xref: /openbmc/linux/net/core/filter.c (revision a8da474e)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/in.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/if_packet.h>
33 #include <linux/gfp.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <asm/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <linux/filter.h>
45 #include <linux/ratelimit.h>
46 #include <linux/seccomp.h>
47 #include <linux/if_vlan.h>
48 #include <linux/bpf.h>
49 #include <net/sch_generic.h>
50 #include <net/cls_cgroup.h>
51 #include <net/dst_metadata.h>
52 #include <net/dst.h>
53 
54 /**
55  *	sk_filter - run a packet through a socket filter
56  *	@sk: sock associated with &sk_buff
57  *	@skb: buffer to filter
58  *
59  * Run the eBPF program and then cut skb->data to correct size returned by
60  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
61  * than pkt_len we keep whole skb->data. This is the socket level
62  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
63  * be accepted or -EPERM if the packet should be tossed.
64  *
65  */
66 int sk_filter(struct sock *sk, struct sk_buff *skb)
67 {
68 	int err;
69 	struct sk_filter *filter;
70 
71 	/*
72 	 * If the skb was allocated from pfmemalloc reserves, only
73 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
74 	 * helping free memory
75 	 */
76 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
77 		return -ENOMEM;
78 
79 	err = security_sock_rcv_skb(sk, skb);
80 	if (err)
81 		return err;
82 
83 	rcu_read_lock();
84 	filter = rcu_dereference(sk->sk_filter);
85 	if (filter) {
86 		unsigned int pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
87 
88 		err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
89 	}
90 	rcu_read_unlock();
91 
92 	return err;
93 }
94 EXPORT_SYMBOL(sk_filter);
95 
96 static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
97 {
98 	return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
99 }
100 
101 static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
102 {
103 	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
104 	struct nlattr *nla;
105 
106 	if (skb_is_nonlinear(skb))
107 		return 0;
108 
109 	if (skb->len < sizeof(struct nlattr))
110 		return 0;
111 
112 	if (a > skb->len - sizeof(struct nlattr))
113 		return 0;
114 
115 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
116 	if (nla)
117 		return (void *) nla - (void *) skb->data;
118 
119 	return 0;
120 }
121 
122 static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
123 {
124 	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
125 	struct nlattr *nla;
126 
127 	if (skb_is_nonlinear(skb))
128 		return 0;
129 
130 	if (skb->len < sizeof(struct nlattr))
131 		return 0;
132 
133 	if (a > skb->len - sizeof(struct nlattr))
134 		return 0;
135 
136 	nla = (struct nlattr *) &skb->data[a];
137 	if (nla->nla_len > skb->len - a)
138 		return 0;
139 
140 	nla = nla_find_nested(nla, x);
141 	if (nla)
142 		return (void *) nla - (void *) skb->data;
143 
144 	return 0;
145 }
146 
147 static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
148 {
149 	return raw_smp_processor_id();
150 }
151 
152 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
153 			      struct bpf_insn *insn_buf)
154 {
155 	struct bpf_insn *insn = insn_buf;
156 
157 	switch (skb_field) {
158 	case SKF_AD_MARK:
159 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
160 
161 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
162 				      offsetof(struct sk_buff, mark));
163 		break;
164 
165 	case SKF_AD_PKTTYPE:
166 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
167 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
168 #ifdef __BIG_ENDIAN_BITFIELD
169 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
170 #endif
171 		break;
172 
173 	case SKF_AD_QUEUE:
174 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
175 
176 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
177 				      offsetof(struct sk_buff, queue_mapping));
178 		break;
179 
180 	case SKF_AD_VLAN_TAG:
181 	case SKF_AD_VLAN_TAG_PRESENT:
182 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
183 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
184 
185 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
186 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
187 				      offsetof(struct sk_buff, vlan_tci));
188 		if (skb_field == SKF_AD_VLAN_TAG) {
189 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
190 						~VLAN_TAG_PRESENT);
191 		} else {
192 			/* dst_reg >>= 12 */
193 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
194 			/* dst_reg &= 1 */
195 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
196 		}
197 		break;
198 	}
199 
200 	return insn - insn_buf;
201 }
202 
203 static bool convert_bpf_extensions(struct sock_filter *fp,
204 				   struct bpf_insn **insnp)
205 {
206 	struct bpf_insn *insn = *insnp;
207 	u32 cnt;
208 
209 	switch (fp->k) {
210 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
211 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
212 
213 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
214 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
215 				      offsetof(struct sk_buff, protocol));
216 		/* A = ntohs(A) [emitting a nop or swap16] */
217 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
218 		break;
219 
220 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
221 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
222 		insn += cnt - 1;
223 		break;
224 
225 	case SKF_AD_OFF + SKF_AD_IFINDEX:
226 	case SKF_AD_OFF + SKF_AD_HATYPE:
227 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
228 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
229 		BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);
230 
231 		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
232 				      BPF_REG_TMP, BPF_REG_CTX,
233 				      offsetof(struct sk_buff, dev));
234 		/* if (tmp != 0) goto pc + 1 */
235 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
236 		*insn++ = BPF_EXIT_INSN();
237 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
238 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
239 					    offsetof(struct net_device, ifindex));
240 		else
241 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
242 					    offsetof(struct net_device, type));
243 		break;
244 
245 	case SKF_AD_OFF + SKF_AD_MARK:
246 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
247 		insn += cnt - 1;
248 		break;
249 
250 	case SKF_AD_OFF + SKF_AD_RXHASH:
251 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
252 
253 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
254 				    offsetof(struct sk_buff, hash));
255 		break;
256 
257 	case SKF_AD_OFF + SKF_AD_QUEUE:
258 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
259 		insn += cnt - 1;
260 		break;
261 
262 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
263 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
264 					 BPF_REG_A, BPF_REG_CTX, insn);
265 		insn += cnt - 1;
266 		break;
267 
268 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
269 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
270 					 BPF_REG_A, BPF_REG_CTX, insn);
271 		insn += cnt - 1;
272 		break;
273 
274 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
275 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
276 
277 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
278 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
279 				      offsetof(struct sk_buff, vlan_proto));
280 		/* A = ntohs(A) [emitting a nop or swap16] */
281 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
282 		break;
283 
284 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
285 	case SKF_AD_OFF + SKF_AD_NLATTR:
286 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
287 	case SKF_AD_OFF + SKF_AD_CPU:
288 	case SKF_AD_OFF + SKF_AD_RANDOM:
289 		/* arg1 = CTX */
290 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
291 		/* arg2 = A */
292 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
293 		/* arg3 = X */
294 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
295 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
296 		switch (fp->k) {
297 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
298 			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
299 			break;
300 		case SKF_AD_OFF + SKF_AD_NLATTR:
301 			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
302 			break;
303 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
304 			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
305 			break;
306 		case SKF_AD_OFF + SKF_AD_CPU:
307 			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
308 			break;
309 		case SKF_AD_OFF + SKF_AD_RANDOM:
310 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
311 			bpf_user_rnd_init_once();
312 			break;
313 		}
314 		break;
315 
316 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
317 		/* A ^= X */
318 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
319 		break;
320 
321 	default:
322 		/* This is just a dummy call to avoid letting the compiler
323 		 * evict __bpf_call_base() as an optimization. Placed here
324 		 * where no-one bothers.
325 		 */
326 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
327 		return false;
328 	}
329 
330 	*insnp = insn;
331 	return true;
332 }
333 
334 /**
335  *	bpf_convert_filter - convert filter program
336  *	@prog: the user passed filter program
337  *	@len: the length of the user passed filter program
338  *	@new_prog: buffer where converted program will be stored
339  *	@new_len: pointer to store length of converted program
340  *
341  * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
342  * Conversion workflow:
343  *
344  * 1) First pass for calculating the new program length:
345  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
346  *
347  * 2) 2nd pass to remap in two passes: 1st pass finds new
348  *    jump offsets, 2nd pass remapping:
349  *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
350  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
351  *
352  * User BPF's register A is mapped to our BPF register 6, user BPF
353  * register X is mapped to BPF register 7; frame pointer is always
354  * register 10; Context 'void *ctx' is stored in register 1, that is,
355  * for socket filters: ctx == 'struct sk_buff *', for seccomp:
356  * ctx == 'struct seccomp_data *'.
357  */
358 static int bpf_convert_filter(struct sock_filter *prog, int len,
359 			      struct bpf_insn *new_prog, int *new_len)
360 {
361 	int new_flen = 0, pass = 0, target, i;
362 	struct bpf_insn *new_insn;
363 	struct sock_filter *fp;
364 	int *addrs = NULL;
365 	u8 bpf_src;
366 
367 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
368 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
369 
370 	if (len <= 0 || len > BPF_MAXINSNS)
371 		return -EINVAL;
372 
373 	if (new_prog) {
374 		addrs = kcalloc(len, sizeof(*addrs),
375 				GFP_KERNEL | __GFP_NOWARN);
376 		if (!addrs)
377 			return -ENOMEM;
378 	}
379 
380 do_pass:
381 	new_insn = new_prog;
382 	fp = prog;
383 
384 	if (new_insn)
385 		*new_insn = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
386 	new_insn++;
387 
388 	for (i = 0; i < len; fp++, i++) {
389 		struct bpf_insn tmp_insns[6] = { };
390 		struct bpf_insn *insn = tmp_insns;
391 
392 		if (addrs)
393 			addrs[i] = new_insn - new_prog;
394 
395 		switch (fp->code) {
396 		/* All arithmetic insns and skb loads map as-is. */
397 		case BPF_ALU | BPF_ADD | BPF_X:
398 		case BPF_ALU | BPF_ADD | BPF_K:
399 		case BPF_ALU | BPF_SUB | BPF_X:
400 		case BPF_ALU | BPF_SUB | BPF_K:
401 		case BPF_ALU | BPF_AND | BPF_X:
402 		case BPF_ALU | BPF_AND | BPF_K:
403 		case BPF_ALU | BPF_OR | BPF_X:
404 		case BPF_ALU | BPF_OR | BPF_K:
405 		case BPF_ALU | BPF_LSH | BPF_X:
406 		case BPF_ALU | BPF_LSH | BPF_K:
407 		case BPF_ALU | BPF_RSH | BPF_X:
408 		case BPF_ALU | BPF_RSH | BPF_K:
409 		case BPF_ALU | BPF_XOR | BPF_X:
410 		case BPF_ALU | BPF_XOR | BPF_K:
411 		case BPF_ALU | BPF_MUL | BPF_X:
412 		case BPF_ALU | BPF_MUL | BPF_K:
413 		case BPF_ALU | BPF_DIV | BPF_X:
414 		case BPF_ALU | BPF_DIV | BPF_K:
415 		case BPF_ALU | BPF_MOD | BPF_X:
416 		case BPF_ALU | BPF_MOD | BPF_K:
417 		case BPF_ALU | BPF_NEG:
418 		case BPF_LD | BPF_ABS | BPF_W:
419 		case BPF_LD | BPF_ABS | BPF_H:
420 		case BPF_LD | BPF_ABS | BPF_B:
421 		case BPF_LD | BPF_IND | BPF_W:
422 		case BPF_LD | BPF_IND | BPF_H:
423 		case BPF_LD | BPF_IND | BPF_B:
424 			/* Check for overloaded BPF extension and
425 			 * directly convert it if found, otherwise
426 			 * just move on with mapping.
427 			 */
428 			if (BPF_CLASS(fp->code) == BPF_LD &&
429 			    BPF_MODE(fp->code) == BPF_ABS &&
430 			    convert_bpf_extensions(fp, &insn))
431 				break;
432 
433 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
434 			break;
435 
436 		/* Jump transformation cannot use BPF block macros
437 		 * everywhere as offset calculation and target updates
438 		 * require a bit more work than the rest, i.e. jump
439 		 * opcodes map as-is, but offsets need adjustment.
440 		 */
441 
442 #define BPF_EMIT_JMP							\
443 	do {								\
444 		if (target >= len || target < 0)			\
445 			goto err;					\
446 		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
447 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
448 		insn->off -= insn - tmp_insns;				\
449 	} while (0)
450 
451 		case BPF_JMP | BPF_JA:
452 			target = i + fp->k + 1;
453 			insn->code = fp->code;
454 			BPF_EMIT_JMP;
455 			break;
456 
457 		case BPF_JMP | BPF_JEQ | BPF_K:
458 		case BPF_JMP | BPF_JEQ | BPF_X:
459 		case BPF_JMP | BPF_JSET | BPF_K:
460 		case BPF_JMP | BPF_JSET | BPF_X:
461 		case BPF_JMP | BPF_JGT | BPF_K:
462 		case BPF_JMP | BPF_JGT | BPF_X:
463 		case BPF_JMP | BPF_JGE | BPF_K:
464 		case BPF_JMP | BPF_JGE | BPF_X:
465 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
466 				/* BPF immediates are signed, zero extend
467 				 * immediate into tmp register and use it
468 				 * in compare insn.
469 				 */
470 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
471 
472 				insn->dst_reg = BPF_REG_A;
473 				insn->src_reg = BPF_REG_TMP;
474 				bpf_src = BPF_X;
475 			} else {
476 				insn->dst_reg = BPF_REG_A;
477 				insn->imm = fp->k;
478 				bpf_src = BPF_SRC(fp->code);
479 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
480 			}
481 
482 			/* Common case where 'jump_false' is next insn. */
483 			if (fp->jf == 0) {
484 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
485 				target = i + fp->jt + 1;
486 				BPF_EMIT_JMP;
487 				break;
488 			}
489 
490 			/* Convert JEQ into JNE when 'jump_true' is next insn. */
491 			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
492 				insn->code = BPF_JMP | BPF_JNE | bpf_src;
493 				target = i + fp->jf + 1;
494 				BPF_EMIT_JMP;
495 				break;
496 			}
497 
498 			/* Other jumps are mapped into two insns: Jxx and JA. */
499 			target = i + fp->jt + 1;
500 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
501 			BPF_EMIT_JMP;
502 			insn++;
503 
504 			insn->code = BPF_JMP | BPF_JA;
505 			target = i + fp->jf + 1;
506 			BPF_EMIT_JMP;
507 			break;
508 
509 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
510 		case BPF_LDX | BPF_MSH | BPF_B:
511 			/* tmp = A */
512 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
513 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
514 			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
515 			/* A &= 0xf */
516 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
517 			/* A <<= 2 */
518 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
519 			/* X = A */
520 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
521 			/* A = tmp */
522 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
523 			break;
524 
525 		/* RET_K, RET_A are remaped into 2 insns. */
526 		case BPF_RET | BPF_A:
527 		case BPF_RET | BPF_K:
528 			*insn++ = BPF_MOV32_RAW(BPF_RVAL(fp->code) == BPF_K ?
529 						BPF_K : BPF_X, BPF_REG_0,
530 						BPF_REG_A, fp->k);
531 			*insn = BPF_EXIT_INSN();
532 			break;
533 
534 		/* Store to stack. */
535 		case BPF_ST:
536 		case BPF_STX:
537 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
538 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
539 					    -(BPF_MEMWORDS - fp->k) * 4);
540 			break;
541 
542 		/* Load from stack. */
543 		case BPF_LD | BPF_MEM:
544 		case BPF_LDX | BPF_MEM:
545 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
546 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
547 					    -(BPF_MEMWORDS - fp->k) * 4);
548 			break;
549 
550 		/* A = K or X = K */
551 		case BPF_LD | BPF_IMM:
552 		case BPF_LDX | BPF_IMM:
553 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
554 					      BPF_REG_A : BPF_REG_X, fp->k);
555 			break;
556 
557 		/* X = A */
558 		case BPF_MISC | BPF_TAX:
559 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
560 			break;
561 
562 		/* A = X */
563 		case BPF_MISC | BPF_TXA:
564 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
565 			break;
566 
567 		/* A = skb->len or X = skb->len */
568 		case BPF_LD | BPF_W | BPF_LEN:
569 		case BPF_LDX | BPF_W | BPF_LEN:
570 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
571 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
572 					    offsetof(struct sk_buff, len));
573 			break;
574 
575 		/* Access seccomp_data fields. */
576 		case BPF_LDX | BPF_ABS | BPF_W:
577 			/* A = *(u32 *) (ctx + K) */
578 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
579 			break;
580 
581 		/* Unknown instruction. */
582 		default:
583 			goto err;
584 		}
585 
586 		insn++;
587 		if (new_prog)
588 			memcpy(new_insn, tmp_insns,
589 			       sizeof(*insn) * (insn - tmp_insns));
590 		new_insn += insn - tmp_insns;
591 	}
592 
593 	if (!new_prog) {
594 		/* Only calculating new length. */
595 		*new_len = new_insn - new_prog;
596 		return 0;
597 	}
598 
599 	pass++;
600 	if (new_flen != new_insn - new_prog) {
601 		new_flen = new_insn - new_prog;
602 		if (pass > 2)
603 			goto err;
604 		goto do_pass;
605 	}
606 
607 	kfree(addrs);
608 	BUG_ON(*new_len != new_flen);
609 	return 0;
610 err:
611 	kfree(addrs);
612 	return -EINVAL;
613 }
614 
615 /* Security:
616  *
617  * As we dont want to clear mem[] array for each packet going through
618  * __bpf_prog_run(), we check that filter loaded by user never try to read
619  * a cell if not previously written, and we check all branches to be sure
620  * a malicious user doesn't try to abuse us.
621  */
622 static int check_load_and_stores(const struct sock_filter *filter, int flen)
623 {
624 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
625 	int pc, ret = 0;
626 
627 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
628 
629 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
630 	if (!masks)
631 		return -ENOMEM;
632 
633 	memset(masks, 0xff, flen * sizeof(*masks));
634 
635 	for (pc = 0; pc < flen; pc++) {
636 		memvalid &= masks[pc];
637 
638 		switch (filter[pc].code) {
639 		case BPF_ST:
640 		case BPF_STX:
641 			memvalid |= (1 << filter[pc].k);
642 			break;
643 		case BPF_LD | BPF_MEM:
644 		case BPF_LDX | BPF_MEM:
645 			if (!(memvalid & (1 << filter[pc].k))) {
646 				ret = -EINVAL;
647 				goto error;
648 			}
649 			break;
650 		case BPF_JMP | BPF_JA:
651 			/* A jump must set masks on target */
652 			masks[pc + 1 + filter[pc].k] &= memvalid;
653 			memvalid = ~0;
654 			break;
655 		case BPF_JMP | BPF_JEQ | BPF_K:
656 		case BPF_JMP | BPF_JEQ | BPF_X:
657 		case BPF_JMP | BPF_JGE | BPF_K:
658 		case BPF_JMP | BPF_JGE | BPF_X:
659 		case BPF_JMP | BPF_JGT | BPF_K:
660 		case BPF_JMP | BPF_JGT | BPF_X:
661 		case BPF_JMP | BPF_JSET | BPF_K:
662 		case BPF_JMP | BPF_JSET | BPF_X:
663 			/* A jump must set masks on targets */
664 			masks[pc + 1 + filter[pc].jt] &= memvalid;
665 			masks[pc + 1 + filter[pc].jf] &= memvalid;
666 			memvalid = ~0;
667 			break;
668 		}
669 	}
670 error:
671 	kfree(masks);
672 	return ret;
673 }
674 
675 static bool chk_code_allowed(u16 code_to_probe)
676 {
677 	static const bool codes[] = {
678 		/* 32 bit ALU operations */
679 		[BPF_ALU | BPF_ADD | BPF_K] = true,
680 		[BPF_ALU | BPF_ADD | BPF_X] = true,
681 		[BPF_ALU | BPF_SUB | BPF_K] = true,
682 		[BPF_ALU | BPF_SUB | BPF_X] = true,
683 		[BPF_ALU | BPF_MUL | BPF_K] = true,
684 		[BPF_ALU | BPF_MUL | BPF_X] = true,
685 		[BPF_ALU | BPF_DIV | BPF_K] = true,
686 		[BPF_ALU | BPF_DIV | BPF_X] = true,
687 		[BPF_ALU | BPF_MOD | BPF_K] = true,
688 		[BPF_ALU | BPF_MOD | BPF_X] = true,
689 		[BPF_ALU | BPF_AND | BPF_K] = true,
690 		[BPF_ALU | BPF_AND | BPF_X] = true,
691 		[BPF_ALU | BPF_OR | BPF_K] = true,
692 		[BPF_ALU | BPF_OR | BPF_X] = true,
693 		[BPF_ALU | BPF_XOR | BPF_K] = true,
694 		[BPF_ALU | BPF_XOR | BPF_X] = true,
695 		[BPF_ALU | BPF_LSH | BPF_K] = true,
696 		[BPF_ALU | BPF_LSH | BPF_X] = true,
697 		[BPF_ALU | BPF_RSH | BPF_K] = true,
698 		[BPF_ALU | BPF_RSH | BPF_X] = true,
699 		[BPF_ALU | BPF_NEG] = true,
700 		/* Load instructions */
701 		[BPF_LD | BPF_W | BPF_ABS] = true,
702 		[BPF_LD | BPF_H | BPF_ABS] = true,
703 		[BPF_LD | BPF_B | BPF_ABS] = true,
704 		[BPF_LD | BPF_W | BPF_LEN] = true,
705 		[BPF_LD | BPF_W | BPF_IND] = true,
706 		[BPF_LD | BPF_H | BPF_IND] = true,
707 		[BPF_LD | BPF_B | BPF_IND] = true,
708 		[BPF_LD | BPF_IMM] = true,
709 		[BPF_LD | BPF_MEM] = true,
710 		[BPF_LDX | BPF_W | BPF_LEN] = true,
711 		[BPF_LDX | BPF_B | BPF_MSH] = true,
712 		[BPF_LDX | BPF_IMM] = true,
713 		[BPF_LDX | BPF_MEM] = true,
714 		/* Store instructions */
715 		[BPF_ST] = true,
716 		[BPF_STX] = true,
717 		/* Misc instructions */
718 		[BPF_MISC | BPF_TAX] = true,
719 		[BPF_MISC | BPF_TXA] = true,
720 		/* Return instructions */
721 		[BPF_RET | BPF_K] = true,
722 		[BPF_RET | BPF_A] = true,
723 		/* Jump instructions */
724 		[BPF_JMP | BPF_JA] = true,
725 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
726 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
727 		[BPF_JMP | BPF_JGE | BPF_K] = true,
728 		[BPF_JMP | BPF_JGE | BPF_X] = true,
729 		[BPF_JMP | BPF_JGT | BPF_K] = true,
730 		[BPF_JMP | BPF_JGT | BPF_X] = true,
731 		[BPF_JMP | BPF_JSET | BPF_K] = true,
732 		[BPF_JMP | BPF_JSET | BPF_X] = true,
733 	};
734 
735 	if (code_to_probe >= ARRAY_SIZE(codes))
736 		return false;
737 
738 	return codes[code_to_probe];
739 }
740 
741 /**
742  *	bpf_check_classic - verify socket filter code
743  *	@filter: filter to verify
744  *	@flen: length of filter
745  *
746  * Check the user's filter code. If we let some ugly
747  * filter code slip through kaboom! The filter must contain
748  * no references or jumps that are out of range, no illegal
749  * instructions, and must end with a RET instruction.
750  *
751  * All jumps are forward as they are not signed.
752  *
753  * Returns 0 if the rule set is legal or -EINVAL if not.
754  */
755 static int bpf_check_classic(const struct sock_filter *filter,
756 			     unsigned int flen)
757 {
758 	bool anc_found;
759 	int pc;
760 
761 	if (flen == 0 || flen > BPF_MAXINSNS)
762 		return -EINVAL;
763 
764 	/* Check the filter code now */
765 	for (pc = 0; pc < flen; pc++) {
766 		const struct sock_filter *ftest = &filter[pc];
767 
768 		/* May we actually operate on this code? */
769 		if (!chk_code_allowed(ftest->code))
770 			return -EINVAL;
771 
772 		/* Some instructions need special checks */
773 		switch (ftest->code) {
774 		case BPF_ALU | BPF_DIV | BPF_K:
775 		case BPF_ALU | BPF_MOD | BPF_K:
776 			/* Check for division by zero */
777 			if (ftest->k == 0)
778 				return -EINVAL;
779 			break;
780 		case BPF_LD | BPF_MEM:
781 		case BPF_LDX | BPF_MEM:
782 		case BPF_ST:
783 		case BPF_STX:
784 			/* Check for invalid memory addresses */
785 			if (ftest->k >= BPF_MEMWORDS)
786 				return -EINVAL;
787 			break;
788 		case BPF_JMP | BPF_JA:
789 			/* Note, the large ftest->k might cause loops.
790 			 * Compare this with conditional jumps below,
791 			 * where offsets are limited. --ANK (981016)
792 			 */
793 			if (ftest->k >= (unsigned int)(flen - pc - 1))
794 				return -EINVAL;
795 			break;
796 		case BPF_JMP | BPF_JEQ | BPF_K:
797 		case BPF_JMP | BPF_JEQ | BPF_X:
798 		case BPF_JMP | BPF_JGE | BPF_K:
799 		case BPF_JMP | BPF_JGE | BPF_X:
800 		case BPF_JMP | BPF_JGT | BPF_K:
801 		case BPF_JMP | BPF_JGT | BPF_X:
802 		case BPF_JMP | BPF_JSET | BPF_K:
803 		case BPF_JMP | BPF_JSET | BPF_X:
804 			/* Both conditionals must be safe */
805 			if (pc + ftest->jt + 1 >= flen ||
806 			    pc + ftest->jf + 1 >= flen)
807 				return -EINVAL;
808 			break;
809 		case BPF_LD | BPF_W | BPF_ABS:
810 		case BPF_LD | BPF_H | BPF_ABS:
811 		case BPF_LD | BPF_B | BPF_ABS:
812 			anc_found = false;
813 			if (bpf_anc_helper(ftest) & BPF_ANC)
814 				anc_found = true;
815 			/* Ancillary operation unknown or unsupported */
816 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
817 				return -EINVAL;
818 		}
819 	}
820 
821 	/* Last instruction must be a RET code */
822 	switch (filter[flen - 1].code) {
823 	case BPF_RET | BPF_K:
824 	case BPF_RET | BPF_A:
825 		return check_load_and_stores(filter, flen);
826 	}
827 
828 	return -EINVAL;
829 }
830 
831 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
832 				      const struct sock_fprog *fprog)
833 {
834 	unsigned int fsize = bpf_classic_proglen(fprog);
835 	struct sock_fprog_kern *fkprog;
836 
837 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
838 	if (!fp->orig_prog)
839 		return -ENOMEM;
840 
841 	fkprog = fp->orig_prog;
842 	fkprog->len = fprog->len;
843 
844 	fkprog->filter = kmemdup(fp->insns, fsize,
845 				 GFP_KERNEL | __GFP_NOWARN);
846 	if (!fkprog->filter) {
847 		kfree(fp->orig_prog);
848 		return -ENOMEM;
849 	}
850 
851 	return 0;
852 }
853 
854 static void bpf_release_orig_filter(struct bpf_prog *fp)
855 {
856 	struct sock_fprog_kern *fprog = fp->orig_prog;
857 
858 	if (fprog) {
859 		kfree(fprog->filter);
860 		kfree(fprog);
861 	}
862 }
863 
864 static void __bpf_prog_release(struct bpf_prog *prog)
865 {
866 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
867 		bpf_prog_put(prog);
868 	} else {
869 		bpf_release_orig_filter(prog);
870 		bpf_prog_free(prog);
871 	}
872 }
873 
874 static void __sk_filter_release(struct sk_filter *fp)
875 {
876 	__bpf_prog_release(fp->prog);
877 	kfree(fp);
878 }
879 
880 /**
881  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
882  *	@rcu: rcu_head that contains the sk_filter to free
883  */
884 static void sk_filter_release_rcu(struct rcu_head *rcu)
885 {
886 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
887 
888 	__sk_filter_release(fp);
889 }
890 
891 /**
892  *	sk_filter_release - release a socket filter
893  *	@fp: filter to remove
894  *
895  *	Remove a filter from a socket and release its resources.
896  */
897 static void sk_filter_release(struct sk_filter *fp)
898 {
899 	if (atomic_dec_and_test(&fp->refcnt))
900 		call_rcu(&fp->rcu, sk_filter_release_rcu);
901 }
902 
903 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
904 {
905 	u32 filter_size = bpf_prog_size(fp->prog->len);
906 
907 	atomic_sub(filter_size, &sk->sk_omem_alloc);
908 	sk_filter_release(fp);
909 }
910 
911 /* try to charge the socket memory if there is space available
912  * return true on success
913  */
914 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
915 {
916 	u32 filter_size = bpf_prog_size(fp->prog->len);
917 
918 	/* same check as in sock_kmalloc() */
919 	if (filter_size <= sysctl_optmem_max &&
920 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
921 		atomic_inc(&fp->refcnt);
922 		atomic_add(filter_size, &sk->sk_omem_alloc);
923 		return true;
924 	}
925 	return false;
926 }
927 
928 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
929 {
930 	struct sock_filter *old_prog;
931 	struct bpf_prog *old_fp;
932 	int err, new_len, old_len = fp->len;
933 
934 	/* We are free to overwrite insns et al right here as it
935 	 * won't be used at this point in time anymore internally
936 	 * after the migration to the internal BPF instruction
937 	 * representation.
938 	 */
939 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
940 		     sizeof(struct bpf_insn));
941 
942 	/* Conversion cannot happen on overlapping memory areas,
943 	 * so we need to keep the user BPF around until the 2nd
944 	 * pass. At this time, the user BPF is stored in fp->insns.
945 	 */
946 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
947 			   GFP_KERNEL | __GFP_NOWARN);
948 	if (!old_prog) {
949 		err = -ENOMEM;
950 		goto out_err;
951 	}
952 
953 	/* 1st pass: calculate the new program length. */
954 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
955 	if (err)
956 		goto out_err_free;
957 
958 	/* Expand fp for appending the new filter representation. */
959 	old_fp = fp;
960 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
961 	if (!fp) {
962 		/* The old_fp is still around in case we couldn't
963 		 * allocate new memory, so uncharge on that one.
964 		 */
965 		fp = old_fp;
966 		err = -ENOMEM;
967 		goto out_err_free;
968 	}
969 
970 	fp->len = new_len;
971 
972 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
973 	err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
974 	if (err)
975 		/* 2nd bpf_convert_filter() can fail only if it fails
976 		 * to allocate memory, remapping must succeed. Note,
977 		 * that at this time old_fp has already been released
978 		 * by krealloc().
979 		 */
980 		goto out_err_free;
981 
982 	bpf_prog_select_runtime(fp);
983 
984 	kfree(old_prog);
985 	return fp;
986 
987 out_err_free:
988 	kfree(old_prog);
989 out_err:
990 	__bpf_prog_release(fp);
991 	return ERR_PTR(err);
992 }
993 
994 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
995 					   bpf_aux_classic_check_t trans)
996 {
997 	int err;
998 
999 	fp->bpf_func = NULL;
1000 	fp->jited = 0;
1001 
1002 	err = bpf_check_classic(fp->insns, fp->len);
1003 	if (err) {
1004 		__bpf_prog_release(fp);
1005 		return ERR_PTR(err);
1006 	}
1007 
1008 	/* There might be additional checks and transformations
1009 	 * needed on classic filters, f.e. in case of seccomp.
1010 	 */
1011 	if (trans) {
1012 		err = trans(fp->insns, fp->len);
1013 		if (err) {
1014 			__bpf_prog_release(fp);
1015 			return ERR_PTR(err);
1016 		}
1017 	}
1018 
1019 	/* Probe if we can JIT compile the filter and if so, do
1020 	 * the compilation of the filter.
1021 	 */
1022 	bpf_jit_compile(fp);
1023 
1024 	/* JIT compiler couldn't process this filter, so do the
1025 	 * internal BPF translation for the optimized interpreter.
1026 	 */
1027 	if (!fp->jited)
1028 		fp = bpf_migrate_filter(fp);
1029 
1030 	return fp;
1031 }
1032 
1033 /**
1034  *	bpf_prog_create - create an unattached filter
1035  *	@pfp: the unattached filter that is created
1036  *	@fprog: the filter program
1037  *
1038  * Create a filter independent of any socket. We first run some
1039  * sanity checks on it to make sure it does not explode on us later.
1040  * If an error occurs or there is insufficient memory for the filter
1041  * a negative errno code is returned. On success the return is zero.
1042  */
1043 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1044 {
1045 	unsigned int fsize = bpf_classic_proglen(fprog);
1046 	struct bpf_prog *fp;
1047 
1048 	/* Make sure new filter is there and in the right amounts. */
1049 	if (fprog->filter == NULL)
1050 		return -EINVAL;
1051 
1052 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1053 	if (!fp)
1054 		return -ENOMEM;
1055 
1056 	memcpy(fp->insns, fprog->filter, fsize);
1057 
1058 	fp->len = fprog->len;
1059 	/* Since unattached filters are not copied back to user
1060 	 * space through sk_get_filter(), we do not need to hold
1061 	 * a copy here, and can spare us the work.
1062 	 */
1063 	fp->orig_prog = NULL;
1064 
1065 	/* bpf_prepare_filter() already takes care of freeing
1066 	 * memory in case something goes wrong.
1067 	 */
1068 	fp = bpf_prepare_filter(fp, NULL);
1069 	if (IS_ERR(fp))
1070 		return PTR_ERR(fp);
1071 
1072 	*pfp = fp;
1073 	return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(bpf_prog_create);
1076 
1077 /**
1078  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1079  *	@pfp: the unattached filter that is created
1080  *	@fprog: the filter program
1081  *	@trans: post-classic verifier transformation handler
1082  *	@save_orig: save classic BPF program
1083  *
1084  * This function effectively does the same as bpf_prog_create(), only
1085  * that it builds up its insns buffer from user space provided buffer.
1086  * It also allows for passing a bpf_aux_classic_check_t handler.
1087  */
1088 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1089 			      bpf_aux_classic_check_t trans, bool save_orig)
1090 {
1091 	unsigned int fsize = bpf_classic_proglen(fprog);
1092 	struct bpf_prog *fp;
1093 	int err;
1094 
1095 	/* Make sure new filter is there and in the right amounts. */
1096 	if (fprog->filter == NULL)
1097 		return -EINVAL;
1098 
1099 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1100 	if (!fp)
1101 		return -ENOMEM;
1102 
1103 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1104 		__bpf_prog_free(fp);
1105 		return -EFAULT;
1106 	}
1107 
1108 	fp->len = fprog->len;
1109 	fp->orig_prog = NULL;
1110 
1111 	if (save_orig) {
1112 		err = bpf_prog_store_orig_filter(fp, fprog);
1113 		if (err) {
1114 			__bpf_prog_free(fp);
1115 			return -ENOMEM;
1116 		}
1117 	}
1118 
1119 	/* bpf_prepare_filter() already takes care of freeing
1120 	 * memory in case something goes wrong.
1121 	 */
1122 	fp = bpf_prepare_filter(fp, trans);
1123 	if (IS_ERR(fp))
1124 		return PTR_ERR(fp);
1125 
1126 	*pfp = fp;
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1130 
1131 void bpf_prog_destroy(struct bpf_prog *fp)
1132 {
1133 	__bpf_prog_release(fp);
1134 }
1135 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1136 
1137 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1138 {
1139 	struct sk_filter *fp, *old_fp;
1140 
1141 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1142 	if (!fp)
1143 		return -ENOMEM;
1144 
1145 	fp->prog = prog;
1146 	atomic_set(&fp->refcnt, 0);
1147 
1148 	if (!sk_filter_charge(sk, fp)) {
1149 		kfree(fp);
1150 		return -ENOMEM;
1151 	}
1152 
1153 	old_fp = rcu_dereference_protected(sk->sk_filter,
1154 					   sock_owned_by_user(sk));
1155 	rcu_assign_pointer(sk->sk_filter, fp);
1156 
1157 	if (old_fp)
1158 		sk_filter_uncharge(sk, old_fp);
1159 
1160 	return 0;
1161 }
1162 
1163 /**
1164  *	sk_attach_filter - attach a socket filter
1165  *	@fprog: the filter program
1166  *	@sk: the socket to use
1167  *
1168  * Attach the user's filter code. We first run some sanity checks on
1169  * it to make sure it does not explode on us later. If an error
1170  * occurs or there is insufficient memory for the filter a negative
1171  * errno code is returned. On success the return is zero.
1172  */
1173 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1174 {
1175 	unsigned int fsize = bpf_classic_proglen(fprog);
1176 	unsigned int bpf_fsize = bpf_prog_size(fprog->len);
1177 	struct bpf_prog *prog;
1178 	int err;
1179 
1180 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1181 		return -EPERM;
1182 
1183 	/* Make sure new filter is there and in the right amounts. */
1184 	if (fprog->filter == NULL)
1185 		return -EINVAL;
1186 
1187 	prog = bpf_prog_alloc(bpf_fsize, 0);
1188 	if (!prog)
1189 		return -ENOMEM;
1190 
1191 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1192 		__bpf_prog_free(prog);
1193 		return -EFAULT;
1194 	}
1195 
1196 	prog->len = fprog->len;
1197 
1198 	err = bpf_prog_store_orig_filter(prog, fprog);
1199 	if (err) {
1200 		__bpf_prog_free(prog);
1201 		return -ENOMEM;
1202 	}
1203 
1204 	/* bpf_prepare_filter() already takes care of freeing
1205 	 * memory in case something goes wrong.
1206 	 */
1207 	prog = bpf_prepare_filter(prog, NULL);
1208 	if (IS_ERR(prog))
1209 		return PTR_ERR(prog);
1210 
1211 	err = __sk_attach_prog(prog, sk);
1212 	if (err < 0) {
1213 		__bpf_prog_release(prog);
1214 		return err;
1215 	}
1216 
1217 	return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(sk_attach_filter);
1220 
1221 int sk_attach_bpf(u32 ufd, struct sock *sk)
1222 {
1223 	struct bpf_prog *prog;
1224 	int err;
1225 
1226 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1227 		return -EPERM;
1228 
1229 	prog = bpf_prog_get(ufd);
1230 	if (IS_ERR(prog))
1231 		return PTR_ERR(prog);
1232 
1233 	if (prog->type != BPF_PROG_TYPE_SOCKET_FILTER) {
1234 		bpf_prog_put(prog);
1235 		return -EINVAL;
1236 	}
1237 
1238 	err = __sk_attach_prog(prog, sk);
1239 	if (err < 0) {
1240 		bpf_prog_put(prog);
1241 		return err;
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 #define BPF_RECOMPUTE_CSUM(flags)	((flags) & 1)
1248 
1249 static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
1250 {
1251 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1252 	int offset = (int) r2;
1253 	void *from = (void *) (long) r3;
1254 	unsigned int len = (unsigned int) r4;
1255 	char buf[16];
1256 	void *ptr;
1257 
1258 	/* bpf verifier guarantees that:
1259 	 * 'from' pointer points to bpf program stack
1260 	 * 'len' bytes of it were initialized
1261 	 * 'len' > 0
1262 	 * 'skb' is a valid pointer to 'struct sk_buff'
1263 	 *
1264 	 * so check for invalid 'offset' and too large 'len'
1265 	 */
1266 	if (unlikely((u32) offset > 0xffff || len > sizeof(buf)))
1267 		return -EFAULT;
1268 
1269 	if (unlikely(skb_cloned(skb) &&
1270 		     !skb_clone_writable(skb, offset + len)))
1271 		return -EFAULT;
1272 
1273 	ptr = skb_header_pointer(skb, offset, len, buf);
1274 	if (unlikely(!ptr))
1275 		return -EFAULT;
1276 
1277 	if (BPF_RECOMPUTE_CSUM(flags))
1278 		skb_postpull_rcsum(skb, ptr, len);
1279 
1280 	memcpy(ptr, from, len);
1281 
1282 	if (ptr == buf)
1283 		/* skb_store_bits cannot return -EFAULT here */
1284 		skb_store_bits(skb, offset, ptr, len);
1285 
1286 	if (BPF_RECOMPUTE_CSUM(flags) && skb->ip_summed == CHECKSUM_COMPLETE)
1287 		skb->csum = csum_add(skb->csum, csum_partial(ptr, len, 0));
1288 	return 0;
1289 }
1290 
1291 const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1292 	.func		= bpf_skb_store_bytes,
1293 	.gpl_only	= false,
1294 	.ret_type	= RET_INTEGER,
1295 	.arg1_type	= ARG_PTR_TO_CTX,
1296 	.arg2_type	= ARG_ANYTHING,
1297 	.arg3_type	= ARG_PTR_TO_STACK,
1298 	.arg4_type	= ARG_CONST_STACK_SIZE,
1299 	.arg5_type	= ARG_ANYTHING,
1300 };
1301 
1302 #define BPF_HEADER_FIELD_SIZE(flags)	((flags) & 0x0f)
1303 #define BPF_IS_PSEUDO_HEADER(flags)	((flags) & 0x10)
1304 
1305 static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1306 {
1307 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1308 	int offset = (int) r2;
1309 	__sum16 sum, *ptr;
1310 
1311 	if (unlikely((u32) offset > 0xffff))
1312 		return -EFAULT;
1313 
1314 	if (unlikely(skb_cloned(skb) &&
1315 		     !skb_clone_writable(skb, offset + sizeof(sum))))
1316 		return -EFAULT;
1317 
1318 	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1319 	if (unlikely(!ptr))
1320 		return -EFAULT;
1321 
1322 	switch (BPF_HEADER_FIELD_SIZE(flags)) {
1323 	case 2:
1324 		csum_replace2(ptr, from, to);
1325 		break;
1326 	case 4:
1327 		csum_replace4(ptr, from, to);
1328 		break;
1329 	default:
1330 		return -EINVAL;
1331 	}
1332 
1333 	if (ptr == &sum)
1334 		/* skb_store_bits guaranteed to not return -EFAULT here */
1335 		skb_store_bits(skb, offset, ptr, sizeof(sum));
1336 
1337 	return 0;
1338 }
1339 
1340 const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1341 	.func		= bpf_l3_csum_replace,
1342 	.gpl_only	= false,
1343 	.ret_type	= RET_INTEGER,
1344 	.arg1_type	= ARG_PTR_TO_CTX,
1345 	.arg2_type	= ARG_ANYTHING,
1346 	.arg3_type	= ARG_ANYTHING,
1347 	.arg4_type	= ARG_ANYTHING,
1348 	.arg5_type	= ARG_ANYTHING,
1349 };
1350 
1351 static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1352 {
1353 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1354 	bool is_pseudo = !!BPF_IS_PSEUDO_HEADER(flags);
1355 	int offset = (int) r2;
1356 	__sum16 sum, *ptr;
1357 
1358 	if (unlikely((u32) offset > 0xffff))
1359 		return -EFAULT;
1360 
1361 	if (unlikely(skb_cloned(skb) &&
1362 		     !skb_clone_writable(skb, offset + sizeof(sum))))
1363 		return -EFAULT;
1364 
1365 	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1366 	if (unlikely(!ptr))
1367 		return -EFAULT;
1368 
1369 	switch (BPF_HEADER_FIELD_SIZE(flags)) {
1370 	case 2:
1371 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1372 		break;
1373 	case 4:
1374 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1375 		break;
1376 	default:
1377 		return -EINVAL;
1378 	}
1379 
1380 	if (ptr == &sum)
1381 		/* skb_store_bits guaranteed to not return -EFAULT here */
1382 		skb_store_bits(skb, offset, ptr, sizeof(sum));
1383 
1384 	return 0;
1385 }
1386 
1387 const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1388 	.func		= bpf_l4_csum_replace,
1389 	.gpl_only	= false,
1390 	.ret_type	= RET_INTEGER,
1391 	.arg1_type	= ARG_PTR_TO_CTX,
1392 	.arg2_type	= ARG_ANYTHING,
1393 	.arg3_type	= ARG_ANYTHING,
1394 	.arg4_type	= ARG_ANYTHING,
1395 	.arg5_type	= ARG_ANYTHING,
1396 };
1397 
1398 #define BPF_IS_REDIRECT_INGRESS(flags)	((flags) & 1)
1399 
1400 static u64 bpf_clone_redirect(u64 r1, u64 ifindex, u64 flags, u64 r4, u64 r5)
1401 {
1402 	struct sk_buff *skb = (struct sk_buff *) (long) r1, *skb2;
1403 	struct net_device *dev;
1404 
1405 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1406 	if (unlikely(!dev))
1407 		return -EINVAL;
1408 
1409 	skb2 = skb_clone(skb, GFP_ATOMIC);
1410 	if (unlikely(!skb2))
1411 		return -ENOMEM;
1412 
1413 	if (BPF_IS_REDIRECT_INGRESS(flags))
1414 		return dev_forward_skb(dev, skb2);
1415 
1416 	skb2->dev = dev;
1417 	skb_sender_cpu_clear(skb2);
1418 	return dev_queue_xmit(skb2);
1419 }
1420 
1421 const struct bpf_func_proto bpf_clone_redirect_proto = {
1422 	.func           = bpf_clone_redirect,
1423 	.gpl_only       = false,
1424 	.ret_type       = RET_INTEGER,
1425 	.arg1_type      = ARG_PTR_TO_CTX,
1426 	.arg2_type      = ARG_ANYTHING,
1427 	.arg3_type      = ARG_ANYTHING,
1428 };
1429 
1430 struct redirect_info {
1431 	u32 ifindex;
1432 	u32 flags;
1433 };
1434 
1435 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1436 static u64 bpf_redirect(u64 ifindex, u64 flags, u64 r3, u64 r4, u64 r5)
1437 {
1438 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1439 
1440 	ri->ifindex = ifindex;
1441 	ri->flags = flags;
1442 	return TC_ACT_REDIRECT;
1443 }
1444 
1445 int skb_do_redirect(struct sk_buff *skb)
1446 {
1447 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1448 	struct net_device *dev;
1449 
1450 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1451 	ri->ifindex = 0;
1452 	if (unlikely(!dev)) {
1453 		kfree_skb(skb);
1454 		return -EINVAL;
1455 	}
1456 
1457 	if (BPF_IS_REDIRECT_INGRESS(ri->flags))
1458 		return dev_forward_skb(dev, skb);
1459 
1460 	skb->dev = dev;
1461 	skb_sender_cpu_clear(skb);
1462 	return dev_queue_xmit(skb);
1463 }
1464 
1465 const struct bpf_func_proto bpf_redirect_proto = {
1466 	.func           = bpf_redirect,
1467 	.gpl_only       = false,
1468 	.ret_type       = RET_INTEGER,
1469 	.arg1_type      = ARG_ANYTHING,
1470 	.arg2_type      = ARG_ANYTHING,
1471 };
1472 
1473 static u64 bpf_get_cgroup_classid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1474 {
1475 	return task_get_classid((struct sk_buff *) (unsigned long) r1);
1476 }
1477 
1478 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1479 	.func           = bpf_get_cgroup_classid,
1480 	.gpl_only       = false,
1481 	.ret_type       = RET_INTEGER,
1482 	.arg1_type      = ARG_PTR_TO_CTX,
1483 };
1484 
1485 static u64 bpf_get_route_realm(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1486 {
1487 #ifdef CONFIG_IP_ROUTE_CLASSID
1488 	const struct dst_entry *dst;
1489 
1490 	dst = skb_dst((struct sk_buff *) (unsigned long) r1);
1491 	if (dst)
1492 		return dst->tclassid;
1493 #endif
1494 	return 0;
1495 }
1496 
1497 static const struct bpf_func_proto bpf_get_route_realm_proto = {
1498 	.func           = bpf_get_route_realm,
1499 	.gpl_only       = false,
1500 	.ret_type       = RET_INTEGER,
1501 	.arg1_type      = ARG_PTR_TO_CTX,
1502 };
1503 
1504 static u64 bpf_skb_vlan_push(u64 r1, u64 r2, u64 vlan_tci, u64 r4, u64 r5)
1505 {
1506 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1507 	__be16 vlan_proto = (__force __be16) r2;
1508 
1509 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1510 		     vlan_proto != htons(ETH_P_8021AD)))
1511 		vlan_proto = htons(ETH_P_8021Q);
1512 
1513 	return skb_vlan_push(skb, vlan_proto, vlan_tci);
1514 }
1515 
1516 const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1517 	.func           = bpf_skb_vlan_push,
1518 	.gpl_only       = false,
1519 	.ret_type       = RET_INTEGER,
1520 	.arg1_type      = ARG_PTR_TO_CTX,
1521 	.arg2_type      = ARG_ANYTHING,
1522 	.arg3_type      = ARG_ANYTHING,
1523 };
1524 EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1525 
1526 static u64 bpf_skb_vlan_pop(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1527 {
1528 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1529 
1530 	return skb_vlan_pop(skb);
1531 }
1532 
1533 const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
1534 	.func           = bpf_skb_vlan_pop,
1535 	.gpl_only       = false,
1536 	.ret_type       = RET_INTEGER,
1537 	.arg1_type      = ARG_PTR_TO_CTX,
1538 };
1539 EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1540 
1541 bool bpf_helper_changes_skb_data(void *func)
1542 {
1543 	if (func == bpf_skb_vlan_push)
1544 		return true;
1545 	if (func == bpf_skb_vlan_pop)
1546 		return true;
1547 	return false;
1548 }
1549 
1550 static u64 bpf_skb_get_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1551 {
1552 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1553 	struct bpf_tunnel_key *to = (struct bpf_tunnel_key *) (long) r2;
1554 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
1555 
1556 	if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags || !info))
1557 		return -EINVAL;
1558 	if (ip_tunnel_info_af(info) != AF_INET)
1559 		return -EINVAL;
1560 
1561 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
1562 	to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
1563 
1564 	return 0;
1565 }
1566 
1567 const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
1568 	.func		= bpf_skb_get_tunnel_key,
1569 	.gpl_only	= false,
1570 	.ret_type	= RET_INTEGER,
1571 	.arg1_type	= ARG_PTR_TO_CTX,
1572 	.arg2_type	= ARG_PTR_TO_STACK,
1573 	.arg3_type	= ARG_CONST_STACK_SIZE,
1574 	.arg4_type	= ARG_ANYTHING,
1575 };
1576 
1577 static struct metadata_dst __percpu *md_dst;
1578 
1579 static u64 bpf_skb_set_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1580 {
1581 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1582 	struct bpf_tunnel_key *from = (struct bpf_tunnel_key *) (long) r2;
1583 	struct metadata_dst *md = this_cpu_ptr(md_dst);
1584 	struct ip_tunnel_info *info;
1585 
1586 	if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags))
1587 		return -EINVAL;
1588 
1589 	skb_dst_drop(skb);
1590 	dst_hold((struct dst_entry *) md);
1591 	skb_dst_set(skb, (struct dst_entry *) md);
1592 
1593 	info = &md->u.tun_info;
1594 	info->mode = IP_TUNNEL_INFO_TX;
1595 	info->key.tun_flags = TUNNEL_KEY;
1596 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
1597 	info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
1598 
1599 	return 0;
1600 }
1601 
1602 const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
1603 	.func		= bpf_skb_set_tunnel_key,
1604 	.gpl_only	= false,
1605 	.ret_type	= RET_INTEGER,
1606 	.arg1_type	= ARG_PTR_TO_CTX,
1607 	.arg2_type	= ARG_PTR_TO_STACK,
1608 	.arg3_type	= ARG_CONST_STACK_SIZE,
1609 	.arg4_type	= ARG_ANYTHING,
1610 };
1611 
1612 static const struct bpf_func_proto *bpf_get_skb_set_tunnel_key_proto(void)
1613 {
1614 	if (!md_dst) {
1615 		/* race is not possible, since it's called from
1616 		 * verifier that is holding verifier mutex
1617 		 */
1618 		md_dst = metadata_dst_alloc_percpu(0, GFP_KERNEL);
1619 		if (!md_dst)
1620 			return NULL;
1621 	}
1622 	return &bpf_skb_set_tunnel_key_proto;
1623 }
1624 
1625 static const struct bpf_func_proto *
1626 sk_filter_func_proto(enum bpf_func_id func_id)
1627 {
1628 	switch (func_id) {
1629 	case BPF_FUNC_map_lookup_elem:
1630 		return &bpf_map_lookup_elem_proto;
1631 	case BPF_FUNC_map_update_elem:
1632 		return &bpf_map_update_elem_proto;
1633 	case BPF_FUNC_map_delete_elem:
1634 		return &bpf_map_delete_elem_proto;
1635 	case BPF_FUNC_get_prandom_u32:
1636 		return &bpf_get_prandom_u32_proto;
1637 	case BPF_FUNC_get_smp_processor_id:
1638 		return &bpf_get_smp_processor_id_proto;
1639 	case BPF_FUNC_tail_call:
1640 		return &bpf_tail_call_proto;
1641 	case BPF_FUNC_ktime_get_ns:
1642 		return &bpf_ktime_get_ns_proto;
1643 	case BPF_FUNC_trace_printk:
1644 		if (capable(CAP_SYS_ADMIN))
1645 			return bpf_get_trace_printk_proto();
1646 	default:
1647 		return NULL;
1648 	}
1649 }
1650 
1651 static const struct bpf_func_proto *
1652 tc_cls_act_func_proto(enum bpf_func_id func_id)
1653 {
1654 	switch (func_id) {
1655 	case BPF_FUNC_skb_store_bytes:
1656 		return &bpf_skb_store_bytes_proto;
1657 	case BPF_FUNC_l3_csum_replace:
1658 		return &bpf_l3_csum_replace_proto;
1659 	case BPF_FUNC_l4_csum_replace:
1660 		return &bpf_l4_csum_replace_proto;
1661 	case BPF_FUNC_clone_redirect:
1662 		return &bpf_clone_redirect_proto;
1663 	case BPF_FUNC_get_cgroup_classid:
1664 		return &bpf_get_cgroup_classid_proto;
1665 	case BPF_FUNC_skb_vlan_push:
1666 		return &bpf_skb_vlan_push_proto;
1667 	case BPF_FUNC_skb_vlan_pop:
1668 		return &bpf_skb_vlan_pop_proto;
1669 	case BPF_FUNC_skb_get_tunnel_key:
1670 		return &bpf_skb_get_tunnel_key_proto;
1671 	case BPF_FUNC_skb_set_tunnel_key:
1672 		return bpf_get_skb_set_tunnel_key_proto();
1673 	case BPF_FUNC_redirect:
1674 		return &bpf_redirect_proto;
1675 	case BPF_FUNC_get_route_realm:
1676 		return &bpf_get_route_realm_proto;
1677 	default:
1678 		return sk_filter_func_proto(func_id);
1679 	}
1680 }
1681 
1682 static bool __is_valid_access(int off, int size, enum bpf_access_type type)
1683 {
1684 	/* check bounds */
1685 	if (off < 0 || off >= sizeof(struct __sk_buff))
1686 		return false;
1687 
1688 	/* disallow misaligned access */
1689 	if (off % size != 0)
1690 		return false;
1691 
1692 	/* all __sk_buff fields are __u32 */
1693 	if (size != 4)
1694 		return false;
1695 
1696 	return true;
1697 }
1698 
1699 static bool sk_filter_is_valid_access(int off, int size,
1700 				      enum bpf_access_type type)
1701 {
1702 	if (off == offsetof(struct __sk_buff, tc_classid))
1703 		return false;
1704 
1705 	if (type == BPF_WRITE) {
1706 		switch (off) {
1707 		case offsetof(struct __sk_buff, cb[0]) ...
1708 			offsetof(struct __sk_buff, cb[4]):
1709 			break;
1710 		default:
1711 			return false;
1712 		}
1713 	}
1714 
1715 	return __is_valid_access(off, size, type);
1716 }
1717 
1718 static bool tc_cls_act_is_valid_access(int off, int size,
1719 				       enum bpf_access_type type)
1720 {
1721 	if (off == offsetof(struct __sk_buff, tc_classid))
1722 		return type == BPF_WRITE ? true : false;
1723 
1724 	if (type == BPF_WRITE) {
1725 		switch (off) {
1726 		case offsetof(struct __sk_buff, mark):
1727 		case offsetof(struct __sk_buff, tc_index):
1728 		case offsetof(struct __sk_buff, priority):
1729 		case offsetof(struct __sk_buff, cb[0]) ...
1730 			offsetof(struct __sk_buff, cb[4]):
1731 			break;
1732 		default:
1733 			return false;
1734 		}
1735 	}
1736 	return __is_valid_access(off, size, type);
1737 }
1738 
1739 static u32 bpf_net_convert_ctx_access(enum bpf_access_type type, int dst_reg,
1740 				      int src_reg, int ctx_off,
1741 				      struct bpf_insn *insn_buf,
1742 				      struct bpf_prog *prog)
1743 {
1744 	struct bpf_insn *insn = insn_buf;
1745 
1746 	switch (ctx_off) {
1747 	case offsetof(struct __sk_buff, len):
1748 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
1749 
1750 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1751 				      offsetof(struct sk_buff, len));
1752 		break;
1753 
1754 	case offsetof(struct __sk_buff, protocol):
1755 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
1756 
1757 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1758 				      offsetof(struct sk_buff, protocol));
1759 		break;
1760 
1761 	case offsetof(struct __sk_buff, vlan_proto):
1762 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
1763 
1764 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1765 				      offsetof(struct sk_buff, vlan_proto));
1766 		break;
1767 
1768 	case offsetof(struct __sk_buff, priority):
1769 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);
1770 
1771 		if (type == BPF_WRITE)
1772 			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
1773 					      offsetof(struct sk_buff, priority));
1774 		else
1775 			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1776 					      offsetof(struct sk_buff, priority));
1777 		break;
1778 
1779 	case offsetof(struct __sk_buff, ingress_ifindex):
1780 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);
1781 
1782 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1783 				      offsetof(struct sk_buff, skb_iif));
1784 		break;
1785 
1786 	case offsetof(struct __sk_buff, ifindex):
1787 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
1788 
1789 		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
1790 				      dst_reg, src_reg,
1791 				      offsetof(struct sk_buff, dev));
1792 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
1793 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
1794 				      offsetof(struct net_device, ifindex));
1795 		break;
1796 
1797 	case offsetof(struct __sk_buff, hash):
1798 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
1799 
1800 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1801 				      offsetof(struct sk_buff, hash));
1802 		break;
1803 
1804 	case offsetof(struct __sk_buff, mark):
1805 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
1806 
1807 		if (type == BPF_WRITE)
1808 			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
1809 					      offsetof(struct sk_buff, mark));
1810 		else
1811 			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1812 					      offsetof(struct sk_buff, mark));
1813 		break;
1814 
1815 	case offsetof(struct __sk_buff, pkt_type):
1816 		return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);
1817 
1818 	case offsetof(struct __sk_buff, queue_mapping):
1819 		return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
1820 
1821 	case offsetof(struct __sk_buff, vlan_present):
1822 		return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
1823 					  dst_reg, src_reg, insn);
1824 
1825 	case offsetof(struct __sk_buff, vlan_tci):
1826 		return convert_skb_access(SKF_AD_VLAN_TAG,
1827 					  dst_reg, src_reg, insn);
1828 
1829 	case offsetof(struct __sk_buff, cb[0]) ...
1830 		offsetof(struct __sk_buff, cb[4]):
1831 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
1832 
1833 		prog->cb_access = 1;
1834 		ctx_off -= offsetof(struct __sk_buff, cb[0]);
1835 		ctx_off += offsetof(struct sk_buff, cb);
1836 		ctx_off += offsetof(struct qdisc_skb_cb, data);
1837 		if (type == BPF_WRITE)
1838 			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
1839 		else
1840 			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
1841 		break;
1842 
1843 	case offsetof(struct __sk_buff, tc_classid):
1844 		ctx_off -= offsetof(struct __sk_buff, tc_classid);
1845 		ctx_off += offsetof(struct sk_buff, cb);
1846 		ctx_off += offsetof(struct qdisc_skb_cb, tc_classid);
1847 		WARN_ON(type != BPF_WRITE);
1848 		*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
1849 		break;
1850 
1851 	case offsetof(struct __sk_buff, tc_index):
1852 #ifdef CONFIG_NET_SCHED
1853 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);
1854 
1855 		if (type == BPF_WRITE)
1856 			*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
1857 					      offsetof(struct sk_buff, tc_index));
1858 		else
1859 			*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1860 					      offsetof(struct sk_buff, tc_index));
1861 		break;
1862 #else
1863 		if (type == BPF_WRITE)
1864 			*insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
1865 		else
1866 			*insn++ = BPF_MOV64_IMM(dst_reg, 0);
1867 		break;
1868 #endif
1869 	}
1870 
1871 	return insn - insn_buf;
1872 }
1873 
1874 static const struct bpf_verifier_ops sk_filter_ops = {
1875 	.get_func_proto = sk_filter_func_proto,
1876 	.is_valid_access = sk_filter_is_valid_access,
1877 	.convert_ctx_access = bpf_net_convert_ctx_access,
1878 };
1879 
1880 static const struct bpf_verifier_ops tc_cls_act_ops = {
1881 	.get_func_proto = tc_cls_act_func_proto,
1882 	.is_valid_access = tc_cls_act_is_valid_access,
1883 	.convert_ctx_access = bpf_net_convert_ctx_access,
1884 };
1885 
1886 static struct bpf_prog_type_list sk_filter_type __read_mostly = {
1887 	.ops = &sk_filter_ops,
1888 	.type = BPF_PROG_TYPE_SOCKET_FILTER,
1889 };
1890 
1891 static struct bpf_prog_type_list sched_cls_type __read_mostly = {
1892 	.ops = &tc_cls_act_ops,
1893 	.type = BPF_PROG_TYPE_SCHED_CLS,
1894 };
1895 
1896 static struct bpf_prog_type_list sched_act_type __read_mostly = {
1897 	.ops = &tc_cls_act_ops,
1898 	.type = BPF_PROG_TYPE_SCHED_ACT,
1899 };
1900 
1901 static int __init register_sk_filter_ops(void)
1902 {
1903 	bpf_register_prog_type(&sk_filter_type);
1904 	bpf_register_prog_type(&sched_cls_type);
1905 	bpf_register_prog_type(&sched_act_type);
1906 
1907 	return 0;
1908 }
1909 late_initcall(register_sk_filter_ops);
1910 
1911 int sk_detach_filter(struct sock *sk)
1912 {
1913 	int ret = -ENOENT;
1914 	struct sk_filter *filter;
1915 
1916 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1917 		return -EPERM;
1918 
1919 	filter = rcu_dereference_protected(sk->sk_filter,
1920 					   sock_owned_by_user(sk));
1921 	if (filter) {
1922 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1923 		sk_filter_uncharge(sk, filter);
1924 		ret = 0;
1925 	}
1926 
1927 	return ret;
1928 }
1929 EXPORT_SYMBOL_GPL(sk_detach_filter);
1930 
1931 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
1932 		  unsigned int len)
1933 {
1934 	struct sock_fprog_kern *fprog;
1935 	struct sk_filter *filter;
1936 	int ret = 0;
1937 
1938 	lock_sock(sk);
1939 	filter = rcu_dereference_protected(sk->sk_filter,
1940 					   sock_owned_by_user(sk));
1941 	if (!filter)
1942 		goto out;
1943 
1944 	/* We're copying the filter that has been originally attached,
1945 	 * so no conversion/decode needed anymore. eBPF programs that
1946 	 * have no original program cannot be dumped through this.
1947 	 */
1948 	ret = -EACCES;
1949 	fprog = filter->prog->orig_prog;
1950 	if (!fprog)
1951 		goto out;
1952 
1953 	ret = fprog->len;
1954 	if (!len)
1955 		/* User space only enquires number of filter blocks. */
1956 		goto out;
1957 
1958 	ret = -EINVAL;
1959 	if (len < fprog->len)
1960 		goto out;
1961 
1962 	ret = -EFAULT;
1963 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
1964 		goto out;
1965 
1966 	/* Instead of bytes, the API requests to return the number
1967 	 * of filter blocks.
1968 	 */
1969 	ret = fprog->len;
1970 out:
1971 	release_sock(sk);
1972 	return ret;
1973 }
1974