xref: /openbmc/linux/net/core/filter.c (revision ac4dfccb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 
81 static const struct bpf_func_proto *
82 bpf_sk_base_func_proto(enum bpf_func_id func_id);
83 
84 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
85 {
86 	if (in_compat_syscall()) {
87 		struct compat_sock_fprog f32;
88 
89 		if (len != sizeof(f32))
90 			return -EINVAL;
91 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
92 			return -EFAULT;
93 		memset(dst, 0, sizeof(*dst));
94 		dst->len = f32.len;
95 		dst->filter = compat_ptr(f32.filter);
96 	} else {
97 		if (len != sizeof(*dst))
98 			return -EINVAL;
99 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
100 			return -EFAULT;
101 	}
102 
103 	return 0;
104 }
105 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
106 
107 /**
108  *	sk_filter_trim_cap - run a packet through a socket filter
109  *	@sk: sock associated with &sk_buff
110  *	@skb: buffer to filter
111  *	@cap: limit on how short the eBPF program may trim the packet
112  *
113  * Run the eBPF program and then cut skb->data to correct size returned by
114  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
115  * than pkt_len we keep whole skb->data. This is the socket level
116  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
117  * be accepted or -EPERM if the packet should be tossed.
118  *
119  */
120 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
121 {
122 	int err;
123 	struct sk_filter *filter;
124 
125 	/*
126 	 * If the skb was allocated from pfmemalloc reserves, only
127 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
128 	 * helping free memory
129 	 */
130 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
131 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
132 		return -ENOMEM;
133 	}
134 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
135 	if (err)
136 		return err;
137 
138 	err = security_sock_rcv_skb(sk, skb);
139 	if (err)
140 		return err;
141 
142 	rcu_read_lock();
143 	filter = rcu_dereference(sk->sk_filter);
144 	if (filter) {
145 		struct sock *save_sk = skb->sk;
146 		unsigned int pkt_len;
147 
148 		skb->sk = sk;
149 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
150 		skb->sk = save_sk;
151 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
152 	}
153 	rcu_read_unlock();
154 
155 	return err;
156 }
157 EXPORT_SYMBOL(sk_filter_trim_cap);
158 
159 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
160 {
161 	return skb_get_poff(skb);
162 }
163 
164 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
165 {
166 	struct nlattr *nla;
167 
168 	if (skb_is_nonlinear(skb))
169 		return 0;
170 
171 	if (skb->len < sizeof(struct nlattr))
172 		return 0;
173 
174 	if (a > skb->len - sizeof(struct nlattr))
175 		return 0;
176 
177 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
178 	if (nla)
179 		return (void *) nla - (void *) skb->data;
180 
181 	return 0;
182 }
183 
184 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
185 {
186 	struct nlattr *nla;
187 
188 	if (skb_is_nonlinear(skb))
189 		return 0;
190 
191 	if (skb->len < sizeof(struct nlattr))
192 		return 0;
193 
194 	if (a > skb->len - sizeof(struct nlattr))
195 		return 0;
196 
197 	nla = (struct nlattr *) &skb->data[a];
198 	if (nla->nla_len > skb->len - a)
199 		return 0;
200 
201 	nla = nla_find_nested(nla, x);
202 	if (nla)
203 		return (void *) nla - (void *) skb->data;
204 
205 	return 0;
206 }
207 
208 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
209 	   data, int, headlen, int, offset)
210 {
211 	u8 tmp, *ptr;
212 	const int len = sizeof(tmp);
213 
214 	if (offset >= 0) {
215 		if (headlen - offset >= len)
216 			return *(u8 *)(data + offset);
217 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
218 			return tmp;
219 	} else {
220 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
221 		if (likely(ptr))
222 			return *(u8 *)ptr;
223 	}
224 
225 	return -EFAULT;
226 }
227 
228 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
229 	   int, offset)
230 {
231 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
232 					 offset);
233 }
234 
235 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
236 	   data, int, headlen, int, offset)
237 {
238 	u16 tmp, *ptr;
239 	const int len = sizeof(tmp);
240 
241 	if (offset >= 0) {
242 		if (headlen - offset >= len)
243 			return get_unaligned_be16(data + offset);
244 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
245 			return be16_to_cpu(tmp);
246 	} else {
247 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
248 		if (likely(ptr))
249 			return get_unaligned_be16(ptr);
250 	}
251 
252 	return -EFAULT;
253 }
254 
255 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
256 	   int, offset)
257 {
258 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
259 					  offset);
260 }
261 
262 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
263 	   data, int, headlen, int, offset)
264 {
265 	u32 tmp, *ptr;
266 	const int len = sizeof(tmp);
267 
268 	if (likely(offset >= 0)) {
269 		if (headlen - offset >= len)
270 			return get_unaligned_be32(data + offset);
271 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
272 			return be32_to_cpu(tmp);
273 	} else {
274 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
275 		if (likely(ptr))
276 			return get_unaligned_be32(ptr);
277 	}
278 
279 	return -EFAULT;
280 }
281 
282 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
283 	   int, offset)
284 {
285 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
286 					  offset);
287 }
288 
289 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
290 			      struct bpf_insn *insn_buf)
291 {
292 	struct bpf_insn *insn = insn_buf;
293 
294 	switch (skb_field) {
295 	case SKF_AD_MARK:
296 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
297 
298 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
299 				      offsetof(struct sk_buff, mark));
300 		break;
301 
302 	case SKF_AD_PKTTYPE:
303 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
304 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
305 #ifdef __BIG_ENDIAN_BITFIELD
306 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
307 #endif
308 		break;
309 
310 	case SKF_AD_QUEUE:
311 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
312 
313 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
314 				      offsetof(struct sk_buff, queue_mapping));
315 		break;
316 
317 	case SKF_AD_VLAN_TAG:
318 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
319 
320 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
321 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
322 				      offsetof(struct sk_buff, vlan_tci));
323 		break;
324 	case SKF_AD_VLAN_TAG_PRESENT:
325 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
326 		if (PKT_VLAN_PRESENT_BIT)
327 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
328 		if (PKT_VLAN_PRESENT_BIT < 7)
329 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
330 		break;
331 	}
332 
333 	return insn - insn_buf;
334 }
335 
336 static bool convert_bpf_extensions(struct sock_filter *fp,
337 				   struct bpf_insn **insnp)
338 {
339 	struct bpf_insn *insn = *insnp;
340 	u32 cnt;
341 
342 	switch (fp->k) {
343 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
344 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
345 
346 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
347 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
348 				      offsetof(struct sk_buff, protocol));
349 		/* A = ntohs(A) [emitting a nop or swap16] */
350 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
351 		break;
352 
353 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
354 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
355 		insn += cnt - 1;
356 		break;
357 
358 	case SKF_AD_OFF + SKF_AD_IFINDEX:
359 	case SKF_AD_OFF + SKF_AD_HATYPE:
360 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
361 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
362 
363 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
364 				      BPF_REG_TMP, BPF_REG_CTX,
365 				      offsetof(struct sk_buff, dev));
366 		/* if (tmp != 0) goto pc + 1 */
367 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
368 		*insn++ = BPF_EXIT_INSN();
369 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
370 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
371 					    offsetof(struct net_device, ifindex));
372 		else
373 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
374 					    offsetof(struct net_device, type));
375 		break;
376 
377 	case SKF_AD_OFF + SKF_AD_MARK:
378 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
379 		insn += cnt - 1;
380 		break;
381 
382 	case SKF_AD_OFF + SKF_AD_RXHASH:
383 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
384 
385 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
386 				    offsetof(struct sk_buff, hash));
387 		break;
388 
389 	case SKF_AD_OFF + SKF_AD_QUEUE:
390 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
391 		insn += cnt - 1;
392 		break;
393 
394 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
395 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
396 					 BPF_REG_A, BPF_REG_CTX, insn);
397 		insn += cnt - 1;
398 		break;
399 
400 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
401 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
402 					 BPF_REG_A, BPF_REG_CTX, insn);
403 		insn += cnt - 1;
404 		break;
405 
406 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
407 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
408 
409 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
410 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
411 				      offsetof(struct sk_buff, vlan_proto));
412 		/* A = ntohs(A) [emitting a nop or swap16] */
413 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
414 		break;
415 
416 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
417 	case SKF_AD_OFF + SKF_AD_NLATTR:
418 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
419 	case SKF_AD_OFF + SKF_AD_CPU:
420 	case SKF_AD_OFF + SKF_AD_RANDOM:
421 		/* arg1 = CTX */
422 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
423 		/* arg2 = A */
424 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
425 		/* arg3 = X */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
427 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
428 		switch (fp->k) {
429 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
430 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
431 			break;
432 		case SKF_AD_OFF + SKF_AD_NLATTR:
433 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
434 			break;
435 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
436 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
437 			break;
438 		case SKF_AD_OFF + SKF_AD_CPU:
439 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
440 			break;
441 		case SKF_AD_OFF + SKF_AD_RANDOM:
442 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
443 			bpf_user_rnd_init_once();
444 			break;
445 		}
446 		break;
447 
448 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
449 		/* A ^= X */
450 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
451 		break;
452 
453 	default:
454 		/* This is just a dummy call to avoid letting the compiler
455 		 * evict __bpf_call_base() as an optimization. Placed here
456 		 * where no-one bothers.
457 		 */
458 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
459 		return false;
460 	}
461 
462 	*insnp = insn;
463 	return true;
464 }
465 
466 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
467 {
468 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
469 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
470 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
471 		      BPF_SIZE(fp->code) == BPF_W;
472 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
473 	const int ip_align = NET_IP_ALIGN;
474 	struct bpf_insn *insn = *insnp;
475 	int offset = fp->k;
476 
477 	if (!indirect &&
478 	    ((unaligned_ok && offset >= 0) ||
479 	     (!unaligned_ok && offset >= 0 &&
480 	      offset + ip_align >= 0 &&
481 	      offset + ip_align % size == 0))) {
482 		bool ldx_off_ok = offset <= S16_MAX;
483 
484 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
485 		if (offset)
486 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
487 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
488 				      size, 2 + endian + (!ldx_off_ok * 2));
489 		if (ldx_off_ok) {
490 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
491 					      BPF_REG_D, offset);
492 		} else {
493 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
494 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
495 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
496 					      BPF_REG_TMP, 0);
497 		}
498 		if (endian)
499 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
500 		*insn++ = BPF_JMP_A(8);
501 	}
502 
503 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
504 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
506 	if (!indirect) {
507 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
508 	} else {
509 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
510 		if (fp->k)
511 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
512 	}
513 
514 	switch (BPF_SIZE(fp->code)) {
515 	case BPF_B:
516 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
517 		break;
518 	case BPF_H:
519 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
520 		break;
521 	case BPF_W:
522 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
523 		break;
524 	default:
525 		return false;
526 	}
527 
528 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
529 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
530 	*insn   = BPF_EXIT_INSN();
531 
532 	*insnp = insn;
533 	return true;
534 }
535 
536 /**
537  *	bpf_convert_filter - convert filter program
538  *	@prog: the user passed filter program
539  *	@len: the length of the user passed filter program
540  *	@new_prog: allocated 'struct bpf_prog' or NULL
541  *	@new_len: pointer to store length of converted program
542  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
543  *
544  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
545  * style extended BPF (eBPF).
546  * Conversion workflow:
547  *
548  * 1) First pass for calculating the new program length:
549  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
550  *
551  * 2) 2nd pass to remap in two passes: 1st pass finds new
552  *    jump offsets, 2nd pass remapping:
553  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
554  */
555 static int bpf_convert_filter(struct sock_filter *prog, int len,
556 			      struct bpf_prog *new_prog, int *new_len,
557 			      bool *seen_ld_abs)
558 {
559 	int new_flen = 0, pass = 0, target, i, stack_off;
560 	struct bpf_insn *new_insn, *first_insn = NULL;
561 	struct sock_filter *fp;
562 	int *addrs = NULL;
563 	u8 bpf_src;
564 
565 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
566 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
567 
568 	if (len <= 0 || len > BPF_MAXINSNS)
569 		return -EINVAL;
570 
571 	if (new_prog) {
572 		first_insn = new_prog->insnsi;
573 		addrs = kcalloc(len, sizeof(*addrs),
574 				GFP_KERNEL | __GFP_NOWARN);
575 		if (!addrs)
576 			return -ENOMEM;
577 	}
578 
579 do_pass:
580 	new_insn = first_insn;
581 	fp = prog;
582 
583 	/* Classic BPF related prologue emission. */
584 	if (new_prog) {
585 		/* Classic BPF expects A and X to be reset first. These need
586 		 * to be guaranteed to be the first two instructions.
587 		 */
588 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
589 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
590 
591 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
592 		 * In eBPF case it's done by the compiler, here we need to
593 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
594 		 */
595 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
596 		if (*seen_ld_abs) {
597 			/* For packet access in classic BPF, cache skb->data
598 			 * in callee-saved BPF R8 and skb->len - skb->data_len
599 			 * (headlen) in BPF R9. Since classic BPF is read-only
600 			 * on CTX, we only need to cache it once.
601 			 */
602 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
603 						  BPF_REG_D, BPF_REG_CTX,
604 						  offsetof(struct sk_buff, data));
605 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
606 						  offsetof(struct sk_buff, len));
607 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, data_len));
609 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
610 		}
611 	} else {
612 		new_insn += 3;
613 	}
614 
615 	for (i = 0; i < len; fp++, i++) {
616 		struct bpf_insn tmp_insns[32] = { };
617 		struct bpf_insn *insn = tmp_insns;
618 
619 		if (addrs)
620 			addrs[i] = new_insn - first_insn;
621 
622 		switch (fp->code) {
623 		/* All arithmetic insns and skb loads map as-is. */
624 		case BPF_ALU | BPF_ADD | BPF_X:
625 		case BPF_ALU | BPF_ADD | BPF_K:
626 		case BPF_ALU | BPF_SUB | BPF_X:
627 		case BPF_ALU | BPF_SUB | BPF_K:
628 		case BPF_ALU | BPF_AND | BPF_X:
629 		case BPF_ALU | BPF_AND | BPF_K:
630 		case BPF_ALU | BPF_OR | BPF_X:
631 		case BPF_ALU | BPF_OR | BPF_K:
632 		case BPF_ALU | BPF_LSH | BPF_X:
633 		case BPF_ALU | BPF_LSH | BPF_K:
634 		case BPF_ALU | BPF_RSH | BPF_X:
635 		case BPF_ALU | BPF_RSH | BPF_K:
636 		case BPF_ALU | BPF_XOR | BPF_X:
637 		case BPF_ALU | BPF_XOR | BPF_K:
638 		case BPF_ALU | BPF_MUL | BPF_X:
639 		case BPF_ALU | BPF_MUL | BPF_K:
640 		case BPF_ALU | BPF_DIV | BPF_X:
641 		case BPF_ALU | BPF_DIV | BPF_K:
642 		case BPF_ALU | BPF_MOD | BPF_X:
643 		case BPF_ALU | BPF_MOD | BPF_K:
644 		case BPF_ALU | BPF_NEG:
645 		case BPF_LD | BPF_ABS | BPF_W:
646 		case BPF_LD | BPF_ABS | BPF_H:
647 		case BPF_LD | BPF_ABS | BPF_B:
648 		case BPF_LD | BPF_IND | BPF_W:
649 		case BPF_LD | BPF_IND | BPF_H:
650 		case BPF_LD | BPF_IND | BPF_B:
651 			/* Check for overloaded BPF extension and
652 			 * directly convert it if found, otherwise
653 			 * just move on with mapping.
654 			 */
655 			if (BPF_CLASS(fp->code) == BPF_LD &&
656 			    BPF_MODE(fp->code) == BPF_ABS &&
657 			    convert_bpf_extensions(fp, &insn))
658 				break;
659 			if (BPF_CLASS(fp->code) == BPF_LD &&
660 			    convert_bpf_ld_abs(fp, &insn)) {
661 				*seen_ld_abs = true;
662 				break;
663 			}
664 
665 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
666 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
667 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
668 				/* Error with exception code on div/mod by 0.
669 				 * For cBPF programs, this was always return 0.
670 				 */
671 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
672 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
673 				*insn++ = BPF_EXIT_INSN();
674 			}
675 
676 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
677 			break;
678 
679 		/* Jump transformation cannot use BPF block macros
680 		 * everywhere as offset calculation and target updates
681 		 * require a bit more work than the rest, i.e. jump
682 		 * opcodes map as-is, but offsets need adjustment.
683 		 */
684 
685 #define BPF_EMIT_JMP							\
686 	do {								\
687 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
688 		s32 off;						\
689 									\
690 		if (target >= len || target < 0)			\
691 			goto err;					\
692 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
693 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
694 		off -= insn - tmp_insns;				\
695 		/* Reject anything not fitting into insn->off. */	\
696 		if (off < off_min || off > off_max)			\
697 			goto err;					\
698 		insn->off = off;					\
699 	} while (0)
700 
701 		case BPF_JMP | BPF_JA:
702 			target = i + fp->k + 1;
703 			insn->code = fp->code;
704 			BPF_EMIT_JMP;
705 			break;
706 
707 		case BPF_JMP | BPF_JEQ | BPF_K:
708 		case BPF_JMP | BPF_JEQ | BPF_X:
709 		case BPF_JMP | BPF_JSET | BPF_K:
710 		case BPF_JMP | BPF_JSET | BPF_X:
711 		case BPF_JMP | BPF_JGT | BPF_K:
712 		case BPF_JMP | BPF_JGT | BPF_X:
713 		case BPF_JMP | BPF_JGE | BPF_K:
714 		case BPF_JMP | BPF_JGE | BPF_X:
715 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
716 				/* BPF immediates are signed, zero extend
717 				 * immediate into tmp register and use it
718 				 * in compare insn.
719 				 */
720 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
721 
722 				insn->dst_reg = BPF_REG_A;
723 				insn->src_reg = BPF_REG_TMP;
724 				bpf_src = BPF_X;
725 			} else {
726 				insn->dst_reg = BPF_REG_A;
727 				insn->imm = fp->k;
728 				bpf_src = BPF_SRC(fp->code);
729 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
730 			}
731 
732 			/* Common case where 'jump_false' is next insn. */
733 			if (fp->jf == 0) {
734 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
735 				target = i + fp->jt + 1;
736 				BPF_EMIT_JMP;
737 				break;
738 			}
739 
740 			/* Convert some jumps when 'jump_true' is next insn. */
741 			if (fp->jt == 0) {
742 				switch (BPF_OP(fp->code)) {
743 				case BPF_JEQ:
744 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
745 					break;
746 				case BPF_JGT:
747 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
748 					break;
749 				case BPF_JGE:
750 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
751 					break;
752 				default:
753 					goto jmp_rest;
754 				}
755 
756 				target = i + fp->jf + 1;
757 				BPF_EMIT_JMP;
758 				break;
759 			}
760 jmp_rest:
761 			/* Other jumps are mapped into two insns: Jxx and JA. */
762 			target = i + fp->jt + 1;
763 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
764 			BPF_EMIT_JMP;
765 			insn++;
766 
767 			insn->code = BPF_JMP | BPF_JA;
768 			target = i + fp->jf + 1;
769 			BPF_EMIT_JMP;
770 			break;
771 
772 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
773 		case BPF_LDX | BPF_MSH | BPF_B: {
774 			struct sock_filter tmp = {
775 				.code	= BPF_LD | BPF_ABS | BPF_B,
776 				.k	= fp->k,
777 			};
778 
779 			*seen_ld_abs = true;
780 
781 			/* X = A */
782 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
783 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
784 			convert_bpf_ld_abs(&tmp, &insn);
785 			insn++;
786 			/* A &= 0xf */
787 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
788 			/* A <<= 2 */
789 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
790 			/* tmp = X */
791 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
792 			/* X = A */
793 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
794 			/* A = tmp */
795 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
796 			break;
797 		}
798 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
799 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
800 		 */
801 		case BPF_RET | BPF_A:
802 		case BPF_RET | BPF_K:
803 			if (BPF_RVAL(fp->code) == BPF_K)
804 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
805 							0, fp->k);
806 			*insn = BPF_EXIT_INSN();
807 			break;
808 
809 		/* Store to stack. */
810 		case BPF_ST:
811 		case BPF_STX:
812 			stack_off = fp->k * 4  + 4;
813 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
814 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
815 					    -stack_off);
816 			/* check_load_and_stores() verifies that classic BPF can
817 			 * load from stack only after write, so tracking
818 			 * stack_depth for ST|STX insns is enough
819 			 */
820 			if (new_prog && new_prog->aux->stack_depth < stack_off)
821 				new_prog->aux->stack_depth = stack_off;
822 			break;
823 
824 		/* Load from stack. */
825 		case BPF_LD | BPF_MEM:
826 		case BPF_LDX | BPF_MEM:
827 			stack_off = fp->k * 4  + 4;
828 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
829 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
830 					    -stack_off);
831 			break;
832 
833 		/* A = K or X = K */
834 		case BPF_LD | BPF_IMM:
835 		case BPF_LDX | BPF_IMM:
836 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
837 					      BPF_REG_A : BPF_REG_X, fp->k);
838 			break;
839 
840 		/* X = A */
841 		case BPF_MISC | BPF_TAX:
842 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
843 			break;
844 
845 		/* A = X */
846 		case BPF_MISC | BPF_TXA:
847 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
848 			break;
849 
850 		/* A = skb->len or X = skb->len */
851 		case BPF_LD | BPF_W | BPF_LEN:
852 		case BPF_LDX | BPF_W | BPF_LEN:
853 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
854 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
855 					    offsetof(struct sk_buff, len));
856 			break;
857 
858 		/* Access seccomp_data fields. */
859 		case BPF_LDX | BPF_ABS | BPF_W:
860 			/* A = *(u32 *) (ctx + K) */
861 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
862 			break;
863 
864 		/* Unknown instruction. */
865 		default:
866 			goto err;
867 		}
868 
869 		insn++;
870 		if (new_prog)
871 			memcpy(new_insn, tmp_insns,
872 			       sizeof(*insn) * (insn - tmp_insns));
873 		new_insn += insn - tmp_insns;
874 	}
875 
876 	if (!new_prog) {
877 		/* Only calculating new length. */
878 		*new_len = new_insn - first_insn;
879 		if (*seen_ld_abs)
880 			*new_len += 4; /* Prologue bits. */
881 		return 0;
882 	}
883 
884 	pass++;
885 	if (new_flen != new_insn - first_insn) {
886 		new_flen = new_insn - first_insn;
887 		if (pass > 2)
888 			goto err;
889 		goto do_pass;
890 	}
891 
892 	kfree(addrs);
893 	BUG_ON(*new_len != new_flen);
894 	return 0;
895 err:
896 	kfree(addrs);
897 	return -EINVAL;
898 }
899 
900 /* Security:
901  *
902  * As we dont want to clear mem[] array for each packet going through
903  * __bpf_prog_run(), we check that filter loaded by user never try to read
904  * a cell if not previously written, and we check all branches to be sure
905  * a malicious user doesn't try to abuse us.
906  */
907 static int check_load_and_stores(const struct sock_filter *filter, int flen)
908 {
909 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
910 	int pc, ret = 0;
911 
912 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
913 
914 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
915 	if (!masks)
916 		return -ENOMEM;
917 
918 	memset(masks, 0xff, flen * sizeof(*masks));
919 
920 	for (pc = 0; pc < flen; pc++) {
921 		memvalid &= masks[pc];
922 
923 		switch (filter[pc].code) {
924 		case BPF_ST:
925 		case BPF_STX:
926 			memvalid |= (1 << filter[pc].k);
927 			break;
928 		case BPF_LD | BPF_MEM:
929 		case BPF_LDX | BPF_MEM:
930 			if (!(memvalid & (1 << filter[pc].k))) {
931 				ret = -EINVAL;
932 				goto error;
933 			}
934 			break;
935 		case BPF_JMP | BPF_JA:
936 			/* A jump must set masks on target */
937 			masks[pc + 1 + filter[pc].k] &= memvalid;
938 			memvalid = ~0;
939 			break;
940 		case BPF_JMP | BPF_JEQ | BPF_K:
941 		case BPF_JMP | BPF_JEQ | BPF_X:
942 		case BPF_JMP | BPF_JGE | BPF_K:
943 		case BPF_JMP | BPF_JGE | BPF_X:
944 		case BPF_JMP | BPF_JGT | BPF_K:
945 		case BPF_JMP | BPF_JGT | BPF_X:
946 		case BPF_JMP | BPF_JSET | BPF_K:
947 		case BPF_JMP | BPF_JSET | BPF_X:
948 			/* A jump must set masks on targets */
949 			masks[pc + 1 + filter[pc].jt] &= memvalid;
950 			masks[pc + 1 + filter[pc].jf] &= memvalid;
951 			memvalid = ~0;
952 			break;
953 		}
954 	}
955 error:
956 	kfree(masks);
957 	return ret;
958 }
959 
960 static bool chk_code_allowed(u16 code_to_probe)
961 {
962 	static const bool codes[] = {
963 		/* 32 bit ALU operations */
964 		[BPF_ALU | BPF_ADD | BPF_K] = true,
965 		[BPF_ALU | BPF_ADD | BPF_X] = true,
966 		[BPF_ALU | BPF_SUB | BPF_K] = true,
967 		[BPF_ALU | BPF_SUB | BPF_X] = true,
968 		[BPF_ALU | BPF_MUL | BPF_K] = true,
969 		[BPF_ALU | BPF_MUL | BPF_X] = true,
970 		[BPF_ALU | BPF_DIV | BPF_K] = true,
971 		[BPF_ALU | BPF_DIV | BPF_X] = true,
972 		[BPF_ALU | BPF_MOD | BPF_K] = true,
973 		[BPF_ALU | BPF_MOD | BPF_X] = true,
974 		[BPF_ALU | BPF_AND | BPF_K] = true,
975 		[BPF_ALU | BPF_AND | BPF_X] = true,
976 		[BPF_ALU | BPF_OR | BPF_K] = true,
977 		[BPF_ALU | BPF_OR | BPF_X] = true,
978 		[BPF_ALU | BPF_XOR | BPF_K] = true,
979 		[BPF_ALU | BPF_XOR | BPF_X] = true,
980 		[BPF_ALU | BPF_LSH | BPF_K] = true,
981 		[BPF_ALU | BPF_LSH | BPF_X] = true,
982 		[BPF_ALU | BPF_RSH | BPF_K] = true,
983 		[BPF_ALU | BPF_RSH | BPF_X] = true,
984 		[BPF_ALU | BPF_NEG] = true,
985 		/* Load instructions */
986 		[BPF_LD | BPF_W | BPF_ABS] = true,
987 		[BPF_LD | BPF_H | BPF_ABS] = true,
988 		[BPF_LD | BPF_B | BPF_ABS] = true,
989 		[BPF_LD | BPF_W | BPF_LEN] = true,
990 		[BPF_LD | BPF_W | BPF_IND] = true,
991 		[BPF_LD | BPF_H | BPF_IND] = true,
992 		[BPF_LD | BPF_B | BPF_IND] = true,
993 		[BPF_LD | BPF_IMM] = true,
994 		[BPF_LD | BPF_MEM] = true,
995 		[BPF_LDX | BPF_W | BPF_LEN] = true,
996 		[BPF_LDX | BPF_B | BPF_MSH] = true,
997 		[BPF_LDX | BPF_IMM] = true,
998 		[BPF_LDX | BPF_MEM] = true,
999 		/* Store instructions */
1000 		[BPF_ST] = true,
1001 		[BPF_STX] = true,
1002 		/* Misc instructions */
1003 		[BPF_MISC | BPF_TAX] = true,
1004 		[BPF_MISC | BPF_TXA] = true,
1005 		/* Return instructions */
1006 		[BPF_RET | BPF_K] = true,
1007 		[BPF_RET | BPF_A] = true,
1008 		/* Jump instructions */
1009 		[BPF_JMP | BPF_JA] = true,
1010 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1011 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1012 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1013 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1014 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1015 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1016 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1017 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1018 	};
1019 
1020 	if (code_to_probe >= ARRAY_SIZE(codes))
1021 		return false;
1022 
1023 	return codes[code_to_probe];
1024 }
1025 
1026 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1027 				unsigned int flen)
1028 {
1029 	if (filter == NULL)
1030 		return false;
1031 	if (flen == 0 || flen > BPF_MAXINSNS)
1032 		return false;
1033 
1034 	return true;
1035 }
1036 
1037 /**
1038  *	bpf_check_classic - verify socket filter code
1039  *	@filter: filter to verify
1040  *	@flen: length of filter
1041  *
1042  * Check the user's filter code. If we let some ugly
1043  * filter code slip through kaboom! The filter must contain
1044  * no references or jumps that are out of range, no illegal
1045  * instructions, and must end with a RET instruction.
1046  *
1047  * All jumps are forward as they are not signed.
1048  *
1049  * Returns 0 if the rule set is legal or -EINVAL if not.
1050  */
1051 static int bpf_check_classic(const struct sock_filter *filter,
1052 			     unsigned int flen)
1053 {
1054 	bool anc_found;
1055 	int pc;
1056 
1057 	/* Check the filter code now */
1058 	for (pc = 0; pc < flen; pc++) {
1059 		const struct sock_filter *ftest = &filter[pc];
1060 
1061 		/* May we actually operate on this code? */
1062 		if (!chk_code_allowed(ftest->code))
1063 			return -EINVAL;
1064 
1065 		/* Some instructions need special checks */
1066 		switch (ftest->code) {
1067 		case BPF_ALU | BPF_DIV | BPF_K:
1068 		case BPF_ALU | BPF_MOD | BPF_K:
1069 			/* Check for division by zero */
1070 			if (ftest->k == 0)
1071 				return -EINVAL;
1072 			break;
1073 		case BPF_ALU | BPF_LSH | BPF_K:
1074 		case BPF_ALU | BPF_RSH | BPF_K:
1075 			if (ftest->k >= 32)
1076 				return -EINVAL;
1077 			break;
1078 		case BPF_LD | BPF_MEM:
1079 		case BPF_LDX | BPF_MEM:
1080 		case BPF_ST:
1081 		case BPF_STX:
1082 			/* Check for invalid memory addresses */
1083 			if (ftest->k >= BPF_MEMWORDS)
1084 				return -EINVAL;
1085 			break;
1086 		case BPF_JMP | BPF_JA:
1087 			/* Note, the large ftest->k might cause loops.
1088 			 * Compare this with conditional jumps below,
1089 			 * where offsets are limited. --ANK (981016)
1090 			 */
1091 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1092 				return -EINVAL;
1093 			break;
1094 		case BPF_JMP | BPF_JEQ | BPF_K:
1095 		case BPF_JMP | BPF_JEQ | BPF_X:
1096 		case BPF_JMP | BPF_JGE | BPF_K:
1097 		case BPF_JMP | BPF_JGE | BPF_X:
1098 		case BPF_JMP | BPF_JGT | BPF_K:
1099 		case BPF_JMP | BPF_JGT | BPF_X:
1100 		case BPF_JMP | BPF_JSET | BPF_K:
1101 		case BPF_JMP | BPF_JSET | BPF_X:
1102 			/* Both conditionals must be safe */
1103 			if (pc + ftest->jt + 1 >= flen ||
1104 			    pc + ftest->jf + 1 >= flen)
1105 				return -EINVAL;
1106 			break;
1107 		case BPF_LD | BPF_W | BPF_ABS:
1108 		case BPF_LD | BPF_H | BPF_ABS:
1109 		case BPF_LD | BPF_B | BPF_ABS:
1110 			anc_found = false;
1111 			if (bpf_anc_helper(ftest) & BPF_ANC)
1112 				anc_found = true;
1113 			/* Ancillary operation unknown or unsupported */
1114 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1115 				return -EINVAL;
1116 		}
1117 	}
1118 
1119 	/* Last instruction must be a RET code */
1120 	switch (filter[flen - 1].code) {
1121 	case BPF_RET | BPF_K:
1122 	case BPF_RET | BPF_A:
1123 		return check_load_and_stores(filter, flen);
1124 	}
1125 
1126 	return -EINVAL;
1127 }
1128 
1129 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1130 				      const struct sock_fprog *fprog)
1131 {
1132 	unsigned int fsize = bpf_classic_proglen(fprog);
1133 	struct sock_fprog_kern *fkprog;
1134 
1135 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1136 	if (!fp->orig_prog)
1137 		return -ENOMEM;
1138 
1139 	fkprog = fp->orig_prog;
1140 	fkprog->len = fprog->len;
1141 
1142 	fkprog->filter = kmemdup(fp->insns, fsize,
1143 				 GFP_KERNEL | __GFP_NOWARN);
1144 	if (!fkprog->filter) {
1145 		kfree(fp->orig_prog);
1146 		return -ENOMEM;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 static void bpf_release_orig_filter(struct bpf_prog *fp)
1153 {
1154 	struct sock_fprog_kern *fprog = fp->orig_prog;
1155 
1156 	if (fprog) {
1157 		kfree(fprog->filter);
1158 		kfree(fprog);
1159 	}
1160 }
1161 
1162 static void __bpf_prog_release(struct bpf_prog *prog)
1163 {
1164 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1165 		bpf_prog_put(prog);
1166 	} else {
1167 		bpf_release_orig_filter(prog);
1168 		bpf_prog_free(prog);
1169 	}
1170 }
1171 
1172 static void __sk_filter_release(struct sk_filter *fp)
1173 {
1174 	__bpf_prog_release(fp->prog);
1175 	kfree(fp);
1176 }
1177 
1178 /**
1179  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1180  *	@rcu: rcu_head that contains the sk_filter to free
1181  */
1182 static void sk_filter_release_rcu(struct rcu_head *rcu)
1183 {
1184 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1185 
1186 	__sk_filter_release(fp);
1187 }
1188 
1189 /**
1190  *	sk_filter_release - release a socket filter
1191  *	@fp: filter to remove
1192  *
1193  *	Remove a filter from a socket and release its resources.
1194  */
1195 static void sk_filter_release(struct sk_filter *fp)
1196 {
1197 	if (refcount_dec_and_test(&fp->refcnt))
1198 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1199 }
1200 
1201 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1202 {
1203 	u32 filter_size = bpf_prog_size(fp->prog->len);
1204 
1205 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1206 	sk_filter_release(fp);
1207 }
1208 
1209 /* try to charge the socket memory if there is space available
1210  * return true on success
1211  */
1212 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1213 {
1214 	u32 filter_size = bpf_prog_size(fp->prog->len);
1215 
1216 	/* same check as in sock_kmalloc() */
1217 	if (filter_size <= sysctl_optmem_max &&
1218 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1219 		atomic_add(filter_size, &sk->sk_omem_alloc);
1220 		return true;
1221 	}
1222 	return false;
1223 }
1224 
1225 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1226 {
1227 	if (!refcount_inc_not_zero(&fp->refcnt))
1228 		return false;
1229 
1230 	if (!__sk_filter_charge(sk, fp)) {
1231 		sk_filter_release(fp);
1232 		return false;
1233 	}
1234 	return true;
1235 }
1236 
1237 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1238 {
1239 	struct sock_filter *old_prog;
1240 	struct bpf_prog *old_fp;
1241 	int err, new_len, old_len = fp->len;
1242 	bool seen_ld_abs = false;
1243 
1244 	/* We are free to overwrite insns et al right here as it
1245 	 * won't be used at this point in time anymore internally
1246 	 * after the migration to the internal BPF instruction
1247 	 * representation.
1248 	 */
1249 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1250 		     sizeof(struct bpf_insn));
1251 
1252 	/* Conversion cannot happen on overlapping memory areas,
1253 	 * so we need to keep the user BPF around until the 2nd
1254 	 * pass. At this time, the user BPF is stored in fp->insns.
1255 	 */
1256 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1257 			   GFP_KERNEL | __GFP_NOWARN);
1258 	if (!old_prog) {
1259 		err = -ENOMEM;
1260 		goto out_err;
1261 	}
1262 
1263 	/* 1st pass: calculate the new program length. */
1264 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1265 				 &seen_ld_abs);
1266 	if (err)
1267 		goto out_err_free;
1268 
1269 	/* Expand fp for appending the new filter representation. */
1270 	old_fp = fp;
1271 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1272 	if (!fp) {
1273 		/* The old_fp is still around in case we couldn't
1274 		 * allocate new memory, so uncharge on that one.
1275 		 */
1276 		fp = old_fp;
1277 		err = -ENOMEM;
1278 		goto out_err_free;
1279 	}
1280 
1281 	fp->len = new_len;
1282 
1283 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1284 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1285 				 &seen_ld_abs);
1286 	if (err)
1287 		/* 2nd bpf_convert_filter() can fail only if it fails
1288 		 * to allocate memory, remapping must succeed. Note,
1289 		 * that at this time old_fp has already been released
1290 		 * by krealloc().
1291 		 */
1292 		goto out_err_free;
1293 
1294 	fp = bpf_prog_select_runtime(fp, &err);
1295 	if (err)
1296 		goto out_err_free;
1297 
1298 	kfree(old_prog);
1299 	return fp;
1300 
1301 out_err_free:
1302 	kfree(old_prog);
1303 out_err:
1304 	__bpf_prog_release(fp);
1305 	return ERR_PTR(err);
1306 }
1307 
1308 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1309 					   bpf_aux_classic_check_t trans)
1310 {
1311 	int err;
1312 
1313 	fp->bpf_func = NULL;
1314 	fp->jited = 0;
1315 
1316 	err = bpf_check_classic(fp->insns, fp->len);
1317 	if (err) {
1318 		__bpf_prog_release(fp);
1319 		return ERR_PTR(err);
1320 	}
1321 
1322 	/* There might be additional checks and transformations
1323 	 * needed on classic filters, f.e. in case of seccomp.
1324 	 */
1325 	if (trans) {
1326 		err = trans(fp->insns, fp->len);
1327 		if (err) {
1328 			__bpf_prog_release(fp);
1329 			return ERR_PTR(err);
1330 		}
1331 	}
1332 
1333 	/* Probe if we can JIT compile the filter and if so, do
1334 	 * the compilation of the filter.
1335 	 */
1336 	bpf_jit_compile(fp);
1337 
1338 	/* JIT compiler couldn't process this filter, so do the
1339 	 * internal BPF translation for the optimized interpreter.
1340 	 */
1341 	if (!fp->jited)
1342 		fp = bpf_migrate_filter(fp);
1343 
1344 	return fp;
1345 }
1346 
1347 /**
1348  *	bpf_prog_create - create an unattached filter
1349  *	@pfp: the unattached filter that is created
1350  *	@fprog: the filter program
1351  *
1352  * Create a filter independent of any socket. We first run some
1353  * sanity checks on it to make sure it does not explode on us later.
1354  * If an error occurs or there is insufficient memory for the filter
1355  * a negative errno code is returned. On success the return is zero.
1356  */
1357 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1358 {
1359 	unsigned int fsize = bpf_classic_proglen(fprog);
1360 	struct bpf_prog *fp;
1361 
1362 	/* Make sure new filter is there and in the right amounts. */
1363 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1364 		return -EINVAL;
1365 
1366 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1367 	if (!fp)
1368 		return -ENOMEM;
1369 
1370 	memcpy(fp->insns, fprog->filter, fsize);
1371 
1372 	fp->len = fprog->len;
1373 	/* Since unattached filters are not copied back to user
1374 	 * space through sk_get_filter(), we do not need to hold
1375 	 * a copy here, and can spare us the work.
1376 	 */
1377 	fp->orig_prog = NULL;
1378 
1379 	/* bpf_prepare_filter() already takes care of freeing
1380 	 * memory in case something goes wrong.
1381 	 */
1382 	fp = bpf_prepare_filter(fp, NULL);
1383 	if (IS_ERR(fp))
1384 		return PTR_ERR(fp);
1385 
1386 	*pfp = fp;
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(bpf_prog_create);
1390 
1391 /**
1392  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1393  *	@pfp: the unattached filter that is created
1394  *	@fprog: the filter program
1395  *	@trans: post-classic verifier transformation handler
1396  *	@save_orig: save classic BPF program
1397  *
1398  * This function effectively does the same as bpf_prog_create(), only
1399  * that it builds up its insns buffer from user space provided buffer.
1400  * It also allows for passing a bpf_aux_classic_check_t handler.
1401  */
1402 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1403 			      bpf_aux_classic_check_t trans, bool save_orig)
1404 {
1405 	unsigned int fsize = bpf_classic_proglen(fprog);
1406 	struct bpf_prog *fp;
1407 	int err;
1408 
1409 	/* Make sure new filter is there and in the right amounts. */
1410 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1411 		return -EINVAL;
1412 
1413 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1414 	if (!fp)
1415 		return -ENOMEM;
1416 
1417 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1418 		__bpf_prog_free(fp);
1419 		return -EFAULT;
1420 	}
1421 
1422 	fp->len = fprog->len;
1423 	fp->orig_prog = NULL;
1424 
1425 	if (save_orig) {
1426 		err = bpf_prog_store_orig_filter(fp, fprog);
1427 		if (err) {
1428 			__bpf_prog_free(fp);
1429 			return -ENOMEM;
1430 		}
1431 	}
1432 
1433 	/* bpf_prepare_filter() already takes care of freeing
1434 	 * memory in case something goes wrong.
1435 	 */
1436 	fp = bpf_prepare_filter(fp, trans);
1437 	if (IS_ERR(fp))
1438 		return PTR_ERR(fp);
1439 
1440 	*pfp = fp;
1441 	return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1444 
1445 void bpf_prog_destroy(struct bpf_prog *fp)
1446 {
1447 	__bpf_prog_release(fp);
1448 }
1449 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1450 
1451 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1452 {
1453 	struct sk_filter *fp, *old_fp;
1454 
1455 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1456 	if (!fp)
1457 		return -ENOMEM;
1458 
1459 	fp->prog = prog;
1460 
1461 	if (!__sk_filter_charge(sk, fp)) {
1462 		kfree(fp);
1463 		return -ENOMEM;
1464 	}
1465 	refcount_set(&fp->refcnt, 1);
1466 
1467 	old_fp = rcu_dereference_protected(sk->sk_filter,
1468 					   lockdep_sock_is_held(sk));
1469 	rcu_assign_pointer(sk->sk_filter, fp);
1470 
1471 	if (old_fp)
1472 		sk_filter_uncharge(sk, old_fp);
1473 
1474 	return 0;
1475 }
1476 
1477 static
1478 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1479 {
1480 	unsigned int fsize = bpf_classic_proglen(fprog);
1481 	struct bpf_prog *prog;
1482 	int err;
1483 
1484 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1485 		return ERR_PTR(-EPERM);
1486 
1487 	/* Make sure new filter is there and in the right amounts. */
1488 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1489 		return ERR_PTR(-EINVAL);
1490 
1491 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1492 	if (!prog)
1493 		return ERR_PTR(-ENOMEM);
1494 
1495 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1496 		__bpf_prog_free(prog);
1497 		return ERR_PTR(-EFAULT);
1498 	}
1499 
1500 	prog->len = fprog->len;
1501 
1502 	err = bpf_prog_store_orig_filter(prog, fprog);
1503 	if (err) {
1504 		__bpf_prog_free(prog);
1505 		return ERR_PTR(-ENOMEM);
1506 	}
1507 
1508 	/* bpf_prepare_filter() already takes care of freeing
1509 	 * memory in case something goes wrong.
1510 	 */
1511 	return bpf_prepare_filter(prog, NULL);
1512 }
1513 
1514 /**
1515  *	sk_attach_filter - attach a socket filter
1516  *	@fprog: the filter program
1517  *	@sk: the socket to use
1518  *
1519  * Attach the user's filter code. We first run some sanity checks on
1520  * it to make sure it does not explode on us later. If an error
1521  * occurs or there is insufficient memory for the filter a negative
1522  * errno code is returned. On success the return is zero.
1523  */
1524 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525 {
1526 	struct bpf_prog *prog = __get_filter(fprog, sk);
1527 	int err;
1528 
1529 	if (IS_ERR(prog))
1530 		return PTR_ERR(prog);
1531 
1532 	err = __sk_attach_prog(prog, sk);
1533 	if (err < 0) {
1534 		__bpf_prog_release(prog);
1535 		return err;
1536 	}
1537 
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(sk_attach_filter);
1541 
1542 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1543 {
1544 	struct bpf_prog *prog = __get_filter(fprog, sk);
1545 	int err;
1546 
1547 	if (IS_ERR(prog))
1548 		return PTR_ERR(prog);
1549 
1550 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1551 		err = -ENOMEM;
1552 	else
1553 		err = reuseport_attach_prog(sk, prog);
1554 
1555 	if (err)
1556 		__bpf_prog_release(prog);
1557 
1558 	return err;
1559 }
1560 
1561 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1562 {
1563 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1564 		return ERR_PTR(-EPERM);
1565 
1566 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1567 }
1568 
1569 int sk_attach_bpf(u32 ufd, struct sock *sk)
1570 {
1571 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1572 	int err;
1573 
1574 	if (IS_ERR(prog))
1575 		return PTR_ERR(prog);
1576 
1577 	err = __sk_attach_prog(prog, sk);
1578 	if (err < 0) {
1579 		bpf_prog_put(prog);
1580 		return err;
1581 	}
1582 
1583 	return 0;
1584 }
1585 
1586 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1587 {
1588 	struct bpf_prog *prog;
1589 	int err;
1590 
1591 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1592 		return -EPERM;
1593 
1594 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1595 	if (PTR_ERR(prog) == -EINVAL)
1596 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1597 	if (IS_ERR(prog))
1598 		return PTR_ERR(prog);
1599 
1600 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1601 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1602 		 * bpf prog (e.g. sockmap).  It depends on the
1603 		 * limitation imposed by bpf_prog_load().
1604 		 * Hence, sysctl_optmem_max is not checked.
1605 		 */
1606 		if ((sk->sk_type != SOCK_STREAM &&
1607 		     sk->sk_type != SOCK_DGRAM) ||
1608 		    (sk->sk_protocol != IPPROTO_UDP &&
1609 		     sk->sk_protocol != IPPROTO_TCP) ||
1610 		    (sk->sk_family != AF_INET &&
1611 		     sk->sk_family != AF_INET6)) {
1612 			err = -ENOTSUPP;
1613 			goto err_prog_put;
1614 		}
1615 	} else {
1616 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1617 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1618 			err = -ENOMEM;
1619 			goto err_prog_put;
1620 		}
1621 	}
1622 
1623 	err = reuseport_attach_prog(sk, prog);
1624 err_prog_put:
1625 	if (err)
1626 		bpf_prog_put(prog);
1627 
1628 	return err;
1629 }
1630 
1631 void sk_reuseport_prog_free(struct bpf_prog *prog)
1632 {
1633 	if (!prog)
1634 		return;
1635 
1636 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1637 		bpf_prog_put(prog);
1638 	else
1639 		bpf_prog_destroy(prog);
1640 }
1641 
1642 struct bpf_scratchpad {
1643 	union {
1644 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1645 		u8     buff[MAX_BPF_STACK];
1646 	};
1647 };
1648 
1649 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1650 
1651 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1652 					  unsigned int write_len)
1653 {
1654 	return skb_ensure_writable(skb, write_len);
1655 }
1656 
1657 static inline int bpf_try_make_writable(struct sk_buff *skb,
1658 					unsigned int write_len)
1659 {
1660 	int err = __bpf_try_make_writable(skb, write_len);
1661 
1662 	bpf_compute_data_pointers(skb);
1663 	return err;
1664 }
1665 
1666 static int bpf_try_make_head_writable(struct sk_buff *skb)
1667 {
1668 	return bpf_try_make_writable(skb, skb_headlen(skb));
1669 }
1670 
1671 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1672 {
1673 	if (skb_at_tc_ingress(skb))
1674 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1675 }
1676 
1677 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1678 {
1679 	if (skb_at_tc_ingress(skb))
1680 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1681 }
1682 
1683 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1684 	   const void *, from, u32, len, u64, flags)
1685 {
1686 	void *ptr;
1687 
1688 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1689 		return -EINVAL;
1690 	if (unlikely(offset > 0xffff))
1691 		return -EFAULT;
1692 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1693 		return -EFAULT;
1694 
1695 	ptr = skb->data + offset;
1696 	if (flags & BPF_F_RECOMPUTE_CSUM)
1697 		__skb_postpull_rcsum(skb, ptr, len, offset);
1698 
1699 	memcpy(ptr, from, len);
1700 
1701 	if (flags & BPF_F_RECOMPUTE_CSUM)
1702 		__skb_postpush_rcsum(skb, ptr, len, offset);
1703 	if (flags & BPF_F_INVALIDATE_HASH)
1704 		skb_clear_hash(skb);
1705 
1706 	return 0;
1707 }
1708 
1709 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1710 	.func		= bpf_skb_store_bytes,
1711 	.gpl_only	= false,
1712 	.ret_type	= RET_INTEGER,
1713 	.arg1_type	= ARG_PTR_TO_CTX,
1714 	.arg2_type	= ARG_ANYTHING,
1715 	.arg3_type	= ARG_PTR_TO_MEM,
1716 	.arg4_type	= ARG_CONST_SIZE,
1717 	.arg5_type	= ARG_ANYTHING,
1718 };
1719 
1720 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1721 	   void *, to, u32, len)
1722 {
1723 	void *ptr;
1724 
1725 	if (unlikely(offset > 0xffff))
1726 		goto err_clear;
1727 
1728 	ptr = skb_header_pointer(skb, offset, len, to);
1729 	if (unlikely(!ptr))
1730 		goto err_clear;
1731 	if (ptr != to)
1732 		memcpy(to, ptr, len);
1733 
1734 	return 0;
1735 err_clear:
1736 	memset(to, 0, len);
1737 	return -EFAULT;
1738 }
1739 
1740 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1741 	.func		= bpf_skb_load_bytes,
1742 	.gpl_only	= false,
1743 	.ret_type	= RET_INTEGER,
1744 	.arg1_type	= ARG_PTR_TO_CTX,
1745 	.arg2_type	= ARG_ANYTHING,
1746 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1747 	.arg4_type	= ARG_CONST_SIZE,
1748 };
1749 
1750 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1751 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1752 	   void *, to, u32, len)
1753 {
1754 	void *ptr;
1755 
1756 	if (unlikely(offset > 0xffff))
1757 		goto err_clear;
1758 
1759 	if (unlikely(!ctx->skb))
1760 		goto err_clear;
1761 
1762 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1763 	if (unlikely(!ptr))
1764 		goto err_clear;
1765 	if (ptr != to)
1766 		memcpy(to, ptr, len);
1767 
1768 	return 0;
1769 err_clear:
1770 	memset(to, 0, len);
1771 	return -EFAULT;
1772 }
1773 
1774 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1775 	.func		= bpf_flow_dissector_load_bytes,
1776 	.gpl_only	= false,
1777 	.ret_type	= RET_INTEGER,
1778 	.arg1_type	= ARG_PTR_TO_CTX,
1779 	.arg2_type	= ARG_ANYTHING,
1780 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1781 	.arg4_type	= ARG_CONST_SIZE,
1782 };
1783 
1784 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1785 	   u32, offset, void *, to, u32, len, u32, start_header)
1786 {
1787 	u8 *end = skb_tail_pointer(skb);
1788 	u8 *start, *ptr;
1789 
1790 	if (unlikely(offset > 0xffff))
1791 		goto err_clear;
1792 
1793 	switch (start_header) {
1794 	case BPF_HDR_START_MAC:
1795 		if (unlikely(!skb_mac_header_was_set(skb)))
1796 			goto err_clear;
1797 		start = skb_mac_header(skb);
1798 		break;
1799 	case BPF_HDR_START_NET:
1800 		start = skb_network_header(skb);
1801 		break;
1802 	default:
1803 		goto err_clear;
1804 	}
1805 
1806 	ptr = start + offset;
1807 
1808 	if (likely(ptr + len <= end)) {
1809 		memcpy(to, ptr, len);
1810 		return 0;
1811 	}
1812 
1813 err_clear:
1814 	memset(to, 0, len);
1815 	return -EFAULT;
1816 }
1817 
1818 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1819 	.func		= bpf_skb_load_bytes_relative,
1820 	.gpl_only	= false,
1821 	.ret_type	= RET_INTEGER,
1822 	.arg1_type	= ARG_PTR_TO_CTX,
1823 	.arg2_type	= ARG_ANYTHING,
1824 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1825 	.arg4_type	= ARG_CONST_SIZE,
1826 	.arg5_type	= ARG_ANYTHING,
1827 };
1828 
1829 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1830 {
1831 	/* Idea is the following: should the needed direct read/write
1832 	 * test fail during runtime, we can pull in more data and redo
1833 	 * again, since implicitly, we invalidate previous checks here.
1834 	 *
1835 	 * Or, since we know how much we need to make read/writeable,
1836 	 * this can be done once at the program beginning for direct
1837 	 * access case. By this we overcome limitations of only current
1838 	 * headroom being accessible.
1839 	 */
1840 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1841 }
1842 
1843 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1844 	.func		= bpf_skb_pull_data,
1845 	.gpl_only	= false,
1846 	.ret_type	= RET_INTEGER,
1847 	.arg1_type	= ARG_PTR_TO_CTX,
1848 	.arg2_type	= ARG_ANYTHING,
1849 };
1850 
1851 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1852 {
1853 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1854 }
1855 
1856 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1857 	.func		= bpf_sk_fullsock,
1858 	.gpl_only	= false,
1859 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1860 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1861 };
1862 
1863 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1864 					   unsigned int write_len)
1865 {
1866 	return __bpf_try_make_writable(skb, write_len);
1867 }
1868 
1869 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1870 {
1871 	/* Idea is the following: should the needed direct read/write
1872 	 * test fail during runtime, we can pull in more data and redo
1873 	 * again, since implicitly, we invalidate previous checks here.
1874 	 *
1875 	 * Or, since we know how much we need to make read/writeable,
1876 	 * this can be done once at the program beginning for direct
1877 	 * access case. By this we overcome limitations of only current
1878 	 * headroom being accessible.
1879 	 */
1880 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1881 }
1882 
1883 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1884 	.func		= sk_skb_pull_data,
1885 	.gpl_only	= false,
1886 	.ret_type	= RET_INTEGER,
1887 	.arg1_type	= ARG_PTR_TO_CTX,
1888 	.arg2_type	= ARG_ANYTHING,
1889 };
1890 
1891 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1892 	   u64, from, u64, to, u64, flags)
1893 {
1894 	__sum16 *ptr;
1895 
1896 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1897 		return -EINVAL;
1898 	if (unlikely(offset > 0xffff || offset & 1))
1899 		return -EFAULT;
1900 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1901 		return -EFAULT;
1902 
1903 	ptr = (__sum16 *)(skb->data + offset);
1904 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1905 	case 0:
1906 		if (unlikely(from != 0))
1907 			return -EINVAL;
1908 
1909 		csum_replace_by_diff(ptr, to);
1910 		break;
1911 	case 2:
1912 		csum_replace2(ptr, from, to);
1913 		break;
1914 	case 4:
1915 		csum_replace4(ptr, from, to);
1916 		break;
1917 	default:
1918 		return -EINVAL;
1919 	}
1920 
1921 	return 0;
1922 }
1923 
1924 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1925 	.func		= bpf_l3_csum_replace,
1926 	.gpl_only	= false,
1927 	.ret_type	= RET_INTEGER,
1928 	.arg1_type	= ARG_PTR_TO_CTX,
1929 	.arg2_type	= ARG_ANYTHING,
1930 	.arg3_type	= ARG_ANYTHING,
1931 	.arg4_type	= ARG_ANYTHING,
1932 	.arg5_type	= ARG_ANYTHING,
1933 };
1934 
1935 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1936 	   u64, from, u64, to, u64, flags)
1937 {
1938 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1939 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1940 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1941 	__sum16 *ptr;
1942 
1943 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1944 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1945 		return -EINVAL;
1946 	if (unlikely(offset > 0xffff || offset & 1))
1947 		return -EFAULT;
1948 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1949 		return -EFAULT;
1950 
1951 	ptr = (__sum16 *)(skb->data + offset);
1952 	if (is_mmzero && !do_mforce && !*ptr)
1953 		return 0;
1954 
1955 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1956 	case 0:
1957 		if (unlikely(from != 0))
1958 			return -EINVAL;
1959 
1960 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1961 		break;
1962 	case 2:
1963 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1964 		break;
1965 	case 4:
1966 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1967 		break;
1968 	default:
1969 		return -EINVAL;
1970 	}
1971 
1972 	if (is_mmzero && !*ptr)
1973 		*ptr = CSUM_MANGLED_0;
1974 	return 0;
1975 }
1976 
1977 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1978 	.func		= bpf_l4_csum_replace,
1979 	.gpl_only	= false,
1980 	.ret_type	= RET_INTEGER,
1981 	.arg1_type	= ARG_PTR_TO_CTX,
1982 	.arg2_type	= ARG_ANYTHING,
1983 	.arg3_type	= ARG_ANYTHING,
1984 	.arg4_type	= ARG_ANYTHING,
1985 	.arg5_type	= ARG_ANYTHING,
1986 };
1987 
1988 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1989 	   __be32 *, to, u32, to_size, __wsum, seed)
1990 {
1991 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1992 	u32 diff_size = from_size + to_size;
1993 	int i, j = 0;
1994 
1995 	/* This is quite flexible, some examples:
1996 	 *
1997 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1998 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1999 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2000 	 *
2001 	 * Even for diffing, from_size and to_size don't need to be equal.
2002 	 */
2003 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2004 		     diff_size > sizeof(sp->diff)))
2005 		return -EINVAL;
2006 
2007 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2008 		sp->diff[j] = ~from[i];
2009 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2010 		sp->diff[j] = to[i];
2011 
2012 	return csum_partial(sp->diff, diff_size, seed);
2013 }
2014 
2015 static const struct bpf_func_proto bpf_csum_diff_proto = {
2016 	.func		= bpf_csum_diff,
2017 	.gpl_only	= false,
2018 	.pkt_access	= true,
2019 	.ret_type	= RET_INTEGER,
2020 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
2021 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2022 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
2023 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2024 	.arg5_type	= ARG_ANYTHING,
2025 };
2026 
2027 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2028 {
2029 	/* The interface is to be used in combination with bpf_csum_diff()
2030 	 * for direct packet writes. csum rotation for alignment as well
2031 	 * as emulating csum_sub() can be done from the eBPF program.
2032 	 */
2033 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2034 		return (skb->csum = csum_add(skb->csum, csum));
2035 
2036 	return -ENOTSUPP;
2037 }
2038 
2039 static const struct bpf_func_proto bpf_csum_update_proto = {
2040 	.func		= bpf_csum_update,
2041 	.gpl_only	= false,
2042 	.ret_type	= RET_INTEGER,
2043 	.arg1_type	= ARG_PTR_TO_CTX,
2044 	.arg2_type	= ARG_ANYTHING,
2045 };
2046 
2047 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2048 {
2049 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2050 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2051 	 * is passed as flags, for example.
2052 	 */
2053 	switch (level) {
2054 	case BPF_CSUM_LEVEL_INC:
2055 		__skb_incr_checksum_unnecessary(skb);
2056 		break;
2057 	case BPF_CSUM_LEVEL_DEC:
2058 		__skb_decr_checksum_unnecessary(skb);
2059 		break;
2060 	case BPF_CSUM_LEVEL_RESET:
2061 		__skb_reset_checksum_unnecessary(skb);
2062 		break;
2063 	case BPF_CSUM_LEVEL_QUERY:
2064 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2065 		       skb->csum_level : -EACCES;
2066 	default:
2067 		return -EINVAL;
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 static const struct bpf_func_proto bpf_csum_level_proto = {
2074 	.func		= bpf_csum_level,
2075 	.gpl_only	= false,
2076 	.ret_type	= RET_INTEGER,
2077 	.arg1_type	= ARG_PTR_TO_CTX,
2078 	.arg2_type	= ARG_ANYTHING,
2079 };
2080 
2081 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2082 {
2083 	return dev_forward_skb_nomtu(dev, skb);
2084 }
2085 
2086 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2087 				      struct sk_buff *skb)
2088 {
2089 	int ret = ____dev_forward_skb(dev, skb, false);
2090 
2091 	if (likely(!ret)) {
2092 		skb->dev = dev;
2093 		ret = netif_rx(skb);
2094 	}
2095 
2096 	return ret;
2097 }
2098 
2099 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2100 {
2101 	int ret;
2102 
2103 	if (dev_xmit_recursion()) {
2104 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2105 		kfree_skb(skb);
2106 		return -ENETDOWN;
2107 	}
2108 
2109 	skb->dev = dev;
2110 	skb->tstamp = 0;
2111 
2112 	dev_xmit_recursion_inc();
2113 	ret = dev_queue_xmit(skb);
2114 	dev_xmit_recursion_dec();
2115 
2116 	return ret;
2117 }
2118 
2119 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2120 				 u32 flags)
2121 {
2122 	unsigned int mlen = skb_network_offset(skb);
2123 
2124 	if (mlen) {
2125 		__skb_pull(skb, mlen);
2126 
2127 		/* At ingress, the mac header has already been pulled once.
2128 		 * At egress, skb_pospull_rcsum has to be done in case that
2129 		 * the skb is originated from ingress (i.e. a forwarded skb)
2130 		 * to ensure that rcsum starts at net header.
2131 		 */
2132 		if (!skb_at_tc_ingress(skb))
2133 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2134 	}
2135 	skb_pop_mac_header(skb);
2136 	skb_reset_mac_len(skb);
2137 	return flags & BPF_F_INGRESS ?
2138 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2139 }
2140 
2141 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2142 				 u32 flags)
2143 {
2144 	/* Verify that a link layer header is carried */
2145 	if (unlikely(skb->mac_header >= skb->network_header)) {
2146 		kfree_skb(skb);
2147 		return -ERANGE;
2148 	}
2149 
2150 	bpf_push_mac_rcsum(skb);
2151 	return flags & BPF_F_INGRESS ?
2152 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2153 }
2154 
2155 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2156 			  u32 flags)
2157 {
2158 	if (dev_is_mac_header_xmit(dev))
2159 		return __bpf_redirect_common(skb, dev, flags);
2160 	else
2161 		return __bpf_redirect_no_mac(skb, dev, flags);
2162 }
2163 
2164 #if IS_ENABLED(CONFIG_IPV6)
2165 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2166 			    struct net_device *dev, struct bpf_nh_params *nh)
2167 {
2168 	u32 hh_len = LL_RESERVED_SPACE(dev);
2169 	const struct in6_addr *nexthop;
2170 	struct dst_entry *dst = NULL;
2171 	struct neighbour *neigh;
2172 
2173 	if (dev_xmit_recursion()) {
2174 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2175 		goto out_drop;
2176 	}
2177 
2178 	skb->dev = dev;
2179 	skb->tstamp = 0;
2180 
2181 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2182 		struct sk_buff *skb2;
2183 
2184 		skb2 = skb_realloc_headroom(skb, hh_len);
2185 		if (unlikely(!skb2)) {
2186 			kfree_skb(skb);
2187 			return -ENOMEM;
2188 		}
2189 		if (skb->sk)
2190 			skb_set_owner_w(skb2, skb->sk);
2191 		consume_skb(skb);
2192 		skb = skb2;
2193 	}
2194 
2195 	rcu_read_lock_bh();
2196 	if (!nh) {
2197 		dst = skb_dst(skb);
2198 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2199 				      &ipv6_hdr(skb)->daddr);
2200 	} else {
2201 		nexthop = &nh->ipv6_nh;
2202 	}
2203 	neigh = ip_neigh_gw6(dev, nexthop);
2204 	if (likely(!IS_ERR(neigh))) {
2205 		int ret;
2206 
2207 		sock_confirm_neigh(skb, neigh);
2208 		dev_xmit_recursion_inc();
2209 		ret = neigh_output(neigh, skb, false);
2210 		dev_xmit_recursion_dec();
2211 		rcu_read_unlock_bh();
2212 		return ret;
2213 	}
2214 	rcu_read_unlock_bh();
2215 	if (dst)
2216 		IP6_INC_STATS(dev_net(dst->dev),
2217 			      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2218 out_drop:
2219 	kfree_skb(skb);
2220 	return -ENETDOWN;
2221 }
2222 
2223 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2224 				   struct bpf_nh_params *nh)
2225 {
2226 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2227 	struct net *net = dev_net(dev);
2228 	int err, ret = NET_XMIT_DROP;
2229 
2230 	if (!nh) {
2231 		struct dst_entry *dst;
2232 		struct flowi6 fl6 = {
2233 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2234 			.flowi6_mark  = skb->mark,
2235 			.flowlabel    = ip6_flowinfo(ip6h),
2236 			.flowi6_oif   = dev->ifindex,
2237 			.flowi6_proto = ip6h->nexthdr,
2238 			.daddr	      = ip6h->daddr,
2239 			.saddr	      = ip6h->saddr,
2240 		};
2241 
2242 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2243 		if (IS_ERR(dst))
2244 			goto out_drop;
2245 
2246 		skb_dst_set(skb, dst);
2247 	} else if (nh->nh_family != AF_INET6) {
2248 		goto out_drop;
2249 	}
2250 
2251 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2252 	if (unlikely(net_xmit_eval(err)))
2253 		dev->stats.tx_errors++;
2254 	else
2255 		ret = NET_XMIT_SUCCESS;
2256 	goto out_xmit;
2257 out_drop:
2258 	dev->stats.tx_errors++;
2259 	kfree_skb(skb);
2260 out_xmit:
2261 	return ret;
2262 }
2263 #else
2264 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2265 				   struct bpf_nh_params *nh)
2266 {
2267 	kfree_skb(skb);
2268 	return NET_XMIT_DROP;
2269 }
2270 #endif /* CONFIG_IPV6 */
2271 
2272 #if IS_ENABLED(CONFIG_INET)
2273 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2274 			    struct net_device *dev, struct bpf_nh_params *nh)
2275 {
2276 	u32 hh_len = LL_RESERVED_SPACE(dev);
2277 	struct neighbour *neigh;
2278 	bool is_v6gw = false;
2279 
2280 	if (dev_xmit_recursion()) {
2281 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2282 		goto out_drop;
2283 	}
2284 
2285 	skb->dev = dev;
2286 	skb->tstamp = 0;
2287 
2288 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2289 		struct sk_buff *skb2;
2290 
2291 		skb2 = skb_realloc_headroom(skb, hh_len);
2292 		if (unlikely(!skb2)) {
2293 			kfree_skb(skb);
2294 			return -ENOMEM;
2295 		}
2296 		if (skb->sk)
2297 			skb_set_owner_w(skb2, skb->sk);
2298 		consume_skb(skb);
2299 		skb = skb2;
2300 	}
2301 
2302 	rcu_read_lock_bh();
2303 	if (!nh) {
2304 		struct dst_entry *dst = skb_dst(skb);
2305 		struct rtable *rt = container_of(dst, struct rtable, dst);
2306 
2307 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2308 	} else if (nh->nh_family == AF_INET6) {
2309 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2310 		is_v6gw = true;
2311 	} else if (nh->nh_family == AF_INET) {
2312 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2313 	} else {
2314 		rcu_read_unlock_bh();
2315 		goto out_drop;
2316 	}
2317 
2318 	if (likely(!IS_ERR(neigh))) {
2319 		int ret;
2320 
2321 		sock_confirm_neigh(skb, neigh);
2322 		dev_xmit_recursion_inc();
2323 		ret = neigh_output(neigh, skb, is_v6gw);
2324 		dev_xmit_recursion_dec();
2325 		rcu_read_unlock_bh();
2326 		return ret;
2327 	}
2328 	rcu_read_unlock_bh();
2329 out_drop:
2330 	kfree_skb(skb);
2331 	return -ENETDOWN;
2332 }
2333 
2334 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2335 				   struct bpf_nh_params *nh)
2336 {
2337 	const struct iphdr *ip4h = ip_hdr(skb);
2338 	struct net *net = dev_net(dev);
2339 	int err, ret = NET_XMIT_DROP;
2340 
2341 	if (!nh) {
2342 		struct flowi4 fl4 = {
2343 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2344 			.flowi4_mark  = skb->mark,
2345 			.flowi4_tos   = RT_TOS(ip4h->tos),
2346 			.flowi4_oif   = dev->ifindex,
2347 			.flowi4_proto = ip4h->protocol,
2348 			.daddr	      = ip4h->daddr,
2349 			.saddr	      = ip4h->saddr,
2350 		};
2351 		struct rtable *rt;
2352 
2353 		rt = ip_route_output_flow(net, &fl4, NULL);
2354 		if (IS_ERR(rt))
2355 			goto out_drop;
2356 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2357 			ip_rt_put(rt);
2358 			goto out_drop;
2359 		}
2360 
2361 		skb_dst_set(skb, &rt->dst);
2362 	}
2363 
2364 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2365 	if (unlikely(net_xmit_eval(err)))
2366 		dev->stats.tx_errors++;
2367 	else
2368 		ret = NET_XMIT_SUCCESS;
2369 	goto out_xmit;
2370 out_drop:
2371 	dev->stats.tx_errors++;
2372 	kfree_skb(skb);
2373 out_xmit:
2374 	return ret;
2375 }
2376 #else
2377 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2378 				   struct bpf_nh_params *nh)
2379 {
2380 	kfree_skb(skb);
2381 	return NET_XMIT_DROP;
2382 }
2383 #endif /* CONFIG_INET */
2384 
2385 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2386 				struct bpf_nh_params *nh)
2387 {
2388 	struct ethhdr *ethh = eth_hdr(skb);
2389 
2390 	if (unlikely(skb->mac_header >= skb->network_header))
2391 		goto out;
2392 	bpf_push_mac_rcsum(skb);
2393 	if (is_multicast_ether_addr(ethh->h_dest))
2394 		goto out;
2395 
2396 	skb_pull(skb, sizeof(*ethh));
2397 	skb_unset_mac_header(skb);
2398 	skb_reset_network_header(skb);
2399 
2400 	if (skb->protocol == htons(ETH_P_IP))
2401 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2402 	else if (skb->protocol == htons(ETH_P_IPV6))
2403 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2404 out:
2405 	kfree_skb(skb);
2406 	return -ENOTSUPP;
2407 }
2408 
2409 /* Internal, non-exposed redirect flags. */
2410 enum {
2411 	BPF_F_NEIGH	= (1ULL << 1),
2412 	BPF_F_PEER	= (1ULL << 2),
2413 	BPF_F_NEXTHOP	= (1ULL << 3),
2414 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2415 };
2416 
2417 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2418 {
2419 	struct net_device *dev;
2420 	struct sk_buff *clone;
2421 	int ret;
2422 
2423 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2424 		return -EINVAL;
2425 
2426 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2427 	if (unlikely(!dev))
2428 		return -EINVAL;
2429 
2430 	clone = skb_clone(skb, GFP_ATOMIC);
2431 	if (unlikely(!clone))
2432 		return -ENOMEM;
2433 
2434 	/* For direct write, we need to keep the invariant that the skbs
2435 	 * we're dealing with need to be uncloned. Should uncloning fail
2436 	 * here, we need to free the just generated clone to unclone once
2437 	 * again.
2438 	 */
2439 	ret = bpf_try_make_head_writable(skb);
2440 	if (unlikely(ret)) {
2441 		kfree_skb(clone);
2442 		return -ENOMEM;
2443 	}
2444 
2445 	return __bpf_redirect(clone, dev, flags);
2446 }
2447 
2448 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2449 	.func           = bpf_clone_redirect,
2450 	.gpl_only       = false,
2451 	.ret_type       = RET_INTEGER,
2452 	.arg1_type      = ARG_PTR_TO_CTX,
2453 	.arg2_type      = ARG_ANYTHING,
2454 	.arg3_type      = ARG_ANYTHING,
2455 };
2456 
2457 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2458 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2459 
2460 int skb_do_redirect(struct sk_buff *skb)
2461 {
2462 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2463 	struct net *net = dev_net(skb->dev);
2464 	struct net_device *dev;
2465 	u32 flags = ri->flags;
2466 
2467 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2468 	ri->tgt_index = 0;
2469 	ri->flags = 0;
2470 	if (unlikely(!dev))
2471 		goto out_drop;
2472 	if (flags & BPF_F_PEER) {
2473 		const struct net_device_ops *ops = dev->netdev_ops;
2474 
2475 		if (unlikely(!ops->ndo_get_peer_dev ||
2476 			     !skb_at_tc_ingress(skb)))
2477 			goto out_drop;
2478 		dev = ops->ndo_get_peer_dev(dev);
2479 		if (unlikely(!dev ||
2480 			     !(dev->flags & IFF_UP) ||
2481 			     net_eq(net, dev_net(dev))))
2482 			goto out_drop;
2483 		skb->dev = dev;
2484 		return -EAGAIN;
2485 	}
2486 	return flags & BPF_F_NEIGH ?
2487 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2488 				    &ri->nh : NULL) :
2489 	       __bpf_redirect(skb, dev, flags);
2490 out_drop:
2491 	kfree_skb(skb);
2492 	return -EINVAL;
2493 }
2494 
2495 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2496 {
2497 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2498 
2499 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2500 		return TC_ACT_SHOT;
2501 
2502 	ri->flags = flags;
2503 	ri->tgt_index = ifindex;
2504 
2505 	return TC_ACT_REDIRECT;
2506 }
2507 
2508 static const struct bpf_func_proto bpf_redirect_proto = {
2509 	.func           = bpf_redirect,
2510 	.gpl_only       = false,
2511 	.ret_type       = RET_INTEGER,
2512 	.arg1_type      = ARG_ANYTHING,
2513 	.arg2_type      = ARG_ANYTHING,
2514 };
2515 
2516 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2517 {
2518 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2519 
2520 	if (unlikely(flags))
2521 		return TC_ACT_SHOT;
2522 
2523 	ri->flags = BPF_F_PEER;
2524 	ri->tgt_index = ifindex;
2525 
2526 	return TC_ACT_REDIRECT;
2527 }
2528 
2529 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2530 	.func           = bpf_redirect_peer,
2531 	.gpl_only       = false,
2532 	.ret_type       = RET_INTEGER,
2533 	.arg1_type      = ARG_ANYTHING,
2534 	.arg2_type      = ARG_ANYTHING,
2535 };
2536 
2537 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2538 	   int, plen, u64, flags)
2539 {
2540 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2541 
2542 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2543 		return TC_ACT_SHOT;
2544 
2545 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2546 	ri->tgt_index = ifindex;
2547 
2548 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2549 	if (plen)
2550 		memcpy(&ri->nh, params, sizeof(ri->nh));
2551 
2552 	return TC_ACT_REDIRECT;
2553 }
2554 
2555 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2556 	.func		= bpf_redirect_neigh,
2557 	.gpl_only	= false,
2558 	.ret_type	= RET_INTEGER,
2559 	.arg1_type	= ARG_ANYTHING,
2560 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
2561 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2562 	.arg4_type	= ARG_ANYTHING,
2563 };
2564 
2565 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2566 {
2567 	msg->apply_bytes = bytes;
2568 	return 0;
2569 }
2570 
2571 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2572 	.func           = bpf_msg_apply_bytes,
2573 	.gpl_only       = false,
2574 	.ret_type       = RET_INTEGER,
2575 	.arg1_type	= ARG_PTR_TO_CTX,
2576 	.arg2_type      = ARG_ANYTHING,
2577 };
2578 
2579 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2580 {
2581 	msg->cork_bytes = bytes;
2582 	return 0;
2583 }
2584 
2585 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2586 	.func           = bpf_msg_cork_bytes,
2587 	.gpl_only       = false,
2588 	.ret_type       = RET_INTEGER,
2589 	.arg1_type	= ARG_PTR_TO_CTX,
2590 	.arg2_type      = ARG_ANYTHING,
2591 };
2592 
2593 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2594 	   u32, end, u64, flags)
2595 {
2596 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2597 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2598 	struct scatterlist *sge;
2599 	u8 *raw, *to, *from;
2600 	struct page *page;
2601 
2602 	if (unlikely(flags || end <= start))
2603 		return -EINVAL;
2604 
2605 	/* First find the starting scatterlist element */
2606 	i = msg->sg.start;
2607 	do {
2608 		offset += len;
2609 		len = sk_msg_elem(msg, i)->length;
2610 		if (start < offset + len)
2611 			break;
2612 		sk_msg_iter_var_next(i);
2613 	} while (i != msg->sg.end);
2614 
2615 	if (unlikely(start >= offset + len))
2616 		return -EINVAL;
2617 
2618 	first_sge = i;
2619 	/* The start may point into the sg element so we need to also
2620 	 * account for the headroom.
2621 	 */
2622 	bytes_sg_total = start - offset + bytes;
2623 	if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2624 		goto out;
2625 
2626 	/* At this point we need to linearize multiple scatterlist
2627 	 * elements or a single shared page. Either way we need to
2628 	 * copy into a linear buffer exclusively owned by BPF. Then
2629 	 * place the buffer in the scatterlist and fixup the original
2630 	 * entries by removing the entries now in the linear buffer
2631 	 * and shifting the remaining entries. For now we do not try
2632 	 * to copy partial entries to avoid complexity of running out
2633 	 * of sg_entry slots. The downside is reading a single byte
2634 	 * will copy the entire sg entry.
2635 	 */
2636 	do {
2637 		copy += sk_msg_elem(msg, i)->length;
2638 		sk_msg_iter_var_next(i);
2639 		if (bytes_sg_total <= copy)
2640 			break;
2641 	} while (i != msg->sg.end);
2642 	last_sge = i;
2643 
2644 	if (unlikely(bytes_sg_total > copy))
2645 		return -EINVAL;
2646 
2647 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2648 			   get_order(copy));
2649 	if (unlikely(!page))
2650 		return -ENOMEM;
2651 
2652 	raw = page_address(page);
2653 	i = first_sge;
2654 	do {
2655 		sge = sk_msg_elem(msg, i);
2656 		from = sg_virt(sge);
2657 		len = sge->length;
2658 		to = raw + poffset;
2659 
2660 		memcpy(to, from, len);
2661 		poffset += len;
2662 		sge->length = 0;
2663 		put_page(sg_page(sge));
2664 
2665 		sk_msg_iter_var_next(i);
2666 	} while (i != last_sge);
2667 
2668 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2669 
2670 	/* To repair sg ring we need to shift entries. If we only
2671 	 * had a single entry though we can just replace it and
2672 	 * be done. Otherwise walk the ring and shift the entries.
2673 	 */
2674 	WARN_ON_ONCE(last_sge == first_sge);
2675 	shift = last_sge > first_sge ?
2676 		last_sge - first_sge - 1 :
2677 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2678 	if (!shift)
2679 		goto out;
2680 
2681 	i = first_sge;
2682 	sk_msg_iter_var_next(i);
2683 	do {
2684 		u32 move_from;
2685 
2686 		if (i + shift >= NR_MSG_FRAG_IDS)
2687 			move_from = i + shift - NR_MSG_FRAG_IDS;
2688 		else
2689 			move_from = i + shift;
2690 		if (move_from == msg->sg.end)
2691 			break;
2692 
2693 		msg->sg.data[i] = msg->sg.data[move_from];
2694 		msg->sg.data[move_from].length = 0;
2695 		msg->sg.data[move_from].page_link = 0;
2696 		msg->sg.data[move_from].offset = 0;
2697 		sk_msg_iter_var_next(i);
2698 	} while (1);
2699 
2700 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2701 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2702 		      msg->sg.end - shift;
2703 out:
2704 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2705 	msg->data_end = msg->data + bytes;
2706 	return 0;
2707 }
2708 
2709 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2710 	.func		= bpf_msg_pull_data,
2711 	.gpl_only	= false,
2712 	.ret_type	= RET_INTEGER,
2713 	.arg1_type	= ARG_PTR_TO_CTX,
2714 	.arg2_type	= ARG_ANYTHING,
2715 	.arg3_type	= ARG_ANYTHING,
2716 	.arg4_type	= ARG_ANYTHING,
2717 };
2718 
2719 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2720 	   u32, len, u64, flags)
2721 {
2722 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2723 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2724 	u8 *raw, *to, *from;
2725 	struct page *page;
2726 
2727 	if (unlikely(flags))
2728 		return -EINVAL;
2729 
2730 	/* First find the starting scatterlist element */
2731 	i = msg->sg.start;
2732 	do {
2733 		offset += l;
2734 		l = sk_msg_elem(msg, i)->length;
2735 
2736 		if (start < offset + l)
2737 			break;
2738 		sk_msg_iter_var_next(i);
2739 	} while (i != msg->sg.end);
2740 
2741 	if (start >= offset + l)
2742 		return -EINVAL;
2743 
2744 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2745 
2746 	/* If no space available will fallback to copy, we need at
2747 	 * least one scatterlist elem available to push data into
2748 	 * when start aligns to the beginning of an element or two
2749 	 * when it falls inside an element. We handle the start equals
2750 	 * offset case because its the common case for inserting a
2751 	 * header.
2752 	 */
2753 	if (!space || (space == 1 && start != offset))
2754 		copy = msg->sg.data[i].length;
2755 
2756 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2757 			   get_order(copy + len));
2758 	if (unlikely(!page))
2759 		return -ENOMEM;
2760 
2761 	if (copy) {
2762 		int front, back;
2763 
2764 		raw = page_address(page);
2765 
2766 		psge = sk_msg_elem(msg, i);
2767 		front = start - offset;
2768 		back = psge->length - front;
2769 		from = sg_virt(psge);
2770 
2771 		if (front)
2772 			memcpy(raw, from, front);
2773 
2774 		if (back) {
2775 			from += front;
2776 			to = raw + front + len;
2777 
2778 			memcpy(to, from, back);
2779 		}
2780 
2781 		put_page(sg_page(psge));
2782 	} else if (start - offset) {
2783 		psge = sk_msg_elem(msg, i);
2784 		rsge = sk_msg_elem_cpy(msg, i);
2785 
2786 		psge->length = start - offset;
2787 		rsge.length -= psge->length;
2788 		rsge.offset += start;
2789 
2790 		sk_msg_iter_var_next(i);
2791 		sg_unmark_end(psge);
2792 		sg_unmark_end(&rsge);
2793 		sk_msg_iter_next(msg, end);
2794 	}
2795 
2796 	/* Slot(s) to place newly allocated data */
2797 	new = i;
2798 
2799 	/* Shift one or two slots as needed */
2800 	if (!copy) {
2801 		sge = sk_msg_elem_cpy(msg, i);
2802 
2803 		sk_msg_iter_var_next(i);
2804 		sg_unmark_end(&sge);
2805 		sk_msg_iter_next(msg, end);
2806 
2807 		nsge = sk_msg_elem_cpy(msg, i);
2808 		if (rsge.length) {
2809 			sk_msg_iter_var_next(i);
2810 			nnsge = sk_msg_elem_cpy(msg, i);
2811 		}
2812 
2813 		while (i != msg->sg.end) {
2814 			msg->sg.data[i] = sge;
2815 			sge = nsge;
2816 			sk_msg_iter_var_next(i);
2817 			if (rsge.length) {
2818 				nsge = nnsge;
2819 				nnsge = sk_msg_elem_cpy(msg, i);
2820 			} else {
2821 				nsge = sk_msg_elem_cpy(msg, i);
2822 			}
2823 		}
2824 	}
2825 
2826 	/* Place newly allocated data buffer */
2827 	sk_mem_charge(msg->sk, len);
2828 	msg->sg.size += len;
2829 	__clear_bit(new, &msg->sg.copy);
2830 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2831 	if (rsge.length) {
2832 		get_page(sg_page(&rsge));
2833 		sk_msg_iter_var_next(new);
2834 		msg->sg.data[new] = rsge;
2835 	}
2836 
2837 	sk_msg_compute_data_pointers(msg);
2838 	return 0;
2839 }
2840 
2841 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2842 	.func		= bpf_msg_push_data,
2843 	.gpl_only	= false,
2844 	.ret_type	= RET_INTEGER,
2845 	.arg1_type	= ARG_PTR_TO_CTX,
2846 	.arg2_type	= ARG_ANYTHING,
2847 	.arg3_type	= ARG_ANYTHING,
2848 	.arg4_type	= ARG_ANYTHING,
2849 };
2850 
2851 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2852 {
2853 	int prev;
2854 
2855 	do {
2856 		prev = i;
2857 		sk_msg_iter_var_next(i);
2858 		msg->sg.data[prev] = msg->sg.data[i];
2859 	} while (i != msg->sg.end);
2860 
2861 	sk_msg_iter_prev(msg, end);
2862 }
2863 
2864 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2865 {
2866 	struct scatterlist tmp, sge;
2867 
2868 	sk_msg_iter_next(msg, end);
2869 	sge = sk_msg_elem_cpy(msg, i);
2870 	sk_msg_iter_var_next(i);
2871 	tmp = sk_msg_elem_cpy(msg, i);
2872 
2873 	while (i != msg->sg.end) {
2874 		msg->sg.data[i] = sge;
2875 		sk_msg_iter_var_next(i);
2876 		sge = tmp;
2877 		tmp = sk_msg_elem_cpy(msg, i);
2878 	}
2879 }
2880 
2881 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2882 	   u32, len, u64, flags)
2883 {
2884 	u32 i = 0, l = 0, space, offset = 0;
2885 	u64 last = start + len;
2886 	int pop;
2887 
2888 	if (unlikely(flags))
2889 		return -EINVAL;
2890 
2891 	/* First find the starting scatterlist element */
2892 	i = msg->sg.start;
2893 	do {
2894 		offset += l;
2895 		l = sk_msg_elem(msg, i)->length;
2896 
2897 		if (start < offset + l)
2898 			break;
2899 		sk_msg_iter_var_next(i);
2900 	} while (i != msg->sg.end);
2901 
2902 	/* Bounds checks: start and pop must be inside message */
2903 	if (start >= offset + l || last >= msg->sg.size)
2904 		return -EINVAL;
2905 
2906 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2907 
2908 	pop = len;
2909 	/* --------------| offset
2910 	 * -| start      |-------- len -------|
2911 	 *
2912 	 *  |----- a ----|-------- pop -------|----- b ----|
2913 	 *  |______________________________________________| length
2914 	 *
2915 	 *
2916 	 * a:   region at front of scatter element to save
2917 	 * b:   region at back of scatter element to save when length > A + pop
2918 	 * pop: region to pop from element, same as input 'pop' here will be
2919 	 *      decremented below per iteration.
2920 	 *
2921 	 * Two top-level cases to handle when start != offset, first B is non
2922 	 * zero and second B is zero corresponding to when a pop includes more
2923 	 * than one element.
2924 	 *
2925 	 * Then if B is non-zero AND there is no space allocate space and
2926 	 * compact A, B regions into page. If there is space shift ring to
2927 	 * the rigth free'ing the next element in ring to place B, leaving
2928 	 * A untouched except to reduce length.
2929 	 */
2930 	if (start != offset) {
2931 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2932 		int a = start;
2933 		int b = sge->length - pop - a;
2934 
2935 		sk_msg_iter_var_next(i);
2936 
2937 		if (pop < sge->length - a) {
2938 			if (space) {
2939 				sge->length = a;
2940 				sk_msg_shift_right(msg, i);
2941 				nsge = sk_msg_elem(msg, i);
2942 				get_page(sg_page(sge));
2943 				sg_set_page(nsge,
2944 					    sg_page(sge),
2945 					    b, sge->offset + pop + a);
2946 			} else {
2947 				struct page *page, *orig;
2948 				u8 *to, *from;
2949 
2950 				page = alloc_pages(__GFP_NOWARN |
2951 						   __GFP_COMP   | GFP_ATOMIC,
2952 						   get_order(a + b));
2953 				if (unlikely(!page))
2954 					return -ENOMEM;
2955 
2956 				sge->length = a;
2957 				orig = sg_page(sge);
2958 				from = sg_virt(sge);
2959 				to = page_address(page);
2960 				memcpy(to, from, a);
2961 				memcpy(to + a, from + a + pop, b);
2962 				sg_set_page(sge, page, a + b, 0);
2963 				put_page(orig);
2964 			}
2965 			pop = 0;
2966 		} else if (pop >= sge->length - a) {
2967 			pop -= (sge->length - a);
2968 			sge->length = a;
2969 		}
2970 	}
2971 
2972 	/* From above the current layout _must_ be as follows,
2973 	 *
2974 	 * -| offset
2975 	 * -| start
2976 	 *
2977 	 *  |---- pop ---|---------------- b ------------|
2978 	 *  |____________________________________________| length
2979 	 *
2980 	 * Offset and start of the current msg elem are equal because in the
2981 	 * previous case we handled offset != start and either consumed the
2982 	 * entire element and advanced to the next element OR pop == 0.
2983 	 *
2984 	 * Two cases to handle here are first pop is less than the length
2985 	 * leaving some remainder b above. Simply adjust the element's layout
2986 	 * in this case. Or pop >= length of the element so that b = 0. In this
2987 	 * case advance to next element decrementing pop.
2988 	 */
2989 	while (pop) {
2990 		struct scatterlist *sge = sk_msg_elem(msg, i);
2991 
2992 		if (pop < sge->length) {
2993 			sge->length -= pop;
2994 			sge->offset += pop;
2995 			pop = 0;
2996 		} else {
2997 			pop -= sge->length;
2998 			sk_msg_shift_left(msg, i);
2999 		}
3000 		sk_msg_iter_var_next(i);
3001 	}
3002 
3003 	sk_mem_uncharge(msg->sk, len - pop);
3004 	msg->sg.size -= (len - pop);
3005 	sk_msg_compute_data_pointers(msg);
3006 	return 0;
3007 }
3008 
3009 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3010 	.func		= bpf_msg_pop_data,
3011 	.gpl_only	= false,
3012 	.ret_type	= RET_INTEGER,
3013 	.arg1_type	= ARG_PTR_TO_CTX,
3014 	.arg2_type	= ARG_ANYTHING,
3015 	.arg3_type	= ARG_ANYTHING,
3016 	.arg4_type	= ARG_ANYTHING,
3017 };
3018 
3019 #ifdef CONFIG_CGROUP_NET_CLASSID
3020 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3021 {
3022 	return __task_get_classid(current);
3023 }
3024 
3025 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3026 	.func		= bpf_get_cgroup_classid_curr,
3027 	.gpl_only	= false,
3028 	.ret_type	= RET_INTEGER,
3029 };
3030 
3031 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3032 {
3033 	struct sock *sk = skb_to_full_sk(skb);
3034 
3035 	if (!sk || !sk_fullsock(sk))
3036 		return 0;
3037 
3038 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3039 }
3040 
3041 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3042 	.func		= bpf_skb_cgroup_classid,
3043 	.gpl_only	= false,
3044 	.ret_type	= RET_INTEGER,
3045 	.arg1_type	= ARG_PTR_TO_CTX,
3046 };
3047 #endif
3048 
3049 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3050 {
3051 	return task_get_classid(skb);
3052 }
3053 
3054 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3055 	.func           = bpf_get_cgroup_classid,
3056 	.gpl_only       = false,
3057 	.ret_type       = RET_INTEGER,
3058 	.arg1_type      = ARG_PTR_TO_CTX,
3059 };
3060 
3061 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3062 {
3063 	return dst_tclassid(skb);
3064 }
3065 
3066 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3067 	.func           = bpf_get_route_realm,
3068 	.gpl_only       = false,
3069 	.ret_type       = RET_INTEGER,
3070 	.arg1_type      = ARG_PTR_TO_CTX,
3071 };
3072 
3073 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3074 {
3075 	/* If skb_clear_hash() was called due to mangling, we can
3076 	 * trigger SW recalculation here. Later access to hash
3077 	 * can then use the inline skb->hash via context directly
3078 	 * instead of calling this helper again.
3079 	 */
3080 	return skb_get_hash(skb);
3081 }
3082 
3083 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3084 	.func		= bpf_get_hash_recalc,
3085 	.gpl_only	= false,
3086 	.ret_type	= RET_INTEGER,
3087 	.arg1_type	= ARG_PTR_TO_CTX,
3088 };
3089 
3090 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3091 {
3092 	/* After all direct packet write, this can be used once for
3093 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3094 	 */
3095 	skb_clear_hash(skb);
3096 	return 0;
3097 }
3098 
3099 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3100 	.func		= bpf_set_hash_invalid,
3101 	.gpl_only	= false,
3102 	.ret_type	= RET_INTEGER,
3103 	.arg1_type	= ARG_PTR_TO_CTX,
3104 };
3105 
3106 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3107 {
3108 	/* Set user specified hash as L4(+), so that it gets returned
3109 	 * on skb_get_hash() call unless BPF prog later on triggers a
3110 	 * skb_clear_hash().
3111 	 */
3112 	__skb_set_sw_hash(skb, hash, true);
3113 	return 0;
3114 }
3115 
3116 static const struct bpf_func_proto bpf_set_hash_proto = {
3117 	.func		= bpf_set_hash,
3118 	.gpl_only	= false,
3119 	.ret_type	= RET_INTEGER,
3120 	.arg1_type	= ARG_PTR_TO_CTX,
3121 	.arg2_type	= ARG_ANYTHING,
3122 };
3123 
3124 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3125 	   u16, vlan_tci)
3126 {
3127 	int ret;
3128 
3129 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3130 		     vlan_proto != htons(ETH_P_8021AD)))
3131 		vlan_proto = htons(ETH_P_8021Q);
3132 
3133 	bpf_push_mac_rcsum(skb);
3134 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3135 	bpf_pull_mac_rcsum(skb);
3136 
3137 	bpf_compute_data_pointers(skb);
3138 	return ret;
3139 }
3140 
3141 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3142 	.func           = bpf_skb_vlan_push,
3143 	.gpl_only       = false,
3144 	.ret_type       = RET_INTEGER,
3145 	.arg1_type      = ARG_PTR_TO_CTX,
3146 	.arg2_type      = ARG_ANYTHING,
3147 	.arg3_type      = ARG_ANYTHING,
3148 };
3149 
3150 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3151 {
3152 	int ret;
3153 
3154 	bpf_push_mac_rcsum(skb);
3155 	ret = skb_vlan_pop(skb);
3156 	bpf_pull_mac_rcsum(skb);
3157 
3158 	bpf_compute_data_pointers(skb);
3159 	return ret;
3160 }
3161 
3162 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3163 	.func           = bpf_skb_vlan_pop,
3164 	.gpl_only       = false,
3165 	.ret_type       = RET_INTEGER,
3166 	.arg1_type      = ARG_PTR_TO_CTX,
3167 };
3168 
3169 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3170 {
3171 	/* Caller already did skb_cow() with len as headroom,
3172 	 * so no need to do it here.
3173 	 */
3174 	skb_push(skb, len);
3175 	memmove(skb->data, skb->data + len, off);
3176 	memset(skb->data + off, 0, len);
3177 
3178 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3179 	 * needed here as it does not change the skb->csum
3180 	 * result for checksum complete when summing over
3181 	 * zeroed blocks.
3182 	 */
3183 	return 0;
3184 }
3185 
3186 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3187 {
3188 	/* skb_ensure_writable() is not needed here, as we're
3189 	 * already working on an uncloned skb.
3190 	 */
3191 	if (unlikely(!pskb_may_pull(skb, off + len)))
3192 		return -ENOMEM;
3193 
3194 	skb_postpull_rcsum(skb, skb->data + off, len);
3195 	memmove(skb->data + len, skb->data, off);
3196 	__skb_pull(skb, len);
3197 
3198 	return 0;
3199 }
3200 
3201 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3202 {
3203 	bool trans_same = skb->transport_header == skb->network_header;
3204 	int ret;
3205 
3206 	/* There's no need for __skb_push()/__skb_pull() pair to
3207 	 * get to the start of the mac header as we're guaranteed
3208 	 * to always start from here under eBPF.
3209 	 */
3210 	ret = bpf_skb_generic_push(skb, off, len);
3211 	if (likely(!ret)) {
3212 		skb->mac_header -= len;
3213 		skb->network_header -= len;
3214 		if (trans_same)
3215 			skb->transport_header = skb->network_header;
3216 	}
3217 
3218 	return ret;
3219 }
3220 
3221 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3222 {
3223 	bool trans_same = skb->transport_header == skb->network_header;
3224 	int ret;
3225 
3226 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3227 	ret = bpf_skb_generic_pop(skb, off, len);
3228 	if (likely(!ret)) {
3229 		skb->mac_header += len;
3230 		skb->network_header += len;
3231 		if (trans_same)
3232 			skb->transport_header = skb->network_header;
3233 	}
3234 
3235 	return ret;
3236 }
3237 
3238 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3239 {
3240 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3241 	u32 off = skb_mac_header_len(skb);
3242 	int ret;
3243 
3244 	ret = skb_cow(skb, len_diff);
3245 	if (unlikely(ret < 0))
3246 		return ret;
3247 
3248 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3249 	if (unlikely(ret < 0))
3250 		return ret;
3251 
3252 	if (skb_is_gso(skb)) {
3253 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3254 
3255 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3256 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3257 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3258 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3259 		}
3260 	}
3261 
3262 	skb->protocol = htons(ETH_P_IPV6);
3263 	skb_clear_hash(skb);
3264 
3265 	return 0;
3266 }
3267 
3268 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3269 {
3270 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3271 	u32 off = skb_mac_header_len(skb);
3272 	int ret;
3273 
3274 	ret = skb_unclone(skb, GFP_ATOMIC);
3275 	if (unlikely(ret < 0))
3276 		return ret;
3277 
3278 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3279 	if (unlikely(ret < 0))
3280 		return ret;
3281 
3282 	if (skb_is_gso(skb)) {
3283 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3284 
3285 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3286 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3287 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3288 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3289 		}
3290 	}
3291 
3292 	skb->protocol = htons(ETH_P_IP);
3293 	skb_clear_hash(skb);
3294 
3295 	return 0;
3296 }
3297 
3298 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3299 {
3300 	__be16 from_proto = skb->protocol;
3301 
3302 	if (from_proto == htons(ETH_P_IP) &&
3303 	      to_proto == htons(ETH_P_IPV6))
3304 		return bpf_skb_proto_4_to_6(skb);
3305 
3306 	if (from_proto == htons(ETH_P_IPV6) &&
3307 	      to_proto == htons(ETH_P_IP))
3308 		return bpf_skb_proto_6_to_4(skb);
3309 
3310 	return -ENOTSUPP;
3311 }
3312 
3313 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3314 	   u64, flags)
3315 {
3316 	int ret;
3317 
3318 	if (unlikely(flags))
3319 		return -EINVAL;
3320 
3321 	/* General idea is that this helper does the basic groundwork
3322 	 * needed for changing the protocol, and eBPF program fills the
3323 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3324 	 * and other helpers, rather than passing a raw buffer here.
3325 	 *
3326 	 * The rationale is to keep this minimal and without a need to
3327 	 * deal with raw packet data. F.e. even if we would pass buffers
3328 	 * here, the program still needs to call the bpf_lX_csum_replace()
3329 	 * helpers anyway. Plus, this way we keep also separation of
3330 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3331 	 * care of stores.
3332 	 *
3333 	 * Currently, additional options and extension header space are
3334 	 * not supported, but flags register is reserved so we can adapt
3335 	 * that. For offloads, we mark packet as dodgy, so that headers
3336 	 * need to be verified first.
3337 	 */
3338 	ret = bpf_skb_proto_xlat(skb, proto);
3339 	bpf_compute_data_pointers(skb);
3340 	return ret;
3341 }
3342 
3343 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3344 	.func		= bpf_skb_change_proto,
3345 	.gpl_only	= false,
3346 	.ret_type	= RET_INTEGER,
3347 	.arg1_type	= ARG_PTR_TO_CTX,
3348 	.arg2_type	= ARG_ANYTHING,
3349 	.arg3_type	= ARG_ANYTHING,
3350 };
3351 
3352 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3353 {
3354 	/* We only allow a restricted subset to be changed for now. */
3355 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3356 		     !skb_pkt_type_ok(pkt_type)))
3357 		return -EINVAL;
3358 
3359 	skb->pkt_type = pkt_type;
3360 	return 0;
3361 }
3362 
3363 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3364 	.func		= bpf_skb_change_type,
3365 	.gpl_only	= false,
3366 	.ret_type	= RET_INTEGER,
3367 	.arg1_type	= ARG_PTR_TO_CTX,
3368 	.arg2_type	= ARG_ANYTHING,
3369 };
3370 
3371 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3372 {
3373 	switch (skb->protocol) {
3374 	case htons(ETH_P_IP):
3375 		return sizeof(struct iphdr);
3376 	case htons(ETH_P_IPV6):
3377 		return sizeof(struct ipv6hdr);
3378 	default:
3379 		return ~0U;
3380 	}
3381 }
3382 
3383 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3384 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3385 
3386 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3387 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3388 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3389 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3390 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3391 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3392 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3393 
3394 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3395 			    u64 flags)
3396 {
3397 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3398 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3399 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3400 	unsigned int gso_type = SKB_GSO_DODGY;
3401 	int ret;
3402 
3403 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3404 		/* udp gso_size delineates datagrams, only allow if fixed */
3405 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3406 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3407 			return -ENOTSUPP;
3408 	}
3409 
3410 	ret = skb_cow_head(skb, len_diff);
3411 	if (unlikely(ret < 0))
3412 		return ret;
3413 
3414 	if (encap) {
3415 		if (skb->protocol != htons(ETH_P_IP) &&
3416 		    skb->protocol != htons(ETH_P_IPV6))
3417 			return -ENOTSUPP;
3418 
3419 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3420 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3421 			return -EINVAL;
3422 
3423 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3424 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3425 			return -EINVAL;
3426 
3427 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3428 		    inner_mac_len < ETH_HLEN)
3429 			return -EINVAL;
3430 
3431 		if (skb->encapsulation)
3432 			return -EALREADY;
3433 
3434 		mac_len = skb->network_header - skb->mac_header;
3435 		inner_net = skb->network_header;
3436 		if (inner_mac_len > len_diff)
3437 			return -EINVAL;
3438 		inner_trans = skb->transport_header;
3439 	}
3440 
3441 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3442 	if (unlikely(ret < 0))
3443 		return ret;
3444 
3445 	if (encap) {
3446 		skb->inner_mac_header = inner_net - inner_mac_len;
3447 		skb->inner_network_header = inner_net;
3448 		skb->inner_transport_header = inner_trans;
3449 
3450 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3451 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3452 		else
3453 			skb_set_inner_protocol(skb, skb->protocol);
3454 
3455 		skb->encapsulation = 1;
3456 		skb_set_network_header(skb, mac_len);
3457 
3458 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3459 			gso_type |= SKB_GSO_UDP_TUNNEL;
3460 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3461 			gso_type |= SKB_GSO_GRE;
3462 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3463 			gso_type |= SKB_GSO_IPXIP6;
3464 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3465 			gso_type |= SKB_GSO_IPXIP4;
3466 
3467 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3468 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3469 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3470 					sizeof(struct ipv6hdr) :
3471 					sizeof(struct iphdr);
3472 
3473 			skb_set_transport_header(skb, mac_len + nh_len);
3474 		}
3475 
3476 		/* Match skb->protocol to new outer l3 protocol */
3477 		if (skb->protocol == htons(ETH_P_IP) &&
3478 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3479 			skb->protocol = htons(ETH_P_IPV6);
3480 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3481 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3482 			skb->protocol = htons(ETH_P_IP);
3483 	}
3484 
3485 	if (skb_is_gso(skb)) {
3486 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3487 
3488 		/* Due to header grow, MSS needs to be downgraded. */
3489 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3490 			skb_decrease_gso_size(shinfo, len_diff);
3491 
3492 		/* Header must be checked, and gso_segs recomputed. */
3493 		shinfo->gso_type |= gso_type;
3494 		shinfo->gso_segs = 0;
3495 	}
3496 
3497 	return 0;
3498 }
3499 
3500 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3501 			      u64 flags)
3502 {
3503 	int ret;
3504 
3505 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3506 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3507 		return -EINVAL;
3508 
3509 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3510 		/* udp gso_size delineates datagrams, only allow if fixed */
3511 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3512 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3513 			return -ENOTSUPP;
3514 	}
3515 
3516 	ret = skb_unclone(skb, GFP_ATOMIC);
3517 	if (unlikely(ret < 0))
3518 		return ret;
3519 
3520 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3521 	if (unlikely(ret < 0))
3522 		return ret;
3523 
3524 	if (skb_is_gso(skb)) {
3525 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3526 
3527 		/* Due to header shrink, MSS can be upgraded. */
3528 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3529 			skb_increase_gso_size(shinfo, len_diff);
3530 
3531 		/* Header must be checked, and gso_segs recomputed. */
3532 		shinfo->gso_type |= SKB_GSO_DODGY;
3533 		shinfo->gso_segs = 0;
3534 	}
3535 
3536 	return 0;
3537 }
3538 
3539 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3540 
3541 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3542 	   u32, mode, u64, flags)
3543 {
3544 	u32 len_diff_abs = abs(len_diff);
3545 	bool shrink = len_diff < 0;
3546 	int ret = 0;
3547 
3548 	if (unlikely(flags || mode))
3549 		return -EINVAL;
3550 	if (unlikely(len_diff_abs > 0xfffU))
3551 		return -EFAULT;
3552 
3553 	if (!shrink) {
3554 		ret = skb_cow(skb, len_diff);
3555 		if (unlikely(ret < 0))
3556 			return ret;
3557 		__skb_push(skb, len_diff_abs);
3558 		memset(skb->data, 0, len_diff_abs);
3559 	} else {
3560 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3561 			return -ENOMEM;
3562 		__skb_pull(skb, len_diff_abs);
3563 	}
3564 	if (tls_sw_has_ctx_rx(skb->sk)) {
3565 		struct strp_msg *rxm = strp_msg(skb);
3566 
3567 		rxm->full_len += len_diff;
3568 	}
3569 	return ret;
3570 }
3571 
3572 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3573 	.func		= sk_skb_adjust_room,
3574 	.gpl_only	= false,
3575 	.ret_type	= RET_INTEGER,
3576 	.arg1_type	= ARG_PTR_TO_CTX,
3577 	.arg2_type	= ARG_ANYTHING,
3578 	.arg3_type	= ARG_ANYTHING,
3579 	.arg4_type	= ARG_ANYTHING,
3580 };
3581 
3582 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3583 	   u32, mode, u64, flags)
3584 {
3585 	u32 len_cur, len_diff_abs = abs(len_diff);
3586 	u32 len_min = bpf_skb_net_base_len(skb);
3587 	u32 len_max = BPF_SKB_MAX_LEN;
3588 	__be16 proto = skb->protocol;
3589 	bool shrink = len_diff < 0;
3590 	u32 off;
3591 	int ret;
3592 
3593 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3594 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3595 		return -EINVAL;
3596 	if (unlikely(len_diff_abs > 0xfffU))
3597 		return -EFAULT;
3598 	if (unlikely(proto != htons(ETH_P_IP) &&
3599 		     proto != htons(ETH_P_IPV6)))
3600 		return -ENOTSUPP;
3601 
3602 	off = skb_mac_header_len(skb);
3603 	switch (mode) {
3604 	case BPF_ADJ_ROOM_NET:
3605 		off += bpf_skb_net_base_len(skb);
3606 		break;
3607 	case BPF_ADJ_ROOM_MAC:
3608 		break;
3609 	default:
3610 		return -ENOTSUPP;
3611 	}
3612 
3613 	len_cur = skb->len - skb_network_offset(skb);
3614 	if ((shrink && (len_diff_abs >= len_cur ||
3615 			len_cur - len_diff_abs < len_min)) ||
3616 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3617 			 !skb_is_gso(skb))))
3618 		return -ENOTSUPP;
3619 
3620 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3621 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3622 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3623 		__skb_reset_checksum_unnecessary(skb);
3624 
3625 	bpf_compute_data_pointers(skb);
3626 	return ret;
3627 }
3628 
3629 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3630 	.func		= bpf_skb_adjust_room,
3631 	.gpl_only	= false,
3632 	.ret_type	= RET_INTEGER,
3633 	.arg1_type	= ARG_PTR_TO_CTX,
3634 	.arg2_type	= ARG_ANYTHING,
3635 	.arg3_type	= ARG_ANYTHING,
3636 	.arg4_type	= ARG_ANYTHING,
3637 };
3638 
3639 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3640 {
3641 	u32 min_len = skb_network_offset(skb);
3642 
3643 	if (skb_transport_header_was_set(skb))
3644 		min_len = skb_transport_offset(skb);
3645 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3646 		min_len = skb_checksum_start_offset(skb) +
3647 			  skb->csum_offset + sizeof(__sum16);
3648 	return min_len;
3649 }
3650 
3651 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3652 {
3653 	unsigned int old_len = skb->len;
3654 	int ret;
3655 
3656 	ret = __skb_grow_rcsum(skb, new_len);
3657 	if (!ret)
3658 		memset(skb->data + old_len, 0, new_len - old_len);
3659 	return ret;
3660 }
3661 
3662 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3663 {
3664 	return __skb_trim_rcsum(skb, new_len);
3665 }
3666 
3667 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3668 					u64 flags)
3669 {
3670 	u32 max_len = BPF_SKB_MAX_LEN;
3671 	u32 min_len = __bpf_skb_min_len(skb);
3672 	int ret;
3673 
3674 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3675 		return -EINVAL;
3676 	if (skb->encapsulation)
3677 		return -ENOTSUPP;
3678 
3679 	/* The basic idea of this helper is that it's performing the
3680 	 * needed work to either grow or trim an skb, and eBPF program
3681 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3682 	 * bpf_lX_csum_replace() and others rather than passing a raw
3683 	 * buffer here. This one is a slow path helper and intended
3684 	 * for replies with control messages.
3685 	 *
3686 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3687 	 * minimal and without protocol specifics so that we are able
3688 	 * to separate concerns as in bpf_skb_store_bytes() should only
3689 	 * be the one responsible for writing buffers.
3690 	 *
3691 	 * It's really expected to be a slow path operation here for
3692 	 * control message replies, so we're implicitly linearizing,
3693 	 * uncloning and drop offloads from the skb by this.
3694 	 */
3695 	ret = __bpf_try_make_writable(skb, skb->len);
3696 	if (!ret) {
3697 		if (new_len > skb->len)
3698 			ret = bpf_skb_grow_rcsum(skb, new_len);
3699 		else if (new_len < skb->len)
3700 			ret = bpf_skb_trim_rcsum(skb, new_len);
3701 		if (!ret && skb_is_gso(skb))
3702 			skb_gso_reset(skb);
3703 	}
3704 	return ret;
3705 }
3706 
3707 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3708 	   u64, flags)
3709 {
3710 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3711 
3712 	bpf_compute_data_pointers(skb);
3713 	return ret;
3714 }
3715 
3716 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3717 	.func		= bpf_skb_change_tail,
3718 	.gpl_only	= false,
3719 	.ret_type	= RET_INTEGER,
3720 	.arg1_type	= ARG_PTR_TO_CTX,
3721 	.arg2_type	= ARG_ANYTHING,
3722 	.arg3_type	= ARG_ANYTHING,
3723 };
3724 
3725 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3726 	   u64, flags)
3727 {
3728 	return __bpf_skb_change_tail(skb, new_len, flags);
3729 }
3730 
3731 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3732 	.func		= sk_skb_change_tail,
3733 	.gpl_only	= false,
3734 	.ret_type	= RET_INTEGER,
3735 	.arg1_type	= ARG_PTR_TO_CTX,
3736 	.arg2_type	= ARG_ANYTHING,
3737 	.arg3_type	= ARG_ANYTHING,
3738 };
3739 
3740 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3741 					u64 flags)
3742 {
3743 	u32 max_len = BPF_SKB_MAX_LEN;
3744 	u32 new_len = skb->len + head_room;
3745 	int ret;
3746 
3747 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3748 		     new_len < skb->len))
3749 		return -EINVAL;
3750 
3751 	ret = skb_cow(skb, head_room);
3752 	if (likely(!ret)) {
3753 		/* Idea for this helper is that we currently only
3754 		 * allow to expand on mac header. This means that
3755 		 * skb->protocol network header, etc, stay as is.
3756 		 * Compared to bpf_skb_change_tail(), we're more
3757 		 * flexible due to not needing to linearize or
3758 		 * reset GSO. Intention for this helper is to be
3759 		 * used by an L3 skb that needs to push mac header
3760 		 * for redirection into L2 device.
3761 		 */
3762 		__skb_push(skb, head_room);
3763 		memset(skb->data, 0, head_room);
3764 		skb_reset_mac_header(skb);
3765 		skb_reset_mac_len(skb);
3766 	}
3767 
3768 	return ret;
3769 }
3770 
3771 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3772 	   u64, flags)
3773 {
3774 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3775 
3776 	bpf_compute_data_pointers(skb);
3777 	return ret;
3778 }
3779 
3780 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3781 	.func		= bpf_skb_change_head,
3782 	.gpl_only	= false,
3783 	.ret_type	= RET_INTEGER,
3784 	.arg1_type	= ARG_PTR_TO_CTX,
3785 	.arg2_type	= ARG_ANYTHING,
3786 	.arg3_type	= ARG_ANYTHING,
3787 };
3788 
3789 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3790 	   u64, flags)
3791 {
3792 	return __bpf_skb_change_head(skb, head_room, flags);
3793 }
3794 
3795 static const struct bpf_func_proto sk_skb_change_head_proto = {
3796 	.func		= sk_skb_change_head,
3797 	.gpl_only	= false,
3798 	.ret_type	= RET_INTEGER,
3799 	.arg1_type	= ARG_PTR_TO_CTX,
3800 	.arg2_type	= ARG_ANYTHING,
3801 	.arg3_type	= ARG_ANYTHING,
3802 };
3803 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3804 {
3805 	return xdp_data_meta_unsupported(xdp) ? 0 :
3806 	       xdp->data - xdp->data_meta;
3807 }
3808 
3809 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3810 {
3811 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3812 	unsigned long metalen = xdp_get_metalen(xdp);
3813 	void *data_start = xdp_frame_end + metalen;
3814 	void *data = xdp->data + offset;
3815 
3816 	if (unlikely(data < data_start ||
3817 		     data > xdp->data_end - ETH_HLEN))
3818 		return -EINVAL;
3819 
3820 	if (metalen)
3821 		memmove(xdp->data_meta + offset,
3822 			xdp->data_meta, metalen);
3823 	xdp->data_meta += offset;
3824 	xdp->data = data;
3825 
3826 	return 0;
3827 }
3828 
3829 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3830 	.func		= bpf_xdp_adjust_head,
3831 	.gpl_only	= false,
3832 	.ret_type	= RET_INTEGER,
3833 	.arg1_type	= ARG_PTR_TO_CTX,
3834 	.arg2_type	= ARG_ANYTHING,
3835 };
3836 
3837 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3838 {
3839 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3840 	void *data_end = xdp->data_end + offset;
3841 
3842 	/* Notice that xdp_data_hard_end have reserved some tailroom */
3843 	if (unlikely(data_end > data_hard_end))
3844 		return -EINVAL;
3845 
3846 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
3847 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3848 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3849 		return -EINVAL;
3850 	}
3851 
3852 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3853 		return -EINVAL;
3854 
3855 	/* Clear memory area on grow, can contain uninit kernel memory */
3856 	if (offset > 0)
3857 		memset(xdp->data_end, 0, offset);
3858 
3859 	xdp->data_end = data_end;
3860 
3861 	return 0;
3862 }
3863 
3864 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3865 	.func		= bpf_xdp_adjust_tail,
3866 	.gpl_only	= false,
3867 	.ret_type	= RET_INTEGER,
3868 	.arg1_type	= ARG_PTR_TO_CTX,
3869 	.arg2_type	= ARG_ANYTHING,
3870 };
3871 
3872 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3873 {
3874 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3875 	void *meta = xdp->data_meta + offset;
3876 	unsigned long metalen = xdp->data - meta;
3877 
3878 	if (xdp_data_meta_unsupported(xdp))
3879 		return -ENOTSUPP;
3880 	if (unlikely(meta < xdp_frame_end ||
3881 		     meta > xdp->data))
3882 		return -EINVAL;
3883 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3884 		     (metalen > 32)))
3885 		return -EACCES;
3886 
3887 	xdp->data_meta = meta;
3888 
3889 	return 0;
3890 }
3891 
3892 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3893 	.func		= bpf_xdp_adjust_meta,
3894 	.gpl_only	= false,
3895 	.ret_type	= RET_INTEGER,
3896 	.arg1_type	= ARG_PTR_TO_CTX,
3897 	.arg2_type	= ARG_ANYTHING,
3898 };
3899 
3900 /* XDP_REDIRECT works by a three-step process, implemented in the functions
3901  * below:
3902  *
3903  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
3904  *    of the redirect and store it (along with some other metadata) in a per-CPU
3905  *    struct bpf_redirect_info.
3906  *
3907  * 2. When the program returns the XDP_REDIRECT return code, the driver will
3908  *    call xdp_do_redirect() which will use the information in struct
3909  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
3910  *    bulk queue structure.
3911  *
3912  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
3913  *    which will flush all the different bulk queues, thus completing the
3914  *    redirect.
3915  *
3916  * Pointers to the map entries will be kept around for this whole sequence of
3917  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
3918  * the core code; instead, the RCU protection relies on everything happening
3919  * inside a single NAPI poll sequence, which means it's between a pair of calls
3920  * to local_bh_disable()/local_bh_enable().
3921  *
3922  * The map entries are marked as __rcu and the map code makes sure to
3923  * dereference those pointers with rcu_dereference_check() in a way that works
3924  * for both sections that to hold an rcu_read_lock() and sections that are
3925  * called from NAPI without a separate rcu_read_lock(). The code below does not
3926  * use RCU annotations, but relies on those in the map code.
3927  */
3928 void xdp_do_flush(void)
3929 {
3930 	__dev_flush();
3931 	__cpu_map_flush();
3932 	__xsk_map_flush();
3933 }
3934 EXPORT_SYMBOL_GPL(xdp_do_flush);
3935 
3936 void bpf_clear_redirect_map(struct bpf_map *map)
3937 {
3938 	struct bpf_redirect_info *ri;
3939 	int cpu;
3940 
3941 	for_each_possible_cpu(cpu) {
3942 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3943 		/* Avoid polluting remote cacheline due to writes if
3944 		 * not needed. Once we pass this test, we need the
3945 		 * cmpxchg() to make sure it hasn't been changed in
3946 		 * the meantime by remote CPU.
3947 		 */
3948 		if (unlikely(READ_ONCE(ri->map) == map))
3949 			cmpxchg(&ri->map, map, NULL);
3950 	}
3951 }
3952 
3953 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3954 		    struct bpf_prog *xdp_prog)
3955 {
3956 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3957 	enum bpf_map_type map_type = ri->map_type;
3958 	void *fwd = ri->tgt_value;
3959 	u32 map_id = ri->map_id;
3960 	struct bpf_map *map;
3961 	int err;
3962 
3963 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
3964 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
3965 
3966 	switch (map_type) {
3967 	case BPF_MAP_TYPE_DEVMAP:
3968 		fallthrough;
3969 	case BPF_MAP_TYPE_DEVMAP_HASH:
3970 		map = READ_ONCE(ri->map);
3971 		if (unlikely(map)) {
3972 			WRITE_ONCE(ri->map, NULL);
3973 			err = dev_map_enqueue_multi(xdp, dev, map,
3974 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
3975 		} else {
3976 			err = dev_map_enqueue(fwd, xdp, dev);
3977 		}
3978 		break;
3979 	case BPF_MAP_TYPE_CPUMAP:
3980 		err = cpu_map_enqueue(fwd, xdp, dev);
3981 		break;
3982 	case BPF_MAP_TYPE_XSKMAP:
3983 		err = __xsk_map_redirect(fwd, xdp);
3984 		break;
3985 	case BPF_MAP_TYPE_UNSPEC:
3986 		if (map_id == INT_MAX) {
3987 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
3988 			if (unlikely(!fwd)) {
3989 				err = -EINVAL;
3990 				break;
3991 			}
3992 			err = dev_xdp_enqueue(fwd, xdp, dev);
3993 			break;
3994 		}
3995 		fallthrough;
3996 	default:
3997 		err = -EBADRQC;
3998 	}
3999 
4000 	if (unlikely(err))
4001 		goto err;
4002 
4003 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4004 	return 0;
4005 err:
4006 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4007 	return err;
4008 }
4009 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4010 
4011 static int xdp_do_generic_redirect_map(struct net_device *dev,
4012 				       struct sk_buff *skb,
4013 				       struct xdp_buff *xdp,
4014 				       struct bpf_prog *xdp_prog,
4015 				       void *fwd,
4016 				       enum bpf_map_type map_type, u32 map_id)
4017 {
4018 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4019 	struct bpf_map *map;
4020 	int err;
4021 
4022 	switch (map_type) {
4023 	case BPF_MAP_TYPE_DEVMAP:
4024 		fallthrough;
4025 	case BPF_MAP_TYPE_DEVMAP_HASH:
4026 		map = READ_ONCE(ri->map);
4027 		if (unlikely(map)) {
4028 			WRITE_ONCE(ri->map, NULL);
4029 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4030 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4031 		} else {
4032 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4033 		}
4034 		if (unlikely(err))
4035 			goto err;
4036 		break;
4037 	case BPF_MAP_TYPE_XSKMAP:
4038 		err = xsk_generic_rcv(fwd, xdp);
4039 		if (err)
4040 			goto err;
4041 		consume_skb(skb);
4042 		break;
4043 	default:
4044 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
4045 		err = -EBADRQC;
4046 		goto err;
4047 	}
4048 
4049 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4050 	return 0;
4051 err:
4052 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4053 	return err;
4054 }
4055 
4056 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4057 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4058 {
4059 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4060 	enum bpf_map_type map_type = ri->map_type;
4061 	void *fwd = ri->tgt_value;
4062 	u32 map_id = ri->map_id;
4063 	int err;
4064 
4065 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4066 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4067 
4068 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4069 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4070 		if (unlikely(!fwd)) {
4071 			err = -EINVAL;
4072 			goto err;
4073 		}
4074 
4075 		err = xdp_ok_fwd_dev(fwd, skb->len);
4076 		if (unlikely(err))
4077 			goto err;
4078 
4079 		skb->dev = fwd;
4080 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4081 		generic_xdp_tx(skb, xdp_prog);
4082 		return 0;
4083 	}
4084 
4085 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4086 err:
4087 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4088 	return err;
4089 }
4090 
4091 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4092 {
4093 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4094 
4095 	if (unlikely(flags))
4096 		return XDP_ABORTED;
4097 
4098 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4099 	 * by map_idr) is used for ifindex based XDP redirect.
4100 	 */
4101 	ri->tgt_index = ifindex;
4102 	ri->map_id = INT_MAX;
4103 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4104 
4105 	return XDP_REDIRECT;
4106 }
4107 
4108 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4109 	.func           = bpf_xdp_redirect,
4110 	.gpl_only       = false,
4111 	.ret_type       = RET_INTEGER,
4112 	.arg1_type      = ARG_ANYTHING,
4113 	.arg2_type      = ARG_ANYTHING,
4114 };
4115 
4116 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4117 	   u64, flags)
4118 {
4119 	return map->ops->map_redirect(map, ifindex, flags);
4120 }
4121 
4122 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4123 	.func           = bpf_xdp_redirect_map,
4124 	.gpl_only       = false,
4125 	.ret_type       = RET_INTEGER,
4126 	.arg1_type      = ARG_CONST_MAP_PTR,
4127 	.arg2_type      = ARG_ANYTHING,
4128 	.arg3_type      = ARG_ANYTHING,
4129 };
4130 
4131 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4132 				  unsigned long off, unsigned long len)
4133 {
4134 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4135 
4136 	if (unlikely(!ptr))
4137 		return len;
4138 	if (ptr != dst_buff)
4139 		memcpy(dst_buff, ptr, len);
4140 
4141 	return 0;
4142 }
4143 
4144 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4145 	   u64, flags, void *, meta, u64, meta_size)
4146 {
4147 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4148 
4149 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4150 		return -EINVAL;
4151 	if (unlikely(!skb || skb_size > skb->len))
4152 		return -EFAULT;
4153 
4154 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4155 				bpf_skb_copy);
4156 }
4157 
4158 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4159 	.func		= bpf_skb_event_output,
4160 	.gpl_only	= true,
4161 	.ret_type	= RET_INTEGER,
4162 	.arg1_type	= ARG_PTR_TO_CTX,
4163 	.arg2_type	= ARG_CONST_MAP_PTR,
4164 	.arg3_type	= ARG_ANYTHING,
4165 	.arg4_type	= ARG_PTR_TO_MEM,
4166 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4167 };
4168 
4169 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4170 
4171 const struct bpf_func_proto bpf_skb_output_proto = {
4172 	.func		= bpf_skb_event_output,
4173 	.gpl_only	= true,
4174 	.ret_type	= RET_INTEGER,
4175 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4176 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4177 	.arg2_type	= ARG_CONST_MAP_PTR,
4178 	.arg3_type	= ARG_ANYTHING,
4179 	.arg4_type	= ARG_PTR_TO_MEM,
4180 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4181 };
4182 
4183 static unsigned short bpf_tunnel_key_af(u64 flags)
4184 {
4185 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4186 }
4187 
4188 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4189 	   u32, size, u64, flags)
4190 {
4191 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4192 	u8 compat[sizeof(struct bpf_tunnel_key)];
4193 	void *to_orig = to;
4194 	int err;
4195 
4196 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4197 		err = -EINVAL;
4198 		goto err_clear;
4199 	}
4200 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4201 		err = -EPROTO;
4202 		goto err_clear;
4203 	}
4204 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4205 		err = -EINVAL;
4206 		switch (size) {
4207 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4208 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4209 			goto set_compat;
4210 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4211 			/* Fixup deprecated structure layouts here, so we have
4212 			 * a common path later on.
4213 			 */
4214 			if (ip_tunnel_info_af(info) != AF_INET)
4215 				goto err_clear;
4216 set_compat:
4217 			to = (struct bpf_tunnel_key *)compat;
4218 			break;
4219 		default:
4220 			goto err_clear;
4221 		}
4222 	}
4223 
4224 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4225 	to->tunnel_tos = info->key.tos;
4226 	to->tunnel_ttl = info->key.ttl;
4227 	to->tunnel_ext = 0;
4228 
4229 	if (flags & BPF_F_TUNINFO_IPV6) {
4230 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4231 		       sizeof(to->remote_ipv6));
4232 		to->tunnel_label = be32_to_cpu(info->key.label);
4233 	} else {
4234 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4235 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4236 		to->tunnel_label = 0;
4237 	}
4238 
4239 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4240 		memcpy(to_orig, to, size);
4241 
4242 	return 0;
4243 err_clear:
4244 	memset(to_orig, 0, size);
4245 	return err;
4246 }
4247 
4248 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4249 	.func		= bpf_skb_get_tunnel_key,
4250 	.gpl_only	= false,
4251 	.ret_type	= RET_INTEGER,
4252 	.arg1_type	= ARG_PTR_TO_CTX,
4253 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4254 	.arg3_type	= ARG_CONST_SIZE,
4255 	.arg4_type	= ARG_ANYTHING,
4256 };
4257 
4258 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4259 {
4260 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4261 	int err;
4262 
4263 	if (unlikely(!info ||
4264 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4265 		err = -ENOENT;
4266 		goto err_clear;
4267 	}
4268 	if (unlikely(size < info->options_len)) {
4269 		err = -ENOMEM;
4270 		goto err_clear;
4271 	}
4272 
4273 	ip_tunnel_info_opts_get(to, info);
4274 	if (size > info->options_len)
4275 		memset(to + info->options_len, 0, size - info->options_len);
4276 
4277 	return info->options_len;
4278 err_clear:
4279 	memset(to, 0, size);
4280 	return err;
4281 }
4282 
4283 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4284 	.func		= bpf_skb_get_tunnel_opt,
4285 	.gpl_only	= false,
4286 	.ret_type	= RET_INTEGER,
4287 	.arg1_type	= ARG_PTR_TO_CTX,
4288 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4289 	.arg3_type	= ARG_CONST_SIZE,
4290 };
4291 
4292 static struct metadata_dst __percpu *md_dst;
4293 
4294 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4295 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4296 {
4297 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4298 	u8 compat[sizeof(struct bpf_tunnel_key)];
4299 	struct ip_tunnel_info *info;
4300 
4301 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4302 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4303 		return -EINVAL;
4304 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4305 		switch (size) {
4306 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4307 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4308 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4309 			/* Fixup deprecated structure layouts here, so we have
4310 			 * a common path later on.
4311 			 */
4312 			memcpy(compat, from, size);
4313 			memset(compat + size, 0, sizeof(compat) - size);
4314 			from = (const struct bpf_tunnel_key *) compat;
4315 			break;
4316 		default:
4317 			return -EINVAL;
4318 		}
4319 	}
4320 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4321 		     from->tunnel_ext))
4322 		return -EINVAL;
4323 
4324 	skb_dst_drop(skb);
4325 	dst_hold((struct dst_entry *) md);
4326 	skb_dst_set(skb, (struct dst_entry *) md);
4327 
4328 	info = &md->u.tun_info;
4329 	memset(info, 0, sizeof(*info));
4330 	info->mode = IP_TUNNEL_INFO_TX;
4331 
4332 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4333 	if (flags & BPF_F_DONT_FRAGMENT)
4334 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4335 	if (flags & BPF_F_ZERO_CSUM_TX)
4336 		info->key.tun_flags &= ~TUNNEL_CSUM;
4337 	if (flags & BPF_F_SEQ_NUMBER)
4338 		info->key.tun_flags |= TUNNEL_SEQ;
4339 
4340 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4341 	info->key.tos = from->tunnel_tos;
4342 	info->key.ttl = from->tunnel_ttl;
4343 
4344 	if (flags & BPF_F_TUNINFO_IPV6) {
4345 		info->mode |= IP_TUNNEL_INFO_IPV6;
4346 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4347 		       sizeof(from->remote_ipv6));
4348 		info->key.label = cpu_to_be32(from->tunnel_label) &
4349 				  IPV6_FLOWLABEL_MASK;
4350 	} else {
4351 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4352 	}
4353 
4354 	return 0;
4355 }
4356 
4357 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4358 	.func		= bpf_skb_set_tunnel_key,
4359 	.gpl_only	= false,
4360 	.ret_type	= RET_INTEGER,
4361 	.arg1_type	= ARG_PTR_TO_CTX,
4362 	.arg2_type	= ARG_PTR_TO_MEM,
4363 	.arg3_type	= ARG_CONST_SIZE,
4364 	.arg4_type	= ARG_ANYTHING,
4365 };
4366 
4367 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4368 	   const u8 *, from, u32, size)
4369 {
4370 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4371 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4372 
4373 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4374 		return -EINVAL;
4375 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4376 		return -ENOMEM;
4377 
4378 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4379 
4380 	return 0;
4381 }
4382 
4383 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4384 	.func		= bpf_skb_set_tunnel_opt,
4385 	.gpl_only	= false,
4386 	.ret_type	= RET_INTEGER,
4387 	.arg1_type	= ARG_PTR_TO_CTX,
4388 	.arg2_type	= ARG_PTR_TO_MEM,
4389 	.arg3_type	= ARG_CONST_SIZE,
4390 };
4391 
4392 static const struct bpf_func_proto *
4393 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4394 {
4395 	if (!md_dst) {
4396 		struct metadata_dst __percpu *tmp;
4397 
4398 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4399 						METADATA_IP_TUNNEL,
4400 						GFP_KERNEL);
4401 		if (!tmp)
4402 			return NULL;
4403 		if (cmpxchg(&md_dst, NULL, tmp))
4404 			metadata_dst_free_percpu(tmp);
4405 	}
4406 
4407 	switch (which) {
4408 	case BPF_FUNC_skb_set_tunnel_key:
4409 		return &bpf_skb_set_tunnel_key_proto;
4410 	case BPF_FUNC_skb_set_tunnel_opt:
4411 		return &bpf_skb_set_tunnel_opt_proto;
4412 	default:
4413 		return NULL;
4414 	}
4415 }
4416 
4417 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4418 	   u32, idx)
4419 {
4420 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4421 	struct cgroup *cgrp;
4422 	struct sock *sk;
4423 
4424 	sk = skb_to_full_sk(skb);
4425 	if (!sk || !sk_fullsock(sk))
4426 		return -ENOENT;
4427 	if (unlikely(idx >= array->map.max_entries))
4428 		return -E2BIG;
4429 
4430 	cgrp = READ_ONCE(array->ptrs[idx]);
4431 	if (unlikely(!cgrp))
4432 		return -EAGAIN;
4433 
4434 	return sk_under_cgroup_hierarchy(sk, cgrp);
4435 }
4436 
4437 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4438 	.func		= bpf_skb_under_cgroup,
4439 	.gpl_only	= false,
4440 	.ret_type	= RET_INTEGER,
4441 	.arg1_type	= ARG_PTR_TO_CTX,
4442 	.arg2_type	= ARG_CONST_MAP_PTR,
4443 	.arg3_type	= ARG_ANYTHING,
4444 };
4445 
4446 #ifdef CONFIG_SOCK_CGROUP_DATA
4447 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4448 {
4449 	struct cgroup *cgrp;
4450 
4451 	sk = sk_to_full_sk(sk);
4452 	if (!sk || !sk_fullsock(sk))
4453 		return 0;
4454 
4455 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4456 	return cgroup_id(cgrp);
4457 }
4458 
4459 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4460 {
4461 	return __bpf_sk_cgroup_id(skb->sk);
4462 }
4463 
4464 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4465 	.func           = bpf_skb_cgroup_id,
4466 	.gpl_only       = false,
4467 	.ret_type       = RET_INTEGER,
4468 	.arg1_type      = ARG_PTR_TO_CTX,
4469 };
4470 
4471 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4472 					      int ancestor_level)
4473 {
4474 	struct cgroup *ancestor;
4475 	struct cgroup *cgrp;
4476 
4477 	sk = sk_to_full_sk(sk);
4478 	if (!sk || !sk_fullsock(sk))
4479 		return 0;
4480 
4481 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4482 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4483 	if (!ancestor)
4484 		return 0;
4485 
4486 	return cgroup_id(ancestor);
4487 }
4488 
4489 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4490 	   ancestor_level)
4491 {
4492 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4493 }
4494 
4495 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4496 	.func           = bpf_skb_ancestor_cgroup_id,
4497 	.gpl_only       = false,
4498 	.ret_type       = RET_INTEGER,
4499 	.arg1_type      = ARG_PTR_TO_CTX,
4500 	.arg2_type      = ARG_ANYTHING,
4501 };
4502 
4503 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4504 {
4505 	return __bpf_sk_cgroup_id(sk);
4506 }
4507 
4508 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4509 	.func           = bpf_sk_cgroup_id,
4510 	.gpl_only       = false,
4511 	.ret_type       = RET_INTEGER,
4512 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4513 };
4514 
4515 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4516 {
4517 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4518 }
4519 
4520 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4521 	.func           = bpf_sk_ancestor_cgroup_id,
4522 	.gpl_only       = false,
4523 	.ret_type       = RET_INTEGER,
4524 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4525 	.arg2_type      = ARG_ANYTHING,
4526 };
4527 #endif
4528 
4529 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4530 				  unsigned long off, unsigned long len)
4531 {
4532 	memcpy(dst_buff, src_buff + off, len);
4533 	return 0;
4534 }
4535 
4536 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4537 	   u64, flags, void *, meta, u64, meta_size)
4538 {
4539 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4540 
4541 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4542 		return -EINVAL;
4543 	if (unlikely(!xdp ||
4544 		     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4545 		return -EFAULT;
4546 
4547 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4548 				xdp_size, bpf_xdp_copy);
4549 }
4550 
4551 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4552 	.func		= bpf_xdp_event_output,
4553 	.gpl_only	= true,
4554 	.ret_type	= RET_INTEGER,
4555 	.arg1_type	= ARG_PTR_TO_CTX,
4556 	.arg2_type	= ARG_CONST_MAP_PTR,
4557 	.arg3_type	= ARG_ANYTHING,
4558 	.arg4_type	= ARG_PTR_TO_MEM,
4559 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4560 };
4561 
4562 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4563 
4564 const struct bpf_func_proto bpf_xdp_output_proto = {
4565 	.func		= bpf_xdp_event_output,
4566 	.gpl_only	= true,
4567 	.ret_type	= RET_INTEGER,
4568 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4569 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4570 	.arg2_type	= ARG_CONST_MAP_PTR,
4571 	.arg3_type	= ARG_ANYTHING,
4572 	.arg4_type	= ARG_PTR_TO_MEM,
4573 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4574 };
4575 
4576 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4577 {
4578 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4579 }
4580 
4581 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4582 	.func           = bpf_get_socket_cookie,
4583 	.gpl_only       = false,
4584 	.ret_type       = RET_INTEGER,
4585 	.arg1_type      = ARG_PTR_TO_CTX,
4586 };
4587 
4588 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4589 {
4590 	return __sock_gen_cookie(ctx->sk);
4591 }
4592 
4593 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4594 	.func		= bpf_get_socket_cookie_sock_addr,
4595 	.gpl_only	= false,
4596 	.ret_type	= RET_INTEGER,
4597 	.arg1_type	= ARG_PTR_TO_CTX,
4598 };
4599 
4600 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4601 {
4602 	return __sock_gen_cookie(ctx);
4603 }
4604 
4605 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4606 	.func		= bpf_get_socket_cookie_sock,
4607 	.gpl_only	= false,
4608 	.ret_type	= RET_INTEGER,
4609 	.arg1_type	= ARG_PTR_TO_CTX,
4610 };
4611 
4612 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4613 {
4614 	return sk ? sock_gen_cookie(sk) : 0;
4615 }
4616 
4617 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4618 	.func		= bpf_get_socket_ptr_cookie,
4619 	.gpl_only	= false,
4620 	.ret_type	= RET_INTEGER,
4621 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4622 };
4623 
4624 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4625 {
4626 	return __sock_gen_cookie(ctx->sk);
4627 }
4628 
4629 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4630 	.func		= bpf_get_socket_cookie_sock_ops,
4631 	.gpl_only	= false,
4632 	.ret_type	= RET_INTEGER,
4633 	.arg1_type	= ARG_PTR_TO_CTX,
4634 };
4635 
4636 static u64 __bpf_get_netns_cookie(struct sock *sk)
4637 {
4638 	const struct net *net = sk ? sock_net(sk) : &init_net;
4639 
4640 	return net->net_cookie;
4641 }
4642 
4643 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4644 {
4645 	return __bpf_get_netns_cookie(ctx);
4646 }
4647 
4648 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4649 	.func		= bpf_get_netns_cookie_sock,
4650 	.gpl_only	= false,
4651 	.ret_type	= RET_INTEGER,
4652 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4653 };
4654 
4655 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4656 {
4657 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4658 }
4659 
4660 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4661 	.func		= bpf_get_netns_cookie_sock_addr,
4662 	.gpl_only	= false,
4663 	.ret_type	= RET_INTEGER,
4664 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4665 };
4666 
4667 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4668 {
4669 	struct sock *sk = sk_to_full_sk(skb->sk);
4670 	kuid_t kuid;
4671 
4672 	if (!sk || !sk_fullsock(sk))
4673 		return overflowuid;
4674 	kuid = sock_net_uid(sock_net(sk), sk);
4675 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4676 }
4677 
4678 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4679 	.func           = bpf_get_socket_uid,
4680 	.gpl_only       = false,
4681 	.ret_type       = RET_INTEGER,
4682 	.arg1_type      = ARG_PTR_TO_CTX,
4683 };
4684 
4685 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4686 			   char *optval, int optlen)
4687 {
4688 	char devname[IFNAMSIZ];
4689 	int val, valbool;
4690 	struct net *net;
4691 	int ifindex;
4692 	int ret = 0;
4693 
4694 	if (!sk_fullsock(sk))
4695 		return -EINVAL;
4696 
4697 	sock_owned_by_me(sk);
4698 
4699 	if (level == SOL_SOCKET) {
4700 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4701 			return -EINVAL;
4702 		val = *((int *)optval);
4703 		valbool = val ? 1 : 0;
4704 
4705 		/* Only some socketops are supported */
4706 		switch (optname) {
4707 		case SO_RCVBUF:
4708 			val = min_t(u32, val, sysctl_rmem_max);
4709 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4710 			WRITE_ONCE(sk->sk_rcvbuf,
4711 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4712 			break;
4713 		case SO_SNDBUF:
4714 			val = min_t(u32, val, sysctl_wmem_max);
4715 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4716 			WRITE_ONCE(sk->sk_sndbuf,
4717 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4718 			break;
4719 		case SO_MAX_PACING_RATE: /* 32bit version */
4720 			if (val != ~0U)
4721 				cmpxchg(&sk->sk_pacing_status,
4722 					SK_PACING_NONE,
4723 					SK_PACING_NEEDED);
4724 			sk->sk_max_pacing_rate = (val == ~0U) ?
4725 						 ~0UL : (unsigned int)val;
4726 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4727 						 sk->sk_max_pacing_rate);
4728 			break;
4729 		case SO_PRIORITY:
4730 			sk->sk_priority = val;
4731 			break;
4732 		case SO_RCVLOWAT:
4733 			if (val < 0)
4734 				val = INT_MAX;
4735 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4736 			break;
4737 		case SO_MARK:
4738 			if (sk->sk_mark != val) {
4739 				sk->sk_mark = val;
4740 				sk_dst_reset(sk);
4741 			}
4742 			break;
4743 		case SO_BINDTODEVICE:
4744 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
4745 			strncpy(devname, optval, optlen);
4746 			devname[optlen] = 0;
4747 
4748 			ifindex = 0;
4749 			if (devname[0] != '\0') {
4750 				struct net_device *dev;
4751 
4752 				ret = -ENODEV;
4753 
4754 				net = sock_net(sk);
4755 				dev = dev_get_by_name(net, devname);
4756 				if (!dev)
4757 					break;
4758 				ifindex = dev->ifindex;
4759 				dev_put(dev);
4760 			}
4761 			fallthrough;
4762 		case SO_BINDTOIFINDEX:
4763 			if (optname == SO_BINDTOIFINDEX)
4764 				ifindex = val;
4765 			ret = sock_bindtoindex(sk, ifindex, false);
4766 			break;
4767 		case SO_KEEPALIVE:
4768 			if (sk->sk_prot->keepalive)
4769 				sk->sk_prot->keepalive(sk, valbool);
4770 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4771 			break;
4772 		case SO_REUSEPORT:
4773 			sk->sk_reuseport = valbool;
4774 			break;
4775 		default:
4776 			ret = -EINVAL;
4777 		}
4778 #ifdef CONFIG_INET
4779 	} else if (level == SOL_IP) {
4780 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4781 			return -EINVAL;
4782 
4783 		val = *((int *)optval);
4784 		/* Only some options are supported */
4785 		switch (optname) {
4786 		case IP_TOS:
4787 			if (val < -1 || val > 0xff) {
4788 				ret = -EINVAL;
4789 			} else {
4790 				struct inet_sock *inet = inet_sk(sk);
4791 
4792 				if (val == -1)
4793 					val = 0;
4794 				inet->tos = val;
4795 			}
4796 			break;
4797 		default:
4798 			ret = -EINVAL;
4799 		}
4800 #if IS_ENABLED(CONFIG_IPV6)
4801 	} else if (level == SOL_IPV6) {
4802 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4803 			return -EINVAL;
4804 
4805 		val = *((int *)optval);
4806 		/* Only some options are supported */
4807 		switch (optname) {
4808 		case IPV6_TCLASS:
4809 			if (val < -1 || val > 0xff) {
4810 				ret = -EINVAL;
4811 			} else {
4812 				struct ipv6_pinfo *np = inet6_sk(sk);
4813 
4814 				if (val == -1)
4815 					val = 0;
4816 				np->tclass = val;
4817 			}
4818 			break;
4819 		default:
4820 			ret = -EINVAL;
4821 		}
4822 #endif
4823 	} else if (level == SOL_TCP &&
4824 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4825 		if (optname == TCP_CONGESTION) {
4826 			char name[TCP_CA_NAME_MAX];
4827 
4828 			strncpy(name, optval, min_t(long, optlen,
4829 						    TCP_CA_NAME_MAX-1));
4830 			name[TCP_CA_NAME_MAX-1] = 0;
4831 			ret = tcp_set_congestion_control(sk, name, false, true);
4832 		} else {
4833 			struct inet_connection_sock *icsk = inet_csk(sk);
4834 			struct tcp_sock *tp = tcp_sk(sk);
4835 			unsigned long timeout;
4836 
4837 			if (optlen != sizeof(int))
4838 				return -EINVAL;
4839 
4840 			val = *((int *)optval);
4841 			/* Only some options are supported */
4842 			switch (optname) {
4843 			case TCP_BPF_IW:
4844 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4845 					ret = -EINVAL;
4846 				else
4847 					tp->snd_cwnd = val;
4848 				break;
4849 			case TCP_BPF_SNDCWND_CLAMP:
4850 				if (val <= 0) {
4851 					ret = -EINVAL;
4852 				} else {
4853 					tp->snd_cwnd_clamp = val;
4854 					tp->snd_ssthresh = val;
4855 				}
4856 				break;
4857 			case TCP_BPF_DELACK_MAX:
4858 				timeout = usecs_to_jiffies(val);
4859 				if (timeout > TCP_DELACK_MAX ||
4860 				    timeout < TCP_TIMEOUT_MIN)
4861 					return -EINVAL;
4862 				inet_csk(sk)->icsk_delack_max = timeout;
4863 				break;
4864 			case TCP_BPF_RTO_MIN:
4865 				timeout = usecs_to_jiffies(val);
4866 				if (timeout > TCP_RTO_MIN ||
4867 				    timeout < TCP_TIMEOUT_MIN)
4868 					return -EINVAL;
4869 				inet_csk(sk)->icsk_rto_min = timeout;
4870 				break;
4871 			case TCP_SAVE_SYN:
4872 				if (val < 0 || val > 1)
4873 					ret = -EINVAL;
4874 				else
4875 					tp->save_syn = val;
4876 				break;
4877 			case TCP_KEEPIDLE:
4878 				ret = tcp_sock_set_keepidle_locked(sk, val);
4879 				break;
4880 			case TCP_KEEPINTVL:
4881 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
4882 					ret = -EINVAL;
4883 				else
4884 					tp->keepalive_intvl = val * HZ;
4885 				break;
4886 			case TCP_KEEPCNT:
4887 				if (val < 1 || val > MAX_TCP_KEEPCNT)
4888 					ret = -EINVAL;
4889 				else
4890 					tp->keepalive_probes = val;
4891 				break;
4892 			case TCP_SYNCNT:
4893 				if (val < 1 || val > MAX_TCP_SYNCNT)
4894 					ret = -EINVAL;
4895 				else
4896 					icsk->icsk_syn_retries = val;
4897 				break;
4898 			case TCP_USER_TIMEOUT:
4899 				if (val < 0)
4900 					ret = -EINVAL;
4901 				else
4902 					icsk->icsk_user_timeout = val;
4903 				break;
4904 			case TCP_NOTSENT_LOWAT:
4905 				tp->notsent_lowat = val;
4906 				sk->sk_write_space(sk);
4907 				break;
4908 			case TCP_WINDOW_CLAMP:
4909 				ret = tcp_set_window_clamp(sk, val);
4910 				break;
4911 			default:
4912 				ret = -EINVAL;
4913 			}
4914 		}
4915 #endif
4916 	} else {
4917 		ret = -EINVAL;
4918 	}
4919 	return ret;
4920 }
4921 
4922 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4923 			   char *optval, int optlen)
4924 {
4925 	if (!sk_fullsock(sk))
4926 		goto err_clear;
4927 
4928 	sock_owned_by_me(sk);
4929 
4930 	if (level == SOL_SOCKET) {
4931 		if (optlen != sizeof(int))
4932 			goto err_clear;
4933 
4934 		switch (optname) {
4935 		case SO_MARK:
4936 			*((int *)optval) = sk->sk_mark;
4937 			break;
4938 		case SO_PRIORITY:
4939 			*((int *)optval) = sk->sk_priority;
4940 			break;
4941 		case SO_BINDTOIFINDEX:
4942 			*((int *)optval) = sk->sk_bound_dev_if;
4943 			break;
4944 		case SO_REUSEPORT:
4945 			*((int *)optval) = sk->sk_reuseport;
4946 			break;
4947 		default:
4948 			goto err_clear;
4949 		}
4950 #ifdef CONFIG_INET
4951 	} else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4952 		struct inet_connection_sock *icsk;
4953 		struct tcp_sock *tp;
4954 
4955 		switch (optname) {
4956 		case TCP_CONGESTION:
4957 			icsk = inet_csk(sk);
4958 
4959 			if (!icsk->icsk_ca_ops || optlen <= 1)
4960 				goto err_clear;
4961 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4962 			optval[optlen - 1] = 0;
4963 			break;
4964 		case TCP_SAVED_SYN:
4965 			tp = tcp_sk(sk);
4966 
4967 			if (optlen <= 0 || !tp->saved_syn ||
4968 			    optlen > tcp_saved_syn_len(tp->saved_syn))
4969 				goto err_clear;
4970 			memcpy(optval, tp->saved_syn->data, optlen);
4971 			break;
4972 		default:
4973 			goto err_clear;
4974 		}
4975 	} else if (level == SOL_IP) {
4976 		struct inet_sock *inet = inet_sk(sk);
4977 
4978 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4979 			goto err_clear;
4980 
4981 		/* Only some options are supported */
4982 		switch (optname) {
4983 		case IP_TOS:
4984 			*((int *)optval) = (int)inet->tos;
4985 			break;
4986 		default:
4987 			goto err_clear;
4988 		}
4989 #if IS_ENABLED(CONFIG_IPV6)
4990 	} else if (level == SOL_IPV6) {
4991 		struct ipv6_pinfo *np = inet6_sk(sk);
4992 
4993 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4994 			goto err_clear;
4995 
4996 		/* Only some options are supported */
4997 		switch (optname) {
4998 		case IPV6_TCLASS:
4999 			*((int *)optval) = (int)np->tclass;
5000 			break;
5001 		default:
5002 			goto err_clear;
5003 		}
5004 #endif
5005 #endif
5006 	} else {
5007 		goto err_clear;
5008 	}
5009 	return 0;
5010 err_clear:
5011 	memset(optval, 0, optlen);
5012 	return -EINVAL;
5013 }
5014 
5015 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5016 	   int, level, int, optname, char *, optval, int, optlen)
5017 {
5018 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5019 }
5020 
5021 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5022 	.func		= bpf_sock_addr_setsockopt,
5023 	.gpl_only	= false,
5024 	.ret_type	= RET_INTEGER,
5025 	.arg1_type	= ARG_PTR_TO_CTX,
5026 	.arg2_type	= ARG_ANYTHING,
5027 	.arg3_type	= ARG_ANYTHING,
5028 	.arg4_type	= ARG_PTR_TO_MEM,
5029 	.arg5_type	= ARG_CONST_SIZE,
5030 };
5031 
5032 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5033 	   int, level, int, optname, char *, optval, int, optlen)
5034 {
5035 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5036 }
5037 
5038 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5039 	.func		= bpf_sock_addr_getsockopt,
5040 	.gpl_only	= false,
5041 	.ret_type	= RET_INTEGER,
5042 	.arg1_type	= ARG_PTR_TO_CTX,
5043 	.arg2_type	= ARG_ANYTHING,
5044 	.arg3_type	= ARG_ANYTHING,
5045 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5046 	.arg5_type	= ARG_CONST_SIZE,
5047 };
5048 
5049 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5050 	   int, level, int, optname, char *, optval, int, optlen)
5051 {
5052 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5053 }
5054 
5055 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5056 	.func		= bpf_sock_ops_setsockopt,
5057 	.gpl_only	= false,
5058 	.ret_type	= RET_INTEGER,
5059 	.arg1_type	= ARG_PTR_TO_CTX,
5060 	.arg2_type	= ARG_ANYTHING,
5061 	.arg3_type	= ARG_ANYTHING,
5062 	.arg4_type	= ARG_PTR_TO_MEM,
5063 	.arg5_type	= ARG_CONST_SIZE,
5064 };
5065 
5066 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5067 				int optname, const u8 **start)
5068 {
5069 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5070 	const u8 *hdr_start;
5071 	int ret;
5072 
5073 	if (syn_skb) {
5074 		/* sk is a request_sock here */
5075 
5076 		if (optname == TCP_BPF_SYN) {
5077 			hdr_start = syn_skb->data;
5078 			ret = tcp_hdrlen(syn_skb);
5079 		} else if (optname == TCP_BPF_SYN_IP) {
5080 			hdr_start = skb_network_header(syn_skb);
5081 			ret = skb_network_header_len(syn_skb) +
5082 				tcp_hdrlen(syn_skb);
5083 		} else {
5084 			/* optname == TCP_BPF_SYN_MAC */
5085 			hdr_start = skb_mac_header(syn_skb);
5086 			ret = skb_mac_header_len(syn_skb) +
5087 				skb_network_header_len(syn_skb) +
5088 				tcp_hdrlen(syn_skb);
5089 		}
5090 	} else {
5091 		struct sock *sk = bpf_sock->sk;
5092 		struct saved_syn *saved_syn;
5093 
5094 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5095 			/* synack retransmit. bpf_sock->syn_skb will
5096 			 * not be available.  It has to resort to
5097 			 * saved_syn (if it is saved).
5098 			 */
5099 			saved_syn = inet_reqsk(sk)->saved_syn;
5100 		else
5101 			saved_syn = tcp_sk(sk)->saved_syn;
5102 
5103 		if (!saved_syn)
5104 			return -ENOENT;
5105 
5106 		if (optname == TCP_BPF_SYN) {
5107 			hdr_start = saved_syn->data +
5108 				saved_syn->mac_hdrlen +
5109 				saved_syn->network_hdrlen;
5110 			ret = saved_syn->tcp_hdrlen;
5111 		} else if (optname == TCP_BPF_SYN_IP) {
5112 			hdr_start = saved_syn->data +
5113 				saved_syn->mac_hdrlen;
5114 			ret = saved_syn->network_hdrlen +
5115 				saved_syn->tcp_hdrlen;
5116 		} else {
5117 			/* optname == TCP_BPF_SYN_MAC */
5118 
5119 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5120 			if (!saved_syn->mac_hdrlen)
5121 				return -ENOENT;
5122 
5123 			hdr_start = saved_syn->data;
5124 			ret = saved_syn->mac_hdrlen +
5125 				saved_syn->network_hdrlen +
5126 				saved_syn->tcp_hdrlen;
5127 		}
5128 	}
5129 
5130 	*start = hdr_start;
5131 	return ret;
5132 }
5133 
5134 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5135 	   int, level, int, optname, char *, optval, int, optlen)
5136 {
5137 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5138 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5139 		int ret, copy_len = 0;
5140 		const u8 *start;
5141 
5142 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5143 		if (ret > 0) {
5144 			copy_len = ret;
5145 			if (optlen < copy_len) {
5146 				copy_len = optlen;
5147 				ret = -ENOSPC;
5148 			}
5149 
5150 			memcpy(optval, start, copy_len);
5151 		}
5152 
5153 		/* Zero out unused buffer at the end */
5154 		memset(optval + copy_len, 0, optlen - copy_len);
5155 
5156 		return ret;
5157 	}
5158 
5159 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5160 }
5161 
5162 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5163 	.func		= bpf_sock_ops_getsockopt,
5164 	.gpl_only	= false,
5165 	.ret_type	= RET_INTEGER,
5166 	.arg1_type	= ARG_PTR_TO_CTX,
5167 	.arg2_type	= ARG_ANYTHING,
5168 	.arg3_type	= ARG_ANYTHING,
5169 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5170 	.arg5_type	= ARG_CONST_SIZE,
5171 };
5172 
5173 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5174 	   int, argval)
5175 {
5176 	struct sock *sk = bpf_sock->sk;
5177 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5178 
5179 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5180 		return -EINVAL;
5181 
5182 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5183 
5184 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5185 }
5186 
5187 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5188 	.func		= bpf_sock_ops_cb_flags_set,
5189 	.gpl_only	= false,
5190 	.ret_type	= RET_INTEGER,
5191 	.arg1_type	= ARG_PTR_TO_CTX,
5192 	.arg2_type	= ARG_ANYTHING,
5193 };
5194 
5195 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5196 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5197 
5198 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5199 	   int, addr_len)
5200 {
5201 #ifdef CONFIG_INET
5202 	struct sock *sk = ctx->sk;
5203 	u32 flags = BIND_FROM_BPF;
5204 	int err;
5205 
5206 	err = -EINVAL;
5207 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5208 		return err;
5209 	if (addr->sa_family == AF_INET) {
5210 		if (addr_len < sizeof(struct sockaddr_in))
5211 			return err;
5212 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5213 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5214 		return __inet_bind(sk, addr, addr_len, flags);
5215 #if IS_ENABLED(CONFIG_IPV6)
5216 	} else if (addr->sa_family == AF_INET6) {
5217 		if (addr_len < SIN6_LEN_RFC2133)
5218 			return err;
5219 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5220 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5221 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5222 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5223 		 */
5224 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5225 #endif /* CONFIG_IPV6 */
5226 	}
5227 #endif /* CONFIG_INET */
5228 
5229 	return -EAFNOSUPPORT;
5230 }
5231 
5232 static const struct bpf_func_proto bpf_bind_proto = {
5233 	.func		= bpf_bind,
5234 	.gpl_only	= false,
5235 	.ret_type	= RET_INTEGER,
5236 	.arg1_type	= ARG_PTR_TO_CTX,
5237 	.arg2_type	= ARG_PTR_TO_MEM,
5238 	.arg3_type	= ARG_CONST_SIZE,
5239 };
5240 
5241 #ifdef CONFIG_XFRM
5242 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5243 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5244 {
5245 	const struct sec_path *sp = skb_sec_path(skb);
5246 	const struct xfrm_state *x;
5247 
5248 	if (!sp || unlikely(index >= sp->len || flags))
5249 		goto err_clear;
5250 
5251 	x = sp->xvec[index];
5252 
5253 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5254 		goto err_clear;
5255 
5256 	to->reqid = x->props.reqid;
5257 	to->spi = x->id.spi;
5258 	to->family = x->props.family;
5259 	to->ext = 0;
5260 
5261 	if (to->family == AF_INET6) {
5262 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5263 		       sizeof(to->remote_ipv6));
5264 	} else {
5265 		to->remote_ipv4 = x->props.saddr.a4;
5266 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5267 	}
5268 
5269 	return 0;
5270 err_clear:
5271 	memset(to, 0, size);
5272 	return -EINVAL;
5273 }
5274 
5275 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5276 	.func		= bpf_skb_get_xfrm_state,
5277 	.gpl_only	= false,
5278 	.ret_type	= RET_INTEGER,
5279 	.arg1_type	= ARG_PTR_TO_CTX,
5280 	.arg2_type	= ARG_ANYTHING,
5281 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5282 	.arg4_type	= ARG_CONST_SIZE,
5283 	.arg5_type	= ARG_ANYTHING,
5284 };
5285 #endif
5286 
5287 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5288 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5289 				  const struct neighbour *neigh,
5290 				  const struct net_device *dev, u32 mtu)
5291 {
5292 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5293 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5294 	params->h_vlan_TCI = 0;
5295 	params->h_vlan_proto = 0;
5296 	if (mtu)
5297 		params->mtu_result = mtu; /* union with tot_len */
5298 
5299 	return 0;
5300 }
5301 #endif
5302 
5303 #if IS_ENABLED(CONFIG_INET)
5304 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5305 			       u32 flags, bool check_mtu)
5306 {
5307 	struct fib_nh_common *nhc;
5308 	struct in_device *in_dev;
5309 	struct neighbour *neigh;
5310 	struct net_device *dev;
5311 	struct fib_result res;
5312 	struct flowi4 fl4;
5313 	u32 mtu = 0;
5314 	int err;
5315 
5316 	dev = dev_get_by_index_rcu(net, params->ifindex);
5317 	if (unlikely(!dev))
5318 		return -ENODEV;
5319 
5320 	/* verify forwarding is enabled on this interface */
5321 	in_dev = __in_dev_get_rcu(dev);
5322 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5323 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5324 
5325 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5326 		fl4.flowi4_iif = 1;
5327 		fl4.flowi4_oif = params->ifindex;
5328 	} else {
5329 		fl4.flowi4_iif = params->ifindex;
5330 		fl4.flowi4_oif = 0;
5331 	}
5332 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5333 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5334 	fl4.flowi4_flags = 0;
5335 
5336 	fl4.flowi4_proto = params->l4_protocol;
5337 	fl4.daddr = params->ipv4_dst;
5338 	fl4.saddr = params->ipv4_src;
5339 	fl4.fl4_sport = params->sport;
5340 	fl4.fl4_dport = params->dport;
5341 	fl4.flowi4_multipath_hash = 0;
5342 
5343 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5344 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5345 		struct fib_table *tb;
5346 
5347 		tb = fib_get_table(net, tbid);
5348 		if (unlikely(!tb))
5349 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5350 
5351 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5352 	} else {
5353 		fl4.flowi4_mark = 0;
5354 		fl4.flowi4_secid = 0;
5355 		fl4.flowi4_tun_key.tun_id = 0;
5356 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5357 
5358 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5359 	}
5360 
5361 	if (err) {
5362 		/* map fib lookup errors to RTN_ type */
5363 		if (err == -EINVAL)
5364 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5365 		if (err == -EHOSTUNREACH)
5366 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5367 		if (err == -EACCES)
5368 			return BPF_FIB_LKUP_RET_PROHIBIT;
5369 
5370 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5371 	}
5372 
5373 	if (res.type != RTN_UNICAST)
5374 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5375 
5376 	if (fib_info_num_path(res.fi) > 1)
5377 		fib_select_path(net, &res, &fl4, NULL);
5378 
5379 	if (check_mtu) {
5380 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5381 		if (params->tot_len > mtu) {
5382 			params->mtu_result = mtu; /* union with tot_len */
5383 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5384 		}
5385 	}
5386 
5387 	nhc = res.nhc;
5388 
5389 	/* do not handle lwt encaps right now */
5390 	if (nhc->nhc_lwtstate)
5391 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5392 
5393 	dev = nhc->nhc_dev;
5394 
5395 	params->rt_metric = res.fi->fib_priority;
5396 	params->ifindex = dev->ifindex;
5397 
5398 	/* xdp and cls_bpf programs are run in RCU-bh so
5399 	 * rcu_read_lock_bh is not needed here
5400 	 */
5401 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5402 		if (nhc->nhc_gw_family)
5403 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5404 
5405 		neigh = __ipv4_neigh_lookup_noref(dev,
5406 						 (__force u32)params->ipv4_dst);
5407 	} else {
5408 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5409 
5410 		params->family = AF_INET6;
5411 		*dst = nhc->nhc_gw.ipv6;
5412 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5413 	}
5414 
5415 	if (!neigh)
5416 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5417 
5418 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5419 }
5420 #endif
5421 
5422 #if IS_ENABLED(CONFIG_IPV6)
5423 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5424 			       u32 flags, bool check_mtu)
5425 {
5426 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5427 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5428 	struct fib6_result res = {};
5429 	struct neighbour *neigh;
5430 	struct net_device *dev;
5431 	struct inet6_dev *idev;
5432 	struct flowi6 fl6;
5433 	int strict = 0;
5434 	int oif, err;
5435 	u32 mtu = 0;
5436 
5437 	/* link local addresses are never forwarded */
5438 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5439 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5440 
5441 	dev = dev_get_by_index_rcu(net, params->ifindex);
5442 	if (unlikely(!dev))
5443 		return -ENODEV;
5444 
5445 	idev = __in6_dev_get_safely(dev);
5446 	if (unlikely(!idev || !idev->cnf.forwarding))
5447 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5448 
5449 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5450 		fl6.flowi6_iif = 1;
5451 		oif = fl6.flowi6_oif = params->ifindex;
5452 	} else {
5453 		oif = fl6.flowi6_iif = params->ifindex;
5454 		fl6.flowi6_oif = 0;
5455 		strict = RT6_LOOKUP_F_HAS_SADDR;
5456 	}
5457 	fl6.flowlabel = params->flowinfo;
5458 	fl6.flowi6_scope = 0;
5459 	fl6.flowi6_flags = 0;
5460 	fl6.mp_hash = 0;
5461 
5462 	fl6.flowi6_proto = params->l4_protocol;
5463 	fl6.daddr = *dst;
5464 	fl6.saddr = *src;
5465 	fl6.fl6_sport = params->sport;
5466 	fl6.fl6_dport = params->dport;
5467 
5468 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5469 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5470 		struct fib6_table *tb;
5471 
5472 		tb = ipv6_stub->fib6_get_table(net, tbid);
5473 		if (unlikely(!tb))
5474 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5475 
5476 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5477 						   strict);
5478 	} else {
5479 		fl6.flowi6_mark = 0;
5480 		fl6.flowi6_secid = 0;
5481 		fl6.flowi6_tun_key.tun_id = 0;
5482 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5483 
5484 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5485 	}
5486 
5487 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5488 		     res.f6i == net->ipv6.fib6_null_entry))
5489 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5490 
5491 	switch (res.fib6_type) {
5492 	/* only unicast is forwarded */
5493 	case RTN_UNICAST:
5494 		break;
5495 	case RTN_BLACKHOLE:
5496 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5497 	case RTN_UNREACHABLE:
5498 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5499 	case RTN_PROHIBIT:
5500 		return BPF_FIB_LKUP_RET_PROHIBIT;
5501 	default:
5502 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5503 	}
5504 
5505 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5506 				    fl6.flowi6_oif != 0, NULL, strict);
5507 
5508 	if (check_mtu) {
5509 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5510 		if (params->tot_len > mtu) {
5511 			params->mtu_result = mtu; /* union with tot_len */
5512 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5513 		}
5514 	}
5515 
5516 	if (res.nh->fib_nh_lws)
5517 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5518 
5519 	if (res.nh->fib_nh_gw_family)
5520 		*dst = res.nh->fib_nh_gw6;
5521 
5522 	dev = res.nh->fib_nh_dev;
5523 	params->rt_metric = res.f6i->fib6_metric;
5524 	params->ifindex = dev->ifindex;
5525 
5526 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5527 	 * not needed here.
5528 	 */
5529 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5530 	if (!neigh)
5531 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5532 
5533 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5534 }
5535 #endif
5536 
5537 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5538 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5539 {
5540 	if (plen < sizeof(*params))
5541 		return -EINVAL;
5542 
5543 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5544 		return -EINVAL;
5545 
5546 	switch (params->family) {
5547 #if IS_ENABLED(CONFIG_INET)
5548 	case AF_INET:
5549 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5550 					   flags, true);
5551 #endif
5552 #if IS_ENABLED(CONFIG_IPV6)
5553 	case AF_INET6:
5554 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5555 					   flags, true);
5556 #endif
5557 	}
5558 	return -EAFNOSUPPORT;
5559 }
5560 
5561 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5562 	.func		= bpf_xdp_fib_lookup,
5563 	.gpl_only	= true,
5564 	.ret_type	= RET_INTEGER,
5565 	.arg1_type      = ARG_PTR_TO_CTX,
5566 	.arg2_type      = ARG_PTR_TO_MEM,
5567 	.arg3_type      = ARG_CONST_SIZE,
5568 	.arg4_type	= ARG_ANYTHING,
5569 };
5570 
5571 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5572 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5573 {
5574 	struct net *net = dev_net(skb->dev);
5575 	int rc = -EAFNOSUPPORT;
5576 	bool check_mtu = false;
5577 
5578 	if (plen < sizeof(*params))
5579 		return -EINVAL;
5580 
5581 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5582 		return -EINVAL;
5583 
5584 	if (params->tot_len)
5585 		check_mtu = true;
5586 
5587 	switch (params->family) {
5588 #if IS_ENABLED(CONFIG_INET)
5589 	case AF_INET:
5590 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5591 		break;
5592 #endif
5593 #if IS_ENABLED(CONFIG_IPV6)
5594 	case AF_INET6:
5595 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5596 		break;
5597 #endif
5598 	}
5599 
5600 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5601 		struct net_device *dev;
5602 
5603 		/* When tot_len isn't provided by user, check skb
5604 		 * against MTU of FIB lookup resulting net_device
5605 		 */
5606 		dev = dev_get_by_index_rcu(net, params->ifindex);
5607 		if (!is_skb_forwardable(dev, skb))
5608 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5609 
5610 		params->mtu_result = dev->mtu; /* union with tot_len */
5611 	}
5612 
5613 	return rc;
5614 }
5615 
5616 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5617 	.func		= bpf_skb_fib_lookup,
5618 	.gpl_only	= true,
5619 	.ret_type	= RET_INTEGER,
5620 	.arg1_type      = ARG_PTR_TO_CTX,
5621 	.arg2_type      = ARG_PTR_TO_MEM,
5622 	.arg3_type      = ARG_CONST_SIZE,
5623 	.arg4_type	= ARG_ANYTHING,
5624 };
5625 
5626 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
5627 					    u32 ifindex)
5628 {
5629 	struct net *netns = dev_net(dev_curr);
5630 
5631 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
5632 	if (ifindex == 0)
5633 		return dev_curr;
5634 
5635 	return dev_get_by_index_rcu(netns, ifindex);
5636 }
5637 
5638 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
5639 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5640 {
5641 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5642 	struct net_device *dev = skb->dev;
5643 	int skb_len, dev_len;
5644 	int mtu;
5645 
5646 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
5647 		return -EINVAL;
5648 
5649 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
5650 		return -EINVAL;
5651 
5652 	dev = __dev_via_ifindex(dev, ifindex);
5653 	if (unlikely(!dev))
5654 		return -ENODEV;
5655 
5656 	mtu = READ_ONCE(dev->mtu);
5657 
5658 	dev_len = mtu + dev->hard_header_len;
5659 
5660 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5661 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
5662 
5663 	skb_len += len_diff; /* minus result pass check */
5664 	if (skb_len <= dev_len) {
5665 		ret = BPF_MTU_CHK_RET_SUCCESS;
5666 		goto out;
5667 	}
5668 	/* At this point, skb->len exceed MTU, but as it include length of all
5669 	 * segments, it can still be below MTU.  The SKB can possibly get
5670 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
5671 	 * must choose if segs are to be MTU checked.
5672 	 */
5673 	if (skb_is_gso(skb)) {
5674 		ret = BPF_MTU_CHK_RET_SUCCESS;
5675 
5676 		if (flags & BPF_MTU_CHK_SEGS &&
5677 		    !skb_gso_validate_network_len(skb, mtu))
5678 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
5679 	}
5680 out:
5681 	/* BPF verifier guarantees valid pointer */
5682 	*mtu_len = mtu;
5683 
5684 	return ret;
5685 }
5686 
5687 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
5688 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5689 {
5690 	struct net_device *dev = xdp->rxq->dev;
5691 	int xdp_len = xdp->data_end - xdp->data;
5692 	int ret = BPF_MTU_CHK_RET_SUCCESS;
5693 	int mtu, dev_len;
5694 
5695 	/* XDP variant doesn't support multi-buffer segment check (yet) */
5696 	if (unlikely(flags))
5697 		return -EINVAL;
5698 
5699 	dev = __dev_via_ifindex(dev, ifindex);
5700 	if (unlikely(!dev))
5701 		return -ENODEV;
5702 
5703 	mtu = READ_ONCE(dev->mtu);
5704 
5705 	/* Add L2-header as dev MTU is L3 size */
5706 	dev_len = mtu + dev->hard_header_len;
5707 
5708 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5709 	if (*mtu_len)
5710 		xdp_len = *mtu_len + dev->hard_header_len;
5711 
5712 	xdp_len += len_diff; /* minus result pass check */
5713 	if (xdp_len > dev_len)
5714 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5715 
5716 	/* BPF verifier guarantees valid pointer */
5717 	*mtu_len = mtu;
5718 
5719 	return ret;
5720 }
5721 
5722 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
5723 	.func		= bpf_skb_check_mtu,
5724 	.gpl_only	= true,
5725 	.ret_type	= RET_INTEGER,
5726 	.arg1_type      = ARG_PTR_TO_CTX,
5727 	.arg2_type      = ARG_ANYTHING,
5728 	.arg3_type      = ARG_PTR_TO_INT,
5729 	.arg4_type      = ARG_ANYTHING,
5730 	.arg5_type      = ARG_ANYTHING,
5731 };
5732 
5733 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
5734 	.func		= bpf_xdp_check_mtu,
5735 	.gpl_only	= true,
5736 	.ret_type	= RET_INTEGER,
5737 	.arg1_type      = ARG_PTR_TO_CTX,
5738 	.arg2_type      = ARG_ANYTHING,
5739 	.arg3_type      = ARG_PTR_TO_INT,
5740 	.arg4_type      = ARG_ANYTHING,
5741 	.arg5_type      = ARG_ANYTHING,
5742 };
5743 
5744 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5745 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5746 {
5747 	int err;
5748 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5749 
5750 	if (!seg6_validate_srh(srh, len, false))
5751 		return -EINVAL;
5752 
5753 	switch (type) {
5754 	case BPF_LWT_ENCAP_SEG6_INLINE:
5755 		if (skb->protocol != htons(ETH_P_IPV6))
5756 			return -EBADMSG;
5757 
5758 		err = seg6_do_srh_inline(skb, srh);
5759 		break;
5760 	case BPF_LWT_ENCAP_SEG6:
5761 		skb_reset_inner_headers(skb);
5762 		skb->encapsulation = 1;
5763 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5764 		break;
5765 	default:
5766 		return -EINVAL;
5767 	}
5768 
5769 	bpf_compute_data_pointers(skb);
5770 	if (err)
5771 		return err;
5772 
5773 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5774 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5775 
5776 	return seg6_lookup_nexthop(skb, NULL, 0);
5777 }
5778 #endif /* CONFIG_IPV6_SEG6_BPF */
5779 
5780 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5781 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5782 			     bool ingress)
5783 {
5784 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5785 }
5786 #endif
5787 
5788 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5789 	   u32, len)
5790 {
5791 	switch (type) {
5792 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5793 	case BPF_LWT_ENCAP_SEG6:
5794 	case BPF_LWT_ENCAP_SEG6_INLINE:
5795 		return bpf_push_seg6_encap(skb, type, hdr, len);
5796 #endif
5797 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5798 	case BPF_LWT_ENCAP_IP:
5799 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5800 #endif
5801 	default:
5802 		return -EINVAL;
5803 	}
5804 }
5805 
5806 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5807 	   void *, hdr, u32, len)
5808 {
5809 	switch (type) {
5810 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5811 	case BPF_LWT_ENCAP_IP:
5812 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5813 #endif
5814 	default:
5815 		return -EINVAL;
5816 	}
5817 }
5818 
5819 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5820 	.func		= bpf_lwt_in_push_encap,
5821 	.gpl_only	= false,
5822 	.ret_type	= RET_INTEGER,
5823 	.arg1_type	= ARG_PTR_TO_CTX,
5824 	.arg2_type	= ARG_ANYTHING,
5825 	.arg3_type	= ARG_PTR_TO_MEM,
5826 	.arg4_type	= ARG_CONST_SIZE
5827 };
5828 
5829 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5830 	.func		= bpf_lwt_xmit_push_encap,
5831 	.gpl_only	= false,
5832 	.ret_type	= RET_INTEGER,
5833 	.arg1_type	= ARG_PTR_TO_CTX,
5834 	.arg2_type	= ARG_ANYTHING,
5835 	.arg3_type	= ARG_PTR_TO_MEM,
5836 	.arg4_type	= ARG_CONST_SIZE
5837 };
5838 
5839 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5840 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5841 	   const void *, from, u32, len)
5842 {
5843 	struct seg6_bpf_srh_state *srh_state =
5844 		this_cpu_ptr(&seg6_bpf_srh_states);
5845 	struct ipv6_sr_hdr *srh = srh_state->srh;
5846 	void *srh_tlvs, *srh_end, *ptr;
5847 	int srhoff = 0;
5848 
5849 	if (srh == NULL)
5850 		return -EINVAL;
5851 
5852 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5853 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5854 
5855 	ptr = skb->data + offset;
5856 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
5857 		srh_state->valid = false;
5858 	else if (ptr < (void *)&srh->flags ||
5859 		 ptr + len > (void *)&srh->segments)
5860 		return -EFAULT;
5861 
5862 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
5863 		return -EFAULT;
5864 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5865 		return -EINVAL;
5866 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5867 
5868 	memcpy(skb->data + offset, from, len);
5869 	return 0;
5870 }
5871 
5872 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5873 	.func		= bpf_lwt_seg6_store_bytes,
5874 	.gpl_only	= false,
5875 	.ret_type	= RET_INTEGER,
5876 	.arg1_type	= ARG_PTR_TO_CTX,
5877 	.arg2_type	= ARG_ANYTHING,
5878 	.arg3_type	= ARG_PTR_TO_MEM,
5879 	.arg4_type	= ARG_CONST_SIZE
5880 };
5881 
5882 static void bpf_update_srh_state(struct sk_buff *skb)
5883 {
5884 	struct seg6_bpf_srh_state *srh_state =
5885 		this_cpu_ptr(&seg6_bpf_srh_states);
5886 	int srhoff = 0;
5887 
5888 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5889 		srh_state->srh = NULL;
5890 	} else {
5891 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5892 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5893 		srh_state->valid = true;
5894 	}
5895 }
5896 
5897 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5898 	   u32, action, void *, param, u32, param_len)
5899 {
5900 	struct seg6_bpf_srh_state *srh_state =
5901 		this_cpu_ptr(&seg6_bpf_srh_states);
5902 	int hdroff = 0;
5903 	int err;
5904 
5905 	switch (action) {
5906 	case SEG6_LOCAL_ACTION_END_X:
5907 		if (!seg6_bpf_has_valid_srh(skb))
5908 			return -EBADMSG;
5909 		if (param_len != sizeof(struct in6_addr))
5910 			return -EINVAL;
5911 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5912 	case SEG6_LOCAL_ACTION_END_T:
5913 		if (!seg6_bpf_has_valid_srh(skb))
5914 			return -EBADMSG;
5915 		if (param_len != sizeof(int))
5916 			return -EINVAL;
5917 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5918 	case SEG6_LOCAL_ACTION_END_DT6:
5919 		if (!seg6_bpf_has_valid_srh(skb))
5920 			return -EBADMSG;
5921 		if (param_len != sizeof(int))
5922 			return -EINVAL;
5923 
5924 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5925 			return -EBADMSG;
5926 		if (!pskb_pull(skb, hdroff))
5927 			return -EBADMSG;
5928 
5929 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5930 		skb_reset_network_header(skb);
5931 		skb_reset_transport_header(skb);
5932 		skb->encapsulation = 0;
5933 
5934 		bpf_compute_data_pointers(skb);
5935 		bpf_update_srh_state(skb);
5936 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5937 	case SEG6_LOCAL_ACTION_END_B6:
5938 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5939 			return -EBADMSG;
5940 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5941 					  param, param_len);
5942 		if (!err)
5943 			bpf_update_srh_state(skb);
5944 
5945 		return err;
5946 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5947 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5948 			return -EBADMSG;
5949 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5950 					  param, param_len);
5951 		if (!err)
5952 			bpf_update_srh_state(skb);
5953 
5954 		return err;
5955 	default:
5956 		return -EINVAL;
5957 	}
5958 }
5959 
5960 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5961 	.func		= bpf_lwt_seg6_action,
5962 	.gpl_only	= false,
5963 	.ret_type	= RET_INTEGER,
5964 	.arg1_type	= ARG_PTR_TO_CTX,
5965 	.arg2_type	= ARG_ANYTHING,
5966 	.arg3_type	= ARG_PTR_TO_MEM,
5967 	.arg4_type	= ARG_CONST_SIZE
5968 };
5969 
5970 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5971 	   s32, len)
5972 {
5973 	struct seg6_bpf_srh_state *srh_state =
5974 		this_cpu_ptr(&seg6_bpf_srh_states);
5975 	struct ipv6_sr_hdr *srh = srh_state->srh;
5976 	void *srh_end, *srh_tlvs, *ptr;
5977 	struct ipv6hdr *hdr;
5978 	int srhoff = 0;
5979 	int ret;
5980 
5981 	if (unlikely(srh == NULL))
5982 		return -EINVAL;
5983 
5984 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5985 			((srh->first_segment + 1) << 4));
5986 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5987 			srh_state->hdrlen);
5988 	ptr = skb->data + offset;
5989 
5990 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5991 		return -EFAULT;
5992 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5993 		return -EFAULT;
5994 
5995 	if (len > 0) {
5996 		ret = skb_cow_head(skb, len);
5997 		if (unlikely(ret < 0))
5998 			return ret;
5999 
6000 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6001 	} else {
6002 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6003 	}
6004 
6005 	bpf_compute_data_pointers(skb);
6006 	if (unlikely(ret < 0))
6007 		return ret;
6008 
6009 	hdr = (struct ipv6hdr *)skb->data;
6010 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6011 
6012 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6013 		return -EINVAL;
6014 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6015 	srh_state->hdrlen += len;
6016 	srh_state->valid = false;
6017 	return 0;
6018 }
6019 
6020 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6021 	.func		= bpf_lwt_seg6_adjust_srh,
6022 	.gpl_only	= false,
6023 	.ret_type	= RET_INTEGER,
6024 	.arg1_type	= ARG_PTR_TO_CTX,
6025 	.arg2_type	= ARG_ANYTHING,
6026 	.arg3_type	= ARG_ANYTHING,
6027 };
6028 #endif /* CONFIG_IPV6_SEG6_BPF */
6029 
6030 #ifdef CONFIG_INET
6031 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6032 			      int dif, int sdif, u8 family, u8 proto)
6033 {
6034 	bool refcounted = false;
6035 	struct sock *sk = NULL;
6036 
6037 	if (family == AF_INET) {
6038 		__be32 src4 = tuple->ipv4.saddr;
6039 		__be32 dst4 = tuple->ipv4.daddr;
6040 
6041 		if (proto == IPPROTO_TCP)
6042 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6043 					   src4, tuple->ipv4.sport,
6044 					   dst4, tuple->ipv4.dport,
6045 					   dif, sdif, &refcounted);
6046 		else
6047 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6048 					       dst4, tuple->ipv4.dport,
6049 					       dif, sdif, &udp_table, NULL);
6050 #if IS_ENABLED(CONFIG_IPV6)
6051 	} else {
6052 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6053 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6054 
6055 		if (proto == IPPROTO_TCP)
6056 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6057 					    src6, tuple->ipv6.sport,
6058 					    dst6, ntohs(tuple->ipv6.dport),
6059 					    dif, sdif, &refcounted);
6060 		else if (likely(ipv6_bpf_stub))
6061 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6062 							    src6, tuple->ipv6.sport,
6063 							    dst6, tuple->ipv6.dport,
6064 							    dif, sdif,
6065 							    &udp_table, NULL);
6066 #endif
6067 	}
6068 
6069 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6070 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6071 		sk = NULL;
6072 	}
6073 	return sk;
6074 }
6075 
6076 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6077  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6078  * Returns the socket as an 'unsigned long' to simplify the casting in the
6079  * callers to satisfy BPF_CALL declarations.
6080  */
6081 static struct sock *
6082 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6083 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6084 		 u64 flags)
6085 {
6086 	struct sock *sk = NULL;
6087 	u8 family = AF_UNSPEC;
6088 	struct net *net;
6089 	int sdif;
6090 
6091 	if (len == sizeof(tuple->ipv4))
6092 		family = AF_INET;
6093 	else if (len == sizeof(tuple->ipv6))
6094 		family = AF_INET6;
6095 	else
6096 		return NULL;
6097 
6098 	if (unlikely(family == AF_UNSPEC || flags ||
6099 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6100 		goto out;
6101 
6102 	if (family == AF_INET)
6103 		sdif = inet_sdif(skb);
6104 	else
6105 		sdif = inet6_sdif(skb);
6106 
6107 	if ((s32)netns_id < 0) {
6108 		net = caller_net;
6109 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6110 	} else {
6111 		net = get_net_ns_by_id(caller_net, netns_id);
6112 		if (unlikely(!net))
6113 			goto out;
6114 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6115 		put_net(net);
6116 	}
6117 
6118 out:
6119 	return sk;
6120 }
6121 
6122 static struct sock *
6123 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6124 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6125 		u64 flags)
6126 {
6127 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6128 					   ifindex, proto, netns_id, flags);
6129 
6130 	if (sk) {
6131 		sk = sk_to_full_sk(sk);
6132 		if (!sk_fullsock(sk)) {
6133 			sock_gen_put(sk);
6134 			return NULL;
6135 		}
6136 	}
6137 
6138 	return sk;
6139 }
6140 
6141 static struct sock *
6142 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6143 	       u8 proto, u64 netns_id, u64 flags)
6144 {
6145 	struct net *caller_net;
6146 	int ifindex;
6147 
6148 	if (skb->dev) {
6149 		caller_net = dev_net(skb->dev);
6150 		ifindex = skb->dev->ifindex;
6151 	} else {
6152 		caller_net = sock_net(skb->sk);
6153 		ifindex = 0;
6154 	}
6155 
6156 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6157 				netns_id, flags);
6158 }
6159 
6160 static struct sock *
6161 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6162 	      u8 proto, u64 netns_id, u64 flags)
6163 {
6164 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6165 					 flags);
6166 
6167 	if (sk) {
6168 		sk = sk_to_full_sk(sk);
6169 		if (!sk_fullsock(sk)) {
6170 			sock_gen_put(sk);
6171 			return NULL;
6172 		}
6173 	}
6174 
6175 	return sk;
6176 }
6177 
6178 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6179 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6180 {
6181 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6182 					     netns_id, flags);
6183 }
6184 
6185 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6186 	.func		= bpf_skc_lookup_tcp,
6187 	.gpl_only	= false,
6188 	.pkt_access	= true,
6189 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6190 	.arg1_type	= ARG_PTR_TO_CTX,
6191 	.arg2_type	= ARG_PTR_TO_MEM,
6192 	.arg3_type	= ARG_CONST_SIZE,
6193 	.arg4_type	= ARG_ANYTHING,
6194 	.arg5_type	= ARG_ANYTHING,
6195 };
6196 
6197 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6198 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6199 {
6200 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6201 					    netns_id, flags);
6202 }
6203 
6204 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6205 	.func		= bpf_sk_lookup_tcp,
6206 	.gpl_only	= false,
6207 	.pkt_access	= true,
6208 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6209 	.arg1_type	= ARG_PTR_TO_CTX,
6210 	.arg2_type	= ARG_PTR_TO_MEM,
6211 	.arg3_type	= ARG_CONST_SIZE,
6212 	.arg4_type	= ARG_ANYTHING,
6213 	.arg5_type	= ARG_ANYTHING,
6214 };
6215 
6216 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6217 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6218 {
6219 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6220 					    netns_id, flags);
6221 }
6222 
6223 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6224 	.func		= bpf_sk_lookup_udp,
6225 	.gpl_only	= false,
6226 	.pkt_access	= true,
6227 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6228 	.arg1_type	= ARG_PTR_TO_CTX,
6229 	.arg2_type	= ARG_PTR_TO_MEM,
6230 	.arg3_type	= ARG_CONST_SIZE,
6231 	.arg4_type	= ARG_ANYTHING,
6232 	.arg5_type	= ARG_ANYTHING,
6233 };
6234 
6235 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6236 {
6237 	if (sk && sk_is_refcounted(sk))
6238 		sock_gen_put(sk);
6239 	return 0;
6240 }
6241 
6242 static const struct bpf_func_proto bpf_sk_release_proto = {
6243 	.func		= bpf_sk_release,
6244 	.gpl_only	= false,
6245 	.ret_type	= RET_INTEGER,
6246 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6247 };
6248 
6249 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6250 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6251 {
6252 	struct net *caller_net = dev_net(ctx->rxq->dev);
6253 	int ifindex = ctx->rxq->dev->ifindex;
6254 
6255 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6256 					      ifindex, IPPROTO_UDP, netns_id,
6257 					      flags);
6258 }
6259 
6260 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6261 	.func           = bpf_xdp_sk_lookup_udp,
6262 	.gpl_only       = false,
6263 	.pkt_access     = true,
6264 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6265 	.arg1_type      = ARG_PTR_TO_CTX,
6266 	.arg2_type      = ARG_PTR_TO_MEM,
6267 	.arg3_type      = ARG_CONST_SIZE,
6268 	.arg4_type      = ARG_ANYTHING,
6269 	.arg5_type      = ARG_ANYTHING,
6270 };
6271 
6272 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6273 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6274 {
6275 	struct net *caller_net = dev_net(ctx->rxq->dev);
6276 	int ifindex = ctx->rxq->dev->ifindex;
6277 
6278 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6279 					       ifindex, IPPROTO_TCP, netns_id,
6280 					       flags);
6281 }
6282 
6283 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6284 	.func           = bpf_xdp_skc_lookup_tcp,
6285 	.gpl_only       = false,
6286 	.pkt_access     = true,
6287 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6288 	.arg1_type      = ARG_PTR_TO_CTX,
6289 	.arg2_type      = ARG_PTR_TO_MEM,
6290 	.arg3_type      = ARG_CONST_SIZE,
6291 	.arg4_type      = ARG_ANYTHING,
6292 	.arg5_type      = ARG_ANYTHING,
6293 };
6294 
6295 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6296 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6297 {
6298 	struct net *caller_net = dev_net(ctx->rxq->dev);
6299 	int ifindex = ctx->rxq->dev->ifindex;
6300 
6301 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6302 					      ifindex, IPPROTO_TCP, netns_id,
6303 					      flags);
6304 }
6305 
6306 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6307 	.func           = bpf_xdp_sk_lookup_tcp,
6308 	.gpl_only       = false,
6309 	.pkt_access     = true,
6310 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6311 	.arg1_type      = ARG_PTR_TO_CTX,
6312 	.arg2_type      = ARG_PTR_TO_MEM,
6313 	.arg3_type      = ARG_CONST_SIZE,
6314 	.arg4_type      = ARG_ANYTHING,
6315 	.arg5_type      = ARG_ANYTHING,
6316 };
6317 
6318 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6319 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6320 {
6321 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6322 					       sock_net(ctx->sk), 0,
6323 					       IPPROTO_TCP, netns_id, flags);
6324 }
6325 
6326 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6327 	.func		= bpf_sock_addr_skc_lookup_tcp,
6328 	.gpl_only	= false,
6329 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6330 	.arg1_type	= ARG_PTR_TO_CTX,
6331 	.arg2_type	= ARG_PTR_TO_MEM,
6332 	.arg3_type	= ARG_CONST_SIZE,
6333 	.arg4_type	= ARG_ANYTHING,
6334 	.arg5_type	= ARG_ANYTHING,
6335 };
6336 
6337 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6338 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6339 {
6340 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6341 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6342 					      netns_id, flags);
6343 }
6344 
6345 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6346 	.func		= bpf_sock_addr_sk_lookup_tcp,
6347 	.gpl_only	= false,
6348 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6349 	.arg1_type	= ARG_PTR_TO_CTX,
6350 	.arg2_type	= ARG_PTR_TO_MEM,
6351 	.arg3_type	= ARG_CONST_SIZE,
6352 	.arg4_type	= ARG_ANYTHING,
6353 	.arg5_type	= ARG_ANYTHING,
6354 };
6355 
6356 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6357 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6358 {
6359 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6360 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6361 					      netns_id, flags);
6362 }
6363 
6364 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6365 	.func		= bpf_sock_addr_sk_lookup_udp,
6366 	.gpl_only	= false,
6367 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6368 	.arg1_type	= ARG_PTR_TO_CTX,
6369 	.arg2_type	= ARG_PTR_TO_MEM,
6370 	.arg3_type	= ARG_CONST_SIZE,
6371 	.arg4_type	= ARG_ANYTHING,
6372 	.arg5_type	= ARG_ANYTHING,
6373 };
6374 
6375 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6376 				  struct bpf_insn_access_aux *info)
6377 {
6378 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6379 					  icsk_retransmits))
6380 		return false;
6381 
6382 	if (off % size != 0)
6383 		return false;
6384 
6385 	switch (off) {
6386 	case offsetof(struct bpf_tcp_sock, bytes_received):
6387 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6388 		return size == sizeof(__u64);
6389 	default:
6390 		return size == sizeof(__u32);
6391 	}
6392 }
6393 
6394 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6395 				    const struct bpf_insn *si,
6396 				    struct bpf_insn *insn_buf,
6397 				    struct bpf_prog *prog, u32 *target_size)
6398 {
6399 	struct bpf_insn *insn = insn_buf;
6400 
6401 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6402 	do {								\
6403 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6404 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6405 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6406 				      si->dst_reg, si->src_reg,		\
6407 				      offsetof(struct tcp_sock, FIELD)); \
6408 	} while (0)
6409 
6410 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6411 	do {								\
6412 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6413 					  FIELD) >			\
6414 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6415 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6416 					struct inet_connection_sock,	\
6417 					FIELD),				\
6418 				      si->dst_reg, si->src_reg,		\
6419 				      offsetof(				\
6420 					struct inet_connection_sock,	\
6421 					FIELD));			\
6422 	} while (0)
6423 
6424 	if (insn > insn_buf)
6425 		return insn - insn_buf;
6426 
6427 	switch (si->off) {
6428 	case offsetof(struct bpf_tcp_sock, rtt_min):
6429 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6430 			     sizeof(struct minmax));
6431 		BUILD_BUG_ON(sizeof(struct minmax) <
6432 			     sizeof(struct minmax_sample));
6433 
6434 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6435 				      offsetof(struct tcp_sock, rtt_min) +
6436 				      offsetof(struct minmax_sample, v));
6437 		break;
6438 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6439 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6440 		break;
6441 	case offsetof(struct bpf_tcp_sock, srtt_us):
6442 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6443 		break;
6444 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6445 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6446 		break;
6447 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6448 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6449 		break;
6450 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6451 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6452 		break;
6453 	case offsetof(struct bpf_tcp_sock, snd_una):
6454 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6455 		break;
6456 	case offsetof(struct bpf_tcp_sock, mss_cache):
6457 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6458 		break;
6459 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6460 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6461 		break;
6462 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6463 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6464 		break;
6465 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6466 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6467 		break;
6468 	case offsetof(struct bpf_tcp_sock, packets_out):
6469 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6470 		break;
6471 	case offsetof(struct bpf_tcp_sock, retrans_out):
6472 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6473 		break;
6474 	case offsetof(struct bpf_tcp_sock, total_retrans):
6475 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6476 		break;
6477 	case offsetof(struct bpf_tcp_sock, segs_in):
6478 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6479 		break;
6480 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6481 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6482 		break;
6483 	case offsetof(struct bpf_tcp_sock, segs_out):
6484 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6485 		break;
6486 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6487 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6488 		break;
6489 	case offsetof(struct bpf_tcp_sock, lost_out):
6490 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6491 		break;
6492 	case offsetof(struct bpf_tcp_sock, sacked_out):
6493 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6494 		break;
6495 	case offsetof(struct bpf_tcp_sock, bytes_received):
6496 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6497 		break;
6498 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6499 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6500 		break;
6501 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6502 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6503 		break;
6504 	case offsetof(struct bpf_tcp_sock, delivered):
6505 		BPF_TCP_SOCK_GET_COMMON(delivered);
6506 		break;
6507 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6508 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6509 		break;
6510 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6511 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6512 		break;
6513 	}
6514 
6515 	return insn - insn_buf;
6516 }
6517 
6518 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6519 {
6520 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6521 		return (unsigned long)sk;
6522 
6523 	return (unsigned long)NULL;
6524 }
6525 
6526 const struct bpf_func_proto bpf_tcp_sock_proto = {
6527 	.func		= bpf_tcp_sock,
6528 	.gpl_only	= false,
6529 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6530 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6531 };
6532 
6533 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6534 {
6535 	sk = sk_to_full_sk(sk);
6536 
6537 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6538 		return (unsigned long)sk;
6539 
6540 	return (unsigned long)NULL;
6541 }
6542 
6543 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6544 	.func		= bpf_get_listener_sock,
6545 	.gpl_only	= false,
6546 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6547 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6548 };
6549 
6550 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6551 {
6552 	unsigned int iphdr_len;
6553 
6554 	switch (skb_protocol(skb, true)) {
6555 	case cpu_to_be16(ETH_P_IP):
6556 		iphdr_len = sizeof(struct iphdr);
6557 		break;
6558 	case cpu_to_be16(ETH_P_IPV6):
6559 		iphdr_len = sizeof(struct ipv6hdr);
6560 		break;
6561 	default:
6562 		return 0;
6563 	}
6564 
6565 	if (skb_headlen(skb) < iphdr_len)
6566 		return 0;
6567 
6568 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6569 		return 0;
6570 
6571 	return INET_ECN_set_ce(skb);
6572 }
6573 
6574 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6575 				  struct bpf_insn_access_aux *info)
6576 {
6577 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6578 		return false;
6579 
6580 	if (off % size != 0)
6581 		return false;
6582 
6583 	switch (off) {
6584 	default:
6585 		return size == sizeof(__u32);
6586 	}
6587 }
6588 
6589 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6590 				    const struct bpf_insn *si,
6591 				    struct bpf_insn *insn_buf,
6592 				    struct bpf_prog *prog, u32 *target_size)
6593 {
6594 	struct bpf_insn *insn = insn_buf;
6595 
6596 #define BPF_XDP_SOCK_GET(FIELD)						\
6597 	do {								\
6598 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
6599 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
6600 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6601 				      si->dst_reg, si->src_reg,		\
6602 				      offsetof(struct xdp_sock, FIELD)); \
6603 	} while (0)
6604 
6605 	switch (si->off) {
6606 	case offsetof(struct bpf_xdp_sock, queue_id):
6607 		BPF_XDP_SOCK_GET(queue_id);
6608 		break;
6609 	}
6610 
6611 	return insn - insn_buf;
6612 }
6613 
6614 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6615 	.func           = bpf_skb_ecn_set_ce,
6616 	.gpl_only       = false,
6617 	.ret_type       = RET_INTEGER,
6618 	.arg1_type      = ARG_PTR_TO_CTX,
6619 };
6620 
6621 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6622 	   struct tcphdr *, th, u32, th_len)
6623 {
6624 #ifdef CONFIG_SYN_COOKIES
6625 	u32 cookie;
6626 	int ret;
6627 
6628 	if (unlikely(!sk || th_len < sizeof(*th)))
6629 		return -EINVAL;
6630 
6631 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6632 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6633 		return -EINVAL;
6634 
6635 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6636 		return -EINVAL;
6637 
6638 	if (!th->ack || th->rst || th->syn)
6639 		return -ENOENT;
6640 
6641 	if (tcp_synq_no_recent_overflow(sk))
6642 		return -ENOENT;
6643 
6644 	cookie = ntohl(th->ack_seq) - 1;
6645 
6646 	switch (sk->sk_family) {
6647 	case AF_INET:
6648 		if (unlikely(iph_len < sizeof(struct iphdr)))
6649 			return -EINVAL;
6650 
6651 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6652 		break;
6653 
6654 #if IS_BUILTIN(CONFIG_IPV6)
6655 	case AF_INET6:
6656 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6657 			return -EINVAL;
6658 
6659 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6660 		break;
6661 #endif /* CONFIG_IPV6 */
6662 
6663 	default:
6664 		return -EPROTONOSUPPORT;
6665 	}
6666 
6667 	if (ret > 0)
6668 		return 0;
6669 
6670 	return -ENOENT;
6671 #else
6672 	return -ENOTSUPP;
6673 #endif
6674 }
6675 
6676 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6677 	.func		= bpf_tcp_check_syncookie,
6678 	.gpl_only	= true,
6679 	.pkt_access	= true,
6680 	.ret_type	= RET_INTEGER,
6681 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6682 	.arg2_type	= ARG_PTR_TO_MEM,
6683 	.arg3_type	= ARG_CONST_SIZE,
6684 	.arg4_type	= ARG_PTR_TO_MEM,
6685 	.arg5_type	= ARG_CONST_SIZE,
6686 };
6687 
6688 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6689 	   struct tcphdr *, th, u32, th_len)
6690 {
6691 #ifdef CONFIG_SYN_COOKIES
6692 	u32 cookie;
6693 	u16 mss;
6694 
6695 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6696 		return -EINVAL;
6697 
6698 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6699 		return -EINVAL;
6700 
6701 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6702 		return -ENOENT;
6703 
6704 	if (!th->syn || th->ack || th->fin || th->rst)
6705 		return -EINVAL;
6706 
6707 	if (unlikely(iph_len < sizeof(struct iphdr)))
6708 		return -EINVAL;
6709 
6710 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6711 	 * same offset so we can cast to the shorter header (struct iphdr).
6712 	 */
6713 	switch (((struct iphdr *)iph)->version) {
6714 	case 4:
6715 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6716 			return -EINVAL;
6717 
6718 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6719 		break;
6720 
6721 #if IS_BUILTIN(CONFIG_IPV6)
6722 	case 6:
6723 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6724 			return -EINVAL;
6725 
6726 		if (sk->sk_family != AF_INET6)
6727 			return -EINVAL;
6728 
6729 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6730 		break;
6731 #endif /* CONFIG_IPV6 */
6732 
6733 	default:
6734 		return -EPROTONOSUPPORT;
6735 	}
6736 	if (mss == 0)
6737 		return -ENOENT;
6738 
6739 	return cookie | ((u64)mss << 32);
6740 #else
6741 	return -EOPNOTSUPP;
6742 #endif /* CONFIG_SYN_COOKIES */
6743 }
6744 
6745 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6746 	.func		= bpf_tcp_gen_syncookie,
6747 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
6748 	.pkt_access	= true,
6749 	.ret_type	= RET_INTEGER,
6750 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6751 	.arg2_type	= ARG_PTR_TO_MEM,
6752 	.arg3_type	= ARG_CONST_SIZE,
6753 	.arg4_type	= ARG_PTR_TO_MEM,
6754 	.arg5_type	= ARG_CONST_SIZE,
6755 };
6756 
6757 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6758 {
6759 	if (!sk || flags != 0)
6760 		return -EINVAL;
6761 	if (!skb_at_tc_ingress(skb))
6762 		return -EOPNOTSUPP;
6763 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6764 		return -ENETUNREACH;
6765 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6766 		return -ESOCKTNOSUPPORT;
6767 	if (sk_is_refcounted(sk) &&
6768 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6769 		return -ENOENT;
6770 
6771 	skb_orphan(skb);
6772 	skb->sk = sk;
6773 	skb->destructor = sock_pfree;
6774 
6775 	return 0;
6776 }
6777 
6778 static const struct bpf_func_proto bpf_sk_assign_proto = {
6779 	.func		= bpf_sk_assign,
6780 	.gpl_only	= false,
6781 	.ret_type	= RET_INTEGER,
6782 	.arg1_type      = ARG_PTR_TO_CTX,
6783 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6784 	.arg3_type	= ARG_ANYTHING,
6785 };
6786 
6787 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6788 				    u8 search_kind, const u8 *magic,
6789 				    u8 magic_len, bool *eol)
6790 {
6791 	u8 kind, kind_len;
6792 
6793 	*eol = false;
6794 
6795 	while (op < opend) {
6796 		kind = op[0];
6797 
6798 		if (kind == TCPOPT_EOL) {
6799 			*eol = true;
6800 			return ERR_PTR(-ENOMSG);
6801 		} else if (kind == TCPOPT_NOP) {
6802 			op++;
6803 			continue;
6804 		}
6805 
6806 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6807 			/* Something is wrong in the received header.
6808 			 * Follow the TCP stack's tcp_parse_options()
6809 			 * and just bail here.
6810 			 */
6811 			return ERR_PTR(-EFAULT);
6812 
6813 		kind_len = op[1];
6814 		if (search_kind == kind) {
6815 			if (!magic_len)
6816 				return op;
6817 
6818 			if (magic_len > kind_len - 2)
6819 				return ERR_PTR(-ENOMSG);
6820 
6821 			if (!memcmp(&op[2], magic, magic_len))
6822 				return op;
6823 		}
6824 
6825 		op += kind_len;
6826 	}
6827 
6828 	return ERR_PTR(-ENOMSG);
6829 }
6830 
6831 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6832 	   void *, search_res, u32, len, u64, flags)
6833 {
6834 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6835 	const u8 *op, *opend, *magic, *search = search_res;
6836 	u8 search_kind, search_len, copy_len, magic_len;
6837 	int ret;
6838 
6839 	/* 2 byte is the minimal option len except TCPOPT_NOP and
6840 	 * TCPOPT_EOL which are useless for the bpf prog to learn
6841 	 * and this helper disallow loading them also.
6842 	 */
6843 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6844 		return -EINVAL;
6845 
6846 	search_kind = search[0];
6847 	search_len = search[1];
6848 
6849 	if (search_len > len || search_kind == TCPOPT_NOP ||
6850 	    search_kind == TCPOPT_EOL)
6851 		return -EINVAL;
6852 
6853 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
6854 		/* 16 or 32 bit magic.  +2 for kind and kind length */
6855 		if (search_len != 4 && search_len != 6)
6856 			return -EINVAL;
6857 		magic = &search[2];
6858 		magic_len = search_len - 2;
6859 	} else {
6860 		if (search_len)
6861 			return -EINVAL;
6862 		magic = NULL;
6863 		magic_len = 0;
6864 	}
6865 
6866 	if (load_syn) {
6867 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6868 		if (ret < 0)
6869 			return ret;
6870 
6871 		opend = op + ret;
6872 		op += sizeof(struct tcphdr);
6873 	} else {
6874 		if (!bpf_sock->skb ||
6875 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6876 			/* This bpf_sock->op cannot call this helper */
6877 			return -EPERM;
6878 
6879 		opend = bpf_sock->skb_data_end;
6880 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
6881 	}
6882 
6883 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6884 				&eol);
6885 	if (IS_ERR(op))
6886 		return PTR_ERR(op);
6887 
6888 	copy_len = op[1];
6889 	ret = copy_len;
6890 	if (copy_len > len) {
6891 		ret = -ENOSPC;
6892 		copy_len = len;
6893 	}
6894 
6895 	memcpy(search_res, op, copy_len);
6896 	return ret;
6897 }
6898 
6899 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6900 	.func		= bpf_sock_ops_load_hdr_opt,
6901 	.gpl_only	= false,
6902 	.ret_type	= RET_INTEGER,
6903 	.arg1_type	= ARG_PTR_TO_CTX,
6904 	.arg2_type	= ARG_PTR_TO_MEM,
6905 	.arg3_type	= ARG_CONST_SIZE,
6906 	.arg4_type	= ARG_ANYTHING,
6907 };
6908 
6909 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6910 	   const void *, from, u32, len, u64, flags)
6911 {
6912 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
6913 	const u8 *op, *new_op, *magic = NULL;
6914 	struct sk_buff *skb;
6915 	bool eol;
6916 
6917 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6918 		return -EPERM;
6919 
6920 	if (len < 2 || flags)
6921 		return -EINVAL;
6922 
6923 	new_op = from;
6924 	new_kind = new_op[0];
6925 	new_kind_len = new_op[1];
6926 
6927 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6928 	    new_kind == TCPOPT_EOL)
6929 		return -EINVAL;
6930 
6931 	if (new_kind_len > bpf_sock->remaining_opt_len)
6932 		return -ENOSPC;
6933 
6934 	/* 253 is another experimental kind */
6935 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
6936 		if (new_kind_len < 4)
6937 			return -EINVAL;
6938 		/* Match for the 2 byte magic also.
6939 		 * RFC 6994: the magic could be 2 or 4 bytes.
6940 		 * Hence, matching by 2 byte only is on the
6941 		 * conservative side but it is the right
6942 		 * thing to do for the 'search-for-duplication'
6943 		 * purpose.
6944 		 */
6945 		magic = &new_op[2];
6946 		magic_len = 2;
6947 	}
6948 
6949 	/* Check for duplication */
6950 	skb = bpf_sock->skb;
6951 	op = skb->data + sizeof(struct tcphdr);
6952 	opend = bpf_sock->skb_data_end;
6953 
6954 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
6955 				&eol);
6956 	if (!IS_ERR(op))
6957 		return -EEXIST;
6958 
6959 	if (PTR_ERR(op) != -ENOMSG)
6960 		return PTR_ERR(op);
6961 
6962 	if (eol)
6963 		/* The option has been ended.  Treat it as no more
6964 		 * header option can be written.
6965 		 */
6966 		return -ENOSPC;
6967 
6968 	/* No duplication found.  Store the header option. */
6969 	memcpy(opend, from, new_kind_len);
6970 
6971 	bpf_sock->remaining_opt_len -= new_kind_len;
6972 	bpf_sock->skb_data_end += new_kind_len;
6973 
6974 	return 0;
6975 }
6976 
6977 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
6978 	.func		= bpf_sock_ops_store_hdr_opt,
6979 	.gpl_only	= false,
6980 	.ret_type	= RET_INTEGER,
6981 	.arg1_type	= ARG_PTR_TO_CTX,
6982 	.arg2_type	= ARG_PTR_TO_MEM,
6983 	.arg3_type	= ARG_CONST_SIZE,
6984 	.arg4_type	= ARG_ANYTHING,
6985 };
6986 
6987 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6988 	   u32, len, u64, flags)
6989 {
6990 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6991 		return -EPERM;
6992 
6993 	if (flags || len < 2)
6994 		return -EINVAL;
6995 
6996 	if (len > bpf_sock->remaining_opt_len)
6997 		return -ENOSPC;
6998 
6999 	bpf_sock->remaining_opt_len -= len;
7000 
7001 	return 0;
7002 }
7003 
7004 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7005 	.func		= bpf_sock_ops_reserve_hdr_opt,
7006 	.gpl_only	= false,
7007 	.ret_type	= RET_INTEGER,
7008 	.arg1_type	= ARG_PTR_TO_CTX,
7009 	.arg2_type	= ARG_ANYTHING,
7010 	.arg3_type	= ARG_ANYTHING,
7011 };
7012 
7013 #endif /* CONFIG_INET */
7014 
7015 bool bpf_helper_changes_pkt_data(void *func)
7016 {
7017 	if (func == bpf_skb_vlan_push ||
7018 	    func == bpf_skb_vlan_pop ||
7019 	    func == bpf_skb_store_bytes ||
7020 	    func == bpf_skb_change_proto ||
7021 	    func == bpf_skb_change_head ||
7022 	    func == sk_skb_change_head ||
7023 	    func == bpf_skb_change_tail ||
7024 	    func == sk_skb_change_tail ||
7025 	    func == bpf_skb_adjust_room ||
7026 	    func == sk_skb_adjust_room ||
7027 	    func == bpf_skb_pull_data ||
7028 	    func == sk_skb_pull_data ||
7029 	    func == bpf_clone_redirect ||
7030 	    func == bpf_l3_csum_replace ||
7031 	    func == bpf_l4_csum_replace ||
7032 	    func == bpf_xdp_adjust_head ||
7033 	    func == bpf_xdp_adjust_meta ||
7034 	    func == bpf_msg_pull_data ||
7035 	    func == bpf_msg_push_data ||
7036 	    func == bpf_msg_pop_data ||
7037 	    func == bpf_xdp_adjust_tail ||
7038 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7039 	    func == bpf_lwt_seg6_store_bytes ||
7040 	    func == bpf_lwt_seg6_adjust_srh ||
7041 	    func == bpf_lwt_seg6_action ||
7042 #endif
7043 #ifdef CONFIG_INET
7044 	    func == bpf_sock_ops_store_hdr_opt ||
7045 #endif
7046 	    func == bpf_lwt_in_push_encap ||
7047 	    func == bpf_lwt_xmit_push_encap)
7048 		return true;
7049 
7050 	return false;
7051 }
7052 
7053 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7054 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7055 
7056 static const struct bpf_func_proto *
7057 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7058 {
7059 	switch (func_id) {
7060 	/* inet and inet6 sockets are created in a process
7061 	 * context so there is always a valid uid/gid
7062 	 */
7063 	case BPF_FUNC_get_current_uid_gid:
7064 		return &bpf_get_current_uid_gid_proto;
7065 	case BPF_FUNC_get_local_storage:
7066 		return &bpf_get_local_storage_proto;
7067 	case BPF_FUNC_get_socket_cookie:
7068 		return &bpf_get_socket_cookie_sock_proto;
7069 	case BPF_FUNC_get_netns_cookie:
7070 		return &bpf_get_netns_cookie_sock_proto;
7071 	case BPF_FUNC_perf_event_output:
7072 		return &bpf_event_output_data_proto;
7073 	case BPF_FUNC_get_current_pid_tgid:
7074 		return &bpf_get_current_pid_tgid_proto;
7075 	case BPF_FUNC_get_current_comm:
7076 		return &bpf_get_current_comm_proto;
7077 #ifdef CONFIG_CGROUPS
7078 	case BPF_FUNC_get_current_cgroup_id:
7079 		return &bpf_get_current_cgroup_id_proto;
7080 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7081 		return &bpf_get_current_ancestor_cgroup_id_proto;
7082 #endif
7083 #ifdef CONFIG_CGROUP_NET_CLASSID
7084 	case BPF_FUNC_get_cgroup_classid:
7085 		return &bpf_get_cgroup_classid_curr_proto;
7086 #endif
7087 	case BPF_FUNC_sk_storage_get:
7088 		return &bpf_sk_storage_get_cg_sock_proto;
7089 	default:
7090 		return bpf_base_func_proto(func_id);
7091 	}
7092 }
7093 
7094 static const struct bpf_func_proto *
7095 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7096 {
7097 	switch (func_id) {
7098 	/* inet and inet6 sockets are created in a process
7099 	 * context so there is always a valid uid/gid
7100 	 */
7101 	case BPF_FUNC_get_current_uid_gid:
7102 		return &bpf_get_current_uid_gid_proto;
7103 	case BPF_FUNC_bind:
7104 		switch (prog->expected_attach_type) {
7105 		case BPF_CGROUP_INET4_CONNECT:
7106 		case BPF_CGROUP_INET6_CONNECT:
7107 			return &bpf_bind_proto;
7108 		default:
7109 			return NULL;
7110 		}
7111 	case BPF_FUNC_get_socket_cookie:
7112 		return &bpf_get_socket_cookie_sock_addr_proto;
7113 	case BPF_FUNC_get_netns_cookie:
7114 		return &bpf_get_netns_cookie_sock_addr_proto;
7115 	case BPF_FUNC_get_local_storage:
7116 		return &bpf_get_local_storage_proto;
7117 	case BPF_FUNC_perf_event_output:
7118 		return &bpf_event_output_data_proto;
7119 	case BPF_FUNC_get_current_pid_tgid:
7120 		return &bpf_get_current_pid_tgid_proto;
7121 	case BPF_FUNC_get_current_comm:
7122 		return &bpf_get_current_comm_proto;
7123 #ifdef CONFIG_CGROUPS
7124 	case BPF_FUNC_get_current_cgroup_id:
7125 		return &bpf_get_current_cgroup_id_proto;
7126 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7127 		return &bpf_get_current_ancestor_cgroup_id_proto;
7128 #endif
7129 #ifdef CONFIG_CGROUP_NET_CLASSID
7130 	case BPF_FUNC_get_cgroup_classid:
7131 		return &bpf_get_cgroup_classid_curr_proto;
7132 #endif
7133 #ifdef CONFIG_INET
7134 	case BPF_FUNC_sk_lookup_tcp:
7135 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7136 	case BPF_FUNC_sk_lookup_udp:
7137 		return &bpf_sock_addr_sk_lookup_udp_proto;
7138 	case BPF_FUNC_sk_release:
7139 		return &bpf_sk_release_proto;
7140 	case BPF_FUNC_skc_lookup_tcp:
7141 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7142 #endif /* CONFIG_INET */
7143 	case BPF_FUNC_sk_storage_get:
7144 		return &bpf_sk_storage_get_proto;
7145 	case BPF_FUNC_sk_storage_delete:
7146 		return &bpf_sk_storage_delete_proto;
7147 	case BPF_FUNC_setsockopt:
7148 		switch (prog->expected_attach_type) {
7149 		case BPF_CGROUP_INET4_BIND:
7150 		case BPF_CGROUP_INET6_BIND:
7151 		case BPF_CGROUP_INET4_CONNECT:
7152 		case BPF_CGROUP_INET6_CONNECT:
7153 		case BPF_CGROUP_UDP4_RECVMSG:
7154 		case BPF_CGROUP_UDP6_RECVMSG:
7155 		case BPF_CGROUP_UDP4_SENDMSG:
7156 		case BPF_CGROUP_UDP6_SENDMSG:
7157 		case BPF_CGROUP_INET4_GETPEERNAME:
7158 		case BPF_CGROUP_INET6_GETPEERNAME:
7159 		case BPF_CGROUP_INET4_GETSOCKNAME:
7160 		case BPF_CGROUP_INET6_GETSOCKNAME:
7161 			return &bpf_sock_addr_setsockopt_proto;
7162 		default:
7163 			return NULL;
7164 		}
7165 	case BPF_FUNC_getsockopt:
7166 		switch (prog->expected_attach_type) {
7167 		case BPF_CGROUP_INET4_BIND:
7168 		case BPF_CGROUP_INET6_BIND:
7169 		case BPF_CGROUP_INET4_CONNECT:
7170 		case BPF_CGROUP_INET6_CONNECT:
7171 		case BPF_CGROUP_UDP4_RECVMSG:
7172 		case BPF_CGROUP_UDP6_RECVMSG:
7173 		case BPF_CGROUP_UDP4_SENDMSG:
7174 		case BPF_CGROUP_UDP6_SENDMSG:
7175 		case BPF_CGROUP_INET4_GETPEERNAME:
7176 		case BPF_CGROUP_INET6_GETPEERNAME:
7177 		case BPF_CGROUP_INET4_GETSOCKNAME:
7178 		case BPF_CGROUP_INET6_GETSOCKNAME:
7179 			return &bpf_sock_addr_getsockopt_proto;
7180 		default:
7181 			return NULL;
7182 		}
7183 	default:
7184 		return bpf_sk_base_func_proto(func_id);
7185 	}
7186 }
7187 
7188 static const struct bpf_func_proto *
7189 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7190 {
7191 	switch (func_id) {
7192 	case BPF_FUNC_skb_load_bytes:
7193 		return &bpf_skb_load_bytes_proto;
7194 	case BPF_FUNC_skb_load_bytes_relative:
7195 		return &bpf_skb_load_bytes_relative_proto;
7196 	case BPF_FUNC_get_socket_cookie:
7197 		return &bpf_get_socket_cookie_proto;
7198 	case BPF_FUNC_get_socket_uid:
7199 		return &bpf_get_socket_uid_proto;
7200 	case BPF_FUNC_perf_event_output:
7201 		return &bpf_skb_event_output_proto;
7202 	default:
7203 		return bpf_sk_base_func_proto(func_id);
7204 	}
7205 }
7206 
7207 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7208 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7209 
7210 static const struct bpf_func_proto *
7211 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7212 {
7213 	switch (func_id) {
7214 	case BPF_FUNC_get_local_storage:
7215 		return &bpf_get_local_storage_proto;
7216 	case BPF_FUNC_sk_fullsock:
7217 		return &bpf_sk_fullsock_proto;
7218 	case BPF_FUNC_sk_storage_get:
7219 		return &bpf_sk_storage_get_proto;
7220 	case BPF_FUNC_sk_storage_delete:
7221 		return &bpf_sk_storage_delete_proto;
7222 	case BPF_FUNC_perf_event_output:
7223 		return &bpf_skb_event_output_proto;
7224 #ifdef CONFIG_SOCK_CGROUP_DATA
7225 	case BPF_FUNC_skb_cgroup_id:
7226 		return &bpf_skb_cgroup_id_proto;
7227 	case BPF_FUNC_skb_ancestor_cgroup_id:
7228 		return &bpf_skb_ancestor_cgroup_id_proto;
7229 	case BPF_FUNC_sk_cgroup_id:
7230 		return &bpf_sk_cgroup_id_proto;
7231 	case BPF_FUNC_sk_ancestor_cgroup_id:
7232 		return &bpf_sk_ancestor_cgroup_id_proto;
7233 #endif
7234 #ifdef CONFIG_INET
7235 	case BPF_FUNC_sk_lookup_tcp:
7236 		return &bpf_sk_lookup_tcp_proto;
7237 	case BPF_FUNC_sk_lookup_udp:
7238 		return &bpf_sk_lookup_udp_proto;
7239 	case BPF_FUNC_sk_release:
7240 		return &bpf_sk_release_proto;
7241 	case BPF_FUNC_skc_lookup_tcp:
7242 		return &bpf_skc_lookup_tcp_proto;
7243 	case BPF_FUNC_tcp_sock:
7244 		return &bpf_tcp_sock_proto;
7245 	case BPF_FUNC_get_listener_sock:
7246 		return &bpf_get_listener_sock_proto;
7247 	case BPF_FUNC_skb_ecn_set_ce:
7248 		return &bpf_skb_ecn_set_ce_proto;
7249 #endif
7250 	default:
7251 		return sk_filter_func_proto(func_id, prog);
7252 	}
7253 }
7254 
7255 static const struct bpf_func_proto *
7256 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7257 {
7258 	switch (func_id) {
7259 	case BPF_FUNC_skb_store_bytes:
7260 		return &bpf_skb_store_bytes_proto;
7261 	case BPF_FUNC_skb_load_bytes:
7262 		return &bpf_skb_load_bytes_proto;
7263 	case BPF_FUNC_skb_load_bytes_relative:
7264 		return &bpf_skb_load_bytes_relative_proto;
7265 	case BPF_FUNC_skb_pull_data:
7266 		return &bpf_skb_pull_data_proto;
7267 	case BPF_FUNC_csum_diff:
7268 		return &bpf_csum_diff_proto;
7269 	case BPF_FUNC_csum_update:
7270 		return &bpf_csum_update_proto;
7271 	case BPF_FUNC_csum_level:
7272 		return &bpf_csum_level_proto;
7273 	case BPF_FUNC_l3_csum_replace:
7274 		return &bpf_l3_csum_replace_proto;
7275 	case BPF_FUNC_l4_csum_replace:
7276 		return &bpf_l4_csum_replace_proto;
7277 	case BPF_FUNC_clone_redirect:
7278 		return &bpf_clone_redirect_proto;
7279 	case BPF_FUNC_get_cgroup_classid:
7280 		return &bpf_get_cgroup_classid_proto;
7281 	case BPF_FUNC_skb_vlan_push:
7282 		return &bpf_skb_vlan_push_proto;
7283 	case BPF_FUNC_skb_vlan_pop:
7284 		return &bpf_skb_vlan_pop_proto;
7285 	case BPF_FUNC_skb_change_proto:
7286 		return &bpf_skb_change_proto_proto;
7287 	case BPF_FUNC_skb_change_type:
7288 		return &bpf_skb_change_type_proto;
7289 	case BPF_FUNC_skb_adjust_room:
7290 		return &bpf_skb_adjust_room_proto;
7291 	case BPF_FUNC_skb_change_tail:
7292 		return &bpf_skb_change_tail_proto;
7293 	case BPF_FUNC_skb_change_head:
7294 		return &bpf_skb_change_head_proto;
7295 	case BPF_FUNC_skb_get_tunnel_key:
7296 		return &bpf_skb_get_tunnel_key_proto;
7297 	case BPF_FUNC_skb_set_tunnel_key:
7298 		return bpf_get_skb_set_tunnel_proto(func_id);
7299 	case BPF_FUNC_skb_get_tunnel_opt:
7300 		return &bpf_skb_get_tunnel_opt_proto;
7301 	case BPF_FUNC_skb_set_tunnel_opt:
7302 		return bpf_get_skb_set_tunnel_proto(func_id);
7303 	case BPF_FUNC_redirect:
7304 		return &bpf_redirect_proto;
7305 	case BPF_FUNC_redirect_neigh:
7306 		return &bpf_redirect_neigh_proto;
7307 	case BPF_FUNC_redirect_peer:
7308 		return &bpf_redirect_peer_proto;
7309 	case BPF_FUNC_get_route_realm:
7310 		return &bpf_get_route_realm_proto;
7311 	case BPF_FUNC_get_hash_recalc:
7312 		return &bpf_get_hash_recalc_proto;
7313 	case BPF_FUNC_set_hash_invalid:
7314 		return &bpf_set_hash_invalid_proto;
7315 	case BPF_FUNC_set_hash:
7316 		return &bpf_set_hash_proto;
7317 	case BPF_FUNC_perf_event_output:
7318 		return &bpf_skb_event_output_proto;
7319 	case BPF_FUNC_get_smp_processor_id:
7320 		return &bpf_get_smp_processor_id_proto;
7321 	case BPF_FUNC_skb_under_cgroup:
7322 		return &bpf_skb_under_cgroup_proto;
7323 	case BPF_FUNC_get_socket_cookie:
7324 		return &bpf_get_socket_cookie_proto;
7325 	case BPF_FUNC_get_socket_uid:
7326 		return &bpf_get_socket_uid_proto;
7327 	case BPF_FUNC_fib_lookup:
7328 		return &bpf_skb_fib_lookup_proto;
7329 	case BPF_FUNC_check_mtu:
7330 		return &bpf_skb_check_mtu_proto;
7331 	case BPF_FUNC_sk_fullsock:
7332 		return &bpf_sk_fullsock_proto;
7333 	case BPF_FUNC_sk_storage_get:
7334 		return &bpf_sk_storage_get_proto;
7335 	case BPF_FUNC_sk_storage_delete:
7336 		return &bpf_sk_storage_delete_proto;
7337 #ifdef CONFIG_XFRM
7338 	case BPF_FUNC_skb_get_xfrm_state:
7339 		return &bpf_skb_get_xfrm_state_proto;
7340 #endif
7341 #ifdef CONFIG_CGROUP_NET_CLASSID
7342 	case BPF_FUNC_skb_cgroup_classid:
7343 		return &bpf_skb_cgroup_classid_proto;
7344 #endif
7345 #ifdef CONFIG_SOCK_CGROUP_DATA
7346 	case BPF_FUNC_skb_cgroup_id:
7347 		return &bpf_skb_cgroup_id_proto;
7348 	case BPF_FUNC_skb_ancestor_cgroup_id:
7349 		return &bpf_skb_ancestor_cgroup_id_proto;
7350 #endif
7351 #ifdef CONFIG_INET
7352 	case BPF_FUNC_sk_lookup_tcp:
7353 		return &bpf_sk_lookup_tcp_proto;
7354 	case BPF_FUNC_sk_lookup_udp:
7355 		return &bpf_sk_lookup_udp_proto;
7356 	case BPF_FUNC_sk_release:
7357 		return &bpf_sk_release_proto;
7358 	case BPF_FUNC_tcp_sock:
7359 		return &bpf_tcp_sock_proto;
7360 	case BPF_FUNC_get_listener_sock:
7361 		return &bpf_get_listener_sock_proto;
7362 	case BPF_FUNC_skc_lookup_tcp:
7363 		return &bpf_skc_lookup_tcp_proto;
7364 	case BPF_FUNC_tcp_check_syncookie:
7365 		return &bpf_tcp_check_syncookie_proto;
7366 	case BPF_FUNC_skb_ecn_set_ce:
7367 		return &bpf_skb_ecn_set_ce_proto;
7368 	case BPF_FUNC_tcp_gen_syncookie:
7369 		return &bpf_tcp_gen_syncookie_proto;
7370 	case BPF_FUNC_sk_assign:
7371 		return &bpf_sk_assign_proto;
7372 #endif
7373 	default:
7374 		return bpf_sk_base_func_proto(func_id);
7375 	}
7376 }
7377 
7378 static const struct bpf_func_proto *
7379 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7380 {
7381 	switch (func_id) {
7382 	case BPF_FUNC_perf_event_output:
7383 		return &bpf_xdp_event_output_proto;
7384 	case BPF_FUNC_get_smp_processor_id:
7385 		return &bpf_get_smp_processor_id_proto;
7386 	case BPF_FUNC_csum_diff:
7387 		return &bpf_csum_diff_proto;
7388 	case BPF_FUNC_xdp_adjust_head:
7389 		return &bpf_xdp_adjust_head_proto;
7390 	case BPF_FUNC_xdp_adjust_meta:
7391 		return &bpf_xdp_adjust_meta_proto;
7392 	case BPF_FUNC_redirect:
7393 		return &bpf_xdp_redirect_proto;
7394 	case BPF_FUNC_redirect_map:
7395 		return &bpf_xdp_redirect_map_proto;
7396 	case BPF_FUNC_xdp_adjust_tail:
7397 		return &bpf_xdp_adjust_tail_proto;
7398 	case BPF_FUNC_fib_lookup:
7399 		return &bpf_xdp_fib_lookup_proto;
7400 	case BPF_FUNC_check_mtu:
7401 		return &bpf_xdp_check_mtu_proto;
7402 #ifdef CONFIG_INET
7403 	case BPF_FUNC_sk_lookup_udp:
7404 		return &bpf_xdp_sk_lookup_udp_proto;
7405 	case BPF_FUNC_sk_lookup_tcp:
7406 		return &bpf_xdp_sk_lookup_tcp_proto;
7407 	case BPF_FUNC_sk_release:
7408 		return &bpf_sk_release_proto;
7409 	case BPF_FUNC_skc_lookup_tcp:
7410 		return &bpf_xdp_skc_lookup_tcp_proto;
7411 	case BPF_FUNC_tcp_check_syncookie:
7412 		return &bpf_tcp_check_syncookie_proto;
7413 	case BPF_FUNC_tcp_gen_syncookie:
7414 		return &bpf_tcp_gen_syncookie_proto;
7415 #endif
7416 	default:
7417 		return bpf_sk_base_func_proto(func_id);
7418 	}
7419 }
7420 
7421 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7422 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7423 
7424 static const struct bpf_func_proto *
7425 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7426 {
7427 	switch (func_id) {
7428 	case BPF_FUNC_setsockopt:
7429 		return &bpf_sock_ops_setsockopt_proto;
7430 	case BPF_FUNC_getsockopt:
7431 		return &bpf_sock_ops_getsockopt_proto;
7432 	case BPF_FUNC_sock_ops_cb_flags_set:
7433 		return &bpf_sock_ops_cb_flags_set_proto;
7434 	case BPF_FUNC_sock_map_update:
7435 		return &bpf_sock_map_update_proto;
7436 	case BPF_FUNC_sock_hash_update:
7437 		return &bpf_sock_hash_update_proto;
7438 	case BPF_FUNC_get_socket_cookie:
7439 		return &bpf_get_socket_cookie_sock_ops_proto;
7440 	case BPF_FUNC_get_local_storage:
7441 		return &bpf_get_local_storage_proto;
7442 	case BPF_FUNC_perf_event_output:
7443 		return &bpf_event_output_data_proto;
7444 	case BPF_FUNC_sk_storage_get:
7445 		return &bpf_sk_storage_get_proto;
7446 	case BPF_FUNC_sk_storage_delete:
7447 		return &bpf_sk_storage_delete_proto;
7448 #ifdef CONFIG_INET
7449 	case BPF_FUNC_load_hdr_opt:
7450 		return &bpf_sock_ops_load_hdr_opt_proto;
7451 	case BPF_FUNC_store_hdr_opt:
7452 		return &bpf_sock_ops_store_hdr_opt_proto;
7453 	case BPF_FUNC_reserve_hdr_opt:
7454 		return &bpf_sock_ops_reserve_hdr_opt_proto;
7455 	case BPF_FUNC_tcp_sock:
7456 		return &bpf_tcp_sock_proto;
7457 #endif /* CONFIG_INET */
7458 	default:
7459 		return bpf_sk_base_func_proto(func_id);
7460 	}
7461 }
7462 
7463 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7464 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7465 
7466 static const struct bpf_func_proto *
7467 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7468 {
7469 	switch (func_id) {
7470 	case BPF_FUNC_msg_redirect_map:
7471 		return &bpf_msg_redirect_map_proto;
7472 	case BPF_FUNC_msg_redirect_hash:
7473 		return &bpf_msg_redirect_hash_proto;
7474 	case BPF_FUNC_msg_apply_bytes:
7475 		return &bpf_msg_apply_bytes_proto;
7476 	case BPF_FUNC_msg_cork_bytes:
7477 		return &bpf_msg_cork_bytes_proto;
7478 	case BPF_FUNC_msg_pull_data:
7479 		return &bpf_msg_pull_data_proto;
7480 	case BPF_FUNC_msg_push_data:
7481 		return &bpf_msg_push_data_proto;
7482 	case BPF_FUNC_msg_pop_data:
7483 		return &bpf_msg_pop_data_proto;
7484 	case BPF_FUNC_perf_event_output:
7485 		return &bpf_event_output_data_proto;
7486 	case BPF_FUNC_get_current_uid_gid:
7487 		return &bpf_get_current_uid_gid_proto;
7488 	case BPF_FUNC_get_current_pid_tgid:
7489 		return &bpf_get_current_pid_tgid_proto;
7490 	case BPF_FUNC_sk_storage_get:
7491 		return &bpf_sk_storage_get_proto;
7492 	case BPF_FUNC_sk_storage_delete:
7493 		return &bpf_sk_storage_delete_proto;
7494 #ifdef CONFIG_CGROUPS
7495 	case BPF_FUNC_get_current_cgroup_id:
7496 		return &bpf_get_current_cgroup_id_proto;
7497 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7498 		return &bpf_get_current_ancestor_cgroup_id_proto;
7499 #endif
7500 #ifdef CONFIG_CGROUP_NET_CLASSID
7501 	case BPF_FUNC_get_cgroup_classid:
7502 		return &bpf_get_cgroup_classid_curr_proto;
7503 #endif
7504 	default:
7505 		return bpf_sk_base_func_proto(func_id);
7506 	}
7507 }
7508 
7509 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7510 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7511 
7512 static const struct bpf_func_proto *
7513 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7514 {
7515 	switch (func_id) {
7516 	case BPF_FUNC_skb_store_bytes:
7517 		return &bpf_skb_store_bytes_proto;
7518 	case BPF_FUNC_skb_load_bytes:
7519 		return &bpf_skb_load_bytes_proto;
7520 	case BPF_FUNC_skb_pull_data:
7521 		return &sk_skb_pull_data_proto;
7522 	case BPF_FUNC_skb_change_tail:
7523 		return &sk_skb_change_tail_proto;
7524 	case BPF_FUNC_skb_change_head:
7525 		return &sk_skb_change_head_proto;
7526 	case BPF_FUNC_skb_adjust_room:
7527 		return &sk_skb_adjust_room_proto;
7528 	case BPF_FUNC_get_socket_cookie:
7529 		return &bpf_get_socket_cookie_proto;
7530 	case BPF_FUNC_get_socket_uid:
7531 		return &bpf_get_socket_uid_proto;
7532 	case BPF_FUNC_sk_redirect_map:
7533 		return &bpf_sk_redirect_map_proto;
7534 	case BPF_FUNC_sk_redirect_hash:
7535 		return &bpf_sk_redirect_hash_proto;
7536 	case BPF_FUNC_perf_event_output:
7537 		return &bpf_skb_event_output_proto;
7538 #ifdef CONFIG_INET
7539 	case BPF_FUNC_sk_lookup_tcp:
7540 		return &bpf_sk_lookup_tcp_proto;
7541 	case BPF_FUNC_sk_lookup_udp:
7542 		return &bpf_sk_lookup_udp_proto;
7543 	case BPF_FUNC_sk_release:
7544 		return &bpf_sk_release_proto;
7545 	case BPF_FUNC_skc_lookup_tcp:
7546 		return &bpf_skc_lookup_tcp_proto;
7547 #endif
7548 	default:
7549 		return bpf_sk_base_func_proto(func_id);
7550 	}
7551 }
7552 
7553 static const struct bpf_func_proto *
7554 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7555 {
7556 	switch (func_id) {
7557 	case BPF_FUNC_skb_load_bytes:
7558 		return &bpf_flow_dissector_load_bytes_proto;
7559 	default:
7560 		return bpf_sk_base_func_proto(func_id);
7561 	}
7562 }
7563 
7564 static const struct bpf_func_proto *
7565 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7566 {
7567 	switch (func_id) {
7568 	case BPF_FUNC_skb_load_bytes:
7569 		return &bpf_skb_load_bytes_proto;
7570 	case BPF_FUNC_skb_pull_data:
7571 		return &bpf_skb_pull_data_proto;
7572 	case BPF_FUNC_csum_diff:
7573 		return &bpf_csum_diff_proto;
7574 	case BPF_FUNC_get_cgroup_classid:
7575 		return &bpf_get_cgroup_classid_proto;
7576 	case BPF_FUNC_get_route_realm:
7577 		return &bpf_get_route_realm_proto;
7578 	case BPF_FUNC_get_hash_recalc:
7579 		return &bpf_get_hash_recalc_proto;
7580 	case BPF_FUNC_perf_event_output:
7581 		return &bpf_skb_event_output_proto;
7582 	case BPF_FUNC_get_smp_processor_id:
7583 		return &bpf_get_smp_processor_id_proto;
7584 	case BPF_FUNC_skb_under_cgroup:
7585 		return &bpf_skb_under_cgroup_proto;
7586 	default:
7587 		return bpf_sk_base_func_proto(func_id);
7588 	}
7589 }
7590 
7591 static const struct bpf_func_proto *
7592 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7593 {
7594 	switch (func_id) {
7595 	case BPF_FUNC_lwt_push_encap:
7596 		return &bpf_lwt_in_push_encap_proto;
7597 	default:
7598 		return lwt_out_func_proto(func_id, prog);
7599 	}
7600 }
7601 
7602 static const struct bpf_func_proto *
7603 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7604 {
7605 	switch (func_id) {
7606 	case BPF_FUNC_skb_get_tunnel_key:
7607 		return &bpf_skb_get_tunnel_key_proto;
7608 	case BPF_FUNC_skb_set_tunnel_key:
7609 		return bpf_get_skb_set_tunnel_proto(func_id);
7610 	case BPF_FUNC_skb_get_tunnel_opt:
7611 		return &bpf_skb_get_tunnel_opt_proto;
7612 	case BPF_FUNC_skb_set_tunnel_opt:
7613 		return bpf_get_skb_set_tunnel_proto(func_id);
7614 	case BPF_FUNC_redirect:
7615 		return &bpf_redirect_proto;
7616 	case BPF_FUNC_clone_redirect:
7617 		return &bpf_clone_redirect_proto;
7618 	case BPF_FUNC_skb_change_tail:
7619 		return &bpf_skb_change_tail_proto;
7620 	case BPF_FUNC_skb_change_head:
7621 		return &bpf_skb_change_head_proto;
7622 	case BPF_FUNC_skb_store_bytes:
7623 		return &bpf_skb_store_bytes_proto;
7624 	case BPF_FUNC_csum_update:
7625 		return &bpf_csum_update_proto;
7626 	case BPF_FUNC_csum_level:
7627 		return &bpf_csum_level_proto;
7628 	case BPF_FUNC_l3_csum_replace:
7629 		return &bpf_l3_csum_replace_proto;
7630 	case BPF_FUNC_l4_csum_replace:
7631 		return &bpf_l4_csum_replace_proto;
7632 	case BPF_FUNC_set_hash_invalid:
7633 		return &bpf_set_hash_invalid_proto;
7634 	case BPF_FUNC_lwt_push_encap:
7635 		return &bpf_lwt_xmit_push_encap_proto;
7636 	default:
7637 		return lwt_out_func_proto(func_id, prog);
7638 	}
7639 }
7640 
7641 static const struct bpf_func_proto *
7642 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7643 {
7644 	switch (func_id) {
7645 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7646 	case BPF_FUNC_lwt_seg6_store_bytes:
7647 		return &bpf_lwt_seg6_store_bytes_proto;
7648 	case BPF_FUNC_lwt_seg6_action:
7649 		return &bpf_lwt_seg6_action_proto;
7650 	case BPF_FUNC_lwt_seg6_adjust_srh:
7651 		return &bpf_lwt_seg6_adjust_srh_proto;
7652 #endif
7653 	default:
7654 		return lwt_out_func_proto(func_id, prog);
7655 	}
7656 }
7657 
7658 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7659 				    const struct bpf_prog *prog,
7660 				    struct bpf_insn_access_aux *info)
7661 {
7662 	const int size_default = sizeof(__u32);
7663 
7664 	if (off < 0 || off >= sizeof(struct __sk_buff))
7665 		return false;
7666 
7667 	/* The verifier guarantees that size > 0. */
7668 	if (off % size != 0)
7669 		return false;
7670 
7671 	switch (off) {
7672 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7673 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
7674 			return false;
7675 		break;
7676 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7677 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7678 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7679 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7680 	case bpf_ctx_range(struct __sk_buff, data):
7681 	case bpf_ctx_range(struct __sk_buff, data_meta):
7682 	case bpf_ctx_range(struct __sk_buff, data_end):
7683 		if (size != size_default)
7684 			return false;
7685 		break;
7686 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7687 		return false;
7688 	case bpf_ctx_range(struct __sk_buff, tstamp):
7689 		if (size != sizeof(__u64))
7690 			return false;
7691 		break;
7692 	case offsetof(struct __sk_buff, sk):
7693 		if (type == BPF_WRITE || size != sizeof(__u64))
7694 			return false;
7695 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7696 		break;
7697 	default:
7698 		/* Only narrow read access allowed for now. */
7699 		if (type == BPF_WRITE) {
7700 			if (size != size_default)
7701 				return false;
7702 		} else {
7703 			bpf_ctx_record_field_size(info, size_default);
7704 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7705 				return false;
7706 		}
7707 	}
7708 
7709 	return true;
7710 }
7711 
7712 static bool sk_filter_is_valid_access(int off, int size,
7713 				      enum bpf_access_type type,
7714 				      const struct bpf_prog *prog,
7715 				      struct bpf_insn_access_aux *info)
7716 {
7717 	switch (off) {
7718 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7719 	case bpf_ctx_range(struct __sk_buff, data):
7720 	case bpf_ctx_range(struct __sk_buff, data_meta):
7721 	case bpf_ctx_range(struct __sk_buff, data_end):
7722 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7723 	case bpf_ctx_range(struct __sk_buff, tstamp):
7724 	case bpf_ctx_range(struct __sk_buff, wire_len):
7725 		return false;
7726 	}
7727 
7728 	if (type == BPF_WRITE) {
7729 		switch (off) {
7730 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7731 			break;
7732 		default:
7733 			return false;
7734 		}
7735 	}
7736 
7737 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7738 }
7739 
7740 static bool cg_skb_is_valid_access(int off, int size,
7741 				   enum bpf_access_type type,
7742 				   const struct bpf_prog *prog,
7743 				   struct bpf_insn_access_aux *info)
7744 {
7745 	switch (off) {
7746 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7747 	case bpf_ctx_range(struct __sk_buff, data_meta):
7748 	case bpf_ctx_range(struct __sk_buff, wire_len):
7749 		return false;
7750 	case bpf_ctx_range(struct __sk_buff, data):
7751 	case bpf_ctx_range(struct __sk_buff, data_end):
7752 		if (!bpf_capable())
7753 			return false;
7754 		break;
7755 	}
7756 
7757 	if (type == BPF_WRITE) {
7758 		switch (off) {
7759 		case bpf_ctx_range(struct __sk_buff, mark):
7760 		case bpf_ctx_range(struct __sk_buff, priority):
7761 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7762 			break;
7763 		case bpf_ctx_range(struct __sk_buff, tstamp):
7764 			if (!bpf_capable())
7765 				return false;
7766 			break;
7767 		default:
7768 			return false;
7769 		}
7770 	}
7771 
7772 	switch (off) {
7773 	case bpf_ctx_range(struct __sk_buff, data):
7774 		info->reg_type = PTR_TO_PACKET;
7775 		break;
7776 	case bpf_ctx_range(struct __sk_buff, data_end):
7777 		info->reg_type = PTR_TO_PACKET_END;
7778 		break;
7779 	}
7780 
7781 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7782 }
7783 
7784 static bool lwt_is_valid_access(int off, int size,
7785 				enum bpf_access_type type,
7786 				const struct bpf_prog *prog,
7787 				struct bpf_insn_access_aux *info)
7788 {
7789 	switch (off) {
7790 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7791 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7792 	case bpf_ctx_range(struct __sk_buff, data_meta):
7793 	case bpf_ctx_range(struct __sk_buff, tstamp):
7794 	case bpf_ctx_range(struct __sk_buff, wire_len):
7795 		return false;
7796 	}
7797 
7798 	if (type == BPF_WRITE) {
7799 		switch (off) {
7800 		case bpf_ctx_range(struct __sk_buff, mark):
7801 		case bpf_ctx_range(struct __sk_buff, priority):
7802 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7803 			break;
7804 		default:
7805 			return false;
7806 		}
7807 	}
7808 
7809 	switch (off) {
7810 	case bpf_ctx_range(struct __sk_buff, data):
7811 		info->reg_type = PTR_TO_PACKET;
7812 		break;
7813 	case bpf_ctx_range(struct __sk_buff, data_end):
7814 		info->reg_type = PTR_TO_PACKET_END;
7815 		break;
7816 	}
7817 
7818 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7819 }
7820 
7821 /* Attach type specific accesses */
7822 static bool __sock_filter_check_attach_type(int off,
7823 					    enum bpf_access_type access_type,
7824 					    enum bpf_attach_type attach_type)
7825 {
7826 	switch (off) {
7827 	case offsetof(struct bpf_sock, bound_dev_if):
7828 	case offsetof(struct bpf_sock, mark):
7829 	case offsetof(struct bpf_sock, priority):
7830 		switch (attach_type) {
7831 		case BPF_CGROUP_INET_SOCK_CREATE:
7832 		case BPF_CGROUP_INET_SOCK_RELEASE:
7833 			goto full_access;
7834 		default:
7835 			return false;
7836 		}
7837 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7838 		switch (attach_type) {
7839 		case BPF_CGROUP_INET4_POST_BIND:
7840 			goto read_only;
7841 		default:
7842 			return false;
7843 		}
7844 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7845 		switch (attach_type) {
7846 		case BPF_CGROUP_INET6_POST_BIND:
7847 			goto read_only;
7848 		default:
7849 			return false;
7850 		}
7851 	case bpf_ctx_range(struct bpf_sock, src_port):
7852 		switch (attach_type) {
7853 		case BPF_CGROUP_INET4_POST_BIND:
7854 		case BPF_CGROUP_INET6_POST_BIND:
7855 			goto read_only;
7856 		default:
7857 			return false;
7858 		}
7859 	}
7860 read_only:
7861 	return access_type == BPF_READ;
7862 full_access:
7863 	return true;
7864 }
7865 
7866 bool bpf_sock_common_is_valid_access(int off, int size,
7867 				     enum bpf_access_type type,
7868 				     struct bpf_insn_access_aux *info)
7869 {
7870 	switch (off) {
7871 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
7872 		return false;
7873 	default:
7874 		return bpf_sock_is_valid_access(off, size, type, info);
7875 	}
7876 }
7877 
7878 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7879 			      struct bpf_insn_access_aux *info)
7880 {
7881 	const int size_default = sizeof(__u32);
7882 
7883 	if (off < 0 || off >= sizeof(struct bpf_sock))
7884 		return false;
7885 	if (off % size != 0)
7886 		return false;
7887 
7888 	switch (off) {
7889 	case offsetof(struct bpf_sock, state):
7890 	case offsetof(struct bpf_sock, family):
7891 	case offsetof(struct bpf_sock, type):
7892 	case offsetof(struct bpf_sock, protocol):
7893 	case offsetof(struct bpf_sock, dst_port):
7894 	case offsetof(struct bpf_sock, src_port):
7895 	case offsetof(struct bpf_sock, rx_queue_mapping):
7896 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7897 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7898 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
7899 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7900 		bpf_ctx_record_field_size(info, size_default);
7901 		return bpf_ctx_narrow_access_ok(off, size, size_default);
7902 	}
7903 
7904 	return size == size_default;
7905 }
7906 
7907 static bool sock_filter_is_valid_access(int off, int size,
7908 					enum bpf_access_type type,
7909 					const struct bpf_prog *prog,
7910 					struct bpf_insn_access_aux *info)
7911 {
7912 	if (!bpf_sock_is_valid_access(off, size, type, info))
7913 		return false;
7914 	return __sock_filter_check_attach_type(off, type,
7915 					       prog->expected_attach_type);
7916 }
7917 
7918 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7919 			     const struct bpf_prog *prog)
7920 {
7921 	/* Neither direct read nor direct write requires any preliminary
7922 	 * action.
7923 	 */
7924 	return 0;
7925 }
7926 
7927 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7928 				const struct bpf_prog *prog, int drop_verdict)
7929 {
7930 	struct bpf_insn *insn = insn_buf;
7931 
7932 	if (!direct_write)
7933 		return 0;
7934 
7935 	/* if (!skb->cloned)
7936 	 *       goto start;
7937 	 *
7938 	 * (Fast-path, otherwise approximation that we might be
7939 	 *  a clone, do the rest in helper.)
7940 	 */
7941 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7942 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7943 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7944 
7945 	/* ret = bpf_skb_pull_data(skb, 0); */
7946 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7947 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7948 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7949 			       BPF_FUNC_skb_pull_data);
7950 	/* if (!ret)
7951 	 *      goto restore;
7952 	 * return TC_ACT_SHOT;
7953 	 */
7954 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7955 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7956 	*insn++ = BPF_EXIT_INSN();
7957 
7958 	/* restore: */
7959 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7960 	/* start: */
7961 	*insn++ = prog->insnsi[0];
7962 
7963 	return insn - insn_buf;
7964 }
7965 
7966 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7967 			  struct bpf_insn *insn_buf)
7968 {
7969 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
7970 	struct bpf_insn *insn = insn_buf;
7971 
7972 	if (!indirect) {
7973 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7974 	} else {
7975 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7976 		if (orig->imm)
7977 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7978 	}
7979 	/* We're guaranteed here that CTX is in R6. */
7980 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7981 
7982 	switch (BPF_SIZE(orig->code)) {
7983 	case BPF_B:
7984 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7985 		break;
7986 	case BPF_H:
7987 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7988 		break;
7989 	case BPF_W:
7990 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7991 		break;
7992 	}
7993 
7994 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7995 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7996 	*insn++ = BPF_EXIT_INSN();
7997 
7998 	return insn - insn_buf;
7999 }
8000 
8001 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8002 			       const struct bpf_prog *prog)
8003 {
8004 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8005 }
8006 
8007 static bool tc_cls_act_is_valid_access(int off, int size,
8008 				       enum bpf_access_type type,
8009 				       const struct bpf_prog *prog,
8010 				       struct bpf_insn_access_aux *info)
8011 {
8012 	if (type == BPF_WRITE) {
8013 		switch (off) {
8014 		case bpf_ctx_range(struct __sk_buff, mark):
8015 		case bpf_ctx_range(struct __sk_buff, tc_index):
8016 		case bpf_ctx_range(struct __sk_buff, priority):
8017 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8018 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8019 		case bpf_ctx_range(struct __sk_buff, tstamp):
8020 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8021 			break;
8022 		default:
8023 			return false;
8024 		}
8025 	}
8026 
8027 	switch (off) {
8028 	case bpf_ctx_range(struct __sk_buff, data):
8029 		info->reg_type = PTR_TO_PACKET;
8030 		break;
8031 	case bpf_ctx_range(struct __sk_buff, data_meta):
8032 		info->reg_type = PTR_TO_PACKET_META;
8033 		break;
8034 	case bpf_ctx_range(struct __sk_buff, data_end):
8035 		info->reg_type = PTR_TO_PACKET_END;
8036 		break;
8037 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8038 		return false;
8039 	}
8040 
8041 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8042 }
8043 
8044 static bool __is_valid_xdp_access(int off, int size)
8045 {
8046 	if (off < 0 || off >= sizeof(struct xdp_md))
8047 		return false;
8048 	if (off % size != 0)
8049 		return false;
8050 	if (size != sizeof(__u32))
8051 		return false;
8052 
8053 	return true;
8054 }
8055 
8056 static bool xdp_is_valid_access(int off, int size,
8057 				enum bpf_access_type type,
8058 				const struct bpf_prog *prog,
8059 				struct bpf_insn_access_aux *info)
8060 {
8061 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8062 		switch (off) {
8063 		case offsetof(struct xdp_md, egress_ifindex):
8064 			return false;
8065 		}
8066 	}
8067 
8068 	if (type == BPF_WRITE) {
8069 		if (bpf_prog_is_dev_bound(prog->aux)) {
8070 			switch (off) {
8071 			case offsetof(struct xdp_md, rx_queue_index):
8072 				return __is_valid_xdp_access(off, size);
8073 			}
8074 		}
8075 		return false;
8076 	}
8077 
8078 	switch (off) {
8079 	case offsetof(struct xdp_md, data):
8080 		info->reg_type = PTR_TO_PACKET;
8081 		break;
8082 	case offsetof(struct xdp_md, data_meta):
8083 		info->reg_type = PTR_TO_PACKET_META;
8084 		break;
8085 	case offsetof(struct xdp_md, data_end):
8086 		info->reg_type = PTR_TO_PACKET_END;
8087 		break;
8088 	}
8089 
8090 	return __is_valid_xdp_access(off, size);
8091 }
8092 
8093 void bpf_warn_invalid_xdp_action(u32 act)
8094 {
8095 	const u32 act_max = XDP_REDIRECT;
8096 
8097 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
8098 		  act > act_max ? "Illegal" : "Driver unsupported",
8099 		  act);
8100 }
8101 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8102 
8103 static bool sock_addr_is_valid_access(int off, int size,
8104 				      enum bpf_access_type type,
8105 				      const struct bpf_prog *prog,
8106 				      struct bpf_insn_access_aux *info)
8107 {
8108 	const int size_default = sizeof(__u32);
8109 
8110 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8111 		return false;
8112 	if (off % size != 0)
8113 		return false;
8114 
8115 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8116 	 * versa.
8117 	 */
8118 	switch (off) {
8119 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8120 		switch (prog->expected_attach_type) {
8121 		case BPF_CGROUP_INET4_BIND:
8122 		case BPF_CGROUP_INET4_CONNECT:
8123 		case BPF_CGROUP_INET4_GETPEERNAME:
8124 		case BPF_CGROUP_INET4_GETSOCKNAME:
8125 		case BPF_CGROUP_UDP4_SENDMSG:
8126 		case BPF_CGROUP_UDP4_RECVMSG:
8127 			break;
8128 		default:
8129 			return false;
8130 		}
8131 		break;
8132 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8133 		switch (prog->expected_attach_type) {
8134 		case BPF_CGROUP_INET6_BIND:
8135 		case BPF_CGROUP_INET6_CONNECT:
8136 		case BPF_CGROUP_INET6_GETPEERNAME:
8137 		case BPF_CGROUP_INET6_GETSOCKNAME:
8138 		case BPF_CGROUP_UDP6_SENDMSG:
8139 		case BPF_CGROUP_UDP6_RECVMSG:
8140 			break;
8141 		default:
8142 			return false;
8143 		}
8144 		break;
8145 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8146 		switch (prog->expected_attach_type) {
8147 		case BPF_CGROUP_UDP4_SENDMSG:
8148 			break;
8149 		default:
8150 			return false;
8151 		}
8152 		break;
8153 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8154 				msg_src_ip6[3]):
8155 		switch (prog->expected_attach_type) {
8156 		case BPF_CGROUP_UDP6_SENDMSG:
8157 			break;
8158 		default:
8159 			return false;
8160 		}
8161 		break;
8162 	}
8163 
8164 	switch (off) {
8165 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8166 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8167 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8168 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8169 				msg_src_ip6[3]):
8170 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8171 		if (type == BPF_READ) {
8172 			bpf_ctx_record_field_size(info, size_default);
8173 
8174 			if (bpf_ctx_wide_access_ok(off, size,
8175 						   struct bpf_sock_addr,
8176 						   user_ip6))
8177 				return true;
8178 
8179 			if (bpf_ctx_wide_access_ok(off, size,
8180 						   struct bpf_sock_addr,
8181 						   msg_src_ip6))
8182 				return true;
8183 
8184 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8185 				return false;
8186 		} else {
8187 			if (bpf_ctx_wide_access_ok(off, size,
8188 						   struct bpf_sock_addr,
8189 						   user_ip6))
8190 				return true;
8191 
8192 			if (bpf_ctx_wide_access_ok(off, size,
8193 						   struct bpf_sock_addr,
8194 						   msg_src_ip6))
8195 				return true;
8196 
8197 			if (size != size_default)
8198 				return false;
8199 		}
8200 		break;
8201 	case offsetof(struct bpf_sock_addr, sk):
8202 		if (type != BPF_READ)
8203 			return false;
8204 		if (size != sizeof(__u64))
8205 			return false;
8206 		info->reg_type = PTR_TO_SOCKET;
8207 		break;
8208 	default:
8209 		if (type == BPF_READ) {
8210 			if (size != size_default)
8211 				return false;
8212 		} else {
8213 			return false;
8214 		}
8215 	}
8216 
8217 	return true;
8218 }
8219 
8220 static bool sock_ops_is_valid_access(int off, int size,
8221 				     enum bpf_access_type type,
8222 				     const struct bpf_prog *prog,
8223 				     struct bpf_insn_access_aux *info)
8224 {
8225 	const int size_default = sizeof(__u32);
8226 
8227 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8228 		return false;
8229 
8230 	/* The verifier guarantees that size > 0. */
8231 	if (off % size != 0)
8232 		return false;
8233 
8234 	if (type == BPF_WRITE) {
8235 		switch (off) {
8236 		case offsetof(struct bpf_sock_ops, reply):
8237 		case offsetof(struct bpf_sock_ops, sk_txhash):
8238 			if (size != size_default)
8239 				return false;
8240 			break;
8241 		default:
8242 			return false;
8243 		}
8244 	} else {
8245 		switch (off) {
8246 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8247 					bytes_acked):
8248 			if (size != sizeof(__u64))
8249 				return false;
8250 			break;
8251 		case offsetof(struct bpf_sock_ops, sk):
8252 			if (size != sizeof(__u64))
8253 				return false;
8254 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8255 			break;
8256 		case offsetof(struct bpf_sock_ops, skb_data):
8257 			if (size != sizeof(__u64))
8258 				return false;
8259 			info->reg_type = PTR_TO_PACKET;
8260 			break;
8261 		case offsetof(struct bpf_sock_ops, skb_data_end):
8262 			if (size != sizeof(__u64))
8263 				return false;
8264 			info->reg_type = PTR_TO_PACKET_END;
8265 			break;
8266 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8267 			bpf_ctx_record_field_size(info, size_default);
8268 			return bpf_ctx_narrow_access_ok(off, size,
8269 							size_default);
8270 		default:
8271 			if (size != size_default)
8272 				return false;
8273 			break;
8274 		}
8275 	}
8276 
8277 	return true;
8278 }
8279 
8280 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8281 			   const struct bpf_prog *prog)
8282 {
8283 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8284 }
8285 
8286 static bool sk_skb_is_valid_access(int off, int size,
8287 				   enum bpf_access_type type,
8288 				   const struct bpf_prog *prog,
8289 				   struct bpf_insn_access_aux *info)
8290 {
8291 	switch (off) {
8292 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8293 	case bpf_ctx_range(struct __sk_buff, data_meta):
8294 	case bpf_ctx_range(struct __sk_buff, tstamp):
8295 	case bpf_ctx_range(struct __sk_buff, wire_len):
8296 		return false;
8297 	}
8298 
8299 	if (type == BPF_WRITE) {
8300 		switch (off) {
8301 		case bpf_ctx_range(struct __sk_buff, tc_index):
8302 		case bpf_ctx_range(struct __sk_buff, priority):
8303 			break;
8304 		default:
8305 			return false;
8306 		}
8307 	}
8308 
8309 	switch (off) {
8310 	case bpf_ctx_range(struct __sk_buff, mark):
8311 		return false;
8312 	case bpf_ctx_range(struct __sk_buff, data):
8313 		info->reg_type = PTR_TO_PACKET;
8314 		break;
8315 	case bpf_ctx_range(struct __sk_buff, data_end):
8316 		info->reg_type = PTR_TO_PACKET_END;
8317 		break;
8318 	}
8319 
8320 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8321 }
8322 
8323 static bool sk_msg_is_valid_access(int off, int size,
8324 				   enum bpf_access_type type,
8325 				   const struct bpf_prog *prog,
8326 				   struct bpf_insn_access_aux *info)
8327 {
8328 	if (type == BPF_WRITE)
8329 		return false;
8330 
8331 	if (off % size != 0)
8332 		return false;
8333 
8334 	switch (off) {
8335 	case offsetof(struct sk_msg_md, data):
8336 		info->reg_type = PTR_TO_PACKET;
8337 		if (size != sizeof(__u64))
8338 			return false;
8339 		break;
8340 	case offsetof(struct sk_msg_md, data_end):
8341 		info->reg_type = PTR_TO_PACKET_END;
8342 		if (size != sizeof(__u64))
8343 			return false;
8344 		break;
8345 	case offsetof(struct sk_msg_md, sk):
8346 		if (size != sizeof(__u64))
8347 			return false;
8348 		info->reg_type = PTR_TO_SOCKET;
8349 		break;
8350 	case bpf_ctx_range(struct sk_msg_md, family):
8351 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8352 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
8353 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8354 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8355 	case bpf_ctx_range(struct sk_msg_md, remote_port):
8356 	case bpf_ctx_range(struct sk_msg_md, local_port):
8357 	case bpf_ctx_range(struct sk_msg_md, size):
8358 		if (size != sizeof(__u32))
8359 			return false;
8360 		break;
8361 	default:
8362 		return false;
8363 	}
8364 	return true;
8365 }
8366 
8367 static bool flow_dissector_is_valid_access(int off, int size,
8368 					   enum bpf_access_type type,
8369 					   const struct bpf_prog *prog,
8370 					   struct bpf_insn_access_aux *info)
8371 {
8372 	const int size_default = sizeof(__u32);
8373 
8374 	if (off < 0 || off >= sizeof(struct __sk_buff))
8375 		return false;
8376 
8377 	if (type == BPF_WRITE)
8378 		return false;
8379 
8380 	switch (off) {
8381 	case bpf_ctx_range(struct __sk_buff, data):
8382 		if (size != size_default)
8383 			return false;
8384 		info->reg_type = PTR_TO_PACKET;
8385 		return true;
8386 	case bpf_ctx_range(struct __sk_buff, data_end):
8387 		if (size != size_default)
8388 			return false;
8389 		info->reg_type = PTR_TO_PACKET_END;
8390 		return true;
8391 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8392 		if (size != sizeof(__u64))
8393 			return false;
8394 		info->reg_type = PTR_TO_FLOW_KEYS;
8395 		return true;
8396 	default:
8397 		return false;
8398 	}
8399 }
8400 
8401 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8402 					     const struct bpf_insn *si,
8403 					     struct bpf_insn *insn_buf,
8404 					     struct bpf_prog *prog,
8405 					     u32 *target_size)
8406 
8407 {
8408 	struct bpf_insn *insn = insn_buf;
8409 
8410 	switch (si->off) {
8411 	case offsetof(struct __sk_buff, data):
8412 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8413 				      si->dst_reg, si->src_reg,
8414 				      offsetof(struct bpf_flow_dissector, data));
8415 		break;
8416 
8417 	case offsetof(struct __sk_buff, data_end):
8418 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8419 				      si->dst_reg, si->src_reg,
8420 				      offsetof(struct bpf_flow_dissector, data_end));
8421 		break;
8422 
8423 	case offsetof(struct __sk_buff, flow_keys):
8424 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8425 				      si->dst_reg, si->src_reg,
8426 				      offsetof(struct bpf_flow_dissector, flow_keys));
8427 		break;
8428 	}
8429 
8430 	return insn - insn_buf;
8431 }
8432 
8433 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8434 						  struct bpf_insn *insn)
8435 {
8436 	/* si->dst_reg = skb_shinfo(SKB); */
8437 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8438 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8439 			      BPF_REG_AX, si->src_reg,
8440 			      offsetof(struct sk_buff, end));
8441 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8442 			      si->dst_reg, si->src_reg,
8443 			      offsetof(struct sk_buff, head));
8444 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8445 #else
8446 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8447 			      si->dst_reg, si->src_reg,
8448 			      offsetof(struct sk_buff, end));
8449 #endif
8450 
8451 	return insn;
8452 }
8453 
8454 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8455 				  const struct bpf_insn *si,
8456 				  struct bpf_insn *insn_buf,
8457 				  struct bpf_prog *prog, u32 *target_size)
8458 {
8459 	struct bpf_insn *insn = insn_buf;
8460 	int off;
8461 
8462 	switch (si->off) {
8463 	case offsetof(struct __sk_buff, len):
8464 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8465 				      bpf_target_off(struct sk_buff, len, 4,
8466 						     target_size));
8467 		break;
8468 
8469 	case offsetof(struct __sk_buff, protocol):
8470 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8471 				      bpf_target_off(struct sk_buff, protocol, 2,
8472 						     target_size));
8473 		break;
8474 
8475 	case offsetof(struct __sk_buff, vlan_proto):
8476 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8477 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
8478 						     target_size));
8479 		break;
8480 
8481 	case offsetof(struct __sk_buff, priority):
8482 		if (type == BPF_WRITE)
8483 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8484 					      bpf_target_off(struct sk_buff, priority, 4,
8485 							     target_size));
8486 		else
8487 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8488 					      bpf_target_off(struct sk_buff, priority, 4,
8489 							     target_size));
8490 		break;
8491 
8492 	case offsetof(struct __sk_buff, ingress_ifindex):
8493 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8494 				      bpf_target_off(struct sk_buff, skb_iif, 4,
8495 						     target_size));
8496 		break;
8497 
8498 	case offsetof(struct __sk_buff, ifindex):
8499 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8500 				      si->dst_reg, si->src_reg,
8501 				      offsetof(struct sk_buff, dev));
8502 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8503 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8504 				      bpf_target_off(struct net_device, ifindex, 4,
8505 						     target_size));
8506 		break;
8507 
8508 	case offsetof(struct __sk_buff, hash):
8509 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8510 				      bpf_target_off(struct sk_buff, hash, 4,
8511 						     target_size));
8512 		break;
8513 
8514 	case offsetof(struct __sk_buff, mark):
8515 		if (type == BPF_WRITE)
8516 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8517 					      bpf_target_off(struct sk_buff, mark, 4,
8518 							     target_size));
8519 		else
8520 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8521 					      bpf_target_off(struct sk_buff, mark, 4,
8522 							     target_size));
8523 		break;
8524 
8525 	case offsetof(struct __sk_buff, pkt_type):
8526 		*target_size = 1;
8527 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8528 				      PKT_TYPE_OFFSET());
8529 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8530 #ifdef __BIG_ENDIAN_BITFIELD
8531 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8532 #endif
8533 		break;
8534 
8535 	case offsetof(struct __sk_buff, queue_mapping):
8536 		if (type == BPF_WRITE) {
8537 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8538 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8539 					      bpf_target_off(struct sk_buff,
8540 							     queue_mapping,
8541 							     2, target_size));
8542 		} else {
8543 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8544 					      bpf_target_off(struct sk_buff,
8545 							     queue_mapping,
8546 							     2, target_size));
8547 		}
8548 		break;
8549 
8550 	case offsetof(struct __sk_buff, vlan_present):
8551 		*target_size = 1;
8552 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8553 				      PKT_VLAN_PRESENT_OFFSET());
8554 		if (PKT_VLAN_PRESENT_BIT)
8555 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8556 		if (PKT_VLAN_PRESENT_BIT < 7)
8557 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8558 		break;
8559 
8560 	case offsetof(struct __sk_buff, vlan_tci):
8561 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8562 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
8563 						     target_size));
8564 		break;
8565 
8566 	case offsetof(struct __sk_buff, cb[0]) ...
8567 	     offsetofend(struct __sk_buff, cb[4]) - 1:
8568 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8569 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8570 			      offsetof(struct qdisc_skb_cb, data)) %
8571 			     sizeof(__u64));
8572 
8573 		prog->cb_access = 1;
8574 		off  = si->off;
8575 		off -= offsetof(struct __sk_buff, cb[0]);
8576 		off += offsetof(struct sk_buff, cb);
8577 		off += offsetof(struct qdisc_skb_cb, data);
8578 		if (type == BPF_WRITE)
8579 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8580 					      si->src_reg, off);
8581 		else
8582 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8583 					      si->src_reg, off);
8584 		break;
8585 
8586 	case offsetof(struct __sk_buff, tc_classid):
8587 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8588 
8589 		off  = si->off;
8590 		off -= offsetof(struct __sk_buff, tc_classid);
8591 		off += offsetof(struct sk_buff, cb);
8592 		off += offsetof(struct qdisc_skb_cb, tc_classid);
8593 		*target_size = 2;
8594 		if (type == BPF_WRITE)
8595 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8596 					      si->src_reg, off);
8597 		else
8598 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8599 					      si->src_reg, off);
8600 		break;
8601 
8602 	case offsetof(struct __sk_buff, data):
8603 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8604 				      si->dst_reg, si->src_reg,
8605 				      offsetof(struct sk_buff, data));
8606 		break;
8607 
8608 	case offsetof(struct __sk_buff, data_meta):
8609 		off  = si->off;
8610 		off -= offsetof(struct __sk_buff, data_meta);
8611 		off += offsetof(struct sk_buff, cb);
8612 		off += offsetof(struct bpf_skb_data_end, data_meta);
8613 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8614 				      si->src_reg, off);
8615 		break;
8616 
8617 	case offsetof(struct __sk_buff, data_end):
8618 		off  = si->off;
8619 		off -= offsetof(struct __sk_buff, data_end);
8620 		off += offsetof(struct sk_buff, cb);
8621 		off += offsetof(struct bpf_skb_data_end, data_end);
8622 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8623 				      si->src_reg, off);
8624 		break;
8625 
8626 	case offsetof(struct __sk_buff, tc_index):
8627 #ifdef CONFIG_NET_SCHED
8628 		if (type == BPF_WRITE)
8629 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8630 					      bpf_target_off(struct sk_buff, tc_index, 2,
8631 							     target_size));
8632 		else
8633 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8634 					      bpf_target_off(struct sk_buff, tc_index, 2,
8635 							     target_size));
8636 #else
8637 		*target_size = 2;
8638 		if (type == BPF_WRITE)
8639 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8640 		else
8641 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8642 #endif
8643 		break;
8644 
8645 	case offsetof(struct __sk_buff, napi_id):
8646 #if defined(CONFIG_NET_RX_BUSY_POLL)
8647 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8648 				      bpf_target_off(struct sk_buff, napi_id, 4,
8649 						     target_size));
8650 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8651 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8652 #else
8653 		*target_size = 4;
8654 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8655 #endif
8656 		break;
8657 	case offsetof(struct __sk_buff, family):
8658 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8659 
8660 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8661 				      si->dst_reg, si->src_reg,
8662 				      offsetof(struct sk_buff, sk));
8663 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8664 				      bpf_target_off(struct sock_common,
8665 						     skc_family,
8666 						     2, target_size));
8667 		break;
8668 	case offsetof(struct __sk_buff, remote_ip4):
8669 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8670 
8671 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8672 				      si->dst_reg, si->src_reg,
8673 				      offsetof(struct sk_buff, sk));
8674 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8675 				      bpf_target_off(struct sock_common,
8676 						     skc_daddr,
8677 						     4, target_size));
8678 		break;
8679 	case offsetof(struct __sk_buff, local_ip4):
8680 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8681 					  skc_rcv_saddr) != 4);
8682 
8683 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8684 				      si->dst_reg, si->src_reg,
8685 				      offsetof(struct sk_buff, sk));
8686 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8687 				      bpf_target_off(struct sock_common,
8688 						     skc_rcv_saddr,
8689 						     4, target_size));
8690 		break;
8691 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
8692 	     offsetof(struct __sk_buff, remote_ip6[3]):
8693 #if IS_ENABLED(CONFIG_IPV6)
8694 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8695 					  skc_v6_daddr.s6_addr32[0]) != 4);
8696 
8697 		off = si->off;
8698 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
8699 
8700 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8701 				      si->dst_reg, si->src_reg,
8702 				      offsetof(struct sk_buff, sk));
8703 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8704 				      offsetof(struct sock_common,
8705 					       skc_v6_daddr.s6_addr32[0]) +
8706 				      off);
8707 #else
8708 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8709 #endif
8710 		break;
8711 	case offsetof(struct __sk_buff, local_ip6[0]) ...
8712 	     offsetof(struct __sk_buff, local_ip6[3]):
8713 #if IS_ENABLED(CONFIG_IPV6)
8714 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8715 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8716 
8717 		off = si->off;
8718 		off -= offsetof(struct __sk_buff, local_ip6[0]);
8719 
8720 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8721 				      si->dst_reg, si->src_reg,
8722 				      offsetof(struct sk_buff, sk));
8723 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8724 				      offsetof(struct sock_common,
8725 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8726 				      off);
8727 #else
8728 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8729 #endif
8730 		break;
8731 
8732 	case offsetof(struct __sk_buff, remote_port):
8733 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8734 
8735 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8736 				      si->dst_reg, si->src_reg,
8737 				      offsetof(struct sk_buff, sk));
8738 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8739 				      bpf_target_off(struct sock_common,
8740 						     skc_dport,
8741 						     2, target_size));
8742 #ifndef __BIG_ENDIAN_BITFIELD
8743 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8744 #endif
8745 		break;
8746 
8747 	case offsetof(struct __sk_buff, local_port):
8748 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8749 
8750 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8751 				      si->dst_reg, si->src_reg,
8752 				      offsetof(struct sk_buff, sk));
8753 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8754 				      bpf_target_off(struct sock_common,
8755 						     skc_num, 2, target_size));
8756 		break;
8757 
8758 	case offsetof(struct __sk_buff, tstamp):
8759 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8760 
8761 		if (type == BPF_WRITE)
8762 			*insn++ = BPF_STX_MEM(BPF_DW,
8763 					      si->dst_reg, si->src_reg,
8764 					      bpf_target_off(struct sk_buff,
8765 							     tstamp, 8,
8766 							     target_size));
8767 		else
8768 			*insn++ = BPF_LDX_MEM(BPF_DW,
8769 					      si->dst_reg, si->src_reg,
8770 					      bpf_target_off(struct sk_buff,
8771 							     tstamp, 8,
8772 							     target_size));
8773 		break;
8774 
8775 	case offsetof(struct __sk_buff, gso_segs):
8776 		insn = bpf_convert_shinfo_access(si, insn);
8777 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8778 				      si->dst_reg, si->dst_reg,
8779 				      bpf_target_off(struct skb_shared_info,
8780 						     gso_segs, 2,
8781 						     target_size));
8782 		break;
8783 	case offsetof(struct __sk_buff, gso_size):
8784 		insn = bpf_convert_shinfo_access(si, insn);
8785 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8786 				      si->dst_reg, si->dst_reg,
8787 				      bpf_target_off(struct skb_shared_info,
8788 						     gso_size, 2,
8789 						     target_size));
8790 		break;
8791 	case offsetof(struct __sk_buff, wire_len):
8792 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8793 
8794 		off = si->off;
8795 		off -= offsetof(struct __sk_buff, wire_len);
8796 		off += offsetof(struct sk_buff, cb);
8797 		off += offsetof(struct qdisc_skb_cb, pkt_len);
8798 		*target_size = 4;
8799 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8800 		break;
8801 
8802 	case offsetof(struct __sk_buff, sk):
8803 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8804 				      si->dst_reg, si->src_reg,
8805 				      offsetof(struct sk_buff, sk));
8806 		break;
8807 	}
8808 
8809 	return insn - insn_buf;
8810 }
8811 
8812 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8813 				const struct bpf_insn *si,
8814 				struct bpf_insn *insn_buf,
8815 				struct bpf_prog *prog, u32 *target_size)
8816 {
8817 	struct bpf_insn *insn = insn_buf;
8818 	int off;
8819 
8820 	switch (si->off) {
8821 	case offsetof(struct bpf_sock, bound_dev_if):
8822 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8823 
8824 		if (type == BPF_WRITE)
8825 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8826 					offsetof(struct sock, sk_bound_dev_if));
8827 		else
8828 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8829 				      offsetof(struct sock, sk_bound_dev_if));
8830 		break;
8831 
8832 	case offsetof(struct bpf_sock, mark):
8833 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8834 
8835 		if (type == BPF_WRITE)
8836 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8837 					offsetof(struct sock, sk_mark));
8838 		else
8839 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8840 				      offsetof(struct sock, sk_mark));
8841 		break;
8842 
8843 	case offsetof(struct bpf_sock, priority):
8844 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8845 
8846 		if (type == BPF_WRITE)
8847 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8848 					offsetof(struct sock, sk_priority));
8849 		else
8850 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8851 				      offsetof(struct sock, sk_priority));
8852 		break;
8853 
8854 	case offsetof(struct bpf_sock, family):
8855 		*insn++ = BPF_LDX_MEM(
8856 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8857 			si->dst_reg, si->src_reg,
8858 			bpf_target_off(struct sock_common,
8859 				       skc_family,
8860 				       sizeof_field(struct sock_common,
8861 						    skc_family),
8862 				       target_size));
8863 		break;
8864 
8865 	case offsetof(struct bpf_sock, type):
8866 		*insn++ = BPF_LDX_MEM(
8867 			BPF_FIELD_SIZEOF(struct sock, sk_type),
8868 			si->dst_reg, si->src_reg,
8869 			bpf_target_off(struct sock, sk_type,
8870 				       sizeof_field(struct sock, sk_type),
8871 				       target_size));
8872 		break;
8873 
8874 	case offsetof(struct bpf_sock, protocol):
8875 		*insn++ = BPF_LDX_MEM(
8876 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8877 			si->dst_reg, si->src_reg,
8878 			bpf_target_off(struct sock, sk_protocol,
8879 				       sizeof_field(struct sock, sk_protocol),
8880 				       target_size));
8881 		break;
8882 
8883 	case offsetof(struct bpf_sock, src_ip4):
8884 		*insn++ = BPF_LDX_MEM(
8885 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8886 			bpf_target_off(struct sock_common, skc_rcv_saddr,
8887 				       sizeof_field(struct sock_common,
8888 						    skc_rcv_saddr),
8889 				       target_size));
8890 		break;
8891 
8892 	case offsetof(struct bpf_sock, dst_ip4):
8893 		*insn++ = BPF_LDX_MEM(
8894 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8895 			bpf_target_off(struct sock_common, skc_daddr,
8896 				       sizeof_field(struct sock_common,
8897 						    skc_daddr),
8898 				       target_size));
8899 		break;
8900 
8901 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8902 #if IS_ENABLED(CONFIG_IPV6)
8903 		off = si->off;
8904 		off -= offsetof(struct bpf_sock, src_ip6[0]);
8905 		*insn++ = BPF_LDX_MEM(
8906 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8907 			bpf_target_off(
8908 				struct sock_common,
8909 				skc_v6_rcv_saddr.s6_addr32[0],
8910 				sizeof_field(struct sock_common,
8911 					     skc_v6_rcv_saddr.s6_addr32[0]),
8912 				target_size) + off);
8913 #else
8914 		(void)off;
8915 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8916 #endif
8917 		break;
8918 
8919 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8920 #if IS_ENABLED(CONFIG_IPV6)
8921 		off = si->off;
8922 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
8923 		*insn++ = BPF_LDX_MEM(
8924 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8925 			bpf_target_off(struct sock_common,
8926 				       skc_v6_daddr.s6_addr32[0],
8927 				       sizeof_field(struct sock_common,
8928 						    skc_v6_daddr.s6_addr32[0]),
8929 				       target_size) + off);
8930 #else
8931 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8932 		*target_size = 4;
8933 #endif
8934 		break;
8935 
8936 	case offsetof(struct bpf_sock, src_port):
8937 		*insn++ = BPF_LDX_MEM(
8938 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8939 			si->dst_reg, si->src_reg,
8940 			bpf_target_off(struct sock_common, skc_num,
8941 				       sizeof_field(struct sock_common,
8942 						    skc_num),
8943 				       target_size));
8944 		break;
8945 
8946 	case offsetof(struct bpf_sock, dst_port):
8947 		*insn++ = BPF_LDX_MEM(
8948 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8949 			si->dst_reg, si->src_reg,
8950 			bpf_target_off(struct sock_common, skc_dport,
8951 				       sizeof_field(struct sock_common,
8952 						    skc_dport),
8953 				       target_size));
8954 		break;
8955 
8956 	case offsetof(struct bpf_sock, state):
8957 		*insn++ = BPF_LDX_MEM(
8958 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8959 			si->dst_reg, si->src_reg,
8960 			bpf_target_off(struct sock_common, skc_state,
8961 				       sizeof_field(struct sock_common,
8962 						    skc_state),
8963 				       target_size));
8964 		break;
8965 	case offsetof(struct bpf_sock, rx_queue_mapping):
8966 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
8967 		*insn++ = BPF_LDX_MEM(
8968 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8969 			si->dst_reg, si->src_reg,
8970 			bpf_target_off(struct sock, sk_rx_queue_mapping,
8971 				       sizeof_field(struct sock,
8972 						    sk_rx_queue_mapping),
8973 				       target_size));
8974 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8975 				      1);
8976 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8977 #else
8978 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8979 		*target_size = 2;
8980 #endif
8981 		break;
8982 	}
8983 
8984 	return insn - insn_buf;
8985 }
8986 
8987 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8988 					 const struct bpf_insn *si,
8989 					 struct bpf_insn *insn_buf,
8990 					 struct bpf_prog *prog, u32 *target_size)
8991 {
8992 	struct bpf_insn *insn = insn_buf;
8993 
8994 	switch (si->off) {
8995 	case offsetof(struct __sk_buff, ifindex):
8996 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8997 				      si->dst_reg, si->src_reg,
8998 				      offsetof(struct sk_buff, dev));
8999 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9000 				      bpf_target_off(struct net_device, ifindex, 4,
9001 						     target_size));
9002 		break;
9003 	default:
9004 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9005 					      target_size);
9006 	}
9007 
9008 	return insn - insn_buf;
9009 }
9010 
9011 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9012 				  const struct bpf_insn *si,
9013 				  struct bpf_insn *insn_buf,
9014 				  struct bpf_prog *prog, u32 *target_size)
9015 {
9016 	struct bpf_insn *insn = insn_buf;
9017 
9018 	switch (si->off) {
9019 	case offsetof(struct xdp_md, data):
9020 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9021 				      si->dst_reg, si->src_reg,
9022 				      offsetof(struct xdp_buff, data));
9023 		break;
9024 	case offsetof(struct xdp_md, data_meta):
9025 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9026 				      si->dst_reg, si->src_reg,
9027 				      offsetof(struct xdp_buff, data_meta));
9028 		break;
9029 	case offsetof(struct xdp_md, data_end):
9030 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9031 				      si->dst_reg, si->src_reg,
9032 				      offsetof(struct xdp_buff, data_end));
9033 		break;
9034 	case offsetof(struct xdp_md, ingress_ifindex):
9035 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9036 				      si->dst_reg, si->src_reg,
9037 				      offsetof(struct xdp_buff, rxq));
9038 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9039 				      si->dst_reg, si->dst_reg,
9040 				      offsetof(struct xdp_rxq_info, dev));
9041 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9042 				      offsetof(struct net_device, ifindex));
9043 		break;
9044 	case offsetof(struct xdp_md, rx_queue_index):
9045 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9046 				      si->dst_reg, si->src_reg,
9047 				      offsetof(struct xdp_buff, rxq));
9048 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9049 				      offsetof(struct xdp_rxq_info,
9050 					       queue_index));
9051 		break;
9052 	case offsetof(struct xdp_md, egress_ifindex):
9053 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9054 				      si->dst_reg, si->src_reg,
9055 				      offsetof(struct xdp_buff, txq));
9056 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9057 				      si->dst_reg, si->dst_reg,
9058 				      offsetof(struct xdp_txq_info, dev));
9059 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9060 				      offsetof(struct net_device, ifindex));
9061 		break;
9062 	}
9063 
9064 	return insn - insn_buf;
9065 }
9066 
9067 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9068  * context Structure, F is Field in context structure that contains a pointer
9069  * to Nested Structure of type NS that has the field NF.
9070  *
9071  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9072  * sure that SIZE is not greater than actual size of S.F.NF.
9073  *
9074  * If offset OFF is provided, the load happens from that offset relative to
9075  * offset of NF.
9076  */
9077 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9078 	do {								       \
9079 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9080 				      si->src_reg, offsetof(S, F));	       \
9081 		*insn++ = BPF_LDX_MEM(					       \
9082 			SIZE, si->dst_reg, si->dst_reg,			       \
9083 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9084 				       target_size)			       \
9085 				+ OFF);					       \
9086 	} while (0)
9087 
9088 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9089 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9090 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9091 
9092 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9093  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9094  *
9095  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9096  * "register" since two registers available in convert_ctx_access are not
9097  * enough: we can't override neither SRC, since it contains value to store, nor
9098  * DST since it contains pointer to context that may be used by later
9099  * instructions. But we need a temporary place to save pointer to nested
9100  * structure whose field we want to store to.
9101  */
9102 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9103 	do {								       \
9104 		int tmp_reg = BPF_REG_9;				       \
9105 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9106 			--tmp_reg;					       \
9107 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9108 			--tmp_reg;					       \
9109 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9110 				      offsetof(S, TF));			       \
9111 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9112 				      si->dst_reg, offsetof(S, F));	       \
9113 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
9114 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9115 				       target_size)			       \
9116 				+ OFF);					       \
9117 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9118 				      offsetof(S, TF));			       \
9119 	} while (0)
9120 
9121 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9122 						      TF)		       \
9123 	do {								       \
9124 		if (type == BPF_WRITE) {				       \
9125 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9126 							 OFF, TF);	       \
9127 		} else {						       \
9128 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9129 				S, NS, F, NF, SIZE, OFF);  \
9130 		}							       \
9131 	} while (0)
9132 
9133 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9134 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9135 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9136 
9137 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9138 					const struct bpf_insn *si,
9139 					struct bpf_insn *insn_buf,
9140 					struct bpf_prog *prog, u32 *target_size)
9141 {
9142 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9143 	struct bpf_insn *insn = insn_buf;
9144 
9145 	switch (si->off) {
9146 	case offsetof(struct bpf_sock_addr, user_family):
9147 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9148 					    struct sockaddr, uaddr, sa_family);
9149 		break;
9150 
9151 	case offsetof(struct bpf_sock_addr, user_ip4):
9152 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9153 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9154 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9155 		break;
9156 
9157 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9158 		off = si->off;
9159 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9160 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9161 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9162 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9163 			tmp_reg);
9164 		break;
9165 
9166 	case offsetof(struct bpf_sock_addr, user_port):
9167 		/* To get port we need to know sa_family first and then treat
9168 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9169 		 * Though we can simplify since port field has same offset and
9170 		 * size in both structures.
9171 		 * Here we check this invariant and use just one of the
9172 		 * structures if it's true.
9173 		 */
9174 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9175 			     offsetof(struct sockaddr_in6, sin6_port));
9176 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9177 			     sizeof_field(struct sockaddr_in6, sin6_port));
9178 		/* Account for sin6_port being smaller than user_port. */
9179 		port_size = min(port_size, BPF_LDST_BYTES(si));
9180 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9181 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9182 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9183 		break;
9184 
9185 	case offsetof(struct bpf_sock_addr, family):
9186 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9187 					    struct sock, sk, sk_family);
9188 		break;
9189 
9190 	case offsetof(struct bpf_sock_addr, type):
9191 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9192 					    struct sock, sk, sk_type);
9193 		break;
9194 
9195 	case offsetof(struct bpf_sock_addr, protocol):
9196 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9197 					    struct sock, sk, sk_protocol);
9198 		break;
9199 
9200 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9201 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9202 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9203 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9204 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9205 		break;
9206 
9207 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9208 				msg_src_ip6[3]):
9209 		off = si->off;
9210 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9211 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9212 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9213 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9214 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9215 		break;
9216 	case offsetof(struct bpf_sock_addr, sk):
9217 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9218 				      si->dst_reg, si->src_reg,
9219 				      offsetof(struct bpf_sock_addr_kern, sk));
9220 		break;
9221 	}
9222 
9223 	return insn - insn_buf;
9224 }
9225 
9226 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9227 				       const struct bpf_insn *si,
9228 				       struct bpf_insn *insn_buf,
9229 				       struct bpf_prog *prog,
9230 				       u32 *target_size)
9231 {
9232 	struct bpf_insn *insn = insn_buf;
9233 	int off;
9234 
9235 /* Helper macro for adding read access to tcp_sock or sock fields. */
9236 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9237 	do {								      \
9238 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9239 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9240 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9241 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9242 			reg--;						      \
9243 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9244 			reg--;						      \
9245 		if (si->dst_reg == si->src_reg) {			      \
9246 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9247 					  offsetof(struct bpf_sock_ops_kern,  \
9248 					  temp));			      \
9249 			fullsock_reg = reg;				      \
9250 			jmp += 2;					      \
9251 		}							      \
9252 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9253 						struct bpf_sock_ops_kern,     \
9254 						is_fullsock),		      \
9255 				      fullsock_reg, si->src_reg,	      \
9256 				      offsetof(struct bpf_sock_ops_kern,      \
9257 					       is_fullsock));		      \
9258 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9259 		if (si->dst_reg == si->src_reg)				      \
9260 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9261 				      offsetof(struct bpf_sock_ops_kern,      \
9262 				      temp));				      \
9263 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9264 						struct bpf_sock_ops_kern, sk),\
9265 				      si->dst_reg, si->src_reg,		      \
9266 				      offsetof(struct bpf_sock_ops_kern, sk));\
9267 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
9268 						       OBJ_FIELD),	      \
9269 				      si->dst_reg, si->dst_reg,		      \
9270 				      offsetof(OBJ, OBJ_FIELD));	      \
9271 		if (si->dst_reg == si->src_reg)	{			      \
9272 			*insn++ = BPF_JMP_A(1);				      \
9273 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9274 				      offsetof(struct bpf_sock_ops_kern,      \
9275 				      temp));				      \
9276 		}							      \
9277 	} while (0)
9278 
9279 #define SOCK_OPS_GET_SK()							      \
9280 	do {								      \
9281 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9282 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9283 			reg--;						      \
9284 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9285 			reg--;						      \
9286 		if (si->dst_reg == si->src_reg) {			      \
9287 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9288 					  offsetof(struct bpf_sock_ops_kern,  \
9289 					  temp));			      \
9290 			fullsock_reg = reg;				      \
9291 			jmp += 2;					      \
9292 		}							      \
9293 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9294 						struct bpf_sock_ops_kern,     \
9295 						is_fullsock),		      \
9296 				      fullsock_reg, si->src_reg,	      \
9297 				      offsetof(struct bpf_sock_ops_kern,      \
9298 					       is_fullsock));		      \
9299 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9300 		if (si->dst_reg == si->src_reg)				      \
9301 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9302 				      offsetof(struct bpf_sock_ops_kern,      \
9303 				      temp));				      \
9304 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9305 						struct bpf_sock_ops_kern, sk),\
9306 				      si->dst_reg, si->src_reg,		      \
9307 				      offsetof(struct bpf_sock_ops_kern, sk));\
9308 		if (si->dst_reg == si->src_reg)	{			      \
9309 			*insn++ = BPF_JMP_A(1);				      \
9310 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9311 				      offsetof(struct bpf_sock_ops_kern,      \
9312 				      temp));				      \
9313 		}							      \
9314 	} while (0)
9315 
9316 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9317 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9318 
9319 /* Helper macro for adding write access to tcp_sock or sock fields.
9320  * The macro is called with two registers, dst_reg which contains a pointer
9321  * to ctx (context) and src_reg which contains the value that should be
9322  * stored. However, we need an additional register since we cannot overwrite
9323  * dst_reg because it may be used later in the program.
9324  * Instead we "borrow" one of the other register. We first save its value
9325  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9326  * it at the end of the macro.
9327  */
9328 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9329 	do {								      \
9330 		int reg = BPF_REG_9;					      \
9331 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9332 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9333 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9334 			reg--;						      \
9335 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9336 			reg--;						      \
9337 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
9338 				      offsetof(struct bpf_sock_ops_kern,      \
9339 					       temp));			      \
9340 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9341 						struct bpf_sock_ops_kern,     \
9342 						is_fullsock),		      \
9343 				      reg, si->dst_reg,			      \
9344 				      offsetof(struct bpf_sock_ops_kern,      \
9345 					       is_fullsock));		      \
9346 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
9347 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9348 						struct bpf_sock_ops_kern, sk),\
9349 				      reg, si->dst_reg,			      \
9350 				      offsetof(struct bpf_sock_ops_kern, sk));\
9351 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
9352 				      reg, si->src_reg,			      \
9353 				      offsetof(OBJ, OBJ_FIELD));	      \
9354 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
9355 				      offsetof(struct bpf_sock_ops_kern,      \
9356 					       temp));			      \
9357 	} while (0)
9358 
9359 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
9360 	do {								      \
9361 		if (TYPE == BPF_WRITE)					      \
9362 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9363 		else							      \
9364 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9365 	} while (0)
9366 
9367 	if (insn > insn_buf)
9368 		return insn - insn_buf;
9369 
9370 	switch (si->off) {
9371 	case offsetof(struct bpf_sock_ops, op):
9372 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9373 						       op),
9374 				      si->dst_reg, si->src_reg,
9375 				      offsetof(struct bpf_sock_ops_kern, op));
9376 		break;
9377 
9378 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
9379 	     offsetof(struct bpf_sock_ops, replylong[3]):
9380 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9381 			     sizeof_field(struct bpf_sock_ops_kern, reply));
9382 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9383 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
9384 		off = si->off;
9385 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
9386 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9387 		if (type == BPF_WRITE)
9388 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9389 					      off);
9390 		else
9391 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9392 					      off);
9393 		break;
9394 
9395 	case offsetof(struct bpf_sock_ops, family):
9396 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9397 
9398 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9399 					      struct bpf_sock_ops_kern, sk),
9400 				      si->dst_reg, si->src_reg,
9401 				      offsetof(struct bpf_sock_ops_kern, sk));
9402 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9403 				      offsetof(struct sock_common, skc_family));
9404 		break;
9405 
9406 	case offsetof(struct bpf_sock_ops, remote_ip4):
9407 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9408 
9409 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9410 						struct bpf_sock_ops_kern, sk),
9411 				      si->dst_reg, si->src_reg,
9412 				      offsetof(struct bpf_sock_ops_kern, sk));
9413 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9414 				      offsetof(struct sock_common, skc_daddr));
9415 		break;
9416 
9417 	case offsetof(struct bpf_sock_ops, local_ip4):
9418 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9419 					  skc_rcv_saddr) != 4);
9420 
9421 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9422 					      struct bpf_sock_ops_kern, sk),
9423 				      si->dst_reg, si->src_reg,
9424 				      offsetof(struct bpf_sock_ops_kern, sk));
9425 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9426 				      offsetof(struct sock_common,
9427 					       skc_rcv_saddr));
9428 		break;
9429 
9430 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9431 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
9432 #if IS_ENABLED(CONFIG_IPV6)
9433 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9434 					  skc_v6_daddr.s6_addr32[0]) != 4);
9435 
9436 		off = si->off;
9437 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9438 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9439 						struct bpf_sock_ops_kern, sk),
9440 				      si->dst_reg, si->src_reg,
9441 				      offsetof(struct bpf_sock_ops_kern, sk));
9442 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9443 				      offsetof(struct sock_common,
9444 					       skc_v6_daddr.s6_addr32[0]) +
9445 				      off);
9446 #else
9447 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9448 #endif
9449 		break;
9450 
9451 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9452 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
9453 #if IS_ENABLED(CONFIG_IPV6)
9454 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9455 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9456 
9457 		off = si->off;
9458 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9459 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9460 						struct bpf_sock_ops_kern, sk),
9461 				      si->dst_reg, si->src_reg,
9462 				      offsetof(struct bpf_sock_ops_kern, sk));
9463 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9464 				      offsetof(struct sock_common,
9465 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9466 				      off);
9467 #else
9468 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9469 #endif
9470 		break;
9471 
9472 	case offsetof(struct bpf_sock_ops, remote_port):
9473 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9474 
9475 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9476 						struct bpf_sock_ops_kern, sk),
9477 				      si->dst_reg, si->src_reg,
9478 				      offsetof(struct bpf_sock_ops_kern, sk));
9479 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9480 				      offsetof(struct sock_common, skc_dport));
9481 #ifndef __BIG_ENDIAN_BITFIELD
9482 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9483 #endif
9484 		break;
9485 
9486 	case offsetof(struct bpf_sock_ops, local_port):
9487 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9488 
9489 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9490 						struct bpf_sock_ops_kern, sk),
9491 				      si->dst_reg, si->src_reg,
9492 				      offsetof(struct bpf_sock_ops_kern, sk));
9493 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9494 				      offsetof(struct sock_common, skc_num));
9495 		break;
9496 
9497 	case offsetof(struct bpf_sock_ops, is_fullsock):
9498 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9499 						struct bpf_sock_ops_kern,
9500 						is_fullsock),
9501 				      si->dst_reg, si->src_reg,
9502 				      offsetof(struct bpf_sock_ops_kern,
9503 					       is_fullsock));
9504 		break;
9505 
9506 	case offsetof(struct bpf_sock_ops, state):
9507 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9508 
9509 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9510 						struct bpf_sock_ops_kern, sk),
9511 				      si->dst_reg, si->src_reg,
9512 				      offsetof(struct bpf_sock_ops_kern, sk));
9513 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9514 				      offsetof(struct sock_common, skc_state));
9515 		break;
9516 
9517 	case offsetof(struct bpf_sock_ops, rtt_min):
9518 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9519 			     sizeof(struct minmax));
9520 		BUILD_BUG_ON(sizeof(struct minmax) <
9521 			     sizeof(struct minmax_sample));
9522 
9523 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9524 						struct bpf_sock_ops_kern, sk),
9525 				      si->dst_reg, si->src_reg,
9526 				      offsetof(struct bpf_sock_ops_kern, sk));
9527 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9528 				      offsetof(struct tcp_sock, rtt_min) +
9529 				      sizeof_field(struct minmax_sample, t));
9530 		break;
9531 
9532 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9533 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9534 				   struct tcp_sock);
9535 		break;
9536 
9537 	case offsetof(struct bpf_sock_ops, sk_txhash):
9538 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9539 					  struct sock, type);
9540 		break;
9541 	case offsetof(struct bpf_sock_ops, snd_cwnd):
9542 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9543 		break;
9544 	case offsetof(struct bpf_sock_ops, srtt_us):
9545 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9546 		break;
9547 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
9548 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9549 		break;
9550 	case offsetof(struct bpf_sock_ops, rcv_nxt):
9551 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9552 		break;
9553 	case offsetof(struct bpf_sock_ops, snd_nxt):
9554 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9555 		break;
9556 	case offsetof(struct bpf_sock_ops, snd_una):
9557 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9558 		break;
9559 	case offsetof(struct bpf_sock_ops, mss_cache):
9560 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9561 		break;
9562 	case offsetof(struct bpf_sock_ops, ecn_flags):
9563 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9564 		break;
9565 	case offsetof(struct bpf_sock_ops, rate_delivered):
9566 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9567 		break;
9568 	case offsetof(struct bpf_sock_ops, rate_interval_us):
9569 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9570 		break;
9571 	case offsetof(struct bpf_sock_ops, packets_out):
9572 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9573 		break;
9574 	case offsetof(struct bpf_sock_ops, retrans_out):
9575 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9576 		break;
9577 	case offsetof(struct bpf_sock_ops, total_retrans):
9578 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9579 		break;
9580 	case offsetof(struct bpf_sock_ops, segs_in):
9581 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9582 		break;
9583 	case offsetof(struct bpf_sock_ops, data_segs_in):
9584 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9585 		break;
9586 	case offsetof(struct bpf_sock_ops, segs_out):
9587 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9588 		break;
9589 	case offsetof(struct bpf_sock_ops, data_segs_out):
9590 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9591 		break;
9592 	case offsetof(struct bpf_sock_ops, lost_out):
9593 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9594 		break;
9595 	case offsetof(struct bpf_sock_ops, sacked_out):
9596 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9597 		break;
9598 	case offsetof(struct bpf_sock_ops, bytes_received):
9599 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9600 		break;
9601 	case offsetof(struct bpf_sock_ops, bytes_acked):
9602 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9603 		break;
9604 	case offsetof(struct bpf_sock_ops, sk):
9605 		SOCK_OPS_GET_SK();
9606 		break;
9607 	case offsetof(struct bpf_sock_ops, skb_data_end):
9608 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9609 						       skb_data_end),
9610 				      si->dst_reg, si->src_reg,
9611 				      offsetof(struct bpf_sock_ops_kern,
9612 					       skb_data_end));
9613 		break;
9614 	case offsetof(struct bpf_sock_ops, skb_data):
9615 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9616 						       skb),
9617 				      si->dst_reg, si->src_reg,
9618 				      offsetof(struct bpf_sock_ops_kern,
9619 					       skb));
9620 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9621 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9622 				      si->dst_reg, si->dst_reg,
9623 				      offsetof(struct sk_buff, data));
9624 		break;
9625 	case offsetof(struct bpf_sock_ops, skb_len):
9626 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9627 						       skb),
9628 				      si->dst_reg, si->src_reg,
9629 				      offsetof(struct bpf_sock_ops_kern,
9630 					       skb));
9631 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9632 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9633 				      si->dst_reg, si->dst_reg,
9634 				      offsetof(struct sk_buff, len));
9635 		break;
9636 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9637 		off = offsetof(struct sk_buff, cb);
9638 		off += offsetof(struct tcp_skb_cb, tcp_flags);
9639 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9640 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9641 						       skb),
9642 				      si->dst_reg, si->src_reg,
9643 				      offsetof(struct bpf_sock_ops_kern,
9644 					       skb));
9645 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9646 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9647 						       tcp_flags),
9648 				      si->dst_reg, si->dst_reg, off);
9649 		break;
9650 	}
9651 	return insn - insn_buf;
9652 }
9653 
9654 /* data_end = skb->data + skb_headlen() */
9655 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
9656 						    struct bpf_insn *insn)
9657 {
9658 	/* si->dst_reg = skb->data */
9659 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9660 			      si->dst_reg, si->src_reg,
9661 			      offsetof(struct sk_buff, data));
9662 	/* AX = skb->len */
9663 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9664 			      BPF_REG_AX, si->src_reg,
9665 			      offsetof(struct sk_buff, len));
9666 	/* si->dst_reg = skb->data + skb->len */
9667 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9668 	/* AX = skb->data_len */
9669 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
9670 			      BPF_REG_AX, si->src_reg,
9671 			      offsetof(struct sk_buff, data_len));
9672 	/* si->dst_reg = skb->data + skb->len - skb->data_len */
9673 	*insn++ = BPF_ALU64_REG(BPF_SUB, si->dst_reg, BPF_REG_AX);
9674 
9675 	return insn;
9676 }
9677 
9678 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9679 				     const struct bpf_insn *si,
9680 				     struct bpf_insn *insn_buf,
9681 				     struct bpf_prog *prog, u32 *target_size)
9682 {
9683 	struct bpf_insn *insn = insn_buf;
9684 
9685 	switch (si->off) {
9686 	case offsetof(struct __sk_buff, data_end):
9687 		insn = bpf_convert_data_end_access(si, insn);
9688 		break;
9689 	default:
9690 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9691 					      target_size);
9692 	}
9693 
9694 	return insn - insn_buf;
9695 }
9696 
9697 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9698 				     const struct bpf_insn *si,
9699 				     struct bpf_insn *insn_buf,
9700 				     struct bpf_prog *prog, u32 *target_size)
9701 {
9702 	struct bpf_insn *insn = insn_buf;
9703 #if IS_ENABLED(CONFIG_IPV6)
9704 	int off;
9705 #endif
9706 
9707 	/* convert ctx uses the fact sg element is first in struct */
9708 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9709 
9710 	switch (si->off) {
9711 	case offsetof(struct sk_msg_md, data):
9712 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9713 				      si->dst_reg, si->src_reg,
9714 				      offsetof(struct sk_msg, data));
9715 		break;
9716 	case offsetof(struct sk_msg_md, data_end):
9717 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9718 				      si->dst_reg, si->src_reg,
9719 				      offsetof(struct sk_msg, data_end));
9720 		break;
9721 	case offsetof(struct sk_msg_md, family):
9722 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9723 
9724 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9725 					      struct sk_msg, sk),
9726 				      si->dst_reg, si->src_reg,
9727 				      offsetof(struct sk_msg, sk));
9728 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9729 				      offsetof(struct sock_common, skc_family));
9730 		break;
9731 
9732 	case offsetof(struct sk_msg_md, remote_ip4):
9733 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9734 
9735 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9736 						struct sk_msg, sk),
9737 				      si->dst_reg, si->src_reg,
9738 				      offsetof(struct sk_msg, sk));
9739 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9740 				      offsetof(struct sock_common, skc_daddr));
9741 		break;
9742 
9743 	case offsetof(struct sk_msg_md, local_ip4):
9744 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9745 					  skc_rcv_saddr) != 4);
9746 
9747 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9748 					      struct sk_msg, sk),
9749 				      si->dst_reg, si->src_reg,
9750 				      offsetof(struct sk_msg, sk));
9751 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9752 				      offsetof(struct sock_common,
9753 					       skc_rcv_saddr));
9754 		break;
9755 
9756 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9757 	     offsetof(struct sk_msg_md, remote_ip6[3]):
9758 #if IS_ENABLED(CONFIG_IPV6)
9759 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9760 					  skc_v6_daddr.s6_addr32[0]) != 4);
9761 
9762 		off = si->off;
9763 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9764 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9765 						struct sk_msg, sk),
9766 				      si->dst_reg, si->src_reg,
9767 				      offsetof(struct sk_msg, sk));
9768 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9769 				      offsetof(struct sock_common,
9770 					       skc_v6_daddr.s6_addr32[0]) +
9771 				      off);
9772 #else
9773 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9774 #endif
9775 		break;
9776 
9777 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
9778 	     offsetof(struct sk_msg_md, local_ip6[3]):
9779 #if IS_ENABLED(CONFIG_IPV6)
9780 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9781 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9782 
9783 		off = si->off;
9784 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
9785 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9786 						struct sk_msg, sk),
9787 				      si->dst_reg, si->src_reg,
9788 				      offsetof(struct sk_msg, sk));
9789 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9790 				      offsetof(struct sock_common,
9791 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9792 				      off);
9793 #else
9794 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9795 #endif
9796 		break;
9797 
9798 	case offsetof(struct sk_msg_md, remote_port):
9799 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9800 
9801 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9802 						struct sk_msg, sk),
9803 				      si->dst_reg, si->src_reg,
9804 				      offsetof(struct sk_msg, sk));
9805 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9806 				      offsetof(struct sock_common, skc_dport));
9807 #ifndef __BIG_ENDIAN_BITFIELD
9808 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9809 #endif
9810 		break;
9811 
9812 	case offsetof(struct sk_msg_md, local_port):
9813 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9814 
9815 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9816 						struct sk_msg, sk),
9817 				      si->dst_reg, si->src_reg,
9818 				      offsetof(struct sk_msg, sk));
9819 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9820 				      offsetof(struct sock_common, skc_num));
9821 		break;
9822 
9823 	case offsetof(struct sk_msg_md, size):
9824 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9825 				      si->dst_reg, si->src_reg,
9826 				      offsetof(struct sk_msg_sg, size));
9827 		break;
9828 
9829 	case offsetof(struct sk_msg_md, sk):
9830 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9831 				      si->dst_reg, si->src_reg,
9832 				      offsetof(struct sk_msg, sk));
9833 		break;
9834 	}
9835 
9836 	return insn - insn_buf;
9837 }
9838 
9839 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9840 	.get_func_proto		= sk_filter_func_proto,
9841 	.is_valid_access	= sk_filter_is_valid_access,
9842 	.convert_ctx_access	= bpf_convert_ctx_access,
9843 	.gen_ld_abs		= bpf_gen_ld_abs,
9844 };
9845 
9846 const struct bpf_prog_ops sk_filter_prog_ops = {
9847 	.test_run		= bpf_prog_test_run_skb,
9848 };
9849 
9850 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9851 	.get_func_proto		= tc_cls_act_func_proto,
9852 	.is_valid_access	= tc_cls_act_is_valid_access,
9853 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
9854 	.gen_prologue		= tc_cls_act_prologue,
9855 	.gen_ld_abs		= bpf_gen_ld_abs,
9856 	.check_kfunc_call	= bpf_prog_test_check_kfunc_call,
9857 };
9858 
9859 const struct bpf_prog_ops tc_cls_act_prog_ops = {
9860 	.test_run		= bpf_prog_test_run_skb,
9861 };
9862 
9863 const struct bpf_verifier_ops xdp_verifier_ops = {
9864 	.get_func_proto		= xdp_func_proto,
9865 	.is_valid_access	= xdp_is_valid_access,
9866 	.convert_ctx_access	= xdp_convert_ctx_access,
9867 	.gen_prologue		= bpf_noop_prologue,
9868 };
9869 
9870 const struct bpf_prog_ops xdp_prog_ops = {
9871 	.test_run		= bpf_prog_test_run_xdp,
9872 };
9873 
9874 const struct bpf_verifier_ops cg_skb_verifier_ops = {
9875 	.get_func_proto		= cg_skb_func_proto,
9876 	.is_valid_access	= cg_skb_is_valid_access,
9877 	.convert_ctx_access	= bpf_convert_ctx_access,
9878 };
9879 
9880 const struct bpf_prog_ops cg_skb_prog_ops = {
9881 	.test_run		= bpf_prog_test_run_skb,
9882 };
9883 
9884 const struct bpf_verifier_ops lwt_in_verifier_ops = {
9885 	.get_func_proto		= lwt_in_func_proto,
9886 	.is_valid_access	= lwt_is_valid_access,
9887 	.convert_ctx_access	= bpf_convert_ctx_access,
9888 };
9889 
9890 const struct bpf_prog_ops lwt_in_prog_ops = {
9891 	.test_run		= bpf_prog_test_run_skb,
9892 };
9893 
9894 const struct bpf_verifier_ops lwt_out_verifier_ops = {
9895 	.get_func_proto		= lwt_out_func_proto,
9896 	.is_valid_access	= lwt_is_valid_access,
9897 	.convert_ctx_access	= bpf_convert_ctx_access,
9898 };
9899 
9900 const struct bpf_prog_ops lwt_out_prog_ops = {
9901 	.test_run		= bpf_prog_test_run_skb,
9902 };
9903 
9904 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9905 	.get_func_proto		= lwt_xmit_func_proto,
9906 	.is_valid_access	= lwt_is_valid_access,
9907 	.convert_ctx_access	= bpf_convert_ctx_access,
9908 	.gen_prologue		= tc_cls_act_prologue,
9909 };
9910 
9911 const struct bpf_prog_ops lwt_xmit_prog_ops = {
9912 	.test_run		= bpf_prog_test_run_skb,
9913 };
9914 
9915 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9916 	.get_func_proto		= lwt_seg6local_func_proto,
9917 	.is_valid_access	= lwt_is_valid_access,
9918 	.convert_ctx_access	= bpf_convert_ctx_access,
9919 };
9920 
9921 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9922 	.test_run		= bpf_prog_test_run_skb,
9923 };
9924 
9925 const struct bpf_verifier_ops cg_sock_verifier_ops = {
9926 	.get_func_proto		= sock_filter_func_proto,
9927 	.is_valid_access	= sock_filter_is_valid_access,
9928 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
9929 };
9930 
9931 const struct bpf_prog_ops cg_sock_prog_ops = {
9932 };
9933 
9934 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9935 	.get_func_proto		= sock_addr_func_proto,
9936 	.is_valid_access	= sock_addr_is_valid_access,
9937 	.convert_ctx_access	= sock_addr_convert_ctx_access,
9938 };
9939 
9940 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9941 };
9942 
9943 const struct bpf_verifier_ops sock_ops_verifier_ops = {
9944 	.get_func_proto		= sock_ops_func_proto,
9945 	.is_valid_access	= sock_ops_is_valid_access,
9946 	.convert_ctx_access	= sock_ops_convert_ctx_access,
9947 };
9948 
9949 const struct bpf_prog_ops sock_ops_prog_ops = {
9950 };
9951 
9952 const struct bpf_verifier_ops sk_skb_verifier_ops = {
9953 	.get_func_proto		= sk_skb_func_proto,
9954 	.is_valid_access	= sk_skb_is_valid_access,
9955 	.convert_ctx_access	= sk_skb_convert_ctx_access,
9956 	.gen_prologue		= sk_skb_prologue,
9957 };
9958 
9959 const struct bpf_prog_ops sk_skb_prog_ops = {
9960 };
9961 
9962 const struct bpf_verifier_ops sk_msg_verifier_ops = {
9963 	.get_func_proto		= sk_msg_func_proto,
9964 	.is_valid_access	= sk_msg_is_valid_access,
9965 	.convert_ctx_access	= sk_msg_convert_ctx_access,
9966 	.gen_prologue		= bpf_noop_prologue,
9967 };
9968 
9969 const struct bpf_prog_ops sk_msg_prog_ops = {
9970 };
9971 
9972 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
9973 	.get_func_proto		= flow_dissector_func_proto,
9974 	.is_valid_access	= flow_dissector_is_valid_access,
9975 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
9976 };
9977 
9978 const struct bpf_prog_ops flow_dissector_prog_ops = {
9979 	.test_run		= bpf_prog_test_run_flow_dissector,
9980 };
9981 
9982 int sk_detach_filter(struct sock *sk)
9983 {
9984 	int ret = -ENOENT;
9985 	struct sk_filter *filter;
9986 
9987 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
9988 		return -EPERM;
9989 
9990 	filter = rcu_dereference_protected(sk->sk_filter,
9991 					   lockdep_sock_is_held(sk));
9992 	if (filter) {
9993 		RCU_INIT_POINTER(sk->sk_filter, NULL);
9994 		sk_filter_uncharge(sk, filter);
9995 		ret = 0;
9996 	}
9997 
9998 	return ret;
9999 }
10000 EXPORT_SYMBOL_GPL(sk_detach_filter);
10001 
10002 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10003 		  unsigned int len)
10004 {
10005 	struct sock_fprog_kern *fprog;
10006 	struct sk_filter *filter;
10007 	int ret = 0;
10008 
10009 	lock_sock(sk);
10010 	filter = rcu_dereference_protected(sk->sk_filter,
10011 					   lockdep_sock_is_held(sk));
10012 	if (!filter)
10013 		goto out;
10014 
10015 	/* We're copying the filter that has been originally attached,
10016 	 * so no conversion/decode needed anymore. eBPF programs that
10017 	 * have no original program cannot be dumped through this.
10018 	 */
10019 	ret = -EACCES;
10020 	fprog = filter->prog->orig_prog;
10021 	if (!fprog)
10022 		goto out;
10023 
10024 	ret = fprog->len;
10025 	if (!len)
10026 		/* User space only enquires number of filter blocks. */
10027 		goto out;
10028 
10029 	ret = -EINVAL;
10030 	if (len < fprog->len)
10031 		goto out;
10032 
10033 	ret = -EFAULT;
10034 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10035 		goto out;
10036 
10037 	/* Instead of bytes, the API requests to return the number
10038 	 * of filter blocks.
10039 	 */
10040 	ret = fprog->len;
10041 out:
10042 	release_sock(sk);
10043 	return ret;
10044 }
10045 
10046 #ifdef CONFIG_INET
10047 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10048 				    struct sock_reuseport *reuse,
10049 				    struct sock *sk, struct sk_buff *skb,
10050 				    struct sock *migrating_sk,
10051 				    u32 hash)
10052 {
10053 	reuse_kern->skb = skb;
10054 	reuse_kern->sk = sk;
10055 	reuse_kern->selected_sk = NULL;
10056 	reuse_kern->migrating_sk = migrating_sk;
10057 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10058 	reuse_kern->hash = hash;
10059 	reuse_kern->reuseport_id = reuse->reuseport_id;
10060 	reuse_kern->bind_inany = reuse->bind_inany;
10061 }
10062 
10063 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10064 				  struct bpf_prog *prog, struct sk_buff *skb,
10065 				  struct sock *migrating_sk,
10066 				  u32 hash)
10067 {
10068 	struct sk_reuseport_kern reuse_kern;
10069 	enum sk_action action;
10070 
10071 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10072 	action = BPF_PROG_RUN(prog, &reuse_kern);
10073 
10074 	if (action == SK_PASS)
10075 		return reuse_kern.selected_sk;
10076 	else
10077 		return ERR_PTR(-ECONNREFUSED);
10078 }
10079 
10080 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10081 	   struct bpf_map *, map, void *, key, u32, flags)
10082 {
10083 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10084 	struct sock_reuseport *reuse;
10085 	struct sock *selected_sk;
10086 
10087 	selected_sk = map->ops->map_lookup_elem(map, key);
10088 	if (!selected_sk)
10089 		return -ENOENT;
10090 
10091 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10092 	if (!reuse) {
10093 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10094 		if (sk_is_refcounted(selected_sk))
10095 			sock_put(selected_sk);
10096 
10097 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
10098 		 * The only (!reuse) case here is - the sk has already been
10099 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
10100 		 *
10101 		 * Other maps (e.g. sock_map) do not provide this guarantee and
10102 		 * the sk may never be in the reuseport group to begin with.
10103 		 */
10104 		return is_sockarray ? -ENOENT : -EINVAL;
10105 	}
10106 
10107 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10108 		struct sock *sk = reuse_kern->sk;
10109 
10110 		if (sk->sk_protocol != selected_sk->sk_protocol)
10111 			return -EPROTOTYPE;
10112 		else if (sk->sk_family != selected_sk->sk_family)
10113 			return -EAFNOSUPPORT;
10114 
10115 		/* Catch all. Likely bound to a different sockaddr. */
10116 		return -EBADFD;
10117 	}
10118 
10119 	reuse_kern->selected_sk = selected_sk;
10120 
10121 	return 0;
10122 }
10123 
10124 static const struct bpf_func_proto sk_select_reuseport_proto = {
10125 	.func           = sk_select_reuseport,
10126 	.gpl_only       = false,
10127 	.ret_type       = RET_INTEGER,
10128 	.arg1_type	= ARG_PTR_TO_CTX,
10129 	.arg2_type      = ARG_CONST_MAP_PTR,
10130 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
10131 	.arg4_type	= ARG_ANYTHING,
10132 };
10133 
10134 BPF_CALL_4(sk_reuseport_load_bytes,
10135 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10136 	   void *, to, u32, len)
10137 {
10138 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10139 }
10140 
10141 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10142 	.func		= sk_reuseport_load_bytes,
10143 	.gpl_only	= false,
10144 	.ret_type	= RET_INTEGER,
10145 	.arg1_type	= ARG_PTR_TO_CTX,
10146 	.arg2_type	= ARG_ANYTHING,
10147 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10148 	.arg4_type	= ARG_CONST_SIZE,
10149 };
10150 
10151 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10152 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10153 	   void *, to, u32, len, u32, start_header)
10154 {
10155 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10156 					       len, start_header);
10157 }
10158 
10159 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10160 	.func		= sk_reuseport_load_bytes_relative,
10161 	.gpl_only	= false,
10162 	.ret_type	= RET_INTEGER,
10163 	.arg1_type	= ARG_PTR_TO_CTX,
10164 	.arg2_type	= ARG_ANYTHING,
10165 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10166 	.arg4_type	= ARG_CONST_SIZE,
10167 	.arg5_type	= ARG_ANYTHING,
10168 };
10169 
10170 static const struct bpf_func_proto *
10171 sk_reuseport_func_proto(enum bpf_func_id func_id,
10172 			const struct bpf_prog *prog)
10173 {
10174 	switch (func_id) {
10175 	case BPF_FUNC_sk_select_reuseport:
10176 		return &sk_select_reuseport_proto;
10177 	case BPF_FUNC_skb_load_bytes:
10178 		return &sk_reuseport_load_bytes_proto;
10179 	case BPF_FUNC_skb_load_bytes_relative:
10180 		return &sk_reuseport_load_bytes_relative_proto;
10181 	case BPF_FUNC_get_socket_cookie:
10182 		return &bpf_get_socket_ptr_cookie_proto;
10183 	default:
10184 		return bpf_base_func_proto(func_id);
10185 	}
10186 }
10187 
10188 static bool
10189 sk_reuseport_is_valid_access(int off, int size,
10190 			     enum bpf_access_type type,
10191 			     const struct bpf_prog *prog,
10192 			     struct bpf_insn_access_aux *info)
10193 {
10194 	const u32 size_default = sizeof(__u32);
10195 
10196 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10197 	    off % size || type != BPF_READ)
10198 		return false;
10199 
10200 	switch (off) {
10201 	case offsetof(struct sk_reuseport_md, data):
10202 		info->reg_type = PTR_TO_PACKET;
10203 		return size == sizeof(__u64);
10204 
10205 	case offsetof(struct sk_reuseport_md, data_end):
10206 		info->reg_type = PTR_TO_PACKET_END;
10207 		return size == sizeof(__u64);
10208 
10209 	case offsetof(struct sk_reuseport_md, hash):
10210 		return size == size_default;
10211 
10212 	case offsetof(struct sk_reuseport_md, sk):
10213 		info->reg_type = PTR_TO_SOCKET;
10214 		return size == sizeof(__u64);
10215 
10216 	case offsetof(struct sk_reuseport_md, migrating_sk):
10217 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10218 		return size == sizeof(__u64);
10219 
10220 	/* Fields that allow narrowing */
10221 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10222 		if (size < sizeof_field(struct sk_buff, protocol))
10223 			return false;
10224 		fallthrough;
10225 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10226 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10227 	case bpf_ctx_range(struct sk_reuseport_md, len):
10228 		bpf_ctx_record_field_size(info, size_default);
10229 		return bpf_ctx_narrow_access_ok(off, size, size_default);
10230 
10231 	default:
10232 		return false;
10233 	}
10234 }
10235 
10236 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
10237 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10238 			      si->dst_reg, si->src_reg,			\
10239 			      bpf_target_off(struct sk_reuseport_kern, F, \
10240 					     sizeof_field(struct sk_reuseport_kern, F), \
10241 					     target_size));		\
10242 	})
10243 
10244 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
10245 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10246 				    struct sk_buff,			\
10247 				    skb,				\
10248 				    SKB_FIELD)
10249 
10250 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
10251 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10252 				    struct sock,			\
10253 				    sk,					\
10254 				    SK_FIELD)
10255 
10256 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10257 					   const struct bpf_insn *si,
10258 					   struct bpf_insn *insn_buf,
10259 					   struct bpf_prog *prog,
10260 					   u32 *target_size)
10261 {
10262 	struct bpf_insn *insn = insn_buf;
10263 
10264 	switch (si->off) {
10265 	case offsetof(struct sk_reuseport_md, data):
10266 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
10267 		break;
10268 
10269 	case offsetof(struct sk_reuseport_md, len):
10270 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
10271 		break;
10272 
10273 	case offsetof(struct sk_reuseport_md, eth_protocol):
10274 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10275 		break;
10276 
10277 	case offsetof(struct sk_reuseport_md, ip_protocol):
10278 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10279 		break;
10280 
10281 	case offsetof(struct sk_reuseport_md, data_end):
10282 		SK_REUSEPORT_LOAD_FIELD(data_end);
10283 		break;
10284 
10285 	case offsetof(struct sk_reuseport_md, hash):
10286 		SK_REUSEPORT_LOAD_FIELD(hash);
10287 		break;
10288 
10289 	case offsetof(struct sk_reuseport_md, bind_inany):
10290 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
10291 		break;
10292 
10293 	case offsetof(struct sk_reuseport_md, sk):
10294 		SK_REUSEPORT_LOAD_FIELD(sk);
10295 		break;
10296 
10297 	case offsetof(struct sk_reuseport_md, migrating_sk):
10298 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
10299 		break;
10300 	}
10301 
10302 	return insn - insn_buf;
10303 }
10304 
10305 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10306 	.get_func_proto		= sk_reuseport_func_proto,
10307 	.is_valid_access	= sk_reuseport_is_valid_access,
10308 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
10309 };
10310 
10311 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10312 };
10313 
10314 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10315 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10316 
10317 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10318 	   struct sock *, sk, u64, flags)
10319 {
10320 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10321 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10322 		return -EINVAL;
10323 	if (unlikely(sk && sk_is_refcounted(sk)))
10324 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10325 	if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10326 		return -ESOCKTNOSUPPORT; /* reject connected sockets */
10327 
10328 	/* Check if socket is suitable for packet L3/L4 protocol */
10329 	if (sk && sk->sk_protocol != ctx->protocol)
10330 		return -EPROTOTYPE;
10331 	if (sk && sk->sk_family != ctx->family &&
10332 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10333 		return -EAFNOSUPPORT;
10334 
10335 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10336 		return -EEXIST;
10337 
10338 	/* Select socket as lookup result */
10339 	ctx->selected_sk = sk;
10340 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10341 	return 0;
10342 }
10343 
10344 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10345 	.func		= bpf_sk_lookup_assign,
10346 	.gpl_only	= false,
10347 	.ret_type	= RET_INTEGER,
10348 	.arg1_type	= ARG_PTR_TO_CTX,
10349 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
10350 	.arg3_type	= ARG_ANYTHING,
10351 };
10352 
10353 static const struct bpf_func_proto *
10354 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10355 {
10356 	switch (func_id) {
10357 	case BPF_FUNC_perf_event_output:
10358 		return &bpf_event_output_data_proto;
10359 	case BPF_FUNC_sk_assign:
10360 		return &bpf_sk_lookup_assign_proto;
10361 	case BPF_FUNC_sk_release:
10362 		return &bpf_sk_release_proto;
10363 	default:
10364 		return bpf_sk_base_func_proto(func_id);
10365 	}
10366 }
10367 
10368 static bool sk_lookup_is_valid_access(int off, int size,
10369 				      enum bpf_access_type type,
10370 				      const struct bpf_prog *prog,
10371 				      struct bpf_insn_access_aux *info)
10372 {
10373 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10374 		return false;
10375 	if (off % size != 0)
10376 		return false;
10377 	if (type != BPF_READ)
10378 		return false;
10379 
10380 	switch (off) {
10381 	case offsetof(struct bpf_sk_lookup, sk):
10382 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
10383 		return size == sizeof(__u64);
10384 
10385 	case bpf_ctx_range(struct bpf_sk_lookup, family):
10386 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10387 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10388 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10389 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10390 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10391 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10392 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10393 		bpf_ctx_record_field_size(info, sizeof(__u32));
10394 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10395 
10396 	default:
10397 		return false;
10398 	}
10399 }
10400 
10401 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10402 					const struct bpf_insn *si,
10403 					struct bpf_insn *insn_buf,
10404 					struct bpf_prog *prog,
10405 					u32 *target_size)
10406 {
10407 	struct bpf_insn *insn = insn_buf;
10408 
10409 	switch (si->off) {
10410 	case offsetof(struct bpf_sk_lookup, sk):
10411 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10412 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
10413 		break;
10414 
10415 	case offsetof(struct bpf_sk_lookup, family):
10416 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10417 				      bpf_target_off(struct bpf_sk_lookup_kern,
10418 						     family, 2, target_size));
10419 		break;
10420 
10421 	case offsetof(struct bpf_sk_lookup, protocol):
10422 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10423 				      bpf_target_off(struct bpf_sk_lookup_kern,
10424 						     protocol, 2, target_size));
10425 		break;
10426 
10427 	case offsetof(struct bpf_sk_lookup, remote_ip4):
10428 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10429 				      bpf_target_off(struct bpf_sk_lookup_kern,
10430 						     v4.saddr, 4, target_size));
10431 		break;
10432 
10433 	case offsetof(struct bpf_sk_lookup, local_ip4):
10434 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10435 				      bpf_target_off(struct bpf_sk_lookup_kern,
10436 						     v4.daddr, 4, target_size));
10437 		break;
10438 
10439 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10440 				remote_ip6[0], remote_ip6[3]): {
10441 #if IS_ENABLED(CONFIG_IPV6)
10442 		int off = si->off;
10443 
10444 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10445 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10446 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10447 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10448 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10449 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10450 #else
10451 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10452 #endif
10453 		break;
10454 	}
10455 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10456 				local_ip6[0], local_ip6[3]): {
10457 #if IS_ENABLED(CONFIG_IPV6)
10458 		int off = si->off;
10459 
10460 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10461 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10462 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10463 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10464 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10465 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10466 #else
10467 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10468 #endif
10469 		break;
10470 	}
10471 	case offsetof(struct bpf_sk_lookup, remote_port):
10472 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10473 				      bpf_target_off(struct bpf_sk_lookup_kern,
10474 						     sport, 2, target_size));
10475 		break;
10476 
10477 	case offsetof(struct bpf_sk_lookup, local_port):
10478 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10479 				      bpf_target_off(struct bpf_sk_lookup_kern,
10480 						     dport, 2, target_size));
10481 		break;
10482 	}
10483 
10484 	return insn - insn_buf;
10485 }
10486 
10487 const struct bpf_prog_ops sk_lookup_prog_ops = {
10488 	.test_run = bpf_prog_test_run_sk_lookup,
10489 };
10490 
10491 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10492 	.get_func_proto		= sk_lookup_func_proto,
10493 	.is_valid_access	= sk_lookup_is_valid_access,
10494 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
10495 };
10496 
10497 #endif /* CONFIG_INET */
10498 
10499 DEFINE_BPF_DISPATCHER(xdp)
10500 
10501 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10502 {
10503 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10504 }
10505 
10506 #ifdef CONFIG_DEBUG_INFO_BTF
10507 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10508 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10509 BTF_SOCK_TYPE_xxx
10510 #undef BTF_SOCK_TYPE
10511 #else
10512 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10513 #endif
10514 
10515 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10516 {
10517 	/* tcp6_sock type is not generated in dwarf and hence btf,
10518 	 * trigger an explicit type generation here.
10519 	 */
10520 	BTF_TYPE_EMIT(struct tcp6_sock);
10521 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10522 	    sk->sk_family == AF_INET6)
10523 		return (unsigned long)sk;
10524 
10525 	return (unsigned long)NULL;
10526 }
10527 
10528 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10529 	.func			= bpf_skc_to_tcp6_sock,
10530 	.gpl_only		= false,
10531 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10532 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10533 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10534 };
10535 
10536 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10537 {
10538 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10539 		return (unsigned long)sk;
10540 
10541 	return (unsigned long)NULL;
10542 }
10543 
10544 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10545 	.func			= bpf_skc_to_tcp_sock,
10546 	.gpl_only		= false,
10547 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10548 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10549 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10550 };
10551 
10552 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10553 {
10554 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10555 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
10556 	 */
10557 	BTF_TYPE_EMIT(struct inet_timewait_sock);
10558 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
10559 
10560 #ifdef CONFIG_INET
10561 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10562 		return (unsigned long)sk;
10563 #endif
10564 
10565 #if IS_BUILTIN(CONFIG_IPV6)
10566 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10567 		return (unsigned long)sk;
10568 #endif
10569 
10570 	return (unsigned long)NULL;
10571 }
10572 
10573 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10574 	.func			= bpf_skc_to_tcp_timewait_sock,
10575 	.gpl_only		= false,
10576 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10577 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10578 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10579 };
10580 
10581 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10582 {
10583 #ifdef CONFIG_INET
10584 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10585 		return (unsigned long)sk;
10586 #endif
10587 
10588 #if IS_BUILTIN(CONFIG_IPV6)
10589 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10590 		return (unsigned long)sk;
10591 #endif
10592 
10593 	return (unsigned long)NULL;
10594 }
10595 
10596 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10597 	.func			= bpf_skc_to_tcp_request_sock,
10598 	.gpl_only		= false,
10599 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10600 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10601 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10602 };
10603 
10604 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10605 {
10606 	/* udp6_sock type is not generated in dwarf and hence btf,
10607 	 * trigger an explicit type generation here.
10608 	 */
10609 	BTF_TYPE_EMIT(struct udp6_sock);
10610 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10611 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10612 		return (unsigned long)sk;
10613 
10614 	return (unsigned long)NULL;
10615 }
10616 
10617 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10618 	.func			= bpf_skc_to_udp6_sock,
10619 	.gpl_only		= false,
10620 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10621 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10622 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10623 };
10624 
10625 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
10626 {
10627 	return (unsigned long)sock_from_file(file);
10628 }
10629 
10630 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
10631 BTF_ID(struct, socket)
10632 BTF_ID(struct, file)
10633 
10634 const struct bpf_func_proto bpf_sock_from_file_proto = {
10635 	.func		= bpf_sock_from_file,
10636 	.gpl_only	= false,
10637 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
10638 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
10639 	.arg1_type	= ARG_PTR_TO_BTF_ID,
10640 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
10641 };
10642 
10643 static const struct bpf_func_proto *
10644 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10645 {
10646 	const struct bpf_func_proto *func;
10647 
10648 	switch (func_id) {
10649 	case BPF_FUNC_skc_to_tcp6_sock:
10650 		func = &bpf_skc_to_tcp6_sock_proto;
10651 		break;
10652 	case BPF_FUNC_skc_to_tcp_sock:
10653 		func = &bpf_skc_to_tcp_sock_proto;
10654 		break;
10655 	case BPF_FUNC_skc_to_tcp_timewait_sock:
10656 		func = &bpf_skc_to_tcp_timewait_sock_proto;
10657 		break;
10658 	case BPF_FUNC_skc_to_tcp_request_sock:
10659 		func = &bpf_skc_to_tcp_request_sock_proto;
10660 		break;
10661 	case BPF_FUNC_skc_to_udp6_sock:
10662 		func = &bpf_skc_to_udp6_sock_proto;
10663 		break;
10664 	default:
10665 		return bpf_base_func_proto(func_id);
10666 	}
10667 
10668 	if (!perfmon_capable())
10669 		return NULL;
10670 
10671 	return func;
10672 }
10673