data[new] = rsge;
2838 	}
2839 
2840 	sk_msg_compute_data_pointers(msg);
2841 	return 0;
2842 }
2843 
2844 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2845 	.func		= bpf_msg_push_data,
2846 	.gpl_only	= false,
2847 	.ret_type	= RET_INTEGER,
2848 	.arg1_type	= ARG_PTR_TO_CTX,
2849 	.arg2_type	= ARG_ANYTHING,
2850 	.arg3_type	= ARG_ANYTHING,
2851 	.arg4_type	= ARG_ANYTHING,
2852 };
2853 
2854 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2855 {
2856 	int prev;
2857 
2858 	do {
2859 		prev = i;
2860 		sk_msg_iter_var_next(i);
2861 		msg->sg.data[prev] = msg->sg.data[i];
2862 	} while (i != msg->sg.end);
2863 
2864 	sk_msg_iter_prev(msg, end);
2865 }
2866 
2867 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2868 {
2869 	struct scatterlist tmp, sge;
2870 
2871 	sk_msg_iter_next(msg, end);
2872 	sge = sk_msg_elem_cpy(msg, i);
2873 	sk_msg_iter_var_next(i);
2874 	tmp = sk_msg_elem_cpy(msg, i);
2875 
2876 	while (i != msg->sg.end) {
2877 		msg->sg.data[i] = sge;
2878 		sk_msg_iter_var_next(i);
2879 		sge = tmp;
2880 		tmp = sk_msg_elem_cpy(msg, i);
2881 	}
2882 }
2883 
2884 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2885 	   u32, len, u64, flags)
2886 {
2887 	u32 i = 0, l = 0, space, offset = 0;
2888 	u64 last = start + len;
2889 	int pop;
2890 
2891 	if (unlikely(flags))
2892 		return -EINVAL;
2893 
2894 	/* First find the starting scatterlist element */
2895 	i = msg->sg.start;
2896 	do {
2897 		offset += l;
2898 		l = sk_msg_elem(msg, i)->length;
2899 
2900 		if (start < offset + l)
2901 			break;
2902 		sk_msg_iter_var_next(i);
2903 	} while (i != msg->sg.end);
2904 
2905 	/* Bounds checks: start and pop must be inside message */
2906 	if (start >= offset + l || last >= msg->sg.size)
2907 		return -EINVAL;
2908 
2909 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2910 
2911 	pop = len;
2912 	/* --------------| offset
2913 	 * -| start      |-------- len -------|
2914 	 *
2915 	 *  |----- a ----|-------- pop -------|----- b ----|
2916 	 *  |______________________________________________| length
2917 	 *
2918 	 *
2919 	 * a:   region at front of scatter element to save
2920 	 * b:   region at back of scatter element to save when length > A + pop
2921 	 * pop: region to pop from element, same as input 'pop' here will be
2922 	 *      decremented below per iteration.
2923 	 *
2924 	 * Two top-level cases to handle when start != offset, first B is non
2925 	 * zero and second B is zero corresponding to when a pop includes more
2926 	 * than one element.
2927 	 *
2928 	 * Then if B is non-zero AND there is no space allocate space and
2929 	 * compact A, B regions into page. If there is space shift ring to
2930 	 * the rigth free'ing the next element in ring to place B, leaving
2931 	 * A untouched except to reduce length.
2932 	 */
2933 	if (start != offset) {
2934 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2935 		int a = start;
2936 		int b = sge->length - pop - a;
2937 
2938 		sk_msg_iter_var_next(i);
2939 
2940 		if (pop < sge->length - a) {
2941 			if (space) {
2942 				sge->length = a;
2943 				sk_msg_shift_right(msg, i);
2944 				nsge = sk_msg_elem(msg, i);
2945 				get_page(sg_page(sge));
2946 				sg_set_page(nsge,
2947 					    sg_page(sge),
2948 					    b, sge->offset + pop + a);
2949 			} else {
2950 				struct page *page, *orig;
2951 				u8 *to, *from;
2952 
2953 				page = alloc_pages(__GFP_NOWARN |
2954 						   __GFP_COMP   | GFP_ATOMIC,
2955 						   get_order(a + b));
2956 				if (unlikely(!page))
2957 					return -ENOMEM;
2958 
2959 				sge->length = a;
2960 				orig = sg_page(sge);
2961 				from = sg_virt(sge);
2962 				to = page_address(page);
2963 				memcpy(to, from, a);
2964 				memcpy(to + a, from + a + pop, b);
2965 				sg_set_page(sge, page, a + b, 0);
2966 				put_page(orig);
2967 			}
2968 			pop = 0;
2969 		} else if (pop >= sge->length - a) {
2970 			pop -= (sge->length - a);
2971 			sge->length = a;
2972 		}
2973 	}
2974 
2975 	/* From above the current layout _must_ be as follows,
2976 	 *
2977 	 * -| offset
2978 	 * -| start
2979 	 *
2980 	 *  |---- pop ---|---------------- b ------------|
2981 	 *  |____________________________________________| length
2982 	 *
2983 	 * Offset and start of the current msg elem are equal because in the
2984 	 * previous case we handled offset != start and either consumed the
2985 	 * entire element and advanced to the next element OR pop == 0.
2986 	 *
2987 	 * Two cases to handle here are first pop is less than the length
2988 	 * leaving some remainder b above. Simply adjust the element's layout
2989 	 * in this case. Or pop >= length of the element so that b = 0. In this
2990 	 * case advance to next element decrementing pop.
2991 	 */
2992 	while (pop) {
2993 		struct scatterlist *sge = sk_msg_elem(msg, i);
2994 
2995 		if (pop < sge->length) {
2996 			sge->length -= pop;
2997 			sge->offset += pop;
2998 			pop = 0;
2999 		} else {
3000 			pop -= sge->length;
3001 			sk_msg_shift_left(msg, i);
3002 		}
3003 		sk_msg_iter_var_next(i);
3004 	}
3005 
3006 	sk_mem_uncharge(msg->sk, len - pop);
3007 	msg->sg.size -= (len - pop);
3008 	sk_msg_compute_data_pointers(msg);
3009 	return 0;
3010 }
3011 
3012 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3013 	.func		= bpf_msg_pop_data,
3014 	.gpl_only	= false,
3015 	.ret_type	= RET_INTEGER,
3016 	.arg1_type	= ARG_PTR_TO_CTX,
3017 	.arg2_type	= ARG_ANYTHING,
3018 	.arg3_type	= ARG_ANYTHING,
3019 	.arg4_type	= ARG_ANYTHING,
3020 };
3021 
3022 #ifdef CONFIG_CGROUP_NET_CLASSID
3023 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3024 {
3025 	return __task_get_classid(current);
3026 }
3027 
3028 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3029 	.func		= bpf_get_cgroup_classid_curr,
3030 	.gpl_only	= false,
3031 	.ret_type	= RET_INTEGER,
3032 };
3033 
3034 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3035 {
3036 	struct sock *sk = skb_to_full_sk(skb);
3037 
3038 	if (!sk || !sk_fullsock(sk))
3039 		return 0;
3040 
3041 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3042 }
3043 
3044 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3045 	.func		= bpf_skb_cgroup_classid,
3046 	.gpl_only	= false,
3047 	.ret_type	= RET_INTEGER,
3048 	.arg1_type	= ARG_PTR_TO_CTX,
3049 };
3050 #endif
3051 
3052 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3053 {
3054 	return task_get_classid(skb);
3055 }
3056 
3057 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3058 	.func           = bpf_get_cgroup_classid,
3059 	.gpl_only       = false,
3060 	.ret_type       = RET_INTEGER,
3061 	.arg1_type      = ARG_PTR_TO_CTX,
3062 };
3063 
3064 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3065 {
3066 	return dst_tclassid(skb);
3067 }
3068 
3069 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3070 	.func           = bpf_get_route_realm,
3071 	.gpl_only       = false,
3072 	.ret_type       = RET_INTEGER,
3073 	.arg1_type      = ARG_PTR_TO_CTX,
3074 };
3075 
3076 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3077 {
3078 	/* If skb_clear_hash() was called due to mangling, we can
3079 	 * trigger SW recalculation here. Later access to hash
3080 	 * can then use the inline skb->hash via context directly
3081 	 * instead of calling this helper again.
3082 	 */
3083 	return skb_get_hash(skb);
3084 }
3085 
3086 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3087 	.func		= bpf_get_hash_recalc,
3088 	.gpl_only	= false,
3089 	.ret_type	= RET_INTEGER,
3090 	.arg1_type	= ARG_PTR_TO_CTX,
3091 };
3092 
3093 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3094 {
3095 	/* After all direct packet write, this can be used once for
3096 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3097 	 */
3098 	skb_clear_hash(skb);
3099 	return 0;
3100 }
3101 
3102 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3103 	.func		= bpf_set_hash_invalid,
3104 	.gpl_only	= false,
3105 	.ret_type	= RET_INTEGER,
3106 	.arg1_type	= ARG_PTR_TO_CTX,
3107 };
3108 
3109 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3110 {
3111 	/* Set user specified hash as L4(+), so that it gets returned
3112 	 * on skb_get_hash() call unless BPF prog later on triggers a
3113 	 * skb_clear_hash().
3114 	 */
3115 	__skb_set_sw_hash(skb, hash, true);
3116 	return 0;
3117 }
3118 
3119 static const struct bpf_func_proto bpf_set_hash_proto = {
3120 	.func		= bpf_set_hash,
3121 	.gpl_only	= false,
3122 	.ret_type	= RET_INTEGER,
3123 	.arg1_type	= ARG_PTR_TO_CTX,
3124 	.arg2_type	= ARG_ANYTHING,
3125 };
3126 
3127 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3128 	   u16, vlan_tci)
3129 {
3130 	int ret;
3131 
3132 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3133 		     vlan_proto != htons(ETH_P_8021AD)))
3134 		vlan_proto = htons(ETH_P_8021Q);
3135 
3136 	bpf_push_mac_rcsum(skb);
3137 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3138 	bpf_pull_mac_rcsum(skb);
3139 
3140 	bpf_compute_data_pointers(skb);
3141 	return ret;
3142 }
3143 
3144 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3145 	.func           = bpf_skb_vlan_push,
3146 	.gpl_only       = false,
3147 	.ret_type       = RET_INTEGER,
3148 	.arg1_type      = ARG_PTR_TO_CTX,
3149 	.arg2_type      = ARG_ANYTHING,
3150 	.arg3_type      = ARG_ANYTHING,
3151 };
3152 
3153 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3154 {
3155 	int ret;
3156 
3157 	bpf_push_mac_rcsum(skb);
3158 	ret = skb_vlan_pop(skb);
3159 	bpf_pull_mac_rcsum(skb);
3160 
3161 	bpf_compute_data_pointers(skb);
3162 	return ret;
3163 }
3164 
3165 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3166 	.func           = bpf_skb_vlan_pop,
3167 	.gpl_only       = false,
3168 	.ret_type       = RET_INTEGER,
3169 	.arg1_type      = ARG_PTR_TO_CTX,
3170 };
3171 
3172 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3173 {
3174 	/* Caller already did skb_cow() with len as headroom,
3175 	 * so no need to do it here.
3176 	 */
3177 	skb_push(skb, len);
3178 	memmove(skb->data, skb->data + len, off);
3179 	memset(skb->data + off, 0, len);
3180 
3181 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3182 	 * needed here as it does not change the skb->csum
3183 	 * result for checksum complete when summing over
3184 	 * zeroed blocks.
3185 	 */
3186 	return 0;
3187 }
3188 
3189 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3190 {
3191 	/* skb_ensure_writable() is not needed here, as we're
3192 	 * already working on an uncloned skb.
3193 	 */
3194 	if (unlikely(!pskb_may_pull(skb, off + len)))
3195 		return -ENOMEM;
3196 
3197 	skb_postpull_rcsum(skb, skb->data + off, len);
3198 	memmove(skb->data + len, skb->data, off);
3199 	__skb_pull(skb, len);
3200 
3201 	return 0;
3202 }
3203 
3204 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3205 {
3206 	bool trans_same = skb->transport_header == skb->network_header;
3207 	int ret;
3208 
3209 	/* There's no need for __skb_push()/__skb_pull() pair to
3210 	 * get to the start of the mac header as we're guaranteed
3211 	 * to always start from here under eBPF.
3212 	 */
3213 	ret = bpf_skb_generic_push(skb, off, len);
3214 	if (likely(!ret)) {
3215 		skb->mac_header -= len;
3216 		skb->network_header -= len;
3217 		if (trans_same)
3218 			skb->transport_header = skb->network_header;
3219 	}
3220 
3221 	return ret;
3222 }
3223 
3224 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3225 {
3226 	bool trans_same = skb->transport_header == skb->network_header;
3227 	int ret;
3228 
3229 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3230 	ret = bpf_skb_generic_pop(skb, off, len);
3231 	if (likely(!ret)) {
3232 		skb->mac_header += len;
3233 		skb->network_header += len;
3234 		if (trans_same)
3235 			skb->transport_header = skb->network_header;
3236 	}
3237 
3238 	return ret;
3239 }
3240 
3241 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3242 {
3243 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3244 	u32 off = skb_mac_header_len(skb);
3245 	int ret;
3246 
3247 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3248 		return -ENOTSUPP;
3249 
3250 	ret = skb_cow(skb, len_diff);
3251 	if (unlikely(ret < 0))
3252 		return ret;
3253 
3254 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3255 	if (unlikely(ret < 0))
3256 		return ret;
3257 
3258 	if (skb_is_gso(skb)) {
3259 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3260 
3261 		/* SKB_GSO_TCPV4 needs to be changed into
3262 		 * SKB_GSO_TCPV6.
3263 		 */
3264 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3265 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3266 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3267 		}
3268 
3269 		/* Due to IPv6 header, MSS needs to be downgraded. */
3270 		skb_decrease_gso_size(shinfo, len_diff);
3271 		/* Header must be checked, and gso_segs recomputed. */
3272 		shinfo->gso_type |= SKB_GSO_DODGY;
3273 		shinfo->gso_segs = 0;
3274 	}
3275 
3276 	skb->protocol = htons(ETH_P_IPV6);
3277 	skb_clear_hash(skb);
3278 
3279 	return 0;
3280 }
3281 
3282 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3283 {
3284 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3285 	u32 off = skb_mac_header_len(skb);
3286 	int ret;
3287 
3288 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3289 		return -ENOTSUPP;
3290 
3291 	ret = skb_unclone(skb, GFP_ATOMIC);
3292 	if (unlikely(ret < 0))
3293 		return ret;
3294 
3295 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3296 	if (unlikely(ret < 0))
3297 		return ret;
3298 
3299 	if (skb_is_gso(skb)) {
3300 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3301 
3302 		/* SKB_GSO_TCPV6 needs to be changed into
3303 		 * SKB_GSO_TCPV4.
3304 		 */
3305 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3306 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3307 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3308 		}
3309 
3310 		/* Due to IPv4 header, MSS can be upgraded. */
3311 		skb_increase_gso_size(shinfo, len_diff);
3312 		/* Header must be checked, and gso_segs recomputed. */
3313 		shinfo->gso_type |= SKB_GSO_DODGY;
3314 		shinfo->gso_segs = 0;
3315 	}
3316 
3317 	skb->protocol = htons(ETH_P_IP);
3318 	skb_clear_hash(skb);
3319 
3320 	return 0;
3321 }
3322 
3323 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3324 {
3325 	__be16 from_proto = skb->protocol;
3326 
3327 	if (from_proto == htons(ETH_P_IP) &&
3328 	      to_proto == htons(ETH_P_IPV6))
3329 		return bpf_skb_proto_4_to_6(skb);
3330 
3331 	if (from_proto == htons(ETH_P_IPV6) &&
3332 	      to_proto == htons(ETH_P_IP))
3333 		return bpf_skb_proto_6_to_4(skb);
3334 
3335 	return -ENOTSUPP;
3336 }
3337 
3338 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3339 	   u64, flags)
3340 {
3341 	int ret;
3342 
3343 	if (unlikely(flags))
3344 		return -EINVAL;
3345 
3346 	/* General idea is that this helper does the basic groundwork
3347 	 * needed for changing the protocol, and eBPF program fills the
3348 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3349 	 * and other helpers, rather than passing a raw buffer here.
3350 	 *
3351 	 * The rationale is to keep this minimal and without a need to
3352 	 * deal with raw packet data. F.e. even if we would pass buffers
3353 	 * here, the program still needs to call the bpf_lX_csum_replace()
3354 	 * helpers anyway. Plus, this way we keep also separation of
3355 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3356 	 * care of stores.
3357 	 *
3358 	 * Currently, additional options and extension header space are
3359 	 * not supported, but flags register is reserved so we can adapt
3360 	 * that. For offloads, we mark packet as dodgy, so that headers
3361 	 * need to be verified first.
3362 	 */
3363 	ret = bpf_skb_proto_xlat(skb, proto);
3364 	bpf_compute_data_pointers(skb);
3365 	return ret;
3366 }
3367 
3368 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3369 	.func		= bpf_skb_change_proto,
3370 	.gpl_only	= false,
3371 	.ret_type	= RET_INTEGER,
3372 	.arg1_type	= ARG_PTR_TO_CTX,
3373 	.arg2_type	= ARG_ANYTHING,
3374 	.arg3_type	= ARG_ANYTHING,
3375 };
3376 
3377 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3378 {
3379 	/* We only allow a restricted subset to be changed for now. */
3380 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3381 		     !skb_pkt_type_ok(pkt_type)))
3382 		return -EINVAL;
3383 
3384 	skb->pkt_type = pkt_type;
3385 	return 0;
3386 }
3387 
3388 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3389 	.func		= bpf_skb_change_type,
3390 	.gpl_only	= false,
3391 	.ret_type	= RET_INTEGER,
3392 	.arg1_type	= ARG_PTR_TO_CTX,
3393 	.arg2_type	= ARG_ANYTHING,
3394 };
3395 
3396 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3397 {
3398 	switch (skb->protocol) {
3399 	case htons(ETH_P_IP):
3400 		return sizeof(struct iphdr);
3401 	case htons(ETH_P_IPV6):
3402 		return sizeof(struct ipv6hdr);
3403 	default:
3404 		return ~0U;
3405 	}
3406 }
3407 
3408 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3409 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3410 
3411 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3412 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3413 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3414 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3415 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3416 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3417 
3418 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3419 			    u64 flags)
3420 {
3421 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3422 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3423 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3424 	unsigned int gso_type = SKB_GSO_DODGY;
3425 	int ret;
3426 
3427 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3428 		/* udp gso_size delineates datagrams, only allow if fixed */
3429 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3430 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3431 			return -ENOTSUPP;
3432 	}
3433 
3434 	ret = skb_cow_head(skb, len_diff);
3435 	if (unlikely(ret < 0))
3436 		return ret;
3437 
3438 	if (encap) {
3439 		if (skb->protocol != htons(ETH_P_IP) &&
3440 		    skb->protocol != htons(ETH_P_IPV6))
3441 			return -ENOTSUPP;
3442 
3443 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3444 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3445 			return -EINVAL;
3446 
3447 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3448 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3449 			return -EINVAL;
3450 
3451 		if (skb->encapsulation)
3452 			return -EALREADY;
3453 
3454 		mac_len = skb->network_header - skb->mac_header;
3455 		inner_net = skb->network_header;
3456 		if (inner_mac_len > len_diff)
3457 			return -EINVAL;
3458 		inner_trans = skb->transport_header;
3459 	}
3460 
3461 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3462 	if (unlikely(ret < 0))
3463 		return ret;
3464 
3465 	if (encap) {
3466 		skb->inner_mac_header = inner_net - inner_mac_len;
3467 		skb->inner_network_header = inner_net;
3468 		skb->inner_transport_header = inner_trans;
3469 		skb_set_inner_protocol(skb, skb->protocol);
3470 
3471 		skb->encapsulation = 1;
3472 		skb_set_network_header(skb, mac_len);
3473 
3474 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3475 			gso_type |= SKB_GSO_UDP_TUNNEL;
3476 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3477 			gso_type |= SKB_GSO_GRE;
3478 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3479 			gso_type |= SKB_GSO_IPXIP6;
3480 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3481 			gso_type |= SKB_GSO_IPXIP4;
3482 
3483 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3484 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3485 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3486 					sizeof(struct ipv6hdr) :
3487 					sizeof(struct iphdr);
3488 
3489 			skb_set_transport_header(skb, mac_len + nh_len);
3490 		}
3491 
3492 		/* Match skb->protocol to new outer l3 protocol */
3493 		if (skb->protocol == htons(ETH_P_IP) &&
3494 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3495 			skb->protocol = htons(ETH_P_IPV6);
3496 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3497 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3498 			skb->protocol = htons(ETH_P_IP);
3499 	}
3500 
3501 	if (skb_is_gso(skb)) {
3502 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3503 
3504 		/* Due to header grow, MSS needs to be downgraded. */
3505 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3506 			skb_decrease_gso_size(shinfo, len_diff);
3507 
3508 		/* Header must be checked, and gso_segs recomputed. */
3509 		shinfo->gso_type |= gso_type;
3510 		shinfo->gso_segs = 0;
3511 	}
3512 
3513 	return 0;
3514 }
3515 
3516 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3517 			      u64 flags)
3518 {
3519 	int ret;
3520 
3521 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3522 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3523 		return -EINVAL;
3524 
3525 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3526 		/* udp gso_size delineates datagrams, only allow if fixed */
3527 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3528 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3529 			return -ENOTSUPP;
3530 	}
3531 
3532 	ret = skb_unclone(skb, GFP_ATOMIC);
3533 	if (unlikely(ret < 0))
3534 		return ret;
3535 
3536 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3537 	if (unlikely(ret < 0))
3538 		return ret;
3539 
3540 	if (skb_is_gso(skb)) {
3541 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3542 
3543 		/* Due to header shrink, MSS can be upgraded. */
3544 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3545 			skb_increase_gso_size(shinfo, len_diff);
3546 
3547 		/* Header must be checked, and gso_segs recomputed. */
3548 		shinfo->gso_type |= SKB_GSO_DODGY;
3549 		shinfo->gso_segs = 0;
3550 	}
3551 
3552 	return 0;
3553 }
3554 
3555 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3556 {
3557 	return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3558 			  SKB_MAX_ALLOC;
3559 }
3560 
3561 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3562 	   u32, mode, u64, flags)
3563 {
3564 	u32 len_diff_abs = abs(len_diff);
3565 	bool shrink = len_diff < 0;
3566 	int ret = 0;
3567 
3568 	if (unlikely(flags || mode))
3569 		return -EINVAL;
3570 	if (unlikely(len_diff_abs > 0xfffU))
3571 		return -EFAULT;
3572 
3573 	if (!shrink) {
3574 		ret = skb_cow(skb, len_diff);
3575 		if (unlikely(ret < 0))
3576 			return ret;
3577 		__skb_push(skb, len_diff_abs);
3578 		memset(skb->data, 0, len_diff_abs);
3579 	} else {
3580 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3581 			return -ENOMEM;
3582 		__skb_pull(skb, len_diff_abs);
3583 	}
3584 	bpf_compute_data_end_sk_skb(skb);
3585 	if (tls_sw_has_ctx_rx(skb->sk)) {
3586 		struct strp_msg *rxm = strp_msg(skb);
3587 
3588 		rxm->full_len += len_diff;
3589 	}
3590 	return ret;
3591 }
3592 
3593 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3594 	.func		= sk_skb_adjust_room,
3595 	.gpl_only	= false,
3596 	.ret_type	= RET_INTEGER,
3597 	.arg1_type	= ARG_PTR_TO_CTX,
3598 	.arg2_type	= ARG_ANYTHING,
3599 	.arg3_type	= ARG_ANYTHING,
3600 	.arg4_type	= ARG_ANYTHING,
3601 };
3602 
3603 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3604 	   u32, mode, u64, flags)
3605 {
3606 	u32 len_cur, len_diff_abs = abs(len_diff);
3607 	u32 len_min = bpf_skb_net_base_len(skb);
3608 	u32 len_max = __bpf_skb_max_len(skb);
3609 	__be16 proto = skb->protocol;
3610 	bool shrink = len_diff < 0;
3611 	u32 off;
3612 	int ret;
3613 
3614 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3615 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3616 		return -EINVAL;
3617 	if (unlikely(len_diff_abs > 0xfffU))
3618 		return -EFAULT;
3619 	if (unlikely(proto != htons(ETH_P_IP) &&
3620 		     proto != htons(ETH_P_IPV6)))
3621 		return -ENOTSUPP;
3622 
3623 	off = skb_mac_header_len(skb);
3624 	switch (mode) {
3625 	case BPF_ADJ_ROOM_NET:
3626 		off += bpf_skb_net_base_len(skb);
3627 		break;
3628 	case BPF_ADJ_ROOM_MAC:
3629 		break;
3630 	default:
3631 		return -ENOTSUPP;
3632 	}
3633 
3634 	len_cur = skb->len - skb_network_offset(skb);
3635 	if ((shrink && (len_diff_abs >= len_cur ||
3636 			len_cur - len_diff_abs < len_min)) ||
3637 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3638 			 !skb_is_gso(skb))))
3639 		return -ENOTSUPP;
3640 
3641 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3642 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3643 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3644 		__skb_reset_checksum_unnecessary(skb);
3645 
3646 	bpf_compute_data_pointers(skb);
3647 	return ret;
3648 }
3649 
3650 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3651 	.func		= bpf_skb_adjust_room,
3652 	.gpl_only	= false,
3653 	.ret_type	= RET_INTEGER,
3654 	.arg1_type	= ARG_PTR_TO_CTX,
3655 	.arg2_type	= ARG_ANYTHING,
3656 	.arg3_type	= ARG_ANYTHING,
3657 	.arg4_type	= ARG_ANYTHING,
3658 };
3659 
3660 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3661 {
3662 	u32 min_len = skb_network_offset(skb);
3663 
3664 	if (skb_transport_header_was_set(skb))
3665 		min_len = skb_transport_offset(skb);
3666 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3667 		min_len = skb_checksum_start_offset(skb) +
3668 			  skb->csum_offset + sizeof(__sum16);
3669 	return min_len;
3670 }
3671 
3672 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3673 {
3674 	unsigned int old_len = skb->len;
3675 	int ret;
3676 
3677 	ret = __skb_grow_rcsum(skb, new_len);
3678 	if (!ret)
3679 		memset(skb->data + old_len, 0, new_len - old_len);
3680 	return ret;
3681 }
3682 
3683 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3684 {
3685 	return __skb_trim_rcsum(skb, new_len);
3686 }
3687 
3688 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3689 					u64 flags)
3690 {
3691 	u32 max_len = __bpf_skb_max_len(skb);
3692 	u32 min_len = __bpf_skb_min_len(skb);
3693 	int ret;
3694 
3695 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3696 		return -EINVAL;
3697 	if (skb->encapsulation)
3698 		return -ENOTSUPP;
3699 
3700 	/* The basic idea of this helper is that it's performing the
3701 	 * needed work to either grow or trim an skb, and eBPF program
3702 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3703 	 * bpf_lX_csum_replace() and others rather than passing a raw
3704 	 * buffer here. This one is a slow path helper and intended
3705 	 * for replies with control messages.
3706 	 *
3707 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3708 	 * minimal and without protocol specifics so that we are able
3709 	 * to separate concerns as in bpf_skb_store_bytes() should only
3710 	 * be the one responsible for writing buffers.
3711 	 *
3712 	 * It's really expected to be a slow path operation here for
3713 	 * control message replies, so we're implicitly linearizing,
3714 	 * uncloning and drop offloads from the skb by this.
3715 	 */
3716 	ret = __bpf_try_make_writable(skb, skb->len);
3717 	if (!ret) {
3718 		if (new_len > skb->len)
3719 			ret = bpf_skb_grow_rcsum(skb, new_len);
3720 		else if (new_len < skb->len)
3721 			ret = bpf_skb_trim_rcsum(skb, new_len);
3722 		if (!ret && skb_is_gso(skb))
3723 			skb_gso_reset(skb);
3724 	}
3725 	return ret;
3726 }
3727 
3728 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3729 	   u64, flags)
3730 {
3731 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3732 
3733 	bpf_compute_data_pointers(skb);
3734 	return ret;
3735 }
3736 
3737 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3738 	.func		= bpf_skb_change_tail,
3739 	.gpl_only	= false,
3740 	.ret_type	= RET_INTEGER,
3741 	.arg1_type	= ARG_PTR_TO_CTX,
3742 	.arg2_type	= ARG_ANYTHING,
3743 	.arg3_type	= ARG_ANYTHING,
3744 };
3745 
3746 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3747 	   u64, flags)
3748 {
3749 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3750 
3751 	bpf_compute_data_end_sk_skb(skb);
3752 	return ret;
3753 }
3754 
3755 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3756 	.func		= sk_skb_change_tail,
3757 	.gpl_only	= false,
3758 	.ret_type	= RET_INTEGER,
3759 	.arg1_type	= ARG_PTR_TO_CTX,
3760 	.arg2_type	= ARG_ANYTHING,
3761 	.arg3_type	= ARG_ANYTHING,
3762 };
3763 
3764 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3765 					u64 flags)
3766 {
3767 	u32 max_len = __bpf_skb_max_len(skb);
3768 	u32 new_len = skb->len + head_room;
3769 	int ret;
3770 
3771 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3772 		     new_len < skb->len))
3773 		return -EINVAL;
3774 
3775 	ret = skb_cow(skb, head_room);
3776 	if (likely(!ret)) {
3777 		/* Idea for this helper is that we currently only
3778 		 * allow to expand on mac header. This means that
3779 		 * skb->protocol network header, etc, stay as is.
3780 		 * Compared to bpf_skb_change_tail(), we're more
3781 		 * flexible due to not needing to linearize or
3782 		 * reset GSO. Intention for this helper is to be
3783 		 * used by an L3 skb that needs to push mac header
3784 		 * for redirection into L2 device.
3785 		 */
3786 		__skb_push(skb, head_room);
3787 		memset(skb->data, 0, head_room);
3788 		skb_reset_mac_header(skb);
3789 	}
3790 
3791 	return ret;
3792 }
3793 
3794 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3795 	   u64, flags)
3796 {
3797 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3798 
3799 	bpf_compute_data_pointers(skb);
3800 	return ret;
3801 }
3802 
3803 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3804 	.func		= bpf_skb_change_head,
3805 	.gpl_only	= false,
3806 	.ret_type	= RET_INTEGER,
3807 	.arg1_type	= ARG_PTR_TO_CTX,
3808 	.arg2_type	= ARG_ANYTHING,
3809 	.arg3_type	= ARG_ANYTHING,
3810 };
3811 
3812 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3813 	   u64, flags)
3814 {
3815 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3816 
3817 	bpf_compute_data_end_sk_skb(skb);
3818 	return ret;
3819 }
3820 
3821 static const struct bpf_func_proto sk_skb_change_head_proto = {
3822 	.func		= sk_skb_change_head,
3823 	.gpl_only	= false,
3824 	.ret_type	= RET_INTEGER,
3825 	.arg1_type	= ARG_PTR_TO_CTX,
3826 	.arg2_type	= ARG_ANYTHING,
3827 	.arg3_type	= ARG_ANYTHING,
3828 };
3829 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3830 {
3831 	return xdp_data_meta_unsupported(xdp) ? 0 :
3832 	       xdp->data - xdp->data_meta;
3833 }
3834 
3835 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3836 {
3837 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3838 	unsigned long metalen = xdp_get_metalen(xdp);
3839 	void *data_start = xdp_frame_end + metalen;
3840 	void *data = xdp->data + offset;
3841 
3842 	if (unlikely(data < data_start ||
3843 		     data > xdp->data_end - ETH_HLEN))
3844 		return -EINVAL;
3845 
3846 	if (metalen)
3847 		memmove(xdp->data_meta + offset,
3848 			xdp->data_meta, metalen);
3849 	xdp->data_meta += offset;
3850 	xdp->data = data;
3851 
3852 	return 0;
3853 }
3854 
3855 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3856 	.func		= bpf_xdp_adjust_head,
3857 	.gpl_only	= false,
3858 	.ret_type	= RET_INTEGER,
3859 	.arg1_type	= ARG_PTR_TO_CTX,
3860 	.arg2_type	= ARG_ANYTHING,
3861 };
3862 
3863 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3864 {
3865 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3866 	void *data_end = xdp->data_end + offset;
3867 
3868 	/* Notice that xdp_data_hard_end have reserved some tailroom */
3869 	if (unlikely(data_end > data_hard_end))
3870 		return -EINVAL;
3871 
3872 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
3873 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3874 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3875 		return -EINVAL;
3876 	}
3877 
3878 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3879 		return -EINVAL;
3880 
3881 	/* Clear memory area on grow, can contain uninit kernel memory */
3882 	if (offset > 0)
3883 		memset(xdp->data_end, 0, offset);
3884 
3885 	xdp->data_end = data_end;
3886 
3887 	return 0;
3888 }
3889 
3890 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3891 	.func		= bpf_xdp_adjust_tail,
3892 	.gpl_only	= false,
3893 	.ret_type	= RET_INTEGER,
3894 	.arg1_type	= ARG_PTR_TO_CTX,
3895 	.arg2_type	= ARG_ANYTHING,
3896 };
3897 
3898 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3899 {
3900 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3901 	void *meta = xdp->data_meta + offset;
3902 	unsigned long metalen = xdp->data - meta;
3903 
3904 	if (xdp_data_meta_unsupported(xdp))
3905 		return -ENOTSUPP;
3906 	if (unlikely(meta < xdp_frame_end ||
3907 		     meta > xdp->data))
3908 		return -EINVAL;
3909 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3910 		     (metalen > 32)))
3911 		return -EACCES;
3912 
3913 	xdp->data_meta = meta;
3914 
3915 	return 0;
3916 }
3917 
3918 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3919 	.func		= bpf_xdp_adjust_meta,
3920 	.gpl_only	= false,
3921 	.ret_type	= RET_INTEGER,
3922 	.arg1_type	= ARG_PTR_TO_CTX,
3923 	.arg2_type	= ARG_ANYTHING,
3924 };
3925 
3926 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3927 			    struct bpf_map *map, struct xdp_buff *xdp)
3928 {
3929 	switch (map->map_type) {
3930 	case BPF_MAP_TYPE_DEVMAP:
3931 	case BPF_MAP_TYPE_DEVMAP_HASH:
3932 		return dev_map_enqueue(fwd, xdp, dev_rx);
3933 	case BPF_MAP_TYPE_CPUMAP:
3934 		return cpu_map_enqueue(fwd, xdp, dev_rx);
3935 	case BPF_MAP_TYPE_XSKMAP:
3936 		return __xsk_map_redirect(fwd, xdp);
3937 	default:
3938 		return -EBADRQC;
3939 	}
3940 	return 0;
3941 }
3942 
3943 void xdp_do_flush(void)
3944 {
3945 	__dev_flush();
3946 	__cpu_map_flush();
3947 	__xsk_map_flush();
3948 }
3949 EXPORT_SYMBOL_GPL(xdp_do_flush);
3950 
3951 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3952 {
3953 	switch (map->map_type) {
3954 	case BPF_MAP_TYPE_DEVMAP:
3955 		return __dev_map_lookup_elem(map, index);
3956 	case BPF_MAP_TYPE_DEVMAP_HASH:
3957 		return __dev_map_hash_lookup_elem(map, index);
3958 	case BPF_MAP_TYPE_CPUMAP:
3959 		return __cpu_map_lookup_elem(map, index);
3960 	case BPF_MAP_TYPE_XSKMAP:
3961 		return __xsk_map_lookup_elem(map, index);
3962 	default:
3963 		return NULL;
3964 	}
3965 }
3966 
3967 void bpf_clear_redirect_map(struct bpf_map *map)
3968 {
3969 	struct bpf_redirect_info *ri;
3970 	int cpu;
3971 
3972 	for_each_possible_cpu(cpu) {
3973 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3974 		/* Avoid polluting remote cacheline due to writes if
3975 		 * not needed. Once we pass this test, we need the
3976 		 * cmpxchg() to make sure it hasn't been changed in
3977 		 * the meantime by remote CPU.
3978 		 */
3979 		if (unlikely(READ_ONCE(ri->map) == map))
3980 			cmpxchg(&ri->map, map, NULL);
3981 	}
3982 }
3983 
3984 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3985 		    struct bpf_prog *xdp_prog)
3986 {
3987 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3988 	struct bpf_map *map = READ_ONCE(ri->map);
3989 	u32 index = ri->tgt_index;
3990 	void *fwd = ri->tgt_value;
3991 	int err;
3992 
3993 	ri->tgt_index = 0;
3994 	ri->tgt_value = NULL;
3995 	WRITE_ONCE(ri->map, NULL);
3996 
3997 	if (unlikely(!map)) {
3998 		fwd = dev_get_by_index_rcu(dev_net(dev), index);
3999 		if (unlikely(!fwd)) {
4000 			err = -EINVAL;
4001 			goto err;
4002 		}
4003 
4004 		err = dev_xdp_enqueue(fwd, xdp, dev);
4005 	} else {
4006 		err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
4007 	}
4008 
4009 	if (unlikely(err))
4010 		goto err;
4011 
4012 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4013 	return 0;
4014 err:
4015 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4016 	return err;
4017 }
4018 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4019 
4020 static int xdp_do_generic_redirect_map(struct net_device *dev,
4021 				       struct sk_buff *skb,
4022 				       struct xdp_buff *xdp,
4023 				       struct bpf_prog *xdp_prog,
4024 				       struct bpf_map *map)
4025 {
4026 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4027 	u32 index = ri->tgt_index;
4028 	void *fwd = ri->tgt_value;
4029 	int err = 0;
4030 
4031 	ri->tgt_index = 0;
4032 	ri->tgt_value = NULL;
4033 	WRITE_ONCE(ri->map, NULL);
4034 
4035 	if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
4036 	    map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
4037 		struct bpf_dtab_netdev *dst = fwd;
4038 
4039 		err = dev_map_generic_redirect(dst, skb, xdp_prog);
4040 		if (unlikely(err))
4041 			goto err;
4042 	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
4043 		struct xdp_sock *xs = fwd;
4044 
4045 		err = xsk_generic_rcv(xs, xdp);
4046 		if (err)
4047 			goto err;
4048 		consume_skb(skb);
4049 	} else {
4050 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
4051 		err = -EBADRQC;
4052 		goto err;
4053 	}
4054 
4055 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4056 	return 0;
4057 err:
4058 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4059 	return err;
4060 }
4061 
4062 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4063 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4064 {
4065 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4066 	struct bpf_map *map = READ_ONCE(ri->map);
4067 	u32 index = ri->tgt_index;
4068 	struct net_device *fwd;
4069 	int err = 0;
4070 
4071 	if (map)
4072 		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
4073 						   map);
4074 	ri->tgt_index = 0;
4075 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
4076 	if (unlikely(!fwd)) {
4077 		err = -EINVAL;
4078 		goto err;
4079 	}
4080 
4081 	err = xdp_ok_fwd_dev(fwd, skb->len);
4082 	if (unlikely(err))
4083 		goto err;
4084 
4085 	skb->dev = fwd;
4086 	_trace_xdp_redirect(dev, xdp_prog, index);
4087 	generic_xdp_tx(skb, xdp_prog);
4088 	return 0;
4089 err:
4090 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
4091 	return err;
4092 }
4093 
4094 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4095 {
4096 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4097 
4098 	if (unlikely(flags))
4099 		return XDP_ABORTED;
4100 
4101 	ri->flags = flags;
4102 	ri->tgt_index = ifindex;
4103 	ri->tgt_value = NULL;
4104 	WRITE_ONCE(ri->map, NULL);
4105 
4106 	return XDP_REDIRECT;
4107 }
4108 
4109 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4110 	.func           = bpf_xdp_redirect,
4111 	.gpl_only       = false,
4112 	.ret_type       = RET_INTEGER,
4113 	.arg1_type      = ARG_ANYTHING,
4114 	.arg2_type      = ARG_ANYTHING,
4115 };
4116 
4117 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4118 	   u64, flags)
4119 {
4120 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4121 
4122 	/* Lower bits of the flags are used as return code on lookup failure */
4123 	if (unlikely(flags > XDP_TX))
4124 		return XDP_ABORTED;
4125 
4126 	ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
4127 	if (unlikely(!ri->tgt_value)) {
4128 		/* If the lookup fails we want to clear out the state in the
4129 		 * redirect_info struct completely, so that if an eBPF program
4130 		 * performs multiple lookups, the last one always takes
4131 		 * precedence.
4132 		 */
4133 		WRITE_ONCE(ri->map, NULL);
4134 		return flags;
4135 	}
4136 
4137 	ri->flags = flags;
4138 	ri->tgt_index = ifindex;
4139 	WRITE_ONCE(ri->map, map);
4140 
4141 	return XDP_REDIRECT;
4142 }
4143 
4144 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4145 	.func           = bpf_xdp_redirect_map,
4146 	.gpl_only       = false,
4147 	.ret_type       = RET_INTEGER,
4148 	.arg1_type      = ARG_CONST_MAP_PTR,
4149 	.arg2_type      = ARG_ANYTHING,
4150 	.arg3_type      = ARG_ANYTHING,
4151 };
4152 
4153 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4154 				  unsigned long off, unsigned long len)
4155 {
4156 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4157 
4158 	if (unlikely(!ptr))
4159 		return len;
4160 	if (ptr != dst_buff)
4161 		memcpy(dst_buff, ptr, len);
4162 
4163 	return 0;
4164 }
4165 
4166 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4167 	   u64, flags, void *, meta, u64, meta_size)
4168 {
4169 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4170 
4171 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4172 		return -EINVAL;
4173 	if (unlikely(!skb || skb_size > skb->len))
4174 		return -EFAULT;
4175 
4176 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4177 				bpf_skb_copy);
4178 }
4179 
4180 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4181 	.func		= bpf_skb_event_output,
4182 	.gpl_only	= true,
4183 	.ret_type	= RET_INTEGER,
4184 	.arg1_type	= ARG_PTR_TO_CTX,
4185 	.arg2_type	= ARG_CONST_MAP_PTR,
4186 	.arg3_type	= ARG_ANYTHING,
4187 	.arg4_type	= ARG_PTR_TO_MEM,
4188 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4189 };
4190 
4191 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4192 
4193 const struct bpf_func_proto bpf_skb_output_proto = {
4194 	.func		= bpf_skb_event_output,
4195 	.gpl_only	= true,
4196 	.ret_type	= RET_INTEGER,
4197 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4198 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4199 	.arg2_type	= ARG_CONST_MAP_PTR,
4200 	.arg3_type	= ARG_ANYTHING,
4201 	.arg4_type	= ARG_PTR_TO_MEM,
4202 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4203 };
4204 
4205 static unsigned short bpf_tunnel_key_af(u64 flags)
4206 {
4207 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4208 }
4209 
4210 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4211 	   u32, size, u64, flags)
4212 {
4213 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4214 	u8 compat[sizeof(struct bpf_tunnel_key)];
4215 	void *to_orig = to;
4216 	int err;
4217 
4218 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4219 		err = -EINVAL;
4220 		goto err_clear;
4221 	}
4222 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4223 		err = -EPROTO;
4224 		goto err_clear;
4225 	}
4226 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4227 		err = -EINVAL;
4228 		switch (size) {
4229 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4230 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4231 			goto set_compat;
4232 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4233 			/* Fixup deprecated structure layouts here, so we have
4234 			 * a common path later on.
4235 			 */
4236 			if (ip_tunnel_info_af(info) != AF_INET)
4237 				goto err_clear;
4238 set_compat:
4239 			to = (struct bpf_tunnel_key *)compat;
4240 			break;
4241 		default:
4242 			goto err_clear;
4243 		}
4244 	}
4245 
4246 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4247 	to->tunnel_tos = info->key.tos;
4248 	to->tunnel_ttl = info->key.ttl;
4249 	to->tunnel_ext = 0;
4250 
4251 	if (flags & BPF_F_TUNINFO_IPV6) {
4252 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4253 		       sizeof(to->remote_ipv6));
4254 		to->tunnel_label = be32_to_cpu(info->key.label);
4255 	} else {
4256 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4257 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4258 		to->tunnel_label = 0;
4259 	}
4260 
4261 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4262 		memcpy(to_orig, to, size);
4263 
4264 	return 0;
4265 err_clear:
4266 	memset(to_orig, 0, size);
4267 	return err;
4268 }
4269 
4270 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4271 	.func		= bpf_skb_get_tunnel_key,
4272 	.gpl_only	= false,
4273 	.ret_type	= RET_INTEGER,
4274 	.arg1_type	= ARG_PTR_TO_CTX,
4275 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4276 	.arg3_type	= ARG_CONST_SIZE,
4277 	.arg4_type	= ARG_ANYTHING,
4278 };
4279 
4280 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4281 {
4282 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4283 	int err;
4284 
4285 	if (unlikely(!info ||
4286 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4287 		err = -ENOENT;
4288 		goto err_clear;
4289 	}
4290 	if (unlikely(size < info->options_len)) {
4291 		err = -ENOMEM;
4292 		goto err_clear;
4293 	}
4294 
4295 	ip_tunnel_info_opts_get(to, info);
4296 	if (size > info->options_len)
4297 		memset(to + info->options_len, 0, size - info->options_len);
4298 
4299 	return info->options_len;
4300 err_clear:
4301 	memset(to, 0, size);
4302 	return err;
4303 }
4304 
4305 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4306 	.func		= bpf_skb_get_tunnel_opt,
4307 	.gpl_only	= false,
4308 	.ret_type	= RET_INTEGER,
4309 	.arg1_type	= ARG_PTR_TO_CTX,
4310 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4311 	.arg3_type	= ARG_CONST_SIZE,
4312 };
4313 
4314 static struct metadata_dst __percpu *md_dst;
4315 
4316 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4317 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4318 {
4319 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4320 	u8 compat[sizeof(struct bpf_tunnel_key)];
4321 	struct ip_tunnel_info *info;
4322 
4323 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4324 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4325 		return -EINVAL;
4326 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4327 		switch (size) {
4328 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4329 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4330 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4331 			/* Fixup deprecated structure layouts here, so we have
4332 			 * a common path later on.
4333 			 */
4334 			memcpy(compat, from, size);
4335 			memset(compat + size, 0, sizeof(compat) - size);
4336 			from = (const struct bpf_tunnel_key *) compat;
4337 			break;
4338 		default:
4339 			return -EINVAL;
4340 		}
4341 	}
4342 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4343 		     from->tunnel_ext))
4344 		return -EINVAL;
4345 
4346 	skb_dst_drop(skb);
4347 	dst_hold((struct dst_entry *) md);
4348 	skb_dst_set(skb, (struct dst_entry *) md);
4349 
4350 	info = &md->u.tun_info;
4351 	memset(info, 0, sizeof(*info));
4352 	info->mode = IP_TUNNEL_INFO_TX;
4353 
4354 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4355 	if (flags & BPF_F_DONT_FRAGMENT)
4356 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4357 	if (flags & BPF_F_ZERO_CSUM_TX)
4358 		info->key.tun_flags &= ~TUNNEL_CSUM;
4359 	if (flags & BPF_F_SEQ_NUMBER)
4360 		info->key.tun_flags |= TUNNEL_SEQ;
4361 
4362 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4363 	info->key.tos = from->tunnel_tos;
4364 	info->key.ttl = from->tunnel_ttl;
4365 
4366 	if (flags & BPF_F_TUNINFO_IPV6) {
4367 		info->mode |= IP_TUNNEL_INFO_IPV6;
4368 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4369 		       sizeof(from->remote_ipv6));
4370 		info->key.label = cpu_to_be32(from->tunnel_label) &
4371 				  IPV6_FLOWLABEL_MASK;
4372 	} else {
4373 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4374 	}
4375 
4376 	return 0;
4377 }
4378 
4379 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4380 	.func		= bpf_skb_set_tunnel_key,
4381 	.gpl_only	= false,
4382 	.ret_type	= RET_INTEGER,
4383 	.arg1_type	= ARG_PTR_TO_CTX,
4384 	.arg2_type	= ARG_PTR_TO_MEM,
4385 	.arg3_type	= ARG_CONST_SIZE,
4386 	.arg4_type	= ARG_ANYTHING,
4387 };
4388 
4389 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4390 	   const u8 *, from, u32, size)
4391 {
4392 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4393 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4394 
4395 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4396 		return -EINVAL;
4397 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4398 		return -ENOMEM;
4399 
4400 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4401 
4402 	return 0;
4403 }
4404 
4405 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4406 	.func		= bpf_skb_set_tunnel_opt,
4407 	.gpl_only	= false,
4408 	.ret_type	= RET_INTEGER,
4409 	.arg1_type	= ARG_PTR_TO_CTX,
4410 	.arg2_type	= ARG_PTR_TO_MEM,
4411 	.arg3_type	= ARG_CONST_SIZE,
4412 };
4413 
4414 static const struct bpf_func_proto *
4415 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4416 {
4417 	if (!md_dst) {
4418 		struct metadata_dst __percpu *tmp;
4419 
4420 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4421 						METADATA_IP_TUNNEL,
4422 						GFP_KERNEL);
4423 		if (!tmp)
4424 			return NULL;
4425 		if (cmpxchg(&md_dst, NULL, tmp))
4426 			metadata_dst_free_percpu(tmp);
4427 	}
4428 
4429 	switch (which) {
4430 	case BPF_FUNC_skb_set_tunnel_key:
4431 		return &bpf_skb_set_tunnel_key_proto;
4432 	case BPF_FUNC_skb_set_tunnel_opt:
4433 		return &bpf_skb_set_tunnel_opt_proto;
4434 	default:
4435 		return NULL;
4436 	}
4437 }
4438 
4439 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4440 	   u32, idx)
4441 {
4442 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4443 	struct cgroup *cgrp;
4444 	struct sock *sk;
4445 
4446 	sk = skb_to_full_sk(skb);
4447 	if (!sk || !sk_fullsock(sk))
4448 		return -ENOENT;
4449 	if (unlikely(idx >= array->map.max_entries))
4450 		return -E2BIG;
4451 
4452 	cgrp = READ_ONCE(array->ptrs[idx]);
4453 	if (unlikely(!cgrp))
4454 		return -EAGAIN;
4455 
4456 	return sk_under_cgroup_hierarchy(sk, cgrp);
4457 }
4458 
4459 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4460 	.func		= bpf_skb_under_cgroup,
4461 	.gpl_only	= false,
4462 	.ret_type	= RET_INTEGER,
4463 	.arg1_type	= ARG_PTR_TO_CTX,
4464 	.arg2_type	= ARG_CONST_MAP_PTR,
4465 	.arg3_type	= ARG_ANYTHING,
4466 };
4467 
4468 #ifdef CONFIG_SOCK_CGROUP_DATA
4469 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4470 {
4471 	struct cgroup *cgrp;
4472 
4473 	sk = sk_to_full_sk(sk);
4474 	if (!sk || !sk_fullsock(sk))
4475 		return 0;
4476 
4477 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4478 	return cgroup_id(cgrp);
4479 }
4480 
4481 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4482 {
4483 	return __bpf_sk_cgroup_id(skb->sk);
4484 }
4485 
4486 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4487 	.func           = bpf_skb_cgroup_id,
4488 	.gpl_only       = false,
4489 	.ret_type       = RET_INTEGER,
4490 	.arg1_type      = ARG_PTR_TO_CTX,
4491 };
4492 
4493 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4494 					      int ancestor_level)
4495 {
4496 	struct cgroup *ancestor;
4497 	struct cgroup *cgrp;
4498 
4499 	sk = sk_to_full_sk(sk);
4500 	if (!sk || !sk_fullsock(sk))
4501 		return 0;
4502 
4503 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4504 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4505 	if (!ancestor)
4506 		return 0;
4507 
4508 	return cgroup_id(ancestor);
4509 }
4510 
4511 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4512 	   ancestor_level)
4513 {
4514 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4515 }
4516 
4517 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4518 	.func           = bpf_skb_ancestor_cgroup_id,
4519 	.gpl_only       = false,
4520 	.ret_type       = RET_INTEGER,
4521 	.arg1_type      = ARG_PTR_TO_CTX,
4522 	.arg2_type      = ARG_ANYTHING,
4523 };
4524 
4525 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4526 {
4527 	return __bpf_sk_cgroup_id(sk);
4528 }
4529 
4530 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4531 	.func           = bpf_sk_cgroup_id,
4532 	.gpl_only       = false,
4533 	.ret_type       = RET_INTEGER,
4534 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4535 };
4536 
4537 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4538 {
4539 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4540 }
4541 
4542 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4543 	.func           = bpf_sk_ancestor_cgroup_id,
4544 	.gpl_only       = false,
4545 	.ret_type       = RET_INTEGER,
4546 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4547 	.arg2_type      = ARG_ANYTHING,
4548 };
4549 #endif
4550 
4551 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4552 				  unsigned long off, unsigned long len)
4553 {
4554 	memcpy(dst_buff, src_buff + off, len);
4555 	return 0;
4556 }
4557 
4558 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4559 	   u64, flags, void *, meta, u64, meta_size)
4560 {
4561 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4562 
4563 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4564 		return -EINVAL;
4565 	if (unlikely(!xdp ||
4566 		     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4567 		return -EFAULT;
4568 
4569 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4570 				xdp_size, bpf_xdp_copy);
4571 }
4572 
4573 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4574 	.func		= bpf_xdp_event_output,
4575 	.gpl_only	= true,
4576 	.ret_type	= RET_INTEGER,
4577 	.arg1_type	= ARG_PTR_TO_CTX,
4578 	.arg2_type	= ARG_CONST_MAP_PTR,
4579 	.arg3_type	= ARG_ANYTHING,
4580 	.arg4_type	= ARG_PTR_TO_MEM,
4581 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4582 };
4583 
4584 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4585 
4586 const struct bpf_func_proto bpf_xdp_output_proto = {
4587 	.func		= bpf_xdp_event_output,
4588 	.gpl_only	= true,
4589 	.ret_type	= RET_INTEGER,
4590 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4591 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4592 	.arg2_type	= ARG_CONST_MAP_PTR,
4593 	.arg3_type	= ARG_ANYTHING,
4594 	.arg4_type	= ARG_PTR_TO_MEM,
4595 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4596 };
4597 
4598 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4599 {
4600 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4601 }
4602 
4603 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4604 	.func           = bpf_get_socket_cookie,
4605 	.gpl_only       = false,
4606 	.ret_type       = RET_INTEGER,
4607 	.arg1_type      = ARG_PTR_TO_CTX,
4608 };
4609 
4610 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4611 {
4612 	return __sock_gen_cookie(ctx->sk);
4613 }
4614 
4615 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4616 	.func		= bpf_get_socket_cookie_sock_addr,
4617 	.gpl_only	= false,
4618 	.ret_type	= RET_INTEGER,
4619 	.arg1_type	= ARG_PTR_TO_CTX,
4620 };
4621 
4622 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4623 {
4624 	return __sock_gen_cookie(ctx);
4625 }
4626 
4627 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4628 	.func		= bpf_get_socket_cookie_sock,
4629 	.gpl_only	= false,
4630 	.ret_type	= RET_INTEGER,
4631 	.arg1_type	= ARG_PTR_TO_CTX,
4632 };
4633 
4634 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4635 {
4636 	return __sock_gen_cookie(ctx->sk);
4637 }
4638 
4639 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4640 	.func		= bpf_get_socket_cookie_sock_ops,
4641 	.gpl_only	= false,
4642 	.ret_type	= RET_INTEGER,
4643 	.arg1_type	= ARG_PTR_TO_CTX,
4644 };
4645 
4646 static u64 __bpf_get_netns_cookie(struct sock *sk)
4647 {
4648 #ifdef CONFIG_NET_NS
4649 	return __net_gen_cookie(sk ? sk->sk_net.net : &init_net);
4650 #else
4651 	return 0;
4652 #endif
4653 }
4654 
4655 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4656 {
4657 	return __bpf_get_netns_cookie(ctx);
4658 }
4659 
4660 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4661 	.func		= bpf_get_netns_cookie_sock,
4662 	.gpl_only	= false,
4663 	.ret_type	= RET_INTEGER,
4664 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4665 };
4666 
4667 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4668 {
4669 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4670 }
4671 
4672 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4673 	.func		= bpf_get_netns_cookie_sock_addr,
4674 	.gpl_only	= false,
4675 	.ret_type	= RET_INTEGER,
4676 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4677 };
4678 
4679 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4680 {
4681 	struct sock *sk = sk_to_full_sk(skb->sk);
4682 	kuid_t kuid;
4683 
4684 	if (!sk || !sk_fullsock(sk))
4685 		return overflowuid;
4686 	kuid = sock_net_uid(sock_net(sk), sk);
4687 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4688 }
4689 
4690 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4691 	.func           = bpf_get_socket_uid,
4692 	.gpl_only       = false,
4693 	.ret_type       = RET_INTEGER,
4694 	.arg1_type      = ARG_PTR_TO_CTX,
4695 };
4696 
4697 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4698 			   char *optval, int optlen)
4699 {
4700 	char devname[IFNAMSIZ];
4701 	int val, valbool;
4702 	struct net *net;
4703 	int ifindex;
4704 	int ret = 0;
4705 
4706 	if (!sk_fullsock(sk))
4707 		return -EINVAL;
4708 
4709 	sock_owned_by_me(sk);
4710 
4711 	if (level == SOL_SOCKET) {
4712 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4713 			return -EINVAL;
4714 		val = *((int *)optval);
4715 		valbool = val ? 1 : 0;
4716 
4717 		/* Only some socketops are supported */
4718 		switch (optname) {
4719 		case SO_RCVBUF:
4720 			val = min_t(u32, val, sysctl_rmem_max);
4721 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4722 			WRITE_ONCE(sk->sk_rcvbuf,
4723 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4724 			break;
4725 		case SO_SNDBUF:
4726 			val = min_t(u32, val, sysctl_wmem_max);
4727 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4728 			WRITE_ONCE(sk->sk_sndbuf,
4729 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4730 			break;
4731 		case SO_MAX_PACING_RATE: /* 32bit version */
4732 			if (val != ~0U)
4733 				cmpxchg(&sk->sk_pacing_status,
4734 					SK_PACING_NONE,
4735 					SK_PACING_NEEDED);
4736 			sk->sk_max_pacing_rate = (val == ~0U) ?
4737 						 ~0UL : (unsigned int)val;
4738 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4739 						 sk->sk_max_pacing_rate);
4740 			break;
4741 		case SO_PRIORITY:
4742 			sk->sk_priority = val;
4743 			break;
4744 		case SO_RCVLOWAT:
4745 			if (val < 0)
4746 				val = INT_MAX;
4747 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4748 			break;
4749 		case SO_MARK:
4750 			if (sk->sk_mark != val) {
4751 				sk->sk_mark = val;
4752 				sk_dst_reset(sk);
4753 			}
4754 			break;
4755 		case SO_BINDTODEVICE:
4756 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
4757 			strncpy(devname, optval, optlen);
4758 			devname[optlen] = 0;
4759 
4760 			ifindex = 0;
4761 			if (devname[0] != '\0') {
4762 				struct net_device *dev;
4763 
4764 				ret = -ENODEV;
4765 
4766 				net = sock_net(sk);
4767 				dev = dev_get_by_name(net, devname);
4768 				if (!dev)
4769 					break;
4770 				ifindex = dev->ifindex;
4771 				dev_put(dev);
4772 			}
4773 			ret = sock_bindtoindex(sk, ifindex, false);
4774 			break;
4775 		case SO_KEEPALIVE:
4776 			if (sk->sk_prot->keepalive)
4777 				sk->sk_prot->keepalive(sk, valbool);
4778 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4779 			break;
4780 		default:
4781 			ret = -EINVAL;
4782 		}
4783 #ifdef CONFIG_INET
4784 	} else if (level == SOL_IP) {
4785 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4786 			return -EINVAL;
4787 
4788 		val = *((int *)optval);
4789 		/* Only some options are supported */
4790 		switch (optname) {
4791 		case IP_TOS:
4792 			if (val < -1 || val > 0xff) {
4793 				ret = -EINVAL;
4794 			} else {
4795 				struct inet_sock *inet = inet_sk(sk);
4796 
4797 				if (val == -1)
4798 					val = 0;
4799 				inet->tos = val;
4800 			}
4801 			break;
4802 		default:
4803 			ret = -EINVAL;
4804 		}
4805 #if IS_ENABLED(CONFIG_IPV6)
4806 	} else if (level == SOL_IPV6) {
4807 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4808 			return -EINVAL;
4809 
4810 		val = *((int *)optval);
4811 		/* Only some options are supported */
4812 		switch (optname) {
4813 		case IPV6_TCLASS:
4814 			if (val < -1 || val > 0xff) {
4815 				ret = -EINVAL;
4816 			} else {
4817 				struct ipv6_pinfo *np = inet6_sk(sk);
4818 
4819 				if (val == -1)
4820 					val = 0;
4821 				np->tclass = val;
4822 			}
4823 			break;
4824 		default:
4825 			ret = -EINVAL;
4826 		}
4827 #endif
4828 	} else if (level == SOL_TCP &&
4829 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4830 		if (optname == TCP_CONGESTION) {
4831 			char name[TCP_CA_NAME_MAX];
4832 
4833 			strncpy(name, optval, min_t(long, optlen,
4834 						    TCP_CA_NAME_MAX-1));
4835 			name[TCP_CA_NAME_MAX-1] = 0;
4836 			ret = tcp_set_congestion_control(sk, name, false, true);
4837 		} else {
4838 			struct inet_connection_sock *icsk = inet_csk(sk);
4839 			struct tcp_sock *tp = tcp_sk(sk);
4840 			unsigned long timeout;
4841 
4842 			if (optlen != sizeof(int))
4843 				return -EINVAL;
4844 
4845 			val = *((int *)optval);
4846 			/* Only some options are supported */
4847 			switch (optname) {
4848 			case TCP_BPF_IW:
4849 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4850 					ret = -EINVAL;
4851 				else
4852 					tp->snd_cwnd = val;
4853 				break;
4854 			case TCP_BPF_SNDCWND_CLAMP:
4855 				if (val <= 0) {
4856 					ret = -EINVAL;
4857 				} else {
4858 					tp->snd_cwnd_clamp = val;
4859 					tp->snd_ssthresh = val;
4860 				}
4861 				break;
4862 			case TCP_BPF_DELACK_MAX:
4863 				timeout = usecs_to_jiffies(val);
4864 				if (timeout > TCP_DELACK_MAX ||
4865 				    timeout < TCP_TIMEOUT_MIN)
4866 					return -EINVAL;
4867 				inet_csk(sk)->icsk_delack_max = timeout;
4868 				break;
4869 			case TCP_BPF_RTO_MIN:
4870 				timeout = usecs_to_jiffies(val);
4871 				if (timeout > TCP_RTO_MIN ||
4872 				    timeout < TCP_TIMEOUT_MIN)
4873 					return -EINVAL;
4874 				inet_csk(sk)->icsk_rto_min = timeout;
4875 				break;
4876 			case TCP_SAVE_SYN:
4877 				if (val < 0 || val > 1)
4878 					ret = -EINVAL;
4879 				else
4880 					tp->save_syn = val;
4881 				break;
4882 			case TCP_KEEPIDLE:
4883 				ret = tcp_sock_set_keepidle_locked(sk, val);
4884 				break;
4885 			case TCP_KEEPINTVL:
4886 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
4887 					ret = -EINVAL;
4888 				else
4889 					tp->keepalive_intvl = val * HZ;
4890 				break;
4891 			case TCP_KEEPCNT:
4892 				if (val < 1 || val > MAX_TCP_KEEPCNT)
4893 					ret = -EINVAL;
4894 				else
4895 					tp->keepalive_probes = val;
4896 				break;
4897 			case TCP_SYNCNT:
4898 				if (val < 1 || val > MAX_TCP_SYNCNT)
4899 					ret = -EINVAL;
4900 				else
4901 					icsk->icsk_syn_retries = val;
4902 				break;
4903 			case TCP_USER_TIMEOUT:
4904 				if (val < 0)
4905 					ret = -EINVAL;
4906 				else
4907 					icsk->icsk_user_timeout = val;
4908 				break;
4909 			case TCP_NOTSENT_LOWAT:
4910 				tp->notsent_lowat = val;
4911 				sk->sk_write_space(sk);
4912 				break;
4913 			default:
4914 				ret = -EINVAL;
4915 			}
4916 		}
4917 #endif
4918 	} else {
4919 		ret = -EINVAL;
4920 	}
4921 	return ret;
4922 }
4923 
4924 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4925 			   char *optval, int optlen)
4926 {
4927 	if (!sk_fullsock(sk))
4928 		goto err_clear;
4929 
4930 	sock_owned_by_me(sk);
4931 
4932 #ifdef CONFIG_INET
4933 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4934 		struct inet_connection_sock *icsk;
4935 		struct tcp_sock *tp;
4936 
4937 		switch (optname) {
4938 		case TCP_CONGESTION:
4939 			icsk = inet_csk(sk);
4940 
4941 			if (!icsk->icsk_ca_ops || optlen <= 1)
4942 				goto err_clear;
4943 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4944 			optval[optlen - 1] = 0;
4945 			break;
4946 		case TCP_SAVED_SYN:
4947 			tp = tcp_sk(sk);
4948 
4949 			if (optlen <= 0 || !tp->saved_syn ||
4950 			    optlen > tcp_saved_syn_len(tp->saved_syn))
4951 				goto err_clear;
4952 			memcpy(optval, tp->saved_syn->data, optlen);
4953 			break;
4954 		default:
4955 			goto err_clear;
4956 		}
4957 	} else if (level == SOL_IP) {
4958 		struct inet_sock *inet = inet_sk(sk);
4959 
4960 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4961 			goto err_clear;
4962 
4963 		/* Only some options are supported */
4964 		switch (optname) {
4965 		case IP_TOS:
4966 			*((int *)optval) = (int)inet->tos;
4967 			break;
4968 		default:
4969 			goto err_clear;
4970 		}
4971 #if IS_ENABLED(CONFIG_IPV6)
4972 	} else if (level == SOL_IPV6) {
4973 		struct ipv6_pinfo *np = inet6_sk(sk);
4974 
4975 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4976 			goto err_clear;
4977 
4978 		/* Only some options are supported */
4979 		switch (optname) {
4980 		case IPV6_TCLASS:
4981 			*((int *)optval) = (int)np->tclass;
4982 			break;
4983 		default:
4984 			goto err_clear;
4985 		}
4986 #endif
4987 	} else {
4988 		goto err_clear;
4989 	}
4990 	return 0;
4991 #endif
4992 err_clear:
4993 	memset(optval, 0, optlen);
4994 	return -EINVAL;
4995 }
4996 
4997 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
4998 	   int, level, int, optname, char *, optval, int, optlen)
4999 {
5000 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5001 }
5002 
5003 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5004 	.func		= bpf_sock_addr_setsockopt,
5005 	.gpl_only	= false,
5006 	.ret_type	= RET_INTEGER,
5007 	.arg1_type	= ARG_PTR_TO_CTX,
5008 	.arg2_type	= ARG_ANYTHING,
5009 	.arg3_type	= ARG_ANYTHING,
5010 	.arg4_type	= ARG_PTR_TO_MEM,
5011 	.arg5_type	= ARG_CONST_SIZE,
5012 };
5013 
5014 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5015 	   int, level, int, optname, char *, optval, int, optlen)
5016 {
5017 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5018 }
5019 
5020 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5021 	.func		= bpf_sock_addr_getsockopt,
5022 	.gpl_only	= false,
5023 	.ret_type	= RET_INTEGER,
5024 	.arg1_type	= ARG_PTR_TO_CTX,
5025 	.arg2_type	= ARG_ANYTHING,
5026 	.arg3_type	= ARG_ANYTHING,
5027 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5028 	.arg5_type	= ARG_CONST_SIZE,
5029 };
5030 
5031 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5032 	   int, level, int, optname, char *, optval, int, optlen)
5033 {
5034 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5035 }
5036 
5037 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5038 	.func		= bpf_sock_ops_setsockopt,
5039 	.gpl_only	= false,
5040 	.ret_type	= RET_INTEGER,
5041 	.arg1_type	= ARG_PTR_TO_CTX,
5042 	.arg2_type	= ARG_ANYTHING,
5043 	.arg3_type	= ARG_ANYTHING,
5044 	.arg4_type	= ARG_PTR_TO_MEM,
5045 	.arg5_type	= ARG_CONST_SIZE,
5046 };
5047 
5048 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5049 				int optname, const u8 **start)
5050 {
5051 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5052 	const u8 *hdr_start;
5053 	int ret;
5054 
5055 	if (syn_skb) {
5056 		/* sk is a request_sock here */
5057 
5058 		if (optname == TCP_BPF_SYN) {
5059 			hdr_start = syn_skb->data;
5060 			ret = tcp_hdrlen(syn_skb);
5061 		} else if (optname == TCP_BPF_SYN_IP) {
5062 			hdr_start = skb_network_header(syn_skb);
5063 			ret = skb_network_header_len(syn_skb) +
5064 				tcp_hdrlen(syn_skb);
5065 		} else {
5066 			/* optname == TCP_BPF_SYN_MAC */
5067 			hdr_start = skb_mac_header(syn_skb);
5068 			ret = skb_mac_header_len(syn_skb) +
5069 				skb_network_header_len(syn_skb) +
5070 				tcp_hdrlen(syn_skb);
5071 		}
5072 	} else {
5073 		struct sock *sk = bpf_sock->sk;
5074 		struct saved_syn *saved_syn;
5075 
5076 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5077 			/* synack retransmit. bpf_sock->syn_skb will
5078 			 * not be available.  It has to resort to
5079 			 * saved_syn (if it is saved).
5080 			 */
5081 			saved_syn = inet_reqsk(sk)->saved_syn;
5082 		else
5083 			saved_syn = tcp_sk(sk)->saved_syn;
5084 
5085 		if (!saved_syn)
5086 			return -ENOENT;
5087 
5088 		if (optname == TCP_BPF_SYN) {
5089 			hdr_start = saved_syn->data +
5090 				saved_syn->mac_hdrlen +
5091 				saved_syn->network_hdrlen;
5092 			ret = saved_syn->tcp_hdrlen;
5093 		} else if (optname == TCP_BPF_SYN_IP) {
5094 			hdr_start = saved_syn->data +
5095 				saved_syn->mac_hdrlen;
5096 			ret = saved_syn->network_hdrlen +
5097 				saved_syn->tcp_hdrlen;
5098 		} else {
5099 			/* optname == TCP_BPF_SYN_MAC */
5100 
5101 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5102 			if (!saved_syn->mac_hdrlen)
5103 				return -ENOENT;
5104 
5105 			hdr_start = saved_syn->data;
5106 			ret = saved_syn->mac_hdrlen +
5107 				saved_syn->network_hdrlen +
5108 				saved_syn->tcp_hdrlen;
5109 		}
5110 	}
5111 
5112 	*start = hdr_start;
5113 	return ret;
5114 }
5115 
5116 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5117 	   int, level, int, optname, char *, optval, int, optlen)
5118 {
5119 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5120 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5121 		int ret, copy_len = 0;
5122 		const u8 *start;
5123 
5124 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5125 		if (ret > 0) {
5126 			copy_len = ret;
5127 			if (optlen < copy_len) {
5128 				copy_len = optlen;
5129 				ret = -ENOSPC;
5130 			}
5131 
5132 			memcpy(optval, start, copy_len);
5133 		}
5134 
5135 		/* Zero out unused buffer at the end */
5136 		memset(optval + copy_len, 0, optlen - copy_len);
5137 
5138 		return ret;
5139 	}
5140 
5141 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5142 }
5143 
5144 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5145 	.func		= bpf_sock_ops_getsockopt,
5146 	.gpl_only	= false,
5147 	.ret_type	= RET_INTEGER,
5148 	.arg1_type	= ARG_PTR_TO_CTX,
5149 	.arg2_type	= ARG_ANYTHING,
5150 	.arg3_type	= ARG_ANYTHING,
5151 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5152 	.arg5_type	= ARG_CONST_SIZE,
5153 };
5154 
5155 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5156 	   int, argval)
5157 {
5158 	struct sock *sk = bpf_sock->sk;
5159 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5160 
5161 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5162 		return -EINVAL;
5163 
5164 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5165 
5166 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5167 }
5168 
5169 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5170 	.func		= bpf_sock_ops_cb_flags_set,
5171 	.gpl_only	= false,
5172 	.ret_type	= RET_INTEGER,
5173 	.arg1_type	= ARG_PTR_TO_CTX,
5174 	.arg2_type	= ARG_ANYTHING,
5175 };
5176 
5177 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5178 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5179 
5180 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5181 	   int, addr_len)
5182 {
5183 #ifdef CONFIG_INET
5184 	struct sock *sk = ctx->sk;
5185 	u32 flags = BIND_FROM_BPF;
5186 	int err;
5187 
5188 	err = -EINVAL;
5189 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5190 		return err;
5191 	if (addr->sa_family == AF_INET) {
5192 		if (addr_len < sizeof(struct sockaddr_in))
5193 			return err;
5194 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5195 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5196 		return __inet_bind(sk, addr, addr_len, flags);
5197 #if IS_ENABLED(CONFIG_IPV6)
5198 	} else if (addr->sa_family == AF_INET6) {
5199 		if (addr_len < SIN6_LEN_RFC2133)
5200 			return err;
5201 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5202 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5203 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5204 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5205 		 */
5206 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5207 #endif /* CONFIG_IPV6 */
5208 	}
5209 #endif /* CONFIG_INET */
5210 
5211 	return -EAFNOSUPPORT;
5212 }
5213 
5214 static const struct bpf_func_proto bpf_bind_proto = {
5215 	.func		= bpf_bind,
5216 	.gpl_only	= false,
5217 	.ret_type	= RET_INTEGER,
5218 	.arg1_type	= ARG_PTR_TO_CTX,
5219 	.arg2_type	= ARG_PTR_TO_MEM,
5220 	.arg3_type	= ARG_CONST_SIZE,
5221 };
5222 
5223 #ifdef CONFIG_XFRM
5224 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5225 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5226 {
5227 	const struct sec_path *sp = skb_sec_path(skb);
5228 	const struct xfrm_state *x;
5229 
5230 	if (!sp || unlikely(index >= sp->len || flags))
5231 		goto err_clear;
5232 
5233 	x = sp->xvec[index];
5234 
5235 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5236 		goto err_clear;
5237 
5238 	to->reqid = x->props.reqid;
5239 	to->spi = x->id.spi;
5240 	to->family = x->props.family;
5241 	to->ext = 0;
5242 
5243 	if (to->family == AF_INET6) {
5244 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5245 		       sizeof(to->remote_ipv6));
5246 	} else {
5247 		to->remote_ipv4 = x->props.saddr.a4;
5248 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5249 	}
5250 
5251 	return 0;
5252 err_clear:
5253 	memset(to, 0, size);
5254 	return -EINVAL;
5255 }
5256 
5257 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5258 	.func		= bpf_skb_get_xfrm_state,
5259 	.gpl_only	= false,
5260 	.ret_type	= RET_INTEGER,
5261 	.arg1_type	= ARG_PTR_TO_CTX,
5262 	.arg2_type	= ARG_ANYTHING,
5263 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5264 	.arg4_type	= ARG_CONST_SIZE,
5265 	.arg5_type	= ARG_ANYTHING,
5266 };
5267 #endif
5268 
5269 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5270 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5271 				  const struct neighbour *neigh,
5272 				  const struct net_device *dev)
5273 {
5274 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5275 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5276 	params->h_vlan_TCI = 0;
5277 	params->h_vlan_proto = 0;
5278 
5279 	return 0;
5280 }
5281 #endif
5282 
5283 #if IS_ENABLED(CONFIG_INET)
5284 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5285 			       u32 flags, bool check_mtu)
5286 {
5287 	struct fib_nh_common *nhc;
5288 	struct in_device *in_dev;
5289 	struct neighbour *neigh;
5290 	struct net_device *dev;
5291 	struct fib_result res;
5292 	struct flowi4 fl4;
5293 	int err;
5294 	u32 mtu;
5295 
5296 	dev = dev_get_by_index_rcu(net, params->ifindex);
5297 	if (unlikely(!dev))
5298 		return -ENODEV;
5299 
5300 	/* verify forwarding is enabled on this interface */
5301 	in_dev = __in_dev_get_rcu(dev);
5302 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5303 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5304 
5305 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5306 		fl4.flowi4_iif = 1;
5307 		fl4.flowi4_oif = params->ifindex;
5308 	} else {
5309 		fl4.flowi4_iif = params->ifindex;
5310 		fl4.flowi4_oif = 0;
5311 	}
5312 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5313 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5314 	fl4.flowi4_flags = 0;
5315 
5316 	fl4.flowi4_proto = params->l4_protocol;
5317 	fl4.daddr = params->ipv4_dst;
5318 	fl4.saddr = params->ipv4_src;
5319 	fl4.fl4_sport = params->sport;
5320 	fl4.fl4_dport = params->dport;
5321 	fl4.flowi4_multipath_hash = 0;
5322 
5323 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5324 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5325 		struct fib_table *tb;
5326 
5327 		tb = fib_get_table(net, tbid);
5328 		if (unlikely(!tb))
5329 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5330 
5331 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5332 	} else {
5333 		fl4.flowi4_mark = 0;
5334 		fl4.flowi4_secid = 0;
5335 		fl4.flowi4_tun_key.tun_id = 0;
5336 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5337 
5338 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5339 	}
5340 
5341 	if (err) {
5342 		/* map fib lookup errors to RTN_ type */
5343 		if (err == -EINVAL)
5344 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5345 		if (err == -EHOSTUNREACH)
5346 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5347 		if (err == -EACCES)
5348 			return BPF_FIB_LKUP_RET_PROHIBIT;
5349 
5350 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5351 	}
5352 
5353 	if (res.type != RTN_UNICAST)
5354 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5355 
5356 	if (fib_info_num_path(res.fi) > 1)
5357 		fib_select_path(net, &res, &fl4, NULL);
5358 
5359 	if (check_mtu) {
5360 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5361 		if (params->tot_len > mtu)
5362 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5363 	}
5364 
5365 	nhc = res.nhc;
5366 
5367 	/* do not handle lwt encaps right now */
5368 	if (nhc->nhc_lwtstate)
5369 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5370 
5371 	dev = nhc->nhc_dev;
5372 
5373 	params->rt_metric = res.fi->fib_priority;
5374 	params->ifindex = dev->ifindex;
5375 
5376 	/* xdp and cls_bpf programs are run in RCU-bh so
5377 	 * rcu_read_lock_bh is not needed here
5378 	 */
5379 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5380 		if (nhc->nhc_gw_family)
5381 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5382 
5383 		neigh = __ipv4_neigh_lookup_noref(dev,
5384 						 (__force u32)params->ipv4_dst);
5385 	} else {
5386 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5387 
5388 		params->family = AF_INET6;
5389 		*dst = nhc->nhc_gw.ipv6;
5390 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5391 	}
5392 
5393 	if (!neigh)
5394 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5395 
5396 	return bpf_fib_set_fwd_params(params, neigh, dev);
5397 }
5398 #endif
5399 
5400 #if IS_ENABLED(CONFIG_IPV6)
5401 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5402 			       u32 flags, bool check_mtu)
5403 {
5404 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5405 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5406 	struct fib6_result res = {};
5407 	struct neighbour *neigh;
5408 	struct net_device *dev;
5409 	struct inet6_dev *idev;
5410 	struct flowi6 fl6;
5411 	int strict = 0;
5412 	int oif, err;
5413 	u32 mtu;
5414 
5415 	/* link local addresses are never forwarded */
5416 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5417 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5418 
5419 	dev = dev_get_by_index_rcu(net, params->ifindex);
5420 	if (unlikely(!dev))
5421 		return -ENODEV;
5422 
5423 	idev = __in6_dev_get_safely(dev);
5424 	if (unlikely(!idev || !idev->cnf.forwarding))
5425 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5426 
5427 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5428 		fl6.flowi6_iif = 1;
5429 		oif = fl6.flowi6_oif = params->ifindex;
5430 	} else {
5431 		oif = fl6.flowi6_iif = params->ifindex;
5432 		fl6.flowi6_oif = 0;
5433 		strict = RT6_LOOKUP_F_HAS_SADDR;
5434 	}
5435 	fl6.flowlabel = params->flowinfo;
5436 	fl6.flowi6_scope = 0;
5437 	fl6.flowi6_flags = 0;
5438 	fl6.mp_hash = 0;
5439 
5440 	fl6.flowi6_proto = params->l4_protocol;
5441 	fl6.daddr = *dst;
5442 	fl6.saddr = *src;
5443 	fl6.fl6_sport = params->sport;
5444 	fl6.fl6_dport = params->dport;
5445 
5446 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5447 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5448 		struct fib6_table *tb;
5449 
5450 		tb = ipv6_stub->fib6_get_table(net, tbid);
5451 		if (unlikely(!tb))
5452 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5453 
5454 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5455 						   strict);
5456 	} else {
5457 		fl6.flowi6_mark = 0;
5458 		fl6.flowi6_secid = 0;
5459 		fl6.flowi6_tun_key.tun_id = 0;
5460 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5461 
5462 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5463 	}
5464 
5465 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5466 		     res.f6i == net->ipv6.fib6_null_entry))
5467 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5468 
5469 	switch (res.fib6_type) {
5470 	/* only unicast is forwarded */
5471 	case RTN_UNICAST:
5472 		break;
5473 	case RTN_BLACKHOLE:
5474 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5475 	case RTN_UNREACHABLE:
5476 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5477 	case RTN_PROHIBIT:
5478 		return BPF_FIB_LKUP_RET_PROHIBIT;
5479 	default:
5480 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5481 	}
5482 
5483 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5484 				    fl6.flowi6_oif != 0, NULL, strict);
5485 
5486 	if (check_mtu) {
5487 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5488 		if (params->tot_len > mtu)
5489 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5490 	}
5491 
5492 	if (res.nh->fib_nh_lws)
5493 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5494 
5495 	if (res.nh->fib_nh_gw_family)
5496 		*dst = res.nh->fib_nh_gw6;
5497 
5498 	dev = res.nh->fib_nh_dev;
5499 	params->rt_metric = res.f6i->fib6_metric;
5500 	params->ifindex = dev->ifindex;
5501 
5502 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5503 	 * not needed here.
5504 	 */
5505 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5506 	if (!neigh)
5507 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5508 
5509 	return bpf_fib_set_fwd_params(params, neigh, dev);
5510 }
5511 #endif
5512 
5513 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5514 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5515 {
5516 	if (plen < sizeof(*params))
5517 		return -EINVAL;
5518 
5519 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5520 		return -EINVAL;
5521 
5522 	switch (params->family) {
5523 #if IS_ENABLED(CONFIG_INET)
5524 	case AF_INET:
5525 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5526 					   flags, true);
5527 #endif
5528 #if IS_ENABLED(CONFIG_IPV6)
5529 	case AF_INET6:
5530 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5531 					   flags, true);
5532 #endif
5533 	}
5534 	return -EAFNOSUPPORT;
5535 }
5536 
5537 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5538 	.func		= bpf_xdp_fib_lookup,
5539 	.gpl_only	= true,
5540 	.ret_type	= RET_INTEGER,
5541 	.arg1_type      = ARG_PTR_TO_CTX,
5542 	.arg2_type      = ARG_PTR_TO_MEM,
5543 	.arg3_type      = ARG_CONST_SIZE,
5544 	.arg4_type	= ARG_ANYTHING,
5545 };
5546 
5547 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5548 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5549 {
5550 	struct net *net = dev_net(skb->dev);
5551 	int rc = -EAFNOSUPPORT;
5552 
5553 	if (plen < sizeof(*params))
5554 		return -EINVAL;
5555 
5556 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5557 		return -EINVAL;
5558 
5559 	switch (params->family) {
5560 #if IS_ENABLED(CONFIG_INET)
5561 	case AF_INET:
5562 		rc = bpf_ipv4_fib_lookup(net, params, flags, false);
5563 		break;
5564 #endif
5565 #if IS_ENABLED(CONFIG_IPV6)
5566 	case AF_INET6:
5567 		rc = bpf_ipv6_fib_lookup(net, params, flags, false);
5568 		break;
5569 #endif
5570 	}
5571 
5572 	if (!rc) {
5573 		struct net_device *dev;
5574 
5575 		dev = dev_get_by_index_rcu(net, params->ifindex);
5576 		if (!is_skb_forwardable(dev, skb))
5577 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5578 	}
5579 
5580 	return rc;
5581 }
5582 
5583 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5584 	.func		= bpf_skb_fib_lookup,
5585 	.gpl_only	= true,
5586 	.ret_type	= RET_INTEGER,
5587 	.arg1_type      = ARG_PTR_TO_CTX,
5588 	.arg2_type      = ARG_PTR_TO_MEM,
5589 	.arg3_type      = ARG_CONST_SIZE,
5590 	.arg4_type	= ARG_ANYTHING,
5591 };
5592 
5593 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5594 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5595 {
5596 	int err;
5597 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5598 
5599 	if (!seg6_validate_srh(srh, len, false))
5600 		return -EINVAL;
5601 
5602 	switch (type) {
5603 	case BPF_LWT_ENCAP_SEG6_INLINE:
5604 		if (skb->protocol != htons(ETH_P_IPV6))
5605 			return -EBADMSG;
5606 
5607 		err = seg6_do_srh_inline(skb, srh);
5608 		break;
5609 	case BPF_LWT_ENCAP_SEG6:
5610 		skb_reset_inner_headers(skb);
5611 		skb->encapsulation = 1;
5612 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5613 		break;
5614 	default:
5615 		return -EINVAL;
5616 	}
5617 
5618 	bpf_compute_data_pointers(skb);
5619 	if (err)
5620 		return err;
5621 
5622 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5623 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5624 
5625 	return seg6_lookup_nexthop(skb, NULL, 0);
5626 }
5627 #endif /* CONFIG_IPV6_SEG6_BPF */
5628 
5629 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5630 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5631 			     bool ingress)
5632 {
5633 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5634 }
5635 #endif
5636 
5637 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5638 	   u32, len)
5639 {
5640 	switch (type) {
5641 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5642 	case BPF_LWT_ENCAP_SEG6:
5643 	case BPF_LWT_ENCAP_SEG6_INLINE:
5644 		return bpf_push_seg6_encap(skb, type, hdr, len);
5645 #endif
5646 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5647 	case BPF_LWT_ENCAP_IP:
5648 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5649 #endif
5650 	default:
5651 		return -EINVAL;
5652 	}
5653 }
5654 
5655 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5656 	   void *, hdr, u32, len)
5657 {
5658 	switch (type) {
5659 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5660 	case BPF_LWT_ENCAP_IP:
5661 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5662 #endif
5663 	default:
5664 		return -EINVAL;
5665 	}
5666 }
5667 
5668 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5669 	.func		= bpf_lwt_in_push_encap,
5670 	.gpl_only	= false,
5671 	.ret_type	= RET_INTEGER,
5672 	.arg1_type	= ARG_PTR_TO_CTX,
5673 	.arg2_type	= ARG_ANYTHING,
5674 	.arg3_type	= ARG_PTR_TO_MEM,
5675 	.arg4_type	= ARG_CONST_SIZE
5676 };
5677 
5678 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5679 	.func		= bpf_lwt_xmit_push_encap,
5680 	.gpl_only	= false,
5681 	.ret_type	= RET_INTEGER,
5682 	.arg1_type	= ARG_PTR_TO_CTX,
5683 	.arg2_type	= ARG_ANYTHING,
5684 	.arg3_type	= ARG_PTR_TO_MEM,
5685 	.arg4_type	= ARG_CONST_SIZE
5686 };
5687 
5688 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5689 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5690 	   const void *, from, u32, len)
5691 {
5692 	struct seg6_bpf_srh_state *srh_state =
5693 		this_cpu_ptr(&seg6_bpf_srh_states);
5694 	struct ipv6_sr_hdr *srh = srh_state->srh;
5695 	void *srh_tlvs, *srh_end, *ptr;
5696 	int srhoff = 0;
5697 
5698 	if (srh == NULL)
5699 		return -EINVAL;
5700 
5701 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5702 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5703 
5704 	ptr = skb->data + offset;
5705 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
5706 		srh_state->valid = false;
5707 	else if (ptr < (void *)&srh->flags ||
5708 		 ptr + len > (void *)&srh->segments)
5709 		return -EFAULT;
5710 
5711 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
5712 		return -EFAULT;
5713 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5714 		return -EINVAL;
5715 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5716 
5717 	memcpy(skb->data + offset, from, len);
5718 	return 0;
5719 }
5720 
5721 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5722 	.func		= bpf_lwt_seg6_store_bytes,
5723 	.gpl_only	= false,
5724 	.ret_type	= RET_INTEGER,
5725 	.arg1_type	= ARG_PTR_TO_CTX,
5726 	.arg2_type	= ARG_ANYTHING,
5727 	.arg3_type	= ARG_PTR_TO_MEM,
5728 	.arg4_type	= ARG_CONST_SIZE
5729 };
5730 
5731 static void bpf_update_srh_state(struct sk_buff *skb)
5732 {
5733 	struct seg6_bpf_srh_state *srh_state =
5734 		this_cpu_ptr(&seg6_bpf_srh_states);
5735 	int srhoff = 0;
5736 
5737 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5738 		srh_state->srh = NULL;
5739 	} else {
5740 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5741 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5742 		srh_state->valid = true;
5743 	}
5744 }
5745 
5746 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5747 	   u32, action, void *, param, u32, param_len)
5748 {
5749 	struct seg6_bpf_srh_state *srh_state =
5750 		this_cpu_ptr(&seg6_bpf_srh_states);
5751 	int hdroff = 0;
5752 	int err;
5753 
5754 	switch (action) {
5755 	case SEG6_LOCAL_ACTION_END_X:
5756 		if (!seg6_bpf_has_valid_srh(skb))
5757 			return -EBADMSG;
5758 		if (param_len != sizeof(struct in6_addr))
5759 			return -EINVAL;
5760 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5761 	case SEG6_LOCAL_ACTION_END_T:
5762 		if (!seg6_bpf_has_valid_srh(skb))
5763 			return -EBADMSG;
5764 		if (param_len != sizeof(int))
5765 			return -EINVAL;
5766 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5767 	case SEG6_LOCAL_ACTION_END_DT6:
5768 		if (!seg6_bpf_has_valid_srh(skb))
5769 			return -EBADMSG;
5770 		if (param_len != sizeof(int))
5771 			return -EINVAL;
5772 
5773 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5774 			return -EBADMSG;
5775 		if (!pskb_pull(skb, hdroff))
5776 			return -EBADMSG;
5777 
5778 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5779 		skb_reset_network_header(skb);
5780 		skb_reset_transport_header(skb);
5781 		skb->encapsulation = 0;
5782 
5783 		bpf_compute_data_pointers(skb);
5784 		bpf_update_srh_state(skb);
5785 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5786 	case SEG6_LOCAL_ACTION_END_B6:
5787 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5788 			return -EBADMSG;
5789 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5790 					  param, param_len);
5791 		if (!err)
5792 			bpf_update_srh_state(skb);
5793 
5794 		return err;
5795 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5796 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5797 			return -EBADMSG;
5798 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5799 					  param, param_len);
5800 		if (!err)
5801 			bpf_update_srh_state(skb);
5802 
5803 		return err;
5804 	default:
5805 		return -EINVAL;
5806 	}
5807 }
5808 
5809 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5810 	.func		= bpf_lwt_seg6_action,
5811 	.gpl_only	= false,
5812 	.ret_type	= RET_INTEGER,
5813 	.arg1_type	= ARG_PTR_TO_CTX,
5814 	.arg2_type	= ARG_ANYTHING,
5815 	.arg3_type	= ARG_PTR_TO_MEM,
5816 	.arg4_type	= ARG_CONST_SIZE
5817 };
5818 
5819 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5820 	   s32, len)
5821 {
5822 	struct seg6_bpf_srh_state *srh_state =
5823 		this_cpu_ptr(&seg6_bpf_srh_states);
5824 	struct ipv6_sr_hdr *srh = srh_state->srh;
5825 	void *srh_end, *srh_tlvs, *ptr;
5826 	struct ipv6hdr *hdr;
5827 	int srhoff = 0;
5828 	int ret;
5829 
5830 	if (unlikely(srh == NULL))
5831 		return -EINVAL;
5832 
5833 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5834 			((srh->first_segment + 1) << 4));
5835 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5836 			srh_state->hdrlen);
5837 	ptr = skb->data + offset;
5838 
5839 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5840 		return -EFAULT;
5841 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5842 		return -EFAULT;
5843 
5844 	if (len > 0) {
5845 		ret = skb_cow_head(skb, len);
5846 		if (unlikely(ret < 0))
5847 			return ret;
5848 
5849 		ret = bpf_skb_net_hdr_push(skb, offset, len);
5850 	} else {
5851 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5852 	}
5853 
5854 	bpf_compute_data_pointers(skb);
5855 	if (unlikely(ret < 0))
5856 		return ret;
5857 
5858 	hdr = (struct ipv6hdr *)skb->data;
5859 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5860 
5861 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5862 		return -EINVAL;
5863 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5864 	srh_state->hdrlen += len;
5865 	srh_state->valid = false;
5866 	return 0;
5867 }
5868 
5869 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5870 	.func		= bpf_lwt_seg6_adjust_srh,
5871 	.gpl_only	= false,
5872 	.ret_type	= RET_INTEGER,
5873 	.arg1_type	= ARG_PTR_TO_CTX,
5874 	.arg2_type	= ARG_ANYTHING,
5875 	.arg3_type	= ARG_ANYTHING,
5876 };
5877 #endif /* CONFIG_IPV6_SEG6_BPF */
5878 
5879 #ifdef CONFIG_INET
5880 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5881 			      int dif, int sdif, u8 family, u8 proto)
5882 {
5883 	bool refcounted = false;
5884 	struct sock *sk = NULL;
5885 
5886 	if (family == AF_INET) {
5887 		__be32 src4 = tuple->ipv4.saddr;
5888 		__be32 dst4 = tuple->ipv4.daddr;
5889 
5890 		if (proto == IPPROTO_TCP)
5891 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5892 					   src4, tuple->ipv4.sport,
5893 					   dst4, tuple->ipv4.dport,
5894 					   dif, sdif, &refcounted);
5895 		else
5896 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5897 					       dst4, tuple->ipv4.dport,
5898 					       dif, sdif, &udp_table, NULL);
5899 #if IS_ENABLED(CONFIG_IPV6)
5900 	} else {
5901 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5902 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5903 
5904 		if (proto == IPPROTO_TCP)
5905 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5906 					    src6, tuple->ipv6.sport,
5907 					    dst6, ntohs(tuple->ipv6.dport),
5908 					    dif, sdif, &refcounted);
5909 		else if (likely(ipv6_bpf_stub))
5910 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5911 							    src6, tuple->ipv6.sport,
5912 							    dst6, tuple->ipv6.dport,
5913 							    dif, sdif,
5914 							    &udp_table, NULL);
5915 #endif
5916 	}
5917 
5918 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5919 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5920 		sk = NULL;
5921 	}
5922 	return sk;
5923 }
5924 
5925 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5926  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5927  * Returns the socket as an 'unsigned long' to simplify the casting in the
5928  * callers to satisfy BPF_CALL declarations.
5929  */
5930 static struct sock *
5931 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5932 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5933 		 u64 flags)
5934 {
5935 	struct sock *sk = NULL;
5936 	u8 family = AF_UNSPEC;
5937 	struct net *net;
5938 	int sdif;
5939 
5940 	if (len == sizeof(tuple->ipv4))
5941 		family = AF_INET;
5942 	else if (len == sizeof(tuple->ipv6))
5943 		family = AF_INET6;
5944 	else
5945 		return NULL;
5946 
5947 	if (unlikely(family == AF_UNSPEC || flags ||
5948 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5949 		goto out;
5950 
5951 	if (family == AF_INET)
5952 		sdif = inet_sdif(skb);
5953 	else
5954 		sdif = inet6_sdif(skb);
5955 
5956 	if ((s32)netns_id < 0) {
5957 		net = caller_net;
5958 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5959 	} else {
5960 		net = get_net_ns_by_id(caller_net, netns_id);
5961 		if (unlikely(!net))
5962 			goto out;
5963 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5964 		put_net(net);
5965 	}
5966 
5967 out:
5968 	return sk;
5969 }
5970 
5971 static struct sock *
5972 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5973 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5974 		u64 flags)
5975 {
5976 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5977 					   ifindex, proto, netns_id, flags);
5978 
5979 	if (sk) {
5980 		sk = sk_to_full_sk(sk);
5981 		if (!sk_fullsock(sk)) {
5982 			sock_gen_put(sk);
5983 			return NULL;
5984 		}
5985 	}
5986 
5987 	return sk;
5988 }
5989 
5990 static struct sock *
5991 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5992 	       u8 proto, u64 netns_id, u64 flags)
5993 {
5994 	struct net *caller_net;
5995 	int ifindex;
5996 
5997 	if (skb->dev) {
5998 		caller_net = dev_net(skb->dev);
5999 		ifindex = skb->dev->ifindex;
6000 	} else {
6001 		caller_net = sock_net(skb->sk);
6002 		ifindex = 0;
6003 	}
6004 
6005 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6006 				netns_id, flags);
6007 }
6008 
6009 static struct sock *
6010 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6011 	      u8 proto, u64 netns_id, u64 flags)
6012 {
6013 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6014 					 flags);
6015 
6016 	if (sk) {
6017 		sk = sk_to_full_sk(sk);
6018 		if (!sk_fullsock(sk)) {
6019 			sock_gen_put(sk);
6020 			return NULL;
6021 		}
6022 	}
6023 
6024 	return sk;
6025 }
6026 
6027 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6028 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6029 {
6030 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6031 					     netns_id, flags);
6032 }
6033 
6034 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6035 	.func		= bpf_skc_lookup_tcp,
6036 	.gpl_only	= false,
6037 	.pkt_access	= true,
6038 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6039 	.arg1_type	= ARG_PTR_TO_CTX,
6040 	.arg2_type	= ARG_PTR_TO_MEM,
6041 	.arg3_type	= ARG_CONST_SIZE,
6042 	.arg4_type	= ARG_ANYTHING,
6043 	.arg5_type	= ARG_ANYTHING,
6044 };
6045 
6046 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6047 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6048 {
6049 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6050 					    netns_id, flags);
6051 }
6052 
6053 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6054 	.func		= bpf_sk_lookup_tcp,
6055 	.gpl_only	= false,
6056 	.pkt_access	= true,
6057 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6058 	.arg1_type	= ARG_PTR_TO_CTX,
6059 	.arg2_type	= ARG_PTR_TO_MEM,
6060 	.arg3_type	= ARG_CONST_SIZE,
6061 	.arg4_type	= ARG_ANYTHING,
6062 	.arg5_type	= ARG_ANYTHING,
6063 };
6064 
6065 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6066 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6067 {
6068 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6069 					    netns_id, flags);
6070 }
6071 
6072 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6073 	.func		= bpf_sk_lookup_udp,
6074 	.gpl_only	= false,
6075 	.pkt_access	= true,
6076 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6077 	.arg1_type	= ARG_PTR_TO_CTX,
6078 	.arg2_type	= ARG_PTR_TO_MEM,
6079 	.arg3_type	= ARG_CONST_SIZE,
6080 	.arg4_type	= ARG_ANYTHING,
6081 	.arg5_type	= ARG_ANYTHING,
6082 };
6083 
6084 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6085 {
6086 	if (sk && sk_is_refcounted(sk))
6087 		sock_gen_put(sk);
6088 	return 0;
6089 }
6090 
6091 static const struct bpf_func_proto bpf_sk_release_proto = {
6092 	.func		= bpf_sk_release,
6093 	.gpl_only	= false,
6094 	.ret_type	= RET_INTEGER,
6095 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6096 };
6097 
6098 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6099 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6100 {
6101 	struct net *caller_net = dev_net(ctx->rxq->dev);
6102 	int ifindex = ctx->rxq->dev->ifindex;
6103 
6104 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6105 					      ifindex, IPPROTO_UDP, netns_id,
6106 					      flags);
6107 }
6108 
6109 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6110 	.func           = bpf_xdp_sk_lookup_udp,
6111 	.gpl_only       = false,
6112 	.pkt_access     = true,
6113 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6114 	.arg1_type      = ARG_PTR_TO_CTX,
6115 	.arg2_type      = ARG_PTR_TO_MEM,
6116 	.arg3_type      = ARG_CONST_SIZE,
6117 	.arg4_type      = ARG_ANYTHING,
6118 	.arg5_type      = ARG_ANYTHING,
6119 };
6120 
6121 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6122 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6123 {
6124 	struct net *caller_net = dev_net(ctx->rxq->dev);
6125 	int ifindex = ctx->rxq->dev->ifindex;
6126 
6127 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6128 					       ifindex, IPPROTO_TCP, netns_id,
6129 					       flags);
6130 }
6131 
6132 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6133 	.func           = bpf_xdp_skc_lookup_tcp,
6134 	.gpl_only       = false,
6135 	.pkt_access     = true,
6136 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6137 	.arg1_type      = ARG_PTR_TO_CTX,
6138 	.arg2_type      = ARG_PTR_TO_MEM,
6139 	.arg3_type      = ARG_CONST_SIZE,
6140 	.arg4_type      = ARG_ANYTHING,
6141 	.arg5_type      = ARG_ANYTHING,
6142 };
6143 
6144 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6145 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6146 {
6147 	struct net *caller_net = dev_net(ctx->rxq->dev);
6148 	int ifindex = ctx->rxq->dev->ifindex;
6149 
6150 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6151 					      ifindex, IPPROTO_TCP, netns_id,
6152 					      flags);
6153 }
6154 
6155 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6156 	.func           = bpf_xdp_sk_lookup_tcp,
6157 	.gpl_only       = false,
6158 	.pkt_access     = true,
6159 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6160 	.arg1_type      = ARG_PTR_TO_CTX,
6161 	.arg2_type      = ARG_PTR_TO_MEM,
6162 	.arg3_type      = ARG_CONST_SIZE,
6163 	.arg4_type      = ARG_ANYTHING,
6164 	.arg5_type      = ARG_ANYTHING,
6165 };
6166 
6167 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6168 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6169 {
6170 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6171 					       sock_net(ctx->sk), 0,
6172 					       IPPROTO_TCP, netns_id, flags);
6173 }
6174 
6175 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6176 	.func		= bpf_sock_addr_skc_lookup_tcp,
6177 	.gpl_only	= false,
6178 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6179 	.arg1_type	= ARG_PTR_TO_CTX,
6180 	.arg2_type	= ARG_PTR_TO_MEM,
6181 	.arg3_type	= ARG_CONST_SIZE,
6182 	.arg4_type	= ARG_ANYTHING,
6183 	.arg5_type	= ARG_ANYTHING,
6184 };
6185 
6186 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6187 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6188 {
6189 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6190 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6191 					      netns_id, flags);
6192 }
6193 
6194 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6195 	.func		= bpf_sock_addr_sk_lookup_tcp,
6196 	.gpl_only	= false,
6197 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6198 	.arg1_type	= ARG_PTR_TO_CTX,
6199 	.arg2_type	= ARG_PTR_TO_MEM,
6200 	.arg3_type	= ARG_CONST_SIZE,
6201 	.arg4_type	= ARG_ANYTHING,
6202 	.arg5_type	= ARG_ANYTHING,
6203 };
6204 
6205 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6206 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6207 {
6208 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6209 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6210 					      netns_id, flags);
6211 }
6212 
6213 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6214 	.func		= bpf_sock_addr_sk_lookup_udp,
6215 	.gpl_only	= false,
6216 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6217 	.arg1_type	= ARG_PTR_TO_CTX,
6218 	.arg2_type	= ARG_PTR_TO_MEM,
6219 	.arg3_type	= ARG_CONST_SIZE,
6220 	.arg4_type	= ARG_ANYTHING,
6221 	.arg5_type	= ARG_ANYTHING,
6222 };
6223 
6224 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6225 				  struct bpf_insn_access_aux *info)
6226 {
6227 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6228 					  icsk_retransmits))
6229 		return false;
6230 
6231 	if (off % size != 0)
6232 		return false;
6233 
6234 	switch (off) {
6235 	case offsetof(struct bpf_tcp_sock, bytes_received):
6236 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6237 		return size == sizeof(__u64);
6238 	default:
6239 		return size == sizeof(__u32);
6240 	}
6241 }
6242 
6243 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6244 				    const struct bpf_insn *si,
6245 				    struct bpf_insn *insn_buf,
6246 				    struct bpf_prog *prog, u32 *target_size)
6247 {
6248 	struct bpf_insn *insn = insn_buf;
6249 
6250 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6251 	do {								\
6252 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6253 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6254 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6255 				      si->dst_reg, si->src_reg,		\
6256 				      offsetof(struct tcp_sock, FIELD)); \
6257 	} while (0)
6258 
6259 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6260 	do {								\
6261 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6262 					  FIELD) >			\
6263 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6264 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6265 					struct inet_connection_sock,	\
6266 					FIELD),				\
6267 				      si->dst_reg, si->src_reg,		\
6268 				      offsetof(				\
6269 					struct inet_connection_sock,	\
6270 					FIELD));			\
6271 	} while (0)
6272 
6273 	if (insn > insn_buf)
6274 		return insn - insn_buf;
6275 
6276 	switch (si->off) {
6277 	case offsetof(struct bpf_tcp_sock, rtt_min):
6278 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6279 			     sizeof(struct minmax));
6280 		BUILD_BUG_ON(sizeof(struct minmax) <
6281 			     sizeof(struct minmax_sample));
6282 
6283 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6284 				      offsetof(struct tcp_sock, rtt_min) +
6285 				      offsetof(struct minmax_sample, v));
6286 		break;
6287 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6288 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6289 		break;
6290 	case offsetof(struct bpf_tcp_sock, srtt_us):
6291 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6292 		break;
6293 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6294 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6295 		break;
6296 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6297 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6298 		break;
6299 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6300 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6301 		break;
6302 	case offsetof(struct bpf_tcp_sock, snd_una):
6303 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6304 		break;
6305 	case offsetof(struct bpf_tcp_sock, mss_cache):
6306 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6307 		break;
6308 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6309 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6310 		break;
6311 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6312 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6313 		break;
6314 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6315 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6316 		break;
6317 	case offsetof(struct bpf_tcp_sock, packets_out):
6318 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6319 		break;
6320 	case offsetof(struct bpf_tcp_sock, retrans_out):
6321 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6322 		break;
6323 	case offsetof(struct bpf_tcp_sock, total_retrans):
6324 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6325 		break;
6326 	case offsetof(struct bpf_tcp_sock, segs_in):
6327 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6328 		break;
6329 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6330 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6331 		break;
6332 	case offsetof(struct bpf_tcp_sock, segs_out):
6333 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6334 		break;
6335 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6336 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6337 		break;
6338 	case offsetof(struct bpf_tcp_sock, lost_out):
6339 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6340 		break;
6341 	case offsetof(struct bpf_tcp_sock, sacked_out):
6342 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6343 		break;
6344 	case offsetof(struct bpf_tcp_sock, bytes_received):
6345 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6346 		break;
6347 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6348 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6349 		break;
6350 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6351 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6352 		break;
6353 	case offsetof(struct bpf_tcp_sock, delivered):
6354 		BPF_TCP_SOCK_GET_COMMON(delivered);
6355 		break;
6356 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6357 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6358 		break;
6359 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6360 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6361 		break;
6362 	}
6363 
6364 	return insn - insn_buf;
6365 }
6366 
6367 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6368 {
6369 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6370 		return (unsigned long)sk;
6371 
6372 	return (unsigned long)NULL;
6373 }
6374 
6375 const struct bpf_func_proto bpf_tcp_sock_proto = {
6376 	.func		= bpf_tcp_sock,
6377 	.gpl_only	= false,
6378 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6379 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6380 };
6381 
6382 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6383 {
6384 	sk = sk_to_full_sk(sk);
6385 
6386 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6387 		return (unsigned long)sk;
6388 
6389 	return (unsigned long)NULL;
6390 }
6391 
6392 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6393 	.func		= bpf_get_listener_sock,
6394 	.gpl_only	= false,
6395 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6396 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6397 };
6398 
6399 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6400 {
6401 	unsigned int iphdr_len;
6402 
6403 	switch (skb_protocol(skb, true)) {
6404 	case cpu_to_be16(ETH_P_IP):
6405 		iphdr_len = sizeof(struct iphdr);
6406 		break;
6407 	case cpu_to_be16(ETH_P_IPV6):
6408 		iphdr_len = sizeof(struct ipv6hdr);
6409 		break;
6410 	default:
6411 		return 0;
6412 	}
6413 
6414 	if (skb_headlen(skb) < iphdr_len)
6415 		return 0;
6416 
6417 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6418 		return 0;
6419 
6420 	return INET_ECN_set_ce(skb);
6421 }
6422 
6423 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6424 				  struct bpf_insn_access_aux *info)
6425 {
6426 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6427 		return false;
6428 
6429 	if (off % size != 0)
6430 		return false;
6431 
6432 	switch (off) {
6433 	default:
6434 		return size == sizeof(__u32);
6435 	}
6436 }
6437 
6438 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6439 				    const struct bpf_insn *si,
6440 				    struct bpf_insn *insn_buf,
6441 				    struct bpf_prog *prog, u32 *target_size)
6442 {
6443 	struct bpf_insn *insn = insn_buf;
6444 
6445 #define BPF_XDP_SOCK_GET(FIELD)						\
6446 	do {								\
6447 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
6448 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
6449 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6450 				      si->dst_reg, si->src_reg,		\
6451 				      offsetof(struct xdp_sock, FIELD)); \
6452 	} while (0)
6453 
6454 	switch (si->off) {
6455 	case offsetof(struct bpf_xdp_sock, queue_id):
6456 		BPF_XDP_SOCK_GET(queue_id);
6457 		break;
6458 	}
6459 
6460 	return insn - insn_buf;
6461 }
6462 
6463 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6464 	.func           = bpf_skb_ecn_set_ce,
6465 	.gpl_only       = false,
6466 	.ret_type       = RET_INTEGER,
6467 	.arg1_type      = ARG_PTR_TO_CTX,
6468 };
6469 
6470 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6471 	   struct tcphdr *, th, u32, th_len)
6472 {
6473 #ifdef CONFIG_SYN_COOKIES
6474 	u32 cookie;
6475 	int ret;
6476 
6477 	if (unlikely(!sk || th_len < sizeof(*th)))
6478 		return -EINVAL;
6479 
6480 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6481 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6482 		return -EINVAL;
6483 
6484 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6485 		return -EINVAL;
6486 
6487 	if (!th->ack || th->rst || th->syn)
6488 		return -ENOENT;
6489 
6490 	if (tcp_synq_no_recent_overflow(sk))
6491 		return -ENOENT;
6492 
6493 	cookie = ntohl(th->ack_seq) - 1;
6494 
6495 	switch (sk->sk_family) {
6496 	case AF_INET:
6497 		if (unlikely(iph_len < sizeof(struct iphdr)))
6498 			return -EINVAL;
6499 
6500 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6501 		break;
6502 
6503 #if IS_BUILTIN(CONFIG_IPV6)
6504 	case AF_INET6:
6505 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6506 			return -EINVAL;
6507 
6508 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6509 		break;
6510 #endif /* CONFIG_IPV6 */
6511 
6512 	default:
6513 		return -EPROTONOSUPPORT;
6514 	}
6515 
6516 	if (ret > 0)
6517 		return 0;
6518 
6519 	return -ENOENT;
6520 #else
6521 	return -ENOTSUPP;
6522 #endif
6523 }
6524 
6525 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6526 	.func		= bpf_tcp_check_syncookie,
6527 	.gpl_only	= true,
6528 	.pkt_access	= true,
6529 	.ret_type	= RET_INTEGER,
6530 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6531 	.arg2_type	= ARG_PTR_TO_MEM,
6532 	.arg3_type	= ARG_CONST_SIZE,
6533 	.arg4_type	= ARG_PTR_TO_MEM,
6534 	.arg5_type	= ARG_CONST_SIZE,
6535 };
6536 
6537 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6538 	   struct tcphdr *, th, u32, th_len)
6539 {
6540 #ifdef CONFIG_SYN_COOKIES
6541 	u32 cookie;
6542 	u16 mss;
6543 
6544 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6545 		return -EINVAL;
6546 
6547 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6548 		return -EINVAL;
6549 
6550 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6551 		return -ENOENT;
6552 
6553 	if (!th->syn || th->ack || th->fin || th->rst)
6554 		return -EINVAL;
6555 
6556 	if (unlikely(iph_len < sizeof(struct iphdr)))
6557 		return -EINVAL;
6558 
6559 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6560 	 * same offset so we can cast to the shorter header (struct iphdr).
6561 	 */
6562 	switch (((struct iphdr *)iph)->version) {
6563 	case 4:
6564 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6565 			return -EINVAL;
6566 
6567 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6568 		break;
6569 
6570 #if IS_BUILTIN(CONFIG_IPV6)
6571 	case 6:
6572 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6573 			return -EINVAL;
6574 
6575 		if (sk->sk_family != AF_INET6)
6576 			return -EINVAL;
6577 
6578 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6579 		break;
6580 #endif /* CONFIG_IPV6 */
6581 
6582 	default:
6583 		return -EPROTONOSUPPORT;
6584 	}
6585 	if (mss == 0)
6586 		return -ENOENT;
6587 
6588 	return cookie | ((u64)mss << 32);
6589 #else
6590 	return -EOPNOTSUPP;
6591 #endif /* CONFIG_SYN_COOKIES */
6592 }
6593 
6594 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6595 	.func		= bpf_tcp_gen_syncookie,
6596 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
6597 	.pkt_access	= true,
6598 	.ret_type	= RET_INTEGER,
6599 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6600 	.arg2_type	= ARG_PTR_TO_MEM,
6601 	.arg3_type	= ARG_CONST_SIZE,
6602 	.arg4_type	= ARG_PTR_TO_MEM,
6603 	.arg5_type	= ARG_CONST_SIZE,
6604 };
6605 
6606 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6607 {
6608 	if (!sk || flags != 0)
6609 		return -EINVAL;
6610 	if (!skb_at_tc_ingress(skb))
6611 		return -EOPNOTSUPP;
6612 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6613 		return -ENETUNREACH;
6614 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6615 		return -ESOCKTNOSUPPORT;
6616 	if (sk_is_refcounted(sk) &&
6617 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6618 		return -ENOENT;
6619 
6620 	skb_orphan(skb);
6621 	skb->sk = sk;
6622 	skb->destructor = sock_pfree;
6623 
6624 	return 0;
6625 }
6626 
6627 static const struct bpf_func_proto bpf_sk_assign_proto = {
6628 	.func		= bpf_sk_assign,
6629 	.gpl_only	= false,
6630 	.ret_type	= RET_INTEGER,
6631 	.arg1_type      = ARG_PTR_TO_CTX,
6632 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6633 	.arg3_type	= ARG_ANYTHING,
6634 };
6635 
6636 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6637 				    u8 search_kind, const u8 *magic,
6638 				    u8 magic_len, bool *eol)
6639 {
6640 	u8 kind, kind_len;
6641 
6642 	*eol = false;
6643 
6644 	while (op < opend) {
6645 		kind = op[0];
6646 
6647 		if (kind == TCPOPT_EOL) {
6648 			*eol = true;
6649 			return ERR_PTR(-ENOMSG);
6650 		} else if (kind == TCPOPT_NOP) {
6651 			op++;
6652 			continue;
6653 		}
6654 
6655 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6656 			/* Something is wrong in the received header.
6657 			 * Follow the TCP stack's tcp_parse_options()
6658 			 * and just bail here.
6659 			 */
6660 			return ERR_PTR(-EFAULT);
6661 
6662 		kind_len = op[1];
6663 		if (search_kind == kind) {
6664 			if (!magic_len)
6665 				return op;
6666 
6667 			if (magic_len > kind_len - 2)
6668 				return ERR_PTR(-ENOMSG);
6669 
6670 			if (!memcmp(&op[2], magic, magic_len))
6671 				return op;
6672 		}
6673 
6674 		op += kind_len;
6675 	}
6676 
6677 	return ERR_PTR(-ENOMSG);
6678 }
6679 
6680 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6681 	   void *, search_res, u32, len, u64, flags)
6682 {
6683 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6684 	const u8 *op, *opend, *magic, *search = search_res;
6685 	u8 search_kind, search_len, copy_len, magic_len;
6686 	int ret;
6687 
6688 	/* 2 byte is the minimal option len except TCPOPT_NOP and
6689 	 * TCPOPT_EOL which are useless for the bpf prog to learn
6690 	 * and this helper disallow loading them also.
6691 	 */
6692 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6693 		return -EINVAL;
6694 
6695 	search_kind = search[0];
6696 	search_len = search[1];
6697 
6698 	if (search_len > len || search_kind == TCPOPT_NOP ||
6699 	    search_kind == TCPOPT_EOL)
6700 		return -EINVAL;
6701 
6702 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
6703 		/* 16 or 32 bit magic.  +2 for kind and kind length */
6704 		if (search_len != 4 && search_len != 6)
6705 			return -EINVAL;
6706 		magic = &search[2];
6707 		magic_len = search_len - 2;
6708 	} else {
6709 		if (search_len)
6710 			return -EINVAL;
6711 		magic = NULL;
6712 		magic_len = 0;
6713 	}
6714 
6715 	if (load_syn) {
6716 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6717 		if (ret < 0)
6718 			return ret;
6719 
6720 		opend = op + ret;
6721 		op += sizeof(struct tcphdr);
6722 	} else {
6723 		if (!bpf_sock->skb ||
6724 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6725 			/* This bpf_sock->op cannot call this helper */
6726 			return -EPERM;
6727 
6728 		opend = bpf_sock->skb_data_end;
6729 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
6730 	}
6731 
6732 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6733 				&eol);
6734 	if (IS_ERR(op))
6735 		return PTR_ERR(op);
6736 
6737 	copy_len = op[1];
6738 	ret = copy_len;
6739 	if (copy_len > len) {
6740 		ret = -ENOSPC;
6741 		copy_len = len;
6742 	}
6743 
6744 	memcpy(search_res, op, copy_len);
6745 	return ret;
6746 }
6747 
6748 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6749 	.func		= bpf_sock_ops_load_hdr_opt,
6750 	.gpl_only	= false,
6751 	.ret_type	= RET_INTEGER,
6752 	.arg1_type	= ARG_PTR_TO_CTX,
6753 	.arg2_type	= ARG_PTR_TO_MEM,
6754 	.arg3_type	= ARG_CONST_SIZE,
6755 	.arg4_type	= ARG_ANYTHING,
6756 };
6757 
6758 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6759 	   const void *, from, u32, len, u64, flags)
6760 {
6761 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
6762 	const u8 *op, *new_op, *magic = NULL;
6763 	struct sk_buff *skb;
6764 	bool eol;
6765 
6766 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6767 		return -EPERM;
6768 
6769 	if (len < 2 || flags)
6770 		return -EINVAL;
6771 
6772 	new_op = from;
6773 	new_kind = new_op[0];
6774 	new_kind_len = new_op[1];
6775 
6776 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6777 	    new_kind == TCPOPT_EOL)
6778 		return -EINVAL;
6779 
6780 	if (new_kind_len > bpf_sock->remaining_opt_len)
6781 		return -ENOSPC;
6782 
6783 	/* 253 is another experimental kind */
6784 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
6785 		if (new_kind_len < 4)
6786 			return -EINVAL;
6787 		/* Match for the 2 byte magic also.
6788 		 * RFC 6994: the magic could be 2 or 4 bytes.
6789 		 * Hence, matching by 2 byte only is on the
6790 		 * conservative side but it is the right
6791 		 * thing to do for the 'search-for-duplication'
6792 		 * purpose.
6793 		 */
6794 		magic = &new_op[2];
6795 		magic_len = 2;
6796 	}
6797 
6798 	/* Check for duplication */
6799 	skb = bpf_sock->skb;
6800 	op = skb->data + sizeof(struct tcphdr);
6801 	opend = bpf_sock->skb_data_end;
6802 
6803 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
6804 				&eol);
6805 	if (!IS_ERR(op))
6806 		return -EEXIST;
6807 
6808 	if (PTR_ERR(op) != -ENOMSG)
6809 		return PTR_ERR(op);
6810 
6811 	if (eol)
6812 		/* The option has been ended.  Treat it as no more
6813 		 * header option can be written.
6814 		 */
6815 		return -ENOSPC;
6816 
6817 	/* No duplication found.  Store the header option. */
6818 	memcpy(opend, from, new_kind_len);
6819 
6820 	bpf_sock->remaining_opt_len -= new_kind_len;
6821 	bpf_sock->skb_data_end += new_kind_len;
6822 
6823 	return 0;
6824 }
6825 
6826 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
6827 	.func		= bpf_sock_ops_store_hdr_opt,
6828 	.gpl_only	= false,
6829 	.ret_type	= RET_INTEGER,
6830 	.arg1_type	= ARG_PTR_TO_CTX,
6831 	.arg2_type	= ARG_PTR_TO_MEM,
6832 	.arg3_type	= ARG_CONST_SIZE,
6833 	.arg4_type	= ARG_ANYTHING,
6834 };
6835 
6836 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6837 	   u32, len, u64, flags)
6838 {
6839 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6840 		return -EPERM;
6841 
6842 	if (flags || len < 2)
6843 		return -EINVAL;
6844 
6845 	if (len > bpf_sock->remaining_opt_len)
6846 		return -ENOSPC;
6847 
6848 	bpf_sock->remaining_opt_len -= len;
6849 
6850 	return 0;
6851 }
6852 
6853 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
6854 	.func		= bpf_sock_ops_reserve_hdr_opt,
6855 	.gpl_only	= false,
6856 	.ret_type	= RET_INTEGER,
6857 	.arg1_type	= ARG_PTR_TO_CTX,
6858 	.arg2_type	= ARG_ANYTHING,
6859 	.arg3_type	= ARG_ANYTHING,
6860 };
6861 
6862 #endif /* CONFIG_INET */
6863 
6864 bool bpf_helper_changes_pkt_data(void *func)
6865 {
6866 	if (func == bpf_skb_vlan_push ||
6867 	    func == bpf_skb_vlan_pop ||
6868 	    func == bpf_skb_store_bytes ||
6869 	    func == bpf_skb_change_proto ||
6870 	    func == bpf_skb_change_head ||
6871 	    func == sk_skb_change_head ||
6872 	    func == bpf_skb_change_tail ||
6873 	    func == sk_skb_change_tail ||
6874 	    func == bpf_skb_adjust_room ||
6875 	    func == sk_skb_adjust_room ||
6876 	    func == bpf_skb_pull_data ||
6877 	    func == sk_skb_pull_data ||
6878 	    func == bpf_clone_redirect ||
6879 	    func == bpf_l3_csum_replace ||
6880 	    func == bpf_l4_csum_replace ||
6881 	    func == bpf_xdp_adjust_head ||
6882 	    func == bpf_xdp_adjust_meta ||
6883 	    func == bpf_msg_pull_data ||
6884 	    func == bpf_msg_push_data ||
6885 	    func == bpf_msg_pop_data ||
6886 	    func == bpf_xdp_adjust_tail ||
6887 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6888 	    func == bpf_lwt_seg6_store_bytes ||
6889 	    func == bpf_lwt_seg6_adjust_srh ||
6890 	    func == bpf_lwt_seg6_action ||
6891 #endif
6892 #ifdef CONFIG_INET
6893 	    func == bpf_sock_ops_store_hdr_opt ||
6894 #endif
6895 	    func == bpf_lwt_in_push_encap ||
6896 	    func == bpf_lwt_xmit_push_encap)
6897 		return true;
6898 
6899 	return false;
6900 }
6901 
6902 const struct bpf_func_proto bpf_event_output_data_proto __weak;
6903 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
6904 
6905 static const struct bpf_func_proto *
6906 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6907 {
6908 	switch (func_id) {
6909 	/* inet and inet6 sockets are created in a process
6910 	 * context so there is always a valid uid/gid
6911 	 */
6912 	case BPF_FUNC_get_current_uid_gid:
6913 		return &bpf_get_current_uid_gid_proto;
6914 	case BPF_FUNC_get_local_storage:
6915 		return &bpf_get_local_storage_proto;
6916 	case BPF_FUNC_get_socket_cookie:
6917 		return &bpf_get_socket_cookie_sock_proto;
6918 	case BPF_FUNC_get_netns_cookie:
6919 		return &bpf_get_netns_cookie_sock_proto;
6920 	case BPF_FUNC_perf_event_output:
6921 		return &bpf_event_output_data_proto;
6922 	case BPF_FUNC_get_current_pid_tgid:
6923 		return &bpf_get_current_pid_tgid_proto;
6924 	case BPF_FUNC_get_current_comm:
6925 		return &bpf_get_current_comm_proto;
6926 #ifdef CONFIG_CGROUPS
6927 	case BPF_FUNC_get_current_cgroup_id:
6928 		return &bpf_get_current_cgroup_id_proto;
6929 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6930 		return &bpf_get_current_ancestor_cgroup_id_proto;
6931 #endif
6932 #ifdef CONFIG_CGROUP_NET_CLASSID
6933 	case BPF_FUNC_get_cgroup_classid:
6934 		return &bpf_get_cgroup_classid_curr_proto;
6935 #endif
6936 	case BPF_FUNC_sk_storage_get:
6937 		return &bpf_sk_storage_get_cg_sock_proto;
6938 	default:
6939 		return bpf_base_func_proto(func_id);
6940 	}
6941 }
6942 
6943 static const struct bpf_func_proto *
6944 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6945 {
6946 	switch (func_id) {
6947 	/* inet and inet6 sockets are created in a process
6948 	 * context so there is always a valid uid/gid
6949 	 */
6950 	case BPF_FUNC_get_current_uid_gid:
6951 		return &bpf_get_current_uid_gid_proto;
6952 	case BPF_FUNC_bind:
6953 		switch (prog->expected_attach_type) {
6954 		case BPF_CGROUP_INET4_CONNECT:
6955 		case BPF_CGROUP_INET6_CONNECT:
6956 			return &bpf_bind_proto;
6957 		default:
6958 			return NULL;
6959 		}
6960 	case BPF_FUNC_get_socket_cookie:
6961 		return &bpf_get_socket_cookie_sock_addr_proto;
6962 	case BPF_FUNC_get_netns_cookie:
6963 		return &bpf_get_netns_cookie_sock_addr_proto;
6964 	case BPF_FUNC_get_local_storage:
6965 		return &bpf_get_local_storage_proto;
6966 	case BPF_FUNC_perf_event_output:
6967 		return &bpf_event_output_data_proto;
6968 	case BPF_FUNC_get_current_pid_tgid:
6969 		return &bpf_get_current_pid_tgid_proto;
6970 	case BPF_FUNC_get_current_comm:
6971 		return &bpf_get_current_comm_proto;
6972 #ifdef CONFIG_CGROUPS
6973 	case BPF_FUNC_get_current_cgroup_id:
6974 		return &bpf_get_current_cgroup_id_proto;
6975 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6976 		return &bpf_get_current_ancestor_cgroup_id_proto;
6977 #endif
6978 #ifdef CONFIG_CGROUP_NET_CLASSID
6979 	case BPF_FUNC_get_cgroup_classid:
6980 		return &bpf_get_cgroup_classid_curr_proto;
6981 #endif
6982 #ifdef CONFIG_INET
6983 	case BPF_FUNC_sk_lookup_tcp:
6984 		return &bpf_sock_addr_sk_lookup_tcp_proto;
6985 	case BPF_FUNC_sk_lookup_udp:
6986 		return &bpf_sock_addr_sk_lookup_udp_proto;
6987 	case BPF_FUNC_sk_release:
6988 		return &bpf_sk_release_proto;
6989 	case BPF_FUNC_skc_lookup_tcp:
6990 		return &bpf_sock_addr_skc_lookup_tcp_proto;
6991 #endif /* CONFIG_INET */
6992 	case BPF_FUNC_sk_storage_get:
6993 		return &bpf_sk_storage_get_proto;
6994 	case BPF_FUNC_sk_storage_delete:
6995 		return &bpf_sk_storage_delete_proto;
6996 	case BPF_FUNC_setsockopt:
6997 		switch (prog->expected_attach_type) {
6998 		case BPF_CGROUP_INET4_CONNECT:
6999 		case BPF_CGROUP_INET6_CONNECT:
7000 			return &bpf_sock_addr_setsockopt_proto;
7001 		default:
7002 			return NULL;
7003 		}
7004 	case BPF_FUNC_getsockopt:
7005 		switch (prog->expected_attach_type) {
7006 		case BPF_CGROUP_INET4_CONNECT:
7007 		case BPF_CGROUP_INET6_CONNECT:
7008 			return &bpf_sock_addr_getsockopt_proto;
7009 		default:
7010 			return NULL;
7011 		}
7012 	default:
7013 		return bpf_sk_base_func_proto(func_id);
7014 	}
7015 }
7016 
7017 static const struct bpf_func_proto *
7018 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7019 {
7020 	switch (func_id) {
7021 	case BPF_FUNC_skb_load_bytes:
7022 		return &bpf_skb_load_bytes_proto;
7023 	case BPF_FUNC_skb_load_bytes_relative:
7024 		return &bpf_skb_load_bytes_relative_proto;
7025 	case BPF_FUNC_get_socket_cookie:
7026 		return &bpf_get_socket_cookie_proto;
7027 	case BPF_FUNC_get_socket_uid:
7028 		return &bpf_get_socket_uid_proto;
7029 	case BPF_FUNC_perf_event_output:
7030 		return &bpf_skb_event_output_proto;
7031 	default:
7032 		return bpf_sk_base_func_proto(func_id);
7033 	}
7034 }
7035 
7036 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7037 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7038 
7039 static const struct bpf_func_proto *
7040 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7041 {
7042 	switch (func_id) {
7043 	case BPF_FUNC_get_local_storage:
7044 		return &bpf_get_local_storage_proto;
7045 	case BPF_FUNC_sk_fullsock:
7046 		return &bpf_sk_fullsock_proto;
7047 	case BPF_FUNC_sk_storage_get:
7048 		return &bpf_sk_storage_get_proto;
7049 	case BPF_FUNC_sk_storage_delete:
7050 		return &bpf_sk_storage_delete_proto;
7051 	case BPF_FUNC_perf_event_output:
7052 		return &bpf_skb_event_output_proto;
7053 #ifdef CONFIG_SOCK_CGROUP_DATA
7054 	case BPF_FUNC_skb_cgroup_id:
7055 		return &bpf_skb_cgroup_id_proto;
7056 	case BPF_FUNC_skb_ancestor_cgroup_id:
7057 		return &bpf_skb_ancestor_cgroup_id_proto;
7058 	case BPF_FUNC_sk_cgroup_id:
7059 		return &bpf_sk_cgroup_id_proto;
7060 	case BPF_FUNC_sk_ancestor_cgroup_id:
7061 		return &bpf_sk_ancestor_cgroup_id_proto;
7062 #endif
7063 #ifdef CONFIG_INET
7064 	case BPF_FUNC_sk_lookup_tcp:
7065 		return &bpf_sk_lookup_tcp_proto;
7066 	case BPF_FUNC_sk_lookup_udp:
7067 		return &bpf_sk_lookup_udp_proto;
7068 	case BPF_FUNC_sk_release:
7069 		return &bpf_sk_release_proto;
7070 	case BPF_FUNC_skc_lookup_tcp:
7071 		return &bpf_skc_lookup_tcp_proto;
7072 	case BPF_FUNC_tcp_sock:
7073 		return &bpf_tcp_sock_proto;
7074 	case BPF_FUNC_get_listener_sock:
7075 		return &bpf_get_listener_sock_proto;
7076 	case BPF_FUNC_skb_ecn_set_ce:
7077 		return &bpf_skb_ecn_set_ce_proto;
7078 #endif
7079 	default:
7080 		return sk_filter_func_proto(func_id, prog);
7081 	}
7082 }
7083 
7084 static const struct bpf_func_proto *
7085 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7086 {
7087 	switch (func_id) {
7088 	case BPF_FUNC_skb_store_bytes:
7089 		return &bpf_skb_store_bytes_proto;
7090 	case BPF_FUNC_skb_load_bytes:
7091 		return &bpf_skb_load_bytes_proto;
7092 	case BPF_FUNC_skb_load_bytes_relative:
7093 		return &bpf_skb_load_bytes_relative_proto;
7094 	case BPF_FUNC_skb_pull_data:
7095 		return &bpf_skb_pull_data_proto;
7096 	case BPF_FUNC_csum_diff:
7097 		return &bpf_csum_diff_proto;
7098 	case BPF_FUNC_csum_update:
7099 		return &bpf_csum_update_proto;
7100 	case BPF_FUNC_csum_level:
7101 		return &bpf_csum_level_proto;
7102 	case BPF_FUNC_l3_csum_replace:
7103 		return &bpf_l3_csum_replace_proto;
7104 	case BPF_FUNC_l4_csum_replace:
7105 		return &bpf_l4_csum_replace_proto;
7106 	case BPF_FUNC_clone_redirect:
7107 		return &bpf_clone_redirect_proto;
7108 	case BPF_FUNC_get_cgroup_classid:
7109 		return &bpf_get_cgroup_classid_proto;
7110 	case BPF_FUNC_skb_vlan_push:
7111 		return &bpf_skb_vlan_push_proto;
7112 	case BPF_FUNC_skb_vlan_pop:
7113 		return &bpf_skb_vlan_pop_proto;
7114 	case BPF_FUNC_skb_change_proto:
7115 		return &bpf_skb_change_proto_proto;
7116 	case BPF_FUNC_skb_change_type:
7117 		return &bpf_skb_change_type_proto;
7118 	case BPF_FUNC_skb_adjust_room:
7119 		return &bpf_skb_adjust_room_proto;
7120 	case BPF_FUNC_skb_change_tail:
7121 		return &bpf_skb_change_tail_proto;
7122 	case BPF_FUNC_skb_change_head:
7123 		return &bpf_skb_change_head_proto;
7124 	case BPF_FUNC_skb_get_tunnel_key:
7125 		return &bpf_skb_get_tunnel_key_proto;
7126 	case BPF_FUNC_skb_set_tunnel_key:
7127 		return bpf_get_skb_set_tunnel_proto(func_id);
7128 	case BPF_FUNC_skb_get_tunnel_opt:
7129 		return &bpf_skb_get_tunnel_opt_proto;
7130 	case BPF_FUNC_skb_set_tunnel_opt:
7131 		return bpf_get_skb_set_tunnel_proto(func_id);
7132 	case BPF_FUNC_redirect:
7133 		return &bpf_redirect_proto;
7134 	case BPF_FUNC_redirect_neigh:
7135 		return &bpf_redirect_neigh_proto;
7136 	case BPF_FUNC_redirect_peer:
7137 		return &bpf_redirect_peer_proto;
7138 	case BPF_FUNC_get_route_realm:
7139 		return &bpf_get_route_realm_proto;
7140 	case BPF_FUNC_get_hash_recalc:
7141 		return &bpf_get_hash_recalc_proto;
7142 	case BPF_FUNC_set_hash_invalid:
7143 		return &bpf_set_hash_invalid_proto;
7144 	case BPF_FUNC_set_hash:
7145 		return &bpf_set_hash_proto;
7146 	case BPF_FUNC_perf_event_output:
7147 		return &bpf_skb_event_output_proto;
7148 	case BPF_FUNC_get_smp_processor_id:
7149 		return &bpf_get_smp_processor_id_proto;
7150 	case BPF_FUNC_skb_under_cgroup:
7151 		return &bpf_skb_under_cgroup_proto;
7152 	case BPF_FUNC_get_socket_cookie:
7153 		return &bpf_get_socket_cookie_proto;
7154 	case BPF_FUNC_get_socket_uid:
7155 		return &bpf_get_socket_uid_proto;
7156 	case BPF_FUNC_fib_lookup:
7157 		return &bpf_skb_fib_lookup_proto;
7158 	case BPF_FUNC_sk_fullsock:
7159 		return &bpf_sk_fullsock_proto;
7160 	case BPF_FUNC_sk_storage_get:
7161 		return &bpf_sk_storage_get_proto;
7162 	case BPF_FUNC_sk_storage_delete:
7163 		return &bpf_sk_storage_delete_proto;
7164 #ifdef CONFIG_XFRM
7165 	case BPF_FUNC_skb_get_xfrm_state:
7166 		return &bpf_skb_get_xfrm_state_proto;
7167 #endif
7168 #ifdef CONFIG_CGROUP_NET_CLASSID
7169 	case BPF_FUNC_skb_cgroup_classid:
7170 		return &bpf_skb_cgroup_classid_proto;
7171 #endif
7172 #ifdef CONFIG_SOCK_CGROUP_DATA
7173 	case BPF_FUNC_skb_cgroup_id:
7174 		return &bpf_skb_cgroup_id_proto;
7175 	case BPF_FUNC_skb_ancestor_cgroup_id:
7176 		return &bpf_skb_ancestor_cgroup_id_proto;
7177 #endif
7178 #ifdef CONFIG_INET
7179 	case BPF_FUNC_sk_lookup_tcp:
7180 		return &bpf_sk_lookup_tcp_proto;
7181 	case BPF_FUNC_sk_lookup_udp:
7182 		return &bpf_sk_lookup_udp_proto;
7183 	case BPF_FUNC_sk_release:
7184 		return &bpf_sk_release_proto;
7185 	case BPF_FUNC_tcp_sock:
7186 		return &bpf_tcp_sock_proto;
7187 	case BPF_FUNC_get_listener_sock:
7188 		return &bpf_get_listener_sock_proto;
7189 	case BPF_FUNC_skc_lookup_tcp:
7190 		return &bpf_skc_lookup_tcp_proto;
7191 	case BPF_FUNC_tcp_check_syncookie:
7192 		return &bpf_tcp_check_syncookie_proto;
7193 	case BPF_FUNC_skb_ecn_set_ce:
7194 		return &bpf_skb_ecn_set_ce_proto;
7195 	case BPF_FUNC_tcp_gen_syncookie:
7196 		return &bpf_tcp_gen_syncookie_proto;
7197 	case BPF_FUNC_sk_assign:
7198 		return &bpf_sk_assign_proto;
7199 #endif
7200 	default:
7201 		return bpf_sk_base_func_proto(func_id);
7202 	}
7203 }
7204 
7205 static const struct bpf_func_proto *
7206 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7207 {
7208 	switch (func_id) {
7209 	case BPF_FUNC_perf_event_output:
7210 		return &bpf_xdp_event_output_proto;
7211 	case BPF_FUNC_get_smp_processor_id:
7212 		return &bpf_get_smp_processor_id_proto;
7213 	case BPF_FUNC_csum_diff:
7214 		return &bpf_csum_diff_proto;
7215 	case BPF_FUNC_xdp_adjust_head:
7216 		return &bpf_xdp_adjust_head_proto;
7217 	case BPF_FUNC_xdp_adjust_meta:
7218 		return &bpf_xdp_adjust_meta_proto;
7219 	case BPF_FUNC_redirect:
7220 		return &bpf_xdp_redirect_proto;
7221 	case BPF_FUNC_redirect_map:
7222 		return &bpf_xdp_redirect_map_proto;
7223 	case BPF_FUNC_xdp_adjust_tail:
7224 		return &bpf_xdp_adjust_tail_proto;
7225 	case BPF_FUNC_fib_lookup:
7226 		return &bpf_xdp_fib_lookup_proto;
7227 #ifdef CONFIG_INET
7228 	case BPF_FUNC_sk_lookup_udp:
7229 		return &bpf_xdp_sk_lookup_udp_proto;
7230 	case BPF_FUNC_sk_lookup_tcp:
7231 		return &bpf_xdp_sk_lookup_tcp_proto;
7232 	case BPF_FUNC_sk_release:
7233 		return &bpf_sk_release_proto;
7234 	case BPF_FUNC_skc_lookup_tcp:
7235 		return &bpf_xdp_skc_lookup_tcp_proto;
7236 	case BPF_FUNC_tcp_check_syncookie:
7237 		return &bpf_tcp_check_syncookie_proto;
7238 	case BPF_FUNC_tcp_gen_syncookie:
7239 		return &bpf_tcp_gen_syncookie_proto;
7240 #endif
7241 	default:
7242 		return bpf_sk_base_func_proto(func_id);
7243 	}
7244 }
7245 
7246 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7247 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7248 
7249 static const struct bpf_func_proto *
7250 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7251 {
7252 	switch (func_id) {
7253 	case BPF_FUNC_setsockopt:
7254 		return &bpf_sock_ops_setsockopt_proto;
7255 	case BPF_FUNC_getsockopt:
7256 		return &bpf_sock_ops_getsockopt_proto;
7257 	case BPF_FUNC_sock_ops_cb_flags_set:
7258 		return &bpf_sock_ops_cb_flags_set_proto;
7259 	case BPF_FUNC_sock_map_update:
7260 		return &bpf_sock_map_update_proto;
7261 	case BPF_FUNC_sock_hash_update:
7262 		return &bpf_sock_hash_update_proto;
7263 	case BPF_FUNC_get_socket_cookie:
7264 		return &bpf_get_socket_cookie_sock_ops_proto;
7265 	case BPF_FUNC_get_local_storage:
7266 		return &bpf_get_local_storage_proto;
7267 	case BPF_FUNC_perf_event_output:
7268 		return &bpf_event_output_data_proto;
7269 	case BPF_FUNC_sk_storage_get:
7270 		return &bpf_sk_storage_get_proto;
7271 	case BPF_FUNC_sk_storage_delete:
7272 		return &bpf_sk_storage_delete_proto;
7273 #ifdef CONFIG_INET
7274 	case BPF_FUNC_load_hdr_opt:
7275 		return &bpf_sock_ops_load_hdr_opt_proto;
7276 	case BPF_FUNC_store_hdr_opt:
7277 		return &bpf_sock_ops_store_hdr_opt_proto;
7278 	case BPF_FUNC_reserve_hdr_opt:
7279 		return &bpf_sock_ops_reserve_hdr_opt_proto;
7280 	case BPF_FUNC_tcp_sock:
7281 		return &bpf_tcp_sock_proto;
7282 #endif /* CONFIG_INET */
7283 	default:
7284 		return bpf_sk_base_func_proto(func_id);
7285 	}
7286 }
7287 
7288 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7289 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7290 
7291 static const struct bpf_func_proto *
7292 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7293 {
7294 	switch (func_id) {
7295 	case BPF_FUNC_msg_redirect_map:
7296 		return &bpf_msg_redirect_map_proto;
7297 	case BPF_FUNC_msg_redirect_hash:
7298 		return &bpf_msg_redirect_hash_proto;
7299 	case BPF_FUNC_msg_apply_bytes:
7300 		return &bpf_msg_apply_bytes_proto;
7301 	case BPF_FUNC_msg_cork_bytes:
7302 		return &bpf_msg_cork_bytes_proto;
7303 	case BPF_FUNC_msg_pull_data:
7304 		return &bpf_msg_pull_data_proto;
7305 	case BPF_FUNC_msg_push_data:
7306 		return &bpf_msg_push_data_proto;
7307 	case BPF_FUNC_msg_pop_data:
7308 		return &bpf_msg_pop_data_proto;
7309 	case BPF_FUNC_perf_event_output:
7310 		return &bpf_event_output_data_proto;
7311 	case BPF_FUNC_get_current_uid_gid:
7312 		return &bpf_get_current_uid_gid_proto;
7313 	case BPF_FUNC_get_current_pid_tgid:
7314 		return &bpf_get_current_pid_tgid_proto;
7315 	case BPF_FUNC_sk_storage_get:
7316 		return &bpf_sk_storage_get_proto;
7317 	case BPF_FUNC_sk_storage_delete:
7318 		return &bpf_sk_storage_delete_proto;
7319 #ifdef CONFIG_CGROUPS
7320 	case BPF_FUNC_get_current_cgroup_id:
7321 		return &bpf_get_current_cgroup_id_proto;
7322 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7323 		return &bpf_get_current_ancestor_cgroup_id_proto;
7324 #endif
7325 #ifdef CONFIG_CGROUP_NET_CLASSID
7326 	case BPF_FUNC_get_cgroup_classid:
7327 		return &bpf_get_cgroup_classid_curr_proto;
7328 #endif
7329 	default:
7330 		return bpf_sk_base_func_proto(func_id);
7331 	}
7332 }
7333 
7334 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7335 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7336 
7337 static const struct bpf_func_proto *
7338 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7339 {
7340 	switch (func_id) {
7341 	case BPF_FUNC_skb_store_bytes:
7342 		return &bpf_skb_store_bytes_proto;
7343 	case BPF_FUNC_skb_load_bytes:
7344 		return &bpf_skb_load_bytes_proto;
7345 	case BPF_FUNC_skb_pull_data:
7346 		return &sk_skb_pull_data_proto;
7347 	case BPF_FUNC_skb_change_tail:
7348 		return &sk_skb_change_tail_proto;
7349 	case BPF_FUNC_skb_change_head:
7350 		return &sk_skb_change_head_proto;
7351 	case BPF_FUNC_skb_adjust_room:
7352 		return &sk_skb_adjust_room_proto;
7353 	case BPF_FUNC_get_socket_cookie:
7354 		return &bpf_get_socket_cookie_proto;
7355 	case BPF_FUNC_get_socket_uid:
7356 		return &bpf_get_socket_uid_proto;
7357 	case BPF_FUNC_sk_redirect_map:
7358 		return &bpf_sk_redirect_map_proto;
7359 	case BPF_FUNC_sk_redirect_hash:
7360 		return &bpf_sk_redirect_hash_proto;
7361 	case BPF_FUNC_perf_event_output:
7362 		return &bpf_skb_event_output_proto;
7363 #ifdef CONFIG_INET
7364 	case BPF_FUNC_sk_lookup_tcp:
7365 		return &bpf_sk_lookup_tcp_proto;
7366 	case BPF_FUNC_sk_lookup_udp:
7367 		return &bpf_sk_lookup_udp_proto;
7368 	case BPF_FUNC_sk_release:
7369 		return &bpf_sk_release_proto;
7370 	case BPF_FUNC_skc_lookup_tcp:
7371 		return &bpf_skc_lookup_tcp_proto;
7372 #endif
7373 	default:
7374 		return bpf_sk_base_func_proto(func_id);
7375 	}
7376 }
7377 
7378 static const struct bpf_func_proto *
7379 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7380 {
7381 	switch (func_id) {
7382 	case BPF_FUNC_skb_load_bytes:
7383 		return &bpf_flow_dissector_load_bytes_proto;
7384 	default:
7385 		return bpf_sk_base_func_proto(func_id);
7386 	}
7387 }
7388 
7389 static const struct bpf_func_proto *
7390 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7391 {
7392 	switch (func_id) {
7393 	case BPF_FUNC_skb_load_bytes:
7394 		return &bpf_skb_load_bytes_proto;
7395 	case BPF_FUNC_skb_pull_data:
7396 		return &bpf_skb_pull_data_proto;
7397 	case BPF_FUNC_csum_diff:
7398 		return &bpf_csum_diff_proto;
7399 	case BPF_FUNC_get_cgroup_classid:
7400 		return &bpf_get_cgroup_classid_proto;
7401 	case BPF_FUNC_get_route_realm:
7402 		return &bpf_get_route_realm_proto;
7403 	case BPF_FUNC_get_hash_recalc:
7404 		return &bpf_get_hash_recalc_proto;
7405 	case BPF_FUNC_perf_event_output:
7406 		return &bpf_skb_event_output_proto;
7407 	case BPF_FUNC_get_smp_processor_id:
7408 		return &bpf_get_smp_processor_id_proto;
7409 	case BPF_FUNC_skb_under_cgroup:
7410 		return &bpf_skb_under_cgroup_proto;
7411 	default:
7412 		return bpf_sk_base_func_proto(func_id);
7413 	}
7414 }
7415 
7416 static const struct bpf_func_proto *
7417 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7418 {
7419 	switch (func_id) {
7420 	case BPF_FUNC_lwt_push_encap:
7421 		return &bpf_lwt_in_push_encap_proto;
7422 	default:
7423 		return lwt_out_func_proto(func_id, prog);
7424 	}
7425 }
7426 
7427 static const struct bpf_func_proto *
7428 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7429 {
7430 	switch (func_id) {
7431 	case BPF_FUNC_skb_get_tunnel_key:
7432 		return &bpf_skb_get_tunnel_key_proto;
7433 	case BPF_FUNC_skb_set_tunnel_key:
7434 		return bpf_get_skb_set_tunnel_proto(func_id);
7435 	case BPF_FUNC_skb_get_tunnel_opt:
7436 		return &bpf_skb_get_tunnel_opt_proto;
7437 	case BPF_FUNC_skb_set_tunnel_opt:
7438 		return bpf_get_skb_set_tunnel_proto(func_id);
7439 	case BPF_FUNC_redirect:
7440 		return &bpf_redirect_proto;
7441 	case BPF_FUNC_clone_redirect:
7442 		return &bpf_clone_redirect_proto;
7443 	case BPF_FUNC_skb_change_tail:
7444 		return &bpf_skb_change_tail_proto;
7445 	case BPF_FUNC_skb_change_head:
7446 		return &bpf_skb_change_head_proto;
7447 	case BPF_FUNC_skb_store_bytes:
7448 		return &bpf_skb_store_bytes_proto;
7449 	case BPF_FUNC_csum_update:
7450 		return &bpf_csum_update_proto;
7451 	case BPF_FUNC_csum_level:
7452 		return &bpf_csum_level_proto;
7453 	case BPF_FUNC_l3_csum_replace:
7454 		return &bpf_l3_csum_replace_proto;
7455 	case BPF_FUNC_l4_csum_replace:
7456 		return &bpf_l4_csum_replace_proto;
7457 	case BPF_FUNC_set_hash_invalid:
7458 		return &bpf_set_hash_invalid_proto;
7459 	case BPF_FUNC_lwt_push_encap:
7460 		return &bpf_lwt_xmit_push_encap_proto;
7461 	default:
7462 		return lwt_out_func_proto(func_id, prog);
7463 	}
7464 }
7465 
7466 static const struct bpf_func_proto *
7467 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7468 {
7469 	switch (func_id) {
7470 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7471 	case BPF_FUNC_lwt_seg6_store_bytes:
7472 		return &bpf_lwt_seg6_store_bytes_proto;
7473 	case BPF_FUNC_lwt_seg6_action:
7474 		return &bpf_lwt_seg6_action_proto;
7475 	case BPF_FUNC_lwt_seg6_adjust_srh:
7476 		return &bpf_lwt_seg6_adjust_srh_proto;
7477 #endif
7478 	default:
7479 		return lwt_out_func_proto(func_id, prog);
7480 	}
7481 }
7482 
7483 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7484 				    const struct bpf_prog *prog,
7485 				    struct bpf_insn_access_aux *info)
7486 {
7487 	const int size_default = sizeof(__u32);
7488 
7489 	if (off < 0 || off >= sizeof(struct __sk_buff))
7490 		return false;
7491 
7492 	/* The verifier guarantees that size > 0. */
7493 	if (off % size != 0)
7494 		return false;
7495 
7496 	switch (off) {
7497 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7498 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
7499 			return false;
7500 		break;
7501 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7502 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7503 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7504 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7505 	case bpf_ctx_range(struct __sk_buff, data):
7506 	case bpf_ctx_range(struct __sk_buff, data_meta):
7507 	case bpf_ctx_range(struct __sk_buff, data_end):
7508 		if (size != size_default)
7509 			return false;
7510 		break;
7511 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7512 		return false;
7513 	case bpf_ctx_range(struct __sk_buff, tstamp):
7514 		if (size != sizeof(__u64))
7515 			return false;
7516 		break;
7517 	case offsetof(struct __sk_buff, sk):
7518 		if (type == BPF_WRITE || size != sizeof(__u64))
7519 			return false;
7520 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7521 		break;
7522 	default:
7523 		/* Only narrow read access allowed for now. */
7524 		if (type == BPF_WRITE) {
7525 			if (size != size_default)
7526 				return false;
7527 		} else {
7528 			bpf_ctx_record_field_size(info, size_default);
7529 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7530 				return false;
7531 		}
7532 	}
7533 
7534 	return true;
7535 }
7536 
7537 static bool sk_filter_is_valid_access(int off, int size,
7538 				      enum bpf_access_type type,
7539 				      const struct bpf_prog *prog,
7540 				      struct bpf_insn_access_aux *info)
7541 {
7542 	switch (off) {
7543 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7544 	case bpf_ctx_range(struct __sk_buff, data):
7545 	case bpf_ctx_range(struct __sk_buff, data_meta):
7546 	case bpf_ctx_range(struct __sk_buff, data_end):
7547 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7548 	case bpf_ctx_range(struct __sk_buff, tstamp):
7549 	case bpf_ctx_range(struct __sk_buff, wire_len):
7550 		return false;
7551 	}
7552 
7553 	if (type == BPF_WRITE) {
7554 		switch (off) {
7555 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7556 			break;
7557 		default:
7558 			return false;
7559 		}
7560 	}
7561 
7562 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7563 }
7564 
7565 static bool cg_skb_is_valid_access(int off, int size,
7566 				   enum bpf_access_type type,
7567 				   const struct bpf_prog *prog,
7568 				   struct bpf_insn_access_aux *info)
7569 {
7570 	switch (off) {
7571 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7572 	case bpf_ctx_range(struct __sk_buff, data_meta):
7573 	case bpf_ctx_range(struct __sk_buff, wire_len):
7574 		return false;
7575 	case bpf_ctx_range(struct __sk_buff, data):
7576 	case bpf_ctx_range(struct __sk_buff, data_end):
7577 		if (!bpf_capable())
7578 			return false;
7579 		break;
7580 	}
7581 
7582 	if (type == BPF_WRITE) {
7583 		switch (off) {
7584 		case bpf_ctx_range(struct __sk_buff, mark):
7585 		case bpf_ctx_range(struct __sk_buff, priority):
7586 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7587 			break;
7588 		case bpf_ctx_range(struct __sk_buff, tstamp):
7589 			if (!bpf_capable())
7590 				return false;
7591 			break;
7592 		default:
7593 			return false;
7594 		}
7595 	}
7596 
7597 	switch (off) {
7598 	case bpf_ctx_range(struct __sk_buff, data):
7599 		info->reg_type = PTR_TO_PACKET;
7600 		break;
7601 	case bpf_ctx_range(struct __sk_buff, data_end):
7602 		info->reg_type = PTR_TO_PACKET_END;
7603 		break;
7604 	}
7605 
7606 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7607 }
7608 
7609 static bool lwt_is_valid_access(int off, int size,
7610 				enum bpf_access_type type,
7611 				const struct bpf_prog *prog,
7612 				struct bpf_insn_access_aux *info)
7613 {
7614 	switch (off) {
7615 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7616 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7617 	case bpf_ctx_range(struct __sk_buff, data_meta):
7618 	case bpf_ctx_range(struct __sk_buff, tstamp):
7619 	case bpf_ctx_range(struct __sk_buff, wire_len):
7620 		return false;
7621 	}
7622 
7623 	if (type == BPF_WRITE) {
7624 		switch (off) {
7625 		case bpf_ctx_range(struct __sk_buff, mark):
7626 		case bpf_ctx_range(struct __sk_buff, priority):
7627 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7628 			break;
7629 		default:
7630 			return false;
7631 		}
7632 	}
7633 
7634 	switch (off) {
7635 	case bpf_ctx_range(struct __sk_buff, data):
7636 		info->reg_type = PTR_TO_PACKET;
7637 		break;
7638 	case bpf_ctx_range(struct __sk_buff, data_end):
7639 		info->reg_type = PTR_TO_PACKET_END;
7640 		break;
7641 	}
7642 
7643 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7644 }
7645 
7646 /* Attach type specific accesses */
7647 static bool __sock_filter_check_attach_type(int off,
7648 					    enum bpf_access_type access_type,
7649 					    enum bpf_attach_type attach_type)
7650 {
7651 	switch (off) {
7652 	case offsetof(struct bpf_sock, bound_dev_if):
7653 	case offsetof(struct bpf_sock, mark):
7654 	case offsetof(struct bpf_sock, priority):
7655 		switch (attach_type) {
7656 		case BPF_CGROUP_INET_SOCK_CREATE:
7657 		case BPF_CGROUP_INET_SOCK_RELEASE:
7658 			goto full_access;
7659 		default:
7660 			return false;
7661 		}
7662 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7663 		switch (attach_type) {
7664 		case BPF_CGROUP_INET4_POST_BIND:
7665 			goto read_only;
7666 		default:
7667 			return false;
7668 		}
7669 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7670 		switch (attach_type) {
7671 		case BPF_CGROUP_INET6_POST_BIND:
7672 			goto read_only;
7673 		default:
7674 			return false;
7675 		}
7676 	case bpf_ctx_range(struct bpf_sock, src_port):
7677 		switch (attach_type) {
7678 		case BPF_CGROUP_INET4_POST_BIND:
7679 		case BPF_CGROUP_INET6_POST_BIND:
7680 			goto read_only;
7681 		default:
7682 			return false;
7683 		}
7684 	}
7685 read_only:
7686 	return access_type == BPF_READ;
7687 full_access:
7688 	return true;
7689 }
7690 
7691 bool bpf_sock_common_is_valid_access(int off, int size,
7692 				     enum bpf_access_type type,
7693 				     struct bpf_insn_access_aux *info)
7694 {
7695 	switch (off) {
7696 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
7697 		return false;
7698 	default:
7699 		return bpf_sock_is_valid_access(off, size, type, info);
7700 	}
7701 }
7702 
7703 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7704 			      struct bpf_insn_access_aux *info)
7705 {
7706 	const int size_default = sizeof(__u32);
7707 
7708 	if (off < 0 || off >= sizeof(struct bpf_sock))
7709 		return false;
7710 	if (off % size != 0)
7711 		return false;
7712 
7713 	switch (off) {
7714 	case offsetof(struct bpf_sock, state):
7715 	case offsetof(struct bpf_sock, family):
7716 	case offsetof(struct bpf_sock, type):
7717 	case offsetof(struct bpf_sock, protocol):
7718 	case offsetof(struct bpf_sock, dst_port):
7719 	case offsetof(struct bpf_sock, src_port):
7720 	case offsetof(struct bpf_sock, rx_queue_mapping):
7721 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7722 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7723 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
7724 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7725 		bpf_ctx_record_field_size(info, size_default);
7726 		return bpf_ctx_narrow_access_ok(off, size, size_default);
7727 	}
7728 
7729 	return size == size_default;
7730 }
7731 
7732 static bool sock_filter_is_valid_access(int off, int size,
7733 					enum bpf_access_type type,
7734 					const struct bpf_prog *prog,
7735 					struct bpf_insn_access_aux *info)
7736 {
7737 	if (!bpf_sock_is_valid_access(off, size, type, info))
7738 		return false;
7739 	return __sock_filter_check_attach_type(off, type,
7740 					       prog->expected_attach_type);
7741 }
7742 
7743 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7744 			     const struct bpf_prog *prog)
7745 {
7746 	/* Neither direct read nor direct write requires any preliminary
7747 	 * action.
7748 	 */
7749 	return 0;
7750 }
7751 
7752 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7753 				const struct bpf_prog *prog, int drop_verdict)
7754 {
7755 	struct bpf_insn *insn = insn_buf;
7756 
7757 	if (!direct_write)
7758 		return 0;
7759 
7760 	/* if (!skb->cloned)
7761 	 *       goto start;
7762 	 *
7763 	 * (Fast-path, otherwise approximation that we might be
7764 	 *  a clone, do the rest in helper.)
7765 	 */
7766 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7767 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7768 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7769 
7770 	/* ret = bpf_skb_pull_data(skb, 0); */
7771 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7772 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7773 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7774 			       BPF_FUNC_skb_pull_data);
7775 	/* if (!ret)
7776 	 *      goto restore;
7777 	 * return TC_ACT_SHOT;
7778 	 */
7779 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7780 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7781 	*insn++ = BPF_EXIT_INSN();
7782 
7783 	/* restore: */
7784 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7785 	/* start: */
7786 	*insn++ = prog->insnsi[0];
7787 
7788 	return insn - insn_buf;
7789 }
7790 
7791 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7792 			  struct bpf_insn *insn_buf)
7793 {
7794 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
7795 	struct bpf_insn *insn = insn_buf;
7796 
7797 	if (!indirect) {
7798 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7799 	} else {
7800 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7801 		if (orig->imm)
7802 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7803 	}
7804 	/* We're guaranteed here that CTX is in R6. */
7805 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7806 
7807 	switch (BPF_SIZE(orig->code)) {
7808 	case BPF_B:
7809 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7810 		break;
7811 	case BPF_H:
7812 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7813 		break;
7814 	case BPF_W:
7815 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7816 		break;
7817 	}
7818 
7819 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7820 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7821 	*insn++ = BPF_EXIT_INSN();
7822 
7823 	return insn - insn_buf;
7824 }
7825 
7826 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
7827 			       const struct bpf_prog *prog)
7828 {
7829 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
7830 }
7831 
7832 static bool tc_cls_act_is_valid_access(int off, int size,
7833 				       enum bpf_access_type type,
7834 				       const struct bpf_prog *prog,
7835 				       struct bpf_insn_access_aux *info)
7836 {
7837 	if (type == BPF_WRITE) {
7838 		switch (off) {
7839 		case bpf_ctx_range(struct __sk_buff, mark):
7840 		case bpf_ctx_range(struct __sk_buff, tc_index):
7841 		case bpf_ctx_range(struct __sk_buff, priority):
7842 		case bpf_ctx_range(struct __sk_buff, tc_classid):
7843 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7844 		case bpf_ctx_range(struct __sk_buff, tstamp):
7845 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
7846 			break;
7847 		default:
7848 			return false;
7849 		}
7850 	}
7851 
7852 	switch (off) {
7853 	case bpf_ctx_range(struct __sk_buff, data):
7854 		info->reg_type = PTR_TO_PACKET;
7855 		break;
7856 	case bpf_ctx_range(struct __sk_buff, data_meta):
7857 		info->reg_type = PTR_TO_PACKET_META;
7858 		break;
7859 	case bpf_ctx_range(struct __sk_buff, data_end):
7860 		info->reg_type = PTR_TO_PACKET_END;
7861 		break;
7862 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7863 		return false;
7864 	}
7865 
7866 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7867 }
7868 
7869 static bool __is_valid_xdp_access(int off, int size)
7870 {
7871 	if (off < 0 || off >= sizeof(struct xdp_md))
7872 		return false;
7873 	if (off % size != 0)
7874 		return false;
7875 	if (size != sizeof(__u32))
7876 		return false;
7877 
7878 	return true;
7879 }
7880 
7881 static bool xdp_is_valid_access(int off, int size,
7882 				enum bpf_access_type type,
7883 				const struct bpf_prog *prog,
7884 				struct bpf_insn_access_aux *info)
7885 {
7886 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
7887 		switch (off) {
7888 		case offsetof(struct xdp_md, egress_ifindex):
7889 			return false;
7890 		}
7891 	}
7892 
7893 	if (type == BPF_WRITE) {
7894 		if (bpf_prog_is_dev_bound(prog->aux)) {
7895 			switch (off) {
7896 			case offsetof(struct xdp_md, rx_queue_index):
7897 				return __is_valid_xdp_access(off, size);
7898 			}
7899 		}
7900 		return false;
7901 	}
7902 
7903 	switch (off) {
7904 	case offsetof(struct xdp_md, data):
7905 		info->reg_type = PTR_TO_PACKET;
7906 		break;
7907 	case offsetof(struct xdp_md, data_meta):
7908 		info->reg_type = PTR_TO_PACKET_META;
7909 		break;
7910 	case offsetof(struct xdp_md, data_end):
7911 		info->reg_type = PTR_TO_PACKET_END;
7912 		break;
7913 	}
7914 
7915 	return __is_valid_xdp_access(off, size);
7916 }
7917 
7918 void bpf_warn_invalid_xdp_action(u32 act)
7919 {
7920 	const u32 act_max = XDP_REDIRECT;
7921 
7922 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
7923 		  act > act_max ? "Illegal" : "Driver unsupported",
7924 		  act);
7925 }
7926 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
7927 
7928 static bool sock_addr_is_valid_access(int off, int size,
7929 				      enum bpf_access_type type,
7930 				      const struct bpf_prog *prog,
7931 				      struct bpf_insn_access_aux *info)
7932 {
7933 	const int size_default = sizeof(__u32);
7934 
7935 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
7936 		return false;
7937 	if (off % size != 0)
7938 		return false;
7939 
7940 	/* Disallow access to IPv6 fields from IPv4 contex and vise
7941 	 * versa.
7942 	 */
7943 	switch (off) {
7944 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7945 		switch (prog->expected_attach_type) {
7946 		case BPF_CGROUP_INET4_BIND:
7947 		case BPF_CGROUP_INET4_CONNECT:
7948 		case BPF_CGROUP_INET4_GETPEERNAME:
7949 		case BPF_CGROUP_INET4_GETSOCKNAME:
7950 		case BPF_CGROUP_UDP4_SENDMSG:
7951 		case BPF_CGROUP_UDP4_RECVMSG:
7952 			break;
7953 		default:
7954 			return false;
7955 		}
7956 		break;
7957 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7958 		switch (prog->expected_attach_type) {
7959 		case BPF_CGROUP_INET6_BIND:
7960 		case BPF_CGROUP_INET6_CONNECT:
7961 		case BPF_CGROUP_INET6_GETPEERNAME:
7962 		case BPF_CGROUP_INET6_GETSOCKNAME:
7963 		case BPF_CGROUP_UDP6_SENDMSG:
7964 		case BPF_CGROUP_UDP6_RECVMSG:
7965 			break;
7966 		default:
7967 			return false;
7968 		}
7969 		break;
7970 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7971 		switch (prog->expected_attach_type) {
7972 		case BPF_CGROUP_UDP4_SENDMSG:
7973 			break;
7974 		default:
7975 			return false;
7976 		}
7977 		break;
7978 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7979 				msg_src_ip6[3]):
7980 		switch (prog->expected_attach_type) {
7981 		case BPF_CGROUP_UDP6_SENDMSG:
7982 			break;
7983 		default:
7984 			return false;
7985 		}
7986 		break;
7987 	}
7988 
7989 	switch (off) {
7990 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7991 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7992 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7993 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7994 				msg_src_ip6[3]):
7995 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
7996 		if (type == BPF_READ) {
7997 			bpf_ctx_record_field_size(info, size_default);
7998 
7999 			if (bpf_ctx_wide_access_ok(off, size,
8000 						   struct bpf_sock_addr,
8001 						   user_ip6))
8002 				return true;
8003 
8004 			if (bpf_ctx_wide_access_ok(off, size,
8005 						   struct bpf_sock_addr,
8006 						   msg_src_ip6))
8007 				return true;
8008 
8009 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8010 				return false;
8011 		} else {
8012 			if (bpf_ctx_wide_access_ok(off, size,
8013 						   struct bpf_sock_addr,
8014 						   user_ip6))
8015 				return true;
8016 
8017 			if (bpf_ctx_wide_access_ok(off, size,
8018 						   struct bpf_sock_addr,
8019 						   msg_src_ip6))
8020 				return true;
8021 
8022 			if (size != size_default)
8023 				return false;
8024 		}
8025 		break;
8026 	case offsetof(struct bpf_sock_addr, sk):
8027 		if (type != BPF_READ)
8028 			return false;
8029 		if (size != sizeof(__u64))
8030 			return false;
8031 		info->reg_type = PTR_TO_SOCKET;
8032 		break;
8033 	default:
8034 		if (type == BPF_READ) {
8035 			if (size != size_default)
8036 				return false;
8037 		} else {
8038 			return false;
8039 		}
8040 	}
8041 
8042 	return true;
8043 }
8044 
8045 static bool sock_ops_is_valid_access(int off, int size,
8046 				     enum bpf_access_type type,
8047 				     const struct bpf_prog *prog,
8048 				     struct bpf_insn_access_aux *info)
8049 {
8050 	const int size_default = sizeof(__u32);
8051 
8052 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8053 		return false;
8054 
8055 	/* The verifier guarantees that size > 0. */
8056 	if (off % size != 0)
8057 		return false;
8058 
8059 	if (type == BPF_WRITE) {
8060 		switch (off) {
8061 		case offsetof(struct bpf_sock_ops, reply):
8062 		case offsetof(struct bpf_sock_ops, sk_txhash):
8063 			if (size != size_default)
8064 				return false;
8065 			break;
8066 		default:
8067 			return false;
8068 		}
8069 	} else {
8070 		switch (off) {
8071 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8072 					bytes_acked):
8073 			if (size != sizeof(__u64))
8074 				return false;
8075 			break;
8076 		case offsetof(struct bpf_sock_ops, sk):
8077 			if (size != sizeof(__u64))
8078 				return false;
8079 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8080 			break;
8081 		case offsetof(struct bpf_sock_ops, skb_data):
8082 			if (size != sizeof(__u64))
8083 				return false;
8084 			info->reg_type = PTR_TO_PACKET;
8085 			break;
8086 		case offsetof(struct bpf_sock_ops, skb_data_end):
8087 			if (size != sizeof(__u64))
8088 				return false;
8089 			info->reg_type = PTR_TO_PACKET_END;
8090 			break;
8091 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8092 			bpf_ctx_record_field_size(info, size_default);
8093 			return bpf_ctx_narrow_access_ok(off, size,
8094 							size_default);
8095 		default:
8096 			if (size != size_default)
8097 				return false;
8098 			break;
8099 		}
8100 	}
8101 
8102 	return true;
8103 }
8104 
8105 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8106 			   const struct bpf_prog *prog)
8107 {
8108 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8109 }
8110 
8111 static bool sk_skb_is_valid_access(int off, int size,
8112 				   enum bpf_access_type type,
8113 				   const struct bpf_prog *prog,
8114 				   struct bpf_insn_access_aux *info)
8115 {
8116 	switch (off) {
8117 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8118 	case bpf_ctx_range(struct __sk_buff, data_meta):
8119 	case bpf_ctx_range(struct __sk_buff, tstamp):
8120 	case bpf_ctx_range(struct __sk_buff, wire_len):
8121 		return false;
8122 	}
8123 
8124 	if (type == BPF_WRITE) {
8125 		switch (off) {
8126 		case bpf_ctx_range(struct __sk_buff, tc_index):
8127 		case bpf_ctx_range(struct __sk_buff, priority):
8128 			break;
8129 		default:
8130 			return false;
8131 		}
8132 	}
8133 
8134 	switch (off) {
8135 	case bpf_ctx_range(struct __sk_buff, mark):
8136 		return false;
8137 	case bpf_ctx_range(struct __sk_buff, data):
8138 		info->reg_type = PTR_TO_PACKET;
8139 		break;
8140 	case bpf_ctx_range(struct __sk_buff, data_end):
8141 		info->reg_type = PTR_TO_PACKET_END;
8142 		break;
8143 	}
8144 
8145 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8146 }
8147 
8148 static bool sk_msg_is_valid_access(int off, int size,
8149 				   enum bpf_access_type type,
8150 				   const struct bpf_prog *prog,
8151 				   struct bpf_insn_access_aux *info)
8152 {
8153 	if (type == BPF_WRITE)
8154 		return false;
8155 
8156 	if (off % size != 0)
8157 		return false;
8158 
8159 	switch (off) {
8160 	case offsetof(struct sk_msg_md, data):
8161 		info->reg_type = PTR_TO_PACKET;
8162 		if (size != sizeof(__u64))
8163 			return false;
8164 		break;
8165 	case offsetof(struct sk_msg_md, data_end):
8166 		info->reg_type = PTR_TO_PACKET_END;
8167 		if (size != sizeof(__u64))
8168 			return false;
8169 		break;
8170 	case offsetof(struct sk_msg_md, sk):
8171 		if (size != sizeof(__u64))
8172 			return false;
8173 		info->reg_type = PTR_TO_SOCKET;
8174 		break;
8175 	case bpf_ctx_range(struct sk_msg_md, family):
8176 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8177 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
8178 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8179 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8180 	case bpf_ctx_range(struct sk_msg_md, remote_port):
8181 	case bpf_ctx_range(struct sk_msg_md, local_port):
8182 	case bpf_ctx_range(struct sk_msg_md, size):
8183 		if (size != sizeof(__u32))
8184 			return false;
8185 		break;
8186 	default:
8187 		return false;
8188 	}
8189 	return true;
8190 }
8191 
8192 static bool flow_dissector_is_valid_access(int off, int size,
8193 					   enum bpf_access_type type,
8194 					   const struct bpf_prog *prog,
8195 					   struct bpf_insn_access_aux *info)
8196 {
8197 	const int size_default = sizeof(__u32);
8198 
8199 	if (off < 0 || off >= sizeof(struct __sk_buff))
8200 		return false;
8201 
8202 	if (type == BPF_WRITE)
8203 		return false;
8204 
8205 	switch (off) {
8206 	case bpf_ctx_range(struct __sk_buff, data):
8207 		if (size != size_default)
8208 			return false;
8209 		info->reg_type = PTR_TO_PACKET;
8210 		return true;
8211 	case bpf_ctx_range(struct __sk_buff, data_end):
8212 		if (size != size_default)
8213 			return false;
8214 		info->reg_type = PTR_TO_PACKET_END;
8215 		return true;
8216 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8217 		if (size != sizeof(__u64))
8218 			return false;
8219 		info->reg_type = PTR_TO_FLOW_KEYS;
8220 		return true;
8221 	default:
8222 		return false;
8223 	}
8224 }
8225 
8226 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8227 					     const struct bpf_insn *si,
8228 					     struct bpf_insn *insn_buf,
8229 					     struct bpf_prog *prog,
8230 					     u32 *target_size)
8231 
8232 {
8233 	struct bpf_insn *insn = insn_buf;
8234 
8235 	switch (si->off) {
8236 	case offsetof(struct __sk_buff, data):
8237 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8238 				      si->dst_reg, si->src_reg,
8239 				      offsetof(struct bpf_flow_dissector, data));
8240 		break;
8241 
8242 	case offsetof(struct __sk_buff, data_end):
8243 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8244 				      si->dst_reg, si->src_reg,
8245 				      offsetof(struct bpf_flow_dissector, data_end));
8246 		break;
8247 
8248 	case offsetof(struct __sk_buff, flow_keys):
8249 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8250 				      si->dst_reg, si->src_reg,
8251 				      offsetof(struct bpf_flow_dissector, flow_keys));
8252 		break;
8253 	}
8254 
8255 	return insn - insn_buf;
8256 }
8257 
8258 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8259 						  struct bpf_insn *insn)
8260 {
8261 	/* si->dst_reg = skb_shinfo(SKB); */
8262 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8263 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8264 			      BPF_REG_AX, si->src_reg,
8265 			      offsetof(struct sk_buff, end));
8266 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8267 			      si->dst_reg, si->src_reg,
8268 			      offsetof(struct sk_buff, head));
8269 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8270 #else
8271 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8272 			      si->dst_reg, si->src_reg,
8273 			      offsetof(struct sk_buff, end));
8274 #endif
8275 
8276 	return insn;
8277 }
8278 
8279 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8280 				  const struct bpf_insn *si,
8281 				  struct bpf_insn *insn_buf,
8282 				  struct bpf_prog *prog, u32 *target_size)
8283 {
8284 	struct bpf_insn *insn = insn_buf;
8285 	int off;
8286 
8287 	switch (si->off) {
8288 	case offsetof(struct __sk_buff, len):
8289 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8290 				      bpf_target_off(struct sk_buff, len, 4,
8291 						     target_size));
8292 		break;
8293 
8294 	case offsetof(struct __sk_buff, protocol):
8295 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8296 				      bpf_target_off(struct sk_buff, protocol, 2,
8297 						     target_size));
8298 		break;
8299 
8300 	case offsetof(struct __sk_buff, vlan_proto):
8301 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8302 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
8303 						     target_size));
8304 		break;
8305 
8306 	case offsetof(struct __sk_buff, priority):
8307 		if (type == BPF_WRITE)
8308 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8309 					      bpf_target_off(struct sk_buff, priority, 4,
8310 							     target_size));
8311 		else
8312 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8313 					      bpf_target_off(struct sk_buff, priority, 4,
8314 							     target_size));
8315 		break;
8316 
8317 	case offsetof(struct __sk_buff, ingress_ifindex):
8318 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8319 				      bpf_target_off(struct sk_buff, skb_iif, 4,
8320 						     target_size));
8321 		break;
8322 
8323 	case offsetof(struct __sk_buff, ifindex):
8324 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8325 				      si->dst_reg, si->src_reg,
8326 				      offsetof(struct sk_buff, dev));
8327 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8328 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8329 				      bpf_target_off(struct net_device, ifindex, 4,
8330 						     target_size));
8331 		break;
8332 
8333 	case offsetof(struct __sk_buff, hash):
8334 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8335 				      bpf_target_off(struct sk_buff, hash, 4,
8336 						     target_size));
8337 		break;
8338 
8339 	case offsetof(struct __sk_buff, mark):
8340 		if (type == BPF_WRITE)
8341 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8342 					      bpf_target_off(struct sk_buff, mark, 4,
8343 							     target_size));
8344 		else
8345 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8346 					      bpf_target_off(struct sk_buff, mark, 4,
8347 							     target_size));
8348 		break;
8349 
8350 	case offsetof(struct __sk_buff, pkt_type):
8351 		*target_size = 1;
8352 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8353 				      PKT_TYPE_OFFSET());
8354 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8355 #ifdef __BIG_ENDIAN_BITFIELD
8356 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8357 #endif
8358 		break;
8359 
8360 	case offsetof(struct __sk_buff, queue_mapping):
8361 		if (type == BPF_WRITE) {
8362 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8363 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8364 					      bpf_target_off(struct sk_buff,
8365 							     queue_mapping,
8366 							     2, target_size));
8367 		} else {
8368 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8369 					      bpf_target_off(struct sk_buff,
8370 							     queue_mapping,
8371 							     2, target_size));
8372 		}
8373 		break;
8374 
8375 	case offsetof(struct __sk_buff, vlan_present):
8376 		*target_size = 1;
8377 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8378 				      PKT_VLAN_PRESENT_OFFSET());
8379 		if (PKT_VLAN_PRESENT_BIT)
8380 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8381 		if (PKT_VLAN_PRESENT_BIT < 7)
8382 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8383 		break;
8384 
8385 	case offsetof(struct __sk_buff, vlan_tci):
8386 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8387 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
8388 						     target_size));
8389 		break;
8390 
8391 	case offsetof(struct __sk_buff, cb[0]) ...
8392 	     offsetofend(struct __sk_buff, cb[4]) - 1:
8393 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8394 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8395 			      offsetof(struct qdisc_skb_cb, data)) %
8396 			     sizeof(__u64));
8397 
8398 		prog->cb_access = 1;
8399 		off  = si->off;
8400 		off -= offsetof(struct __sk_buff, cb[0]);
8401 		off += offsetof(struct sk_buff, cb);
8402 		off += offsetof(struct qdisc_skb_cb, data);
8403 		if (type == BPF_WRITE)
8404 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8405 					      si->src_reg, off);
8406 		else
8407 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8408 					      si->src_reg, off);
8409 		break;
8410 
8411 	case offsetof(struct __sk_buff, tc_classid):
8412 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8413 
8414 		off  = si->off;
8415 		off -= offsetof(struct __sk_buff, tc_classid);
8416 		off += offsetof(struct sk_buff, cb);
8417 		off += offsetof(struct qdisc_skb_cb, tc_classid);
8418 		*target_size = 2;
8419 		if (type == BPF_WRITE)
8420 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8421 					      si->src_reg, off);
8422 		else
8423 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8424 					      si->src_reg, off);
8425 		break;
8426 
8427 	case offsetof(struct __sk_buff, data):
8428 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8429 				      si->dst_reg, si->src_reg,
8430 				      offsetof(struct sk_buff, data));
8431 		break;
8432 
8433 	case offsetof(struct __sk_buff, data_meta):
8434 		off  = si->off;
8435 		off -= offsetof(struct __sk_buff, data_meta);
8436 		off += offsetof(struct sk_buff, cb);
8437 		off += offsetof(struct bpf_skb_data_end, data_meta);
8438 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8439 				      si->src_reg, off);
8440 		break;
8441 
8442 	case offsetof(struct __sk_buff, data_end):
8443 		off  = si->off;
8444 		off -= offsetof(struct __sk_buff, data_end);
8445 		off += offsetof(struct sk_buff, cb);
8446 		off += offsetof(struct bpf_skb_data_end, data_end);
8447 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8448 				      si->src_reg, off);
8449 		break;
8450 
8451 	case offsetof(struct __sk_buff, tc_index):
8452 #ifdef CONFIG_NET_SCHED
8453 		if (type == BPF_WRITE)
8454 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8455 					      bpf_target_off(struct sk_buff, tc_index, 2,
8456 							     target_size));
8457 		else
8458 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8459 					      bpf_target_off(struct sk_buff, tc_index, 2,
8460 							     target_size));
8461 #else
8462 		*target_size = 2;
8463 		if (type == BPF_WRITE)
8464 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8465 		else
8466 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8467 #endif
8468 		break;
8469 
8470 	case offsetof(struct __sk_buff, napi_id):
8471 #if defined(CONFIG_NET_RX_BUSY_POLL)
8472 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8473 				      bpf_target_off(struct sk_buff, napi_id, 4,
8474 						     target_size));
8475 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8476 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8477 #else
8478 		*target_size = 4;
8479 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8480 #endif
8481 		break;
8482 	case offsetof(struct __sk_buff, family):
8483 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8484 
8485 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8486 				      si->dst_reg, si->src_reg,
8487 				      offsetof(struct sk_buff, sk));
8488 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8489 				      bpf_target_off(struct sock_common,
8490 						     skc_family,
8491 						     2, target_size));
8492 		break;
8493 	case offsetof(struct __sk_buff, remote_ip4):
8494 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8495 
8496 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8497 				      si->dst_reg, si->src_reg,
8498 				      offsetof(struct sk_buff, sk));
8499 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8500 				      bpf_target_off(struct sock_common,
8501 						     skc_daddr,
8502 						     4, target_size));
8503 		break;
8504 	case offsetof(struct __sk_buff, local_ip4):
8505 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8506 					  skc_rcv_saddr) != 4);
8507 
8508 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8509 				      si->dst_reg, si->src_reg,
8510 				      offsetof(struct sk_buff, sk));
8511 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8512 				      bpf_target_off(struct sock_common,
8513 						     skc_rcv_saddr,
8514 						     4, target_size));
8515 		break;
8516 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
8517 	     offsetof(struct __sk_buff, remote_ip6[3]):
8518 #if IS_ENABLED(CONFIG_IPV6)
8519 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8520 					  skc_v6_daddr.s6_addr32[0]) != 4);
8521 
8522 		off = si->off;
8523 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
8524 
8525 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8526 				      si->dst_reg, si->src_reg,
8527 				      offsetof(struct sk_buff, sk));
8528 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8529 				      offsetof(struct sock_common,
8530 					       skc_v6_daddr.s6_addr32[0]) +
8531 				      off);
8532 #else
8533 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8534 #endif
8535 		break;
8536 	case offsetof(struct __sk_buff, local_ip6[0]) ...
8537 	     offsetof(struct __sk_buff, local_ip6[3]):
8538 #if IS_ENABLED(CONFIG_IPV6)
8539 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8540 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8541 
8542 		off = si->off;
8543 		off -= offsetof(struct __sk_buff, local_ip6[0]);
8544 
8545 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8546 				      si->dst_reg, si->src_reg,
8547 				      offsetof(struct sk_buff, sk));
8548 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8549 				      offsetof(struct sock_common,
8550 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8551 				      off);
8552 #else
8553 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8554 #endif
8555 		break;
8556 
8557 	case offsetof(struct __sk_buff, remote_port):
8558 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8559 
8560 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8561 				      si->dst_reg, si->src_reg,
8562 				      offsetof(struct sk_buff, sk));
8563 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8564 				      bpf_target_off(struct sock_common,
8565 						     skc_dport,
8566 						     2, target_size));
8567 #ifndef __BIG_ENDIAN_BITFIELD
8568 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8569 #endif
8570 		break;
8571 
8572 	case offsetof(struct __sk_buff, local_port):
8573 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8574 
8575 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8576 				      si->dst_reg, si->src_reg,
8577 				      offsetof(struct sk_buff, sk));
8578 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8579 				      bpf_target_off(struct sock_common,
8580 						     skc_num, 2, target_size));
8581 		break;
8582 
8583 	case offsetof(struct __sk_buff, tstamp):
8584 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8585 
8586 		if (type == BPF_WRITE)
8587 			*insn++ = BPF_STX_MEM(BPF_DW,
8588 					      si->dst_reg, si->src_reg,
8589 					      bpf_target_off(struct sk_buff,
8590 							     tstamp, 8,
8591 							     target_size));
8592 		else
8593 			*insn++ = BPF_LDX_MEM(BPF_DW,
8594 					      si->dst_reg, si->src_reg,
8595 					      bpf_target_off(struct sk_buff,
8596 							     tstamp, 8,
8597 							     target_size));
8598 		break;
8599 
8600 	case offsetof(struct __sk_buff, gso_segs):
8601 		insn = bpf_convert_shinfo_access(si, insn);
8602 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8603 				      si->dst_reg, si->dst_reg,
8604 				      bpf_target_off(struct skb_shared_info,
8605 						     gso_segs, 2,
8606 						     target_size));
8607 		break;
8608 	case offsetof(struct __sk_buff, gso_size):
8609 		insn = bpf_convert_shinfo_access(si, insn);
8610 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8611 				      si->dst_reg, si->dst_reg,
8612 				      bpf_target_off(struct skb_shared_info,
8613 						     gso_size, 2,
8614 						     target_size));
8615 		break;
8616 	case offsetof(struct __sk_buff, wire_len):
8617 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8618 
8619 		off = si->off;
8620 		off -= offsetof(struct __sk_buff, wire_len);
8621 		off += offsetof(struct sk_buff, cb);
8622 		off += offsetof(struct qdisc_skb_cb, pkt_len);
8623 		*target_size = 4;
8624 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8625 		break;
8626 
8627 	case offsetof(struct __sk_buff, sk):
8628 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8629 				      si->dst_reg, si->src_reg,
8630 				      offsetof(struct sk_buff, sk));
8631 		break;
8632 	}
8633 
8634 	return insn - insn_buf;
8635 }
8636 
8637 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8638 				const struct bpf_insn *si,
8639 				struct bpf_insn *insn_buf,
8640 				struct bpf_prog *prog, u32 *target_size)
8641 {
8642 	struct bpf_insn *insn = insn_buf;
8643 	int off;
8644 
8645 	switch (si->off) {
8646 	case offsetof(struct bpf_sock, bound_dev_if):
8647 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8648 
8649 		if (type == BPF_WRITE)
8650 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8651 					offsetof(struct sock, sk_bound_dev_if));
8652 		else
8653 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8654 				      offsetof(struct sock, sk_bound_dev_if));
8655 		break;
8656 
8657 	case offsetof(struct bpf_sock, mark):
8658 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8659 
8660 		if (type == BPF_WRITE)
8661 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8662 					offsetof(struct sock, sk_mark));
8663 		else
8664 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8665 				      offsetof(struct sock, sk_mark));
8666 		break;
8667 
8668 	case offsetof(struct bpf_sock, priority):
8669 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8670 
8671 		if (type == BPF_WRITE)
8672 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8673 					offsetof(struct sock, sk_priority));
8674 		else
8675 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8676 				      offsetof(struct sock, sk_priority));
8677 		break;
8678 
8679 	case offsetof(struct bpf_sock, family):
8680 		*insn++ = BPF_LDX_MEM(
8681 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8682 			si->dst_reg, si->src_reg,
8683 			bpf_target_off(struct sock_common,
8684 				       skc_family,
8685 				       sizeof_field(struct sock_common,
8686 						    skc_family),
8687 				       target_size));
8688 		break;
8689 
8690 	case offsetof(struct bpf_sock, type):
8691 		*insn++ = BPF_LDX_MEM(
8692 			BPF_FIELD_SIZEOF(struct sock, sk_type),
8693 			si->dst_reg, si->src_reg,
8694 			bpf_target_off(struct sock, sk_type,
8695 				       sizeof_field(struct sock, sk_type),
8696 				       target_size));
8697 		break;
8698 
8699 	case offsetof(struct bpf_sock, protocol):
8700 		*insn++ = BPF_LDX_MEM(
8701 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8702 			si->dst_reg, si->src_reg,
8703 			bpf_target_off(struct sock, sk_protocol,
8704 				       sizeof_field(struct sock, sk_protocol),
8705 				       target_size));
8706 		break;
8707 
8708 	case offsetof(struct bpf_sock, src_ip4):
8709 		*insn++ = BPF_LDX_MEM(
8710 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8711 			bpf_target_off(struct sock_common, skc_rcv_saddr,
8712 				       sizeof_field(struct sock_common,
8713 						    skc_rcv_saddr),
8714 				       target_size));
8715 		break;
8716 
8717 	case offsetof(struct bpf_sock, dst_ip4):
8718 		*insn++ = BPF_LDX_MEM(
8719 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8720 			bpf_target_off(struct sock_common, skc_daddr,
8721 				       sizeof_field(struct sock_common,
8722 						    skc_daddr),
8723 				       target_size));
8724 		break;
8725 
8726 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8727 #if IS_ENABLED(CONFIG_IPV6)
8728 		off = si->off;
8729 		off -= offsetof(struct bpf_sock, src_ip6[0]);
8730 		*insn++ = BPF_LDX_MEM(
8731 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8732 			bpf_target_off(
8733 				struct sock_common,
8734 				skc_v6_rcv_saddr.s6_addr32[0],
8735 				sizeof_field(struct sock_common,
8736 					     skc_v6_rcv_saddr.s6_addr32[0]),
8737 				target_size) + off);
8738 #else
8739 		(void)off;
8740 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8741 #endif
8742 		break;
8743 
8744 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8745 #if IS_ENABLED(CONFIG_IPV6)
8746 		off = si->off;
8747 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
8748 		*insn++ = BPF_LDX_MEM(
8749 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8750 			bpf_target_off(struct sock_common,
8751 				       skc_v6_daddr.s6_addr32[0],
8752 				       sizeof_field(struct sock_common,
8753 						    skc_v6_daddr.s6_addr32[0]),
8754 				       target_size) + off);
8755 #else
8756 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8757 		*target_size = 4;
8758 #endif
8759 		break;
8760 
8761 	case offsetof(struct bpf_sock, src_port):
8762 		*insn++ = BPF_LDX_MEM(
8763 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8764 			si->dst_reg, si->src_reg,
8765 			bpf_target_off(struct sock_common, skc_num,
8766 				       sizeof_field(struct sock_common,
8767 						    skc_num),
8768 				       target_size));
8769 		break;
8770 
8771 	case offsetof(struct bpf_sock, dst_port):
8772 		*insn++ = BPF_LDX_MEM(
8773 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8774 			si->dst_reg, si->src_reg,
8775 			bpf_target_off(struct sock_common, skc_dport,
8776 				       sizeof_field(struct sock_common,
8777 						    skc_dport),
8778 				       target_size));
8779 		break;
8780 
8781 	case offsetof(struct bpf_sock, state):
8782 		*insn++ = BPF_LDX_MEM(
8783 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8784 			si->dst_reg, si->src_reg,
8785 			bpf_target_off(struct sock_common, skc_state,
8786 				       sizeof_field(struct sock_common,
8787 						    skc_state),
8788 				       target_size));
8789 		break;
8790 	case offsetof(struct bpf_sock, rx_queue_mapping):
8791 #ifdef CONFIG_XPS
8792 		*insn++ = BPF_LDX_MEM(
8793 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8794 			si->dst_reg, si->src_reg,
8795 			bpf_target_off(struct sock, sk_rx_queue_mapping,
8796 				       sizeof_field(struct sock,
8797 						    sk_rx_queue_mapping),
8798 				       target_size));
8799 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8800 				      1);
8801 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8802 #else
8803 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8804 		*target_size = 2;
8805 #endif
8806 		break;
8807 	}
8808 
8809 	return insn - insn_buf;
8810 }
8811 
8812 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8813 					 const struct bpf_insn *si,
8814 					 struct bpf_insn *insn_buf,
8815 					 struct bpf_prog *prog, u32 *target_size)
8816 {
8817 	struct bpf_insn *insn = insn_buf;
8818 
8819 	switch (si->off) {
8820 	case offsetof(struct __sk_buff, ifindex):
8821 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8822 				      si->dst_reg, si->src_reg,
8823 				      offsetof(struct sk_buff, dev));
8824 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8825 				      bpf_target_off(struct net_device, ifindex, 4,
8826 						     target_size));
8827 		break;
8828 	default:
8829 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
8830 					      target_size);
8831 	}
8832 
8833 	return insn - insn_buf;
8834 }
8835 
8836 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
8837 				  const struct bpf_insn *si,
8838 				  struct bpf_insn *insn_buf,
8839 				  struct bpf_prog *prog, u32 *target_size)
8840 {
8841 	struct bpf_insn *insn = insn_buf;
8842 
8843 	switch (si->off) {
8844 	case offsetof(struct xdp_md, data):
8845 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
8846 				      si->dst_reg, si->src_reg,
8847 				      offsetof(struct xdp_buff, data));
8848 		break;
8849 	case offsetof(struct xdp_md, data_meta):
8850 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
8851 				      si->dst_reg, si->src_reg,
8852 				      offsetof(struct xdp_buff, data_meta));
8853 		break;
8854 	case offsetof(struct xdp_md, data_end):
8855 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
8856 				      si->dst_reg, si->src_reg,
8857 				      offsetof(struct xdp_buff, data_end));
8858 		break;
8859 	case offsetof(struct xdp_md, ingress_ifindex):
8860 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8861 				      si->dst_reg, si->src_reg,
8862 				      offsetof(struct xdp_buff, rxq));
8863 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
8864 				      si->dst_reg, si->dst_reg,
8865 				      offsetof(struct xdp_rxq_info, dev));
8866 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8867 				      offsetof(struct net_device, ifindex));
8868 		break;
8869 	case offsetof(struct xdp_md, rx_queue_index):
8870 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8871 				      si->dst_reg, si->src_reg,
8872 				      offsetof(struct xdp_buff, rxq));
8873 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8874 				      offsetof(struct xdp_rxq_info,
8875 					       queue_index));
8876 		break;
8877 	case offsetof(struct xdp_md, egress_ifindex):
8878 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
8879 				      si->dst_reg, si->src_reg,
8880 				      offsetof(struct xdp_buff, txq));
8881 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
8882 				      si->dst_reg, si->dst_reg,
8883 				      offsetof(struct xdp_txq_info, dev));
8884 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8885 				      offsetof(struct net_device, ifindex));
8886 		break;
8887 	}
8888 
8889 	return insn - insn_buf;
8890 }
8891 
8892 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
8893  * context Structure, F is Field in context structure that contains a pointer
8894  * to Nested Structure of type NS that has the field NF.
8895  *
8896  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
8897  * sure that SIZE is not greater than actual size of S.F.NF.
8898  *
8899  * If offset OFF is provided, the load happens from that offset relative to
8900  * offset of NF.
8901  */
8902 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
8903 	do {								       \
8904 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
8905 				      si->src_reg, offsetof(S, F));	       \
8906 		*insn++ = BPF_LDX_MEM(					       \
8907 			SIZE, si->dst_reg, si->dst_reg,			       \
8908 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
8909 				       target_size)			       \
8910 				+ OFF);					       \
8911 	} while (0)
8912 
8913 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
8914 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
8915 					     BPF_FIELD_SIZEOF(NS, NF), 0)
8916 
8917 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
8918  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
8919  *
8920  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
8921  * "register" since two registers available in convert_ctx_access are not
8922  * enough: we can't override neither SRC, since it contains value to store, nor
8923  * DST since it contains pointer to context that may be used by later
8924  * instructions. But we need a temporary place to save pointer to nested
8925  * structure whose field we want to store to.
8926  */
8927 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
8928 	do {								       \
8929 		int tmp_reg = BPF_REG_9;				       \
8930 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
8931 			--tmp_reg;					       \
8932 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
8933 			--tmp_reg;					       \
8934 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
8935 				      offsetof(S, TF));			       \
8936 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
8937 				      si->dst_reg, offsetof(S, F));	       \
8938 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
8939 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
8940 				       target_size)			       \
8941 				+ OFF);					       \
8942 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
8943 				      offsetof(S, TF));			       \
8944 	} while (0)
8945 
8946 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
8947 						      TF)		       \
8948 	do {								       \
8949 		if (type == BPF_WRITE) {				       \
8950 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
8951 							 OFF, TF);	       \
8952 		} else {						       \
8953 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
8954 				S, NS, F, NF, SIZE, OFF);  \
8955 		}							       \
8956 	} while (0)
8957 
8958 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
8959 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
8960 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
8961 
8962 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
8963 					const struct bpf_insn *si,
8964 					struct bpf_insn *insn_buf,
8965 					struct bpf_prog *prog, u32 *target_size)
8966 {
8967 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
8968 	struct bpf_insn *insn = insn_buf;
8969 
8970 	switch (si->off) {
8971 	case offsetof(struct bpf_sock_addr, user_family):
8972 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8973 					    struct sockaddr, uaddr, sa_family);
8974 		break;
8975 
8976 	case offsetof(struct bpf_sock_addr, user_ip4):
8977 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8978 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
8979 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
8980 		break;
8981 
8982 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8983 		off = si->off;
8984 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
8985 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8986 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8987 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
8988 			tmp_reg);
8989 		break;
8990 
8991 	case offsetof(struct bpf_sock_addr, user_port):
8992 		/* To get port we need to know sa_family first and then treat
8993 		 * sockaddr as either sockaddr_in or sockaddr_in6.
8994 		 * Though we can simplify since port field has same offset and
8995 		 * size in both structures.
8996 		 * Here we check this invariant and use just one of the
8997 		 * structures if it's true.
8998 		 */
8999 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9000 			     offsetof(struct sockaddr_in6, sin6_port));
9001 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9002 			     sizeof_field(struct sockaddr_in6, sin6_port));
9003 		/* Account for sin6_port being smaller than user_port. */
9004 		port_size = min(port_size, BPF_LDST_BYTES(si));
9005 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9006 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9007 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9008 		break;
9009 
9010 	case offsetof(struct bpf_sock_addr, family):
9011 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9012 					    struct sock, sk, sk_family);
9013 		break;
9014 
9015 	case offsetof(struct bpf_sock_addr, type):
9016 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9017 					    struct sock, sk, sk_type);
9018 		break;
9019 
9020 	case offsetof(struct bpf_sock_addr, protocol):
9021 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9022 					    struct sock, sk, sk_protocol);
9023 		break;
9024 
9025 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9026 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9027 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9028 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9029 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9030 		break;
9031 
9032 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9033 				msg_src_ip6[3]):
9034 		off = si->off;
9035 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9036 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9037 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9038 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9039 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9040 		break;
9041 	case offsetof(struct bpf_sock_addr, sk):
9042 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9043 				      si->dst_reg, si->src_reg,
9044 				      offsetof(struct bpf_sock_addr_kern, sk));
9045 		break;
9046 	}
9047 
9048 	return insn - insn_buf;
9049 }
9050 
9051 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9052 				       const struct bpf_insn *si,
9053 				       struct bpf_insn *insn_buf,
9054 				       struct bpf_prog *prog,
9055 				       u32 *target_size)
9056 {
9057 	struct bpf_insn *insn = insn_buf;
9058 	int off;
9059 
9060 /* Helper macro for adding read access to tcp_sock or sock fields. */
9061 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9062 	do {								      \
9063 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9064 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9065 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9066 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9067 			reg--;						      \
9068 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9069 			reg--;						      \
9070 		if (si->dst_reg == si->src_reg) {			      \
9071 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9072 					  offsetof(struct bpf_sock_ops_kern,  \
9073 					  temp));			      \
9074 			fullsock_reg = reg;				      \
9075 			jmp += 2;					      \
9076 		}							      \
9077 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9078 						struct bpf_sock_ops_kern,     \
9079 						is_fullsock),		      \
9080 				      fullsock_reg, si->src_reg,	      \
9081 				      offsetof(struct bpf_sock_ops_kern,      \
9082 					       is_fullsock));		      \
9083 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9084 		if (si->dst_reg == si->src_reg)				      \
9085 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9086 				      offsetof(struct bpf_sock_ops_kern,      \
9087 				      temp));				      \
9088 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9089 						struct bpf_sock_ops_kern, sk),\
9090 				      si->dst_reg, si->src_reg,		      \
9091 				      offsetof(struct bpf_sock_ops_kern, sk));\
9092 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
9093 						       OBJ_FIELD),	      \
9094 				      si->dst_reg, si->dst_reg,		      \
9095 				      offsetof(OBJ, OBJ_FIELD));	      \
9096 		if (si->dst_reg == si->src_reg)	{			      \
9097 			*insn++ = BPF_JMP_A(1);				      \
9098 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9099 				      offsetof(struct bpf_sock_ops_kern,      \
9100 				      temp));				      \
9101 		}							      \
9102 	} while (0)
9103 
9104 #define SOCK_OPS_GET_SK()							      \
9105 	do {								      \
9106 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9107 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9108 			reg--;						      \
9109 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9110 			reg--;						      \
9111 		if (si->dst_reg == si->src_reg) {			      \
9112 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9113 					  offsetof(struct bpf_sock_ops_kern,  \
9114 					  temp));			      \
9115 			fullsock_reg = reg;				      \
9116 			jmp += 2;					      \
9117 		}							      \
9118 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9119 						struct bpf_sock_ops_kern,     \
9120 						is_fullsock),		      \
9121 				      fullsock_reg, si->src_reg,	      \
9122 				      offsetof(struct bpf_sock_ops_kern,      \
9123 					       is_fullsock));		      \
9124 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9125 		if (si->dst_reg == si->src_reg)				      \
9126 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9127 				      offsetof(struct bpf_sock_ops_kern,      \
9128 				      temp));				      \
9129 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9130 						struct bpf_sock_ops_kern, sk),\
9131 				      si->dst_reg, si->src_reg,		      \
9132 				      offsetof(struct bpf_sock_ops_kern, sk));\
9133 		if (si->dst_reg == si->src_reg)	{			      \
9134 			*insn++ = BPF_JMP_A(1);				      \
9135 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9136 				      offsetof(struct bpf_sock_ops_kern,      \
9137 				      temp));				      \
9138 		}							      \
9139 	} while (0)
9140 
9141 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9142 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9143 
9144 /* Helper macro for adding write access to tcp_sock or sock fields.
9145  * The macro is called with two registers, dst_reg which contains a pointer
9146  * to ctx (context) and src_reg which contains the value that should be
9147  * stored. However, we need an additional register since we cannot overwrite
9148  * dst_reg because it may be used later in the program.
9149  * Instead we "borrow" one of the other register. We first save its value
9150  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9151  * it at the end of the macro.
9152  */
9153 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9154 	do {								      \
9155 		int reg = BPF_REG_9;					      \
9156 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9157 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9158 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9159 			reg--;						      \
9160 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9161 			reg--;						      \
9162 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
9163 				      offsetof(struct bpf_sock_ops_kern,      \
9164 					       temp));			      \
9165 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9166 						struct bpf_sock_ops_kern,     \
9167 						is_fullsock),		      \
9168 				      reg, si->dst_reg,			      \
9169 				      offsetof(struct bpf_sock_ops_kern,      \
9170 					       is_fullsock));		      \
9171 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
9172 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9173 						struct bpf_sock_ops_kern, sk),\
9174 				      reg, si->dst_reg,			      \
9175 				      offsetof(struct bpf_sock_ops_kern, sk));\
9176 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
9177 				      reg, si->src_reg,			      \
9178 				      offsetof(OBJ, OBJ_FIELD));	      \
9179 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
9180 				      offsetof(struct bpf_sock_ops_kern,      \
9181 					       temp));			      \
9182 	} while (0)
9183 
9184 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
9185 	do {								      \
9186 		if (TYPE == BPF_WRITE)					      \
9187 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9188 		else							      \
9189 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9190 	} while (0)
9191 
9192 	if (insn > insn_buf)
9193 		return insn - insn_buf;
9194 
9195 	switch (si->off) {
9196 	case offsetof(struct bpf_sock_ops, op):
9197 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9198 						       op),
9199 				      si->dst_reg, si->src_reg,
9200 				      offsetof(struct bpf_sock_ops_kern, op));
9201 		break;
9202 
9203 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
9204 	     offsetof(struct bpf_sock_ops, replylong[3]):
9205 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9206 			     sizeof_field(struct bpf_sock_ops_kern, reply));
9207 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9208 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
9209 		off = si->off;
9210 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
9211 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9212 		if (type == BPF_WRITE)
9213 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9214 					      off);
9215 		else
9216 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9217 					      off);
9218 		break;
9219 
9220 	case offsetof(struct bpf_sock_ops, family):
9221 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9222 
9223 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9224 					      struct bpf_sock_ops_kern, sk),
9225 				      si->dst_reg, si->src_reg,
9226 				      offsetof(struct bpf_sock_ops_kern, sk));
9227 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9228 				      offsetof(struct sock_common, skc_family));
9229 		break;
9230 
9231 	case offsetof(struct bpf_sock_ops, remote_ip4):
9232 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9233 
9234 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9235 						struct bpf_sock_ops_kern, sk),
9236 				      si->dst_reg, si->src_reg,
9237 				      offsetof(struct bpf_sock_ops_kern, sk));
9238 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9239 				      offsetof(struct sock_common, skc_daddr));
9240 		break;
9241 
9242 	case offsetof(struct bpf_sock_ops, local_ip4):
9243 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9244 					  skc_rcv_saddr) != 4);
9245 
9246 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9247 					      struct bpf_sock_ops_kern, sk),
9248 				      si->dst_reg, si->src_reg,
9249 				      offsetof(struct bpf_sock_ops_kern, sk));
9250 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9251 				      offsetof(struct sock_common,
9252 					       skc_rcv_saddr));
9253 		break;
9254 
9255 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9256 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
9257 #if IS_ENABLED(CONFIG_IPV6)
9258 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9259 					  skc_v6_daddr.s6_addr32[0]) != 4);
9260 
9261 		off = si->off;
9262 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9263 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9264 						struct bpf_sock_ops_kern, sk),
9265 				      si->dst_reg, si->src_reg,
9266 				      offsetof(struct bpf_sock_ops_kern, sk));
9267 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9268 				      offsetof(struct sock_common,
9269 					       skc_v6_daddr.s6_addr32[0]) +
9270 				      off);
9271 #else
9272 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9273 #endif
9274 		break;
9275 
9276 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9277 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
9278 #if IS_ENABLED(CONFIG_IPV6)
9279 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9280 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9281 
9282 		off = si->off;
9283 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9284 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9285 						struct bpf_sock_ops_kern, sk),
9286 				      si->dst_reg, si->src_reg,
9287 				      offsetof(struct bpf_sock_ops_kern, sk));
9288 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9289 				      offsetof(struct sock_common,
9290 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9291 				      off);
9292 #else
9293 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9294 #endif
9295 		break;
9296 
9297 	case offsetof(struct bpf_sock_ops, remote_port):
9298 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9299 
9300 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9301 						struct bpf_sock_ops_kern, sk),
9302 				      si->dst_reg, si->src_reg,
9303 				      offsetof(struct bpf_sock_ops_kern, sk));
9304 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9305 				      offsetof(struct sock_common, skc_dport));
9306 #ifndef __BIG_ENDIAN_BITFIELD
9307 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9308 #endif
9309 		break;
9310 
9311 	case offsetof(struct bpf_sock_ops, local_port):
9312 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9313 
9314 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9315 						struct bpf_sock_ops_kern, sk),
9316 				      si->dst_reg, si->src_reg,
9317 				      offsetof(struct bpf_sock_ops_kern, sk));
9318 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9319 				      offsetof(struct sock_common, skc_num));
9320 		break;
9321 
9322 	case offsetof(struct bpf_sock_ops, is_fullsock):
9323 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9324 						struct bpf_sock_ops_kern,
9325 						is_fullsock),
9326 				      si->dst_reg, si->src_reg,
9327 				      offsetof(struct bpf_sock_ops_kern,
9328 					       is_fullsock));
9329 		break;
9330 
9331 	case offsetof(struct bpf_sock_ops, state):
9332 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9333 
9334 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9335 						struct bpf_sock_ops_kern, sk),
9336 				      si->dst_reg, si->src_reg,
9337 				      offsetof(struct bpf_sock_ops_kern, sk));
9338 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9339 				      offsetof(struct sock_common, skc_state));
9340 		break;
9341 
9342 	case offsetof(struct bpf_sock_ops, rtt_min):
9343 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9344 			     sizeof(struct minmax));
9345 		BUILD_BUG_ON(sizeof(struct minmax) <
9346 			     sizeof(struct minmax_sample));
9347 
9348 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9349 						struct bpf_sock_ops_kern, sk),
9350 				      si->dst_reg, si->src_reg,
9351 				      offsetof(struct bpf_sock_ops_kern, sk));
9352 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9353 				      offsetof(struct tcp_sock, rtt_min) +
9354 				      sizeof_field(struct minmax_sample, t));
9355 		break;
9356 
9357 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9358 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9359 				   struct tcp_sock);
9360 		break;
9361 
9362 	case offsetof(struct bpf_sock_ops, sk_txhash):
9363 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9364 					  struct sock, type);
9365 		break;
9366 	case offsetof(struct bpf_sock_ops, snd_cwnd):
9367 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9368 		break;
9369 	case offsetof(struct bpf_sock_ops, srtt_us):
9370 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9371 		break;
9372 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
9373 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9374 		break;
9375 	case offsetof(struct bpf_sock_ops, rcv_nxt):
9376 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9377 		break;
9378 	case offsetof(struct bpf_sock_ops, snd_nxt):
9379 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9380 		break;
9381 	case offsetof(struct bpf_sock_ops, snd_una):
9382 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9383 		break;
9384 	case offsetof(struct bpf_sock_ops, mss_cache):
9385 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9386 		break;
9387 	case offsetof(struct bpf_sock_ops, ecn_flags):
9388 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9389 		break;
9390 	case offsetof(struct bpf_sock_ops, rate_delivered):
9391 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9392 		break;
9393 	case offsetof(struct bpf_sock_ops, rate_interval_us):
9394 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9395 		break;
9396 	case offsetof(struct bpf_sock_ops, packets_out):
9397 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9398 		break;
9399 	case offsetof(struct bpf_sock_ops, retrans_out):
9400 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9401 		break;
9402 	case offsetof(struct bpf_sock_ops, total_retrans):
9403 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9404 		break;
9405 	case offsetof(struct bpf_sock_ops, segs_in):
9406 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9407 		break;
9408 	case offsetof(struct bpf_sock_ops, data_segs_in):
9409 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9410 		break;
9411 	case offsetof(struct bpf_sock_ops, segs_out):
9412 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9413 		break;
9414 	case offsetof(struct bpf_sock_ops, data_segs_out):
9415 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9416 		break;
9417 	case offsetof(struct bpf_sock_ops, lost_out):
9418 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9419 		break;
9420 	case offsetof(struct bpf_sock_ops, sacked_out):
9421 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9422 		break;
9423 	case offsetof(struct bpf_sock_ops, bytes_received):
9424 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9425 		break;
9426 	case offsetof(struct bpf_sock_ops, bytes_acked):
9427 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9428 		break;
9429 	case offsetof(struct bpf_sock_ops, sk):
9430 		SOCK_OPS_GET_SK();
9431 		break;
9432 	case offsetof(struct bpf_sock_ops, skb_data_end):
9433 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9434 						       skb_data_end),
9435 				      si->dst_reg, si->src_reg,
9436 				      offsetof(struct bpf_sock_ops_kern,
9437 					       skb_data_end));
9438 		break;
9439 	case offsetof(struct bpf_sock_ops, skb_data):
9440 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9441 						       skb),
9442 				      si->dst_reg, si->src_reg,
9443 				      offsetof(struct bpf_sock_ops_kern,
9444 					       skb));
9445 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9446 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9447 				      si->dst_reg, si->dst_reg,
9448 				      offsetof(struct sk_buff, data));
9449 		break;
9450 	case offsetof(struct bpf_sock_ops, skb_len):
9451 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9452 						       skb),
9453 				      si->dst_reg, si->src_reg,
9454 				      offsetof(struct bpf_sock_ops_kern,
9455 					       skb));
9456 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9457 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9458 				      si->dst_reg, si->dst_reg,
9459 				      offsetof(struct sk_buff, len));
9460 		break;
9461 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9462 		off = offsetof(struct sk_buff, cb);
9463 		off += offsetof(struct tcp_skb_cb, tcp_flags);
9464 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9465 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9466 						       skb),
9467 				      si->dst_reg, si->src_reg,
9468 				      offsetof(struct bpf_sock_ops_kern,
9469 					       skb));
9470 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9471 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9472 						       tcp_flags),
9473 				      si->dst_reg, si->dst_reg, off);
9474 		break;
9475 	}
9476 	return insn - insn_buf;
9477 }
9478 
9479 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9480 				     const struct bpf_insn *si,
9481 				     struct bpf_insn *insn_buf,
9482 				     struct bpf_prog *prog, u32 *target_size)
9483 {
9484 	struct bpf_insn *insn = insn_buf;
9485 	int off;
9486 
9487 	switch (si->off) {
9488 	case offsetof(struct __sk_buff, data_end):
9489 		off  = si->off;
9490 		off -= offsetof(struct __sk_buff, data_end);
9491 		off += offsetof(struct sk_buff, cb);
9492 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
9493 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9494 				      si->src_reg, off);
9495 		break;
9496 	default:
9497 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9498 					      target_size);
9499 	}
9500 
9501 	return insn - insn_buf;
9502 }
9503 
9504 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9505 				     const struct bpf_insn *si,
9506 				     struct bpf_insn *insn_buf,
9507 				     struct bpf_prog *prog, u32 *target_size)
9508 {
9509 	struct bpf_insn *insn = insn_buf;
9510 #if IS_ENABLED(CONFIG_IPV6)
9511 	int off;
9512 #endif
9513 
9514 	/* convert ctx uses the fact sg element is first in struct */
9515 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9516 
9517 	switch (si->off) {
9518 	case offsetof(struct sk_msg_md, data):
9519 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9520 				      si->dst_reg, si->src_reg,
9521 				      offsetof(struct sk_msg, data));
9522 		break;
9523 	case offsetof(struct sk_msg_md, data_end):
9524 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9525 				      si->dst_reg, si->src_reg,
9526 				      offsetof(struct sk_msg, data_end));
9527 		break;
9528 	case offsetof(struct sk_msg_md, family):
9529 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9530 
9531 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9532 					      struct sk_msg, sk),
9533 				      si->dst_reg, si->src_reg,
9534 				      offsetof(struct sk_msg, sk));
9535 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9536 				      offsetof(struct sock_common, skc_family));
9537 		break;
9538 
9539 	case offsetof(struct sk_msg_md, remote_ip4):
9540 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9541 
9542 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9543 						struct sk_msg, sk),
9544 				      si->dst_reg, si->src_reg,
9545 				      offsetof(struct sk_msg, sk));
9546 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9547 				      offsetof(struct sock_common, skc_daddr));
9548 		break;
9549 
9550 	case offsetof(struct sk_msg_md, local_ip4):
9551 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9552 					  skc_rcv_saddr) != 4);
9553 
9554 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9555 					      struct sk_msg, sk),
9556 				      si->dst_reg, si->src_reg,
9557 				      offsetof(struct sk_msg, sk));
9558 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9559 				      offsetof(struct sock_common,
9560 					       skc_rcv_saddr));
9561 		break;
9562 
9563 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9564 	     offsetof(struct sk_msg_md, remote_ip6[3]):
9565 #if IS_ENABLED(CONFIG_IPV6)
9566 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9567 					  skc_v6_daddr.s6_addr32[0]) != 4);
9568 
9569 		off = si->off;
9570 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9571 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9572 						struct sk_msg, sk),
9573 				      si->dst_reg, si->src_reg,
9574 				      offsetof(struct sk_msg, sk));
9575 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9576 				      offsetof(struct sock_common,
9577 					       skc_v6_daddr.s6_addr32[0]) +
9578 				      off);
9579 #else
9580 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9581 #endif
9582 		break;
9583 
9584 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
9585 	     offsetof(struct sk_msg_md, local_ip6[3]):
9586 #if IS_ENABLED(CONFIG_IPV6)
9587 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9588 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9589 
9590 		off = si->off;
9591 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
9592 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9593 						struct sk_msg, sk),
9594 				      si->dst_reg, si->src_reg,
9595 				      offsetof(struct sk_msg, sk));
9596 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9597 				      offsetof(struct sock_common,
9598 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9599 				      off);
9600 #else
9601 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9602 #endif
9603 		break;
9604 
9605 	case offsetof(struct sk_msg_md, remote_port):
9606 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9607 
9608 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9609 						struct sk_msg, sk),
9610 				      si->dst_reg, si->src_reg,
9611 				      offsetof(struct sk_msg, sk));
9612 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9613 				      offsetof(struct sock_common, skc_dport));
9614 #ifndef __BIG_ENDIAN_BITFIELD
9615 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9616 #endif
9617 		break;
9618 
9619 	case offsetof(struct sk_msg_md, local_port):
9620 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9621 
9622 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9623 						struct sk_msg, sk),
9624 				      si->dst_reg, si->src_reg,
9625 				      offsetof(struct sk_msg, sk));
9626 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9627 				      offsetof(struct sock_common, skc_num));
9628 		break;
9629 
9630 	case offsetof(struct sk_msg_md, size):
9631 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9632 				      si->dst_reg, si->src_reg,
9633 				      offsetof(struct sk_msg_sg, size));
9634 		break;
9635 
9636 	case offsetof(struct sk_msg_md, sk):
9637 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9638 				      si->dst_reg, si->src_reg,
9639 				      offsetof(struct sk_msg, sk));
9640 		break;
9641 	}
9642 
9643 	return insn - insn_buf;
9644 }
9645 
9646 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9647 	.get_func_proto		= sk_filter_func_proto,
9648 	.is_valid_access	= sk_filter_is_valid_access,
9649 	.convert_ctx_access	= bpf_convert_ctx_access,
9650 	.gen_ld_abs		= bpf_gen_ld_abs,
9651 };
9652 
9653 const struct bpf_prog_ops sk_filter_prog_ops = {
9654 	.test_run		= bpf_prog_test_run_skb,
9655 };
9656 
9657 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9658 	.get_func_proto		= tc_cls_act_func_proto,
9659 	.is_valid_access	= tc_cls_act_is_valid_access,
9660 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
9661 	.gen_prologue		= tc_cls_act_prologue,
9662 	.gen_ld_abs		= bpf_gen_ld_abs,
9663 };
9664 
9665 const struct bpf_prog_ops tc_cls_act_prog_ops = {
9666 	.test_run		= bpf_prog_test_run_skb,
9667 };
9668 
9669 const struct bpf_verifier_ops xdp_verifier_ops = {
9670 	.get_func_proto		= xdp_func_proto,
9671 	.is_valid_access	= xdp_is_valid_access,
9672 	.convert_ctx_access	= xdp_convert_ctx_access,
9673 	.gen_prologue		= bpf_noop_prologue,
9674 };
9675 
9676 const struct bpf_prog_ops xdp_prog_ops = {
9677 	.test_run		= bpf_prog_test_run_xdp,
9678 };
9679 
9680 const struct bpf_verifier_ops cg_skb_verifier_ops = {
9681 	.get_func_proto		= cg_skb_func_proto,
9682 	.is_valid_access	= cg_skb_is_valid_access,
9683 	.convert_ctx_access	= bpf_convert_ctx_access,
9684 };
9685 
9686 const struct bpf_prog_ops cg_skb_prog_ops = {
9687 	.test_run		= bpf_prog_test_run_skb,
9688 };
9689 
9690 const struct bpf_verifier_ops lwt_in_verifier_ops = {
9691 	.get_func_proto		= lwt_in_func_proto,
9692 	.is_valid_access	= lwt_is_valid_access,
9693 	.convert_ctx_access	= bpf_convert_ctx_access,
9694 };
9695 
9696 const struct bpf_prog_ops lwt_in_prog_ops = {
9697 	.test_run		= bpf_prog_test_run_skb,
9698 };
9699 
9700 const struct bpf_verifier_ops lwt_out_verifier_ops = {
9701 	.get_func_proto		= lwt_out_func_proto,
9702 	.is_valid_access	= lwt_is_valid_access,
9703 	.convert_ctx_access	= bpf_convert_ctx_access,
9704 };
9705 
9706 const struct bpf_prog_ops lwt_out_prog_ops = {
9707 	.test_run		= bpf_prog_test_run_skb,
9708 };
9709 
9710 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9711 	.get_func_proto		= lwt_xmit_func_proto,
9712 	.is_valid_access	= lwt_is_valid_access,
9713 	.convert_ctx_access	= bpf_convert_ctx_access,
9714 	.gen_prologue		= tc_cls_act_prologue,
9715 };
9716 
9717 const struct bpf_prog_ops lwt_xmit_prog_ops = {
9718 	.test_run		= bpf_prog_test_run_skb,
9719 };
9720 
9721 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9722 	.get_func_proto		= lwt_seg6local_func_proto,
9723 	.is_valid_access	= lwt_is_valid_access,
9724 	.convert_ctx_access	= bpf_convert_ctx_access,
9725 };
9726 
9727 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9728 	.test_run		= bpf_prog_test_run_skb,
9729 };
9730 
9731 const struct bpf_verifier_ops cg_sock_verifier_ops = {
9732 	.get_func_proto		= sock_filter_func_proto,
9733 	.is_valid_access	= sock_filter_is_valid_access,
9734 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
9735 };
9736 
9737 const struct bpf_prog_ops cg_sock_prog_ops = {
9738 };
9739 
9740 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9741 	.get_func_proto		= sock_addr_func_proto,
9742 	.is_valid_access	= sock_addr_is_valid_access,
9743 	.convert_ctx_access	= sock_addr_convert_ctx_access,
9744 };
9745 
9746 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9747 };
9748 
9749 const struct bpf_verifier_ops sock_ops_verifier_ops = {
9750 	.get_func_proto		= sock_ops_func_proto,
9751 	.is_valid_access	= sock_ops_is_valid_access,
9752 	.convert_ctx_access	= sock_ops_convert_ctx_access,
9753 };
9754 
9755 const struct bpf_prog_ops sock_ops_prog_ops = {
9756 };
9757 
9758 const struct bpf_verifier_ops sk_skb_verifier_ops = {
9759 	.get_func_proto		= sk_skb_func_proto,
9760 	.is_valid_access	= sk_skb_is_valid_access,
9761 	.convert_ctx_access	= sk_skb_convert_ctx_access,
9762 	.gen_prologue		= sk_skb_prologue,
9763 };
9764 
9765 const struct bpf_prog_ops sk_skb_prog_ops = {
9766 };
9767 
9768 const struct bpf_verifier_ops sk_msg_verifier_ops = {
9769 	.get_func_proto		= sk_msg_func_proto,
9770 	.is_valid_access	= sk_msg_is_valid_access,
9771 	.convert_ctx_access	= sk_msg_convert_ctx_access,
9772 	.gen_prologue		= bpf_noop_prologue,
9773 };
9774 
9775 const struct bpf_prog_ops sk_msg_prog_ops = {
9776 };
9777 
9778 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
9779 	.get_func_proto		= flow_dissector_func_proto,
9780 	.is_valid_access	= flow_dissector_is_valid_access,
9781 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
9782 };
9783 
9784 const struct bpf_prog_ops flow_dissector_prog_ops = {
9785 	.test_run		= bpf_prog_test_run_flow_dissector,
9786 };
9787 
9788 int sk_detach_filter(struct sock *sk)
9789 {
9790 	int ret = -ENOENT;
9791 	struct sk_filter *filter;
9792 
9793 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
9794 		return -EPERM;
9795 
9796 	filter = rcu_dereference_protected(sk->sk_filter,
9797 					   lockdep_sock_is_held(sk));
9798 	if (filter) {
9799 		RCU_INIT_POINTER(sk->sk_filter, NULL);
9800 		sk_filter_uncharge(sk, filter);
9801 		ret = 0;
9802 	}
9803 
9804 	return ret;
9805 }
9806 EXPORT_SYMBOL_GPL(sk_detach_filter);
9807 
9808 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
9809 		  unsigned int len)
9810 {
9811 	struct sock_fprog_kern *fprog;
9812 	struct sk_filter *filter;
9813 	int ret = 0;
9814 
9815 	lock_sock(sk);
9816 	filter = rcu_dereference_protected(sk->sk_filter,
9817 					   lockdep_sock_is_held(sk));
9818 	if (!filter)
9819 		goto out;
9820 
9821 	/* We're copying the filter that has been originally attached,
9822 	 * so no conversion/decode needed anymore. eBPF programs that
9823 	 * have no original program cannot be dumped through this.
9824 	 */
9825 	ret = -EACCES;
9826 	fprog = filter->prog->orig_prog;
9827 	if (!fprog)
9828 		goto out;
9829 
9830 	ret = fprog->len;
9831 	if (!len)
9832 		/* User space only enquires number of filter blocks. */
9833 		goto out;
9834 
9835 	ret = -EINVAL;
9836 	if (len < fprog->len)
9837 		goto out;
9838 
9839 	ret = -EFAULT;
9840 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
9841 		goto out;
9842 
9843 	/* Instead of bytes, the API requests to return the number
9844 	 * of filter blocks.
9845 	 */
9846 	ret = fprog->len;
9847 out:
9848 	release_sock(sk);
9849 	return ret;
9850 }
9851 
9852 #ifdef CONFIG_INET
9853 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
9854 				    struct sock_reuseport *reuse,
9855 				    struct sock *sk, struct sk_buff *skb,
9856 				    u32 hash)
9857 {
9858 	reuse_kern->skb = skb;
9859 	reuse_kern->sk = sk;
9860 	reuse_kern->selected_sk = NULL;
9861 	reuse_kern->data_end = skb->data + skb_headlen(skb);
9862 	reuse_kern->hash = hash;
9863 	reuse_kern->reuseport_id = reuse->reuseport_id;
9864 	reuse_kern->bind_inany = reuse->bind_inany;
9865 }
9866 
9867 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
9868 				  struct bpf_prog *prog, struct sk_buff *skb,
9869 				  u32 hash)
9870 {
9871 	struct sk_reuseport_kern reuse_kern;
9872 	enum sk_action action;
9873 
9874 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
9875 	action = BPF_PROG_RUN(prog, &reuse_kern);
9876 
9877 	if (action == SK_PASS)
9878 		return reuse_kern.selected_sk;
9879 	else
9880 		return ERR_PTR(-ECONNREFUSED);
9881 }
9882 
9883 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
9884 	   struct bpf_map *, map, void *, key, u32, flags)
9885 {
9886 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
9887 	struct sock_reuseport *reuse;
9888 	struct sock *selected_sk;
9889 
9890 	selected_sk = map->ops->map_lookup_elem(map, key);
9891 	if (!selected_sk)
9892 		return -ENOENT;
9893 
9894 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
9895 	if (!reuse) {
9896 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
9897 		if (sk_is_refcounted(selected_sk))
9898 			sock_put(selected_sk);
9899 
9900 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
9901 		 * The only (!reuse) case here is - the sk has already been
9902 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
9903 		 *
9904 		 * Other maps (e.g. sock_map) do not provide this guarantee and
9905 		 * the sk may never be in the reuseport group to begin with.
9906 		 */
9907 		return is_sockarray ? -ENOENT : -EINVAL;
9908 	}
9909 
9910 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
9911 		struct sock *sk = reuse_kern->sk;
9912 
9913 		if (sk->sk_protocol != selected_sk->sk_protocol)
9914 			return -EPROTOTYPE;
9915 		else if (sk->sk_family != selected_sk->sk_family)
9916 			return -EAFNOSUPPORT;
9917 
9918 		/* Catch all. Likely bound to a different sockaddr. */
9919 		return -EBADFD;
9920 	}
9921 
9922 	reuse_kern->selected_sk = selected_sk;
9923 
9924 	return 0;
9925 }
9926 
9927 static const struct bpf_func_proto sk_select_reuseport_proto = {
9928 	.func           = sk_select_reuseport,
9929 	.gpl_only       = false,
9930 	.ret_type       = RET_INTEGER,
9931 	.arg1_type	= ARG_PTR_TO_CTX,
9932 	.arg2_type      = ARG_CONST_MAP_PTR,
9933 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
9934 	.arg4_type	= ARG_ANYTHING,
9935 };
9936 
9937 BPF_CALL_4(sk_reuseport_load_bytes,
9938 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9939 	   void *, to, u32, len)
9940 {
9941 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
9942 }
9943 
9944 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
9945 	.func		= sk_reuseport_load_bytes,
9946 	.gpl_only	= false,
9947 	.ret_type	= RET_INTEGER,
9948 	.arg1_type	= ARG_PTR_TO_CTX,
9949 	.arg2_type	= ARG_ANYTHING,
9950 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
9951 	.arg4_type	= ARG_CONST_SIZE,
9952 };
9953 
9954 BPF_CALL_5(sk_reuseport_load_bytes_relative,
9955 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9956 	   void *, to, u32, len, u32, start_header)
9957 {
9958 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
9959 					       len, start_header);
9960 }
9961 
9962 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
9963 	.func		= sk_reuseport_load_bytes_relative,
9964 	.gpl_only	= false,
9965 	.ret_type	= RET_INTEGER,
9966 	.arg1_type	= ARG_PTR_TO_CTX,
9967 	.arg2_type	= ARG_ANYTHING,
9968 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
9969 	.arg4_type	= ARG_CONST_SIZE,
9970 	.arg5_type	= ARG_ANYTHING,
9971 };
9972 
9973 static const struct bpf_func_proto *
9974 sk_reuseport_func_proto(enum bpf_func_id func_id,
9975 			const struct bpf_prog *prog)
9976 {
9977 	switch (func_id) {
9978 	case BPF_FUNC_sk_select_reuseport:
9979 		return &sk_select_reuseport_proto;
9980 	case BPF_FUNC_skb_load_bytes:
9981 		return &sk_reuseport_load_bytes_proto;
9982 	case BPF_FUNC_skb_load_bytes_relative:
9983 		return &sk_reuseport_load_bytes_relative_proto;
9984 	default:
9985 		return bpf_base_func_proto(func_id);
9986 	}
9987 }
9988 
9989 static bool
9990 sk_reuseport_is_valid_access(int off, int size,
9991 			     enum bpf_access_type type,
9992 			     const struct bpf_prog *prog,
9993 			     struct bpf_insn_access_aux *info)
9994 {
9995 	const u32 size_default = sizeof(__u32);
9996 
9997 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
9998 	    off % size || type != BPF_READ)
9999 		return false;
10000 
10001 	switch (off) {
10002 	case offsetof(struct sk_reuseport_md, data):
10003 		info->reg_type = PTR_TO_PACKET;
10004 		return size == sizeof(__u64);
10005 
10006 	case offsetof(struct sk_reuseport_md, data_end):
10007 		info->reg_type = PTR_TO_PACKET_END;
10008 		return size == sizeof(__u64);
10009 
10010 	case offsetof(struct sk_reuseport_md, hash):
10011 		return size == size_default;
10012 
10013 	/* Fields that allow narrowing */
10014 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10015 		if (size < sizeof_field(struct sk_buff, protocol))
10016 			return false;
10017 		fallthrough;
10018 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10019 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10020 	case bpf_ctx_range(struct sk_reuseport_md, len):
10021 		bpf_ctx_record_field_size(info, size_default);
10022 		return bpf_ctx_narrow_access_ok(off, size, size_default);
10023 
10024 	default:
10025 		return false;
10026 	}
10027 }
10028 
10029 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
10030 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10031 			      si->dst_reg, si->src_reg,			\
10032 			      bpf_target_off(struct sk_reuseport_kern, F, \
10033 					     sizeof_field(struct sk_reuseport_kern, F), \
10034 					     target_size));		\
10035 	})
10036 
10037 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
10038 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10039 				    struct sk_buff,			\
10040 				    skb,				\
10041 				    SKB_FIELD)
10042 
10043 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
10044 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10045 				    struct sock,			\
10046 				    sk,					\
10047 				    SK_FIELD)
10048 
10049 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10050 					   const struct bpf_insn *si,
10051 					   struct bpf_insn *insn_buf,
10052 					   struct bpf_prog *prog,
10053 					   u32 *target_size)
10054 {
10055 	struct bpf_insn *insn = insn_buf;
10056 
10057 	switch (si->off) {
10058 	case offsetof(struct sk_reuseport_md, data):
10059 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
10060 		break;
10061 
10062 	case offsetof(struct sk_reuseport_md, len):
10063 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
10064 		break;
10065 
10066 	case offsetof(struct sk_reuseport_md, eth_protocol):
10067 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10068 		break;
10069 
10070 	case offsetof(struct sk_reuseport_md, ip_protocol):
10071 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10072 		break;
10073 
10074 	case offsetof(struct sk_reuseport_md, data_end):
10075 		SK_REUSEPORT_LOAD_FIELD(data_end);
10076 		break;
10077 
10078 	case offsetof(struct sk_reuseport_md, hash):
10079 		SK_REUSEPORT_LOAD_FIELD(hash);
10080 		break;
10081 
10082 	case offsetof(struct sk_reuseport_md, bind_inany):
10083 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
10084 		break;
10085 	}
10086 
10087 	return insn - insn_buf;
10088 }
10089 
10090 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10091 	.get_func_proto		= sk_reuseport_func_proto,
10092 	.is_valid_access	= sk_reuseport_is_valid_access,
10093 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
10094 };
10095 
10096 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10097 };
10098 
10099 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10100 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10101 
10102 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10103 	   struct sock *, sk, u64, flags)
10104 {
10105 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10106 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10107 		return -EINVAL;
10108 	if (unlikely(sk && sk_is_refcounted(sk)))
10109 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10110 	if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10111 		return -ESOCKTNOSUPPORT; /* reject connected sockets */
10112 
10113 	/* Check if socket is suitable for packet L3/L4 protocol */
10114 	if (sk && sk->sk_protocol != ctx->protocol)
10115 		return -EPROTOTYPE;
10116 	if (sk && sk->sk_family != ctx->family &&
10117 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10118 		return -EAFNOSUPPORT;
10119 
10120 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10121 		return -EEXIST;
10122 
10123 	/* Select socket as lookup result */
10124 	ctx->selected_sk = sk;
10125 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10126 	return 0;
10127 }
10128 
10129 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10130 	.func		= bpf_sk_lookup_assign,
10131 	.gpl_only	= false,
10132 	.ret_type	= RET_INTEGER,
10133 	.arg1_type	= ARG_PTR_TO_CTX,
10134 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
10135 	.arg3_type	= ARG_ANYTHING,
10136 };
10137 
10138 static const struct bpf_func_proto *
10139 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10140 {
10141 	switch (func_id) {
10142 	case BPF_FUNC_perf_event_output:
10143 		return &bpf_event_output_data_proto;
10144 	case BPF_FUNC_sk_assign:
10145 		return &bpf_sk_lookup_assign_proto;
10146 	case BPF_FUNC_sk_release:
10147 		return &bpf_sk_release_proto;
10148 	default:
10149 		return bpf_sk_base_func_proto(func_id);
10150 	}
10151 }
10152 
10153 static bool sk_lookup_is_valid_access(int off, int size,
10154 				      enum bpf_access_type type,
10155 				      const struct bpf_prog *prog,
10156 				      struct bpf_insn_access_aux *info)
10157 {
10158 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10159 		return false;
10160 	if (off % size != 0)
10161 		return false;
10162 	if (type != BPF_READ)
10163 		return false;
10164 
10165 	switch (off) {
10166 	case offsetof(struct bpf_sk_lookup, sk):
10167 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
10168 		return size == sizeof(__u64);
10169 
10170 	case bpf_ctx_range(struct bpf_sk_lookup, family):
10171 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10172 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10173 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10174 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10175 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10176 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10177 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10178 		bpf_ctx_record_field_size(info, sizeof(__u32));
10179 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10180 
10181 	default:
10182 		return false;
10183 	}
10184 }
10185 
10186 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10187 					const struct bpf_insn *si,
10188 					struct bpf_insn *insn_buf,
10189 					struct bpf_prog *prog,
10190 					u32 *target_size)
10191 {
10192 	struct bpf_insn *insn = insn_buf;
10193 
10194 	switch (si->off) {
10195 	case offsetof(struct bpf_sk_lookup, sk):
10196 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10197 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
10198 		break;
10199 
10200 	case offsetof(struct bpf_sk_lookup, family):
10201 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10202 				      bpf_target_off(struct bpf_sk_lookup_kern,
10203 						     family, 2, target_size));
10204 		break;
10205 
10206 	case offsetof(struct bpf_sk_lookup, protocol):
10207 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10208 				      bpf_target_off(struct bpf_sk_lookup_kern,
10209 						     protocol, 2, target_size));
10210 		break;
10211 
10212 	case offsetof(struct bpf_sk_lookup, remote_ip4):
10213 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10214 				      bpf_target_off(struct bpf_sk_lookup_kern,
10215 						     v4.saddr, 4, target_size));
10216 		break;
10217 
10218 	case offsetof(struct bpf_sk_lookup, local_ip4):
10219 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10220 				      bpf_target_off(struct bpf_sk_lookup_kern,
10221 						     v4.daddr, 4, target_size));
10222 		break;
10223 
10224 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10225 				remote_ip6[0], remote_ip6[3]): {
10226 #if IS_ENABLED(CONFIG_IPV6)
10227 		int off = si->off;
10228 
10229 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10230 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10231 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10232 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10233 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10234 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10235 #else
10236 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10237 #endif
10238 		break;
10239 	}
10240 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10241 				local_ip6[0], local_ip6[3]): {
10242 #if IS_ENABLED(CONFIG_IPV6)
10243 		int off = si->off;
10244 
10245 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10246 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10247 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10248 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10249 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10250 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10251 #else
10252 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10253 #endif
10254 		break;
10255 	}
10256 	case offsetof(struct bpf_sk_lookup, remote_port):
10257 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10258 				      bpf_target_off(struct bpf_sk_lookup_kern,
10259 						     sport, 2, target_size));
10260 		break;
10261 
10262 	case offsetof(struct bpf_sk_lookup, local_port):
10263 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10264 				      bpf_target_off(struct bpf_sk_lookup_kern,
10265 						     dport, 2, target_size));
10266 		break;
10267 	}
10268 
10269 	return insn - insn_buf;
10270 }
10271 
10272 const struct bpf_prog_ops sk_lookup_prog_ops = {
10273 };
10274 
10275 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10276 	.get_func_proto		= sk_lookup_func_proto,
10277 	.is_valid_access	= sk_lookup_is_valid_access,
10278 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
10279 };
10280 
10281 #endif /* CONFIG_INET */
10282 
10283 DEFINE_BPF_DISPATCHER(xdp)
10284 
10285 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10286 {
10287 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10288 }
10289 
10290 #ifdef CONFIG_DEBUG_INFO_BTF
10291 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10292 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10293 BTF_SOCK_TYPE_xxx
10294 #undef BTF_SOCK_TYPE
10295 #else
10296 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10297 #endif
10298 
10299 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10300 {
10301 	/* tcp6_sock type is not generated in dwarf and hence btf,
10302 	 * trigger an explicit type generation here.
10303 	 */
10304 	BTF_TYPE_EMIT(struct tcp6_sock);
10305 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10306 	    sk->sk_family == AF_INET6)
10307 		return (unsigned long)sk;
10308 
10309 	return (unsigned long)NULL;
10310 }
10311 
10312 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10313 	.func			= bpf_skc_to_tcp6_sock,
10314 	.gpl_only		= false,
10315 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10316 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10317 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10318 };
10319 
10320 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10321 {
10322 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10323 		return (unsigned long)sk;
10324 
10325 	return (unsigned long)NULL;
10326 }
10327 
10328 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10329 	.func			= bpf_skc_to_tcp_sock,
10330 	.gpl_only		= false,
10331 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10332 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10333 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10334 };
10335 
10336 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10337 {
10338 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10339 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
10340 	 */
10341 	BTF_TYPE_EMIT(struct inet_timewait_sock);
10342 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
10343 
10344 #ifdef CONFIG_INET
10345 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10346 		return (unsigned long)sk;
10347 #endif
10348 
10349 #if IS_BUILTIN(CONFIG_IPV6)
10350 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10351 		return (unsigned long)sk;
10352 #endif
10353 
10354 	return (unsigned long)NULL;
10355 }
10356 
10357 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10358 	.func			= bpf_skc_to_tcp_timewait_sock,
10359 	.gpl_only		= false,
10360 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10361 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10362 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10363 };
10364 
10365 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10366 {
10367 #ifdef CONFIG_INET
10368 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10369 		return (unsigned long)sk;
10370 #endif
10371 
10372 #if IS_BUILTIN(CONFIG_IPV6)
10373 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10374 		return (unsigned long)sk;
10375 #endif
10376 
10377 	return (unsigned long)NULL;
10378 }
10379 
10380 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10381 	.func			= bpf_skc_to_tcp_request_sock,
10382 	.gpl_only		= false,
10383 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10384 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10385 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10386 };
10387 
10388 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10389 {
10390 	/* udp6_sock type is not generated in dwarf and hence btf,
10391 	 * trigger an explicit type generation here.
10392 	 */
10393 	BTF_TYPE_EMIT(struct udp6_sock);
10394 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10395 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10396 		return (unsigned long)sk;
10397 
10398 	return (unsigned long)NULL;
10399 }
10400 
10401 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10402 	.func			= bpf_skc_to_udp6_sock,
10403 	.gpl_only		= false,
10404 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10405 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10406 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10407 };
10408 
10409 static const struct bpf_func_proto *
10410 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10411 {
10412 	const struct bpf_func_proto *func;
10413 
10414 	switch (func_id) {
10415 	case BPF_FUNC_skc_to_tcp6_sock:
10416 		func = &bpf_skc_to_tcp6_sock_proto;
10417 		break;
10418 	case BPF_FUNC_skc_to_tcp_sock:
10419 		func = &bpf_skc_to_tcp_sock_proto;
10420 		break;
10421 	case BPF_FUNC_skc_to_tcp_timewait_sock:
10422 		func = &bpf_skc_to_tcp_timewait_sock_proto;
10423 		break;
10424 	case BPF_FUNC_skc_to_tcp_request_sock:
10425 		func = &bpf_skc_to_tcp_request_sock_proto;
10426 		break;
10427 	case BPF_FUNC_skc_to_udp6_sock:
10428 		func = &bpf_skc_to_udp6_sock_proto;
10429 		break;
10430 	default:
10431 		return bpf_base_func_proto(func_id);
10432 	}
10433 
10434 	if (!perfmon_capable())
10435 		return NULL;
10436 
10437 	return func;
10438 }
10439