xref: /openbmc/linux/net/core/filter.c (revision aded0023)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 
85 static const struct bpf_func_proto *
86 bpf_sk_base_func_proto(enum bpf_func_id func_id);
87 
88 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
89 {
90 	if (in_compat_syscall()) {
91 		struct compat_sock_fprog f32;
92 
93 		if (len != sizeof(f32))
94 			return -EINVAL;
95 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
96 			return -EFAULT;
97 		memset(dst, 0, sizeof(*dst));
98 		dst->len = f32.len;
99 		dst->filter = compat_ptr(f32.filter);
100 	} else {
101 		if (len != sizeof(*dst))
102 			return -EINVAL;
103 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
104 			return -EFAULT;
105 	}
106 
107 	return 0;
108 }
109 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
110 
111 /**
112  *	sk_filter_trim_cap - run a packet through a socket filter
113  *	@sk: sock associated with &sk_buff
114  *	@skb: buffer to filter
115  *	@cap: limit on how short the eBPF program may trim the packet
116  *
117  * Run the eBPF program and then cut skb->data to correct size returned by
118  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
119  * than pkt_len we keep whole skb->data. This is the socket level
120  * wrapper to bpf_prog_run. It returns 0 if the packet should
121  * be accepted or -EPERM if the packet should be tossed.
122  *
123  */
124 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
125 {
126 	int err;
127 	struct sk_filter *filter;
128 
129 	/*
130 	 * If the skb was allocated from pfmemalloc reserves, only
131 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
132 	 * helping free memory
133 	 */
134 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
135 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
136 		return -ENOMEM;
137 	}
138 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
139 	if (err)
140 		return err;
141 
142 	err = security_sock_rcv_skb(sk, skb);
143 	if (err)
144 		return err;
145 
146 	rcu_read_lock();
147 	filter = rcu_dereference(sk->sk_filter);
148 	if (filter) {
149 		struct sock *save_sk = skb->sk;
150 		unsigned int pkt_len;
151 
152 		skb->sk = sk;
153 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
154 		skb->sk = save_sk;
155 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
156 	}
157 	rcu_read_unlock();
158 
159 	return err;
160 }
161 EXPORT_SYMBOL(sk_filter_trim_cap);
162 
163 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
164 {
165 	return skb_get_poff(skb);
166 }
167 
168 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
169 {
170 	struct nlattr *nla;
171 
172 	if (skb_is_nonlinear(skb))
173 		return 0;
174 
175 	if (skb->len < sizeof(struct nlattr))
176 		return 0;
177 
178 	if (a > skb->len - sizeof(struct nlattr))
179 		return 0;
180 
181 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
182 	if (nla)
183 		return (void *) nla - (void *) skb->data;
184 
185 	return 0;
186 }
187 
188 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
189 {
190 	struct nlattr *nla;
191 
192 	if (skb_is_nonlinear(skb))
193 		return 0;
194 
195 	if (skb->len < sizeof(struct nlattr))
196 		return 0;
197 
198 	if (a > skb->len - sizeof(struct nlattr))
199 		return 0;
200 
201 	nla = (struct nlattr *) &skb->data[a];
202 	if (nla->nla_len > skb->len - a)
203 		return 0;
204 
205 	nla = nla_find_nested(nla, x);
206 	if (nla)
207 		return (void *) nla - (void *) skb->data;
208 
209 	return 0;
210 }
211 
212 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
213 	   data, int, headlen, int, offset)
214 {
215 	u8 tmp, *ptr;
216 	const int len = sizeof(tmp);
217 
218 	if (offset >= 0) {
219 		if (headlen - offset >= len)
220 			return *(u8 *)(data + offset);
221 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
222 			return tmp;
223 	} else {
224 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
225 		if (likely(ptr))
226 			return *(u8 *)ptr;
227 	}
228 
229 	return -EFAULT;
230 }
231 
232 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
233 	   int, offset)
234 {
235 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
236 					 offset);
237 }
238 
239 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
240 	   data, int, headlen, int, offset)
241 {
242 	__be16 tmp, *ptr;
243 	const int len = sizeof(tmp);
244 
245 	if (offset >= 0) {
246 		if (headlen - offset >= len)
247 			return get_unaligned_be16(data + offset);
248 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
249 			return be16_to_cpu(tmp);
250 	} else {
251 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
252 		if (likely(ptr))
253 			return get_unaligned_be16(ptr);
254 	}
255 
256 	return -EFAULT;
257 }
258 
259 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
260 	   int, offset)
261 {
262 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
263 					  offset);
264 }
265 
266 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
267 	   data, int, headlen, int, offset)
268 {
269 	__be32 tmp, *ptr;
270 	const int len = sizeof(tmp);
271 
272 	if (likely(offset >= 0)) {
273 		if (headlen - offset >= len)
274 			return get_unaligned_be32(data + offset);
275 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
276 			return be32_to_cpu(tmp);
277 	} else {
278 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
279 		if (likely(ptr))
280 			return get_unaligned_be32(ptr);
281 	}
282 
283 	return -EFAULT;
284 }
285 
286 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
287 	   int, offset)
288 {
289 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
290 					  offset);
291 }
292 
293 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
294 			      struct bpf_insn *insn_buf)
295 {
296 	struct bpf_insn *insn = insn_buf;
297 
298 	switch (skb_field) {
299 	case SKF_AD_MARK:
300 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
301 
302 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
303 				      offsetof(struct sk_buff, mark));
304 		break;
305 
306 	case SKF_AD_PKTTYPE:
307 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
308 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
309 #ifdef __BIG_ENDIAN_BITFIELD
310 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
311 #endif
312 		break;
313 
314 	case SKF_AD_QUEUE:
315 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
316 
317 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318 				      offsetof(struct sk_buff, queue_mapping));
319 		break;
320 
321 	case SKF_AD_VLAN_TAG:
322 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
323 
324 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
325 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
326 				      offsetof(struct sk_buff, vlan_tci));
327 		break;
328 	case SKF_AD_VLAN_TAG_PRESENT:
329 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
330 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
331 				      offsetof(struct sk_buff, vlan_all));
332 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
333 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
334 		break;
335 	}
336 
337 	return insn - insn_buf;
338 }
339 
340 static bool convert_bpf_extensions(struct sock_filter *fp,
341 				   struct bpf_insn **insnp)
342 {
343 	struct bpf_insn *insn = *insnp;
344 	u32 cnt;
345 
346 	switch (fp->k) {
347 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
348 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
349 
350 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
351 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
352 				      offsetof(struct sk_buff, protocol));
353 		/* A = ntohs(A) [emitting a nop or swap16] */
354 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
355 		break;
356 
357 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
358 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
359 		insn += cnt - 1;
360 		break;
361 
362 	case SKF_AD_OFF + SKF_AD_IFINDEX:
363 	case SKF_AD_OFF + SKF_AD_HATYPE:
364 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
365 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
366 
367 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
368 				      BPF_REG_TMP, BPF_REG_CTX,
369 				      offsetof(struct sk_buff, dev));
370 		/* if (tmp != 0) goto pc + 1 */
371 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
372 		*insn++ = BPF_EXIT_INSN();
373 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
374 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
375 					    offsetof(struct net_device, ifindex));
376 		else
377 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
378 					    offsetof(struct net_device, type));
379 		break;
380 
381 	case SKF_AD_OFF + SKF_AD_MARK:
382 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
383 		insn += cnt - 1;
384 		break;
385 
386 	case SKF_AD_OFF + SKF_AD_RXHASH:
387 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
388 
389 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
390 				    offsetof(struct sk_buff, hash));
391 		break;
392 
393 	case SKF_AD_OFF + SKF_AD_QUEUE:
394 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
395 		insn += cnt - 1;
396 		break;
397 
398 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
399 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
400 					 BPF_REG_A, BPF_REG_CTX, insn);
401 		insn += cnt - 1;
402 		break;
403 
404 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
405 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
406 					 BPF_REG_A, BPF_REG_CTX, insn);
407 		insn += cnt - 1;
408 		break;
409 
410 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
411 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
412 
413 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
414 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
415 				      offsetof(struct sk_buff, vlan_proto));
416 		/* A = ntohs(A) [emitting a nop or swap16] */
417 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
418 		break;
419 
420 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
421 	case SKF_AD_OFF + SKF_AD_NLATTR:
422 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
423 	case SKF_AD_OFF + SKF_AD_CPU:
424 	case SKF_AD_OFF + SKF_AD_RANDOM:
425 		/* arg1 = CTX */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
427 		/* arg2 = A */
428 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
429 		/* arg3 = X */
430 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
431 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
432 		switch (fp->k) {
433 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
434 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
435 			break;
436 		case SKF_AD_OFF + SKF_AD_NLATTR:
437 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
438 			break;
439 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
441 			break;
442 		case SKF_AD_OFF + SKF_AD_CPU:
443 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
444 			break;
445 		case SKF_AD_OFF + SKF_AD_RANDOM:
446 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
447 			bpf_user_rnd_init_once();
448 			break;
449 		}
450 		break;
451 
452 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
453 		/* A ^= X */
454 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
455 		break;
456 
457 	default:
458 		/* This is just a dummy call to avoid letting the compiler
459 		 * evict __bpf_call_base() as an optimization. Placed here
460 		 * where no-one bothers.
461 		 */
462 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
463 		return false;
464 	}
465 
466 	*insnp = insn;
467 	return true;
468 }
469 
470 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
471 {
472 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
473 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
474 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
475 		      BPF_SIZE(fp->code) == BPF_W;
476 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
477 	const int ip_align = NET_IP_ALIGN;
478 	struct bpf_insn *insn = *insnp;
479 	int offset = fp->k;
480 
481 	if (!indirect &&
482 	    ((unaligned_ok && offset >= 0) ||
483 	     (!unaligned_ok && offset >= 0 &&
484 	      offset + ip_align >= 0 &&
485 	      offset + ip_align % size == 0))) {
486 		bool ldx_off_ok = offset <= S16_MAX;
487 
488 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
489 		if (offset)
490 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
491 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
492 				      size, 2 + endian + (!ldx_off_ok * 2));
493 		if (ldx_off_ok) {
494 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
495 					      BPF_REG_D, offset);
496 		} else {
497 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
498 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
499 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500 					      BPF_REG_TMP, 0);
501 		}
502 		if (endian)
503 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
504 		*insn++ = BPF_JMP_A(8);
505 	}
506 
507 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
508 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
509 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
510 	if (!indirect) {
511 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
512 	} else {
513 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
514 		if (fp->k)
515 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
516 	}
517 
518 	switch (BPF_SIZE(fp->code)) {
519 	case BPF_B:
520 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
521 		break;
522 	case BPF_H:
523 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
524 		break;
525 	case BPF_W:
526 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
527 		break;
528 	default:
529 		return false;
530 	}
531 
532 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
533 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
534 	*insn   = BPF_EXIT_INSN();
535 
536 	*insnp = insn;
537 	return true;
538 }
539 
540 /**
541  *	bpf_convert_filter - convert filter program
542  *	@prog: the user passed filter program
543  *	@len: the length of the user passed filter program
544  *	@new_prog: allocated 'struct bpf_prog' or NULL
545  *	@new_len: pointer to store length of converted program
546  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
547  *
548  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
549  * style extended BPF (eBPF).
550  * Conversion workflow:
551  *
552  * 1) First pass for calculating the new program length:
553  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
554  *
555  * 2) 2nd pass to remap in two passes: 1st pass finds new
556  *    jump offsets, 2nd pass remapping:
557  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
558  */
559 static int bpf_convert_filter(struct sock_filter *prog, int len,
560 			      struct bpf_prog *new_prog, int *new_len,
561 			      bool *seen_ld_abs)
562 {
563 	int new_flen = 0, pass = 0, target, i, stack_off;
564 	struct bpf_insn *new_insn, *first_insn = NULL;
565 	struct sock_filter *fp;
566 	int *addrs = NULL;
567 	u8 bpf_src;
568 
569 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
570 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
571 
572 	if (len <= 0 || len > BPF_MAXINSNS)
573 		return -EINVAL;
574 
575 	if (new_prog) {
576 		first_insn = new_prog->insnsi;
577 		addrs = kcalloc(len, sizeof(*addrs),
578 				GFP_KERNEL | __GFP_NOWARN);
579 		if (!addrs)
580 			return -ENOMEM;
581 	}
582 
583 do_pass:
584 	new_insn = first_insn;
585 	fp = prog;
586 
587 	/* Classic BPF related prologue emission. */
588 	if (new_prog) {
589 		/* Classic BPF expects A and X to be reset first. These need
590 		 * to be guaranteed to be the first two instructions.
591 		 */
592 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
593 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
594 
595 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
596 		 * In eBPF case it's done by the compiler, here we need to
597 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
598 		 */
599 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
600 		if (*seen_ld_abs) {
601 			/* For packet access in classic BPF, cache skb->data
602 			 * in callee-saved BPF R8 and skb->len - skb->data_len
603 			 * (headlen) in BPF R9. Since classic BPF is read-only
604 			 * on CTX, we only need to cache it once.
605 			 */
606 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
607 						  BPF_REG_D, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, data));
609 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
610 						  offsetof(struct sk_buff, len));
611 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
612 						  offsetof(struct sk_buff, data_len));
613 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
614 		}
615 	} else {
616 		new_insn += 3;
617 	}
618 
619 	for (i = 0; i < len; fp++, i++) {
620 		struct bpf_insn tmp_insns[32] = { };
621 		struct bpf_insn *insn = tmp_insns;
622 
623 		if (addrs)
624 			addrs[i] = new_insn - first_insn;
625 
626 		switch (fp->code) {
627 		/* All arithmetic insns and skb loads map as-is. */
628 		case BPF_ALU | BPF_ADD | BPF_X:
629 		case BPF_ALU | BPF_ADD | BPF_K:
630 		case BPF_ALU | BPF_SUB | BPF_X:
631 		case BPF_ALU | BPF_SUB | BPF_K:
632 		case BPF_ALU | BPF_AND | BPF_X:
633 		case BPF_ALU | BPF_AND | BPF_K:
634 		case BPF_ALU | BPF_OR | BPF_X:
635 		case BPF_ALU | BPF_OR | BPF_K:
636 		case BPF_ALU | BPF_LSH | BPF_X:
637 		case BPF_ALU | BPF_LSH | BPF_K:
638 		case BPF_ALU | BPF_RSH | BPF_X:
639 		case BPF_ALU | BPF_RSH | BPF_K:
640 		case BPF_ALU | BPF_XOR | BPF_X:
641 		case BPF_ALU | BPF_XOR | BPF_K:
642 		case BPF_ALU | BPF_MUL | BPF_X:
643 		case BPF_ALU | BPF_MUL | BPF_K:
644 		case BPF_ALU | BPF_DIV | BPF_X:
645 		case BPF_ALU | BPF_DIV | BPF_K:
646 		case BPF_ALU | BPF_MOD | BPF_X:
647 		case BPF_ALU | BPF_MOD | BPF_K:
648 		case BPF_ALU | BPF_NEG:
649 		case BPF_LD | BPF_ABS | BPF_W:
650 		case BPF_LD | BPF_ABS | BPF_H:
651 		case BPF_LD | BPF_ABS | BPF_B:
652 		case BPF_LD | BPF_IND | BPF_W:
653 		case BPF_LD | BPF_IND | BPF_H:
654 		case BPF_LD | BPF_IND | BPF_B:
655 			/* Check for overloaded BPF extension and
656 			 * directly convert it if found, otherwise
657 			 * just move on with mapping.
658 			 */
659 			if (BPF_CLASS(fp->code) == BPF_LD &&
660 			    BPF_MODE(fp->code) == BPF_ABS &&
661 			    convert_bpf_extensions(fp, &insn))
662 				break;
663 			if (BPF_CLASS(fp->code) == BPF_LD &&
664 			    convert_bpf_ld_abs(fp, &insn)) {
665 				*seen_ld_abs = true;
666 				break;
667 			}
668 
669 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
670 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
671 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
672 				/* Error with exception code on div/mod by 0.
673 				 * For cBPF programs, this was always return 0.
674 				 */
675 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
676 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
677 				*insn++ = BPF_EXIT_INSN();
678 			}
679 
680 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
681 			break;
682 
683 		/* Jump transformation cannot use BPF block macros
684 		 * everywhere as offset calculation and target updates
685 		 * require a bit more work than the rest, i.e. jump
686 		 * opcodes map as-is, but offsets need adjustment.
687 		 */
688 
689 #define BPF_EMIT_JMP							\
690 	do {								\
691 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
692 		s32 off;						\
693 									\
694 		if (target >= len || target < 0)			\
695 			goto err;					\
696 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
697 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
698 		off -= insn - tmp_insns;				\
699 		/* Reject anything not fitting into insn->off. */	\
700 		if (off < off_min || off > off_max)			\
701 			goto err;					\
702 		insn->off = off;					\
703 	} while (0)
704 
705 		case BPF_JMP | BPF_JA:
706 			target = i + fp->k + 1;
707 			insn->code = fp->code;
708 			BPF_EMIT_JMP;
709 			break;
710 
711 		case BPF_JMP | BPF_JEQ | BPF_K:
712 		case BPF_JMP | BPF_JEQ | BPF_X:
713 		case BPF_JMP | BPF_JSET | BPF_K:
714 		case BPF_JMP | BPF_JSET | BPF_X:
715 		case BPF_JMP | BPF_JGT | BPF_K:
716 		case BPF_JMP | BPF_JGT | BPF_X:
717 		case BPF_JMP | BPF_JGE | BPF_K:
718 		case BPF_JMP | BPF_JGE | BPF_X:
719 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
720 				/* BPF immediates are signed, zero extend
721 				 * immediate into tmp register and use it
722 				 * in compare insn.
723 				 */
724 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
725 
726 				insn->dst_reg = BPF_REG_A;
727 				insn->src_reg = BPF_REG_TMP;
728 				bpf_src = BPF_X;
729 			} else {
730 				insn->dst_reg = BPF_REG_A;
731 				insn->imm = fp->k;
732 				bpf_src = BPF_SRC(fp->code);
733 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
734 			}
735 
736 			/* Common case where 'jump_false' is next insn. */
737 			if (fp->jf == 0) {
738 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
739 				target = i + fp->jt + 1;
740 				BPF_EMIT_JMP;
741 				break;
742 			}
743 
744 			/* Convert some jumps when 'jump_true' is next insn. */
745 			if (fp->jt == 0) {
746 				switch (BPF_OP(fp->code)) {
747 				case BPF_JEQ:
748 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
749 					break;
750 				case BPF_JGT:
751 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
752 					break;
753 				case BPF_JGE:
754 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
755 					break;
756 				default:
757 					goto jmp_rest;
758 				}
759 
760 				target = i + fp->jf + 1;
761 				BPF_EMIT_JMP;
762 				break;
763 			}
764 jmp_rest:
765 			/* Other jumps are mapped into two insns: Jxx and JA. */
766 			target = i + fp->jt + 1;
767 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
768 			BPF_EMIT_JMP;
769 			insn++;
770 
771 			insn->code = BPF_JMP | BPF_JA;
772 			target = i + fp->jf + 1;
773 			BPF_EMIT_JMP;
774 			break;
775 
776 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
777 		case BPF_LDX | BPF_MSH | BPF_B: {
778 			struct sock_filter tmp = {
779 				.code	= BPF_LD | BPF_ABS | BPF_B,
780 				.k	= fp->k,
781 			};
782 
783 			*seen_ld_abs = true;
784 
785 			/* X = A */
786 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
787 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
788 			convert_bpf_ld_abs(&tmp, &insn);
789 			insn++;
790 			/* A &= 0xf */
791 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
792 			/* A <<= 2 */
793 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
794 			/* tmp = X */
795 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
796 			/* X = A */
797 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
798 			/* A = tmp */
799 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
800 			break;
801 		}
802 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
803 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
804 		 */
805 		case BPF_RET | BPF_A:
806 		case BPF_RET | BPF_K:
807 			if (BPF_RVAL(fp->code) == BPF_K)
808 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
809 							0, fp->k);
810 			*insn = BPF_EXIT_INSN();
811 			break;
812 
813 		/* Store to stack. */
814 		case BPF_ST:
815 		case BPF_STX:
816 			stack_off = fp->k * 4  + 4;
817 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
818 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
819 					    -stack_off);
820 			/* check_load_and_stores() verifies that classic BPF can
821 			 * load from stack only after write, so tracking
822 			 * stack_depth for ST|STX insns is enough
823 			 */
824 			if (new_prog && new_prog->aux->stack_depth < stack_off)
825 				new_prog->aux->stack_depth = stack_off;
826 			break;
827 
828 		/* Load from stack. */
829 		case BPF_LD | BPF_MEM:
830 		case BPF_LDX | BPF_MEM:
831 			stack_off = fp->k * 4  + 4;
832 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
833 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
834 					    -stack_off);
835 			break;
836 
837 		/* A = K or X = K */
838 		case BPF_LD | BPF_IMM:
839 		case BPF_LDX | BPF_IMM:
840 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
841 					      BPF_REG_A : BPF_REG_X, fp->k);
842 			break;
843 
844 		/* X = A */
845 		case BPF_MISC | BPF_TAX:
846 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
847 			break;
848 
849 		/* A = X */
850 		case BPF_MISC | BPF_TXA:
851 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
852 			break;
853 
854 		/* A = skb->len or X = skb->len */
855 		case BPF_LD | BPF_W | BPF_LEN:
856 		case BPF_LDX | BPF_W | BPF_LEN:
857 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
858 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
859 					    offsetof(struct sk_buff, len));
860 			break;
861 
862 		/* Access seccomp_data fields. */
863 		case BPF_LDX | BPF_ABS | BPF_W:
864 			/* A = *(u32 *) (ctx + K) */
865 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
866 			break;
867 
868 		/* Unknown instruction. */
869 		default:
870 			goto err;
871 		}
872 
873 		insn++;
874 		if (new_prog)
875 			memcpy(new_insn, tmp_insns,
876 			       sizeof(*insn) * (insn - tmp_insns));
877 		new_insn += insn - tmp_insns;
878 	}
879 
880 	if (!new_prog) {
881 		/* Only calculating new length. */
882 		*new_len = new_insn - first_insn;
883 		if (*seen_ld_abs)
884 			*new_len += 4; /* Prologue bits. */
885 		return 0;
886 	}
887 
888 	pass++;
889 	if (new_flen != new_insn - first_insn) {
890 		new_flen = new_insn - first_insn;
891 		if (pass > 2)
892 			goto err;
893 		goto do_pass;
894 	}
895 
896 	kfree(addrs);
897 	BUG_ON(*new_len != new_flen);
898 	return 0;
899 err:
900 	kfree(addrs);
901 	return -EINVAL;
902 }
903 
904 /* Security:
905  *
906  * As we dont want to clear mem[] array for each packet going through
907  * __bpf_prog_run(), we check that filter loaded by user never try to read
908  * a cell if not previously written, and we check all branches to be sure
909  * a malicious user doesn't try to abuse us.
910  */
911 static int check_load_and_stores(const struct sock_filter *filter, int flen)
912 {
913 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
914 	int pc, ret = 0;
915 
916 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
917 
918 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
919 	if (!masks)
920 		return -ENOMEM;
921 
922 	memset(masks, 0xff, flen * sizeof(*masks));
923 
924 	for (pc = 0; pc < flen; pc++) {
925 		memvalid &= masks[pc];
926 
927 		switch (filter[pc].code) {
928 		case BPF_ST:
929 		case BPF_STX:
930 			memvalid |= (1 << filter[pc].k);
931 			break;
932 		case BPF_LD | BPF_MEM:
933 		case BPF_LDX | BPF_MEM:
934 			if (!(memvalid & (1 << filter[pc].k))) {
935 				ret = -EINVAL;
936 				goto error;
937 			}
938 			break;
939 		case BPF_JMP | BPF_JA:
940 			/* A jump must set masks on target */
941 			masks[pc + 1 + filter[pc].k] &= memvalid;
942 			memvalid = ~0;
943 			break;
944 		case BPF_JMP | BPF_JEQ | BPF_K:
945 		case BPF_JMP | BPF_JEQ | BPF_X:
946 		case BPF_JMP | BPF_JGE | BPF_K:
947 		case BPF_JMP | BPF_JGE | BPF_X:
948 		case BPF_JMP | BPF_JGT | BPF_K:
949 		case BPF_JMP | BPF_JGT | BPF_X:
950 		case BPF_JMP | BPF_JSET | BPF_K:
951 		case BPF_JMP | BPF_JSET | BPF_X:
952 			/* A jump must set masks on targets */
953 			masks[pc + 1 + filter[pc].jt] &= memvalid;
954 			masks[pc + 1 + filter[pc].jf] &= memvalid;
955 			memvalid = ~0;
956 			break;
957 		}
958 	}
959 error:
960 	kfree(masks);
961 	return ret;
962 }
963 
964 static bool chk_code_allowed(u16 code_to_probe)
965 {
966 	static const bool codes[] = {
967 		/* 32 bit ALU operations */
968 		[BPF_ALU | BPF_ADD | BPF_K] = true,
969 		[BPF_ALU | BPF_ADD | BPF_X] = true,
970 		[BPF_ALU | BPF_SUB | BPF_K] = true,
971 		[BPF_ALU | BPF_SUB | BPF_X] = true,
972 		[BPF_ALU | BPF_MUL | BPF_K] = true,
973 		[BPF_ALU | BPF_MUL | BPF_X] = true,
974 		[BPF_ALU | BPF_DIV | BPF_K] = true,
975 		[BPF_ALU | BPF_DIV | BPF_X] = true,
976 		[BPF_ALU | BPF_MOD | BPF_K] = true,
977 		[BPF_ALU | BPF_MOD | BPF_X] = true,
978 		[BPF_ALU | BPF_AND | BPF_K] = true,
979 		[BPF_ALU | BPF_AND | BPF_X] = true,
980 		[BPF_ALU | BPF_OR | BPF_K] = true,
981 		[BPF_ALU | BPF_OR | BPF_X] = true,
982 		[BPF_ALU | BPF_XOR | BPF_K] = true,
983 		[BPF_ALU | BPF_XOR | BPF_X] = true,
984 		[BPF_ALU | BPF_LSH | BPF_K] = true,
985 		[BPF_ALU | BPF_LSH | BPF_X] = true,
986 		[BPF_ALU | BPF_RSH | BPF_K] = true,
987 		[BPF_ALU | BPF_RSH | BPF_X] = true,
988 		[BPF_ALU | BPF_NEG] = true,
989 		/* Load instructions */
990 		[BPF_LD | BPF_W | BPF_ABS] = true,
991 		[BPF_LD | BPF_H | BPF_ABS] = true,
992 		[BPF_LD | BPF_B | BPF_ABS] = true,
993 		[BPF_LD | BPF_W | BPF_LEN] = true,
994 		[BPF_LD | BPF_W | BPF_IND] = true,
995 		[BPF_LD | BPF_H | BPF_IND] = true,
996 		[BPF_LD | BPF_B | BPF_IND] = true,
997 		[BPF_LD | BPF_IMM] = true,
998 		[BPF_LD | BPF_MEM] = true,
999 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1000 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1001 		[BPF_LDX | BPF_IMM] = true,
1002 		[BPF_LDX | BPF_MEM] = true,
1003 		/* Store instructions */
1004 		[BPF_ST] = true,
1005 		[BPF_STX] = true,
1006 		/* Misc instructions */
1007 		[BPF_MISC | BPF_TAX] = true,
1008 		[BPF_MISC | BPF_TXA] = true,
1009 		/* Return instructions */
1010 		[BPF_RET | BPF_K] = true,
1011 		[BPF_RET | BPF_A] = true,
1012 		/* Jump instructions */
1013 		[BPF_JMP | BPF_JA] = true,
1014 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1015 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1016 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1017 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1018 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1019 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1020 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1021 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1022 	};
1023 
1024 	if (code_to_probe >= ARRAY_SIZE(codes))
1025 		return false;
1026 
1027 	return codes[code_to_probe];
1028 }
1029 
1030 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1031 				unsigned int flen)
1032 {
1033 	if (filter == NULL)
1034 		return false;
1035 	if (flen == 0 || flen > BPF_MAXINSNS)
1036 		return false;
1037 
1038 	return true;
1039 }
1040 
1041 /**
1042  *	bpf_check_classic - verify socket filter code
1043  *	@filter: filter to verify
1044  *	@flen: length of filter
1045  *
1046  * Check the user's filter code. If we let some ugly
1047  * filter code slip through kaboom! The filter must contain
1048  * no references or jumps that are out of range, no illegal
1049  * instructions, and must end with a RET instruction.
1050  *
1051  * All jumps are forward as they are not signed.
1052  *
1053  * Returns 0 if the rule set is legal or -EINVAL if not.
1054  */
1055 static int bpf_check_classic(const struct sock_filter *filter,
1056 			     unsigned int flen)
1057 {
1058 	bool anc_found;
1059 	int pc;
1060 
1061 	/* Check the filter code now */
1062 	for (pc = 0; pc < flen; pc++) {
1063 		const struct sock_filter *ftest = &filter[pc];
1064 
1065 		/* May we actually operate on this code? */
1066 		if (!chk_code_allowed(ftest->code))
1067 			return -EINVAL;
1068 
1069 		/* Some instructions need special checks */
1070 		switch (ftest->code) {
1071 		case BPF_ALU | BPF_DIV | BPF_K:
1072 		case BPF_ALU | BPF_MOD | BPF_K:
1073 			/* Check for division by zero */
1074 			if (ftest->k == 0)
1075 				return -EINVAL;
1076 			break;
1077 		case BPF_ALU | BPF_LSH | BPF_K:
1078 		case BPF_ALU | BPF_RSH | BPF_K:
1079 			if (ftest->k >= 32)
1080 				return -EINVAL;
1081 			break;
1082 		case BPF_LD | BPF_MEM:
1083 		case BPF_LDX | BPF_MEM:
1084 		case BPF_ST:
1085 		case BPF_STX:
1086 			/* Check for invalid memory addresses */
1087 			if (ftest->k >= BPF_MEMWORDS)
1088 				return -EINVAL;
1089 			break;
1090 		case BPF_JMP | BPF_JA:
1091 			/* Note, the large ftest->k might cause loops.
1092 			 * Compare this with conditional jumps below,
1093 			 * where offsets are limited. --ANK (981016)
1094 			 */
1095 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1096 				return -EINVAL;
1097 			break;
1098 		case BPF_JMP | BPF_JEQ | BPF_K:
1099 		case BPF_JMP | BPF_JEQ | BPF_X:
1100 		case BPF_JMP | BPF_JGE | BPF_K:
1101 		case BPF_JMP | BPF_JGE | BPF_X:
1102 		case BPF_JMP | BPF_JGT | BPF_K:
1103 		case BPF_JMP | BPF_JGT | BPF_X:
1104 		case BPF_JMP | BPF_JSET | BPF_K:
1105 		case BPF_JMP | BPF_JSET | BPF_X:
1106 			/* Both conditionals must be safe */
1107 			if (pc + ftest->jt + 1 >= flen ||
1108 			    pc + ftest->jf + 1 >= flen)
1109 				return -EINVAL;
1110 			break;
1111 		case BPF_LD | BPF_W | BPF_ABS:
1112 		case BPF_LD | BPF_H | BPF_ABS:
1113 		case BPF_LD | BPF_B | BPF_ABS:
1114 			anc_found = false;
1115 			if (bpf_anc_helper(ftest) & BPF_ANC)
1116 				anc_found = true;
1117 			/* Ancillary operation unknown or unsupported */
1118 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1119 				return -EINVAL;
1120 		}
1121 	}
1122 
1123 	/* Last instruction must be a RET code */
1124 	switch (filter[flen - 1].code) {
1125 	case BPF_RET | BPF_K:
1126 	case BPF_RET | BPF_A:
1127 		return check_load_and_stores(filter, flen);
1128 	}
1129 
1130 	return -EINVAL;
1131 }
1132 
1133 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1134 				      const struct sock_fprog *fprog)
1135 {
1136 	unsigned int fsize = bpf_classic_proglen(fprog);
1137 	struct sock_fprog_kern *fkprog;
1138 
1139 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1140 	if (!fp->orig_prog)
1141 		return -ENOMEM;
1142 
1143 	fkprog = fp->orig_prog;
1144 	fkprog->len = fprog->len;
1145 
1146 	fkprog->filter = kmemdup(fp->insns, fsize,
1147 				 GFP_KERNEL | __GFP_NOWARN);
1148 	if (!fkprog->filter) {
1149 		kfree(fp->orig_prog);
1150 		return -ENOMEM;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 static void bpf_release_orig_filter(struct bpf_prog *fp)
1157 {
1158 	struct sock_fprog_kern *fprog = fp->orig_prog;
1159 
1160 	if (fprog) {
1161 		kfree(fprog->filter);
1162 		kfree(fprog);
1163 	}
1164 }
1165 
1166 static void __bpf_prog_release(struct bpf_prog *prog)
1167 {
1168 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1169 		bpf_prog_put(prog);
1170 	} else {
1171 		bpf_release_orig_filter(prog);
1172 		bpf_prog_free(prog);
1173 	}
1174 }
1175 
1176 static void __sk_filter_release(struct sk_filter *fp)
1177 {
1178 	__bpf_prog_release(fp->prog);
1179 	kfree(fp);
1180 }
1181 
1182 /**
1183  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1184  *	@rcu: rcu_head that contains the sk_filter to free
1185  */
1186 static void sk_filter_release_rcu(struct rcu_head *rcu)
1187 {
1188 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1189 
1190 	__sk_filter_release(fp);
1191 }
1192 
1193 /**
1194  *	sk_filter_release - release a socket filter
1195  *	@fp: filter to remove
1196  *
1197  *	Remove a filter from a socket and release its resources.
1198  */
1199 static void sk_filter_release(struct sk_filter *fp)
1200 {
1201 	if (refcount_dec_and_test(&fp->refcnt))
1202 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1203 }
1204 
1205 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1206 {
1207 	u32 filter_size = bpf_prog_size(fp->prog->len);
1208 
1209 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1210 	sk_filter_release(fp);
1211 }
1212 
1213 /* try to charge the socket memory if there is space available
1214  * return true on success
1215  */
1216 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1217 {
1218 	u32 filter_size = bpf_prog_size(fp->prog->len);
1219 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1220 
1221 	/* same check as in sock_kmalloc() */
1222 	if (filter_size <= optmem_max &&
1223 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1224 		atomic_add(filter_size, &sk->sk_omem_alloc);
1225 		return true;
1226 	}
1227 	return false;
1228 }
1229 
1230 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1231 {
1232 	if (!refcount_inc_not_zero(&fp->refcnt))
1233 		return false;
1234 
1235 	if (!__sk_filter_charge(sk, fp)) {
1236 		sk_filter_release(fp);
1237 		return false;
1238 	}
1239 	return true;
1240 }
1241 
1242 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1243 {
1244 	struct sock_filter *old_prog;
1245 	struct bpf_prog *old_fp;
1246 	int err, new_len, old_len = fp->len;
1247 	bool seen_ld_abs = false;
1248 
1249 	/* We are free to overwrite insns et al right here as it won't be used at
1250 	 * this point in time anymore internally after the migration to the eBPF
1251 	 * instruction representation.
1252 	 */
1253 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1254 		     sizeof(struct bpf_insn));
1255 
1256 	/* Conversion cannot happen on overlapping memory areas,
1257 	 * so we need to keep the user BPF around until the 2nd
1258 	 * pass. At this time, the user BPF is stored in fp->insns.
1259 	 */
1260 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1261 			   GFP_KERNEL | __GFP_NOWARN);
1262 	if (!old_prog) {
1263 		err = -ENOMEM;
1264 		goto out_err;
1265 	}
1266 
1267 	/* 1st pass: calculate the new program length. */
1268 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1269 				 &seen_ld_abs);
1270 	if (err)
1271 		goto out_err_free;
1272 
1273 	/* Expand fp for appending the new filter representation. */
1274 	old_fp = fp;
1275 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1276 	if (!fp) {
1277 		/* The old_fp is still around in case we couldn't
1278 		 * allocate new memory, so uncharge on that one.
1279 		 */
1280 		fp = old_fp;
1281 		err = -ENOMEM;
1282 		goto out_err_free;
1283 	}
1284 
1285 	fp->len = new_len;
1286 
1287 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1288 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1289 				 &seen_ld_abs);
1290 	if (err)
1291 		/* 2nd bpf_convert_filter() can fail only if it fails
1292 		 * to allocate memory, remapping must succeed. Note,
1293 		 * that at this time old_fp has already been released
1294 		 * by krealloc().
1295 		 */
1296 		goto out_err_free;
1297 
1298 	fp = bpf_prog_select_runtime(fp, &err);
1299 	if (err)
1300 		goto out_err_free;
1301 
1302 	kfree(old_prog);
1303 	return fp;
1304 
1305 out_err_free:
1306 	kfree(old_prog);
1307 out_err:
1308 	__bpf_prog_release(fp);
1309 	return ERR_PTR(err);
1310 }
1311 
1312 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1313 					   bpf_aux_classic_check_t trans)
1314 {
1315 	int err;
1316 
1317 	fp->bpf_func = NULL;
1318 	fp->jited = 0;
1319 
1320 	err = bpf_check_classic(fp->insns, fp->len);
1321 	if (err) {
1322 		__bpf_prog_release(fp);
1323 		return ERR_PTR(err);
1324 	}
1325 
1326 	/* There might be additional checks and transformations
1327 	 * needed on classic filters, f.e. in case of seccomp.
1328 	 */
1329 	if (trans) {
1330 		err = trans(fp->insns, fp->len);
1331 		if (err) {
1332 			__bpf_prog_release(fp);
1333 			return ERR_PTR(err);
1334 		}
1335 	}
1336 
1337 	/* Probe if we can JIT compile the filter and if so, do
1338 	 * the compilation of the filter.
1339 	 */
1340 	bpf_jit_compile(fp);
1341 
1342 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1343 	 * for the optimized interpreter.
1344 	 */
1345 	if (!fp->jited)
1346 		fp = bpf_migrate_filter(fp);
1347 
1348 	return fp;
1349 }
1350 
1351 /**
1352  *	bpf_prog_create - create an unattached filter
1353  *	@pfp: the unattached filter that is created
1354  *	@fprog: the filter program
1355  *
1356  * Create a filter independent of any socket. We first run some
1357  * sanity checks on it to make sure it does not explode on us later.
1358  * If an error occurs or there is insufficient memory for the filter
1359  * a negative errno code is returned. On success the return is zero.
1360  */
1361 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1362 {
1363 	unsigned int fsize = bpf_classic_proglen(fprog);
1364 	struct bpf_prog *fp;
1365 
1366 	/* Make sure new filter is there and in the right amounts. */
1367 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1368 		return -EINVAL;
1369 
1370 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1371 	if (!fp)
1372 		return -ENOMEM;
1373 
1374 	memcpy(fp->insns, fprog->filter, fsize);
1375 
1376 	fp->len = fprog->len;
1377 	/* Since unattached filters are not copied back to user
1378 	 * space through sk_get_filter(), we do not need to hold
1379 	 * a copy here, and can spare us the work.
1380 	 */
1381 	fp->orig_prog = NULL;
1382 
1383 	/* bpf_prepare_filter() already takes care of freeing
1384 	 * memory in case something goes wrong.
1385 	 */
1386 	fp = bpf_prepare_filter(fp, NULL);
1387 	if (IS_ERR(fp))
1388 		return PTR_ERR(fp);
1389 
1390 	*pfp = fp;
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(bpf_prog_create);
1394 
1395 /**
1396  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1397  *	@pfp: the unattached filter that is created
1398  *	@fprog: the filter program
1399  *	@trans: post-classic verifier transformation handler
1400  *	@save_orig: save classic BPF program
1401  *
1402  * This function effectively does the same as bpf_prog_create(), only
1403  * that it builds up its insns buffer from user space provided buffer.
1404  * It also allows for passing a bpf_aux_classic_check_t handler.
1405  */
1406 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1407 			      bpf_aux_classic_check_t trans, bool save_orig)
1408 {
1409 	unsigned int fsize = bpf_classic_proglen(fprog);
1410 	struct bpf_prog *fp;
1411 	int err;
1412 
1413 	/* Make sure new filter is there and in the right amounts. */
1414 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1415 		return -EINVAL;
1416 
1417 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1418 	if (!fp)
1419 		return -ENOMEM;
1420 
1421 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1422 		__bpf_prog_free(fp);
1423 		return -EFAULT;
1424 	}
1425 
1426 	fp->len = fprog->len;
1427 	fp->orig_prog = NULL;
1428 
1429 	if (save_orig) {
1430 		err = bpf_prog_store_orig_filter(fp, fprog);
1431 		if (err) {
1432 			__bpf_prog_free(fp);
1433 			return -ENOMEM;
1434 		}
1435 	}
1436 
1437 	/* bpf_prepare_filter() already takes care of freeing
1438 	 * memory in case something goes wrong.
1439 	 */
1440 	fp = bpf_prepare_filter(fp, trans);
1441 	if (IS_ERR(fp))
1442 		return PTR_ERR(fp);
1443 
1444 	*pfp = fp;
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1448 
1449 void bpf_prog_destroy(struct bpf_prog *fp)
1450 {
1451 	__bpf_prog_release(fp);
1452 }
1453 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1454 
1455 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1456 {
1457 	struct sk_filter *fp, *old_fp;
1458 
1459 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1460 	if (!fp)
1461 		return -ENOMEM;
1462 
1463 	fp->prog = prog;
1464 
1465 	if (!__sk_filter_charge(sk, fp)) {
1466 		kfree(fp);
1467 		return -ENOMEM;
1468 	}
1469 	refcount_set(&fp->refcnt, 1);
1470 
1471 	old_fp = rcu_dereference_protected(sk->sk_filter,
1472 					   lockdep_sock_is_held(sk));
1473 	rcu_assign_pointer(sk->sk_filter, fp);
1474 
1475 	if (old_fp)
1476 		sk_filter_uncharge(sk, old_fp);
1477 
1478 	return 0;
1479 }
1480 
1481 static
1482 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1483 {
1484 	unsigned int fsize = bpf_classic_proglen(fprog);
1485 	struct bpf_prog *prog;
1486 	int err;
1487 
1488 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1489 		return ERR_PTR(-EPERM);
1490 
1491 	/* Make sure new filter is there and in the right amounts. */
1492 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1493 		return ERR_PTR(-EINVAL);
1494 
1495 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1496 	if (!prog)
1497 		return ERR_PTR(-ENOMEM);
1498 
1499 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1500 		__bpf_prog_free(prog);
1501 		return ERR_PTR(-EFAULT);
1502 	}
1503 
1504 	prog->len = fprog->len;
1505 
1506 	err = bpf_prog_store_orig_filter(prog, fprog);
1507 	if (err) {
1508 		__bpf_prog_free(prog);
1509 		return ERR_PTR(-ENOMEM);
1510 	}
1511 
1512 	/* bpf_prepare_filter() already takes care of freeing
1513 	 * memory in case something goes wrong.
1514 	 */
1515 	return bpf_prepare_filter(prog, NULL);
1516 }
1517 
1518 /**
1519  *	sk_attach_filter - attach a socket filter
1520  *	@fprog: the filter program
1521  *	@sk: the socket to use
1522  *
1523  * Attach the user's filter code. We first run some sanity checks on
1524  * it to make sure it does not explode on us later. If an error
1525  * occurs or there is insufficient memory for the filter a negative
1526  * errno code is returned. On success the return is zero.
1527  */
1528 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1529 {
1530 	struct bpf_prog *prog = __get_filter(fprog, sk);
1531 	int err;
1532 
1533 	if (IS_ERR(prog))
1534 		return PTR_ERR(prog);
1535 
1536 	err = __sk_attach_prog(prog, sk);
1537 	if (err < 0) {
1538 		__bpf_prog_release(prog);
1539 		return err;
1540 	}
1541 
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(sk_attach_filter);
1545 
1546 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1547 {
1548 	struct bpf_prog *prog = __get_filter(fprog, sk);
1549 	int err;
1550 
1551 	if (IS_ERR(prog))
1552 		return PTR_ERR(prog);
1553 
1554 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1555 		err = -ENOMEM;
1556 	else
1557 		err = reuseport_attach_prog(sk, prog);
1558 
1559 	if (err)
1560 		__bpf_prog_release(prog);
1561 
1562 	return err;
1563 }
1564 
1565 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1566 {
1567 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1568 		return ERR_PTR(-EPERM);
1569 
1570 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1571 }
1572 
1573 int sk_attach_bpf(u32 ufd, struct sock *sk)
1574 {
1575 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1576 	int err;
1577 
1578 	if (IS_ERR(prog))
1579 		return PTR_ERR(prog);
1580 
1581 	err = __sk_attach_prog(prog, sk);
1582 	if (err < 0) {
1583 		bpf_prog_put(prog);
1584 		return err;
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1591 {
1592 	struct bpf_prog *prog;
1593 	int err;
1594 
1595 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1596 		return -EPERM;
1597 
1598 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1599 	if (PTR_ERR(prog) == -EINVAL)
1600 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1601 	if (IS_ERR(prog))
1602 		return PTR_ERR(prog);
1603 
1604 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1605 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1606 		 * bpf prog (e.g. sockmap).  It depends on the
1607 		 * limitation imposed by bpf_prog_load().
1608 		 * Hence, sysctl_optmem_max is not checked.
1609 		 */
1610 		if ((sk->sk_type != SOCK_STREAM &&
1611 		     sk->sk_type != SOCK_DGRAM) ||
1612 		    (sk->sk_protocol != IPPROTO_UDP &&
1613 		     sk->sk_protocol != IPPROTO_TCP) ||
1614 		    (sk->sk_family != AF_INET &&
1615 		     sk->sk_family != AF_INET6)) {
1616 			err = -ENOTSUPP;
1617 			goto err_prog_put;
1618 		}
1619 	} else {
1620 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1621 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1622 			err = -ENOMEM;
1623 			goto err_prog_put;
1624 		}
1625 	}
1626 
1627 	err = reuseport_attach_prog(sk, prog);
1628 err_prog_put:
1629 	if (err)
1630 		bpf_prog_put(prog);
1631 
1632 	return err;
1633 }
1634 
1635 void sk_reuseport_prog_free(struct bpf_prog *prog)
1636 {
1637 	if (!prog)
1638 		return;
1639 
1640 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1641 		bpf_prog_put(prog);
1642 	else
1643 		bpf_prog_destroy(prog);
1644 }
1645 
1646 struct bpf_scratchpad {
1647 	union {
1648 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1649 		u8     buff[MAX_BPF_STACK];
1650 	};
1651 };
1652 
1653 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1654 
1655 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1656 					  unsigned int write_len)
1657 {
1658 	return skb_ensure_writable(skb, write_len);
1659 }
1660 
1661 static inline int bpf_try_make_writable(struct sk_buff *skb,
1662 					unsigned int write_len)
1663 {
1664 	int err = __bpf_try_make_writable(skb, write_len);
1665 
1666 	bpf_compute_data_pointers(skb);
1667 	return err;
1668 }
1669 
1670 static int bpf_try_make_head_writable(struct sk_buff *skb)
1671 {
1672 	return bpf_try_make_writable(skb, skb_headlen(skb));
1673 }
1674 
1675 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1676 {
1677 	if (skb_at_tc_ingress(skb))
1678 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1679 }
1680 
1681 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1682 {
1683 	if (skb_at_tc_ingress(skb))
1684 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1685 }
1686 
1687 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1688 	   const void *, from, u32, len, u64, flags)
1689 {
1690 	void *ptr;
1691 
1692 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1693 		return -EINVAL;
1694 	if (unlikely(offset > INT_MAX))
1695 		return -EFAULT;
1696 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1697 		return -EFAULT;
1698 
1699 	ptr = skb->data + offset;
1700 	if (flags & BPF_F_RECOMPUTE_CSUM)
1701 		__skb_postpull_rcsum(skb, ptr, len, offset);
1702 
1703 	memcpy(ptr, from, len);
1704 
1705 	if (flags & BPF_F_RECOMPUTE_CSUM)
1706 		__skb_postpush_rcsum(skb, ptr, len, offset);
1707 	if (flags & BPF_F_INVALIDATE_HASH)
1708 		skb_clear_hash(skb);
1709 
1710 	return 0;
1711 }
1712 
1713 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1714 	.func		= bpf_skb_store_bytes,
1715 	.gpl_only	= false,
1716 	.ret_type	= RET_INTEGER,
1717 	.arg1_type	= ARG_PTR_TO_CTX,
1718 	.arg2_type	= ARG_ANYTHING,
1719 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1720 	.arg4_type	= ARG_CONST_SIZE,
1721 	.arg5_type	= ARG_ANYTHING,
1722 };
1723 
1724 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1725 			  u32 len, u64 flags)
1726 {
1727 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1728 }
1729 
1730 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1731 	   void *, to, u32, len)
1732 {
1733 	void *ptr;
1734 
1735 	if (unlikely(offset > INT_MAX))
1736 		goto err_clear;
1737 
1738 	ptr = skb_header_pointer(skb, offset, len, to);
1739 	if (unlikely(!ptr))
1740 		goto err_clear;
1741 	if (ptr != to)
1742 		memcpy(to, ptr, len);
1743 
1744 	return 0;
1745 err_clear:
1746 	memset(to, 0, len);
1747 	return -EFAULT;
1748 }
1749 
1750 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1751 	.func		= bpf_skb_load_bytes,
1752 	.gpl_only	= false,
1753 	.ret_type	= RET_INTEGER,
1754 	.arg1_type	= ARG_PTR_TO_CTX,
1755 	.arg2_type	= ARG_ANYTHING,
1756 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1757 	.arg4_type	= ARG_CONST_SIZE,
1758 };
1759 
1760 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1761 {
1762 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1763 }
1764 
1765 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1766 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1767 	   void *, to, u32, len)
1768 {
1769 	void *ptr;
1770 
1771 	if (unlikely(offset > 0xffff))
1772 		goto err_clear;
1773 
1774 	if (unlikely(!ctx->skb))
1775 		goto err_clear;
1776 
1777 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1778 	if (unlikely(!ptr))
1779 		goto err_clear;
1780 	if (ptr != to)
1781 		memcpy(to, ptr, len);
1782 
1783 	return 0;
1784 err_clear:
1785 	memset(to, 0, len);
1786 	return -EFAULT;
1787 }
1788 
1789 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1790 	.func		= bpf_flow_dissector_load_bytes,
1791 	.gpl_only	= false,
1792 	.ret_type	= RET_INTEGER,
1793 	.arg1_type	= ARG_PTR_TO_CTX,
1794 	.arg2_type	= ARG_ANYTHING,
1795 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1796 	.arg4_type	= ARG_CONST_SIZE,
1797 };
1798 
1799 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1800 	   u32, offset, void *, to, u32, len, u32, start_header)
1801 {
1802 	u8 *end = skb_tail_pointer(skb);
1803 	u8 *start, *ptr;
1804 
1805 	if (unlikely(offset > 0xffff))
1806 		goto err_clear;
1807 
1808 	switch (start_header) {
1809 	case BPF_HDR_START_MAC:
1810 		if (unlikely(!skb_mac_header_was_set(skb)))
1811 			goto err_clear;
1812 		start = skb_mac_header(skb);
1813 		break;
1814 	case BPF_HDR_START_NET:
1815 		start = skb_network_header(skb);
1816 		break;
1817 	default:
1818 		goto err_clear;
1819 	}
1820 
1821 	ptr = start + offset;
1822 
1823 	if (likely(ptr + len <= end)) {
1824 		memcpy(to, ptr, len);
1825 		return 0;
1826 	}
1827 
1828 err_clear:
1829 	memset(to, 0, len);
1830 	return -EFAULT;
1831 }
1832 
1833 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1834 	.func		= bpf_skb_load_bytes_relative,
1835 	.gpl_only	= false,
1836 	.ret_type	= RET_INTEGER,
1837 	.arg1_type	= ARG_PTR_TO_CTX,
1838 	.arg2_type	= ARG_ANYTHING,
1839 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1840 	.arg4_type	= ARG_CONST_SIZE,
1841 	.arg5_type	= ARG_ANYTHING,
1842 };
1843 
1844 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1845 {
1846 	/* Idea is the following: should the needed direct read/write
1847 	 * test fail during runtime, we can pull in more data and redo
1848 	 * again, since implicitly, we invalidate previous checks here.
1849 	 *
1850 	 * Or, since we know how much we need to make read/writeable,
1851 	 * this can be done once at the program beginning for direct
1852 	 * access case. By this we overcome limitations of only current
1853 	 * headroom being accessible.
1854 	 */
1855 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1856 }
1857 
1858 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1859 	.func		= bpf_skb_pull_data,
1860 	.gpl_only	= false,
1861 	.ret_type	= RET_INTEGER,
1862 	.arg1_type	= ARG_PTR_TO_CTX,
1863 	.arg2_type	= ARG_ANYTHING,
1864 };
1865 
1866 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1867 {
1868 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1869 }
1870 
1871 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1872 	.func		= bpf_sk_fullsock,
1873 	.gpl_only	= false,
1874 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1875 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1876 };
1877 
1878 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1879 					   unsigned int write_len)
1880 {
1881 	return __bpf_try_make_writable(skb, write_len);
1882 }
1883 
1884 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1885 {
1886 	/* Idea is the following: should the needed direct read/write
1887 	 * test fail during runtime, we can pull in more data and redo
1888 	 * again, since implicitly, we invalidate previous checks here.
1889 	 *
1890 	 * Or, since we know how much we need to make read/writeable,
1891 	 * this can be done once at the program beginning for direct
1892 	 * access case. By this we overcome limitations of only current
1893 	 * headroom being accessible.
1894 	 */
1895 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1896 }
1897 
1898 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1899 	.func		= sk_skb_pull_data,
1900 	.gpl_only	= false,
1901 	.ret_type	= RET_INTEGER,
1902 	.arg1_type	= ARG_PTR_TO_CTX,
1903 	.arg2_type	= ARG_ANYTHING,
1904 };
1905 
1906 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1907 	   u64, from, u64, to, u64, flags)
1908 {
1909 	__sum16 *ptr;
1910 
1911 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1912 		return -EINVAL;
1913 	if (unlikely(offset > 0xffff || offset & 1))
1914 		return -EFAULT;
1915 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1916 		return -EFAULT;
1917 
1918 	ptr = (__sum16 *)(skb->data + offset);
1919 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1920 	case 0:
1921 		if (unlikely(from != 0))
1922 			return -EINVAL;
1923 
1924 		csum_replace_by_diff(ptr, to);
1925 		break;
1926 	case 2:
1927 		csum_replace2(ptr, from, to);
1928 		break;
1929 	case 4:
1930 		csum_replace4(ptr, from, to);
1931 		break;
1932 	default:
1933 		return -EINVAL;
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1940 	.func		= bpf_l3_csum_replace,
1941 	.gpl_only	= false,
1942 	.ret_type	= RET_INTEGER,
1943 	.arg1_type	= ARG_PTR_TO_CTX,
1944 	.arg2_type	= ARG_ANYTHING,
1945 	.arg3_type	= ARG_ANYTHING,
1946 	.arg4_type	= ARG_ANYTHING,
1947 	.arg5_type	= ARG_ANYTHING,
1948 };
1949 
1950 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1951 	   u64, from, u64, to, u64, flags)
1952 {
1953 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1954 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1955 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1956 	__sum16 *ptr;
1957 
1958 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1959 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1960 		return -EINVAL;
1961 	if (unlikely(offset > 0xffff || offset & 1))
1962 		return -EFAULT;
1963 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1964 		return -EFAULT;
1965 
1966 	ptr = (__sum16 *)(skb->data + offset);
1967 	if (is_mmzero && !do_mforce && !*ptr)
1968 		return 0;
1969 
1970 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1971 	case 0:
1972 		if (unlikely(from != 0))
1973 			return -EINVAL;
1974 
1975 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1976 		break;
1977 	case 2:
1978 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1979 		break;
1980 	case 4:
1981 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1982 		break;
1983 	default:
1984 		return -EINVAL;
1985 	}
1986 
1987 	if (is_mmzero && !*ptr)
1988 		*ptr = CSUM_MANGLED_0;
1989 	return 0;
1990 }
1991 
1992 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1993 	.func		= bpf_l4_csum_replace,
1994 	.gpl_only	= false,
1995 	.ret_type	= RET_INTEGER,
1996 	.arg1_type	= ARG_PTR_TO_CTX,
1997 	.arg2_type	= ARG_ANYTHING,
1998 	.arg3_type	= ARG_ANYTHING,
1999 	.arg4_type	= ARG_ANYTHING,
2000 	.arg5_type	= ARG_ANYTHING,
2001 };
2002 
2003 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2004 	   __be32 *, to, u32, to_size, __wsum, seed)
2005 {
2006 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2007 	u32 diff_size = from_size + to_size;
2008 	int i, j = 0;
2009 
2010 	/* This is quite flexible, some examples:
2011 	 *
2012 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2013 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2014 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2015 	 *
2016 	 * Even for diffing, from_size and to_size don't need to be equal.
2017 	 */
2018 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2019 		     diff_size > sizeof(sp->diff)))
2020 		return -EINVAL;
2021 
2022 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2023 		sp->diff[j] = ~from[i];
2024 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2025 		sp->diff[j] = to[i];
2026 
2027 	return csum_partial(sp->diff, diff_size, seed);
2028 }
2029 
2030 static const struct bpf_func_proto bpf_csum_diff_proto = {
2031 	.func		= bpf_csum_diff,
2032 	.gpl_only	= false,
2033 	.pkt_access	= true,
2034 	.ret_type	= RET_INTEGER,
2035 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2036 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2037 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2038 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2039 	.arg5_type	= ARG_ANYTHING,
2040 };
2041 
2042 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2043 {
2044 	/* The interface is to be used in combination with bpf_csum_diff()
2045 	 * for direct packet writes. csum rotation for alignment as well
2046 	 * as emulating csum_sub() can be done from the eBPF program.
2047 	 */
2048 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2049 		return (skb->csum = csum_add(skb->csum, csum));
2050 
2051 	return -ENOTSUPP;
2052 }
2053 
2054 static const struct bpf_func_proto bpf_csum_update_proto = {
2055 	.func		= bpf_csum_update,
2056 	.gpl_only	= false,
2057 	.ret_type	= RET_INTEGER,
2058 	.arg1_type	= ARG_PTR_TO_CTX,
2059 	.arg2_type	= ARG_ANYTHING,
2060 };
2061 
2062 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2063 {
2064 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2065 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2066 	 * is passed as flags, for example.
2067 	 */
2068 	switch (level) {
2069 	case BPF_CSUM_LEVEL_INC:
2070 		__skb_incr_checksum_unnecessary(skb);
2071 		break;
2072 	case BPF_CSUM_LEVEL_DEC:
2073 		__skb_decr_checksum_unnecessary(skb);
2074 		break;
2075 	case BPF_CSUM_LEVEL_RESET:
2076 		__skb_reset_checksum_unnecessary(skb);
2077 		break;
2078 	case BPF_CSUM_LEVEL_QUERY:
2079 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2080 		       skb->csum_level : -EACCES;
2081 	default:
2082 		return -EINVAL;
2083 	}
2084 
2085 	return 0;
2086 }
2087 
2088 static const struct bpf_func_proto bpf_csum_level_proto = {
2089 	.func		= bpf_csum_level,
2090 	.gpl_only	= false,
2091 	.ret_type	= RET_INTEGER,
2092 	.arg1_type	= ARG_PTR_TO_CTX,
2093 	.arg2_type	= ARG_ANYTHING,
2094 };
2095 
2096 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2097 {
2098 	return dev_forward_skb_nomtu(dev, skb);
2099 }
2100 
2101 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2102 				      struct sk_buff *skb)
2103 {
2104 	int ret = ____dev_forward_skb(dev, skb, false);
2105 
2106 	if (likely(!ret)) {
2107 		skb->dev = dev;
2108 		ret = netif_rx(skb);
2109 	}
2110 
2111 	return ret;
2112 }
2113 
2114 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2115 {
2116 	int ret;
2117 
2118 	if (dev_xmit_recursion()) {
2119 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2120 		kfree_skb(skb);
2121 		return -ENETDOWN;
2122 	}
2123 
2124 	skb->dev = dev;
2125 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2126 	skb_clear_tstamp(skb);
2127 
2128 	dev_xmit_recursion_inc();
2129 	ret = dev_queue_xmit(skb);
2130 	dev_xmit_recursion_dec();
2131 
2132 	return ret;
2133 }
2134 
2135 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2136 				 u32 flags)
2137 {
2138 	unsigned int mlen = skb_network_offset(skb);
2139 
2140 	if (unlikely(skb->len <= mlen)) {
2141 		kfree_skb(skb);
2142 		return -ERANGE;
2143 	}
2144 
2145 	if (mlen) {
2146 		__skb_pull(skb, mlen);
2147 
2148 		/* At ingress, the mac header has already been pulled once.
2149 		 * At egress, skb_pospull_rcsum has to be done in case that
2150 		 * the skb is originated from ingress (i.e. a forwarded skb)
2151 		 * to ensure that rcsum starts at net header.
2152 		 */
2153 		if (!skb_at_tc_ingress(skb))
2154 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2155 	}
2156 	skb_pop_mac_header(skb);
2157 	skb_reset_mac_len(skb);
2158 	return flags & BPF_F_INGRESS ?
2159 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2160 }
2161 
2162 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2163 				 u32 flags)
2164 {
2165 	/* Verify that a link layer header is carried */
2166 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2167 		kfree_skb(skb);
2168 		return -ERANGE;
2169 	}
2170 
2171 	bpf_push_mac_rcsum(skb);
2172 	return flags & BPF_F_INGRESS ?
2173 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2174 }
2175 
2176 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2177 			  u32 flags)
2178 {
2179 	if (dev_is_mac_header_xmit(dev))
2180 		return __bpf_redirect_common(skb, dev, flags);
2181 	else
2182 		return __bpf_redirect_no_mac(skb, dev, flags);
2183 }
2184 
2185 #if IS_ENABLED(CONFIG_IPV6)
2186 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2187 			    struct net_device *dev, struct bpf_nh_params *nh)
2188 {
2189 	u32 hh_len = LL_RESERVED_SPACE(dev);
2190 	const struct in6_addr *nexthop;
2191 	struct dst_entry *dst = NULL;
2192 	struct neighbour *neigh;
2193 
2194 	if (dev_xmit_recursion()) {
2195 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2196 		goto out_drop;
2197 	}
2198 
2199 	skb->dev = dev;
2200 	skb_clear_tstamp(skb);
2201 
2202 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2203 		skb = skb_expand_head(skb, hh_len);
2204 		if (!skb)
2205 			return -ENOMEM;
2206 	}
2207 
2208 	rcu_read_lock();
2209 	if (!nh) {
2210 		dst = skb_dst(skb);
2211 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2212 				      &ipv6_hdr(skb)->daddr);
2213 	} else {
2214 		nexthop = &nh->ipv6_nh;
2215 	}
2216 	neigh = ip_neigh_gw6(dev, nexthop);
2217 	if (likely(!IS_ERR(neigh))) {
2218 		int ret;
2219 
2220 		sock_confirm_neigh(skb, neigh);
2221 		local_bh_disable();
2222 		dev_xmit_recursion_inc();
2223 		ret = neigh_output(neigh, skb, false);
2224 		dev_xmit_recursion_dec();
2225 		local_bh_enable();
2226 		rcu_read_unlock();
2227 		return ret;
2228 	}
2229 	rcu_read_unlock_bh();
2230 	if (dst)
2231 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2232 out_drop:
2233 	kfree_skb(skb);
2234 	return -ENETDOWN;
2235 }
2236 
2237 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2238 				   struct bpf_nh_params *nh)
2239 {
2240 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2241 	struct net *net = dev_net(dev);
2242 	int err, ret = NET_XMIT_DROP;
2243 
2244 	if (!nh) {
2245 		struct dst_entry *dst;
2246 		struct flowi6 fl6 = {
2247 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2248 			.flowi6_mark  = skb->mark,
2249 			.flowlabel    = ip6_flowinfo(ip6h),
2250 			.flowi6_oif   = dev->ifindex,
2251 			.flowi6_proto = ip6h->nexthdr,
2252 			.daddr	      = ip6h->daddr,
2253 			.saddr	      = ip6h->saddr,
2254 		};
2255 
2256 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2257 		if (IS_ERR(dst))
2258 			goto out_drop;
2259 
2260 		skb_dst_set(skb, dst);
2261 	} else if (nh->nh_family != AF_INET6) {
2262 		goto out_drop;
2263 	}
2264 
2265 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2266 	if (unlikely(net_xmit_eval(err)))
2267 		dev->stats.tx_errors++;
2268 	else
2269 		ret = NET_XMIT_SUCCESS;
2270 	goto out_xmit;
2271 out_drop:
2272 	dev->stats.tx_errors++;
2273 	kfree_skb(skb);
2274 out_xmit:
2275 	return ret;
2276 }
2277 #else
2278 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2279 				   struct bpf_nh_params *nh)
2280 {
2281 	kfree_skb(skb);
2282 	return NET_XMIT_DROP;
2283 }
2284 #endif /* CONFIG_IPV6 */
2285 
2286 #if IS_ENABLED(CONFIG_INET)
2287 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2288 			    struct net_device *dev, struct bpf_nh_params *nh)
2289 {
2290 	u32 hh_len = LL_RESERVED_SPACE(dev);
2291 	struct neighbour *neigh;
2292 	bool is_v6gw = false;
2293 
2294 	if (dev_xmit_recursion()) {
2295 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2296 		goto out_drop;
2297 	}
2298 
2299 	skb->dev = dev;
2300 	skb_clear_tstamp(skb);
2301 
2302 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2303 		skb = skb_expand_head(skb, hh_len);
2304 		if (!skb)
2305 			return -ENOMEM;
2306 	}
2307 
2308 	rcu_read_lock();
2309 	if (!nh) {
2310 		struct dst_entry *dst = skb_dst(skb);
2311 		struct rtable *rt = container_of(dst, struct rtable, dst);
2312 
2313 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2314 	} else if (nh->nh_family == AF_INET6) {
2315 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2316 		is_v6gw = true;
2317 	} else if (nh->nh_family == AF_INET) {
2318 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2319 	} else {
2320 		rcu_read_unlock();
2321 		goto out_drop;
2322 	}
2323 
2324 	if (likely(!IS_ERR(neigh))) {
2325 		int ret;
2326 
2327 		sock_confirm_neigh(skb, neigh);
2328 		local_bh_disable();
2329 		dev_xmit_recursion_inc();
2330 		ret = neigh_output(neigh, skb, is_v6gw);
2331 		dev_xmit_recursion_dec();
2332 		local_bh_enable();
2333 		rcu_read_unlock();
2334 		return ret;
2335 	}
2336 	rcu_read_unlock();
2337 out_drop:
2338 	kfree_skb(skb);
2339 	return -ENETDOWN;
2340 }
2341 
2342 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2343 				   struct bpf_nh_params *nh)
2344 {
2345 	const struct iphdr *ip4h = ip_hdr(skb);
2346 	struct net *net = dev_net(dev);
2347 	int err, ret = NET_XMIT_DROP;
2348 
2349 	if (!nh) {
2350 		struct flowi4 fl4 = {
2351 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2352 			.flowi4_mark  = skb->mark,
2353 			.flowi4_tos   = RT_TOS(ip4h->tos),
2354 			.flowi4_oif   = dev->ifindex,
2355 			.flowi4_proto = ip4h->protocol,
2356 			.daddr	      = ip4h->daddr,
2357 			.saddr	      = ip4h->saddr,
2358 		};
2359 		struct rtable *rt;
2360 
2361 		rt = ip_route_output_flow(net, &fl4, NULL);
2362 		if (IS_ERR(rt))
2363 			goto out_drop;
2364 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2365 			ip_rt_put(rt);
2366 			goto out_drop;
2367 		}
2368 
2369 		skb_dst_set(skb, &rt->dst);
2370 	}
2371 
2372 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2373 	if (unlikely(net_xmit_eval(err)))
2374 		dev->stats.tx_errors++;
2375 	else
2376 		ret = NET_XMIT_SUCCESS;
2377 	goto out_xmit;
2378 out_drop:
2379 	dev->stats.tx_errors++;
2380 	kfree_skb(skb);
2381 out_xmit:
2382 	return ret;
2383 }
2384 #else
2385 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2386 				   struct bpf_nh_params *nh)
2387 {
2388 	kfree_skb(skb);
2389 	return NET_XMIT_DROP;
2390 }
2391 #endif /* CONFIG_INET */
2392 
2393 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2394 				struct bpf_nh_params *nh)
2395 {
2396 	struct ethhdr *ethh = eth_hdr(skb);
2397 
2398 	if (unlikely(skb->mac_header >= skb->network_header))
2399 		goto out;
2400 	bpf_push_mac_rcsum(skb);
2401 	if (is_multicast_ether_addr(ethh->h_dest))
2402 		goto out;
2403 
2404 	skb_pull(skb, sizeof(*ethh));
2405 	skb_unset_mac_header(skb);
2406 	skb_reset_network_header(skb);
2407 
2408 	if (skb->protocol == htons(ETH_P_IP))
2409 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2410 	else if (skb->protocol == htons(ETH_P_IPV6))
2411 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2412 out:
2413 	kfree_skb(skb);
2414 	return -ENOTSUPP;
2415 }
2416 
2417 /* Internal, non-exposed redirect flags. */
2418 enum {
2419 	BPF_F_NEIGH	= (1ULL << 1),
2420 	BPF_F_PEER	= (1ULL << 2),
2421 	BPF_F_NEXTHOP	= (1ULL << 3),
2422 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2423 };
2424 
2425 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2426 {
2427 	struct net_device *dev;
2428 	struct sk_buff *clone;
2429 	int ret;
2430 
2431 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2432 		return -EINVAL;
2433 
2434 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2435 	if (unlikely(!dev))
2436 		return -EINVAL;
2437 
2438 	clone = skb_clone(skb, GFP_ATOMIC);
2439 	if (unlikely(!clone))
2440 		return -ENOMEM;
2441 
2442 	/* For direct write, we need to keep the invariant that the skbs
2443 	 * we're dealing with need to be uncloned. Should uncloning fail
2444 	 * here, we need to free the just generated clone to unclone once
2445 	 * again.
2446 	 */
2447 	ret = bpf_try_make_head_writable(skb);
2448 	if (unlikely(ret)) {
2449 		kfree_skb(clone);
2450 		return -ENOMEM;
2451 	}
2452 
2453 	return __bpf_redirect(clone, dev, flags);
2454 }
2455 
2456 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2457 	.func           = bpf_clone_redirect,
2458 	.gpl_only       = false,
2459 	.ret_type       = RET_INTEGER,
2460 	.arg1_type      = ARG_PTR_TO_CTX,
2461 	.arg2_type      = ARG_ANYTHING,
2462 	.arg3_type      = ARG_ANYTHING,
2463 };
2464 
2465 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2466 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2467 
2468 int skb_do_redirect(struct sk_buff *skb)
2469 {
2470 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2471 	struct net *net = dev_net(skb->dev);
2472 	struct net_device *dev;
2473 	u32 flags = ri->flags;
2474 
2475 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2476 	ri->tgt_index = 0;
2477 	ri->flags = 0;
2478 	if (unlikely(!dev))
2479 		goto out_drop;
2480 	if (flags & BPF_F_PEER) {
2481 		const struct net_device_ops *ops = dev->netdev_ops;
2482 
2483 		if (unlikely(!ops->ndo_get_peer_dev ||
2484 			     !skb_at_tc_ingress(skb)))
2485 			goto out_drop;
2486 		dev = ops->ndo_get_peer_dev(dev);
2487 		if (unlikely(!dev ||
2488 			     !(dev->flags & IFF_UP) ||
2489 			     net_eq(net, dev_net(dev))))
2490 			goto out_drop;
2491 		skb->dev = dev;
2492 		return -EAGAIN;
2493 	}
2494 	return flags & BPF_F_NEIGH ?
2495 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2496 				    &ri->nh : NULL) :
2497 	       __bpf_redirect(skb, dev, flags);
2498 out_drop:
2499 	kfree_skb(skb);
2500 	return -EINVAL;
2501 }
2502 
2503 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2504 {
2505 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2506 
2507 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2508 		return TC_ACT_SHOT;
2509 
2510 	ri->flags = flags;
2511 	ri->tgt_index = ifindex;
2512 
2513 	return TC_ACT_REDIRECT;
2514 }
2515 
2516 static const struct bpf_func_proto bpf_redirect_proto = {
2517 	.func           = bpf_redirect,
2518 	.gpl_only       = false,
2519 	.ret_type       = RET_INTEGER,
2520 	.arg1_type      = ARG_ANYTHING,
2521 	.arg2_type      = ARG_ANYTHING,
2522 };
2523 
2524 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2525 {
2526 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2527 
2528 	if (unlikely(flags))
2529 		return TC_ACT_SHOT;
2530 
2531 	ri->flags = BPF_F_PEER;
2532 	ri->tgt_index = ifindex;
2533 
2534 	return TC_ACT_REDIRECT;
2535 }
2536 
2537 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2538 	.func           = bpf_redirect_peer,
2539 	.gpl_only       = false,
2540 	.ret_type       = RET_INTEGER,
2541 	.arg1_type      = ARG_ANYTHING,
2542 	.arg2_type      = ARG_ANYTHING,
2543 };
2544 
2545 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2546 	   int, plen, u64, flags)
2547 {
2548 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2549 
2550 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2551 		return TC_ACT_SHOT;
2552 
2553 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2554 	ri->tgt_index = ifindex;
2555 
2556 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2557 	if (plen)
2558 		memcpy(&ri->nh, params, sizeof(ri->nh));
2559 
2560 	return TC_ACT_REDIRECT;
2561 }
2562 
2563 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2564 	.func		= bpf_redirect_neigh,
2565 	.gpl_only	= false,
2566 	.ret_type	= RET_INTEGER,
2567 	.arg1_type	= ARG_ANYTHING,
2568 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2569 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2570 	.arg4_type	= ARG_ANYTHING,
2571 };
2572 
2573 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2574 {
2575 	msg->apply_bytes = bytes;
2576 	return 0;
2577 }
2578 
2579 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2580 	.func           = bpf_msg_apply_bytes,
2581 	.gpl_only       = false,
2582 	.ret_type       = RET_INTEGER,
2583 	.arg1_type	= ARG_PTR_TO_CTX,
2584 	.arg2_type      = ARG_ANYTHING,
2585 };
2586 
2587 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2588 {
2589 	msg->cork_bytes = bytes;
2590 	return 0;
2591 }
2592 
2593 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2594 	.func           = bpf_msg_cork_bytes,
2595 	.gpl_only       = false,
2596 	.ret_type       = RET_INTEGER,
2597 	.arg1_type	= ARG_PTR_TO_CTX,
2598 	.arg2_type      = ARG_ANYTHING,
2599 };
2600 
2601 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2602 	   u32, end, u64, flags)
2603 {
2604 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2605 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2606 	struct scatterlist *sge;
2607 	u8 *raw, *to, *from;
2608 	struct page *page;
2609 
2610 	if (unlikely(flags || end <= start))
2611 		return -EINVAL;
2612 
2613 	/* First find the starting scatterlist element */
2614 	i = msg->sg.start;
2615 	do {
2616 		offset += len;
2617 		len = sk_msg_elem(msg, i)->length;
2618 		if (start < offset + len)
2619 			break;
2620 		sk_msg_iter_var_next(i);
2621 	} while (i != msg->sg.end);
2622 
2623 	if (unlikely(start >= offset + len))
2624 		return -EINVAL;
2625 
2626 	first_sge = i;
2627 	/* The start may point into the sg element so we need to also
2628 	 * account for the headroom.
2629 	 */
2630 	bytes_sg_total = start - offset + bytes;
2631 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2632 		goto out;
2633 
2634 	/* At this point we need to linearize multiple scatterlist
2635 	 * elements or a single shared page. Either way we need to
2636 	 * copy into a linear buffer exclusively owned by BPF. Then
2637 	 * place the buffer in the scatterlist and fixup the original
2638 	 * entries by removing the entries now in the linear buffer
2639 	 * and shifting the remaining entries. For now we do not try
2640 	 * to copy partial entries to avoid complexity of running out
2641 	 * of sg_entry slots. The downside is reading a single byte
2642 	 * will copy the entire sg entry.
2643 	 */
2644 	do {
2645 		copy += sk_msg_elem(msg, i)->length;
2646 		sk_msg_iter_var_next(i);
2647 		if (bytes_sg_total <= copy)
2648 			break;
2649 	} while (i != msg->sg.end);
2650 	last_sge = i;
2651 
2652 	if (unlikely(bytes_sg_total > copy))
2653 		return -EINVAL;
2654 
2655 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2656 			   get_order(copy));
2657 	if (unlikely(!page))
2658 		return -ENOMEM;
2659 
2660 	raw = page_address(page);
2661 	i = first_sge;
2662 	do {
2663 		sge = sk_msg_elem(msg, i);
2664 		from = sg_virt(sge);
2665 		len = sge->length;
2666 		to = raw + poffset;
2667 
2668 		memcpy(to, from, len);
2669 		poffset += len;
2670 		sge->length = 0;
2671 		put_page(sg_page(sge));
2672 
2673 		sk_msg_iter_var_next(i);
2674 	} while (i != last_sge);
2675 
2676 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2677 
2678 	/* To repair sg ring we need to shift entries. If we only
2679 	 * had a single entry though we can just replace it and
2680 	 * be done. Otherwise walk the ring and shift the entries.
2681 	 */
2682 	WARN_ON_ONCE(last_sge == first_sge);
2683 	shift = last_sge > first_sge ?
2684 		last_sge - first_sge - 1 :
2685 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2686 	if (!shift)
2687 		goto out;
2688 
2689 	i = first_sge;
2690 	sk_msg_iter_var_next(i);
2691 	do {
2692 		u32 move_from;
2693 
2694 		if (i + shift >= NR_MSG_FRAG_IDS)
2695 			move_from = i + shift - NR_MSG_FRAG_IDS;
2696 		else
2697 			move_from = i + shift;
2698 		if (move_from == msg->sg.end)
2699 			break;
2700 
2701 		msg->sg.data[i] = msg->sg.data[move_from];
2702 		msg->sg.data[move_from].length = 0;
2703 		msg->sg.data[move_from].page_link = 0;
2704 		msg->sg.data[move_from].offset = 0;
2705 		sk_msg_iter_var_next(i);
2706 	} while (1);
2707 
2708 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2709 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2710 		      msg->sg.end - shift;
2711 out:
2712 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2713 	msg->data_end = msg->data + bytes;
2714 	return 0;
2715 }
2716 
2717 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2718 	.func		= bpf_msg_pull_data,
2719 	.gpl_only	= false,
2720 	.ret_type	= RET_INTEGER,
2721 	.arg1_type	= ARG_PTR_TO_CTX,
2722 	.arg2_type	= ARG_ANYTHING,
2723 	.arg3_type	= ARG_ANYTHING,
2724 	.arg4_type	= ARG_ANYTHING,
2725 };
2726 
2727 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2728 	   u32, len, u64, flags)
2729 {
2730 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2731 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2732 	u8 *raw, *to, *from;
2733 	struct page *page;
2734 
2735 	if (unlikely(flags))
2736 		return -EINVAL;
2737 
2738 	if (unlikely(len == 0))
2739 		return 0;
2740 
2741 	/* First find the starting scatterlist element */
2742 	i = msg->sg.start;
2743 	do {
2744 		offset += l;
2745 		l = sk_msg_elem(msg, i)->length;
2746 
2747 		if (start < offset + l)
2748 			break;
2749 		sk_msg_iter_var_next(i);
2750 	} while (i != msg->sg.end);
2751 
2752 	if (start >= offset + l)
2753 		return -EINVAL;
2754 
2755 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2756 
2757 	/* If no space available will fallback to copy, we need at
2758 	 * least one scatterlist elem available to push data into
2759 	 * when start aligns to the beginning of an element or two
2760 	 * when it falls inside an element. We handle the start equals
2761 	 * offset case because its the common case for inserting a
2762 	 * header.
2763 	 */
2764 	if (!space || (space == 1 && start != offset))
2765 		copy = msg->sg.data[i].length;
2766 
2767 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2768 			   get_order(copy + len));
2769 	if (unlikely(!page))
2770 		return -ENOMEM;
2771 
2772 	if (copy) {
2773 		int front, back;
2774 
2775 		raw = page_address(page);
2776 
2777 		psge = sk_msg_elem(msg, i);
2778 		front = start - offset;
2779 		back = psge->length - front;
2780 		from = sg_virt(psge);
2781 
2782 		if (front)
2783 			memcpy(raw, from, front);
2784 
2785 		if (back) {
2786 			from += front;
2787 			to = raw + front + len;
2788 
2789 			memcpy(to, from, back);
2790 		}
2791 
2792 		put_page(sg_page(psge));
2793 	} else if (start - offset) {
2794 		psge = sk_msg_elem(msg, i);
2795 		rsge = sk_msg_elem_cpy(msg, i);
2796 
2797 		psge->length = start - offset;
2798 		rsge.length -= psge->length;
2799 		rsge.offset += start;
2800 
2801 		sk_msg_iter_var_next(i);
2802 		sg_unmark_end(psge);
2803 		sg_unmark_end(&rsge);
2804 		sk_msg_iter_next(msg, end);
2805 	}
2806 
2807 	/* Slot(s) to place newly allocated data */
2808 	new = i;
2809 
2810 	/* Shift one or two slots as needed */
2811 	if (!copy) {
2812 		sge = sk_msg_elem_cpy(msg, i);
2813 
2814 		sk_msg_iter_var_next(i);
2815 		sg_unmark_end(&sge);
2816 		sk_msg_iter_next(msg, end);
2817 
2818 		nsge = sk_msg_elem_cpy(msg, i);
2819 		if (rsge.length) {
2820 			sk_msg_iter_var_next(i);
2821 			nnsge = sk_msg_elem_cpy(msg, i);
2822 		}
2823 
2824 		while (i != msg->sg.end) {
2825 			msg->sg.data[i] = sge;
2826 			sge = nsge;
2827 			sk_msg_iter_var_next(i);
2828 			if (rsge.length) {
2829 				nsge = nnsge;
2830 				nnsge = sk_msg_elem_cpy(msg, i);
2831 			} else {
2832 				nsge = sk_msg_elem_cpy(msg, i);
2833 			}
2834 		}
2835 	}
2836 
2837 	/* Place newly allocated data buffer */
2838 	sk_mem_charge(msg->sk, len);
2839 	msg->sg.size += len;
2840 	__clear_bit(new, msg->sg.copy);
2841 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2842 	if (rsge.length) {
2843 		get_page(sg_page(&rsge));
2844 		sk_msg_iter_var_next(new);
2845 		msg->sg.data[new] = rsge;
2846 	}
2847 
2848 	sk_msg_compute_data_pointers(msg);
2849 	return 0;
2850 }
2851 
2852 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2853 	.func		= bpf_msg_push_data,
2854 	.gpl_only	= false,
2855 	.ret_type	= RET_INTEGER,
2856 	.arg1_type	= ARG_PTR_TO_CTX,
2857 	.arg2_type	= ARG_ANYTHING,
2858 	.arg3_type	= ARG_ANYTHING,
2859 	.arg4_type	= ARG_ANYTHING,
2860 };
2861 
2862 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2863 {
2864 	int prev;
2865 
2866 	do {
2867 		prev = i;
2868 		sk_msg_iter_var_next(i);
2869 		msg->sg.data[prev] = msg->sg.data[i];
2870 	} while (i != msg->sg.end);
2871 
2872 	sk_msg_iter_prev(msg, end);
2873 }
2874 
2875 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2876 {
2877 	struct scatterlist tmp, sge;
2878 
2879 	sk_msg_iter_next(msg, end);
2880 	sge = sk_msg_elem_cpy(msg, i);
2881 	sk_msg_iter_var_next(i);
2882 	tmp = sk_msg_elem_cpy(msg, i);
2883 
2884 	while (i != msg->sg.end) {
2885 		msg->sg.data[i] = sge;
2886 		sk_msg_iter_var_next(i);
2887 		sge = tmp;
2888 		tmp = sk_msg_elem_cpy(msg, i);
2889 	}
2890 }
2891 
2892 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2893 	   u32, len, u64, flags)
2894 {
2895 	u32 i = 0, l = 0, space, offset = 0;
2896 	u64 last = start + len;
2897 	int pop;
2898 
2899 	if (unlikely(flags))
2900 		return -EINVAL;
2901 
2902 	/* First find the starting scatterlist element */
2903 	i = msg->sg.start;
2904 	do {
2905 		offset += l;
2906 		l = sk_msg_elem(msg, i)->length;
2907 
2908 		if (start < offset + l)
2909 			break;
2910 		sk_msg_iter_var_next(i);
2911 	} while (i != msg->sg.end);
2912 
2913 	/* Bounds checks: start and pop must be inside message */
2914 	if (start >= offset + l || last >= msg->sg.size)
2915 		return -EINVAL;
2916 
2917 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2918 
2919 	pop = len;
2920 	/* --------------| offset
2921 	 * -| start      |-------- len -------|
2922 	 *
2923 	 *  |----- a ----|-------- pop -------|----- b ----|
2924 	 *  |______________________________________________| length
2925 	 *
2926 	 *
2927 	 * a:   region at front of scatter element to save
2928 	 * b:   region at back of scatter element to save when length > A + pop
2929 	 * pop: region to pop from element, same as input 'pop' here will be
2930 	 *      decremented below per iteration.
2931 	 *
2932 	 * Two top-level cases to handle when start != offset, first B is non
2933 	 * zero and second B is zero corresponding to when a pop includes more
2934 	 * than one element.
2935 	 *
2936 	 * Then if B is non-zero AND there is no space allocate space and
2937 	 * compact A, B regions into page. If there is space shift ring to
2938 	 * the rigth free'ing the next element in ring to place B, leaving
2939 	 * A untouched except to reduce length.
2940 	 */
2941 	if (start != offset) {
2942 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2943 		int a = start;
2944 		int b = sge->length - pop - a;
2945 
2946 		sk_msg_iter_var_next(i);
2947 
2948 		if (pop < sge->length - a) {
2949 			if (space) {
2950 				sge->length = a;
2951 				sk_msg_shift_right(msg, i);
2952 				nsge = sk_msg_elem(msg, i);
2953 				get_page(sg_page(sge));
2954 				sg_set_page(nsge,
2955 					    sg_page(sge),
2956 					    b, sge->offset + pop + a);
2957 			} else {
2958 				struct page *page, *orig;
2959 				u8 *to, *from;
2960 
2961 				page = alloc_pages(__GFP_NOWARN |
2962 						   __GFP_COMP   | GFP_ATOMIC,
2963 						   get_order(a + b));
2964 				if (unlikely(!page))
2965 					return -ENOMEM;
2966 
2967 				sge->length = a;
2968 				orig = sg_page(sge);
2969 				from = sg_virt(sge);
2970 				to = page_address(page);
2971 				memcpy(to, from, a);
2972 				memcpy(to + a, from + a + pop, b);
2973 				sg_set_page(sge, page, a + b, 0);
2974 				put_page(orig);
2975 			}
2976 			pop = 0;
2977 		} else if (pop >= sge->length - a) {
2978 			pop -= (sge->length - a);
2979 			sge->length = a;
2980 		}
2981 	}
2982 
2983 	/* From above the current layout _must_ be as follows,
2984 	 *
2985 	 * -| offset
2986 	 * -| start
2987 	 *
2988 	 *  |---- pop ---|---------------- b ------------|
2989 	 *  |____________________________________________| length
2990 	 *
2991 	 * Offset and start of the current msg elem are equal because in the
2992 	 * previous case we handled offset != start and either consumed the
2993 	 * entire element and advanced to the next element OR pop == 0.
2994 	 *
2995 	 * Two cases to handle here are first pop is less than the length
2996 	 * leaving some remainder b above. Simply adjust the element's layout
2997 	 * in this case. Or pop >= length of the element so that b = 0. In this
2998 	 * case advance to next element decrementing pop.
2999 	 */
3000 	while (pop) {
3001 		struct scatterlist *sge = sk_msg_elem(msg, i);
3002 
3003 		if (pop < sge->length) {
3004 			sge->length -= pop;
3005 			sge->offset += pop;
3006 			pop = 0;
3007 		} else {
3008 			pop -= sge->length;
3009 			sk_msg_shift_left(msg, i);
3010 		}
3011 		sk_msg_iter_var_next(i);
3012 	}
3013 
3014 	sk_mem_uncharge(msg->sk, len - pop);
3015 	msg->sg.size -= (len - pop);
3016 	sk_msg_compute_data_pointers(msg);
3017 	return 0;
3018 }
3019 
3020 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3021 	.func		= bpf_msg_pop_data,
3022 	.gpl_only	= false,
3023 	.ret_type	= RET_INTEGER,
3024 	.arg1_type	= ARG_PTR_TO_CTX,
3025 	.arg2_type	= ARG_ANYTHING,
3026 	.arg3_type	= ARG_ANYTHING,
3027 	.arg4_type	= ARG_ANYTHING,
3028 };
3029 
3030 #ifdef CONFIG_CGROUP_NET_CLASSID
3031 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3032 {
3033 	return __task_get_classid(current);
3034 }
3035 
3036 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3037 	.func		= bpf_get_cgroup_classid_curr,
3038 	.gpl_only	= false,
3039 	.ret_type	= RET_INTEGER,
3040 };
3041 
3042 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3043 {
3044 	struct sock *sk = skb_to_full_sk(skb);
3045 
3046 	if (!sk || !sk_fullsock(sk))
3047 		return 0;
3048 
3049 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3050 }
3051 
3052 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3053 	.func		= bpf_skb_cgroup_classid,
3054 	.gpl_only	= false,
3055 	.ret_type	= RET_INTEGER,
3056 	.arg1_type	= ARG_PTR_TO_CTX,
3057 };
3058 #endif
3059 
3060 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3061 {
3062 	return task_get_classid(skb);
3063 }
3064 
3065 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3066 	.func           = bpf_get_cgroup_classid,
3067 	.gpl_only       = false,
3068 	.ret_type       = RET_INTEGER,
3069 	.arg1_type      = ARG_PTR_TO_CTX,
3070 };
3071 
3072 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3073 {
3074 	return dst_tclassid(skb);
3075 }
3076 
3077 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3078 	.func           = bpf_get_route_realm,
3079 	.gpl_only       = false,
3080 	.ret_type       = RET_INTEGER,
3081 	.arg1_type      = ARG_PTR_TO_CTX,
3082 };
3083 
3084 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3085 {
3086 	/* If skb_clear_hash() was called due to mangling, we can
3087 	 * trigger SW recalculation here. Later access to hash
3088 	 * can then use the inline skb->hash via context directly
3089 	 * instead of calling this helper again.
3090 	 */
3091 	return skb_get_hash(skb);
3092 }
3093 
3094 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3095 	.func		= bpf_get_hash_recalc,
3096 	.gpl_only	= false,
3097 	.ret_type	= RET_INTEGER,
3098 	.arg1_type	= ARG_PTR_TO_CTX,
3099 };
3100 
3101 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3102 {
3103 	/* After all direct packet write, this can be used once for
3104 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3105 	 */
3106 	skb_clear_hash(skb);
3107 	return 0;
3108 }
3109 
3110 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3111 	.func		= bpf_set_hash_invalid,
3112 	.gpl_only	= false,
3113 	.ret_type	= RET_INTEGER,
3114 	.arg1_type	= ARG_PTR_TO_CTX,
3115 };
3116 
3117 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3118 {
3119 	/* Set user specified hash as L4(+), so that it gets returned
3120 	 * on skb_get_hash() call unless BPF prog later on triggers a
3121 	 * skb_clear_hash().
3122 	 */
3123 	__skb_set_sw_hash(skb, hash, true);
3124 	return 0;
3125 }
3126 
3127 static const struct bpf_func_proto bpf_set_hash_proto = {
3128 	.func		= bpf_set_hash,
3129 	.gpl_only	= false,
3130 	.ret_type	= RET_INTEGER,
3131 	.arg1_type	= ARG_PTR_TO_CTX,
3132 	.arg2_type	= ARG_ANYTHING,
3133 };
3134 
3135 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3136 	   u16, vlan_tci)
3137 {
3138 	int ret;
3139 
3140 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3141 		     vlan_proto != htons(ETH_P_8021AD)))
3142 		vlan_proto = htons(ETH_P_8021Q);
3143 
3144 	bpf_push_mac_rcsum(skb);
3145 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3146 	bpf_pull_mac_rcsum(skb);
3147 
3148 	bpf_compute_data_pointers(skb);
3149 	return ret;
3150 }
3151 
3152 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3153 	.func           = bpf_skb_vlan_push,
3154 	.gpl_only       = false,
3155 	.ret_type       = RET_INTEGER,
3156 	.arg1_type      = ARG_PTR_TO_CTX,
3157 	.arg2_type      = ARG_ANYTHING,
3158 	.arg3_type      = ARG_ANYTHING,
3159 };
3160 
3161 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3162 {
3163 	int ret;
3164 
3165 	bpf_push_mac_rcsum(skb);
3166 	ret = skb_vlan_pop(skb);
3167 	bpf_pull_mac_rcsum(skb);
3168 
3169 	bpf_compute_data_pointers(skb);
3170 	return ret;
3171 }
3172 
3173 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3174 	.func           = bpf_skb_vlan_pop,
3175 	.gpl_only       = false,
3176 	.ret_type       = RET_INTEGER,
3177 	.arg1_type      = ARG_PTR_TO_CTX,
3178 };
3179 
3180 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3181 {
3182 	/* Caller already did skb_cow() with len as headroom,
3183 	 * so no need to do it here.
3184 	 */
3185 	skb_push(skb, len);
3186 	memmove(skb->data, skb->data + len, off);
3187 	memset(skb->data + off, 0, len);
3188 
3189 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3190 	 * needed here as it does not change the skb->csum
3191 	 * result for checksum complete when summing over
3192 	 * zeroed blocks.
3193 	 */
3194 	return 0;
3195 }
3196 
3197 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3198 {
3199 	void *old_data;
3200 
3201 	/* skb_ensure_writable() is not needed here, as we're
3202 	 * already working on an uncloned skb.
3203 	 */
3204 	if (unlikely(!pskb_may_pull(skb, off + len)))
3205 		return -ENOMEM;
3206 
3207 	old_data = skb->data;
3208 	__skb_pull(skb, len);
3209 	skb_postpull_rcsum(skb, old_data + off, len);
3210 	memmove(skb->data, old_data, off);
3211 
3212 	return 0;
3213 }
3214 
3215 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3216 {
3217 	bool trans_same = skb->transport_header == skb->network_header;
3218 	int ret;
3219 
3220 	/* There's no need for __skb_push()/__skb_pull() pair to
3221 	 * get to the start of the mac header as we're guaranteed
3222 	 * to always start from here under eBPF.
3223 	 */
3224 	ret = bpf_skb_generic_push(skb, off, len);
3225 	if (likely(!ret)) {
3226 		skb->mac_header -= len;
3227 		skb->network_header -= len;
3228 		if (trans_same)
3229 			skb->transport_header = skb->network_header;
3230 	}
3231 
3232 	return ret;
3233 }
3234 
3235 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3236 {
3237 	bool trans_same = skb->transport_header == skb->network_header;
3238 	int ret;
3239 
3240 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3241 	ret = bpf_skb_generic_pop(skb, off, len);
3242 	if (likely(!ret)) {
3243 		skb->mac_header += len;
3244 		skb->network_header += len;
3245 		if (trans_same)
3246 			skb->transport_header = skb->network_header;
3247 	}
3248 
3249 	return ret;
3250 }
3251 
3252 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3253 {
3254 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3255 	u32 off = skb_mac_header_len(skb);
3256 	int ret;
3257 
3258 	ret = skb_cow(skb, len_diff);
3259 	if (unlikely(ret < 0))
3260 		return ret;
3261 
3262 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3263 	if (unlikely(ret < 0))
3264 		return ret;
3265 
3266 	if (skb_is_gso(skb)) {
3267 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3268 
3269 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3270 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3271 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3272 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3273 		}
3274 	}
3275 
3276 	skb->protocol = htons(ETH_P_IPV6);
3277 	skb_clear_hash(skb);
3278 
3279 	return 0;
3280 }
3281 
3282 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3283 {
3284 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3285 	u32 off = skb_mac_header_len(skb);
3286 	int ret;
3287 
3288 	ret = skb_unclone(skb, GFP_ATOMIC);
3289 	if (unlikely(ret < 0))
3290 		return ret;
3291 
3292 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3293 	if (unlikely(ret < 0))
3294 		return ret;
3295 
3296 	if (skb_is_gso(skb)) {
3297 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3298 
3299 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3300 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3301 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3302 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3303 		}
3304 	}
3305 
3306 	skb->protocol = htons(ETH_P_IP);
3307 	skb_clear_hash(skb);
3308 
3309 	return 0;
3310 }
3311 
3312 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3313 {
3314 	__be16 from_proto = skb->protocol;
3315 
3316 	if (from_proto == htons(ETH_P_IP) &&
3317 	      to_proto == htons(ETH_P_IPV6))
3318 		return bpf_skb_proto_4_to_6(skb);
3319 
3320 	if (from_proto == htons(ETH_P_IPV6) &&
3321 	      to_proto == htons(ETH_P_IP))
3322 		return bpf_skb_proto_6_to_4(skb);
3323 
3324 	return -ENOTSUPP;
3325 }
3326 
3327 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3328 	   u64, flags)
3329 {
3330 	int ret;
3331 
3332 	if (unlikely(flags))
3333 		return -EINVAL;
3334 
3335 	/* General idea is that this helper does the basic groundwork
3336 	 * needed for changing the protocol, and eBPF program fills the
3337 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3338 	 * and other helpers, rather than passing a raw buffer here.
3339 	 *
3340 	 * The rationale is to keep this minimal and without a need to
3341 	 * deal with raw packet data. F.e. even if we would pass buffers
3342 	 * here, the program still needs to call the bpf_lX_csum_replace()
3343 	 * helpers anyway. Plus, this way we keep also separation of
3344 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3345 	 * care of stores.
3346 	 *
3347 	 * Currently, additional options and extension header space are
3348 	 * not supported, but flags register is reserved so we can adapt
3349 	 * that. For offloads, we mark packet as dodgy, so that headers
3350 	 * need to be verified first.
3351 	 */
3352 	ret = bpf_skb_proto_xlat(skb, proto);
3353 	bpf_compute_data_pointers(skb);
3354 	return ret;
3355 }
3356 
3357 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3358 	.func		= bpf_skb_change_proto,
3359 	.gpl_only	= false,
3360 	.ret_type	= RET_INTEGER,
3361 	.arg1_type	= ARG_PTR_TO_CTX,
3362 	.arg2_type	= ARG_ANYTHING,
3363 	.arg3_type	= ARG_ANYTHING,
3364 };
3365 
3366 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3367 {
3368 	/* We only allow a restricted subset to be changed for now. */
3369 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3370 		     !skb_pkt_type_ok(pkt_type)))
3371 		return -EINVAL;
3372 
3373 	skb->pkt_type = pkt_type;
3374 	return 0;
3375 }
3376 
3377 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3378 	.func		= bpf_skb_change_type,
3379 	.gpl_only	= false,
3380 	.ret_type	= RET_INTEGER,
3381 	.arg1_type	= ARG_PTR_TO_CTX,
3382 	.arg2_type	= ARG_ANYTHING,
3383 };
3384 
3385 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3386 {
3387 	switch (skb->protocol) {
3388 	case htons(ETH_P_IP):
3389 		return sizeof(struct iphdr);
3390 	case htons(ETH_P_IPV6):
3391 		return sizeof(struct ipv6hdr);
3392 	default:
3393 		return ~0U;
3394 	}
3395 }
3396 
3397 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3398 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3399 
3400 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3401 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3402 
3403 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3404 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3405 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3406 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3407 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3408 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3409 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3410 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3411 
3412 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3413 			    u64 flags)
3414 {
3415 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3416 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3417 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3418 	unsigned int gso_type = SKB_GSO_DODGY;
3419 	int ret;
3420 
3421 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3422 		/* udp gso_size delineates datagrams, only allow if fixed */
3423 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3424 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3425 			return -ENOTSUPP;
3426 	}
3427 
3428 	ret = skb_cow_head(skb, len_diff);
3429 	if (unlikely(ret < 0))
3430 		return ret;
3431 
3432 	if (encap) {
3433 		if (skb->protocol != htons(ETH_P_IP) &&
3434 		    skb->protocol != htons(ETH_P_IPV6))
3435 			return -ENOTSUPP;
3436 
3437 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3438 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3439 			return -EINVAL;
3440 
3441 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3442 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3443 			return -EINVAL;
3444 
3445 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3446 		    inner_mac_len < ETH_HLEN)
3447 			return -EINVAL;
3448 
3449 		if (skb->encapsulation)
3450 			return -EALREADY;
3451 
3452 		mac_len = skb->network_header - skb->mac_header;
3453 		inner_net = skb->network_header;
3454 		if (inner_mac_len > len_diff)
3455 			return -EINVAL;
3456 		inner_trans = skb->transport_header;
3457 	}
3458 
3459 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3460 	if (unlikely(ret < 0))
3461 		return ret;
3462 
3463 	if (encap) {
3464 		skb->inner_mac_header = inner_net - inner_mac_len;
3465 		skb->inner_network_header = inner_net;
3466 		skb->inner_transport_header = inner_trans;
3467 
3468 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3469 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3470 		else
3471 			skb_set_inner_protocol(skb, skb->protocol);
3472 
3473 		skb->encapsulation = 1;
3474 		skb_set_network_header(skb, mac_len);
3475 
3476 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3477 			gso_type |= SKB_GSO_UDP_TUNNEL;
3478 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3479 			gso_type |= SKB_GSO_GRE;
3480 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3481 			gso_type |= SKB_GSO_IPXIP6;
3482 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3483 			gso_type |= SKB_GSO_IPXIP4;
3484 
3485 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3486 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3487 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3488 					sizeof(struct ipv6hdr) :
3489 					sizeof(struct iphdr);
3490 
3491 			skb_set_transport_header(skb, mac_len + nh_len);
3492 		}
3493 
3494 		/* Match skb->protocol to new outer l3 protocol */
3495 		if (skb->protocol == htons(ETH_P_IP) &&
3496 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3497 			skb->protocol = htons(ETH_P_IPV6);
3498 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3499 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3500 			skb->protocol = htons(ETH_P_IP);
3501 	}
3502 
3503 	if (skb_is_gso(skb)) {
3504 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3505 
3506 		/* Due to header grow, MSS needs to be downgraded. */
3507 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3508 			skb_decrease_gso_size(shinfo, len_diff);
3509 
3510 		/* Header must be checked, and gso_segs recomputed. */
3511 		shinfo->gso_type |= gso_type;
3512 		shinfo->gso_segs = 0;
3513 	}
3514 
3515 	return 0;
3516 }
3517 
3518 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3519 			      u64 flags)
3520 {
3521 	int ret;
3522 
3523 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3524 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3525 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3526 		return -EINVAL;
3527 
3528 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3529 		/* udp gso_size delineates datagrams, only allow if fixed */
3530 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3531 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3532 			return -ENOTSUPP;
3533 	}
3534 
3535 	ret = skb_unclone(skb, GFP_ATOMIC);
3536 	if (unlikely(ret < 0))
3537 		return ret;
3538 
3539 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3540 	if (unlikely(ret < 0))
3541 		return ret;
3542 
3543 	/* Match skb->protocol to new outer l3 protocol */
3544 	if (skb->protocol == htons(ETH_P_IP) &&
3545 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3546 		skb->protocol = htons(ETH_P_IPV6);
3547 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3548 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3549 		skb->protocol = htons(ETH_P_IP);
3550 
3551 	if (skb_is_gso(skb)) {
3552 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3553 
3554 		/* Due to header shrink, MSS can be upgraded. */
3555 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3556 			skb_increase_gso_size(shinfo, len_diff);
3557 
3558 		/* Header must be checked, and gso_segs recomputed. */
3559 		shinfo->gso_type |= SKB_GSO_DODGY;
3560 		shinfo->gso_segs = 0;
3561 	}
3562 
3563 	return 0;
3564 }
3565 
3566 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3567 
3568 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3569 	   u32, mode, u64, flags)
3570 {
3571 	u32 len_diff_abs = abs(len_diff);
3572 	bool shrink = len_diff < 0;
3573 	int ret = 0;
3574 
3575 	if (unlikely(flags || mode))
3576 		return -EINVAL;
3577 	if (unlikely(len_diff_abs > 0xfffU))
3578 		return -EFAULT;
3579 
3580 	if (!shrink) {
3581 		ret = skb_cow(skb, len_diff);
3582 		if (unlikely(ret < 0))
3583 			return ret;
3584 		__skb_push(skb, len_diff_abs);
3585 		memset(skb->data, 0, len_diff_abs);
3586 	} else {
3587 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3588 			return -ENOMEM;
3589 		__skb_pull(skb, len_diff_abs);
3590 	}
3591 	if (tls_sw_has_ctx_rx(skb->sk)) {
3592 		struct strp_msg *rxm = strp_msg(skb);
3593 
3594 		rxm->full_len += len_diff;
3595 	}
3596 	return ret;
3597 }
3598 
3599 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3600 	.func		= sk_skb_adjust_room,
3601 	.gpl_only	= false,
3602 	.ret_type	= RET_INTEGER,
3603 	.arg1_type	= ARG_PTR_TO_CTX,
3604 	.arg2_type	= ARG_ANYTHING,
3605 	.arg3_type	= ARG_ANYTHING,
3606 	.arg4_type	= ARG_ANYTHING,
3607 };
3608 
3609 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3610 	   u32, mode, u64, flags)
3611 {
3612 	u32 len_cur, len_diff_abs = abs(len_diff);
3613 	u32 len_min = bpf_skb_net_base_len(skb);
3614 	u32 len_max = BPF_SKB_MAX_LEN;
3615 	__be16 proto = skb->protocol;
3616 	bool shrink = len_diff < 0;
3617 	u32 off;
3618 	int ret;
3619 
3620 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3621 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3622 		return -EINVAL;
3623 	if (unlikely(len_diff_abs > 0xfffU))
3624 		return -EFAULT;
3625 	if (unlikely(proto != htons(ETH_P_IP) &&
3626 		     proto != htons(ETH_P_IPV6)))
3627 		return -ENOTSUPP;
3628 
3629 	off = skb_mac_header_len(skb);
3630 	switch (mode) {
3631 	case BPF_ADJ_ROOM_NET:
3632 		off += bpf_skb_net_base_len(skb);
3633 		break;
3634 	case BPF_ADJ_ROOM_MAC:
3635 		break;
3636 	default:
3637 		return -ENOTSUPP;
3638 	}
3639 
3640 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3641 		if (!shrink)
3642 			return -EINVAL;
3643 
3644 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3645 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3646 			len_min = sizeof(struct iphdr);
3647 			break;
3648 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3649 			len_min = sizeof(struct ipv6hdr);
3650 			break;
3651 		default:
3652 			return -EINVAL;
3653 		}
3654 	}
3655 
3656 	len_cur = skb->len - skb_network_offset(skb);
3657 	if ((shrink && (len_diff_abs >= len_cur ||
3658 			len_cur - len_diff_abs < len_min)) ||
3659 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3660 			 !skb_is_gso(skb))))
3661 		return -ENOTSUPP;
3662 
3663 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3664 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3665 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3666 		__skb_reset_checksum_unnecessary(skb);
3667 
3668 	bpf_compute_data_pointers(skb);
3669 	return ret;
3670 }
3671 
3672 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3673 	.func		= bpf_skb_adjust_room,
3674 	.gpl_only	= false,
3675 	.ret_type	= RET_INTEGER,
3676 	.arg1_type	= ARG_PTR_TO_CTX,
3677 	.arg2_type	= ARG_ANYTHING,
3678 	.arg3_type	= ARG_ANYTHING,
3679 	.arg4_type	= ARG_ANYTHING,
3680 };
3681 
3682 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3683 {
3684 	u32 min_len = skb_network_offset(skb);
3685 
3686 	if (skb_transport_header_was_set(skb))
3687 		min_len = skb_transport_offset(skb);
3688 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3689 		min_len = skb_checksum_start_offset(skb) +
3690 			  skb->csum_offset + sizeof(__sum16);
3691 	return min_len;
3692 }
3693 
3694 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3695 {
3696 	unsigned int old_len = skb->len;
3697 	int ret;
3698 
3699 	ret = __skb_grow_rcsum(skb, new_len);
3700 	if (!ret)
3701 		memset(skb->data + old_len, 0, new_len - old_len);
3702 	return ret;
3703 }
3704 
3705 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3706 {
3707 	return __skb_trim_rcsum(skb, new_len);
3708 }
3709 
3710 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3711 					u64 flags)
3712 {
3713 	u32 max_len = BPF_SKB_MAX_LEN;
3714 	u32 min_len = __bpf_skb_min_len(skb);
3715 	int ret;
3716 
3717 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3718 		return -EINVAL;
3719 	if (skb->encapsulation)
3720 		return -ENOTSUPP;
3721 
3722 	/* The basic idea of this helper is that it's performing the
3723 	 * needed work to either grow or trim an skb, and eBPF program
3724 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3725 	 * bpf_lX_csum_replace() and others rather than passing a raw
3726 	 * buffer here. This one is a slow path helper and intended
3727 	 * for replies with control messages.
3728 	 *
3729 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3730 	 * minimal and without protocol specifics so that we are able
3731 	 * to separate concerns as in bpf_skb_store_bytes() should only
3732 	 * be the one responsible for writing buffers.
3733 	 *
3734 	 * It's really expected to be a slow path operation here for
3735 	 * control message replies, so we're implicitly linearizing,
3736 	 * uncloning and drop offloads from the skb by this.
3737 	 */
3738 	ret = __bpf_try_make_writable(skb, skb->len);
3739 	if (!ret) {
3740 		if (new_len > skb->len)
3741 			ret = bpf_skb_grow_rcsum(skb, new_len);
3742 		else if (new_len < skb->len)
3743 			ret = bpf_skb_trim_rcsum(skb, new_len);
3744 		if (!ret && skb_is_gso(skb))
3745 			skb_gso_reset(skb);
3746 	}
3747 	return ret;
3748 }
3749 
3750 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3751 	   u64, flags)
3752 {
3753 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3754 
3755 	bpf_compute_data_pointers(skb);
3756 	return ret;
3757 }
3758 
3759 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3760 	.func		= bpf_skb_change_tail,
3761 	.gpl_only	= false,
3762 	.ret_type	= RET_INTEGER,
3763 	.arg1_type	= ARG_PTR_TO_CTX,
3764 	.arg2_type	= ARG_ANYTHING,
3765 	.arg3_type	= ARG_ANYTHING,
3766 };
3767 
3768 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3769 	   u64, flags)
3770 {
3771 	return __bpf_skb_change_tail(skb, new_len, flags);
3772 }
3773 
3774 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3775 	.func		= sk_skb_change_tail,
3776 	.gpl_only	= false,
3777 	.ret_type	= RET_INTEGER,
3778 	.arg1_type	= ARG_PTR_TO_CTX,
3779 	.arg2_type	= ARG_ANYTHING,
3780 	.arg3_type	= ARG_ANYTHING,
3781 };
3782 
3783 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3784 					u64 flags)
3785 {
3786 	u32 max_len = BPF_SKB_MAX_LEN;
3787 	u32 new_len = skb->len + head_room;
3788 	int ret;
3789 
3790 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3791 		     new_len < skb->len))
3792 		return -EINVAL;
3793 
3794 	ret = skb_cow(skb, head_room);
3795 	if (likely(!ret)) {
3796 		/* Idea for this helper is that we currently only
3797 		 * allow to expand on mac header. This means that
3798 		 * skb->protocol network header, etc, stay as is.
3799 		 * Compared to bpf_skb_change_tail(), we're more
3800 		 * flexible due to not needing to linearize or
3801 		 * reset GSO. Intention for this helper is to be
3802 		 * used by an L3 skb that needs to push mac header
3803 		 * for redirection into L2 device.
3804 		 */
3805 		__skb_push(skb, head_room);
3806 		memset(skb->data, 0, head_room);
3807 		skb_reset_mac_header(skb);
3808 		skb_reset_mac_len(skb);
3809 	}
3810 
3811 	return ret;
3812 }
3813 
3814 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3815 	   u64, flags)
3816 {
3817 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3818 
3819 	bpf_compute_data_pointers(skb);
3820 	return ret;
3821 }
3822 
3823 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3824 	.func		= bpf_skb_change_head,
3825 	.gpl_only	= false,
3826 	.ret_type	= RET_INTEGER,
3827 	.arg1_type	= ARG_PTR_TO_CTX,
3828 	.arg2_type	= ARG_ANYTHING,
3829 	.arg3_type	= ARG_ANYTHING,
3830 };
3831 
3832 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3833 	   u64, flags)
3834 {
3835 	return __bpf_skb_change_head(skb, head_room, flags);
3836 }
3837 
3838 static const struct bpf_func_proto sk_skb_change_head_proto = {
3839 	.func		= sk_skb_change_head,
3840 	.gpl_only	= false,
3841 	.ret_type	= RET_INTEGER,
3842 	.arg1_type	= ARG_PTR_TO_CTX,
3843 	.arg2_type	= ARG_ANYTHING,
3844 	.arg3_type	= ARG_ANYTHING,
3845 };
3846 
3847 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3848 {
3849 	return xdp_get_buff_len(xdp);
3850 }
3851 
3852 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3853 	.func		= bpf_xdp_get_buff_len,
3854 	.gpl_only	= false,
3855 	.ret_type	= RET_INTEGER,
3856 	.arg1_type	= ARG_PTR_TO_CTX,
3857 };
3858 
3859 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3860 
3861 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3862 	.func		= bpf_xdp_get_buff_len,
3863 	.gpl_only	= false,
3864 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3865 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3866 };
3867 
3868 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3869 {
3870 	return xdp_data_meta_unsupported(xdp) ? 0 :
3871 	       xdp->data - xdp->data_meta;
3872 }
3873 
3874 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3875 {
3876 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3877 	unsigned long metalen = xdp_get_metalen(xdp);
3878 	void *data_start = xdp_frame_end + metalen;
3879 	void *data = xdp->data + offset;
3880 
3881 	if (unlikely(data < data_start ||
3882 		     data > xdp->data_end - ETH_HLEN))
3883 		return -EINVAL;
3884 
3885 	if (metalen)
3886 		memmove(xdp->data_meta + offset,
3887 			xdp->data_meta, metalen);
3888 	xdp->data_meta += offset;
3889 	xdp->data = data;
3890 
3891 	return 0;
3892 }
3893 
3894 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3895 	.func		= bpf_xdp_adjust_head,
3896 	.gpl_only	= false,
3897 	.ret_type	= RET_INTEGER,
3898 	.arg1_type	= ARG_PTR_TO_CTX,
3899 	.arg2_type	= ARG_ANYTHING,
3900 };
3901 
3902 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3903 		      void *buf, unsigned long len, bool flush)
3904 {
3905 	unsigned long ptr_len, ptr_off = 0;
3906 	skb_frag_t *next_frag, *end_frag;
3907 	struct skb_shared_info *sinfo;
3908 	void *src, *dst;
3909 	u8 *ptr_buf;
3910 
3911 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3912 		src = flush ? buf : xdp->data + off;
3913 		dst = flush ? xdp->data + off : buf;
3914 		memcpy(dst, src, len);
3915 		return;
3916 	}
3917 
3918 	sinfo = xdp_get_shared_info_from_buff(xdp);
3919 	end_frag = &sinfo->frags[sinfo->nr_frags];
3920 	next_frag = &sinfo->frags[0];
3921 
3922 	ptr_len = xdp->data_end - xdp->data;
3923 	ptr_buf = xdp->data;
3924 
3925 	while (true) {
3926 		if (off < ptr_off + ptr_len) {
3927 			unsigned long copy_off = off - ptr_off;
3928 			unsigned long copy_len = min(len, ptr_len - copy_off);
3929 
3930 			src = flush ? buf : ptr_buf + copy_off;
3931 			dst = flush ? ptr_buf + copy_off : buf;
3932 			memcpy(dst, src, copy_len);
3933 
3934 			off += copy_len;
3935 			len -= copy_len;
3936 			buf += copy_len;
3937 		}
3938 
3939 		if (!len || next_frag == end_frag)
3940 			break;
3941 
3942 		ptr_off += ptr_len;
3943 		ptr_buf = skb_frag_address(next_frag);
3944 		ptr_len = skb_frag_size(next_frag);
3945 		next_frag++;
3946 	}
3947 }
3948 
3949 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3950 {
3951 	u32 size = xdp->data_end - xdp->data;
3952 	struct skb_shared_info *sinfo;
3953 	void *addr = xdp->data;
3954 	int i;
3955 
3956 	if (unlikely(offset > 0xffff || len > 0xffff))
3957 		return ERR_PTR(-EFAULT);
3958 
3959 	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
3960 		return ERR_PTR(-EINVAL);
3961 
3962 	if (likely(offset < size)) /* linear area */
3963 		goto out;
3964 
3965 	sinfo = xdp_get_shared_info_from_buff(xdp);
3966 	offset -= size;
3967 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3968 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3969 
3970 		if  (offset < frag_size) {
3971 			addr = skb_frag_address(&sinfo->frags[i]);
3972 			size = frag_size;
3973 			break;
3974 		}
3975 		offset -= frag_size;
3976 	}
3977 out:
3978 	return offset + len <= size ? addr + offset : NULL;
3979 }
3980 
3981 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3982 	   void *, buf, u32, len)
3983 {
3984 	void *ptr;
3985 
3986 	ptr = bpf_xdp_pointer(xdp, offset, len);
3987 	if (IS_ERR(ptr))
3988 		return PTR_ERR(ptr);
3989 
3990 	if (!ptr)
3991 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3992 	else
3993 		memcpy(buf, ptr, len);
3994 
3995 	return 0;
3996 }
3997 
3998 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3999 	.func		= bpf_xdp_load_bytes,
4000 	.gpl_only	= false,
4001 	.ret_type	= RET_INTEGER,
4002 	.arg1_type	= ARG_PTR_TO_CTX,
4003 	.arg2_type	= ARG_ANYTHING,
4004 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4005 	.arg4_type	= ARG_CONST_SIZE,
4006 };
4007 
4008 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4009 {
4010 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4011 }
4012 
4013 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4014 	   void *, buf, u32, len)
4015 {
4016 	void *ptr;
4017 
4018 	ptr = bpf_xdp_pointer(xdp, offset, len);
4019 	if (IS_ERR(ptr))
4020 		return PTR_ERR(ptr);
4021 
4022 	if (!ptr)
4023 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4024 	else
4025 		memcpy(ptr, buf, len);
4026 
4027 	return 0;
4028 }
4029 
4030 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4031 	.func		= bpf_xdp_store_bytes,
4032 	.gpl_only	= false,
4033 	.ret_type	= RET_INTEGER,
4034 	.arg1_type	= ARG_PTR_TO_CTX,
4035 	.arg2_type	= ARG_ANYTHING,
4036 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4037 	.arg4_type	= ARG_CONST_SIZE,
4038 };
4039 
4040 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4041 {
4042 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4043 }
4044 
4045 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4046 {
4047 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4048 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4049 	struct xdp_rxq_info *rxq = xdp->rxq;
4050 	unsigned int tailroom;
4051 
4052 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4053 		return -EOPNOTSUPP;
4054 
4055 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4056 	if (unlikely(offset > tailroom))
4057 		return -EINVAL;
4058 
4059 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4060 	skb_frag_size_add(frag, offset);
4061 	sinfo->xdp_frags_size += offset;
4062 
4063 	return 0;
4064 }
4065 
4066 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4067 {
4068 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4069 	int i, n_frags_free = 0, len_free = 0;
4070 
4071 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4072 		return -EINVAL;
4073 
4074 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4075 		skb_frag_t *frag = &sinfo->frags[i];
4076 		int shrink = min_t(int, offset, skb_frag_size(frag));
4077 
4078 		len_free += shrink;
4079 		offset -= shrink;
4080 
4081 		if (skb_frag_size(frag) == shrink) {
4082 			struct page *page = skb_frag_page(frag);
4083 
4084 			__xdp_return(page_address(page), &xdp->rxq->mem,
4085 				     false, NULL);
4086 			n_frags_free++;
4087 		} else {
4088 			skb_frag_size_sub(frag, shrink);
4089 			break;
4090 		}
4091 	}
4092 	sinfo->nr_frags -= n_frags_free;
4093 	sinfo->xdp_frags_size -= len_free;
4094 
4095 	if (unlikely(!sinfo->nr_frags)) {
4096 		xdp_buff_clear_frags_flag(xdp);
4097 		xdp->data_end -= offset;
4098 	}
4099 
4100 	return 0;
4101 }
4102 
4103 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4104 {
4105 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4106 	void *data_end = xdp->data_end + offset;
4107 
4108 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4109 		if (offset < 0)
4110 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4111 
4112 		return bpf_xdp_frags_increase_tail(xdp, offset);
4113 	}
4114 
4115 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4116 	if (unlikely(data_end > data_hard_end))
4117 		return -EINVAL;
4118 
4119 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
4120 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4121 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4122 		return -EINVAL;
4123 	}
4124 
4125 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4126 		return -EINVAL;
4127 
4128 	/* Clear memory area on grow, can contain uninit kernel memory */
4129 	if (offset > 0)
4130 		memset(xdp->data_end, 0, offset);
4131 
4132 	xdp->data_end = data_end;
4133 
4134 	return 0;
4135 }
4136 
4137 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4138 	.func		= bpf_xdp_adjust_tail,
4139 	.gpl_only	= false,
4140 	.ret_type	= RET_INTEGER,
4141 	.arg1_type	= ARG_PTR_TO_CTX,
4142 	.arg2_type	= ARG_ANYTHING,
4143 };
4144 
4145 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4146 {
4147 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4148 	void *meta = xdp->data_meta + offset;
4149 	unsigned long metalen = xdp->data - meta;
4150 
4151 	if (xdp_data_meta_unsupported(xdp))
4152 		return -ENOTSUPP;
4153 	if (unlikely(meta < xdp_frame_end ||
4154 		     meta > xdp->data))
4155 		return -EINVAL;
4156 	if (unlikely(xdp_metalen_invalid(metalen)))
4157 		return -EACCES;
4158 
4159 	xdp->data_meta = meta;
4160 
4161 	return 0;
4162 }
4163 
4164 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4165 	.func		= bpf_xdp_adjust_meta,
4166 	.gpl_only	= false,
4167 	.ret_type	= RET_INTEGER,
4168 	.arg1_type	= ARG_PTR_TO_CTX,
4169 	.arg2_type	= ARG_ANYTHING,
4170 };
4171 
4172 /**
4173  * DOC: xdp redirect
4174  *
4175  * XDP_REDIRECT works by a three-step process, implemented in the functions
4176  * below:
4177  *
4178  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4179  *    of the redirect and store it (along with some other metadata) in a per-CPU
4180  *    struct bpf_redirect_info.
4181  *
4182  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4183  *    call xdp_do_redirect() which will use the information in struct
4184  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4185  *    bulk queue structure.
4186  *
4187  * 3. Before exiting its NAPI poll loop, the driver will call
4188  *    xdp_do_flush(), which will flush all the different bulk queues,
4189  *    thus completing the redirect. Note that xdp_do_flush() must be
4190  *    called before napi_complete_done() in the driver, as the
4191  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4192  *    through to the xdp_do_flush() call for RCU protection of all
4193  *    in-kernel data structures.
4194  */
4195 /*
4196  * Pointers to the map entries will be kept around for this whole sequence of
4197  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4198  * the core code; instead, the RCU protection relies on everything happening
4199  * inside a single NAPI poll sequence, which means it's between a pair of calls
4200  * to local_bh_disable()/local_bh_enable().
4201  *
4202  * The map entries are marked as __rcu and the map code makes sure to
4203  * dereference those pointers with rcu_dereference_check() in a way that works
4204  * for both sections that to hold an rcu_read_lock() and sections that are
4205  * called from NAPI without a separate rcu_read_lock(). The code below does not
4206  * use RCU annotations, but relies on those in the map code.
4207  */
4208 void xdp_do_flush(void)
4209 {
4210 	__dev_flush();
4211 	__cpu_map_flush();
4212 	__xsk_map_flush();
4213 }
4214 EXPORT_SYMBOL_GPL(xdp_do_flush);
4215 
4216 void bpf_clear_redirect_map(struct bpf_map *map)
4217 {
4218 	struct bpf_redirect_info *ri;
4219 	int cpu;
4220 
4221 	for_each_possible_cpu(cpu) {
4222 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4223 		/* Avoid polluting remote cacheline due to writes if
4224 		 * not needed. Once we pass this test, we need the
4225 		 * cmpxchg() to make sure it hasn't been changed in
4226 		 * the meantime by remote CPU.
4227 		 */
4228 		if (unlikely(READ_ONCE(ri->map) == map))
4229 			cmpxchg(&ri->map, map, NULL);
4230 	}
4231 }
4232 
4233 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4234 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4235 
4236 u32 xdp_master_redirect(struct xdp_buff *xdp)
4237 {
4238 	struct net_device *master, *slave;
4239 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4240 
4241 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4242 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4243 	if (slave && slave != xdp->rxq->dev) {
4244 		/* The target device is different from the receiving device, so
4245 		 * redirect it to the new device.
4246 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4247 		 * drivers to unmap the packet from their rx ring.
4248 		 */
4249 		ri->tgt_index = slave->ifindex;
4250 		ri->map_id = INT_MAX;
4251 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4252 		return XDP_REDIRECT;
4253 	}
4254 	return XDP_TX;
4255 }
4256 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4257 
4258 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4259 					struct net_device *dev,
4260 					struct xdp_buff *xdp,
4261 					struct bpf_prog *xdp_prog)
4262 {
4263 	enum bpf_map_type map_type = ri->map_type;
4264 	void *fwd = ri->tgt_value;
4265 	u32 map_id = ri->map_id;
4266 	int err;
4267 
4268 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4269 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4270 
4271 	err = __xsk_map_redirect(fwd, xdp);
4272 	if (unlikely(err))
4273 		goto err;
4274 
4275 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4276 	return 0;
4277 err:
4278 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4279 	return err;
4280 }
4281 
4282 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4283 						   struct net_device *dev,
4284 						   struct xdp_frame *xdpf,
4285 						   struct bpf_prog *xdp_prog)
4286 {
4287 	enum bpf_map_type map_type = ri->map_type;
4288 	void *fwd = ri->tgt_value;
4289 	u32 map_id = ri->map_id;
4290 	struct bpf_map *map;
4291 	int err;
4292 
4293 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4294 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4295 
4296 	if (unlikely(!xdpf)) {
4297 		err = -EOVERFLOW;
4298 		goto err;
4299 	}
4300 
4301 	switch (map_type) {
4302 	case BPF_MAP_TYPE_DEVMAP:
4303 		fallthrough;
4304 	case BPF_MAP_TYPE_DEVMAP_HASH:
4305 		map = READ_ONCE(ri->map);
4306 		if (unlikely(map)) {
4307 			WRITE_ONCE(ri->map, NULL);
4308 			err = dev_map_enqueue_multi(xdpf, dev, map,
4309 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4310 		} else {
4311 			err = dev_map_enqueue(fwd, xdpf, dev);
4312 		}
4313 		break;
4314 	case BPF_MAP_TYPE_CPUMAP:
4315 		err = cpu_map_enqueue(fwd, xdpf, dev);
4316 		break;
4317 	case BPF_MAP_TYPE_UNSPEC:
4318 		if (map_id == INT_MAX) {
4319 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4320 			if (unlikely(!fwd)) {
4321 				err = -EINVAL;
4322 				break;
4323 			}
4324 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4325 			break;
4326 		}
4327 		fallthrough;
4328 	default:
4329 		err = -EBADRQC;
4330 	}
4331 
4332 	if (unlikely(err))
4333 		goto err;
4334 
4335 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4336 	return 0;
4337 err:
4338 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4339 	return err;
4340 }
4341 
4342 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4343 		    struct bpf_prog *xdp_prog)
4344 {
4345 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4346 	enum bpf_map_type map_type = ri->map_type;
4347 
4348 	if (map_type == BPF_MAP_TYPE_XSKMAP) {
4349 		/* XDP_REDIRECT is not supported AF_XDP yet. */
4350 		if (unlikely(xdp_buff_has_frags(xdp)))
4351 			return -EOPNOTSUPP;
4352 
4353 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4354 	}
4355 
4356 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4357 				       xdp_prog);
4358 }
4359 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4360 
4361 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4362 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4363 {
4364 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4365 	enum bpf_map_type map_type = ri->map_type;
4366 
4367 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4368 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4369 
4370 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4371 }
4372 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4373 
4374 static int xdp_do_generic_redirect_map(struct net_device *dev,
4375 				       struct sk_buff *skb,
4376 				       struct xdp_buff *xdp,
4377 				       struct bpf_prog *xdp_prog,
4378 				       void *fwd,
4379 				       enum bpf_map_type map_type, u32 map_id)
4380 {
4381 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4382 	struct bpf_map *map;
4383 	int err;
4384 
4385 	switch (map_type) {
4386 	case BPF_MAP_TYPE_DEVMAP:
4387 		fallthrough;
4388 	case BPF_MAP_TYPE_DEVMAP_HASH:
4389 		map = READ_ONCE(ri->map);
4390 		if (unlikely(map)) {
4391 			WRITE_ONCE(ri->map, NULL);
4392 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4393 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4394 		} else {
4395 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4396 		}
4397 		if (unlikely(err))
4398 			goto err;
4399 		break;
4400 	case BPF_MAP_TYPE_XSKMAP:
4401 		err = xsk_generic_rcv(fwd, xdp);
4402 		if (err)
4403 			goto err;
4404 		consume_skb(skb);
4405 		break;
4406 	case BPF_MAP_TYPE_CPUMAP:
4407 		err = cpu_map_generic_redirect(fwd, skb);
4408 		if (unlikely(err))
4409 			goto err;
4410 		break;
4411 	default:
4412 		err = -EBADRQC;
4413 		goto err;
4414 	}
4415 
4416 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4417 	return 0;
4418 err:
4419 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4420 	return err;
4421 }
4422 
4423 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4424 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4425 {
4426 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4427 	enum bpf_map_type map_type = ri->map_type;
4428 	void *fwd = ri->tgt_value;
4429 	u32 map_id = ri->map_id;
4430 	int err;
4431 
4432 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4433 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4434 
4435 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4436 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4437 		if (unlikely(!fwd)) {
4438 			err = -EINVAL;
4439 			goto err;
4440 		}
4441 
4442 		err = xdp_ok_fwd_dev(fwd, skb->len);
4443 		if (unlikely(err))
4444 			goto err;
4445 
4446 		skb->dev = fwd;
4447 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4448 		generic_xdp_tx(skb, xdp_prog);
4449 		return 0;
4450 	}
4451 
4452 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4453 err:
4454 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4455 	return err;
4456 }
4457 
4458 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4459 {
4460 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4461 
4462 	if (unlikely(flags))
4463 		return XDP_ABORTED;
4464 
4465 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4466 	 * by map_idr) is used for ifindex based XDP redirect.
4467 	 */
4468 	ri->tgt_index = ifindex;
4469 	ri->map_id = INT_MAX;
4470 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4471 
4472 	return XDP_REDIRECT;
4473 }
4474 
4475 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4476 	.func           = bpf_xdp_redirect,
4477 	.gpl_only       = false,
4478 	.ret_type       = RET_INTEGER,
4479 	.arg1_type      = ARG_ANYTHING,
4480 	.arg2_type      = ARG_ANYTHING,
4481 };
4482 
4483 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4484 	   u64, flags)
4485 {
4486 	return map->ops->map_redirect(map, key, flags);
4487 }
4488 
4489 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4490 	.func           = bpf_xdp_redirect_map,
4491 	.gpl_only       = false,
4492 	.ret_type       = RET_INTEGER,
4493 	.arg1_type      = ARG_CONST_MAP_PTR,
4494 	.arg2_type      = ARG_ANYTHING,
4495 	.arg3_type      = ARG_ANYTHING,
4496 };
4497 
4498 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4499 				  unsigned long off, unsigned long len)
4500 {
4501 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4502 
4503 	if (unlikely(!ptr))
4504 		return len;
4505 	if (ptr != dst_buff)
4506 		memcpy(dst_buff, ptr, len);
4507 
4508 	return 0;
4509 }
4510 
4511 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4512 	   u64, flags, void *, meta, u64, meta_size)
4513 {
4514 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4515 
4516 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4517 		return -EINVAL;
4518 	if (unlikely(!skb || skb_size > skb->len))
4519 		return -EFAULT;
4520 
4521 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4522 				bpf_skb_copy);
4523 }
4524 
4525 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4526 	.func		= bpf_skb_event_output,
4527 	.gpl_only	= true,
4528 	.ret_type	= RET_INTEGER,
4529 	.arg1_type	= ARG_PTR_TO_CTX,
4530 	.arg2_type	= ARG_CONST_MAP_PTR,
4531 	.arg3_type	= ARG_ANYTHING,
4532 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4533 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4534 };
4535 
4536 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4537 
4538 const struct bpf_func_proto bpf_skb_output_proto = {
4539 	.func		= bpf_skb_event_output,
4540 	.gpl_only	= true,
4541 	.ret_type	= RET_INTEGER,
4542 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4543 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4544 	.arg2_type	= ARG_CONST_MAP_PTR,
4545 	.arg3_type	= ARG_ANYTHING,
4546 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4547 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4548 };
4549 
4550 static unsigned short bpf_tunnel_key_af(u64 flags)
4551 {
4552 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4553 }
4554 
4555 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4556 	   u32, size, u64, flags)
4557 {
4558 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4559 	u8 compat[sizeof(struct bpf_tunnel_key)];
4560 	void *to_orig = to;
4561 	int err;
4562 
4563 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4564 					 BPF_F_TUNINFO_FLAGS)))) {
4565 		err = -EINVAL;
4566 		goto err_clear;
4567 	}
4568 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4569 		err = -EPROTO;
4570 		goto err_clear;
4571 	}
4572 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4573 		err = -EINVAL;
4574 		switch (size) {
4575 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4576 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4577 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4578 			goto set_compat;
4579 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4580 			/* Fixup deprecated structure layouts here, so we have
4581 			 * a common path later on.
4582 			 */
4583 			if (ip_tunnel_info_af(info) != AF_INET)
4584 				goto err_clear;
4585 set_compat:
4586 			to = (struct bpf_tunnel_key *)compat;
4587 			break;
4588 		default:
4589 			goto err_clear;
4590 		}
4591 	}
4592 
4593 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4594 	to->tunnel_tos = info->key.tos;
4595 	to->tunnel_ttl = info->key.ttl;
4596 	if (flags & BPF_F_TUNINFO_FLAGS)
4597 		to->tunnel_flags = info->key.tun_flags;
4598 	else
4599 		to->tunnel_ext = 0;
4600 
4601 	if (flags & BPF_F_TUNINFO_IPV6) {
4602 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4603 		       sizeof(to->remote_ipv6));
4604 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4605 		       sizeof(to->local_ipv6));
4606 		to->tunnel_label = be32_to_cpu(info->key.label);
4607 	} else {
4608 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4609 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4610 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4611 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4612 		to->tunnel_label = 0;
4613 	}
4614 
4615 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4616 		memcpy(to_orig, to, size);
4617 
4618 	return 0;
4619 err_clear:
4620 	memset(to_orig, 0, size);
4621 	return err;
4622 }
4623 
4624 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4625 	.func		= bpf_skb_get_tunnel_key,
4626 	.gpl_only	= false,
4627 	.ret_type	= RET_INTEGER,
4628 	.arg1_type	= ARG_PTR_TO_CTX,
4629 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4630 	.arg3_type	= ARG_CONST_SIZE,
4631 	.arg4_type	= ARG_ANYTHING,
4632 };
4633 
4634 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4635 {
4636 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4637 	int err;
4638 
4639 	if (unlikely(!info ||
4640 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4641 		err = -ENOENT;
4642 		goto err_clear;
4643 	}
4644 	if (unlikely(size < info->options_len)) {
4645 		err = -ENOMEM;
4646 		goto err_clear;
4647 	}
4648 
4649 	ip_tunnel_info_opts_get(to, info);
4650 	if (size > info->options_len)
4651 		memset(to + info->options_len, 0, size - info->options_len);
4652 
4653 	return info->options_len;
4654 err_clear:
4655 	memset(to, 0, size);
4656 	return err;
4657 }
4658 
4659 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4660 	.func		= bpf_skb_get_tunnel_opt,
4661 	.gpl_only	= false,
4662 	.ret_type	= RET_INTEGER,
4663 	.arg1_type	= ARG_PTR_TO_CTX,
4664 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4665 	.arg3_type	= ARG_CONST_SIZE,
4666 };
4667 
4668 static struct metadata_dst __percpu *md_dst;
4669 
4670 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4671 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4672 {
4673 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4674 	u8 compat[sizeof(struct bpf_tunnel_key)];
4675 	struct ip_tunnel_info *info;
4676 
4677 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4678 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4679 			       BPF_F_NO_TUNNEL_KEY)))
4680 		return -EINVAL;
4681 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4682 		switch (size) {
4683 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4684 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4685 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4686 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4687 			/* Fixup deprecated structure layouts here, so we have
4688 			 * a common path later on.
4689 			 */
4690 			memcpy(compat, from, size);
4691 			memset(compat + size, 0, sizeof(compat) - size);
4692 			from = (const struct bpf_tunnel_key *) compat;
4693 			break;
4694 		default:
4695 			return -EINVAL;
4696 		}
4697 	}
4698 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4699 		     from->tunnel_ext))
4700 		return -EINVAL;
4701 
4702 	skb_dst_drop(skb);
4703 	dst_hold((struct dst_entry *) md);
4704 	skb_dst_set(skb, (struct dst_entry *) md);
4705 
4706 	info = &md->u.tun_info;
4707 	memset(info, 0, sizeof(*info));
4708 	info->mode = IP_TUNNEL_INFO_TX;
4709 
4710 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4711 	if (flags & BPF_F_DONT_FRAGMENT)
4712 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4713 	if (flags & BPF_F_ZERO_CSUM_TX)
4714 		info->key.tun_flags &= ~TUNNEL_CSUM;
4715 	if (flags & BPF_F_SEQ_NUMBER)
4716 		info->key.tun_flags |= TUNNEL_SEQ;
4717 	if (flags & BPF_F_NO_TUNNEL_KEY)
4718 		info->key.tun_flags &= ~TUNNEL_KEY;
4719 
4720 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4721 	info->key.tos = from->tunnel_tos;
4722 	info->key.ttl = from->tunnel_ttl;
4723 
4724 	if (flags & BPF_F_TUNINFO_IPV6) {
4725 		info->mode |= IP_TUNNEL_INFO_IPV6;
4726 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4727 		       sizeof(from->remote_ipv6));
4728 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4729 		       sizeof(from->local_ipv6));
4730 		info->key.label = cpu_to_be32(from->tunnel_label) &
4731 				  IPV6_FLOWLABEL_MASK;
4732 	} else {
4733 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4734 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4735 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4736 	}
4737 
4738 	return 0;
4739 }
4740 
4741 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4742 	.func		= bpf_skb_set_tunnel_key,
4743 	.gpl_only	= false,
4744 	.ret_type	= RET_INTEGER,
4745 	.arg1_type	= ARG_PTR_TO_CTX,
4746 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4747 	.arg3_type	= ARG_CONST_SIZE,
4748 	.arg4_type	= ARG_ANYTHING,
4749 };
4750 
4751 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4752 	   const u8 *, from, u32, size)
4753 {
4754 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4755 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4756 
4757 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4758 		return -EINVAL;
4759 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4760 		return -ENOMEM;
4761 
4762 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4763 
4764 	return 0;
4765 }
4766 
4767 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4768 	.func		= bpf_skb_set_tunnel_opt,
4769 	.gpl_only	= false,
4770 	.ret_type	= RET_INTEGER,
4771 	.arg1_type	= ARG_PTR_TO_CTX,
4772 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4773 	.arg3_type	= ARG_CONST_SIZE,
4774 };
4775 
4776 static const struct bpf_func_proto *
4777 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4778 {
4779 	if (!md_dst) {
4780 		struct metadata_dst __percpu *tmp;
4781 
4782 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4783 						METADATA_IP_TUNNEL,
4784 						GFP_KERNEL);
4785 		if (!tmp)
4786 			return NULL;
4787 		if (cmpxchg(&md_dst, NULL, tmp))
4788 			metadata_dst_free_percpu(tmp);
4789 	}
4790 
4791 	switch (which) {
4792 	case BPF_FUNC_skb_set_tunnel_key:
4793 		return &bpf_skb_set_tunnel_key_proto;
4794 	case BPF_FUNC_skb_set_tunnel_opt:
4795 		return &bpf_skb_set_tunnel_opt_proto;
4796 	default:
4797 		return NULL;
4798 	}
4799 }
4800 
4801 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4802 	   u32, idx)
4803 {
4804 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4805 	struct cgroup *cgrp;
4806 	struct sock *sk;
4807 
4808 	sk = skb_to_full_sk(skb);
4809 	if (!sk || !sk_fullsock(sk))
4810 		return -ENOENT;
4811 	if (unlikely(idx >= array->map.max_entries))
4812 		return -E2BIG;
4813 
4814 	cgrp = READ_ONCE(array->ptrs[idx]);
4815 	if (unlikely(!cgrp))
4816 		return -EAGAIN;
4817 
4818 	return sk_under_cgroup_hierarchy(sk, cgrp);
4819 }
4820 
4821 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4822 	.func		= bpf_skb_under_cgroup,
4823 	.gpl_only	= false,
4824 	.ret_type	= RET_INTEGER,
4825 	.arg1_type	= ARG_PTR_TO_CTX,
4826 	.arg2_type	= ARG_CONST_MAP_PTR,
4827 	.arg3_type	= ARG_ANYTHING,
4828 };
4829 
4830 #ifdef CONFIG_SOCK_CGROUP_DATA
4831 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4832 {
4833 	struct cgroup *cgrp;
4834 
4835 	sk = sk_to_full_sk(sk);
4836 	if (!sk || !sk_fullsock(sk))
4837 		return 0;
4838 
4839 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4840 	return cgroup_id(cgrp);
4841 }
4842 
4843 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4844 {
4845 	return __bpf_sk_cgroup_id(skb->sk);
4846 }
4847 
4848 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4849 	.func           = bpf_skb_cgroup_id,
4850 	.gpl_only       = false,
4851 	.ret_type       = RET_INTEGER,
4852 	.arg1_type      = ARG_PTR_TO_CTX,
4853 };
4854 
4855 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4856 					      int ancestor_level)
4857 {
4858 	struct cgroup *ancestor;
4859 	struct cgroup *cgrp;
4860 
4861 	sk = sk_to_full_sk(sk);
4862 	if (!sk || !sk_fullsock(sk))
4863 		return 0;
4864 
4865 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4866 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4867 	if (!ancestor)
4868 		return 0;
4869 
4870 	return cgroup_id(ancestor);
4871 }
4872 
4873 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4874 	   ancestor_level)
4875 {
4876 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4877 }
4878 
4879 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4880 	.func           = bpf_skb_ancestor_cgroup_id,
4881 	.gpl_only       = false,
4882 	.ret_type       = RET_INTEGER,
4883 	.arg1_type      = ARG_PTR_TO_CTX,
4884 	.arg2_type      = ARG_ANYTHING,
4885 };
4886 
4887 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4888 {
4889 	return __bpf_sk_cgroup_id(sk);
4890 }
4891 
4892 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4893 	.func           = bpf_sk_cgroup_id,
4894 	.gpl_only       = false,
4895 	.ret_type       = RET_INTEGER,
4896 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4897 };
4898 
4899 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4900 {
4901 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4902 }
4903 
4904 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4905 	.func           = bpf_sk_ancestor_cgroup_id,
4906 	.gpl_only       = false,
4907 	.ret_type       = RET_INTEGER,
4908 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4909 	.arg2_type      = ARG_ANYTHING,
4910 };
4911 #endif
4912 
4913 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4914 				  unsigned long off, unsigned long len)
4915 {
4916 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4917 
4918 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4919 	return 0;
4920 }
4921 
4922 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4923 	   u64, flags, void *, meta, u64, meta_size)
4924 {
4925 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4926 
4927 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4928 		return -EINVAL;
4929 
4930 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4931 		return -EFAULT;
4932 
4933 	return bpf_event_output(map, flags, meta, meta_size, xdp,
4934 				xdp_size, bpf_xdp_copy);
4935 }
4936 
4937 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4938 	.func		= bpf_xdp_event_output,
4939 	.gpl_only	= true,
4940 	.ret_type	= RET_INTEGER,
4941 	.arg1_type	= ARG_PTR_TO_CTX,
4942 	.arg2_type	= ARG_CONST_MAP_PTR,
4943 	.arg3_type	= ARG_ANYTHING,
4944 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4945 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4946 };
4947 
4948 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4949 
4950 const struct bpf_func_proto bpf_xdp_output_proto = {
4951 	.func		= bpf_xdp_event_output,
4952 	.gpl_only	= true,
4953 	.ret_type	= RET_INTEGER,
4954 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4955 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4956 	.arg2_type	= ARG_CONST_MAP_PTR,
4957 	.arg3_type	= ARG_ANYTHING,
4958 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4959 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4960 };
4961 
4962 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4963 {
4964 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4965 }
4966 
4967 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4968 	.func           = bpf_get_socket_cookie,
4969 	.gpl_only       = false,
4970 	.ret_type       = RET_INTEGER,
4971 	.arg1_type      = ARG_PTR_TO_CTX,
4972 };
4973 
4974 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4975 {
4976 	return __sock_gen_cookie(ctx->sk);
4977 }
4978 
4979 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4980 	.func		= bpf_get_socket_cookie_sock_addr,
4981 	.gpl_only	= false,
4982 	.ret_type	= RET_INTEGER,
4983 	.arg1_type	= ARG_PTR_TO_CTX,
4984 };
4985 
4986 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4987 {
4988 	return __sock_gen_cookie(ctx);
4989 }
4990 
4991 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4992 	.func		= bpf_get_socket_cookie_sock,
4993 	.gpl_only	= false,
4994 	.ret_type	= RET_INTEGER,
4995 	.arg1_type	= ARG_PTR_TO_CTX,
4996 };
4997 
4998 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4999 {
5000 	return sk ? sock_gen_cookie(sk) : 0;
5001 }
5002 
5003 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5004 	.func		= bpf_get_socket_ptr_cookie,
5005 	.gpl_only	= false,
5006 	.ret_type	= RET_INTEGER,
5007 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5008 };
5009 
5010 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5011 {
5012 	return __sock_gen_cookie(ctx->sk);
5013 }
5014 
5015 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5016 	.func		= bpf_get_socket_cookie_sock_ops,
5017 	.gpl_only	= false,
5018 	.ret_type	= RET_INTEGER,
5019 	.arg1_type	= ARG_PTR_TO_CTX,
5020 };
5021 
5022 static u64 __bpf_get_netns_cookie(struct sock *sk)
5023 {
5024 	const struct net *net = sk ? sock_net(sk) : &init_net;
5025 
5026 	return net->net_cookie;
5027 }
5028 
5029 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5030 {
5031 	return __bpf_get_netns_cookie(ctx);
5032 }
5033 
5034 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5035 	.func		= bpf_get_netns_cookie_sock,
5036 	.gpl_only	= false,
5037 	.ret_type	= RET_INTEGER,
5038 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5039 };
5040 
5041 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5042 {
5043 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5044 }
5045 
5046 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5047 	.func		= bpf_get_netns_cookie_sock_addr,
5048 	.gpl_only	= false,
5049 	.ret_type	= RET_INTEGER,
5050 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5051 };
5052 
5053 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5054 {
5055 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5056 }
5057 
5058 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5059 	.func		= bpf_get_netns_cookie_sock_ops,
5060 	.gpl_only	= false,
5061 	.ret_type	= RET_INTEGER,
5062 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5063 };
5064 
5065 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5066 {
5067 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5068 }
5069 
5070 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5071 	.func		= bpf_get_netns_cookie_sk_msg,
5072 	.gpl_only	= false,
5073 	.ret_type	= RET_INTEGER,
5074 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5075 };
5076 
5077 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5078 {
5079 	struct sock *sk = sk_to_full_sk(skb->sk);
5080 	kuid_t kuid;
5081 
5082 	if (!sk || !sk_fullsock(sk))
5083 		return overflowuid;
5084 	kuid = sock_net_uid(sock_net(sk), sk);
5085 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5086 }
5087 
5088 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5089 	.func           = bpf_get_socket_uid,
5090 	.gpl_only       = false,
5091 	.ret_type       = RET_INTEGER,
5092 	.arg1_type      = ARG_PTR_TO_CTX,
5093 };
5094 
5095 static int sol_socket_sockopt(struct sock *sk, int optname,
5096 			      char *optval, int *optlen,
5097 			      bool getopt)
5098 {
5099 	switch (optname) {
5100 	case SO_REUSEADDR:
5101 	case SO_SNDBUF:
5102 	case SO_RCVBUF:
5103 	case SO_KEEPALIVE:
5104 	case SO_PRIORITY:
5105 	case SO_REUSEPORT:
5106 	case SO_RCVLOWAT:
5107 	case SO_MARK:
5108 	case SO_MAX_PACING_RATE:
5109 	case SO_BINDTOIFINDEX:
5110 	case SO_TXREHASH:
5111 		if (*optlen != sizeof(int))
5112 			return -EINVAL;
5113 		break;
5114 	case SO_BINDTODEVICE:
5115 		break;
5116 	default:
5117 		return -EINVAL;
5118 	}
5119 
5120 	if (getopt) {
5121 		if (optname == SO_BINDTODEVICE)
5122 			return -EINVAL;
5123 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5124 				     KERNEL_SOCKPTR(optval),
5125 				     KERNEL_SOCKPTR(optlen));
5126 	}
5127 
5128 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5129 			     KERNEL_SOCKPTR(optval), *optlen);
5130 }
5131 
5132 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5133 				  char *optval, int optlen)
5134 {
5135 	struct tcp_sock *tp = tcp_sk(sk);
5136 	unsigned long timeout;
5137 	int val;
5138 
5139 	if (optlen != sizeof(int))
5140 		return -EINVAL;
5141 
5142 	val = *(int *)optval;
5143 
5144 	/* Only some options are supported */
5145 	switch (optname) {
5146 	case TCP_BPF_IW:
5147 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5148 			return -EINVAL;
5149 		tcp_snd_cwnd_set(tp, val);
5150 		break;
5151 	case TCP_BPF_SNDCWND_CLAMP:
5152 		if (val <= 0)
5153 			return -EINVAL;
5154 		tp->snd_cwnd_clamp = val;
5155 		tp->snd_ssthresh = val;
5156 		break;
5157 	case TCP_BPF_DELACK_MAX:
5158 		timeout = usecs_to_jiffies(val);
5159 		if (timeout > TCP_DELACK_MAX ||
5160 		    timeout < TCP_TIMEOUT_MIN)
5161 			return -EINVAL;
5162 		inet_csk(sk)->icsk_delack_max = timeout;
5163 		break;
5164 	case TCP_BPF_RTO_MIN:
5165 		timeout = usecs_to_jiffies(val);
5166 		if (timeout > TCP_RTO_MIN ||
5167 		    timeout < TCP_TIMEOUT_MIN)
5168 			return -EINVAL;
5169 		inet_csk(sk)->icsk_rto_min = timeout;
5170 		break;
5171 	default:
5172 		return -EINVAL;
5173 	}
5174 
5175 	return 0;
5176 }
5177 
5178 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5179 				      int *optlen, bool getopt)
5180 {
5181 	struct tcp_sock *tp;
5182 	int ret;
5183 
5184 	if (*optlen < 2)
5185 		return -EINVAL;
5186 
5187 	if (getopt) {
5188 		if (!inet_csk(sk)->icsk_ca_ops)
5189 			return -EINVAL;
5190 		/* BPF expects NULL-terminated tcp-cc string */
5191 		optval[--(*optlen)] = '\0';
5192 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5193 					 KERNEL_SOCKPTR(optval),
5194 					 KERNEL_SOCKPTR(optlen));
5195 	}
5196 
5197 	/* "cdg" is the only cc that alloc a ptr
5198 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5199 	 * overwrite this ptr after switching to cdg.
5200 	 */
5201 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5202 		return -ENOTSUPP;
5203 
5204 	/* It stops this looping
5205 	 *
5206 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5207 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5208 	 *
5209 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5210 	 * in order to break the loop when both .init
5211 	 * are the same bpf prog.
5212 	 *
5213 	 * This applies even the second bpf_setsockopt(tcp_cc)
5214 	 * does not cause a loop.  This limits only the first
5215 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5216 	 * pick a fallback cc (eg. peer does not support ECN)
5217 	 * and the second '.init' cannot fallback to
5218 	 * another.
5219 	 */
5220 	tp = tcp_sk(sk);
5221 	if (tp->bpf_chg_cc_inprogress)
5222 		return -EBUSY;
5223 
5224 	tp->bpf_chg_cc_inprogress = 1;
5225 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5226 				KERNEL_SOCKPTR(optval), *optlen);
5227 	tp->bpf_chg_cc_inprogress = 0;
5228 	return ret;
5229 }
5230 
5231 static int sol_tcp_sockopt(struct sock *sk, int optname,
5232 			   char *optval, int *optlen,
5233 			   bool getopt)
5234 {
5235 	if (sk->sk_protocol != IPPROTO_TCP)
5236 		return -EINVAL;
5237 
5238 	switch (optname) {
5239 	case TCP_NODELAY:
5240 	case TCP_MAXSEG:
5241 	case TCP_KEEPIDLE:
5242 	case TCP_KEEPINTVL:
5243 	case TCP_KEEPCNT:
5244 	case TCP_SYNCNT:
5245 	case TCP_WINDOW_CLAMP:
5246 	case TCP_THIN_LINEAR_TIMEOUTS:
5247 	case TCP_USER_TIMEOUT:
5248 	case TCP_NOTSENT_LOWAT:
5249 	case TCP_SAVE_SYN:
5250 		if (*optlen != sizeof(int))
5251 			return -EINVAL;
5252 		break;
5253 	case TCP_CONGESTION:
5254 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5255 	case TCP_SAVED_SYN:
5256 		if (*optlen < 1)
5257 			return -EINVAL;
5258 		break;
5259 	default:
5260 		if (getopt)
5261 			return -EINVAL;
5262 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5263 	}
5264 
5265 	if (getopt) {
5266 		if (optname == TCP_SAVED_SYN) {
5267 			struct tcp_sock *tp = tcp_sk(sk);
5268 
5269 			if (!tp->saved_syn ||
5270 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5271 				return -EINVAL;
5272 			memcpy(optval, tp->saved_syn->data, *optlen);
5273 			/* It cannot free tp->saved_syn here because it
5274 			 * does not know if the user space still needs it.
5275 			 */
5276 			return 0;
5277 		}
5278 
5279 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5280 					 KERNEL_SOCKPTR(optval),
5281 					 KERNEL_SOCKPTR(optlen));
5282 	}
5283 
5284 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5285 				 KERNEL_SOCKPTR(optval), *optlen);
5286 }
5287 
5288 static int sol_ip_sockopt(struct sock *sk, int optname,
5289 			  char *optval, int *optlen,
5290 			  bool getopt)
5291 {
5292 	if (sk->sk_family != AF_INET)
5293 		return -EINVAL;
5294 
5295 	switch (optname) {
5296 	case IP_TOS:
5297 		if (*optlen != sizeof(int))
5298 			return -EINVAL;
5299 		break;
5300 	default:
5301 		return -EINVAL;
5302 	}
5303 
5304 	if (getopt)
5305 		return do_ip_getsockopt(sk, SOL_IP, optname,
5306 					KERNEL_SOCKPTR(optval),
5307 					KERNEL_SOCKPTR(optlen));
5308 
5309 	return do_ip_setsockopt(sk, SOL_IP, optname,
5310 				KERNEL_SOCKPTR(optval), *optlen);
5311 }
5312 
5313 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5314 			    char *optval, int *optlen,
5315 			    bool getopt)
5316 {
5317 	if (sk->sk_family != AF_INET6)
5318 		return -EINVAL;
5319 
5320 	switch (optname) {
5321 	case IPV6_TCLASS:
5322 	case IPV6_AUTOFLOWLABEL:
5323 		if (*optlen != sizeof(int))
5324 			return -EINVAL;
5325 		break;
5326 	default:
5327 		return -EINVAL;
5328 	}
5329 
5330 	if (getopt)
5331 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5332 						      KERNEL_SOCKPTR(optval),
5333 						      KERNEL_SOCKPTR(optlen));
5334 
5335 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5336 					      KERNEL_SOCKPTR(optval), *optlen);
5337 }
5338 
5339 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5340 			    char *optval, int optlen)
5341 {
5342 	if (!sk_fullsock(sk))
5343 		return -EINVAL;
5344 
5345 	if (level == SOL_SOCKET)
5346 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5347 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5348 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5349 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5350 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5351 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5352 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5353 
5354 	return -EINVAL;
5355 }
5356 
5357 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5358 			   char *optval, int optlen)
5359 {
5360 	if (sk_fullsock(sk))
5361 		sock_owned_by_me(sk);
5362 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5363 }
5364 
5365 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5366 			    char *optval, int optlen)
5367 {
5368 	int err, saved_optlen = optlen;
5369 
5370 	if (!sk_fullsock(sk)) {
5371 		err = -EINVAL;
5372 		goto done;
5373 	}
5374 
5375 	if (level == SOL_SOCKET)
5376 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5377 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5378 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5379 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5380 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5381 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5382 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5383 	else
5384 		err = -EINVAL;
5385 
5386 done:
5387 	if (err)
5388 		optlen = 0;
5389 	if (optlen < saved_optlen)
5390 		memset(optval + optlen, 0, saved_optlen - optlen);
5391 	return err;
5392 }
5393 
5394 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5395 			   char *optval, int optlen)
5396 {
5397 	if (sk_fullsock(sk))
5398 		sock_owned_by_me(sk);
5399 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5400 }
5401 
5402 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5403 	   int, optname, char *, optval, int, optlen)
5404 {
5405 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5406 }
5407 
5408 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5409 	.func		= bpf_sk_setsockopt,
5410 	.gpl_only	= false,
5411 	.ret_type	= RET_INTEGER,
5412 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5413 	.arg2_type	= ARG_ANYTHING,
5414 	.arg3_type	= ARG_ANYTHING,
5415 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5416 	.arg5_type	= ARG_CONST_SIZE,
5417 };
5418 
5419 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5420 	   int, optname, char *, optval, int, optlen)
5421 {
5422 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5423 }
5424 
5425 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5426 	.func		= bpf_sk_getsockopt,
5427 	.gpl_only	= false,
5428 	.ret_type	= RET_INTEGER,
5429 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5430 	.arg2_type	= ARG_ANYTHING,
5431 	.arg3_type	= ARG_ANYTHING,
5432 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5433 	.arg5_type	= ARG_CONST_SIZE,
5434 };
5435 
5436 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5437 	   int, optname, char *, optval, int, optlen)
5438 {
5439 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5440 }
5441 
5442 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5443 	.func		= bpf_unlocked_sk_setsockopt,
5444 	.gpl_only	= false,
5445 	.ret_type	= RET_INTEGER,
5446 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5447 	.arg2_type	= ARG_ANYTHING,
5448 	.arg3_type	= ARG_ANYTHING,
5449 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5450 	.arg5_type	= ARG_CONST_SIZE,
5451 };
5452 
5453 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5454 	   int, optname, char *, optval, int, optlen)
5455 {
5456 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5457 }
5458 
5459 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5460 	.func		= bpf_unlocked_sk_getsockopt,
5461 	.gpl_only	= false,
5462 	.ret_type	= RET_INTEGER,
5463 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5464 	.arg2_type	= ARG_ANYTHING,
5465 	.arg3_type	= ARG_ANYTHING,
5466 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5467 	.arg5_type	= ARG_CONST_SIZE,
5468 };
5469 
5470 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5471 	   int, level, int, optname, char *, optval, int, optlen)
5472 {
5473 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5474 }
5475 
5476 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5477 	.func		= bpf_sock_addr_setsockopt,
5478 	.gpl_only	= false,
5479 	.ret_type	= RET_INTEGER,
5480 	.arg1_type	= ARG_PTR_TO_CTX,
5481 	.arg2_type	= ARG_ANYTHING,
5482 	.arg3_type	= ARG_ANYTHING,
5483 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5484 	.arg5_type	= ARG_CONST_SIZE,
5485 };
5486 
5487 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5488 	   int, level, int, optname, char *, optval, int, optlen)
5489 {
5490 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5491 }
5492 
5493 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5494 	.func		= bpf_sock_addr_getsockopt,
5495 	.gpl_only	= false,
5496 	.ret_type	= RET_INTEGER,
5497 	.arg1_type	= ARG_PTR_TO_CTX,
5498 	.arg2_type	= ARG_ANYTHING,
5499 	.arg3_type	= ARG_ANYTHING,
5500 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5501 	.arg5_type	= ARG_CONST_SIZE,
5502 };
5503 
5504 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5505 	   int, level, int, optname, char *, optval, int, optlen)
5506 {
5507 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5508 }
5509 
5510 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5511 	.func		= bpf_sock_ops_setsockopt,
5512 	.gpl_only	= false,
5513 	.ret_type	= RET_INTEGER,
5514 	.arg1_type	= ARG_PTR_TO_CTX,
5515 	.arg2_type	= ARG_ANYTHING,
5516 	.arg3_type	= ARG_ANYTHING,
5517 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5518 	.arg5_type	= ARG_CONST_SIZE,
5519 };
5520 
5521 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5522 				int optname, const u8 **start)
5523 {
5524 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5525 	const u8 *hdr_start;
5526 	int ret;
5527 
5528 	if (syn_skb) {
5529 		/* sk is a request_sock here */
5530 
5531 		if (optname == TCP_BPF_SYN) {
5532 			hdr_start = syn_skb->data;
5533 			ret = tcp_hdrlen(syn_skb);
5534 		} else if (optname == TCP_BPF_SYN_IP) {
5535 			hdr_start = skb_network_header(syn_skb);
5536 			ret = skb_network_header_len(syn_skb) +
5537 				tcp_hdrlen(syn_skb);
5538 		} else {
5539 			/* optname == TCP_BPF_SYN_MAC */
5540 			hdr_start = skb_mac_header(syn_skb);
5541 			ret = skb_mac_header_len(syn_skb) +
5542 				skb_network_header_len(syn_skb) +
5543 				tcp_hdrlen(syn_skb);
5544 		}
5545 	} else {
5546 		struct sock *sk = bpf_sock->sk;
5547 		struct saved_syn *saved_syn;
5548 
5549 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5550 			/* synack retransmit. bpf_sock->syn_skb will
5551 			 * not be available.  It has to resort to
5552 			 * saved_syn (if it is saved).
5553 			 */
5554 			saved_syn = inet_reqsk(sk)->saved_syn;
5555 		else
5556 			saved_syn = tcp_sk(sk)->saved_syn;
5557 
5558 		if (!saved_syn)
5559 			return -ENOENT;
5560 
5561 		if (optname == TCP_BPF_SYN) {
5562 			hdr_start = saved_syn->data +
5563 				saved_syn->mac_hdrlen +
5564 				saved_syn->network_hdrlen;
5565 			ret = saved_syn->tcp_hdrlen;
5566 		} else if (optname == TCP_BPF_SYN_IP) {
5567 			hdr_start = saved_syn->data +
5568 				saved_syn->mac_hdrlen;
5569 			ret = saved_syn->network_hdrlen +
5570 				saved_syn->tcp_hdrlen;
5571 		} else {
5572 			/* optname == TCP_BPF_SYN_MAC */
5573 
5574 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5575 			if (!saved_syn->mac_hdrlen)
5576 				return -ENOENT;
5577 
5578 			hdr_start = saved_syn->data;
5579 			ret = saved_syn->mac_hdrlen +
5580 				saved_syn->network_hdrlen +
5581 				saved_syn->tcp_hdrlen;
5582 		}
5583 	}
5584 
5585 	*start = hdr_start;
5586 	return ret;
5587 }
5588 
5589 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5590 	   int, level, int, optname, char *, optval, int, optlen)
5591 {
5592 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5593 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5594 		int ret, copy_len = 0;
5595 		const u8 *start;
5596 
5597 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5598 		if (ret > 0) {
5599 			copy_len = ret;
5600 			if (optlen < copy_len) {
5601 				copy_len = optlen;
5602 				ret = -ENOSPC;
5603 			}
5604 
5605 			memcpy(optval, start, copy_len);
5606 		}
5607 
5608 		/* Zero out unused buffer at the end */
5609 		memset(optval + copy_len, 0, optlen - copy_len);
5610 
5611 		return ret;
5612 	}
5613 
5614 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5615 }
5616 
5617 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5618 	.func		= bpf_sock_ops_getsockopt,
5619 	.gpl_only	= false,
5620 	.ret_type	= RET_INTEGER,
5621 	.arg1_type	= ARG_PTR_TO_CTX,
5622 	.arg2_type	= ARG_ANYTHING,
5623 	.arg3_type	= ARG_ANYTHING,
5624 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5625 	.arg5_type	= ARG_CONST_SIZE,
5626 };
5627 
5628 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5629 	   int, argval)
5630 {
5631 	struct sock *sk = bpf_sock->sk;
5632 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5633 
5634 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5635 		return -EINVAL;
5636 
5637 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5638 
5639 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5640 }
5641 
5642 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5643 	.func		= bpf_sock_ops_cb_flags_set,
5644 	.gpl_only	= false,
5645 	.ret_type	= RET_INTEGER,
5646 	.arg1_type	= ARG_PTR_TO_CTX,
5647 	.arg2_type	= ARG_ANYTHING,
5648 };
5649 
5650 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5651 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5652 
5653 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5654 	   int, addr_len)
5655 {
5656 #ifdef CONFIG_INET
5657 	struct sock *sk = ctx->sk;
5658 	u32 flags = BIND_FROM_BPF;
5659 	int err;
5660 
5661 	err = -EINVAL;
5662 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5663 		return err;
5664 	if (addr->sa_family == AF_INET) {
5665 		if (addr_len < sizeof(struct sockaddr_in))
5666 			return err;
5667 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5668 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5669 		return __inet_bind(sk, addr, addr_len, flags);
5670 #if IS_ENABLED(CONFIG_IPV6)
5671 	} else if (addr->sa_family == AF_INET6) {
5672 		if (addr_len < SIN6_LEN_RFC2133)
5673 			return err;
5674 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5675 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5676 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5677 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5678 		 */
5679 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5680 #endif /* CONFIG_IPV6 */
5681 	}
5682 #endif /* CONFIG_INET */
5683 
5684 	return -EAFNOSUPPORT;
5685 }
5686 
5687 static const struct bpf_func_proto bpf_bind_proto = {
5688 	.func		= bpf_bind,
5689 	.gpl_only	= false,
5690 	.ret_type	= RET_INTEGER,
5691 	.arg1_type	= ARG_PTR_TO_CTX,
5692 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5693 	.arg3_type	= ARG_CONST_SIZE,
5694 };
5695 
5696 #ifdef CONFIG_XFRM
5697 
5698 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5699     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5700 
5701 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5702 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5703 
5704 #endif
5705 
5706 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5707 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5708 {
5709 	const struct sec_path *sp = skb_sec_path(skb);
5710 	const struct xfrm_state *x;
5711 
5712 	if (!sp || unlikely(index >= sp->len || flags))
5713 		goto err_clear;
5714 
5715 	x = sp->xvec[index];
5716 
5717 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5718 		goto err_clear;
5719 
5720 	to->reqid = x->props.reqid;
5721 	to->spi = x->id.spi;
5722 	to->family = x->props.family;
5723 	to->ext = 0;
5724 
5725 	if (to->family == AF_INET6) {
5726 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5727 		       sizeof(to->remote_ipv6));
5728 	} else {
5729 		to->remote_ipv4 = x->props.saddr.a4;
5730 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5731 	}
5732 
5733 	return 0;
5734 err_clear:
5735 	memset(to, 0, size);
5736 	return -EINVAL;
5737 }
5738 
5739 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5740 	.func		= bpf_skb_get_xfrm_state,
5741 	.gpl_only	= false,
5742 	.ret_type	= RET_INTEGER,
5743 	.arg1_type	= ARG_PTR_TO_CTX,
5744 	.arg2_type	= ARG_ANYTHING,
5745 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5746 	.arg4_type	= ARG_CONST_SIZE,
5747 	.arg5_type	= ARG_ANYTHING,
5748 };
5749 #endif
5750 
5751 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5752 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5753 {
5754 	params->h_vlan_TCI = 0;
5755 	params->h_vlan_proto = 0;
5756 	if (mtu)
5757 		params->mtu_result = mtu; /* union with tot_len */
5758 
5759 	return 0;
5760 }
5761 #endif
5762 
5763 #if IS_ENABLED(CONFIG_INET)
5764 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5765 			       u32 flags, bool check_mtu)
5766 {
5767 	struct fib_nh_common *nhc;
5768 	struct in_device *in_dev;
5769 	struct neighbour *neigh;
5770 	struct net_device *dev;
5771 	struct fib_result res;
5772 	struct flowi4 fl4;
5773 	u32 mtu = 0;
5774 	int err;
5775 
5776 	dev = dev_get_by_index_rcu(net, params->ifindex);
5777 	if (unlikely(!dev))
5778 		return -ENODEV;
5779 
5780 	/* verify forwarding is enabled on this interface */
5781 	in_dev = __in_dev_get_rcu(dev);
5782 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5783 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5784 
5785 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5786 		fl4.flowi4_iif = 1;
5787 		fl4.flowi4_oif = params->ifindex;
5788 	} else {
5789 		fl4.flowi4_iif = params->ifindex;
5790 		fl4.flowi4_oif = 0;
5791 	}
5792 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5793 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5794 	fl4.flowi4_flags = 0;
5795 
5796 	fl4.flowi4_proto = params->l4_protocol;
5797 	fl4.daddr = params->ipv4_dst;
5798 	fl4.saddr = params->ipv4_src;
5799 	fl4.fl4_sport = params->sport;
5800 	fl4.fl4_dport = params->dport;
5801 	fl4.flowi4_multipath_hash = 0;
5802 
5803 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5804 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5805 		struct fib_table *tb;
5806 
5807 		if (flags & BPF_FIB_LOOKUP_TBID) {
5808 			tbid = params->tbid;
5809 			/* zero out for vlan output */
5810 			params->tbid = 0;
5811 		}
5812 
5813 		tb = fib_get_table(net, tbid);
5814 		if (unlikely(!tb))
5815 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5816 
5817 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5818 	} else {
5819 		fl4.flowi4_mark = 0;
5820 		fl4.flowi4_secid = 0;
5821 		fl4.flowi4_tun_key.tun_id = 0;
5822 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5823 
5824 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5825 	}
5826 
5827 	if (err) {
5828 		/* map fib lookup errors to RTN_ type */
5829 		if (err == -EINVAL)
5830 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5831 		if (err == -EHOSTUNREACH)
5832 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5833 		if (err == -EACCES)
5834 			return BPF_FIB_LKUP_RET_PROHIBIT;
5835 
5836 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5837 	}
5838 
5839 	if (res.type != RTN_UNICAST)
5840 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5841 
5842 	if (fib_info_num_path(res.fi) > 1)
5843 		fib_select_path(net, &res, &fl4, NULL);
5844 
5845 	if (check_mtu) {
5846 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5847 		if (params->tot_len > mtu) {
5848 			params->mtu_result = mtu; /* union with tot_len */
5849 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5850 		}
5851 	}
5852 
5853 	nhc = res.nhc;
5854 
5855 	/* do not handle lwt encaps right now */
5856 	if (nhc->nhc_lwtstate)
5857 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5858 
5859 	dev = nhc->nhc_dev;
5860 
5861 	params->rt_metric = res.fi->fib_priority;
5862 	params->ifindex = dev->ifindex;
5863 
5864 	/* xdp and cls_bpf programs are run in RCU-bh so
5865 	 * rcu_read_lock_bh is not needed here
5866 	 */
5867 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5868 		if (nhc->nhc_gw_family)
5869 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5870 	} else {
5871 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5872 
5873 		params->family = AF_INET6;
5874 		*dst = nhc->nhc_gw.ipv6;
5875 	}
5876 
5877 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5878 		goto set_fwd_params;
5879 
5880 	if (likely(nhc->nhc_gw_family != AF_INET6))
5881 		neigh = __ipv4_neigh_lookup_noref(dev,
5882 						  (__force u32)params->ipv4_dst);
5883 	else
5884 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5885 
5886 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5887 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5888 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5889 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5890 
5891 set_fwd_params:
5892 	return bpf_fib_set_fwd_params(params, mtu);
5893 }
5894 #endif
5895 
5896 #if IS_ENABLED(CONFIG_IPV6)
5897 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5898 			       u32 flags, bool check_mtu)
5899 {
5900 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5901 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5902 	struct fib6_result res = {};
5903 	struct neighbour *neigh;
5904 	struct net_device *dev;
5905 	struct inet6_dev *idev;
5906 	struct flowi6 fl6;
5907 	int strict = 0;
5908 	int oif, err;
5909 	u32 mtu = 0;
5910 
5911 	/* link local addresses are never forwarded */
5912 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5913 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5914 
5915 	dev = dev_get_by_index_rcu(net, params->ifindex);
5916 	if (unlikely(!dev))
5917 		return -ENODEV;
5918 
5919 	idev = __in6_dev_get_safely(dev);
5920 	if (unlikely(!idev || !idev->cnf.forwarding))
5921 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5922 
5923 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5924 		fl6.flowi6_iif = 1;
5925 		oif = fl6.flowi6_oif = params->ifindex;
5926 	} else {
5927 		oif = fl6.flowi6_iif = params->ifindex;
5928 		fl6.flowi6_oif = 0;
5929 		strict = RT6_LOOKUP_F_HAS_SADDR;
5930 	}
5931 	fl6.flowlabel = params->flowinfo;
5932 	fl6.flowi6_scope = 0;
5933 	fl6.flowi6_flags = 0;
5934 	fl6.mp_hash = 0;
5935 
5936 	fl6.flowi6_proto = params->l4_protocol;
5937 	fl6.daddr = *dst;
5938 	fl6.saddr = *src;
5939 	fl6.fl6_sport = params->sport;
5940 	fl6.fl6_dport = params->dport;
5941 
5942 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5943 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5944 		struct fib6_table *tb;
5945 
5946 		if (flags & BPF_FIB_LOOKUP_TBID) {
5947 			tbid = params->tbid;
5948 			/* zero out for vlan output */
5949 			params->tbid = 0;
5950 		}
5951 
5952 		tb = ipv6_stub->fib6_get_table(net, tbid);
5953 		if (unlikely(!tb))
5954 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5955 
5956 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5957 						   strict);
5958 	} else {
5959 		fl6.flowi6_mark = 0;
5960 		fl6.flowi6_secid = 0;
5961 		fl6.flowi6_tun_key.tun_id = 0;
5962 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5963 
5964 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5965 	}
5966 
5967 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5968 		     res.f6i == net->ipv6.fib6_null_entry))
5969 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5970 
5971 	switch (res.fib6_type) {
5972 	/* only unicast is forwarded */
5973 	case RTN_UNICAST:
5974 		break;
5975 	case RTN_BLACKHOLE:
5976 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5977 	case RTN_UNREACHABLE:
5978 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5979 	case RTN_PROHIBIT:
5980 		return BPF_FIB_LKUP_RET_PROHIBIT;
5981 	default:
5982 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5983 	}
5984 
5985 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5986 				    fl6.flowi6_oif != 0, NULL, strict);
5987 
5988 	if (check_mtu) {
5989 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5990 		if (params->tot_len > mtu) {
5991 			params->mtu_result = mtu; /* union with tot_len */
5992 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5993 		}
5994 	}
5995 
5996 	if (res.nh->fib_nh_lws)
5997 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5998 
5999 	if (res.nh->fib_nh_gw_family)
6000 		*dst = res.nh->fib_nh_gw6;
6001 
6002 	dev = res.nh->fib_nh_dev;
6003 	params->rt_metric = res.f6i->fib6_metric;
6004 	params->ifindex = dev->ifindex;
6005 
6006 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6007 		goto set_fwd_params;
6008 
6009 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6010 	 * not needed here.
6011 	 */
6012 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6013 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6014 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6015 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6016 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6017 
6018 set_fwd_params:
6019 	return bpf_fib_set_fwd_params(params, mtu);
6020 }
6021 #endif
6022 
6023 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6024 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID)
6025 
6026 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6027 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6028 {
6029 	if (plen < sizeof(*params))
6030 		return -EINVAL;
6031 
6032 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6033 		return -EINVAL;
6034 
6035 	switch (params->family) {
6036 #if IS_ENABLED(CONFIG_INET)
6037 	case AF_INET:
6038 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6039 					   flags, true);
6040 #endif
6041 #if IS_ENABLED(CONFIG_IPV6)
6042 	case AF_INET6:
6043 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6044 					   flags, true);
6045 #endif
6046 	}
6047 	return -EAFNOSUPPORT;
6048 }
6049 
6050 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6051 	.func		= bpf_xdp_fib_lookup,
6052 	.gpl_only	= true,
6053 	.ret_type	= RET_INTEGER,
6054 	.arg1_type      = ARG_PTR_TO_CTX,
6055 	.arg2_type      = ARG_PTR_TO_MEM,
6056 	.arg3_type      = ARG_CONST_SIZE,
6057 	.arg4_type	= ARG_ANYTHING,
6058 };
6059 
6060 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6061 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6062 {
6063 	struct net *net = dev_net(skb->dev);
6064 	int rc = -EAFNOSUPPORT;
6065 	bool check_mtu = false;
6066 
6067 	if (plen < sizeof(*params))
6068 		return -EINVAL;
6069 
6070 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6071 		return -EINVAL;
6072 
6073 	if (params->tot_len)
6074 		check_mtu = true;
6075 
6076 	switch (params->family) {
6077 #if IS_ENABLED(CONFIG_INET)
6078 	case AF_INET:
6079 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6080 		break;
6081 #endif
6082 #if IS_ENABLED(CONFIG_IPV6)
6083 	case AF_INET6:
6084 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6085 		break;
6086 #endif
6087 	}
6088 
6089 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6090 		struct net_device *dev;
6091 
6092 		/* When tot_len isn't provided by user, check skb
6093 		 * against MTU of FIB lookup resulting net_device
6094 		 */
6095 		dev = dev_get_by_index_rcu(net, params->ifindex);
6096 		if (!is_skb_forwardable(dev, skb))
6097 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6098 
6099 		params->mtu_result = dev->mtu; /* union with tot_len */
6100 	}
6101 
6102 	return rc;
6103 }
6104 
6105 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6106 	.func		= bpf_skb_fib_lookup,
6107 	.gpl_only	= true,
6108 	.ret_type	= RET_INTEGER,
6109 	.arg1_type      = ARG_PTR_TO_CTX,
6110 	.arg2_type      = ARG_PTR_TO_MEM,
6111 	.arg3_type      = ARG_CONST_SIZE,
6112 	.arg4_type	= ARG_ANYTHING,
6113 };
6114 
6115 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6116 					    u32 ifindex)
6117 {
6118 	struct net *netns = dev_net(dev_curr);
6119 
6120 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6121 	if (ifindex == 0)
6122 		return dev_curr;
6123 
6124 	return dev_get_by_index_rcu(netns, ifindex);
6125 }
6126 
6127 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6128 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6129 {
6130 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6131 	struct net_device *dev = skb->dev;
6132 	int skb_len, dev_len;
6133 	int mtu;
6134 
6135 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6136 		return -EINVAL;
6137 
6138 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6139 		return -EINVAL;
6140 
6141 	dev = __dev_via_ifindex(dev, ifindex);
6142 	if (unlikely(!dev))
6143 		return -ENODEV;
6144 
6145 	mtu = READ_ONCE(dev->mtu);
6146 
6147 	dev_len = mtu + dev->hard_header_len;
6148 
6149 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6150 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6151 
6152 	skb_len += len_diff; /* minus result pass check */
6153 	if (skb_len <= dev_len) {
6154 		ret = BPF_MTU_CHK_RET_SUCCESS;
6155 		goto out;
6156 	}
6157 	/* At this point, skb->len exceed MTU, but as it include length of all
6158 	 * segments, it can still be below MTU.  The SKB can possibly get
6159 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6160 	 * must choose if segs are to be MTU checked.
6161 	 */
6162 	if (skb_is_gso(skb)) {
6163 		ret = BPF_MTU_CHK_RET_SUCCESS;
6164 
6165 		if (flags & BPF_MTU_CHK_SEGS &&
6166 		    !skb_gso_validate_network_len(skb, mtu))
6167 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6168 	}
6169 out:
6170 	/* BPF verifier guarantees valid pointer */
6171 	*mtu_len = mtu;
6172 
6173 	return ret;
6174 }
6175 
6176 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6177 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6178 {
6179 	struct net_device *dev = xdp->rxq->dev;
6180 	int xdp_len = xdp->data_end - xdp->data;
6181 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6182 	int mtu, dev_len;
6183 
6184 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6185 	if (unlikely(flags))
6186 		return -EINVAL;
6187 
6188 	dev = __dev_via_ifindex(dev, ifindex);
6189 	if (unlikely(!dev))
6190 		return -ENODEV;
6191 
6192 	mtu = READ_ONCE(dev->mtu);
6193 
6194 	/* Add L2-header as dev MTU is L3 size */
6195 	dev_len = mtu + dev->hard_header_len;
6196 
6197 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6198 	if (*mtu_len)
6199 		xdp_len = *mtu_len + dev->hard_header_len;
6200 
6201 	xdp_len += len_diff; /* minus result pass check */
6202 	if (xdp_len > dev_len)
6203 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6204 
6205 	/* BPF verifier guarantees valid pointer */
6206 	*mtu_len = mtu;
6207 
6208 	return ret;
6209 }
6210 
6211 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6212 	.func		= bpf_skb_check_mtu,
6213 	.gpl_only	= true,
6214 	.ret_type	= RET_INTEGER,
6215 	.arg1_type      = ARG_PTR_TO_CTX,
6216 	.arg2_type      = ARG_ANYTHING,
6217 	.arg3_type      = ARG_PTR_TO_INT,
6218 	.arg4_type      = ARG_ANYTHING,
6219 	.arg5_type      = ARG_ANYTHING,
6220 };
6221 
6222 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6223 	.func		= bpf_xdp_check_mtu,
6224 	.gpl_only	= true,
6225 	.ret_type	= RET_INTEGER,
6226 	.arg1_type      = ARG_PTR_TO_CTX,
6227 	.arg2_type      = ARG_ANYTHING,
6228 	.arg3_type      = ARG_PTR_TO_INT,
6229 	.arg4_type      = ARG_ANYTHING,
6230 	.arg5_type      = ARG_ANYTHING,
6231 };
6232 
6233 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6234 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6235 {
6236 	int err;
6237 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6238 
6239 	if (!seg6_validate_srh(srh, len, false))
6240 		return -EINVAL;
6241 
6242 	switch (type) {
6243 	case BPF_LWT_ENCAP_SEG6_INLINE:
6244 		if (skb->protocol != htons(ETH_P_IPV6))
6245 			return -EBADMSG;
6246 
6247 		err = seg6_do_srh_inline(skb, srh);
6248 		break;
6249 	case BPF_LWT_ENCAP_SEG6:
6250 		skb_reset_inner_headers(skb);
6251 		skb->encapsulation = 1;
6252 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6253 		break;
6254 	default:
6255 		return -EINVAL;
6256 	}
6257 
6258 	bpf_compute_data_pointers(skb);
6259 	if (err)
6260 		return err;
6261 
6262 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6263 
6264 	return seg6_lookup_nexthop(skb, NULL, 0);
6265 }
6266 #endif /* CONFIG_IPV6_SEG6_BPF */
6267 
6268 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6269 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6270 			     bool ingress)
6271 {
6272 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6273 }
6274 #endif
6275 
6276 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6277 	   u32, len)
6278 {
6279 	switch (type) {
6280 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6281 	case BPF_LWT_ENCAP_SEG6:
6282 	case BPF_LWT_ENCAP_SEG6_INLINE:
6283 		return bpf_push_seg6_encap(skb, type, hdr, len);
6284 #endif
6285 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6286 	case BPF_LWT_ENCAP_IP:
6287 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6288 #endif
6289 	default:
6290 		return -EINVAL;
6291 	}
6292 }
6293 
6294 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6295 	   void *, hdr, u32, len)
6296 {
6297 	switch (type) {
6298 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6299 	case BPF_LWT_ENCAP_IP:
6300 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6301 #endif
6302 	default:
6303 		return -EINVAL;
6304 	}
6305 }
6306 
6307 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6308 	.func		= bpf_lwt_in_push_encap,
6309 	.gpl_only	= false,
6310 	.ret_type	= RET_INTEGER,
6311 	.arg1_type	= ARG_PTR_TO_CTX,
6312 	.arg2_type	= ARG_ANYTHING,
6313 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6314 	.arg4_type	= ARG_CONST_SIZE
6315 };
6316 
6317 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6318 	.func		= bpf_lwt_xmit_push_encap,
6319 	.gpl_only	= false,
6320 	.ret_type	= RET_INTEGER,
6321 	.arg1_type	= ARG_PTR_TO_CTX,
6322 	.arg2_type	= ARG_ANYTHING,
6323 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6324 	.arg4_type	= ARG_CONST_SIZE
6325 };
6326 
6327 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6328 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6329 	   const void *, from, u32, len)
6330 {
6331 	struct seg6_bpf_srh_state *srh_state =
6332 		this_cpu_ptr(&seg6_bpf_srh_states);
6333 	struct ipv6_sr_hdr *srh = srh_state->srh;
6334 	void *srh_tlvs, *srh_end, *ptr;
6335 	int srhoff = 0;
6336 
6337 	if (srh == NULL)
6338 		return -EINVAL;
6339 
6340 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6341 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6342 
6343 	ptr = skb->data + offset;
6344 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6345 		srh_state->valid = false;
6346 	else if (ptr < (void *)&srh->flags ||
6347 		 ptr + len > (void *)&srh->segments)
6348 		return -EFAULT;
6349 
6350 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6351 		return -EFAULT;
6352 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6353 		return -EINVAL;
6354 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6355 
6356 	memcpy(skb->data + offset, from, len);
6357 	return 0;
6358 }
6359 
6360 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6361 	.func		= bpf_lwt_seg6_store_bytes,
6362 	.gpl_only	= false,
6363 	.ret_type	= RET_INTEGER,
6364 	.arg1_type	= ARG_PTR_TO_CTX,
6365 	.arg2_type	= ARG_ANYTHING,
6366 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6367 	.arg4_type	= ARG_CONST_SIZE
6368 };
6369 
6370 static void bpf_update_srh_state(struct sk_buff *skb)
6371 {
6372 	struct seg6_bpf_srh_state *srh_state =
6373 		this_cpu_ptr(&seg6_bpf_srh_states);
6374 	int srhoff = 0;
6375 
6376 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6377 		srh_state->srh = NULL;
6378 	} else {
6379 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6380 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6381 		srh_state->valid = true;
6382 	}
6383 }
6384 
6385 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6386 	   u32, action, void *, param, u32, param_len)
6387 {
6388 	struct seg6_bpf_srh_state *srh_state =
6389 		this_cpu_ptr(&seg6_bpf_srh_states);
6390 	int hdroff = 0;
6391 	int err;
6392 
6393 	switch (action) {
6394 	case SEG6_LOCAL_ACTION_END_X:
6395 		if (!seg6_bpf_has_valid_srh(skb))
6396 			return -EBADMSG;
6397 		if (param_len != sizeof(struct in6_addr))
6398 			return -EINVAL;
6399 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6400 	case SEG6_LOCAL_ACTION_END_T:
6401 		if (!seg6_bpf_has_valid_srh(skb))
6402 			return -EBADMSG;
6403 		if (param_len != sizeof(int))
6404 			return -EINVAL;
6405 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6406 	case SEG6_LOCAL_ACTION_END_DT6:
6407 		if (!seg6_bpf_has_valid_srh(skb))
6408 			return -EBADMSG;
6409 		if (param_len != sizeof(int))
6410 			return -EINVAL;
6411 
6412 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6413 			return -EBADMSG;
6414 		if (!pskb_pull(skb, hdroff))
6415 			return -EBADMSG;
6416 
6417 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6418 		skb_reset_network_header(skb);
6419 		skb_reset_transport_header(skb);
6420 		skb->encapsulation = 0;
6421 
6422 		bpf_compute_data_pointers(skb);
6423 		bpf_update_srh_state(skb);
6424 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6425 	case SEG6_LOCAL_ACTION_END_B6:
6426 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6427 			return -EBADMSG;
6428 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6429 					  param, param_len);
6430 		if (!err)
6431 			bpf_update_srh_state(skb);
6432 
6433 		return err;
6434 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6435 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6436 			return -EBADMSG;
6437 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6438 					  param, param_len);
6439 		if (!err)
6440 			bpf_update_srh_state(skb);
6441 
6442 		return err;
6443 	default:
6444 		return -EINVAL;
6445 	}
6446 }
6447 
6448 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6449 	.func		= bpf_lwt_seg6_action,
6450 	.gpl_only	= false,
6451 	.ret_type	= RET_INTEGER,
6452 	.arg1_type	= ARG_PTR_TO_CTX,
6453 	.arg2_type	= ARG_ANYTHING,
6454 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6455 	.arg4_type	= ARG_CONST_SIZE
6456 };
6457 
6458 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6459 	   s32, len)
6460 {
6461 	struct seg6_bpf_srh_state *srh_state =
6462 		this_cpu_ptr(&seg6_bpf_srh_states);
6463 	struct ipv6_sr_hdr *srh = srh_state->srh;
6464 	void *srh_end, *srh_tlvs, *ptr;
6465 	struct ipv6hdr *hdr;
6466 	int srhoff = 0;
6467 	int ret;
6468 
6469 	if (unlikely(srh == NULL))
6470 		return -EINVAL;
6471 
6472 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6473 			((srh->first_segment + 1) << 4));
6474 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6475 			srh_state->hdrlen);
6476 	ptr = skb->data + offset;
6477 
6478 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6479 		return -EFAULT;
6480 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6481 		return -EFAULT;
6482 
6483 	if (len > 0) {
6484 		ret = skb_cow_head(skb, len);
6485 		if (unlikely(ret < 0))
6486 			return ret;
6487 
6488 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6489 	} else {
6490 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6491 	}
6492 
6493 	bpf_compute_data_pointers(skb);
6494 	if (unlikely(ret < 0))
6495 		return ret;
6496 
6497 	hdr = (struct ipv6hdr *)skb->data;
6498 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6499 
6500 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6501 		return -EINVAL;
6502 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6503 	srh_state->hdrlen += len;
6504 	srh_state->valid = false;
6505 	return 0;
6506 }
6507 
6508 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6509 	.func		= bpf_lwt_seg6_adjust_srh,
6510 	.gpl_only	= false,
6511 	.ret_type	= RET_INTEGER,
6512 	.arg1_type	= ARG_PTR_TO_CTX,
6513 	.arg2_type	= ARG_ANYTHING,
6514 	.arg3_type	= ARG_ANYTHING,
6515 };
6516 #endif /* CONFIG_IPV6_SEG6_BPF */
6517 
6518 #ifdef CONFIG_INET
6519 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6520 			      int dif, int sdif, u8 family, u8 proto)
6521 {
6522 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6523 	bool refcounted = false;
6524 	struct sock *sk = NULL;
6525 
6526 	if (family == AF_INET) {
6527 		__be32 src4 = tuple->ipv4.saddr;
6528 		__be32 dst4 = tuple->ipv4.daddr;
6529 
6530 		if (proto == IPPROTO_TCP)
6531 			sk = __inet_lookup(net, hinfo, NULL, 0,
6532 					   src4, tuple->ipv4.sport,
6533 					   dst4, tuple->ipv4.dport,
6534 					   dif, sdif, &refcounted);
6535 		else
6536 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6537 					       dst4, tuple->ipv4.dport,
6538 					       dif, sdif, net->ipv4.udp_table, NULL);
6539 #if IS_ENABLED(CONFIG_IPV6)
6540 	} else {
6541 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6542 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6543 
6544 		if (proto == IPPROTO_TCP)
6545 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6546 					    src6, tuple->ipv6.sport,
6547 					    dst6, ntohs(tuple->ipv6.dport),
6548 					    dif, sdif, &refcounted);
6549 		else if (likely(ipv6_bpf_stub))
6550 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6551 							    src6, tuple->ipv6.sport,
6552 							    dst6, tuple->ipv6.dport,
6553 							    dif, sdif,
6554 							    net->ipv4.udp_table, NULL);
6555 #endif
6556 	}
6557 
6558 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6559 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6560 		sk = NULL;
6561 	}
6562 	return sk;
6563 }
6564 
6565 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6566  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6567  */
6568 static struct sock *
6569 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6570 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6571 		 u64 flags, int sdif)
6572 {
6573 	struct sock *sk = NULL;
6574 	struct net *net;
6575 	u8 family;
6576 
6577 	if (len == sizeof(tuple->ipv4))
6578 		family = AF_INET;
6579 	else if (len == sizeof(tuple->ipv6))
6580 		family = AF_INET6;
6581 	else
6582 		return NULL;
6583 
6584 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6585 		goto out;
6586 
6587 	if (sdif < 0) {
6588 		if (family == AF_INET)
6589 			sdif = inet_sdif(skb);
6590 		else
6591 			sdif = inet6_sdif(skb);
6592 	}
6593 
6594 	if ((s32)netns_id < 0) {
6595 		net = caller_net;
6596 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6597 	} else {
6598 		net = get_net_ns_by_id(caller_net, netns_id);
6599 		if (unlikely(!net))
6600 			goto out;
6601 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6602 		put_net(net);
6603 	}
6604 
6605 out:
6606 	return sk;
6607 }
6608 
6609 static struct sock *
6610 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6611 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6612 		u64 flags, int sdif)
6613 {
6614 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6615 					   ifindex, proto, netns_id, flags,
6616 					   sdif);
6617 
6618 	if (sk) {
6619 		struct sock *sk2 = sk_to_full_sk(sk);
6620 
6621 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6622 		 * sock refcnt is decremented to prevent a request_sock leak.
6623 		 */
6624 		if (!sk_fullsock(sk2))
6625 			sk2 = NULL;
6626 		if (sk2 != sk) {
6627 			sock_gen_put(sk);
6628 			/* Ensure there is no need to bump sk2 refcnt */
6629 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6630 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6631 				return NULL;
6632 			}
6633 			sk = sk2;
6634 		}
6635 	}
6636 
6637 	return sk;
6638 }
6639 
6640 static struct sock *
6641 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6642 	       u8 proto, u64 netns_id, u64 flags)
6643 {
6644 	struct net *caller_net;
6645 	int ifindex;
6646 
6647 	if (skb->dev) {
6648 		caller_net = dev_net(skb->dev);
6649 		ifindex = skb->dev->ifindex;
6650 	} else {
6651 		caller_net = sock_net(skb->sk);
6652 		ifindex = 0;
6653 	}
6654 
6655 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6656 				netns_id, flags, -1);
6657 }
6658 
6659 static struct sock *
6660 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6661 	      u8 proto, u64 netns_id, u64 flags)
6662 {
6663 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6664 					 flags);
6665 
6666 	if (sk) {
6667 		struct sock *sk2 = sk_to_full_sk(sk);
6668 
6669 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6670 		 * sock refcnt is decremented to prevent a request_sock leak.
6671 		 */
6672 		if (!sk_fullsock(sk2))
6673 			sk2 = NULL;
6674 		if (sk2 != sk) {
6675 			sock_gen_put(sk);
6676 			/* Ensure there is no need to bump sk2 refcnt */
6677 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6678 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6679 				return NULL;
6680 			}
6681 			sk = sk2;
6682 		}
6683 	}
6684 
6685 	return sk;
6686 }
6687 
6688 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6689 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6690 {
6691 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6692 					     netns_id, flags);
6693 }
6694 
6695 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6696 	.func		= bpf_skc_lookup_tcp,
6697 	.gpl_only	= false,
6698 	.pkt_access	= true,
6699 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6700 	.arg1_type	= ARG_PTR_TO_CTX,
6701 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6702 	.arg3_type	= ARG_CONST_SIZE,
6703 	.arg4_type	= ARG_ANYTHING,
6704 	.arg5_type	= ARG_ANYTHING,
6705 };
6706 
6707 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6708 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6709 {
6710 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6711 					    netns_id, flags);
6712 }
6713 
6714 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6715 	.func		= bpf_sk_lookup_tcp,
6716 	.gpl_only	= false,
6717 	.pkt_access	= true,
6718 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6719 	.arg1_type	= ARG_PTR_TO_CTX,
6720 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6721 	.arg3_type	= ARG_CONST_SIZE,
6722 	.arg4_type	= ARG_ANYTHING,
6723 	.arg5_type	= ARG_ANYTHING,
6724 };
6725 
6726 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6727 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6728 {
6729 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6730 					    netns_id, flags);
6731 }
6732 
6733 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6734 	.func		= bpf_sk_lookup_udp,
6735 	.gpl_only	= false,
6736 	.pkt_access	= true,
6737 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6738 	.arg1_type	= ARG_PTR_TO_CTX,
6739 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6740 	.arg3_type	= ARG_CONST_SIZE,
6741 	.arg4_type	= ARG_ANYTHING,
6742 	.arg5_type	= ARG_ANYTHING,
6743 };
6744 
6745 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6746 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6747 {
6748 	struct net_device *dev = skb->dev;
6749 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6750 	struct net *caller_net = dev_net(dev);
6751 
6752 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6753 					       ifindex, IPPROTO_TCP, netns_id,
6754 					       flags, sdif);
6755 }
6756 
6757 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6758 	.func		= bpf_tc_skc_lookup_tcp,
6759 	.gpl_only	= false,
6760 	.pkt_access	= true,
6761 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6762 	.arg1_type	= ARG_PTR_TO_CTX,
6763 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6764 	.arg3_type	= ARG_CONST_SIZE,
6765 	.arg4_type	= ARG_ANYTHING,
6766 	.arg5_type	= ARG_ANYTHING,
6767 };
6768 
6769 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6770 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6771 {
6772 	struct net_device *dev = skb->dev;
6773 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6774 	struct net *caller_net = dev_net(dev);
6775 
6776 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6777 					      ifindex, IPPROTO_TCP, netns_id,
6778 					      flags, sdif);
6779 }
6780 
6781 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6782 	.func		= bpf_tc_sk_lookup_tcp,
6783 	.gpl_only	= false,
6784 	.pkt_access	= true,
6785 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6786 	.arg1_type	= ARG_PTR_TO_CTX,
6787 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6788 	.arg3_type	= ARG_CONST_SIZE,
6789 	.arg4_type	= ARG_ANYTHING,
6790 	.arg5_type	= ARG_ANYTHING,
6791 };
6792 
6793 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6794 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6795 {
6796 	struct net_device *dev = skb->dev;
6797 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6798 	struct net *caller_net = dev_net(dev);
6799 
6800 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6801 					      ifindex, IPPROTO_UDP, netns_id,
6802 					      flags, sdif);
6803 }
6804 
6805 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6806 	.func		= bpf_tc_sk_lookup_udp,
6807 	.gpl_only	= false,
6808 	.pkt_access	= true,
6809 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6810 	.arg1_type	= ARG_PTR_TO_CTX,
6811 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6812 	.arg3_type	= ARG_CONST_SIZE,
6813 	.arg4_type	= ARG_ANYTHING,
6814 	.arg5_type	= ARG_ANYTHING,
6815 };
6816 
6817 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6818 {
6819 	if (sk && sk_is_refcounted(sk))
6820 		sock_gen_put(sk);
6821 	return 0;
6822 }
6823 
6824 static const struct bpf_func_proto bpf_sk_release_proto = {
6825 	.func		= bpf_sk_release,
6826 	.gpl_only	= false,
6827 	.ret_type	= RET_INTEGER,
6828 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6829 };
6830 
6831 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6832 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6833 {
6834 	struct net_device *dev = ctx->rxq->dev;
6835 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6836 	struct net *caller_net = dev_net(dev);
6837 
6838 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6839 					      ifindex, IPPROTO_UDP, netns_id,
6840 					      flags, sdif);
6841 }
6842 
6843 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6844 	.func           = bpf_xdp_sk_lookup_udp,
6845 	.gpl_only       = false,
6846 	.pkt_access     = true,
6847 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6848 	.arg1_type      = ARG_PTR_TO_CTX,
6849 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6850 	.arg3_type      = ARG_CONST_SIZE,
6851 	.arg4_type      = ARG_ANYTHING,
6852 	.arg5_type      = ARG_ANYTHING,
6853 };
6854 
6855 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6856 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6857 {
6858 	struct net_device *dev = ctx->rxq->dev;
6859 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6860 	struct net *caller_net = dev_net(dev);
6861 
6862 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6863 					       ifindex, IPPROTO_TCP, netns_id,
6864 					       flags, sdif);
6865 }
6866 
6867 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6868 	.func           = bpf_xdp_skc_lookup_tcp,
6869 	.gpl_only       = false,
6870 	.pkt_access     = true,
6871 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6872 	.arg1_type      = ARG_PTR_TO_CTX,
6873 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6874 	.arg3_type      = ARG_CONST_SIZE,
6875 	.arg4_type      = ARG_ANYTHING,
6876 	.arg5_type      = ARG_ANYTHING,
6877 };
6878 
6879 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6880 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6881 {
6882 	struct net_device *dev = ctx->rxq->dev;
6883 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6884 	struct net *caller_net = dev_net(dev);
6885 
6886 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6887 					      ifindex, IPPROTO_TCP, netns_id,
6888 					      flags, sdif);
6889 }
6890 
6891 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6892 	.func           = bpf_xdp_sk_lookup_tcp,
6893 	.gpl_only       = false,
6894 	.pkt_access     = true,
6895 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6896 	.arg1_type      = ARG_PTR_TO_CTX,
6897 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6898 	.arg3_type      = ARG_CONST_SIZE,
6899 	.arg4_type      = ARG_ANYTHING,
6900 	.arg5_type      = ARG_ANYTHING,
6901 };
6902 
6903 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6904 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6905 {
6906 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6907 					       sock_net(ctx->sk), 0,
6908 					       IPPROTO_TCP, netns_id, flags,
6909 					       -1);
6910 }
6911 
6912 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6913 	.func		= bpf_sock_addr_skc_lookup_tcp,
6914 	.gpl_only	= false,
6915 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6916 	.arg1_type	= ARG_PTR_TO_CTX,
6917 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6918 	.arg3_type	= ARG_CONST_SIZE,
6919 	.arg4_type	= ARG_ANYTHING,
6920 	.arg5_type	= ARG_ANYTHING,
6921 };
6922 
6923 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6924 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6925 {
6926 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6927 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6928 					      netns_id, flags, -1);
6929 }
6930 
6931 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6932 	.func		= bpf_sock_addr_sk_lookup_tcp,
6933 	.gpl_only	= false,
6934 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6935 	.arg1_type	= ARG_PTR_TO_CTX,
6936 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6937 	.arg3_type	= ARG_CONST_SIZE,
6938 	.arg4_type	= ARG_ANYTHING,
6939 	.arg5_type	= ARG_ANYTHING,
6940 };
6941 
6942 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6943 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6944 {
6945 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6946 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6947 					      netns_id, flags, -1);
6948 }
6949 
6950 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6951 	.func		= bpf_sock_addr_sk_lookup_udp,
6952 	.gpl_only	= false,
6953 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6954 	.arg1_type	= ARG_PTR_TO_CTX,
6955 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6956 	.arg3_type	= ARG_CONST_SIZE,
6957 	.arg4_type	= ARG_ANYTHING,
6958 	.arg5_type	= ARG_ANYTHING,
6959 };
6960 
6961 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6962 				  struct bpf_insn_access_aux *info)
6963 {
6964 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6965 					  icsk_retransmits))
6966 		return false;
6967 
6968 	if (off % size != 0)
6969 		return false;
6970 
6971 	switch (off) {
6972 	case offsetof(struct bpf_tcp_sock, bytes_received):
6973 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6974 		return size == sizeof(__u64);
6975 	default:
6976 		return size == sizeof(__u32);
6977 	}
6978 }
6979 
6980 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6981 				    const struct bpf_insn *si,
6982 				    struct bpf_insn *insn_buf,
6983 				    struct bpf_prog *prog, u32 *target_size)
6984 {
6985 	struct bpf_insn *insn = insn_buf;
6986 
6987 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6988 	do {								\
6989 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6990 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6991 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6992 				      si->dst_reg, si->src_reg,		\
6993 				      offsetof(struct tcp_sock, FIELD)); \
6994 	} while (0)
6995 
6996 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6997 	do {								\
6998 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6999 					  FIELD) >			\
7000 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7001 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
7002 					struct inet_connection_sock,	\
7003 					FIELD),				\
7004 				      si->dst_reg, si->src_reg,		\
7005 				      offsetof(				\
7006 					struct inet_connection_sock,	\
7007 					FIELD));			\
7008 	} while (0)
7009 
7010 	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7011 
7012 	switch (si->off) {
7013 	case offsetof(struct bpf_tcp_sock, rtt_min):
7014 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7015 			     sizeof(struct minmax));
7016 		BUILD_BUG_ON(sizeof(struct minmax) <
7017 			     sizeof(struct minmax_sample));
7018 
7019 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7020 				      offsetof(struct tcp_sock, rtt_min) +
7021 				      offsetof(struct minmax_sample, v));
7022 		break;
7023 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7024 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7025 		break;
7026 	case offsetof(struct bpf_tcp_sock, srtt_us):
7027 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7028 		break;
7029 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7030 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7031 		break;
7032 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7033 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7034 		break;
7035 	case offsetof(struct bpf_tcp_sock, snd_nxt):
7036 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7037 		break;
7038 	case offsetof(struct bpf_tcp_sock, snd_una):
7039 		BPF_TCP_SOCK_GET_COMMON(snd_una);
7040 		break;
7041 	case offsetof(struct bpf_tcp_sock, mss_cache):
7042 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7043 		break;
7044 	case offsetof(struct bpf_tcp_sock, ecn_flags):
7045 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7046 		break;
7047 	case offsetof(struct bpf_tcp_sock, rate_delivered):
7048 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7049 		break;
7050 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7051 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7052 		break;
7053 	case offsetof(struct bpf_tcp_sock, packets_out):
7054 		BPF_TCP_SOCK_GET_COMMON(packets_out);
7055 		break;
7056 	case offsetof(struct bpf_tcp_sock, retrans_out):
7057 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7058 		break;
7059 	case offsetof(struct bpf_tcp_sock, total_retrans):
7060 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7061 		break;
7062 	case offsetof(struct bpf_tcp_sock, segs_in):
7063 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7064 		break;
7065 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7066 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7067 		break;
7068 	case offsetof(struct bpf_tcp_sock, segs_out):
7069 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7070 		break;
7071 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7072 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7073 		break;
7074 	case offsetof(struct bpf_tcp_sock, lost_out):
7075 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7076 		break;
7077 	case offsetof(struct bpf_tcp_sock, sacked_out):
7078 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7079 		break;
7080 	case offsetof(struct bpf_tcp_sock, bytes_received):
7081 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7082 		break;
7083 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7084 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7085 		break;
7086 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7087 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7088 		break;
7089 	case offsetof(struct bpf_tcp_sock, delivered):
7090 		BPF_TCP_SOCK_GET_COMMON(delivered);
7091 		break;
7092 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7093 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7094 		break;
7095 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7096 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7097 		break;
7098 	}
7099 
7100 	return insn - insn_buf;
7101 }
7102 
7103 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7104 {
7105 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7106 		return (unsigned long)sk;
7107 
7108 	return (unsigned long)NULL;
7109 }
7110 
7111 const struct bpf_func_proto bpf_tcp_sock_proto = {
7112 	.func		= bpf_tcp_sock,
7113 	.gpl_only	= false,
7114 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7115 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7116 };
7117 
7118 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7119 {
7120 	sk = sk_to_full_sk(sk);
7121 
7122 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7123 		return (unsigned long)sk;
7124 
7125 	return (unsigned long)NULL;
7126 }
7127 
7128 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7129 	.func		= bpf_get_listener_sock,
7130 	.gpl_only	= false,
7131 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7132 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7133 };
7134 
7135 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7136 {
7137 	unsigned int iphdr_len;
7138 
7139 	switch (skb_protocol(skb, true)) {
7140 	case cpu_to_be16(ETH_P_IP):
7141 		iphdr_len = sizeof(struct iphdr);
7142 		break;
7143 	case cpu_to_be16(ETH_P_IPV6):
7144 		iphdr_len = sizeof(struct ipv6hdr);
7145 		break;
7146 	default:
7147 		return 0;
7148 	}
7149 
7150 	if (skb_headlen(skb) < iphdr_len)
7151 		return 0;
7152 
7153 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7154 		return 0;
7155 
7156 	return INET_ECN_set_ce(skb);
7157 }
7158 
7159 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7160 				  struct bpf_insn_access_aux *info)
7161 {
7162 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7163 		return false;
7164 
7165 	if (off % size != 0)
7166 		return false;
7167 
7168 	switch (off) {
7169 	default:
7170 		return size == sizeof(__u32);
7171 	}
7172 }
7173 
7174 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7175 				    const struct bpf_insn *si,
7176 				    struct bpf_insn *insn_buf,
7177 				    struct bpf_prog *prog, u32 *target_size)
7178 {
7179 	struct bpf_insn *insn = insn_buf;
7180 
7181 #define BPF_XDP_SOCK_GET(FIELD)						\
7182 	do {								\
7183 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7184 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7185 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7186 				      si->dst_reg, si->src_reg,		\
7187 				      offsetof(struct xdp_sock, FIELD)); \
7188 	} while (0)
7189 
7190 	switch (si->off) {
7191 	case offsetof(struct bpf_xdp_sock, queue_id):
7192 		BPF_XDP_SOCK_GET(queue_id);
7193 		break;
7194 	}
7195 
7196 	return insn - insn_buf;
7197 }
7198 
7199 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7200 	.func           = bpf_skb_ecn_set_ce,
7201 	.gpl_only       = false,
7202 	.ret_type       = RET_INTEGER,
7203 	.arg1_type      = ARG_PTR_TO_CTX,
7204 };
7205 
7206 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7207 	   struct tcphdr *, th, u32, th_len)
7208 {
7209 #ifdef CONFIG_SYN_COOKIES
7210 	u32 cookie;
7211 	int ret;
7212 
7213 	if (unlikely(!sk || th_len < sizeof(*th)))
7214 		return -EINVAL;
7215 
7216 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7217 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7218 		return -EINVAL;
7219 
7220 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7221 		return -EINVAL;
7222 
7223 	if (!th->ack || th->rst || th->syn)
7224 		return -ENOENT;
7225 
7226 	if (unlikely(iph_len < sizeof(struct iphdr)))
7227 		return -EINVAL;
7228 
7229 	if (tcp_synq_no_recent_overflow(sk))
7230 		return -ENOENT;
7231 
7232 	cookie = ntohl(th->ack_seq) - 1;
7233 
7234 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7235 	 * same offset so we can cast to the shorter header (struct iphdr).
7236 	 */
7237 	switch (((struct iphdr *)iph)->version) {
7238 	case 4:
7239 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7240 			return -EINVAL;
7241 
7242 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7243 		break;
7244 
7245 #if IS_BUILTIN(CONFIG_IPV6)
7246 	case 6:
7247 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7248 			return -EINVAL;
7249 
7250 		if (sk->sk_family != AF_INET6)
7251 			return -EINVAL;
7252 
7253 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7254 		break;
7255 #endif /* CONFIG_IPV6 */
7256 
7257 	default:
7258 		return -EPROTONOSUPPORT;
7259 	}
7260 
7261 	if (ret > 0)
7262 		return 0;
7263 
7264 	return -ENOENT;
7265 #else
7266 	return -ENOTSUPP;
7267 #endif
7268 }
7269 
7270 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7271 	.func		= bpf_tcp_check_syncookie,
7272 	.gpl_only	= true,
7273 	.pkt_access	= true,
7274 	.ret_type	= RET_INTEGER,
7275 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7276 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7277 	.arg3_type	= ARG_CONST_SIZE,
7278 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7279 	.arg5_type	= ARG_CONST_SIZE,
7280 };
7281 
7282 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7283 	   struct tcphdr *, th, u32, th_len)
7284 {
7285 #ifdef CONFIG_SYN_COOKIES
7286 	u32 cookie;
7287 	u16 mss;
7288 
7289 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7290 		return -EINVAL;
7291 
7292 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7293 		return -EINVAL;
7294 
7295 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7296 		return -ENOENT;
7297 
7298 	if (!th->syn || th->ack || th->fin || th->rst)
7299 		return -EINVAL;
7300 
7301 	if (unlikely(iph_len < sizeof(struct iphdr)))
7302 		return -EINVAL;
7303 
7304 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7305 	 * same offset so we can cast to the shorter header (struct iphdr).
7306 	 */
7307 	switch (((struct iphdr *)iph)->version) {
7308 	case 4:
7309 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7310 			return -EINVAL;
7311 
7312 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7313 		break;
7314 
7315 #if IS_BUILTIN(CONFIG_IPV6)
7316 	case 6:
7317 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7318 			return -EINVAL;
7319 
7320 		if (sk->sk_family != AF_INET6)
7321 			return -EINVAL;
7322 
7323 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7324 		break;
7325 #endif /* CONFIG_IPV6 */
7326 
7327 	default:
7328 		return -EPROTONOSUPPORT;
7329 	}
7330 	if (mss == 0)
7331 		return -ENOENT;
7332 
7333 	return cookie | ((u64)mss << 32);
7334 #else
7335 	return -EOPNOTSUPP;
7336 #endif /* CONFIG_SYN_COOKIES */
7337 }
7338 
7339 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7340 	.func		= bpf_tcp_gen_syncookie,
7341 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7342 	.pkt_access	= true,
7343 	.ret_type	= RET_INTEGER,
7344 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7345 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7346 	.arg3_type	= ARG_CONST_SIZE,
7347 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7348 	.arg5_type	= ARG_CONST_SIZE,
7349 };
7350 
7351 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7352 {
7353 	if (!sk || flags != 0)
7354 		return -EINVAL;
7355 	if (!skb_at_tc_ingress(skb))
7356 		return -EOPNOTSUPP;
7357 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7358 		return -ENETUNREACH;
7359 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7360 		return -ESOCKTNOSUPPORT;
7361 	if (sk_is_refcounted(sk) &&
7362 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7363 		return -ENOENT;
7364 
7365 	skb_orphan(skb);
7366 	skb->sk = sk;
7367 	skb->destructor = sock_pfree;
7368 
7369 	return 0;
7370 }
7371 
7372 static const struct bpf_func_proto bpf_sk_assign_proto = {
7373 	.func		= bpf_sk_assign,
7374 	.gpl_only	= false,
7375 	.ret_type	= RET_INTEGER,
7376 	.arg1_type      = ARG_PTR_TO_CTX,
7377 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7378 	.arg3_type	= ARG_ANYTHING,
7379 };
7380 
7381 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7382 				    u8 search_kind, const u8 *magic,
7383 				    u8 magic_len, bool *eol)
7384 {
7385 	u8 kind, kind_len;
7386 
7387 	*eol = false;
7388 
7389 	while (op < opend) {
7390 		kind = op[0];
7391 
7392 		if (kind == TCPOPT_EOL) {
7393 			*eol = true;
7394 			return ERR_PTR(-ENOMSG);
7395 		} else if (kind == TCPOPT_NOP) {
7396 			op++;
7397 			continue;
7398 		}
7399 
7400 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7401 			/* Something is wrong in the received header.
7402 			 * Follow the TCP stack's tcp_parse_options()
7403 			 * and just bail here.
7404 			 */
7405 			return ERR_PTR(-EFAULT);
7406 
7407 		kind_len = op[1];
7408 		if (search_kind == kind) {
7409 			if (!magic_len)
7410 				return op;
7411 
7412 			if (magic_len > kind_len - 2)
7413 				return ERR_PTR(-ENOMSG);
7414 
7415 			if (!memcmp(&op[2], magic, magic_len))
7416 				return op;
7417 		}
7418 
7419 		op += kind_len;
7420 	}
7421 
7422 	return ERR_PTR(-ENOMSG);
7423 }
7424 
7425 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7426 	   void *, search_res, u32, len, u64, flags)
7427 {
7428 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7429 	const u8 *op, *opend, *magic, *search = search_res;
7430 	u8 search_kind, search_len, copy_len, magic_len;
7431 	int ret;
7432 
7433 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7434 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7435 	 * and this helper disallow loading them also.
7436 	 */
7437 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7438 		return -EINVAL;
7439 
7440 	search_kind = search[0];
7441 	search_len = search[1];
7442 
7443 	if (search_len > len || search_kind == TCPOPT_NOP ||
7444 	    search_kind == TCPOPT_EOL)
7445 		return -EINVAL;
7446 
7447 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7448 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7449 		if (search_len != 4 && search_len != 6)
7450 			return -EINVAL;
7451 		magic = &search[2];
7452 		magic_len = search_len - 2;
7453 	} else {
7454 		if (search_len)
7455 			return -EINVAL;
7456 		magic = NULL;
7457 		magic_len = 0;
7458 	}
7459 
7460 	if (load_syn) {
7461 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7462 		if (ret < 0)
7463 			return ret;
7464 
7465 		opend = op + ret;
7466 		op += sizeof(struct tcphdr);
7467 	} else {
7468 		if (!bpf_sock->skb ||
7469 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7470 			/* This bpf_sock->op cannot call this helper */
7471 			return -EPERM;
7472 
7473 		opend = bpf_sock->skb_data_end;
7474 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7475 	}
7476 
7477 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7478 				&eol);
7479 	if (IS_ERR(op))
7480 		return PTR_ERR(op);
7481 
7482 	copy_len = op[1];
7483 	ret = copy_len;
7484 	if (copy_len > len) {
7485 		ret = -ENOSPC;
7486 		copy_len = len;
7487 	}
7488 
7489 	memcpy(search_res, op, copy_len);
7490 	return ret;
7491 }
7492 
7493 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7494 	.func		= bpf_sock_ops_load_hdr_opt,
7495 	.gpl_only	= false,
7496 	.ret_type	= RET_INTEGER,
7497 	.arg1_type	= ARG_PTR_TO_CTX,
7498 	.arg2_type	= ARG_PTR_TO_MEM,
7499 	.arg3_type	= ARG_CONST_SIZE,
7500 	.arg4_type	= ARG_ANYTHING,
7501 };
7502 
7503 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7504 	   const void *, from, u32, len, u64, flags)
7505 {
7506 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7507 	const u8 *op, *new_op, *magic = NULL;
7508 	struct sk_buff *skb;
7509 	bool eol;
7510 
7511 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7512 		return -EPERM;
7513 
7514 	if (len < 2 || flags)
7515 		return -EINVAL;
7516 
7517 	new_op = from;
7518 	new_kind = new_op[0];
7519 	new_kind_len = new_op[1];
7520 
7521 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7522 	    new_kind == TCPOPT_EOL)
7523 		return -EINVAL;
7524 
7525 	if (new_kind_len > bpf_sock->remaining_opt_len)
7526 		return -ENOSPC;
7527 
7528 	/* 253 is another experimental kind */
7529 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7530 		if (new_kind_len < 4)
7531 			return -EINVAL;
7532 		/* Match for the 2 byte magic also.
7533 		 * RFC 6994: the magic could be 2 or 4 bytes.
7534 		 * Hence, matching by 2 byte only is on the
7535 		 * conservative side but it is the right
7536 		 * thing to do for the 'search-for-duplication'
7537 		 * purpose.
7538 		 */
7539 		magic = &new_op[2];
7540 		magic_len = 2;
7541 	}
7542 
7543 	/* Check for duplication */
7544 	skb = bpf_sock->skb;
7545 	op = skb->data + sizeof(struct tcphdr);
7546 	opend = bpf_sock->skb_data_end;
7547 
7548 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7549 				&eol);
7550 	if (!IS_ERR(op))
7551 		return -EEXIST;
7552 
7553 	if (PTR_ERR(op) != -ENOMSG)
7554 		return PTR_ERR(op);
7555 
7556 	if (eol)
7557 		/* The option has been ended.  Treat it as no more
7558 		 * header option can be written.
7559 		 */
7560 		return -ENOSPC;
7561 
7562 	/* No duplication found.  Store the header option. */
7563 	memcpy(opend, from, new_kind_len);
7564 
7565 	bpf_sock->remaining_opt_len -= new_kind_len;
7566 	bpf_sock->skb_data_end += new_kind_len;
7567 
7568 	return 0;
7569 }
7570 
7571 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7572 	.func		= bpf_sock_ops_store_hdr_opt,
7573 	.gpl_only	= false,
7574 	.ret_type	= RET_INTEGER,
7575 	.arg1_type	= ARG_PTR_TO_CTX,
7576 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7577 	.arg3_type	= ARG_CONST_SIZE,
7578 	.arg4_type	= ARG_ANYTHING,
7579 };
7580 
7581 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7582 	   u32, len, u64, flags)
7583 {
7584 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7585 		return -EPERM;
7586 
7587 	if (flags || len < 2)
7588 		return -EINVAL;
7589 
7590 	if (len > bpf_sock->remaining_opt_len)
7591 		return -ENOSPC;
7592 
7593 	bpf_sock->remaining_opt_len -= len;
7594 
7595 	return 0;
7596 }
7597 
7598 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7599 	.func		= bpf_sock_ops_reserve_hdr_opt,
7600 	.gpl_only	= false,
7601 	.ret_type	= RET_INTEGER,
7602 	.arg1_type	= ARG_PTR_TO_CTX,
7603 	.arg2_type	= ARG_ANYTHING,
7604 	.arg3_type	= ARG_ANYTHING,
7605 };
7606 
7607 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7608 	   u64, tstamp, u32, tstamp_type)
7609 {
7610 	/* skb_clear_delivery_time() is done for inet protocol */
7611 	if (skb->protocol != htons(ETH_P_IP) &&
7612 	    skb->protocol != htons(ETH_P_IPV6))
7613 		return -EOPNOTSUPP;
7614 
7615 	switch (tstamp_type) {
7616 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7617 		if (!tstamp)
7618 			return -EINVAL;
7619 		skb->tstamp = tstamp;
7620 		skb->mono_delivery_time = 1;
7621 		break;
7622 	case BPF_SKB_TSTAMP_UNSPEC:
7623 		if (tstamp)
7624 			return -EINVAL;
7625 		skb->tstamp = 0;
7626 		skb->mono_delivery_time = 0;
7627 		break;
7628 	default:
7629 		return -EINVAL;
7630 	}
7631 
7632 	return 0;
7633 }
7634 
7635 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7636 	.func           = bpf_skb_set_tstamp,
7637 	.gpl_only       = false,
7638 	.ret_type       = RET_INTEGER,
7639 	.arg1_type      = ARG_PTR_TO_CTX,
7640 	.arg2_type      = ARG_ANYTHING,
7641 	.arg3_type      = ARG_ANYTHING,
7642 };
7643 
7644 #ifdef CONFIG_SYN_COOKIES
7645 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7646 	   struct tcphdr *, th, u32, th_len)
7647 {
7648 	u32 cookie;
7649 	u16 mss;
7650 
7651 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7652 		return -EINVAL;
7653 
7654 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7655 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7656 
7657 	return cookie | ((u64)mss << 32);
7658 }
7659 
7660 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7661 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7662 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7663 	.pkt_access	= true,
7664 	.ret_type	= RET_INTEGER,
7665 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7666 	.arg1_size	= sizeof(struct iphdr),
7667 	.arg2_type	= ARG_PTR_TO_MEM,
7668 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7669 };
7670 
7671 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7672 	   struct tcphdr *, th, u32, th_len)
7673 {
7674 #if IS_BUILTIN(CONFIG_IPV6)
7675 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7676 		sizeof(struct ipv6hdr);
7677 	u32 cookie;
7678 	u16 mss;
7679 
7680 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7681 		return -EINVAL;
7682 
7683 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7684 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7685 
7686 	return cookie | ((u64)mss << 32);
7687 #else
7688 	return -EPROTONOSUPPORT;
7689 #endif
7690 }
7691 
7692 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7693 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7694 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7695 	.pkt_access	= true,
7696 	.ret_type	= RET_INTEGER,
7697 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7698 	.arg1_size	= sizeof(struct ipv6hdr),
7699 	.arg2_type	= ARG_PTR_TO_MEM,
7700 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7701 };
7702 
7703 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7704 	   struct tcphdr *, th)
7705 {
7706 	u32 cookie = ntohl(th->ack_seq) - 1;
7707 
7708 	if (__cookie_v4_check(iph, th, cookie) > 0)
7709 		return 0;
7710 
7711 	return -EACCES;
7712 }
7713 
7714 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7715 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7716 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7717 	.pkt_access	= true,
7718 	.ret_type	= RET_INTEGER,
7719 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7720 	.arg1_size	= sizeof(struct iphdr),
7721 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7722 	.arg2_size	= sizeof(struct tcphdr),
7723 };
7724 
7725 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7726 	   struct tcphdr *, th)
7727 {
7728 #if IS_BUILTIN(CONFIG_IPV6)
7729 	u32 cookie = ntohl(th->ack_seq) - 1;
7730 
7731 	if (__cookie_v6_check(iph, th, cookie) > 0)
7732 		return 0;
7733 
7734 	return -EACCES;
7735 #else
7736 	return -EPROTONOSUPPORT;
7737 #endif
7738 }
7739 
7740 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7741 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7742 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7743 	.pkt_access	= true,
7744 	.ret_type	= RET_INTEGER,
7745 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7746 	.arg1_size	= sizeof(struct ipv6hdr),
7747 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7748 	.arg2_size	= sizeof(struct tcphdr),
7749 };
7750 #endif /* CONFIG_SYN_COOKIES */
7751 
7752 #endif /* CONFIG_INET */
7753 
7754 bool bpf_helper_changes_pkt_data(void *func)
7755 {
7756 	if (func == bpf_skb_vlan_push ||
7757 	    func == bpf_skb_vlan_pop ||
7758 	    func == bpf_skb_store_bytes ||
7759 	    func == bpf_skb_change_proto ||
7760 	    func == bpf_skb_change_head ||
7761 	    func == sk_skb_change_head ||
7762 	    func == bpf_skb_change_tail ||
7763 	    func == sk_skb_change_tail ||
7764 	    func == bpf_skb_adjust_room ||
7765 	    func == sk_skb_adjust_room ||
7766 	    func == bpf_skb_pull_data ||
7767 	    func == sk_skb_pull_data ||
7768 	    func == bpf_clone_redirect ||
7769 	    func == bpf_l3_csum_replace ||
7770 	    func == bpf_l4_csum_replace ||
7771 	    func == bpf_xdp_adjust_head ||
7772 	    func == bpf_xdp_adjust_meta ||
7773 	    func == bpf_msg_pull_data ||
7774 	    func == bpf_msg_push_data ||
7775 	    func == bpf_msg_pop_data ||
7776 	    func == bpf_xdp_adjust_tail ||
7777 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7778 	    func == bpf_lwt_seg6_store_bytes ||
7779 	    func == bpf_lwt_seg6_adjust_srh ||
7780 	    func == bpf_lwt_seg6_action ||
7781 #endif
7782 #ifdef CONFIG_INET
7783 	    func == bpf_sock_ops_store_hdr_opt ||
7784 #endif
7785 	    func == bpf_lwt_in_push_encap ||
7786 	    func == bpf_lwt_xmit_push_encap)
7787 		return true;
7788 
7789 	return false;
7790 }
7791 
7792 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7793 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7794 
7795 static const struct bpf_func_proto *
7796 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7797 {
7798 	const struct bpf_func_proto *func_proto;
7799 
7800 	func_proto = cgroup_common_func_proto(func_id, prog);
7801 	if (func_proto)
7802 		return func_proto;
7803 
7804 	func_proto = cgroup_current_func_proto(func_id, prog);
7805 	if (func_proto)
7806 		return func_proto;
7807 
7808 	switch (func_id) {
7809 	case BPF_FUNC_get_socket_cookie:
7810 		return &bpf_get_socket_cookie_sock_proto;
7811 	case BPF_FUNC_get_netns_cookie:
7812 		return &bpf_get_netns_cookie_sock_proto;
7813 	case BPF_FUNC_perf_event_output:
7814 		return &bpf_event_output_data_proto;
7815 	case BPF_FUNC_sk_storage_get:
7816 		return &bpf_sk_storage_get_cg_sock_proto;
7817 	case BPF_FUNC_ktime_get_coarse_ns:
7818 		return &bpf_ktime_get_coarse_ns_proto;
7819 	default:
7820 		return bpf_base_func_proto(func_id);
7821 	}
7822 }
7823 
7824 static const struct bpf_func_proto *
7825 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7826 {
7827 	const struct bpf_func_proto *func_proto;
7828 
7829 	func_proto = cgroup_common_func_proto(func_id, prog);
7830 	if (func_proto)
7831 		return func_proto;
7832 
7833 	func_proto = cgroup_current_func_proto(func_id, prog);
7834 	if (func_proto)
7835 		return func_proto;
7836 
7837 	switch (func_id) {
7838 	case BPF_FUNC_bind:
7839 		switch (prog->expected_attach_type) {
7840 		case BPF_CGROUP_INET4_CONNECT:
7841 		case BPF_CGROUP_INET6_CONNECT:
7842 			return &bpf_bind_proto;
7843 		default:
7844 			return NULL;
7845 		}
7846 	case BPF_FUNC_get_socket_cookie:
7847 		return &bpf_get_socket_cookie_sock_addr_proto;
7848 	case BPF_FUNC_get_netns_cookie:
7849 		return &bpf_get_netns_cookie_sock_addr_proto;
7850 	case BPF_FUNC_perf_event_output:
7851 		return &bpf_event_output_data_proto;
7852 #ifdef CONFIG_INET
7853 	case BPF_FUNC_sk_lookup_tcp:
7854 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7855 	case BPF_FUNC_sk_lookup_udp:
7856 		return &bpf_sock_addr_sk_lookup_udp_proto;
7857 	case BPF_FUNC_sk_release:
7858 		return &bpf_sk_release_proto;
7859 	case BPF_FUNC_skc_lookup_tcp:
7860 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7861 #endif /* CONFIG_INET */
7862 	case BPF_FUNC_sk_storage_get:
7863 		return &bpf_sk_storage_get_proto;
7864 	case BPF_FUNC_sk_storage_delete:
7865 		return &bpf_sk_storage_delete_proto;
7866 	case BPF_FUNC_setsockopt:
7867 		switch (prog->expected_attach_type) {
7868 		case BPF_CGROUP_INET4_BIND:
7869 		case BPF_CGROUP_INET6_BIND:
7870 		case BPF_CGROUP_INET4_CONNECT:
7871 		case BPF_CGROUP_INET6_CONNECT:
7872 		case BPF_CGROUP_UDP4_RECVMSG:
7873 		case BPF_CGROUP_UDP6_RECVMSG:
7874 		case BPF_CGROUP_UDP4_SENDMSG:
7875 		case BPF_CGROUP_UDP6_SENDMSG:
7876 		case BPF_CGROUP_INET4_GETPEERNAME:
7877 		case BPF_CGROUP_INET6_GETPEERNAME:
7878 		case BPF_CGROUP_INET4_GETSOCKNAME:
7879 		case BPF_CGROUP_INET6_GETSOCKNAME:
7880 			return &bpf_sock_addr_setsockopt_proto;
7881 		default:
7882 			return NULL;
7883 		}
7884 	case BPF_FUNC_getsockopt:
7885 		switch (prog->expected_attach_type) {
7886 		case BPF_CGROUP_INET4_BIND:
7887 		case BPF_CGROUP_INET6_BIND:
7888 		case BPF_CGROUP_INET4_CONNECT:
7889 		case BPF_CGROUP_INET6_CONNECT:
7890 		case BPF_CGROUP_UDP4_RECVMSG:
7891 		case BPF_CGROUP_UDP6_RECVMSG:
7892 		case BPF_CGROUP_UDP4_SENDMSG:
7893 		case BPF_CGROUP_UDP6_SENDMSG:
7894 		case BPF_CGROUP_INET4_GETPEERNAME:
7895 		case BPF_CGROUP_INET6_GETPEERNAME:
7896 		case BPF_CGROUP_INET4_GETSOCKNAME:
7897 		case BPF_CGROUP_INET6_GETSOCKNAME:
7898 			return &bpf_sock_addr_getsockopt_proto;
7899 		default:
7900 			return NULL;
7901 		}
7902 	default:
7903 		return bpf_sk_base_func_proto(func_id);
7904 	}
7905 }
7906 
7907 static const struct bpf_func_proto *
7908 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7909 {
7910 	switch (func_id) {
7911 	case BPF_FUNC_skb_load_bytes:
7912 		return &bpf_skb_load_bytes_proto;
7913 	case BPF_FUNC_skb_load_bytes_relative:
7914 		return &bpf_skb_load_bytes_relative_proto;
7915 	case BPF_FUNC_get_socket_cookie:
7916 		return &bpf_get_socket_cookie_proto;
7917 	case BPF_FUNC_get_socket_uid:
7918 		return &bpf_get_socket_uid_proto;
7919 	case BPF_FUNC_perf_event_output:
7920 		return &bpf_skb_event_output_proto;
7921 	default:
7922 		return bpf_sk_base_func_proto(func_id);
7923 	}
7924 }
7925 
7926 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7927 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7928 
7929 static const struct bpf_func_proto *
7930 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7931 {
7932 	const struct bpf_func_proto *func_proto;
7933 
7934 	func_proto = cgroup_common_func_proto(func_id, prog);
7935 	if (func_proto)
7936 		return func_proto;
7937 
7938 	switch (func_id) {
7939 	case BPF_FUNC_sk_fullsock:
7940 		return &bpf_sk_fullsock_proto;
7941 	case BPF_FUNC_sk_storage_get:
7942 		return &bpf_sk_storage_get_proto;
7943 	case BPF_FUNC_sk_storage_delete:
7944 		return &bpf_sk_storage_delete_proto;
7945 	case BPF_FUNC_perf_event_output:
7946 		return &bpf_skb_event_output_proto;
7947 #ifdef CONFIG_SOCK_CGROUP_DATA
7948 	case BPF_FUNC_skb_cgroup_id:
7949 		return &bpf_skb_cgroup_id_proto;
7950 	case BPF_FUNC_skb_ancestor_cgroup_id:
7951 		return &bpf_skb_ancestor_cgroup_id_proto;
7952 	case BPF_FUNC_sk_cgroup_id:
7953 		return &bpf_sk_cgroup_id_proto;
7954 	case BPF_FUNC_sk_ancestor_cgroup_id:
7955 		return &bpf_sk_ancestor_cgroup_id_proto;
7956 #endif
7957 #ifdef CONFIG_INET
7958 	case BPF_FUNC_sk_lookup_tcp:
7959 		return &bpf_sk_lookup_tcp_proto;
7960 	case BPF_FUNC_sk_lookup_udp:
7961 		return &bpf_sk_lookup_udp_proto;
7962 	case BPF_FUNC_sk_release:
7963 		return &bpf_sk_release_proto;
7964 	case BPF_FUNC_skc_lookup_tcp:
7965 		return &bpf_skc_lookup_tcp_proto;
7966 	case BPF_FUNC_tcp_sock:
7967 		return &bpf_tcp_sock_proto;
7968 	case BPF_FUNC_get_listener_sock:
7969 		return &bpf_get_listener_sock_proto;
7970 	case BPF_FUNC_skb_ecn_set_ce:
7971 		return &bpf_skb_ecn_set_ce_proto;
7972 #endif
7973 	default:
7974 		return sk_filter_func_proto(func_id, prog);
7975 	}
7976 }
7977 
7978 static const struct bpf_func_proto *
7979 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7980 {
7981 	switch (func_id) {
7982 	case BPF_FUNC_skb_store_bytes:
7983 		return &bpf_skb_store_bytes_proto;
7984 	case BPF_FUNC_skb_load_bytes:
7985 		return &bpf_skb_load_bytes_proto;
7986 	case BPF_FUNC_skb_load_bytes_relative:
7987 		return &bpf_skb_load_bytes_relative_proto;
7988 	case BPF_FUNC_skb_pull_data:
7989 		return &bpf_skb_pull_data_proto;
7990 	case BPF_FUNC_csum_diff:
7991 		return &bpf_csum_diff_proto;
7992 	case BPF_FUNC_csum_update:
7993 		return &bpf_csum_update_proto;
7994 	case BPF_FUNC_csum_level:
7995 		return &bpf_csum_level_proto;
7996 	case BPF_FUNC_l3_csum_replace:
7997 		return &bpf_l3_csum_replace_proto;
7998 	case BPF_FUNC_l4_csum_replace:
7999 		return &bpf_l4_csum_replace_proto;
8000 	case BPF_FUNC_clone_redirect:
8001 		return &bpf_clone_redirect_proto;
8002 	case BPF_FUNC_get_cgroup_classid:
8003 		return &bpf_get_cgroup_classid_proto;
8004 	case BPF_FUNC_skb_vlan_push:
8005 		return &bpf_skb_vlan_push_proto;
8006 	case BPF_FUNC_skb_vlan_pop:
8007 		return &bpf_skb_vlan_pop_proto;
8008 	case BPF_FUNC_skb_change_proto:
8009 		return &bpf_skb_change_proto_proto;
8010 	case BPF_FUNC_skb_change_type:
8011 		return &bpf_skb_change_type_proto;
8012 	case BPF_FUNC_skb_adjust_room:
8013 		return &bpf_skb_adjust_room_proto;
8014 	case BPF_FUNC_skb_change_tail:
8015 		return &bpf_skb_change_tail_proto;
8016 	case BPF_FUNC_skb_change_head:
8017 		return &bpf_skb_change_head_proto;
8018 	case BPF_FUNC_skb_get_tunnel_key:
8019 		return &bpf_skb_get_tunnel_key_proto;
8020 	case BPF_FUNC_skb_set_tunnel_key:
8021 		return bpf_get_skb_set_tunnel_proto(func_id);
8022 	case BPF_FUNC_skb_get_tunnel_opt:
8023 		return &bpf_skb_get_tunnel_opt_proto;
8024 	case BPF_FUNC_skb_set_tunnel_opt:
8025 		return bpf_get_skb_set_tunnel_proto(func_id);
8026 	case BPF_FUNC_redirect:
8027 		return &bpf_redirect_proto;
8028 	case BPF_FUNC_redirect_neigh:
8029 		return &bpf_redirect_neigh_proto;
8030 	case BPF_FUNC_redirect_peer:
8031 		return &bpf_redirect_peer_proto;
8032 	case BPF_FUNC_get_route_realm:
8033 		return &bpf_get_route_realm_proto;
8034 	case BPF_FUNC_get_hash_recalc:
8035 		return &bpf_get_hash_recalc_proto;
8036 	case BPF_FUNC_set_hash_invalid:
8037 		return &bpf_set_hash_invalid_proto;
8038 	case BPF_FUNC_set_hash:
8039 		return &bpf_set_hash_proto;
8040 	case BPF_FUNC_perf_event_output:
8041 		return &bpf_skb_event_output_proto;
8042 	case BPF_FUNC_get_smp_processor_id:
8043 		return &bpf_get_smp_processor_id_proto;
8044 	case BPF_FUNC_skb_under_cgroup:
8045 		return &bpf_skb_under_cgroup_proto;
8046 	case BPF_FUNC_get_socket_cookie:
8047 		return &bpf_get_socket_cookie_proto;
8048 	case BPF_FUNC_get_socket_uid:
8049 		return &bpf_get_socket_uid_proto;
8050 	case BPF_FUNC_fib_lookup:
8051 		return &bpf_skb_fib_lookup_proto;
8052 	case BPF_FUNC_check_mtu:
8053 		return &bpf_skb_check_mtu_proto;
8054 	case BPF_FUNC_sk_fullsock:
8055 		return &bpf_sk_fullsock_proto;
8056 	case BPF_FUNC_sk_storage_get:
8057 		return &bpf_sk_storage_get_proto;
8058 	case BPF_FUNC_sk_storage_delete:
8059 		return &bpf_sk_storage_delete_proto;
8060 #ifdef CONFIG_XFRM
8061 	case BPF_FUNC_skb_get_xfrm_state:
8062 		return &bpf_skb_get_xfrm_state_proto;
8063 #endif
8064 #ifdef CONFIG_CGROUP_NET_CLASSID
8065 	case BPF_FUNC_skb_cgroup_classid:
8066 		return &bpf_skb_cgroup_classid_proto;
8067 #endif
8068 #ifdef CONFIG_SOCK_CGROUP_DATA
8069 	case BPF_FUNC_skb_cgroup_id:
8070 		return &bpf_skb_cgroup_id_proto;
8071 	case BPF_FUNC_skb_ancestor_cgroup_id:
8072 		return &bpf_skb_ancestor_cgroup_id_proto;
8073 #endif
8074 #ifdef CONFIG_INET
8075 	case BPF_FUNC_sk_lookup_tcp:
8076 		return &bpf_tc_sk_lookup_tcp_proto;
8077 	case BPF_FUNC_sk_lookup_udp:
8078 		return &bpf_tc_sk_lookup_udp_proto;
8079 	case BPF_FUNC_sk_release:
8080 		return &bpf_sk_release_proto;
8081 	case BPF_FUNC_tcp_sock:
8082 		return &bpf_tcp_sock_proto;
8083 	case BPF_FUNC_get_listener_sock:
8084 		return &bpf_get_listener_sock_proto;
8085 	case BPF_FUNC_skc_lookup_tcp:
8086 		return &bpf_tc_skc_lookup_tcp_proto;
8087 	case BPF_FUNC_tcp_check_syncookie:
8088 		return &bpf_tcp_check_syncookie_proto;
8089 	case BPF_FUNC_skb_ecn_set_ce:
8090 		return &bpf_skb_ecn_set_ce_proto;
8091 	case BPF_FUNC_tcp_gen_syncookie:
8092 		return &bpf_tcp_gen_syncookie_proto;
8093 	case BPF_FUNC_sk_assign:
8094 		return &bpf_sk_assign_proto;
8095 	case BPF_FUNC_skb_set_tstamp:
8096 		return &bpf_skb_set_tstamp_proto;
8097 #ifdef CONFIG_SYN_COOKIES
8098 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8099 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8100 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8101 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8102 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8103 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8104 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8105 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8106 #endif
8107 #endif
8108 	default:
8109 		return bpf_sk_base_func_proto(func_id);
8110 	}
8111 }
8112 
8113 static const struct bpf_func_proto *
8114 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8115 {
8116 	switch (func_id) {
8117 	case BPF_FUNC_perf_event_output:
8118 		return &bpf_xdp_event_output_proto;
8119 	case BPF_FUNC_get_smp_processor_id:
8120 		return &bpf_get_smp_processor_id_proto;
8121 	case BPF_FUNC_csum_diff:
8122 		return &bpf_csum_diff_proto;
8123 	case BPF_FUNC_xdp_adjust_head:
8124 		return &bpf_xdp_adjust_head_proto;
8125 	case BPF_FUNC_xdp_adjust_meta:
8126 		return &bpf_xdp_adjust_meta_proto;
8127 	case BPF_FUNC_redirect:
8128 		return &bpf_xdp_redirect_proto;
8129 	case BPF_FUNC_redirect_map:
8130 		return &bpf_xdp_redirect_map_proto;
8131 	case BPF_FUNC_xdp_adjust_tail:
8132 		return &bpf_xdp_adjust_tail_proto;
8133 	case BPF_FUNC_xdp_get_buff_len:
8134 		return &bpf_xdp_get_buff_len_proto;
8135 	case BPF_FUNC_xdp_load_bytes:
8136 		return &bpf_xdp_load_bytes_proto;
8137 	case BPF_FUNC_xdp_store_bytes:
8138 		return &bpf_xdp_store_bytes_proto;
8139 	case BPF_FUNC_fib_lookup:
8140 		return &bpf_xdp_fib_lookup_proto;
8141 	case BPF_FUNC_check_mtu:
8142 		return &bpf_xdp_check_mtu_proto;
8143 #ifdef CONFIG_INET
8144 	case BPF_FUNC_sk_lookup_udp:
8145 		return &bpf_xdp_sk_lookup_udp_proto;
8146 	case BPF_FUNC_sk_lookup_tcp:
8147 		return &bpf_xdp_sk_lookup_tcp_proto;
8148 	case BPF_FUNC_sk_release:
8149 		return &bpf_sk_release_proto;
8150 	case BPF_FUNC_skc_lookup_tcp:
8151 		return &bpf_xdp_skc_lookup_tcp_proto;
8152 	case BPF_FUNC_tcp_check_syncookie:
8153 		return &bpf_tcp_check_syncookie_proto;
8154 	case BPF_FUNC_tcp_gen_syncookie:
8155 		return &bpf_tcp_gen_syncookie_proto;
8156 #ifdef CONFIG_SYN_COOKIES
8157 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8158 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8159 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8160 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8161 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8162 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8163 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8164 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8165 #endif
8166 #endif
8167 	default:
8168 		return bpf_sk_base_func_proto(func_id);
8169 	}
8170 
8171 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8172 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8173 	 * kfuncs are defined in two different modules, and we want to be able
8174 	 * to use them interchangably with the same BTF type ID. Because modules
8175 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8176 	 * referenced in the vmlinux BTF or the verifier will get confused about
8177 	 * the different types. So we add this dummy type reference which will
8178 	 * be included in vmlinux BTF, allowing both modules to refer to the
8179 	 * same type ID.
8180 	 */
8181 	BTF_TYPE_EMIT(struct nf_conn___init);
8182 #endif
8183 }
8184 
8185 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8186 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8187 
8188 static const struct bpf_func_proto *
8189 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8190 {
8191 	const struct bpf_func_proto *func_proto;
8192 
8193 	func_proto = cgroup_common_func_proto(func_id, prog);
8194 	if (func_proto)
8195 		return func_proto;
8196 
8197 	switch (func_id) {
8198 	case BPF_FUNC_setsockopt:
8199 		return &bpf_sock_ops_setsockopt_proto;
8200 	case BPF_FUNC_getsockopt:
8201 		return &bpf_sock_ops_getsockopt_proto;
8202 	case BPF_FUNC_sock_ops_cb_flags_set:
8203 		return &bpf_sock_ops_cb_flags_set_proto;
8204 	case BPF_FUNC_sock_map_update:
8205 		return &bpf_sock_map_update_proto;
8206 	case BPF_FUNC_sock_hash_update:
8207 		return &bpf_sock_hash_update_proto;
8208 	case BPF_FUNC_get_socket_cookie:
8209 		return &bpf_get_socket_cookie_sock_ops_proto;
8210 	case BPF_FUNC_perf_event_output:
8211 		return &bpf_event_output_data_proto;
8212 	case BPF_FUNC_sk_storage_get:
8213 		return &bpf_sk_storage_get_proto;
8214 	case BPF_FUNC_sk_storage_delete:
8215 		return &bpf_sk_storage_delete_proto;
8216 	case BPF_FUNC_get_netns_cookie:
8217 		return &bpf_get_netns_cookie_sock_ops_proto;
8218 #ifdef CONFIG_INET
8219 	case BPF_FUNC_load_hdr_opt:
8220 		return &bpf_sock_ops_load_hdr_opt_proto;
8221 	case BPF_FUNC_store_hdr_opt:
8222 		return &bpf_sock_ops_store_hdr_opt_proto;
8223 	case BPF_FUNC_reserve_hdr_opt:
8224 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8225 	case BPF_FUNC_tcp_sock:
8226 		return &bpf_tcp_sock_proto;
8227 #endif /* CONFIG_INET */
8228 	default:
8229 		return bpf_sk_base_func_proto(func_id);
8230 	}
8231 }
8232 
8233 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8234 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8235 
8236 static const struct bpf_func_proto *
8237 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8238 {
8239 	switch (func_id) {
8240 	case BPF_FUNC_msg_redirect_map:
8241 		return &bpf_msg_redirect_map_proto;
8242 	case BPF_FUNC_msg_redirect_hash:
8243 		return &bpf_msg_redirect_hash_proto;
8244 	case BPF_FUNC_msg_apply_bytes:
8245 		return &bpf_msg_apply_bytes_proto;
8246 	case BPF_FUNC_msg_cork_bytes:
8247 		return &bpf_msg_cork_bytes_proto;
8248 	case BPF_FUNC_msg_pull_data:
8249 		return &bpf_msg_pull_data_proto;
8250 	case BPF_FUNC_msg_push_data:
8251 		return &bpf_msg_push_data_proto;
8252 	case BPF_FUNC_msg_pop_data:
8253 		return &bpf_msg_pop_data_proto;
8254 	case BPF_FUNC_perf_event_output:
8255 		return &bpf_event_output_data_proto;
8256 	case BPF_FUNC_get_current_uid_gid:
8257 		return &bpf_get_current_uid_gid_proto;
8258 	case BPF_FUNC_get_current_pid_tgid:
8259 		return &bpf_get_current_pid_tgid_proto;
8260 	case BPF_FUNC_sk_storage_get:
8261 		return &bpf_sk_storage_get_proto;
8262 	case BPF_FUNC_sk_storage_delete:
8263 		return &bpf_sk_storage_delete_proto;
8264 	case BPF_FUNC_get_netns_cookie:
8265 		return &bpf_get_netns_cookie_sk_msg_proto;
8266 #ifdef CONFIG_CGROUP_NET_CLASSID
8267 	case BPF_FUNC_get_cgroup_classid:
8268 		return &bpf_get_cgroup_classid_curr_proto;
8269 #endif
8270 	default:
8271 		return bpf_sk_base_func_proto(func_id);
8272 	}
8273 }
8274 
8275 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8276 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8277 
8278 static const struct bpf_func_proto *
8279 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8280 {
8281 	switch (func_id) {
8282 	case BPF_FUNC_skb_store_bytes:
8283 		return &bpf_skb_store_bytes_proto;
8284 	case BPF_FUNC_skb_load_bytes:
8285 		return &bpf_skb_load_bytes_proto;
8286 	case BPF_FUNC_skb_pull_data:
8287 		return &sk_skb_pull_data_proto;
8288 	case BPF_FUNC_skb_change_tail:
8289 		return &sk_skb_change_tail_proto;
8290 	case BPF_FUNC_skb_change_head:
8291 		return &sk_skb_change_head_proto;
8292 	case BPF_FUNC_skb_adjust_room:
8293 		return &sk_skb_adjust_room_proto;
8294 	case BPF_FUNC_get_socket_cookie:
8295 		return &bpf_get_socket_cookie_proto;
8296 	case BPF_FUNC_get_socket_uid:
8297 		return &bpf_get_socket_uid_proto;
8298 	case BPF_FUNC_sk_redirect_map:
8299 		return &bpf_sk_redirect_map_proto;
8300 	case BPF_FUNC_sk_redirect_hash:
8301 		return &bpf_sk_redirect_hash_proto;
8302 	case BPF_FUNC_perf_event_output:
8303 		return &bpf_skb_event_output_proto;
8304 #ifdef CONFIG_INET
8305 	case BPF_FUNC_sk_lookup_tcp:
8306 		return &bpf_sk_lookup_tcp_proto;
8307 	case BPF_FUNC_sk_lookup_udp:
8308 		return &bpf_sk_lookup_udp_proto;
8309 	case BPF_FUNC_sk_release:
8310 		return &bpf_sk_release_proto;
8311 	case BPF_FUNC_skc_lookup_tcp:
8312 		return &bpf_skc_lookup_tcp_proto;
8313 #endif
8314 	default:
8315 		return bpf_sk_base_func_proto(func_id);
8316 	}
8317 }
8318 
8319 static const struct bpf_func_proto *
8320 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8321 {
8322 	switch (func_id) {
8323 	case BPF_FUNC_skb_load_bytes:
8324 		return &bpf_flow_dissector_load_bytes_proto;
8325 	default:
8326 		return bpf_sk_base_func_proto(func_id);
8327 	}
8328 }
8329 
8330 static const struct bpf_func_proto *
8331 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8332 {
8333 	switch (func_id) {
8334 	case BPF_FUNC_skb_load_bytes:
8335 		return &bpf_skb_load_bytes_proto;
8336 	case BPF_FUNC_skb_pull_data:
8337 		return &bpf_skb_pull_data_proto;
8338 	case BPF_FUNC_csum_diff:
8339 		return &bpf_csum_diff_proto;
8340 	case BPF_FUNC_get_cgroup_classid:
8341 		return &bpf_get_cgroup_classid_proto;
8342 	case BPF_FUNC_get_route_realm:
8343 		return &bpf_get_route_realm_proto;
8344 	case BPF_FUNC_get_hash_recalc:
8345 		return &bpf_get_hash_recalc_proto;
8346 	case BPF_FUNC_perf_event_output:
8347 		return &bpf_skb_event_output_proto;
8348 	case BPF_FUNC_get_smp_processor_id:
8349 		return &bpf_get_smp_processor_id_proto;
8350 	case BPF_FUNC_skb_under_cgroup:
8351 		return &bpf_skb_under_cgroup_proto;
8352 	default:
8353 		return bpf_sk_base_func_proto(func_id);
8354 	}
8355 }
8356 
8357 static const struct bpf_func_proto *
8358 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8359 {
8360 	switch (func_id) {
8361 	case BPF_FUNC_lwt_push_encap:
8362 		return &bpf_lwt_in_push_encap_proto;
8363 	default:
8364 		return lwt_out_func_proto(func_id, prog);
8365 	}
8366 }
8367 
8368 static const struct bpf_func_proto *
8369 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8370 {
8371 	switch (func_id) {
8372 	case BPF_FUNC_skb_get_tunnel_key:
8373 		return &bpf_skb_get_tunnel_key_proto;
8374 	case BPF_FUNC_skb_set_tunnel_key:
8375 		return bpf_get_skb_set_tunnel_proto(func_id);
8376 	case BPF_FUNC_skb_get_tunnel_opt:
8377 		return &bpf_skb_get_tunnel_opt_proto;
8378 	case BPF_FUNC_skb_set_tunnel_opt:
8379 		return bpf_get_skb_set_tunnel_proto(func_id);
8380 	case BPF_FUNC_redirect:
8381 		return &bpf_redirect_proto;
8382 	case BPF_FUNC_clone_redirect:
8383 		return &bpf_clone_redirect_proto;
8384 	case BPF_FUNC_skb_change_tail:
8385 		return &bpf_skb_change_tail_proto;
8386 	case BPF_FUNC_skb_change_head:
8387 		return &bpf_skb_change_head_proto;
8388 	case BPF_FUNC_skb_store_bytes:
8389 		return &bpf_skb_store_bytes_proto;
8390 	case BPF_FUNC_csum_update:
8391 		return &bpf_csum_update_proto;
8392 	case BPF_FUNC_csum_level:
8393 		return &bpf_csum_level_proto;
8394 	case BPF_FUNC_l3_csum_replace:
8395 		return &bpf_l3_csum_replace_proto;
8396 	case BPF_FUNC_l4_csum_replace:
8397 		return &bpf_l4_csum_replace_proto;
8398 	case BPF_FUNC_set_hash_invalid:
8399 		return &bpf_set_hash_invalid_proto;
8400 	case BPF_FUNC_lwt_push_encap:
8401 		return &bpf_lwt_xmit_push_encap_proto;
8402 	default:
8403 		return lwt_out_func_proto(func_id, prog);
8404 	}
8405 }
8406 
8407 static const struct bpf_func_proto *
8408 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8409 {
8410 	switch (func_id) {
8411 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8412 	case BPF_FUNC_lwt_seg6_store_bytes:
8413 		return &bpf_lwt_seg6_store_bytes_proto;
8414 	case BPF_FUNC_lwt_seg6_action:
8415 		return &bpf_lwt_seg6_action_proto;
8416 	case BPF_FUNC_lwt_seg6_adjust_srh:
8417 		return &bpf_lwt_seg6_adjust_srh_proto;
8418 #endif
8419 	default:
8420 		return lwt_out_func_proto(func_id, prog);
8421 	}
8422 }
8423 
8424 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8425 				    const struct bpf_prog *prog,
8426 				    struct bpf_insn_access_aux *info)
8427 {
8428 	const int size_default = sizeof(__u32);
8429 
8430 	if (off < 0 || off >= sizeof(struct __sk_buff))
8431 		return false;
8432 
8433 	/* The verifier guarantees that size > 0. */
8434 	if (off % size != 0)
8435 		return false;
8436 
8437 	switch (off) {
8438 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8439 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8440 			return false;
8441 		break;
8442 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8443 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8444 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8445 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8446 	case bpf_ctx_range(struct __sk_buff, data):
8447 	case bpf_ctx_range(struct __sk_buff, data_meta):
8448 	case bpf_ctx_range(struct __sk_buff, data_end):
8449 		if (size != size_default)
8450 			return false;
8451 		break;
8452 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8453 		return false;
8454 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8455 		if (type == BPF_WRITE || size != sizeof(__u64))
8456 			return false;
8457 		break;
8458 	case bpf_ctx_range(struct __sk_buff, tstamp):
8459 		if (size != sizeof(__u64))
8460 			return false;
8461 		break;
8462 	case offsetof(struct __sk_buff, sk):
8463 		if (type == BPF_WRITE || size != sizeof(__u64))
8464 			return false;
8465 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8466 		break;
8467 	case offsetof(struct __sk_buff, tstamp_type):
8468 		return false;
8469 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8470 		/* Explicitly prohibit access to padding in __sk_buff. */
8471 		return false;
8472 	default:
8473 		/* Only narrow read access allowed for now. */
8474 		if (type == BPF_WRITE) {
8475 			if (size != size_default)
8476 				return false;
8477 		} else {
8478 			bpf_ctx_record_field_size(info, size_default);
8479 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8480 				return false;
8481 		}
8482 	}
8483 
8484 	return true;
8485 }
8486 
8487 static bool sk_filter_is_valid_access(int off, int size,
8488 				      enum bpf_access_type type,
8489 				      const struct bpf_prog *prog,
8490 				      struct bpf_insn_access_aux *info)
8491 {
8492 	switch (off) {
8493 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8494 	case bpf_ctx_range(struct __sk_buff, data):
8495 	case bpf_ctx_range(struct __sk_buff, data_meta):
8496 	case bpf_ctx_range(struct __sk_buff, data_end):
8497 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8498 	case bpf_ctx_range(struct __sk_buff, tstamp):
8499 	case bpf_ctx_range(struct __sk_buff, wire_len):
8500 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8501 		return false;
8502 	}
8503 
8504 	if (type == BPF_WRITE) {
8505 		switch (off) {
8506 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8507 			break;
8508 		default:
8509 			return false;
8510 		}
8511 	}
8512 
8513 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8514 }
8515 
8516 static bool cg_skb_is_valid_access(int off, int size,
8517 				   enum bpf_access_type type,
8518 				   const struct bpf_prog *prog,
8519 				   struct bpf_insn_access_aux *info)
8520 {
8521 	switch (off) {
8522 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8523 	case bpf_ctx_range(struct __sk_buff, data_meta):
8524 	case bpf_ctx_range(struct __sk_buff, wire_len):
8525 		return false;
8526 	case bpf_ctx_range(struct __sk_buff, data):
8527 	case bpf_ctx_range(struct __sk_buff, data_end):
8528 		if (!bpf_capable())
8529 			return false;
8530 		break;
8531 	}
8532 
8533 	if (type == BPF_WRITE) {
8534 		switch (off) {
8535 		case bpf_ctx_range(struct __sk_buff, mark):
8536 		case bpf_ctx_range(struct __sk_buff, priority):
8537 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8538 			break;
8539 		case bpf_ctx_range(struct __sk_buff, tstamp):
8540 			if (!bpf_capable())
8541 				return false;
8542 			break;
8543 		default:
8544 			return false;
8545 		}
8546 	}
8547 
8548 	switch (off) {
8549 	case bpf_ctx_range(struct __sk_buff, data):
8550 		info->reg_type = PTR_TO_PACKET;
8551 		break;
8552 	case bpf_ctx_range(struct __sk_buff, data_end):
8553 		info->reg_type = PTR_TO_PACKET_END;
8554 		break;
8555 	}
8556 
8557 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8558 }
8559 
8560 static bool lwt_is_valid_access(int off, int size,
8561 				enum bpf_access_type type,
8562 				const struct bpf_prog *prog,
8563 				struct bpf_insn_access_aux *info)
8564 {
8565 	switch (off) {
8566 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8567 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8568 	case bpf_ctx_range(struct __sk_buff, data_meta):
8569 	case bpf_ctx_range(struct __sk_buff, tstamp):
8570 	case bpf_ctx_range(struct __sk_buff, wire_len):
8571 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8572 		return false;
8573 	}
8574 
8575 	if (type == BPF_WRITE) {
8576 		switch (off) {
8577 		case bpf_ctx_range(struct __sk_buff, mark):
8578 		case bpf_ctx_range(struct __sk_buff, priority):
8579 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8580 			break;
8581 		default:
8582 			return false;
8583 		}
8584 	}
8585 
8586 	switch (off) {
8587 	case bpf_ctx_range(struct __sk_buff, data):
8588 		info->reg_type = PTR_TO_PACKET;
8589 		break;
8590 	case bpf_ctx_range(struct __sk_buff, data_end):
8591 		info->reg_type = PTR_TO_PACKET_END;
8592 		break;
8593 	}
8594 
8595 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8596 }
8597 
8598 /* Attach type specific accesses */
8599 static bool __sock_filter_check_attach_type(int off,
8600 					    enum bpf_access_type access_type,
8601 					    enum bpf_attach_type attach_type)
8602 {
8603 	switch (off) {
8604 	case offsetof(struct bpf_sock, bound_dev_if):
8605 	case offsetof(struct bpf_sock, mark):
8606 	case offsetof(struct bpf_sock, priority):
8607 		switch (attach_type) {
8608 		case BPF_CGROUP_INET_SOCK_CREATE:
8609 		case BPF_CGROUP_INET_SOCK_RELEASE:
8610 			goto full_access;
8611 		default:
8612 			return false;
8613 		}
8614 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8615 		switch (attach_type) {
8616 		case BPF_CGROUP_INET4_POST_BIND:
8617 			goto read_only;
8618 		default:
8619 			return false;
8620 		}
8621 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8622 		switch (attach_type) {
8623 		case BPF_CGROUP_INET6_POST_BIND:
8624 			goto read_only;
8625 		default:
8626 			return false;
8627 		}
8628 	case bpf_ctx_range(struct bpf_sock, src_port):
8629 		switch (attach_type) {
8630 		case BPF_CGROUP_INET4_POST_BIND:
8631 		case BPF_CGROUP_INET6_POST_BIND:
8632 			goto read_only;
8633 		default:
8634 			return false;
8635 		}
8636 	}
8637 read_only:
8638 	return access_type == BPF_READ;
8639 full_access:
8640 	return true;
8641 }
8642 
8643 bool bpf_sock_common_is_valid_access(int off, int size,
8644 				     enum bpf_access_type type,
8645 				     struct bpf_insn_access_aux *info)
8646 {
8647 	switch (off) {
8648 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8649 		return false;
8650 	default:
8651 		return bpf_sock_is_valid_access(off, size, type, info);
8652 	}
8653 }
8654 
8655 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8656 			      struct bpf_insn_access_aux *info)
8657 {
8658 	const int size_default = sizeof(__u32);
8659 	int field_size;
8660 
8661 	if (off < 0 || off >= sizeof(struct bpf_sock))
8662 		return false;
8663 	if (off % size != 0)
8664 		return false;
8665 
8666 	switch (off) {
8667 	case offsetof(struct bpf_sock, state):
8668 	case offsetof(struct bpf_sock, family):
8669 	case offsetof(struct bpf_sock, type):
8670 	case offsetof(struct bpf_sock, protocol):
8671 	case offsetof(struct bpf_sock, src_port):
8672 	case offsetof(struct bpf_sock, rx_queue_mapping):
8673 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8674 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8675 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8676 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8677 		bpf_ctx_record_field_size(info, size_default);
8678 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8679 	case bpf_ctx_range(struct bpf_sock, dst_port):
8680 		field_size = size == size_default ?
8681 			size_default : sizeof_field(struct bpf_sock, dst_port);
8682 		bpf_ctx_record_field_size(info, field_size);
8683 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8684 	case offsetofend(struct bpf_sock, dst_port) ...
8685 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8686 		return false;
8687 	}
8688 
8689 	return size == size_default;
8690 }
8691 
8692 static bool sock_filter_is_valid_access(int off, int size,
8693 					enum bpf_access_type type,
8694 					const struct bpf_prog *prog,
8695 					struct bpf_insn_access_aux *info)
8696 {
8697 	if (!bpf_sock_is_valid_access(off, size, type, info))
8698 		return false;
8699 	return __sock_filter_check_attach_type(off, type,
8700 					       prog->expected_attach_type);
8701 }
8702 
8703 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8704 			     const struct bpf_prog *prog)
8705 {
8706 	/* Neither direct read nor direct write requires any preliminary
8707 	 * action.
8708 	 */
8709 	return 0;
8710 }
8711 
8712 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8713 				const struct bpf_prog *prog, int drop_verdict)
8714 {
8715 	struct bpf_insn *insn = insn_buf;
8716 
8717 	if (!direct_write)
8718 		return 0;
8719 
8720 	/* if (!skb->cloned)
8721 	 *       goto start;
8722 	 *
8723 	 * (Fast-path, otherwise approximation that we might be
8724 	 *  a clone, do the rest in helper.)
8725 	 */
8726 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8727 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8728 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8729 
8730 	/* ret = bpf_skb_pull_data(skb, 0); */
8731 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8732 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8733 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8734 			       BPF_FUNC_skb_pull_data);
8735 	/* if (!ret)
8736 	 *      goto restore;
8737 	 * return TC_ACT_SHOT;
8738 	 */
8739 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8740 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8741 	*insn++ = BPF_EXIT_INSN();
8742 
8743 	/* restore: */
8744 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8745 	/* start: */
8746 	*insn++ = prog->insnsi[0];
8747 
8748 	return insn - insn_buf;
8749 }
8750 
8751 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8752 			  struct bpf_insn *insn_buf)
8753 {
8754 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8755 	struct bpf_insn *insn = insn_buf;
8756 
8757 	if (!indirect) {
8758 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8759 	} else {
8760 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8761 		if (orig->imm)
8762 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8763 	}
8764 	/* We're guaranteed here that CTX is in R6. */
8765 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8766 
8767 	switch (BPF_SIZE(orig->code)) {
8768 	case BPF_B:
8769 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8770 		break;
8771 	case BPF_H:
8772 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8773 		break;
8774 	case BPF_W:
8775 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8776 		break;
8777 	}
8778 
8779 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8780 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8781 	*insn++ = BPF_EXIT_INSN();
8782 
8783 	return insn - insn_buf;
8784 }
8785 
8786 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8787 			       const struct bpf_prog *prog)
8788 {
8789 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8790 }
8791 
8792 static bool tc_cls_act_is_valid_access(int off, int size,
8793 				       enum bpf_access_type type,
8794 				       const struct bpf_prog *prog,
8795 				       struct bpf_insn_access_aux *info)
8796 {
8797 	if (type == BPF_WRITE) {
8798 		switch (off) {
8799 		case bpf_ctx_range(struct __sk_buff, mark):
8800 		case bpf_ctx_range(struct __sk_buff, tc_index):
8801 		case bpf_ctx_range(struct __sk_buff, priority):
8802 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8803 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8804 		case bpf_ctx_range(struct __sk_buff, tstamp):
8805 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8806 			break;
8807 		default:
8808 			return false;
8809 		}
8810 	}
8811 
8812 	switch (off) {
8813 	case bpf_ctx_range(struct __sk_buff, data):
8814 		info->reg_type = PTR_TO_PACKET;
8815 		break;
8816 	case bpf_ctx_range(struct __sk_buff, data_meta):
8817 		info->reg_type = PTR_TO_PACKET_META;
8818 		break;
8819 	case bpf_ctx_range(struct __sk_buff, data_end):
8820 		info->reg_type = PTR_TO_PACKET_END;
8821 		break;
8822 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8823 		return false;
8824 	case offsetof(struct __sk_buff, tstamp_type):
8825 		/* The convert_ctx_access() on reading and writing
8826 		 * __sk_buff->tstamp depends on whether the bpf prog
8827 		 * has used __sk_buff->tstamp_type or not.
8828 		 * Thus, we need to set prog->tstamp_type_access
8829 		 * earlier during is_valid_access() here.
8830 		 */
8831 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8832 		return size == sizeof(__u8);
8833 	}
8834 
8835 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8836 }
8837 
8838 DEFINE_MUTEX(nf_conn_btf_access_lock);
8839 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8840 
8841 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8842 			      const struct bpf_reg_state *reg,
8843 			      int off, int size);
8844 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8845 
8846 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8847 					const struct bpf_reg_state *reg,
8848 					int off, int size)
8849 {
8850 	int ret = -EACCES;
8851 
8852 	mutex_lock(&nf_conn_btf_access_lock);
8853 	if (nfct_btf_struct_access)
8854 		ret = nfct_btf_struct_access(log, reg, off, size);
8855 	mutex_unlock(&nf_conn_btf_access_lock);
8856 
8857 	return ret;
8858 }
8859 
8860 static bool __is_valid_xdp_access(int off, int size)
8861 {
8862 	if (off < 0 || off >= sizeof(struct xdp_md))
8863 		return false;
8864 	if (off % size != 0)
8865 		return false;
8866 	if (size != sizeof(__u32))
8867 		return false;
8868 
8869 	return true;
8870 }
8871 
8872 static bool xdp_is_valid_access(int off, int size,
8873 				enum bpf_access_type type,
8874 				const struct bpf_prog *prog,
8875 				struct bpf_insn_access_aux *info)
8876 {
8877 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8878 		switch (off) {
8879 		case offsetof(struct xdp_md, egress_ifindex):
8880 			return false;
8881 		}
8882 	}
8883 
8884 	if (type == BPF_WRITE) {
8885 		if (bpf_prog_is_offloaded(prog->aux)) {
8886 			switch (off) {
8887 			case offsetof(struct xdp_md, rx_queue_index):
8888 				return __is_valid_xdp_access(off, size);
8889 			}
8890 		}
8891 		return false;
8892 	}
8893 
8894 	switch (off) {
8895 	case offsetof(struct xdp_md, data):
8896 		info->reg_type = PTR_TO_PACKET;
8897 		break;
8898 	case offsetof(struct xdp_md, data_meta):
8899 		info->reg_type = PTR_TO_PACKET_META;
8900 		break;
8901 	case offsetof(struct xdp_md, data_end):
8902 		info->reg_type = PTR_TO_PACKET_END;
8903 		break;
8904 	}
8905 
8906 	return __is_valid_xdp_access(off, size);
8907 }
8908 
8909 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8910 {
8911 	const u32 act_max = XDP_REDIRECT;
8912 
8913 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8914 		     act > act_max ? "Illegal" : "Driver unsupported",
8915 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8916 }
8917 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8918 
8919 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8920 				 const struct bpf_reg_state *reg,
8921 				 int off, int size)
8922 {
8923 	int ret = -EACCES;
8924 
8925 	mutex_lock(&nf_conn_btf_access_lock);
8926 	if (nfct_btf_struct_access)
8927 		ret = nfct_btf_struct_access(log, reg, off, size);
8928 	mutex_unlock(&nf_conn_btf_access_lock);
8929 
8930 	return ret;
8931 }
8932 
8933 static bool sock_addr_is_valid_access(int off, int size,
8934 				      enum bpf_access_type type,
8935 				      const struct bpf_prog *prog,
8936 				      struct bpf_insn_access_aux *info)
8937 {
8938 	const int size_default = sizeof(__u32);
8939 
8940 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8941 		return false;
8942 	if (off % size != 0)
8943 		return false;
8944 
8945 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8946 	 * versa.
8947 	 */
8948 	switch (off) {
8949 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8950 		switch (prog->expected_attach_type) {
8951 		case BPF_CGROUP_INET4_BIND:
8952 		case BPF_CGROUP_INET4_CONNECT:
8953 		case BPF_CGROUP_INET4_GETPEERNAME:
8954 		case BPF_CGROUP_INET4_GETSOCKNAME:
8955 		case BPF_CGROUP_UDP4_SENDMSG:
8956 		case BPF_CGROUP_UDP4_RECVMSG:
8957 			break;
8958 		default:
8959 			return false;
8960 		}
8961 		break;
8962 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8963 		switch (prog->expected_attach_type) {
8964 		case BPF_CGROUP_INET6_BIND:
8965 		case BPF_CGROUP_INET6_CONNECT:
8966 		case BPF_CGROUP_INET6_GETPEERNAME:
8967 		case BPF_CGROUP_INET6_GETSOCKNAME:
8968 		case BPF_CGROUP_UDP6_SENDMSG:
8969 		case BPF_CGROUP_UDP6_RECVMSG:
8970 			break;
8971 		default:
8972 			return false;
8973 		}
8974 		break;
8975 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8976 		switch (prog->expected_attach_type) {
8977 		case BPF_CGROUP_UDP4_SENDMSG:
8978 			break;
8979 		default:
8980 			return false;
8981 		}
8982 		break;
8983 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8984 				msg_src_ip6[3]):
8985 		switch (prog->expected_attach_type) {
8986 		case BPF_CGROUP_UDP6_SENDMSG:
8987 			break;
8988 		default:
8989 			return false;
8990 		}
8991 		break;
8992 	}
8993 
8994 	switch (off) {
8995 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8996 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8997 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8998 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8999 				msg_src_ip6[3]):
9000 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
9001 		if (type == BPF_READ) {
9002 			bpf_ctx_record_field_size(info, size_default);
9003 
9004 			if (bpf_ctx_wide_access_ok(off, size,
9005 						   struct bpf_sock_addr,
9006 						   user_ip6))
9007 				return true;
9008 
9009 			if (bpf_ctx_wide_access_ok(off, size,
9010 						   struct bpf_sock_addr,
9011 						   msg_src_ip6))
9012 				return true;
9013 
9014 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9015 				return false;
9016 		} else {
9017 			if (bpf_ctx_wide_access_ok(off, size,
9018 						   struct bpf_sock_addr,
9019 						   user_ip6))
9020 				return true;
9021 
9022 			if (bpf_ctx_wide_access_ok(off, size,
9023 						   struct bpf_sock_addr,
9024 						   msg_src_ip6))
9025 				return true;
9026 
9027 			if (size != size_default)
9028 				return false;
9029 		}
9030 		break;
9031 	case offsetof(struct bpf_sock_addr, sk):
9032 		if (type != BPF_READ)
9033 			return false;
9034 		if (size != sizeof(__u64))
9035 			return false;
9036 		info->reg_type = PTR_TO_SOCKET;
9037 		break;
9038 	default:
9039 		if (type == BPF_READ) {
9040 			if (size != size_default)
9041 				return false;
9042 		} else {
9043 			return false;
9044 		}
9045 	}
9046 
9047 	return true;
9048 }
9049 
9050 static bool sock_ops_is_valid_access(int off, int size,
9051 				     enum bpf_access_type type,
9052 				     const struct bpf_prog *prog,
9053 				     struct bpf_insn_access_aux *info)
9054 {
9055 	const int size_default = sizeof(__u32);
9056 
9057 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9058 		return false;
9059 
9060 	/* The verifier guarantees that size > 0. */
9061 	if (off % size != 0)
9062 		return false;
9063 
9064 	if (type == BPF_WRITE) {
9065 		switch (off) {
9066 		case offsetof(struct bpf_sock_ops, reply):
9067 		case offsetof(struct bpf_sock_ops, sk_txhash):
9068 			if (size != size_default)
9069 				return false;
9070 			break;
9071 		default:
9072 			return false;
9073 		}
9074 	} else {
9075 		switch (off) {
9076 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9077 					bytes_acked):
9078 			if (size != sizeof(__u64))
9079 				return false;
9080 			break;
9081 		case offsetof(struct bpf_sock_ops, sk):
9082 			if (size != sizeof(__u64))
9083 				return false;
9084 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9085 			break;
9086 		case offsetof(struct bpf_sock_ops, skb_data):
9087 			if (size != sizeof(__u64))
9088 				return false;
9089 			info->reg_type = PTR_TO_PACKET;
9090 			break;
9091 		case offsetof(struct bpf_sock_ops, skb_data_end):
9092 			if (size != sizeof(__u64))
9093 				return false;
9094 			info->reg_type = PTR_TO_PACKET_END;
9095 			break;
9096 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9097 			bpf_ctx_record_field_size(info, size_default);
9098 			return bpf_ctx_narrow_access_ok(off, size,
9099 							size_default);
9100 		case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9101 			if (size != sizeof(__u64))
9102 				return false;
9103 			break;
9104 		default:
9105 			if (size != size_default)
9106 				return false;
9107 			break;
9108 		}
9109 	}
9110 
9111 	return true;
9112 }
9113 
9114 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9115 			   const struct bpf_prog *prog)
9116 {
9117 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9118 }
9119 
9120 static bool sk_skb_is_valid_access(int off, int size,
9121 				   enum bpf_access_type type,
9122 				   const struct bpf_prog *prog,
9123 				   struct bpf_insn_access_aux *info)
9124 {
9125 	switch (off) {
9126 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9127 	case bpf_ctx_range(struct __sk_buff, data_meta):
9128 	case bpf_ctx_range(struct __sk_buff, tstamp):
9129 	case bpf_ctx_range(struct __sk_buff, wire_len):
9130 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9131 		return false;
9132 	}
9133 
9134 	if (type == BPF_WRITE) {
9135 		switch (off) {
9136 		case bpf_ctx_range(struct __sk_buff, tc_index):
9137 		case bpf_ctx_range(struct __sk_buff, priority):
9138 			break;
9139 		default:
9140 			return false;
9141 		}
9142 	}
9143 
9144 	switch (off) {
9145 	case bpf_ctx_range(struct __sk_buff, mark):
9146 		return false;
9147 	case bpf_ctx_range(struct __sk_buff, data):
9148 		info->reg_type = PTR_TO_PACKET;
9149 		break;
9150 	case bpf_ctx_range(struct __sk_buff, data_end):
9151 		info->reg_type = PTR_TO_PACKET_END;
9152 		break;
9153 	}
9154 
9155 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9156 }
9157 
9158 static bool sk_msg_is_valid_access(int off, int size,
9159 				   enum bpf_access_type type,
9160 				   const struct bpf_prog *prog,
9161 				   struct bpf_insn_access_aux *info)
9162 {
9163 	if (type == BPF_WRITE)
9164 		return false;
9165 
9166 	if (off % size != 0)
9167 		return false;
9168 
9169 	switch (off) {
9170 	case offsetof(struct sk_msg_md, data):
9171 		info->reg_type = PTR_TO_PACKET;
9172 		if (size != sizeof(__u64))
9173 			return false;
9174 		break;
9175 	case offsetof(struct sk_msg_md, data_end):
9176 		info->reg_type = PTR_TO_PACKET_END;
9177 		if (size != sizeof(__u64))
9178 			return false;
9179 		break;
9180 	case offsetof(struct sk_msg_md, sk):
9181 		if (size != sizeof(__u64))
9182 			return false;
9183 		info->reg_type = PTR_TO_SOCKET;
9184 		break;
9185 	case bpf_ctx_range(struct sk_msg_md, family):
9186 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9187 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9188 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9189 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9190 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9191 	case bpf_ctx_range(struct sk_msg_md, local_port):
9192 	case bpf_ctx_range(struct sk_msg_md, size):
9193 		if (size != sizeof(__u32))
9194 			return false;
9195 		break;
9196 	default:
9197 		return false;
9198 	}
9199 	return true;
9200 }
9201 
9202 static bool flow_dissector_is_valid_access(int off, int size,
9203 					   enum bpf_access_type type,
9204 					   const struct bpf_prog *prog,
9205 					   struct bpf_insn_access_aux *info)
9206 {
9207 	const int size_default = sizeof(__u32);
9208 
9209 	if (off < 0 || off >= sizeof(struct __sk_buff))
9210 		return false;
9211 
9212 	if (type == BPF_WRITE)
9213 		return false;
9214 
9215 	switch (off) {
9216 	case bpf_ctx_range(struct __sk_buff, data):
9217 		if (size != size_default)
9218 			return false;
9219 		info->reg_type = PTR_TO_PACKET;
9220 		return true;
9221 	case bpf_ctx_range(struct __sk_buff, data_end):
9222 		if (size != size_default)
9223 			return false;
9224 		info->reg_type = PTR_TO_PACKET_END;
9225 		return true;
9226 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9227 		if (size != sizeof(__u64))
9228 			return false;
9229 		info->reg_type = PTR_TO_FLOW_KEYS;
9230 		return true;
9231 	default:
9232 		return false;
9233 	}
9234 }
9235 
9236 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9237 					     const struct bpf_insn *si,
9238 					     struct bpf_insn *insn_buf,
9239 					     struct bpf_prog *prog,
9240 					     u32 *target_size)
9241 
9242 {
9243 	struct bpf_insn *insn = insn_buf;
9244 
9245 	switch (si->off) {
9246 	case offsetof(struct __sk_buff, data):
9247 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9248 				      si->dst_reg, si->src_reg,
9249 				      offsetof(struct bpf_flow_dissector, data));
9250 		break;
9251 
9252 	case offsetof(struct __sk_buff, data_end):
9253 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9254 				      si->dst_reg, si->src_reg,
9255 				      offsetof(struct bpf_flow_dissector, data_end));
9256 		break;
9257 
9258 	case offsetof(struct __sk_buff, flow_keys):
9259 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9260 				      si->dst_reg, si->src_reg,
9261 				      offsetof(struct bpf_flow_dissector, flow_keys));
9262 		break;
9263 	}
9264 
9265 	return insn - insn_buf;
9266 }
9267 
9268 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9269 						     struct bpf_insn *insn)
9270 {
9271 	__u8 value_reg = si->dst_reg;
9272 	__u8 skb_reg = si->src_reg;
9273 	/* AX is needed because src_reg and dst_reg could be the same */
9274 	__u8 tmp_reg = BPF_REG_AX;
9275 
9276 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9277 			      SKB_BF_MONO_TC_OFFSET);
9278 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9279 				SKB_MONO_DELIVERY_TIME_MASK, 2);
9280 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9281 	*insn++ = BPF_JMP_A(1);
9282 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9283 
9284 	return insn;
9285 }
9286 
9287 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9288 						  struct bpf_insn *insn)
9289 {
9290 	/* si->dst_reg = skb_shinfo(SKB); */
9291 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9292 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9293 			      BPF_REG_AX, skb_reg,
9294 			      offsetof(struct sk_buff, end));
9295 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9296 			      dst_reg, skb_reg,
9297 			      offsetof(struct sk_buff, head));
9298 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9299 #else
9300 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9301 			      dst_reg, skb_reg,
9302 			      offsetof(struct sk_buff, end));
9303 #endif
9304 
9305 	return insn;
9306 }
9307 
9308 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9309 						const struct bpf_insn *si,
9310 						struct bpf_insn *insn)
9311 {
9312 	__u8 value_reg = si->dst_reg;
9313 	__u8 skb_reg = si->src_reg;
9314 
9315 #ifdef CONFIG_NET_CLS_ACT
9316 	/* If the tstamp_type is read,
9317 	 * the bpf prog is aware the tstamp could have delivery time.
9318 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9319 	 */
9320 	if (!prog->tstamp_type_access) {
9321 		/* AX is needed because src_reg and dst_reg could be the same */
9322 		__u8 tmp_reg = BPF_REG_AX;
9323 
9324 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9325 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9326 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9327 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9328 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9329 		/* skb->tc_at_ingress && skb->mono_delivery_time,
9330 		 * read 0 as the (rcv) timestamp.
9331 		 */
9332 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9333 		*insn++ = BPF_JMP_A(1);
9334 	}
9335 #endif
9336 
9337 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9338 			      offsetof(struct sk_buff, tstamp));
9339 	return insn;
9340 }
9341 
9342 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9343 						 const struct bpf_insn *si,
9344 						 struct bpf_insn *insn)
9345 {
9346 	__u8 value_reg = si->src_reg;
9347 	__u8 skb_reg = si->dst_reg;
9348 
9349 #ifdef CONFIG_NET_CLS_ACT
9350 	/* If the tstamp_type is read,
9351 	 * the bpf prog is aware the tstamp could have delivery time.
9352 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9353 	 * Otherwise, writing at ingress will have to clear the
9354 	 * mono_delivery_time bit also.
9355 	 */
9356 	if (!prog->tstamp_type_access) {
9357 		__u8 tmp_reg = BPF_REG_AX;
9358 
9359 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9360 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9361 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9362 		/* goto <store> */
9363 		*insn++ = BPF_JMP_A(2);
9364 		/* <clear>: mono_delivery_time */
9365 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9366 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9367 	}
9368 #endif
9369 
9370 	/* <store>: skb->tstamp = tstamp */
9371 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9372 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9373 	return insn;
9374 }
9375 
9376 #define BPF_EMIT_STORE(size, si, off)					\
9377 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9378 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9379 
9380 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9381 				  const struct bpf_insn *si,
9382 				  struct bpf_insn *insn_buf,
9383 				  struct bpf_prog *prog, u32 *target_size)
9384 {
9385 	struct bpf_insn *insn = insn_buf;
9386 	int off;
9387 
9388 	switch (si->off) {
9389 	case offsetof(struct __sk_buff, len):
9390 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9391 				      bpf_target_off(struct sk_buff, len, 4,
9392 						     target_size));
9393 		break;
9394 
9395 	case offsetof(struct __sk_buff, protocol):
9396 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9397 				      bpf_target_off(struct sk_buff, protocol, 2,
9398 						     target_size));
9399 		break;
9400 
9401 	case offsetof(struct __sk_buff, vlan_proto):
9402 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9403 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9404 						     target_size));
9405 		break;
9406 
9407 	case offsetof(struct __sk_buff, priority):
9408 		if (type == BPF_WRITE)
9409 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9410 						 bpf_target_off(struct sk_buff, priority, 4,
9411 								target_size));
9412 		else
9413 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9414 					      bpf_target_off(struct sk_buff, priority, 4,
9415 							     target_size));
9416 		break;
9417 
9418 	case offsetof(struct __sk_buff, ingress_ifindex):
9419 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9420 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9421 						     target_size));
9422 		break;
9423 
9424 	case offsetof(struct __sk_buff, ifindex):
9425 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9426 				      si->dst_reg, si->src_reg,
9427 				      offsetof(struct sk_buff, dev));
9428 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9429 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9430 				      bpf_target_off(struct net_device, ifindex, 4,
9431 						     target_size));
9432 		break;
9433 
9434 	case offsetof(struct __sk_buff, hash):
9435 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9436 				      bpf_target_off(struct sk_buff, hash, 4,
9437 						     target_size));
9438 		break;
9439 
9440 	case offsetof(struct __sk_buff, mark):
9441 		if (type == BPF_WRITE)
9442 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9443 						 bpf_target_off(struct sk_buff, mark, 4,
9444 								target_size));
9445 		else
9446 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9447 					      bpf_target_off(struct sk_buff, mark, 4,
9448 							     target_size));
9449 		break;
9450 
9451 	case offsetof(struct __sk_buff, pkt_type):
9452 		*target_size = 1;
9453 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9454 				      PKT_TYPE_OFFSET);
9455 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9456 #ifdef __BIG_ENDIAN_BITFIELD
9457 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9458 #endif
9459 		break;
9460 
9461 	case offsetof(struct __sk_buff, queue_mapping):
9462 		if (type == BPF_WRITE) {
9463 			u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9464 
9465 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9466 				*insn++ = BPF_JMP_A(0); /* noop */
9467 				break;
9468 			}
9469 
9470 			if (BPF_CLASS(si->code) == BPF_STX)
9471 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9472 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9473 		} else {
9474 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9475 					      bpf_target_off(struct sk_buff,
9476 							     queue_mapping,
9477 							     2, target_size));
9478 		}
9479 		break;
9480 
9481 	case offsetof(struct __sk_buff, vlan_present):
9482 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9483 				      bpf_target_off(struct sk_buff,
9484 						     vlan_all, 4, target_size));
9485 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9486 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9487 		break;
9488 
9489 	case offsetof(struct __sk_buff, vlan_tci):
9490 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9491 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9492 						     target_size));
9493 		break;
9494 
9495 	case offsetof(struct __sk_buff, cb[0]) ...
9496 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9497 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9498 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9499 			      offsetof(struct qdisc_skb_cb, data)) %
9500 			     sizeof(__u64));
9501 
9502 		prog->cb_access = 1;
9503 		off  = si->off;
9504 		off -= offsetof(struct __sk_buff, cb[0]);
9505 		off += offsetof(struct sk_buff, cb);
9506 		off += offsetof(struct qdisc_skb_cb, data);
9507 		if (type == BPF_WRITE)
9508 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9509 		else
9510 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9511 					      si->src_reg, off);
9512 		break;
9513 
9514 	case offsetof(struct __sk_buff, tc_classid):
9515 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9516 
9517 		off  = si->off;
9518 		off -= offsetof(struct __sk_buff, tc_classid);
9519 		off += offsetof(struct sk_buff, cb);
9520 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9521 		*target_size = 2;
9522 		if (type == BPF_WRITE)
9523 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9524 		else
9525 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9526 					      si->src_reg, off);
9527 		break;
9528 
9529 	case offsetof(struct __sk_buff, data):
9530 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9531 				      si->dst_reg, si->src_reg,
9532 				      offsetof(struct sk_buff, data));
9533 		break;
9534 
9535 	case offsetof(struct __sk_buff, data_meta):
9536 		off  = si->off;
9537 		off -= offsetof(struct __sk_buff, data_meta);
9538 		off += offsetof(struct sk_buff, cb);
9539 		off += offsetof(struct bpf_skb_data_end, data_meta);
9540 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9541 				      si->src_reg, off);
9542 		break;
9543 
9544 	case offsetof(struct __sk_buff, data_end):
9545 		off  = si->off;
9546 		off -= offsetof(struct __sk_buff, data_end);
9547 		off += offsetof(struct sk_buff, cb);
9548 		off += offsetof(struct bpf_skb_data_end, data_end);
9549 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9550 				      si->src_reg, off);
9551 		break;
9552 
9553 	case offsetof(struct __sk_buff, tc_index):
9554 #ifdef CONFIG_NET_SCHED
9555 		if (type == BPF_WRITE)
9556 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9557 						 bpf_target_off(struct sk_buff, tc_index, 2,
9558 								target_size));
9559 		else
9560 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9561 					      bpf_target_off(struct sk_buff, tc_index, 2,
9562 							     target_size));
9563 #else
9564 		*target_size = 2;
9565 		if (type == BPF_WRITE)
9566 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9567 		else
9568 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9569 #endif
9570 		break;
9571 
9572 	case offsetof(struct __sk_buff, napi_id):
9573 #if defined(CONFIG_NET_RX_BUSY_POLL)
9574 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9575 				      bpf_target_off(struct sk_buff, napi_id, 4,
9576 						     target_size));
9577 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9578 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9579 #else
9580 		*target_size = 4;
9581 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9582 #endif
9583 		break;
9584 	case offsetof(struct __sk_buff, family):
9585 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9586 
9587 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9588 				      si->dst_reg, si->src_reg,
9589 				      offsetof(struct sk_buff, sk));
9590 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9591 				      bpf_target_off(struct sock_common,
9592 						     skc_family,
9593 						     2, target_size));
9594 		break;
9595 	case offsetof(struct __sk_buff, remote_ip4):
9596 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9597 
9598 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9599 				      si->dst_reg, si->src_reg,
9600 				      offsetof(struct sk_buff, sk));
9601 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9602 				      bpf_target_off(struct sock_common,
9603 						     skc_daddr,
9604 						     4, target_size));
9605 		break;
9606 	case offsetof(struct __sk_buff, local_ip4):
9607 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9608 					  skc_rcv_saddr) != 4);
9609 
9610 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9611 				      si->dst_reg, si->src_reg,
9612 				      offsetof(struct sk_buff, sk));
9613 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9614 				      bpf_target_off(struct sock_common,
9615 						     skc_rcv_saddr,
9616 						     4, target_size));
9617 		break;
9618 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9619 	     offsetof(struct __sk_buff, remote_ip6[3]):
9620 #if IS_ENABLED(CONFIG_IPV6)
9621 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9622 					  skc_v6_daddr.s6_addr32[0]) != 4);
9623 
9624 		off = si->off;
9625 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9626 
9627 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9628 				      si->dst_reg, si->src_reg,
9629 				      offsetof(struct sk_buff, sk));
9630 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9631 				      offsetof(struct sock_common,
9632 					       skc_v6_daddr.s6_addr32[0]) +
9633 				      off);
9634 #else
9635 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9636 #endif
9637 		break;
9638 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9639 	     offsetof(struct __sk_buff, local_ip6[3]):
9640 #if IS_ENABLED(CONFIG_IPV6)
9641 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9642 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9643 
9644 		off = si->off;
9645 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9646 
9647 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9648 				      si->dst_reg, si->src_reg,
9649 				      offsetof(struct sk_buff, sk));
9650 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9651 				      offsetof(struct sock_common,
9652 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9653 				      off);
9654 #else
9655 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9656 #endif
9657 		break;
9658 
9659 	case offsetof(struct __sk_buff, remote_port):
9660 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9661 
9662 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9663 				      si->dst_reg, si->src_reg,
9664 				      offsetof(struct sk_buff, sk));
9665 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9666 				      bpf_target_off(struct sock_common,
9667 						     skc_dport,
9668 						     2, target_size));
9669 #ifndef __BIG_ENDIAN_BITFIELD
9670 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9671 #endif
9672 		break;
9673 
9674 	case offsetof(struct __sk_buff, local_port):
9675 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9676 
9677 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9678 				      si->dst_reg, si->src_reg,
9679 				      offsetof(struct sk_buff, sk));
9680 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9681 				      bpf_target_off(struct sock_common,
9682 						     skc_num, 2, target_size));
9683 		break;
9684 
9685 	case offsetof(struct __sk_buff, tstamp):
9686 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9687 
9688 		if (type == BPF_WRITE)
9689 			insn = bpf_convert_tstamp_write(prog, si, insn);
9690 		else
9691 			insn = bpf_convert_tstamp_read(prog, si, insn);
9692 		break;
9693 
9694 	case offsetof(struct __sk_buff, tstamp_type):
9695 		insn = bpf_convert_tstamp_type_read(si, insn);
9696 		break;
9697 
9698 	case offsetof(struct __sk_buff, gso_segs):
9699 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9700 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9701 				      si->dst_reg, si->dst_reg,
9702 				      bpf_target_off(struct skb_shared_info,
9703 						     gso_segs, 2,
9704 						     target_size));
9705 		break;
9706 	case offsetof(struct __sk_buff, gso_size):
9707 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9708 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9709 				      si->dst_reg, si->dst_reg,
9710 				      bpf_target_off(struct skb_shared_info,
9711 						     gso_size, 2,
9712 						     target_size));
9713 		break;
9714 	case offsetof(struct __sk_buff, wire_len):
9715 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9716 
9717 		off = si->off;
9718 		off -= offsetof(struct __sk_buff, wire_len);
9719 		off += offsetof(struct sk_buff, cb);
9720 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9721 		*target_size = 4;
9722 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9723 		break;
9724 
9725 	case offsetof(struct __sk_buff, sk):
9726 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9727 				      si->dst_reg, si->src_reg,
9728 				      offsetof(struct sk_buff, sk));
9729 		break;
9730 	case offsetof(struct __sk_buff, hwtstamp):
9731 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9732 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9733 
9734 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9735 		*insn++ = BPF_LDX_MEM(BPF_DW,
9736 				      si->dst_reg, si->dst_reg,
9737 				      bpf_target_off(struct skb_shared_info,
9738 						     hwtstamps, 8,
9739 						     target_size));
9740 		break;
9741 	}
9742 
9743 	return insn - insn_buf;
9744 }
9745 
9746 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9747 				const struct bpf_insn *si,
9748 				struct bpf_insn *insn_buf,
9749 				struct bpf_prog *prog, u32 *target_size)
9750 {
9751 	struct bpf_insn *insn = insn_buf;
9752 	int off;
9753 
9754 	switch (si->off) {
9755 	case offsetof(struct bpf_sock, bound_dev_if):
9756 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9757 
9758 		if (type == BPF_WRITE)
9759 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9760 						 offsetof(struct sock, sk_bound_dev_if));
9761 		else
9762 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9763 				      offsetof(struct sock, sk_bound_dev_if));
9764 		break;
9765 
9766 	case offsetof(struct bpf_sock, mark):
9767 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9768 
9769 		if (type == BPF_WRITE)
9770 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9771 						 offsetof(struct sock, sk_mark));
9772 		else
9773 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9774 				      offsetof(struct sock, sk_mark));
9775 		break;
9776 
9777 	case offsetof(struct bpf_sock, priority):
9778 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9779 
9780 		if (type == BPF_WRITE)
9781 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9782 						 offsetof(struct sock, sk_priority));
9783 		else
9784 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9785 				      offsetof(struct sock, sk_priority));
9786 		break;
9787 
9788 	case offsetof(struct bpf_sock, family):
9789 		*insn++ = BPF_LDX_MEM(
9790 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9791 			si->dst_reg, si->src_reg,
9792 			bpf_target_off(struct sock_common,
9793 				       skc_family,
9794 				       sizeof_field(struct sock_common,
9795 						    skc_family),
9796 				       target_size));
9797 		break;
9798 
9799 	case offsetof(struct bpf_sock, type):
9800 		*insn++ = BPF_LDX_MEM(
9801 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9802 			si->dst_reg, si->src_reg,
9803 			bpf_target_off(struct sock, sk_type,
9804 				       sizeof_field(struct sock, sk_type),
9805 				       target_size));
9806 		break;
9807 
9808 	case offsetof(struct bpf_sock, protocol):
9809 		*insn++ = BPF_LDX_MEM(
9810 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9811 			si->dst_reg, si->src_reg,
9812 			bpf_target_off(struct sock, sk_protocol,
9813 				       sizeof_field(struct sock, sk_protocol),
9814 				       target_size));
9815 		break;
9816 
9817 	case offsetof(struct bpf_sock, src_ip4):
9818 		*insn++ = BPF_LDX_MEM(
9819 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9820 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9821 				       sizeof_field(struct sock_common,
9822 						    skc_rcv_saddr),
9823 				       target_size));
9824 		break;
9825 
9826 	case offsetof(struct bpf_sock, dst_ip4):
9827 		*insn++ = BPF_LDX_MEM(
9828 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9829 			bpf_target_off(struct sock_common, skc_daddr,
9830 				       sizeof_field(struct sock_common,
9831 						    skc_daddr),
9832 				       target_size));
9833 		break;
9834 
9835 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9836 #if IS_ENABLED(CONFIG_IPV6)
9837 		off = si->off;
9838 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9839 		*insn++ = BPF_LDX_MEM(
9840 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9841 			bpf_target_off(
9842 				struct sock_common,
9843 				skc_v6_rcv_saddr.s6_addr32[0],
9844 				sizeof_field(struct sock_common,
9845 					     skc_v6_rcv_saddr.s6_addr32[0]),
9846 				target_size) + off);
9847 #else
9848 		(void)off;
9849 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9850 #endif
9851 		break;
9852 
9853 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9854 #if IS_ENABLED(CONFIG_IPV6)
9855 		off = si->off;
9856 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9857 		*insn++ = BPF_LDX_MEM(
9858 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9859 			bpf_target_off(struct sock_common,
9860 				       skc_v6_daddr.s6_addr32[0],
9861 				       sizeof_field(struct sock_common,
9862 						    skc_v6_daddr.s6_addr32[0]),
9863 				       target_size) + off);
9864 #else
9865 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9866 		*target_size = 4;
9867 #endif
9868 		break;
9869 
9870 	case offsetof(struct bpf_sock, src_port):
9871 		*insn++ = BPF_LDX_MEM(
9872 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9873 			si->dst_reg, si->src_reg,
9874 			bpf_target_off(struct sock_common, skc_num,
9875 				       sizeof_field(struct sock_common,
9876 						    skc_num),
9877 				       target_size));
9878 		break;
9879 
9880 	case offsetof(struct bpf_sock, dst_port):
9881 		*insn++ = BPF_LDX_MEM(
9882 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9883 			si->dst_reg, si->src_reg,
9884 			bpf_target_off(struct sock_common, skc_dport,
9885 				       sizeof_field(struct sock_common,
9886 						    skc_dport),
9887 				       target_size));
9888 		break;
9889 
9890 	case offsetof(struct bpf_sock, state):
9891 		*insn++ = BPF_LDX_MEM(
9892 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9893 			si->dst_reg, si->src_reg,
9894 			bpf_target_off(struct sock_common, skc_state,
9895 				       sizeof_field(struct sock_common,
9896 						    skc_state),
9897 				       target_size));
9898 		break;
9899 	case offsetof(struct bpf_sock, rx_queue_mapping):
9900 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9901 		*insn++ = BPF_LDX_MEM(
9902 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9903 			si->dst_reg, si->src_reg,
9904 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9905 				       sizeof_field(struct sock,
9906 						    sk_rx_queue_mapping),
9907 				       target_size));
9908 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9909 				      1);
9910 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9911 #else
9912 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9913 		*target_size = 2;
9914 #endif
9915 		break;
9916 	}
9917 
9918 	return insn - insn_buf;
9919 }
9920 
9921 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9922 					 const struct bpf_insn *si,
9923 					 struct bpf_insn *insn_buf,
9924 					 struct bpf_prog *prog, u32 *target_size)
9925 {
9926 	struct bpf_insn *insn = insn_buf;
9927 
9928 	switch (si->off) {
9929 	case offsetof(struct __sk_buff, ifindex):
9930 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9931 				      si->dst_reg, si->src_reg,
9932 				      offsetof(struct sk_buff, dev));
9933 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9934 				      bpf_target_off(struct net_device, ifindex, 4,
9935 						     target_size));
9936 		break;
9937 	default:
9938 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9939 					      target_size);
9940 	}
9941 
9942 	return insn - insn_buf;
9943 }
9944 
9945 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9946 				  const struct bpf_insn *si,
9947 				  struct bpf_insn *insn_buf,
9948 				  struct bpf_prog *prog, u32 *target_size)
9949 {
9950 	struct bpf_insn *insn = insn_buf;
9951 
9952 	switch (si->off) {
9953 	case offsetof(struct xdp_md, data):
9954 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9955 				      si->dst_reg, si->src_reg,
9956 				      offsetof(struct xdp_buff, data));
9957 		break;
9958 	case offsetof(struct xdp_md, data_meta):
9959 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9960 				      si->dst_reg, si->src_reg,
9961 				      offsetof(struct xdp_buff, data_meta));
9962 		break;
9963 	case offsetof(struct xdp_md, data_end):
9964 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9965 				      si->dst_reg, si->src_reg,
9966 				      offsetof(struct xdp_buff, data_end));
9967 		break;
9968 	case offsetof(struct xdp_md, ingress_ifindex):
9969 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9970 				      si->dst_reg, si->src_reg,
9971 				      offsetof(struct xdp_buff, rxq));
9972 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9973 				      si->dst_reg, si->dst_reg,
9974 				      offsetof(struct xdp_rxq_info, dev));
9975 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9976 				      offsetof(struct net_device, ifindex));
9977 		break;
9978 	case offsetof(struct xdp_md, rx_queue_index):
9979 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9980 				      si->dst_reg, si->src_reg,
9981 				      offsetof(struct xdp_buff, rxq));
9982 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9983 				      offsetof(struct xdp_rxq_info,
9984 					       queue_index));
9985 		break;
9986 	case offsetof(struct xdp_md, egress_ifindex):
9987 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9988 				      si->dst_reg, si->src_reg,
9989 				      offsetof(struct xdp_buff, txq));
9990 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9991 				      si->dst_reg, si->dst_reg,
9992 				      offsetof(struct xdp_txq_info, dev));
9993 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9994 				      offsetof(struct net_device, ifindex));
9995 		break;
9996 	}
9997 
9998 	return insn - insn_buf;
9999 }
10000 
10001 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10002  * context Structure, F is Field in context structure that contains a pointer
10003  * to Nested Structure of type NS that has the field NF.
10004  *
10005  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10006  * sure that SIZE is not greater than actual size of S.F.NF.
10007  *
10008  * If offset OFF is provided, the load happens from that offset relative to
10009  * offset of NF.
10010  */
10011 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10012 	do {								       \
10013 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10014 				      si->src_reg, offsetof(S, F));	       \
10015 		*insn++ = BPF_LDX_MEM(					       \
10016 			SIZE, si->dst_reg, si->dst_reg,			       \
10017 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10018 				       target_size)			       \
10019 				+ OFF);					       \
10020 	} while (0)
10021 
10022 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10023 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10024 					     BPF_FIELD_SIZEOF(NS, NF), 0)
10025 
10026 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10027  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10028  *
10029  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10030  * "register" since two registers available in convert_ctx_access are not
10031  * enough: we can't override neither SRC, since it contains value to store, nor
10032  * DST since it contains pointer to context that may be used by later
10033  * instructions. But we need a temporary place to save pointer to nested
10034  * structure whose field we want to store to.
10035  */
10036 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10037 	do {								       \
10038 		int tmp_reg = BPF_REG_9;				       \
10039 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10040 			--tmp_reg;					       \
10041 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10042 			--tmp_reg;					       \
10043 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10044 				      offsetof(S, TF));			       \
10045 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10046 				      si->dst_reg, offsetof(S, F));	       \
10047 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10048 				       tmp_reg, si->src_reg,		       \
10049 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10050 				       target_size)			       \
10051 				       + OFF,				       \
10052 				       si->imm);			       \
10053 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10054 				      offsetof(S, TF));			       \
10055 	} while (0)
10056 
10057 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10058 						      TF)		       \
10059 	do {								       \
10060 		if (type == BPF_WRITE) {				       \
10061 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10062 							 OFF, TF);	       \
10063 		} else {						       \
10064 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10065 				S, NS, F, NF, SIZE, OFF);  \
10066 		}							       \
10067 	} while (0)
10068 
10069 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
10070 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
10071 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10072 
10073 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10074 					const struct bpf_insn *si,
10075 					struct bpf_insn *insn_buf,
10076 					struct bpf_prog *prog, u32 *target_size)
10077 {
10078 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10079 	struct bpf_insn *insn = insn_buf;
10080 
10081 	switch (si->off) {
10082 	case offsetof(struct bpf_sock_addr, user_family):
10083 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10084 					    struct sockaddr, uaddr, sa_family);
10085 		break;
10086 
10087 	case offsetof(struct bpf_sock_addr, user_ip4):
10088 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10089 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10090 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10091 		break;
10092 
10093 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10094 		off = si->off;
10095 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10096 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10097 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10098 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10099 			tmp_reg);
10100 		break;
10101 
10102 	case offsetof(struct bpf_sock_addr, user_port):
10103 		/* To get port we need to know sa_family first and then treat
10104 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10105 		 * Though we can simplify since port field has same offset and
10106 		 * size in both structures.
10107 		 * Here we check this invariant and use just one of the
10108 		 * structures if it's true.
10109 		 */
10110 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10111 			     offsetof(struct sockaddr_in6, sin6_port));
10112 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10113 			     sizeof_field(struct sockaddr_in6, sin6_port));
10114 		/* Account for sin6_port being smaller than user_port. */
10115 		port_size = min(port_size, BPF_LDST_BYTES(si));
10116 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10117 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10118 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10119 		break;
10120 
10121 	case offsetof(struct bpf_sock_addr, family):
10122 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10123 					    struct sock, sk, sk_family);
10124 		break;
10125 
10126 	case offsetof(struct bpf_sock_addr, type):
10127 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10128 					    struct sock, sk, sk_type);
10129 		break;
10130 
10131 	case offsetof(struct bpf_sock_addr, protocol):
10132 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10133 					    struct sock, sk, sk_protocol);
10134 		break;
10135 
10136 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10137 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10138 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10139 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10140 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10141 		break;
10142 
10143 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10144 				msg_src_ip6[3]):
10145 		off = si->off;
10146 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10147 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10148 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10149 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10150 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10151 		break;
10152 	case offsetof(struct bpf_sock_addr, sk):
10153 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10154 				      si->dst_reg, si->src_reg,
10155 				      offsetof(struct bpf_sock_addr_kern, sk));
10156 		break;
10157 	}
10158 
10159 	return insn - insn_buf;
10160 }
10161 
10162 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10163 				       const struct bpf_insn *si,
10164 				       struct bpf_insn *insn_buf,
10165 				       struct bpf_prog *prog,
10166 				       u32 *target_size)
10167 {
10168 	struct bpf_insn *insn = insn_buf;
10169 	int off;
10170 
10171 /* Helper macro for adding read access to tcp_sock or sock fields. */
10172 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10173 	do {								      \
10174 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10175 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10176 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10177 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10178 			reg--;						      \
10179 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10180 			reg--;						      \
10181 		if (si->dst_reg == si->src_reg) {			      \
10182 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10183 					  offsetof(struct bpf_sock_ops_kern,  \
10184 					  temp));			      \
10185 			fullsock_reg = reg;				      \
10186 			jmp += 2;					      \
10187 		}							      \
10188 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10189 						struct bpf_sock_ops_kern,     \
10190 						is_fullsock),		      \
10191 				      fullsock_reg, si->src_reg,	      \
10192 				      offsetof(struct bpf_sock_ops_kern,      \
10193 					       is_fullsock));		      \
10194 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10195 		if (si->dst_reg == si->src_reg)				      \
10196 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10197 				      offsetof(struct bpf_sock_ops_kern,      \
10198 				      temp));				      \
10199 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10200 						struct bpf_sock_ops_kern, sk),\
10201 				      si->dst_reg, si->src_reg,		      \
10202 				      offsetof(struct bpf_sock_ops_kern, sk));\
10203 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10204 						       OBJ_FIELD),	      \
10205 				      si->dst_reg, si->dst_reg,		      \
10206 				      offsetof(OBJ, OBJ_FIELD));	      \
10207 		if (si->dst_reg == si->src_reg)	{			      \
10208 			*insn++ = BPF_JMP_A(1);				      \
10209 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10210 				      offsetof(struct bpf_sock_ops_kern,      \
10211 				      temp));				      \
10212 		}							      \
10213 	} while (0)
10214 
10215 #define SOCK_OPS_GET_SK()							      \
10216 	do {								      \
10217 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10218 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10219 			reg--;						      \
10220 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10221 			reg--;						      \
10222 		if (si->dst_reg == si->src_reg) {			      \
10223 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10224 					  offsetof(struct bpf_sock_ops_kern,  \
10225 					  temp));			      \
10226 			fullsock_reg = reg;				      \
10227 			jmp += 2;					      \
10228 		}							      \
10229 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10230 						struct bpf_sock_ops_kern,     \
10231 						is_fullsock),		      \
10232 				      fullsock_reg, si->src_reg,	      \
10233 				      offsetof(struct bpf_sock_ops_kern,      \
10234 					       is_fullsock));		      \
10235 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10236 		if (si->dst_reg == si->src_reg)				      \
10237 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10238 				      offsetof(struct bpf_sock_ops_kern,      \
10239 				      temp));				      \
10240 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10241 						struct bpf_sock_ops_kern, sk),\
10242 				      si->dst_reg, si->src_reg,		      \
10243 				      offsetof(struct bpf_sock_ops_kern, sk));\
10244 		if (si->dst_reg == si->src_reg)	{			      \
10245 			*insn++ = BPF_JMP_A(1);				      \
10246 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10247 				      offsetof(struct bpf_sock_ops_kern,      \
10248 				      temp));				      \
10249 		}							      \
10250 	} while (0)
10251 
10252 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10253 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10254 
10255 /* Helper macro for adding write access to tcp_sock or sock fields.
10256  * The macro is called with two registers, dst_reg which contains a pointer
10257  * to ctx (context) and src_reg which contains the value that should be
10258  * stored. However, we need an additional register since we cannot overwrite
10259  * dst_reg because it may be used later in the program.
10260  * Instead we "borrow" one of the other register. We first save its value
10261  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10262  * it at the end of the macro.
10263  */
10264 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10265 	do {								      \
10266 		int reg = BPF_REG_9;					      \
10267 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10268 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10269 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10270 			reg--;						      \
10271 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10272 			reg--;						      \
10273 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10274 				      offsetof(struct bpf_sock_ops_kern,      \
10275 					       temp));			      \
10276 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10277 						struct bpf_sock_ops_kern,     \
10278 						is_fullsock),		      \
10279 				      reg, si->dst_reg,			      \
10280 				      offsetof(struct bpf_sock_ops_kern,      \
10281 					       is_fullsock));		      \
10282 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10283 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10284 						struct bpf_sock_ops_kern, sk),\
10285 				      reg, si->dst_reg,			      \
10286 				      offsetof(struct bpf_sock_ops_kern, sk));\
10287 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10288 				       BPF_MEM | BPF_CLASS(si->code),	      \
10289 				       reg, si->src_reg,		      \
10290 				       offsetof(OBJ, OBJ_FIELD),	      \
10291 				       si->imm);			      \
10292 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10293 				      offsetof(struct bpf_sock_ops_kern,      \
10294 					       temp));			      \
10295 	} while (0)
10296 
10297 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10298 	do {								      \
10299 		if (TYPE == BPF_WRITE)					      \
10300 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10301 		else							      \
10302 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10303 	} while (0)
10304 
10305 	switch (si->off) {
10306 	case offsetof(struct bpf_sock_ops, op):
10307 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10308 						       op),
10309 				      si->dst_reg, si->src_reg,
10310 				      offsetof(struct bpf_sock_ops_kern, op));
10311 		break;
10312 
10313 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10314 	     offsetof(struct bpf_sock_ops, replylong[3]):
10315 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10316 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10317 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10318 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10319 		off = si->off;
10320 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10321 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10322 		if (type == BPF_WRITE)
10323 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10324 		else
10325 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10326 					      off);
10327 		break;
10328 
10329 	case offsetof(struct bpf_sock_ops, family):
10330 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10331 
10332 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10333 					      struct bpf_sock_ops_kern, sk),
10334 				      si->dst_reg, si->src_reg,
10335 				      offsetof(struct bpf_sock_ops_kern, sk));
10336 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10337 				      offsetof(struct sock_common, skc_family));
10338 		break;
10339 
10340 	case offsetof(struct bpf_sock_ops, remote_ip4):
10341 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10342 
10343 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10344 						struct bpf_sock_ops_kern, sk),
10345 				      si->dst_reg, si->src_reg,
10346 				      offsetof(struct bpf_sock_ops_kern, sk));
10347 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10348 				      offsetof(struct sock_common, skc_daddr));
10349 		break;
10350 
10351 	case offsetof(struct bpf_sock_ops, local_ip4):
10352 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10353 					  skc_rcv_saddr) != 4);
10354 
10355 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10356 					      struct bpf_sock_ops_kern, sk),
10357 				      si->dst_reg, si->src_reg,
10358 				      offsetof(struct bpf_sock_ops_kern, sk));
10359 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10360 				      offsetof(struct sock_common,
10361 					       skc_rcv_saddr));
10362 		break;
10363 
10364 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10365 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10366 #if IS_ENABLED(CONFIG_IPV6)
10367 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10368 					  skc_v6_daddr.s6_addr32[0]) != 4);
10369 
10370 		off = si->off;
10371 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10372 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10373 						struct bpf_sock_ops_kern, sk),
10374 				      si->dst_reg, si->src_reg,
10375 				      offsetof(struct bpf_sock_ops_kern, sk));
10376 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10377 				      offsetof(struct sock_common,
10378 					       skc_v6_daddr.s6_addr32[0]) +
10379 				      off);
10380 #else
10381 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10382 #endif
10383 		break;
10384 
10385 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10386 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10387 #if IS_ENABLED(CONFIG_IPV6)
10388 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10389 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10390 
10391 		off = si->off;
10392 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10393 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10394 						struct bpf_sock_ops_kern, sk),
10395 				      si->dst_reg, si->src_reg,
10396 				      offsetof(struct bpf_sock_ops_kern, sk));
10397 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10398 				      offsetof(struct sock_common,
10399 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10400 				      off);
10401 #else
10402 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10403 #endif
10404 		break;
10405 
10406 	case offsetof(struct bpf_sock_ops, remote_port):
10407 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10408 
10409 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10410 						struct bpf_sock_ops_kern, sk),
10411 				      si->dst_reg, si->src_reg,
10412 				      offsetof(struct bpf_sock_ops_kern, sk));
10413 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10414 				      offsetof(struct sock_common, skc_dport));
10415 #ifndef __BIG_ENDIAN_BITFIELD
10416 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10417 #endif
10418 		break;
10419 
10420 	case offsetof(struct bpf_sock_ops, local_port):
10421 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10422 
10423 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10424 						struct bpf_sock_ops_kern, sk),
10425 				      si->dst_reg, si->src_reg,
10426 				      offsetof(struct bpf_sock_ops_kern, sk));
10427 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10428 				      offsetof(struct sock_common, skc_num));
10429 		break;
10430 
10431 	case offsetof(struct bpf_sock_ops, is_fullsock):
10432 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10433 						struct bpf_sock_ops_kern,
10434 						is_fullsock),
10435 				      si->dst_reg, si->src_reg,
10436 				      offsetof(struct bpf_sock_ops_kern,
10437 					       is_fullsock));
10438 		break;
10439 
10440 	case offsetof(struct bpf_sock_ops, state):
10441 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10442 
10443 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10444 						struct bpf_sock_ops_kern, sk),
10445 				      si->dst_reg, si->src_reg,
10446 				      offsetof(struct bpf_sock_ops_kern, sk));
10447 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10448 				      offsetof(struct sock_common, skc_state));
10449 		break;
10450 
10451 	case offsetof(struct bpf_sock_ops, rtt_min):
10452 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10453 			     sizeof(struct minmax));
10454 		BUILD_BUG_ON(sizeof(struct minmax) <
10455 			     sizeof(struct minmax_sample));
10456 
10457 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10458 						struct bpf_sock_ops_kern, sk),
10459 				      si->dst_reg, si->src_reg,
10460 				      offsetof(struct bpf_sock_ops_kern, sk));
10461 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10462 				      offsetof(struct tcp_sock, rtt_min) +
10463 				      sizeof_field(struct minmax_sample, t));
10464 		break;
10465 
10466 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10467 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10468 				   struct tcp_sock);
10469 		break;
10470 
10471 	case offsetof(struct bpf_sock_ops, sk_txhash):
10472 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10473 					  struct sock, type);
10474 		break;
10475 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10476 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10477 		break;
10478 	case offsetof(struct bpf_sock_ops, srtt_us):
10479 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10480 		break;
10481 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10482 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10483 		break;
10484 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10485 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10486 		break;
10487 	case offsetof(struct bpf_sock_ops, snd_nxt):
10488 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10489 		break;
10490 	case offsetof(struct bpf_sock_ops, snd_una):
10491 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10492 		break;
10493 	case offsetof(struct bpf_sock_ops, mss_cache):
10494 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10495 		break;
10496 	case offsetof(struct bpf_sock_ops, ecn_flags):
10497 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10498 		break;
10499 	case offsetof(struct bpf_sock_ops, rate_delivered):
10500 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10501 		break;
10502 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10503 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10504 		break;
10505 	case offsetof(struct bpf_sock_ops, packets_out):
10506 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10507 		break;
10508 	case offsetof(struct bpf_sock_ops, retrans_out):
10509 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10510 		break;
10511 	case offsetof(struct bpf_sock_ops, total_retrans):
10512 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10513 		break;
10514 	case offsetof(struct bpf_sock_ops, segs_in):
10515 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10516 		break;
10517 	case offsetof(struct bpf_sock_ops, data_segs_in):
10518 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10519 		break;
10520 	case offsetof(struct bpf_sock_ops, segs_out):
10521 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10522 		break;
10523 	case offsetof(struct bpf_sock_ops, data_segs_out):
10524 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10525 		break;
10526 	case offsetof(struct bpf_sock_ops, lost_out):
10527 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10528 		break;
10529 	case offsetof(struct bpf_sock_ops, sacked_out):
10530 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10531 		break;
10532 	case offsetof(struct bpf_sock_ops, bytes_received):
10533 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10534 		break;
10535 	case offsetof(struct bpf_sock_ops, bytes_acked):
10536 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10537 		break;
10538 	case offsetof(struct bpf_sock_ops, sk):
10539 		SOCK_OPS_GET_SK();
10540 		break;
10541 	case offsetof(struct bpf_sock_ops, skb_data_end):
10542 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10543 						       skb_data_end),
10544 				      si->dst_reg, si->src_reg,
10545 				      offsetof(struct bpf_sock_ops_kern,
10546 					       skb_data_end));
10547 		break;
10548 	case offsetof(struct bpf_sock_ops, skb_data):
10549 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10550 						       skb),
10551 				      si->dst_reg, si->src_reg,
10552 				      offsetof(struct bpf_sock_ops_kern,
10553 					       skb));
10554 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10555 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10556 				      si->dst_reg, si->dst_reg,
10557 				      offsetof(struct sk_buff, data));
10558 		break;
10559 	case offsetof(struct bpf_sock_ops, skb_len):
10560 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10561 						       skb),
10562 				      si->dst_reg, si->src_reg,
10563 				      offsetof(struct bpf_sock_ops_kern,
10564 					       skb));
10565 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10566 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10567 				      si->dst_reg, si->dst_reg,
10568 				      offsetof(struct sk_buff, len));
10569 		break;
10570 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10571 		off = offsetof(struct sk_buff, cb);
10572 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10573 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10574 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10575 						       skb),
10576 				      si->dst_reg, si->src_reg,
10577 				      offsetof(struct bpf_sock_ops_kern,
10578 					       skb));
10579 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10580 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10581 						       tcp_flags),
10582 				      si->dst_reg, si->dst_reg, off);
10583 		break;
10584 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10585 		struct bpf_insn *jmp_on_null_skb;
10586 
10587 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10588 						       skb),
10589 				      si->dst_reg, si->src_reg,
10590 				      offsetof(struct bpf_sock_ops_kern,
10591 					       skb));
10592 		/* Reserve one insn to test skb == NULL */
10593 		jmp_on_null_skb = insn++;
10594 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10595 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10596 				      bpf_target_off(struct skb_shared_info,
10597 						     hwtstamps, 8,
10598 						     target_size));
10599 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10600 					       insn - jmp_on_null_skb - 1);
10601 		break;
10602 	}
10603 	}
10604 	return insn - insn_buf;
10605 }
10606 
10607 /* data_end = skb->data + skb_headlen() */
10608 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10609 						    struct bpf_insn *insn)
10610 {
10611 	int reg;
10612 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10613 			   offsetof(struct sk_skb_cb, temp_reg);
10614 
10615 	if (si->src_reg == si->dst_reg) {
10616 		/* We need an extra register, choose and save a register. */
10617 		reg = BPF_REG_9;
10618 		if (si->src_reg == reg || si->dst_reg == reg)
10619 			reg--;
10620 		if (si->src_reg == reg || si->dst_reg == reg)
10621 			reg--;
10622 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10623 	} else {
10624 		reg = si->dst_reg;
10625 	}
10626 
10627 	/* reg = skb->data */
10628 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10629 			      reg, si->src_reg,
10630 			      offsetof(struct sk_buff, data));
10631 	/* AX = skb->len */
10632 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10633 			      BPF_REG_AX, si->src_reg,
10634 			      offsetof(struct sk_buff, len));
10635 	/* reg = skb->data + skb->len */
10636 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10637 	/* AX = skb->data_len */
10638 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10639 			      BPF_REG_AX, si->src_reg,
10640 			      offsetof(struct sk_buff, data_len));
10641 
10642 	/* reg = skb->data + skb->len - skb->data_len */
10643 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10644 
10645 	if (si->src_reg == si->dst_reg) {
10646 		/* Restore the saved register */
10647 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10648 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10649 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10650 	}
10651 
10652 	return insn;
10653 }
10654 
10655 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10656 				     const struct bpf_insn *si,
10657 				     struct bpf_insn *insn_buf,
10658 				     struct bpf_prog *prog, u32 *target_size)
10659 {
10660 	struct bpf_insn *insn = insn_buf;
10661 	int off;
10662 
10663 	switch (si->off) {
10664 	case offsetof(struct __sk_buff, data_end):
10665 		insn = bpf_convert_data_end_access(si, insn);
10666 		break;
10667 	case offsetof(struct __sk_buff, cb[0]) ...
10668 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10669 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10670 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10671 			      offsetof(struct sk_skb_cb, data)) %
10672 			     sizeof(__u64));
10673 
10674 		prog->cb_access = 1;
10675 		off  = si->off;
10676 		off -= offsetof(struct __sk_buff, cb[0]);
10677 		off += offsetof(struct sk_buff, cb);
10678 		off += offsetof(struct sk_skb_cb, data);
10679 		if (type == BPF_WRITE)
10680 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10681 		else
10682 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10683 					      si->src_reg, off);
10684 		break;
10685 
10686 
10687 	default:
10688 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10689 					      target_size);
10690 	}
10691 
10692 	return insn - insn_buf;
10693 }
10694 
10695 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10696 				     const struct bpf_insn *si,
10697 				     struct bpf_insn *insn_buf,
10698 				     struct bpf_prog *prog, u32 *target_size)
10699 {
10700 	struct bpf_insn *insn = insn_buf;
10701 #if IS_ENABLED(CONFIG_IPV6)
10702 	int off;
10703 #endif
10704 
10705 	/* convert ctx uses the fact sg element is first in struct */
10706 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10707 
10708 	switch (si->off) {
10709 	case offsetof(struct sk_msg_md, data):
10710 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10711 				      si->dst_reg, si->src_reg,
10712 				      offsetof(struct sk_msg, data));
10713 		break;
10714 	case offsetof(struct sk_msg_md, data_end):
10715 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10716 				      si->dst_reg, si->src_reg,
10717 				      offsetof(struct sk_msg, data_end));
10718 		break;
10719 	case offsetof(struct sk_msg_md, family):
10720 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10721 
10722 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10723 					      struct sk_msg, sk),
10724 				      si->dst_reg, si->src_reg,
10725 				      offsetof(struct sk_msg, sk));
10726 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10727 				      offsetof(struct sock_common, skc_family));
10728 		break;
10729 
10730 	case offsetof(struct sk_msg_md, remote_ip4):
10731 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10732 
10733 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10734 						struct sk_msg, sk),
10735 				      si->dst_reg, si->src_reg,
10736 				      offsetof(struct sk_msg, sk));
10737 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10738 				      offsetof(struct sock_common, skc_daddr));
10739 		break;
10740 
10741 	case offsetof(struct sk_msg_md, local_ip4):
10742 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10743 					  skc_rcv_saddr) != 4);
10744 
10745 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10746 					      struct sk_msg, sk),
10747 				      si->dst_reg, si->src_reg,
10748 				      offsetof(struct sk_msg, sk));
10749 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10750 				      offsetof(struct sock_common,
10751 					       skc_rcv_saddr));
10752 		break;
10753 
10754 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10755 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10756 #if IS_ENABLED(CONFIG_IPV6)
10757 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10758 					  skc_v6_daddr.s6_addr32[0]) != 4);
10759 
10760 		off = si->off;
10761 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10762 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10763 						struct sk_msg, sk),
10764 				      si->dst_reg, si->src_reg,
10765 				      offsetof(struct sk_msg, sk));
10766 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10767 				      offsetof(struct sock_common,
10768 					       skc_v6_daddr.s6_addr32[0]) +
10769 				      off);
10770 #else
10771 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10772 #endif
10773 		break;
10774 
10775 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10776 	     offsetof(struct sk_msg_md, local_ip6[3]):
10777 #if IS_ENABLED(CONFIG_IPV6)
10778 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10779 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10780 
10781 		off = si->off;
10782 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10783 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10784 						struct sk_msg, sk),
10785 				      si->dst_reg, si->src_reg,
10786 				      offsetof(struct sk_msg, sk));
10787 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10788 				      offsetof(struct sock_common,
10789 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10790 				      off);
10791 #else
10792 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10793 #endif
10794 		break;
10795 
10796 	case offsetof(struct sk_msg_md, remote_port):
10797 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10798 
10799 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10800 						struct sk_msg, sk),
10801 				      si->dst_reg, si->src_reg,
10802 				      offsetof(struct sk_msg, sk));
10803 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10804 				      offsetof(struct sock_common, skc_dport));
10805 #ifndef __BIG_ENDIAN_BITFIELD
10806 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10807 #endif
10808 		break;
10809 
10810 	case offsetof(struct sk_msg_md, local_port):
10811 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10812 
10813 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10814 						struct sk_msg, sk),
10815 				      si->dst_reg, si->src_reg,
10816 				      offsetof(struct sk_msg, sk));
10817 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10818 				      offsetof(struct sock_common, skc_num));
10819 		break;
10820 
10821 	case offsetof(struct sk_msg_md, size):
10822 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10823 				      si->dst_reg, si->src_reg,
10824 				      offsetof(struct sk_msg_sg, size));
10825 		break;
10826 
10827 	case offsetof(struct sk_msg_md, sk):
10828 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10829 				      si->dst_reg, si->src_reg,
10830 				      offsetof(struct sk_msg, sk));
10831 		break;
10832 	}
10833 
10834 	return insn - insn_buf;
10835 }
10836 
10837 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10838 	.get_func_proto		= sk_filter_func_proto,
10839 	.is_valid_access	= sk_filter_is_valid_access,
10840 	.convert_ctx_access	= bpf_convert_ctx_access,
10841 	.gen_ld_abs		= bpf_gen_ld_abs,
10842 };
10843 
10844 const struct bpf_prog_ops sk_filter_prog_ops = {
10845 	.test_run		= bpf_prog_test_run_skb,
10846 };
10847 
10848 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10849 	.get_func_proto		= tc_cls_act_func_proto,
10850 	.is_valid_access	= tc_cls_act_is_valid_access,
10851 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10852 	.gen_prologue		= tc_cls_act_prologue,
10853 	.gen_ld_abs		= bpf_gen_ld_abs,
10854 	.btf_struct_access	= tc_cls_act_btf_struct_access,
10855 };
10856 
10857 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10858 	.test_run		= bpf_prog_test_run_skb,
10859 };
10860 
10861 const struct bpf_verifier_ops xdp_verifier_ops = {
10862 	.get_func_proto		= xdp_func_proto,
10863 	.is_valid_access	= xdp_is_valid_access,
10864 	.convert_ctx_access	= xdp_convert_ctx_access,
10865 	.gen_prologue		= bpf_noop_prologue,
10866 	.btf_struct_access	= xdp_btf_struct_access,
10867 };
10868 
10869 const struct bpf_prog_ops xdp_prog_ops = {
10870 	.test_run		= bpf_prog_test_run_xdp,
10871 };
10872 
10873 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10874 	.get_func_proto		= cg_skb_func_proto,
10875 	.is_valid_access	= cg_skb_is_valid_access,
10876 	.convert_ctx_access	= bpf_convert_ctx_access,
10877 };
10878 
10879 const struct bpf_prog_ops cg_skb_prog_ops = {
10880 	.test_run		= bpf_prog_test_run_skb,
10881 };
10882 
10883 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10884 	.get_func_proto		= lwt_in_func_proto,
10885 	.is_valid_access	= lwt_is_valid_access,
10886 	.convert_ctx_access	= bpf_convert_ctx_access,
10887 };
10888 
10889 const struct bpf_prog_ops lwt_in_prog_ops = {
10890 	.test_run		= bpf_prog_test_run_skb,
10891 };
10892 
10893 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10894 	.get_func_proto		= lwt_out_func_proto,
10895 	.is_valid_access	= lwt_is_valid_access,
10896 	.convert_ctx_access	= bpf_convert_ctx_access,
10897 };
10898 
10899 const struct bpf_prog_ops lwt_out_prog_ops = {
10900 	.test_run		= bpf_prog_test_run_skb,
10901 };
10902 
10903 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10904 	.get_func_proto		= lwt_xmit_func_proto,
10905 	.is_valid_access	= lwt_is_valid_access,
10906 	.convert_ctx_access	= bpf_convert_ctx_access,
10907 	.gen_prologue		= tc_cls_act_prologue,
10908 };
10909 
10910 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10911 	.test_run		= bpf_prog_test_run_skb,
10912 };
10913 
10914 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10915 	.get_func_proto		= lwt_seg6local_func_proto,
10916 	.is_valid_access	= lwt_is_valid_access,
10917 	.convert_ctx_access	= bpf_convert_ctx_access,
10918 };
10919 
10920 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10921 	.test_run		= bpf_prog_test_run_skb,
10922 };
10923 
10924 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10925 	.get_func_proto		= sock_filter_func_proto,
10926 	.is_valid_access	= sock_filter_is_valid_access,
10927 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10928 };
10929 
10930 const struct bpf_prog_ops cg_sock_prog_ops = {
10931 };
10932 
10933 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10934 	.get_func_proto		= sock_addr_func_proto,
10935 	.is_valid_access	= sock_addr_is_valid_access,
10936 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10937 };
10938 
10939 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10940 };
10941 
10942 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10943 	.get_func_proto		= sock_ops_func_proto,
10944 	.is_valid_access	= sock_ops_is_valid_access,
10945 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10946 };
10947 
10948 const struct bpf_prog_ops sock_ops_prog_ops = {
10949 };
10950 
10951 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10952 	.get_func_proto		= sk_skb_func_proto,
10953 	.is_valid_access	= sk_skb_is_valid_access,
10954 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10955 	.gen_prologue		= sk_skb_prologue,
10956 };
10957 
10958 const struct bpf_prog_ops sk_skb_prog_ops = {
10959 };
10960 
10961 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10962 	.get_func_proto		= sk_msg_func_proto,
10963 	.is_valid_access	= sk_msg_is_valid_access,
10964 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10965 	.gen_prologue		= bpf_noop_prologue,
10966 };
10967 
10968 const struct bpf_prog_ops sk_msg_prog_ops = {
10969 };
10970 
10971 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10972 	.get_func_proto		= flow_dissector_func_proto,
10973 	.is_valid_access	= flow_dissector_is_valid_access,
10974 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10975 };
10976 
10977 const struct bpf_prog_ops flow_dissector_prog_ops = {
10978 	.test_run		= bpf_prog_test_run_flow_dissector,
10979 };
10980 
10981 int sk_detach_filter(struct sock *sk)
10982 {
10983 	int ret = -ENOENT;
10984 	struct sk_filter *filter;
10985 
10986 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10987 		return -EPERM;
10988 
10989 	filter = rcu_dereference_protected(sk->sk_filter,
10990 					   lockdep_sock_is_held(sk));
10991 	if (filter) {
10992 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10993 		sk_filter_uncharge(sk, filter);
10994 		ret = 0;
10995 	}
10996 
10997 	return ret;
10998 }
10999 EXPORT_SYMBOL_GPL(sk_detach_filter);
11000 
11001 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11002 {
11003 	struct sock_fprog_kern *fprog;
11004 	struct sk_filter *filter;
11005 	int ret = 0;
11006 
11007 	sockopt_lock_sock(sk);
11008 	filter = rcu_dereference_protected(sk->sk_filter,
11009 					   lockdep_sock_is_held(sk));
11010 	if (!filter)
11011 		goto out;
11012 
11013 	/* We're copying the filter that has been originally attached,
11014 	 * so no conversion/decode needed anymore. eBPF programs that
11015 	 * have no original program cannot be dumped through this.
11016 	 */
11017 	ret = -EACCES;
11018 	fprog = filter->prog->orig_prog;
11019 	if (!fprog)
11020 		goto out;
11021 
11022 	ret = fprog->len;
11023 	if (!len)
11024 		/* User space only enquires number of filter blocks. */
11025 		goto out;
11026 
11027 	ret = -EINVAL;
11028 	if (len < fprog->len)
11029 		goto out;
11030 
11031 	ret = -EFAULT;
11032 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11033 		goto out;
11034 
11035 	/* Instead of bytes, the API requests to return the number
11036 	 * of filter blocks.
11037 	 */
11038 	ret = fprog->len;
11039 out:
11040 	sockopt_release_sock(sk);
11041 	return ret;
11042 }
11043 
11044 #ifdef CONFIG_INET
11045 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11046 				    struct sock_reuseport *reuse,
11047 				    struct sock *sk, struct sk_buff *skb,
11048 				    struct sock *migrating_sk,
11049 				    u32 hash)
11050 {
11051 	reuse_kern->skb = skb;
11052 	reuse_kern->sk = sk;
11053 	reuse_kern->selected_sk = NULL;
11054 	reuse_kern->migrating_sk = migrating_sk;
11055 	reuse_kern->data_end = skb->data + skb_headlen(skb);
11056 	reuse_kern->hash = hash;
11057 	reuse_kern->reuseport_id = reuse->reuseport_id;
11058 	reuse_kern->bind_inany = reuse->bind_inany;
11059 }
11060 
11061 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11062 				  struct bpf_prog *prog, struct sk_buff *skb,
11063 				  struct sock *migrating_sk,
11064 				  u32 hash)
11065 {
11066 	struct sk_reuseport_kern reuse_kern;
11067 	enum sk_action action;
11068 
11069 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11070 	action = bpf_prog_run(prog, &reuse_kern);
11071 
11072 	if (action == SK_PASS)
11073 		return reuse_kern.selected_sk;
11074 	else
11075 		return ERR_PTR(-ECONNREFUSED);
11076 }
11077 
11078 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11079 	   struct bpf_map *, map, void *, key, u32, flags)
11080 {
11081 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11082 	struct sock_reuseport *reuse;
11083 	struct sock *selected_sk;
11084 
11085 	selected_sk = map->ops->map_lookup_elem(map, key);
11086 	if (!selected_sk)
11087 		return -ENOENT;
11088 
11089 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11090 	if (!reuse) {
11091 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11092 		if (sk_is_refcounted(selected_sk))
11093 			sock_put(selected_sk);
11094 
11095 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11096 		 * The only (!reuse) case here is - the sk has already been
11097 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11098 		 *
11099 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11100 		 * the sk may never be in the reuseport group to begin with.
11101 		 */
11102 		return is_sockarray ? -ENOENT : -EINVAL;
11103 	}
11104 
11105 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11106 		struct sock *sk = reuse_kern->sk;
11107 
11108 		if (sk->sk_protocol != selected_sk->sk_protocol)
11109 			return -EPROTOTYPE;
11110 		else if (sk->sk_family != selected_sk->sk_family)
11111 			return -EAFNOSUPPORT;
11112 
11113 		/* Catch all. Likely bound to a different sockaddr. */
11114 		return -EBADFD;
11115 	}
11116 
11117 	reuse_kern->selected_sk = selected_sk;
11118 
11119 	return 0;
11120 }
11121 
11122 static const struct bpf_func_proto sk_select_reuseport_proto = {
11123 	.func           = sk_select_reuseport,
11124 	.gpl_only       = false,
11125 	.ret_type       = RET_INTEGER,
11126 	.arg1_type	= ARG_PTR_TO_CTX,
11127 	.arg2_type      = ARG_CONST_MAP_PTR,
11128 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11129 	.arg4_type	= ARG_ANYTHING,
11130 };
11131 
11132 BPF_CALL_4(sk_reuseport_load_bytes,
11133 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11134 	   void *, to, u32, len)
11135 {
11136 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11137 }
11138 
11139 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11140 	.func		= sk_reuseport_load_bytes,
11141 	.gpl_only	= false,
11142 	.ret_type	= RET_INTEGER,
11143 	.arg1_type	= ARG_PTR_TO_CTX,
11144 	.arg2_type	= ARG_ANYTHING,
11145 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11146 	.arg4_type	= ARG_CONST_SIZE,
11147 };
11148 
11149 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11150 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11151 	   void *, to, u32, len, u32, start_header)
11152 {
11153 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11154 					       len, start_header);
11155 }
11156 
11157 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11158 	.func		= sk_reuseport_load_bytes_relative,
11159 	.gpl_only	= false,
11160 	.ret_type	= RET_INTEGER,
11161 	.arg1_type	= ARG_PTR_TO_CTX,
11162 	.arg2_type	= ARG_ANYTHING,
11163 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11164 	.arg4_type	= ARG_CONST_SIZE,
11165 	.arg5_type	= ARG_ANYTHING,
11166 };
11167 
11168 static const struct bpf_func_proto *
11169 sk_reuseport_func_proto(enum bpf_func_id func_id,
11170 			const struct bpf_prog *prog)
11171 {
11172 	switch (func_id) {
11173 	case BPF_FUNC_sk_select_reuseport:
11174 		return &sk_select_reuseport_proto;
11175 	case BPF_FUNC_skb_load_bytes:
11176 		return &sk_reuseport_load_bytes_proto;
11177 	case BPF_FUNC_skb_load_bytes_relative:
11178 		return &sk_reuseport_load_bytes_relative_proto;
11179 	case BPF_FUNC_get_socket_cookie:
11180 		return &bpf_get_socket_ptr_cookie_proto;
11181 	case BPF_FUNC_ktime_get_coarse_ns:
11182 		return &bpf_ktime_get_coarse_ns_proto;
11183 	default:
11184 		return bpf_base_func_proto(func_id);
11185 	}
11186 }
11187 
11188 static bool
11189 sk_reuseport_is_valid_access(int off, int size,
11190 			     enum bpf_access_type type,
11191 			     const struct bpf_prog *prog,
11192 			     struct bpf_insn_access_aux *info)
11193 {
11194 	const u32 size_default = sizeof(__u32);
11195 
11196 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11197 	    off % size || type != BPF_READ)
11198 		return false;
11199 
11200 	switch (off) {
11201 	case offsetof(struct sk_reuseport_md, data):
11202 		info->reg_type = PTR_TO_PACKET;
11203 		return size == sizeof(__u64);
11204 
11205 	case offsetof(struct sk_reuseport_md, data_end):
11206 		info->reg_type = PTR_TO_PACKET_END;
11207 		return size == sizeof(__u64);
11208 
11209 	case offsetof(struct sk_reuseport_md, hash):
11210 		return size == size_default;
11211 
11212 	case offsetof(struct sk_reuseport_md, sk):
11213 		info->reg_type = PTR_TO_SOCKET;
11214 		return size == sizeof(__u64);
11215 
11216 	case offsetof(struct sk_reuseport_md, migrating_sk):
11217 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11218 		return size == sizeof(__u64);
11219 
11220 	/* Fields that allow narrowing */
11221 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11222 		if (size < sizeof_field(struct sk_buff, protocol))
11223 			return false;
11224 		fallthrough;
11225 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11226 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11227 	case bpf_ctx_range(struct sk_reuseport_md, len):
11228 		bpf_ctx_record_field_size(info, size_default);
11229 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11230 
11231 	default:
11232 		return false;
11233 	}
11234 }
11235 
11236 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11237 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11238 			      si->dst_reg, si->src_reg,			\
11239 			      bpf_target_off(struct sk_reuseport_kern, F, \
11240 					     sizeof_field(struct sk_reuseport_kern, F), \
11241 					     target_size));		\
11242 	})
11243 
11244 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11245 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11246 				    struct sk_buff,			\
11247 				    skb,				\
11248 				    SKB_FIELD)
11249 
11250 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11251 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11252 				    struct sock,			\
11253 				    sk,					\
11254 				    SK_FIELD)
11255 
11256 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11257 					   const struct bpf_insn *si,
11258 					   struct bpf_insn *insn_buf,
11259 					   struct bpf_prog *prog,
11260 					   u32 *target_size)
11261 {
11262 	struct bpf_insn *insn = insn_buf;
11263 
11264 	switch (si->off) {
11265 	case offsetof(struct sk_reuseport_md, data):
11266 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11267 		break;
11268 
11269 	case offsetof(struct sk_reuseport_md, len):
11270 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11271 		break;
11272 
11273 	case offsetof(struct sk_reuseport_md, eth_protocol):
11274 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11275 		break;
11276 
11277 	case offsetof(struct sk_reuseport_md, ip_protocol):
11278 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11279 		break;
11280 
11281 	case offsetof(struct sk_reuseport_md, data_end):
11282 		SK_REUSEPORT_LOAD_FIELD(data_end);
11283 		break;
11284 
11285 	case offsetof(struct sk_reuseport_md, hash):
11286 		SK_REUSEPORT_LOAD_FIELD(hash);
11287 		break;
11288 
11289 	case offsetof(struct sk_reuseport_md, bind_inany):
11290 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11291 		break;
11292 
11293 	case offsetof(struct sk_reuseport_md, sk):
11294 		SK_REUSEPORT_LOAD_FIELD(sk);
11295 		break;
11296 
11297 	case offsetof(struct sk_reuseport_md, migrating_sk):
11298 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11299 		break;
11300 	}
11301 
11302 	return insn - insn_buf;
11303 }
11304 
11305 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11306 	.get_func_proto		= sk_reuseport_func_proto,
11307 	.is_valid_access	= sk_reuseport_is_valid_access,
11308 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11309 };
11310 
11311 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11312 };
11313 
11314 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11315 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11316 
11317 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11318 	   struct sock *, sk, u64, flags)
11319 {
11320 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11321 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11322 		return -EINVAL;
11323 	if (unlikely(sk && sk_is_refcounted(sk)))
11324 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11325 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11326 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11327 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11328 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11329 
11330 	/* Check if socket is suitable for packet L3/L4 protocol */
11331 	if (sk && sk->sk_protocol != ctx->protocol)
11332 		return -EPROTOTYPE;
11333 	if (sk && sk->sk_family != ctx->family &&
11334 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11335 		return -EAFNOSUPPORT;
11336 
11337 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11338 		return -EEXIST;
11339 
11340 	/* Select socket as lookup result */
11341 	ctx->selected_sk = sk;
11342 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11343 	return 0;
11344 }
11345 
11346 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11347 	.func		= bpf_sk_lookup_assign,
11348 	.gpl_only	= false,
11349 	.ret_type	= RET_INTEGER,
11350 	.arg1_type	= ARG_PTR_TO_CTX,
11351 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11352 	.arg3_type	= ARG_ANYTHING,
11353 };
11354 
11355 static const struct bpf_func_proto *
11356 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11357 {
11358 	switch (func_id) {
11359 	case BPF_FUNC_perf_event_output:
11360 		return &bpf_event_output_data_proto;
11361 	case BPF_FUNC_sk_assign:
11362 		return &bpf_sk_lookup_assign_proto;
11363 	case BPF_FUNC_sk_release:
11364 		return &bpf_sk_release_proto;
11365 	default:
11366 		return bpf_sk_base_func_proto(func_id);
11367 	}
11368 }
11369 
11370 static bool sk_lookup_is_valid_access(int off, int size,
11371 				      enum bpf_access_type type,
11372 				      const struct bpf_prog *prog,
11373 				      struct bpf_insn_access_aux *info)
11374 {
11375 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11376 		return false;
11377 	if (off % size != 0)
11378 		return false;
11379 	if (type != BPF_READ)
11380 		return false;
11381 
11382 	switch (off) {
11383 	case offsetof(struct bpf_sk_lookup, sk):
11384 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11385 		return size == sizeof(__u64);
11386 
11387 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11388 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11389 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11390 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11391 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11392 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11393 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11394 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11395 		bpf_ctx_record_field_size(info, sizeof(__u32));
11396 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11397 
11398 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11399 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11400 		if (size == sizeof(__u32))
11401 			return true;
11402 		bpf_ctx_record_field_size(info, sizeof(__be16));
11403 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11404 
11405 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11406 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11407 		/* Allow access to zero padding for backward compatibility */
11408 		bpf_ctx_record_field_size(info, sizeof(__u16));
11409 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11410 
11411 	default:
11412 		return false;
11413 	}
11414 }
11415 
11416 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11417 					const struct bpf_insn *si,
11418 					struct bpf_insn *insn_buf,
11419 					struct bpf_prog *prog,
11420 					u32 *target_size)
11421 {
11422 	struct bpf_insn *insn = insn_buf;
11423 
11424 	switch (si->off) {
11425 	case offsetof(struct bpf_sk_lookup, sk):
11426 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11427 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11428 		break;
11429 
11430 	case offsetof(struct bpf_sk_lookup, family):
11431 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11432 				      bpf_target_off(struct bpf_sk_lookup_kern,
11433 						     family, 2, target_size));
11434 		break;
11435 
11436 	case offsetof(struct bpf_sk_lookup, protocol):
11437 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11438 				      bpf_target_off(struct bpf_sk_lookup_kern,
11439 						     protocol, 2, target_size));
11440 		break;
11441 
11442 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11443 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11444 				      bpf_target_off(struct bpf_sk_lookup_kern,
11445 						     v4.saddr, 4, target_size));
11446 		break;
11447 
11448 	case offsetof(struct bpf_sk_lookup, local_ip4):
11449 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11450 				      bpf_target_off(struct bpf_sk_lookup_kern,
11451 						     v4.daddr, 4, target_size));
11452 		break;
11453 
11454 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11455 				remote_ip6[0], remote_ip6[3]): {
11456 #if IS_ENABLED(CONFIG_IPV6)
11457 		int off = si->off;
11458 
11459 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11460 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11461 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11462 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11463 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11464 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11465 #else
11466 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11467 #endif
11468 		break;
11469 	}
11470 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11471 				local_ip6[0], local_ip6[3]): {
11472 #if IS_ENABLED(CONFIG_IPV6)
11473 		int off = si->off;
11474 
11475 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11476 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11477 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11478 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11479 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11480 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11481 #else
11482 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11483 #endif
11484 		break;
11485 	}
11486 	case offsetof(struct bpf_sk_lookup, remote_port):
11487 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11488 				      bpf_target_off(struct bpf_sk_lookup_kern,
11489 						     sport, 2, target_size));
11490 		break;
11491 
11492 	case offsetofend(struct bpf_sk_lookup, remote_port):
11493 		*target_size = 2;
11494 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11495 		break;
11496 
11497 	case offsetof(struct bpf_sk_lookup, local_port):
11498 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11499 				      bpf_target_off(struct bpf_sk_lookup_kern,
11500 						     dport, 2, target_size));
11501 		break;
11502 
11503 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11504 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11505 				      bpf_target_off(struct bpf_sk_lookup_kern,
11506 						     ingress_ifindex, 4, target_size));
11507 		break;
11508 	}
11509 
11510 	return insn - insn_buf;
11511 }
11512 
11513 const struct bpf_prog_ops sk_lookup_prog_ops = {
11514 	.test_run = bpf_prog_test_run_sk_lookup,
11515 };
11516 
11517 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11518 	.get_func_proto		= sk_lookup_func_proto,
11519 	.is_valid_access	= sk_lookup_is_valid_access,
11520 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11521 };
11522 
11523 #endif /* CONFIG_INET */
11524 
11525 DEFINE_BPF_DISPATCHER(xdp)
11526 
11527 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11528 {
11529 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11530 }
11531 
11532 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11533 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11534 BTF_SOCK_TYPE_xxx
11535 #undef BTF_SOCK_TYPE
11536 
11537 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11538 {
11539 	/* tcp6_sock type is not generated in dwarf and hence btf,
11540 	 * trigger an explicit type generation here.
11541 	 */
11542 	BTF_TYPE_EMIT(struct tcp6_sock);
11543 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11544 	    sk->sk_family == AF_INET6)
11545 		return (unsigned long)sk;
11546 
11547 	return (unsigned long)NULL;
11548 }
11549 
11550 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11551 	.func			= bpf_skc_to_tcp6_sock,
11552 	.gpl_only		= false,
11553 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11554 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11555 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11556 };
11557 
11558 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11559 {
11560 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11561 		return (unsigned long)sk;
11562 
11563 	return (unsigned long)NULL;
11564 }
11565 
11566 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11567 	.func			= bpf_skc_to_tcp_sock,
11568 	.gpl_only		= false,
11569 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11570 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11571 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11572 };
11573 
11574 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11575 {
11576 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11577 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11578 	 */
11579 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11580 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11581 
11582 #ifdef CONFIG_INET
11583 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11584 		return (unsigned long)sk;
11585 #endif
11586 
11587 #if IS_BUILTIN(CONFIG_IPV6)
11588 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11589 		return (unsigned long)sk;
11590 #endif
11591 
11592 	return (unsigned long)NULL;
11593 }
11594 
11595 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11596 	.func			= bpf_skc_to_tcp_timewait_sock,
11597 	.gpl_only		= false,
11598 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11599 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11600 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11601 };
11602 
11603 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11604 {
11605 #ifdef CONFIG_INET
11606 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11607 		return (unsigned long)sk;
11608 #endif
11609 
11610 #if IS_BUILTIN(CONFIG_IPV6)
11611 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11612 		return (unsigned long)sk;
11613 #endif
11614 
11615 	return (unsigned long)NULL;
11616 }
11617 
11618 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11619 	.func			= bpf_skc_to_tcp_request_sock,
11620 	.gpl_only		= false,
11621 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11622 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11623 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11624 };
11625 
11626 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11627 {
11628 	/* udp6_sock type is not generated in dwarf and hence btf,
11629 	 * trigger an explicit type generation here.
11630 	 */
11631 	BTF_TYPE_EMIT(struct udp6_sock);
11632 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11633 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11634 		return (unsigned long)sk;
11635 
11636 	return (unsigned long)NULL;
11637 }
11638 
11639 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11640 	.func			= bpf_skc_to_udp6_sock,
11641 	.gpl_only		= false,
11642 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11643 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11644 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11645 };
11646 
11647 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11648 {
11649 	/* unix_sock type is not generated in dwarf and hence btf,
11650 	 * trigger an explicit type generation here.
11651 	 */
11652 	BTF_TYPE_EMIT(struct unix_sock);
11653 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11654 		return (unsigned long)sk;
11655 
11656 	return (unsigned long)NULL;
11657 }
11658 
11659 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11660 	.func			= bpf_skc_to_unix_sock,
11661 	.gpl_only		= false,
11662 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11663 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11664 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11665 };
11666 
11667 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11668 {
11669 	BTF_TYPE_EMIT(struct mptcp_sock);
11670 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11671 }
11672 
11673 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11674 	.func		= bpf_skc_to_mptcp_sock,
11675 	.gpl_only	= false,
11676 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11677 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11678 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11679 };
11680 
11681 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11682 {
11683 	return (unsigned long)sock_from_file(file);
11684 }
11685 
11686 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11687 BTF_ID(struct, socket)
11688 BTF_ID(struct, file)
11689 
11690 const struct bpf_func_proto bpf_sock_from_file_proto = {
11691 	.func		= bpf_sock_from_file,
11692 	.gpl_only	= false,
11693 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11694 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11695 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11696 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11697 };
11698 
11699 static const struct bpf_func_proto *
11700 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11701 {
11702 	const struct bpf_func_proto *func;
11703 
11704 	switch (func_id) {
11705 	case BPF_FUNC_skc_to_tcp6_sock:
11706 		func = &bpf_skc_to_tcp6_sock_proto;
11707 		break;
11708 	case BPF_FUNC_skc_to_tcp_sock:
11709 		func = &bpf_skc_to_tcp_sock_proto;
11710 		break;
11711 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11712 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11713 		break;
11714 	case BPF_FUNC_skc_to_tcp_request_sock:
11715 		func = &bpf_skc_to_tcp_request_sock_proto;
11716 		break;
11717 	case BPF_FUNC_skc_to_udp6_sock:
11718 		func = &bpf_skc_to_udp6_sock_proto;
11719 		break;
11720 	case BPF_FUNC_skc_to_unix_sock:
11721 		func = &bpf_skc_to_unix_sock_proto;
11722 		break;
11723 	case BPF_FUNC_skc_to_mptcp_sock:
11724 		func = &bpf_skc_to_mptcp_sock_proto;
11725 		break;
11726 	case BPF_FUNC_ktime_get_coarse_ns:
11727 		return &bpf_ktime_get_coarse_ns_proto;
11728 	default:
11729 		return bpf_base_func_proto(func_id);
11730 	}
11731 
11732 	if (!perfmon_capable())
11733 		return NULL;
11734 
11735 	return func;
11736 }
11737 
11738 __diag_push();
11739 __diag_ignore_all("-Wmissing-prototypes",
11740 		  "Global functions as their definitions will be in vmlinux BTF");
11741 __bpf_kfunc int bpf_dynptr_from_skb(struct sk_buff *skb, u64 flags,
11742 				    struct bpf_dynptr_kern *ptr__uninit)
11743 {
11744 	if (flags) {
11745 		bpf_dynptr_set_null(ptr__uninit);
11746 		return -EINVAL;
11747 	}
11748 
11749 	bpf_dynptr_init(ptr__uninit, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11750 
11751 	return 0;
11752 }
11753 
11754 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_buff *xdp, u64 flags,
11755 				    struct bpf_dynptr_kern *ptr__uninit)
11756 {
11757 	if (flags) {
11758 		bpf_dynptr_set_null(ptr__uninit);
11759 		return -EINVAL;
11760 	}
11761 
11762 	bpf_dynptr_init(ptr__uninit, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11763 
11764 	return 0;
11765 }
11766 __diag_pop();
11767 
11768 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
11769 			       struct bpf_dynptr_kern *ptr__uninit)
11770 {
11771 	int err;
11772 
11773 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
11774 	if (err)
11775 		return err;
11776 
11777 	bpf_dynptr_set_rdonly(ptr__uninit);
11778 
11779 	return 0;
11780 }
11781 
11782 BTF_SET8_START(bpf_kfunc_check_set_skb)
11783 BTF_ID_FLAGS(func, bpf_dynptr_from_skb)
11784 BTF_SET8_END(bpf_kfunc_check_set_skb)
11785 
11786 BTF_SET8_START(bpf_kfunc_check_set_xdp)
11787 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
11788 BTF_SET8_END(bpf_kfunc_check_set_xdp)
11789 
11790 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
11791 	.owner = THIS_MODULE,
11792 	.set = &bpf_kfunc_check_set_skb,
11793 };
11794 
11795 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
11796 	.owner = THIS_MODULE,
11797 	.set = &bpf_kfunc_check_set_xdp,
11798 };
11799 
11800 static int __init bpf_kfunc_init(void)
11801 {
11802 	int ret;
11803 
11804 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
11805 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
11806 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
11807 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
11808 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
11809 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
11810 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
11811 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
11812 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
11813 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
11814 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
11815 }
11816 late_initcall(bpf_kfunc_init);
11817 
11818 /* Disables missing prototype warnings */
11819 __diag_push();
11820 __diag_ignore_all("-Wmissing-prototypes",
11821 		  "Global functions as their definitions will be in vmlinux BTF");
11822 
11823 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
11824  *
11825  * The function expects a non-NULL pointer to a socket, and invokes the
11826  * protocol specific socket destroy handlers.
11827  *
11828  * The helper can only be called from BPF contexts that have acquired the socket
11829  * locks.
11830  *
11831  * Parameters:
11832  * @sock: Pointer to socket to be destroyed
11833  *
11834  * Return:
11835  * On error, may return EPROTONOSUPPORT, EINVAL.
11836  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
11837  * 0 otherwise
11838  */
11839 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
11840 {
11841 	struct sock *sk = (struct sock *)sock;
11842 
11843 	/* The locking semantics that allow for synchronous execution of the
11844 	 * destroy handlers are only supported for TCP and UDP.
11845 	 * Supporting protocols will need to acquire sock lock in the BPF context
11846 	 * prior to invoking this kfunc.
11847 	 */
11848 	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
11849 					   sk->sk_protocol != IPPROTO_UDP))
11850 		return -EOPNOTSUPP;
11851 
11852 	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
11853 }
11854 
11855 __diag_pop()
11856 
11857 BTF_SET8_START(bpf_sk_iter_kfunc_ids)
11858 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
11859 BTF_SET8_END(bpf_sk_iter_kfunc_ids)
11860 
11861 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
11862 {
11863 	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
11864 	    prog->expected_attach_type != BPF_TRACE_ITER)
11865 		return -EACCES;
11866 	return 0;
11867 }
11868 
11869 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
11870 	.owner = THIS_MODULE,
11871 	.set   = &bpf_sk_iter_kfunc_ids,
11872 	.filter = tracing_iter_filter,
11873 };
11874 
11875 static int init_subsystem(void)
11876 {
11877 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
11878 }
11879 late_initcall(init_subsystem);
11880