xref: /openbmc/linux/net/core/filter.c (revision a5961bed)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 
85 static const struct bpf_func_proto *
86 bpf_sk_base_func_proto(enum bpf_func_id func_id);
87 
88 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
89 {
90 	if (in_compat_syscall()) {
91 		struct compat_sock_fprog f32;
92 
93 		if (len != sizeof(f32))
94 			return -EINVAL;
95 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
96 			return -EFAULT;
97 		memset(dst, 0, sizeof(*dst));
98 		dst->len = f32.len;
99 		dst->filter = compat_ptr(f32.filter);
100 	} else {
101 		if (len != sizeof(*dst))
102 			return -EINVAL;
103 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
104 			return -EFAULT;
105 	}
106 
107 	return 0;
108 }
109 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
110 
111 /**
112  *	sk_filter_trim_cap - run a packet through a socket filter
113  *	@sk: sock associated with &sk_buff
114  *	@skb: buffer to filter
115  *	@cap: limit on how short the eBPF program may trim the packet
116  *
117  * Run the eBPF program and then cut skb->data to correct size returned by
118  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
119  * than pkt_len we keep whole skb->data. This is the socket level
120  * wrapper to bpf_prog_run. It returns 0 if the packet should
121  * be accepted or -EPERM if the packet should be tossed.
122  *
123  */
124 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
125 {
126 	int err;
127 	struct sk_filter *filter;
128 
129 	/*
130 	 * If the skb was allocated from pfmemalloc reserves, only
131 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
132 	 * helping free memory
133 	 */
134 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
135 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
136 		return -ENOMEM;
137 	}
138 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
139 	if (err)
140 		return err;
141 
142 	err = security_sock_rcv_skb(sk, skb);
143 	if (err)
144 		return err;
145 
146 	rcu_read_lock();
147 	filter = rcu_dereference(sk->sk_filter);
148 	if (filter) {
149 		struct sock *save_sk = skb->sk;
150 		unsigned int pkt_len;
151 
152 		skb->sk = sk;
153 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
154 		skb->sk = save_sk;
155 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
156 	}
157 	rcu_read_unlock();
158 
159 	return err;
160 }
161 EXPORT_SYMBOL(sk_filter_trim_cap);
162 
163 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
164 {
165 	return skb_get_poff(skb);
166 }
167 
168 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
169 {
170 	struct nlattr *nla;
171 
172 	if (skb_is_nonlinear(skb))
173 		return 0;
174 
175 	if (skb->len < sizeof(struct nlattr))
176 		return 0;
177 
178 	if (a > skb->len - sizeof(struct nlattr))
179 		return 0;
180 
181 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
182 	if (nla)
183 		return (void *) nla - (void *) skb->data;
184 
185 	return 0;
186 }
187 
188 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
189 {
190 	struct nlattr *nla;
191 
192 	if (skb_is_nonlinear(skb))
193 		return 0;
194 
195 	if (skb->len < sizeof(struct nlattr))
196 		return 0;
197 
198 	if (a > skb->len - sizeof(struct nlattr))
199 		return 0;
200 
201 	nla = (struct nlattr *) &skb->data[a];
202 	if (nla->nla_len > skb->len - a)
203 		return 0;
204 
205 	nla = nla_find_nested(nla, x);
206 	if (nla)
207 		return (void *) nla - (void *) skb->data;
208 
209 	return 0;
210 }
211 
212 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
213 	   data, int, headlen, int, offset)
214 {
215 	u8 tmp, *ptr;
216 	const int len = sizeof(tmp);
217 
218 	if (offset >= 0) {
219 		if (headlen - offset >= len)
220 			return *(u8 *)(data + offset);
221 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
222 			return tmp;
223 	} else {
224 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
225 		if (likely(ptr))
226 			return *(u8 *)ptr;
227 	}
228 
229 	return -EFAULT;
230 }
231 
232 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
233 	   int, offset)
234 {
235 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
236 					 offset);
237 }
238 
239 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
240 	   data, int, headlen, int, offset)
241 {
242 	__be16 tmp, *ptr;
243 	const int len = sizeof(tmp);
244 
245 	if (offset >= 0) {
246 		if (headlen - offset >= len)
247 			return get_unaligned_be16(data + offset);
248 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
249 			return be16_to_cpu(tmp);
250 	} else {
251 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
252 		if (likely(ptr))
253 			return get_unaligned_be16(ptr);
254 	}
255 
256 	return -EFAULT;
257 }
258 
259 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
260 	   int, offset)
261 {
262 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
263 					  offset);
264 }
265 
266 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
267 	   data, int, headlen, int, offset)
268 {
269 	__be32 tmp, *ptr;
270 	const int len = sizeof(tmp);
271 
272 	if (likely(offset >= 0)) {
273 		if (headlen - offset >= len)
274 			return get_unaligned_be32(data + offset);
275 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
276 			return be32_to_cpu(tmp);
277 	} else {
278 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
279 		if (likely(ptr))
280 			return get_unaligned_be32(ptr);
281 	}
282 
283 	return -EFAULT;
284 }
285 
286 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
287 	   int, offset)
288 {
289 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
290 					  offset);
291 }
292 
293 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
294 			      struct bpf_insn *insn_buf)
295 {
296 	struct bpf_insn *insn = insn_buf;
297 
298 	switch (skb_field) {
299 	case SKF_AD_MARK:
300 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
301 
302 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
303 				      offsetof(struct sk_buff, mark));
304 		break;
305 
306 	case SKF_AD_PKTTYPE:
307 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
308 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
309 #ifdef __BIG_ENDIAN_BITFIELD
310 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
311 #endif
312 		break;
313 
314 	case SKF_AD_QUEUE:
315 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
316 
317 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318 				      offsetof(struct sk_buff, queue_mapping));
319 		break;
320 
321 	case SKF_AD_VLAN_TAG:
322 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
323 
324 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
325 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
326 				      offsetof(struct sk_buff, vlan_tci));
327 		break;
328 	case SKF_AD_VLAN_TAG_PRESENT:
329 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
330 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
331 				      offsetof(struct sk_buff, vlan_all));
332 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
333 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
334 		break;
335 	}
336 
337 	return insn - insn_buf;
338 }
339 
340 static bool convert_bpf_extensions(struct sock_filter *fp,
341 				   struct bpf_insn **insnp)
342 {
343 	struct bpf_insn *insn = *insnp;
344 	u32 cnt;
345 
346 	switch (fp->k) {
347 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
348 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
349 
350 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
351 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
352 				      offsetof(struct sk_buff, protocol));
353 		/* A = ntohs(A) [emitting a nop or swap16] */
354 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
355 		break;
356 
357 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
358 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
359 		insn += cnt - 1;
360 		break;
361 
362 	case SKF_AD_OFF + SKF_AD_IFINDEX:
363 	case SKF_AD_OFF + SKF_AD_HATYPE:
364 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
365 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
366 
367 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
368 				      BPF_REG_TMP, BPF_REG_CTX,
369 				      offsetof(struct sk_buff, dev));
370 		/* if (tmp != 0) goto pc + 1 */
371 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
372 		*insn++ = BPF_EXIT_INSN();
373 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
374 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
375 					    offsetof(struct net_device, ifindex));
376 		else
377 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
378 					    offsetof(struct net_device, type));
379 		break;
380 
381 	case SKF_AD_OFF + SKF_AD_MARK:
382 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
383 		insn += cnt - 1;
384 		break;
385 
386 	case SKF_AD_OFF + SKF_AD_RXHASH:
387 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
388 
389 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
390 				    offsetof(struct sk_buff, hash));
391 		break;
392 
393 	case SKF_AD_OFF + SKF_AD_QUEUE:
394 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
395 		insn += cnt - 1;
396 		break;
397 
398 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
399 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
400 					 BPF_REG_A, BPF_REG_CTX, insn);
401 		insn += cnt - 1;
402 		break;
403 
404 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
405 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
406 					 BPF_REG_A, BPF_REG_CTX, insn);
407 		insn += cnt - 1;
408 		break;
409 
410 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
411 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
412 
413 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
414 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
415 				      offsetof(struct sk_buff, vlan_proto));
416 		/* A = ntohs(A) [emitting a nop or swap16] */
417 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
418 		break;
419 
420 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
421 	case SKF_AD_OFF + SKF_AD_NLATTR:
422 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
423 	case SKF_AD_OFF + SKF_AD_CPU:
424 	case SKF_AD_OFF + SKF_AD_RANDOM:
425 		/* arg1 = CTX */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
427 		/* arg2 = A */
428 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
429 		/* arg3 = X */
430 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
431 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
432 		switch (fp->k) {
433 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
434 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
435 			break;
436 		case SKF_AD_OFF + SKF_AD_NLATTR:
437 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
438 			break;
439 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
441 			break;
442 		case SKF_AD_OFF + SKF_AD_CPU:
443 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
444 			break;
445 		case SKF_AD_OFF + SKF_AD_RANDOM:
446 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
447 			bpf_user_rnd_init_once();
448 			break;
449 		}
450 		break;
451 
452 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
453 		/* A ^= X */
454 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
455 		break;
456 
457 	default:
458 		/* This is just a dummy call to avoid letting the compiler
459 		 * evict __bpf_call_base() as an optimization. Placed here
460 		 * where no-one bothers.
461 		 */
462 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
463 		return false;
464 	}
465 
466 	*insnp = insn;
467 	return true;
468 }
469 
470 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
471 {
472 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
473 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
474 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
475 		      BPF_SIZE(fp->code) == BPF_W;
476 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
477 	const int ip_align = NET_IP_ALIGN;
478 	struct bpf_insn *insn = *insnp;
479 	int offset = fp->k;
480 
481 	if (!indirect &&
482 	    ((unaligned_ok && offset >= 0) ||
483 	     (!unaligned_ok && offset >= 0 &&
484 	      offset + ip_align >= 0 &&
485 	      offset + ip_align % size == 0))) {
486 		bool ldx_off_ok = offset <= S16_MAX;
487 
488 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
489 		if (offset)
490 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
491 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
492 				      size, 2 + endian + (!ldx_off_ok * 2));
493 		if (ldx_off_ok) {
494 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
495 					      BPF_REG_D, offset);
496 		} else {
497 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
498 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
499 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500 					      BPF_REG_TMP, 0);
501 		}
502 		if (endian)
503 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
504 		*insn++ = BPF_JMP_A(8);
505 	}
506 
507 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
508 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
509 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
510 	if (!indirect) {
511 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
512 	} else {
513 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
514 		if (fp->k)
515 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
516 	}
517 
518 	switch (BPF_SIZE(fp->code)) {
519 	case BPF_B:
520 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
521 		break;
522 	case BPF_H:
523 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
524 		break;
525 	case BPF_W:
526 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
527 		break;
528 	default:
529 		return false;
530 	}
531 
532 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
533 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
534 	*insn   = BPF_EXIT_INSN();
535 
536 	*insnp = insn;
537 	return true;
538 }
539 
540 /**
541  *	bpf_convert_filter - convert filter program
542  *	@prog: the user passed filter program
543  *	@len: the length of the user passed filter program
544  *	@new_prog: allocated 'struct bpf_prog' or NULL
545  *	@new_len: pointer to store length of converted program
546  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
547  *
548  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
549  * style extended BPF (eBPF).
550  * Conversion workflow:
551  *
552  * 1) First pass for calculating the new program length:
553  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
554  *
555  * 2) 2nd pass to remap in two passes: 1st pass finds new
556  *    jump offsets, 2nd pass remapping:
557  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
558  */
559 static int bpf_convert_filter(struct sock_filter *prog, int len,
560 			      struct bpf_prog *new_prog, int *new_len,
561 			      bool *seen_ld_abs)
562 {
563 	int new_flen = 0, pass = 0, target, i, stack_off;
564 	struct bpf_insn *new_insn, *first_insn = NULL;
565 	struct sock_filter *fp;
566 	int *addrs = NULL;
567 	u8 bpf_src;
568 
569 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
570 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
571 
572 	if (len <= 0 || len > BPF_MAXINSNS)
573 		return -EINVAL;
574 
575 	if (new_prog) {
576 		first_insn = new_prog->insnsi;
577 		addrs = kcalloc(len, sizeof(*addrs),
578 				GFP_KERNEL | __GFP_NOWARN);
579 		if (!addrs)
580 			return -ENOMEM;
581 	}
582 
583 do_pass:
584 	new_insn = first_insn;
585 	fp = prog;
586 
587 	/* Classic BPF related prologue emission. */
588 	if (new_prog) {
589 		/* Classic BPF expects A and X to be reset first. These need
590 		 * to be guaranteed to be the first two instructions.
591 		 */
592 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
593 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
594 
595 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
596 		 * In eBPF case it's done by the compiler, here we need to
597 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
598 		 */
599 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
600 		if (*seen_ld_abs) {
601 			/* For packet access in classic BPF, cache skb->data
602 			 * in callee-saved BPF R8 and skb->len - skb->data_len
603 			 * (headlen) in BPF R9. Since classic BPF is read-only
604 			 * on CTX, we only need to cache it once.
605 			 */
606 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
607 						  BPF_REG_D, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, data));
609 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
610 						  offsetof(struct sk_buff, len));
611 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
612 						  offsetof(struct sk_buff, data_len));
613 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
614 		}
615 	} else {
616 		new_insn += 3;
617 	}
618 
619 	for (i = 0; i < len; fp++, i++) {
620 		struct bpf_insn tmp_insns[32] = { };
621 		struct bpf_insn *insn = tmp_insns;
622 
623 		if (addrs)
624 			addrs[i] = new_insn - first_insn;
625 
626 		switch (fp->code) {
627 		/* All arithmetic insns and skb loads map as-is. */
628 		case BPF_ALU | BPF_ADD | BPF_X:
629 		case BPF_ALU | BPF_ADD | BPF_K:
630 		case BPF_ALU | BPF_SUB | BPF_X:
631 		case BPF_ALU | BPF_SUB | BPF_K:
632 		case BPF_ALU | BPF_AND | BPF_X:
633 		case BPF_ALU | BPF_AND | BPF_K:
634 		case BPF_ALU | BPF_OR | BPF_X:
635 		case BPF_ALU | BPF_OR | BPF_K:
636 		case BPF_ALU | BPF_LSH | BPF_X:
637 		case BPF_ALU | BPF_LSH | BPF_K:
638 		case BPF_ALU | BPF_RSH | BPF_X:
639 		case BPF_ALU | BPF_RSH | BPF_K:
640 		case BPF_ALU | BPF_XOR | BPF_X:
641 		case BPF_ALU | BPF_XOR | BPF_K:
642 		case BPF_ALU | BPF_MUL | BPF_X:
643 		case BPF_ALU | BPF_MUL | BPF_K:
644 		case BPF_ALU | BPF_DIV | BPF_X:
645 		case BPF_ALU | BPF_DIV | BPF_K:
646 		case BPF_ALU | BPF_MOD | BPF_X:
647 		case BPF_ALU | BPF_MOD | BPF_K:
648 		case BPF_ALU | BPF_NEG:
649 		case BPF_LD | BPF_ABS | BPF_W:
650 		case BPF_LD | BPF_ABS | BPF_H:
651 		case BPF_LD | BPF_ABS | BPF_B:
652 		case BPF_LD | BPF_IND | BPF_W:
653 		case BPF_LD | BPF_IND | BPF_H:
654 		case BPF_LD | BPF_IND | BPF_B:
655 			/* Check for overloaded BPF extension and
656 			 * directly convert it if found, otherwise
657 			 * just move on with mapping.
658 			 */
659 			if (BPF_CLASS(fp->code) == BPF_LD &&
660 			    BPF_MODE(fp->code) == BPF_ABS &&
661 			    convert_bpf_extensions(fp, &insn))
662 				break;
663 			if (BPF_CLASS(fp->code) == BPF_LD &&
664 			    convert_bpf_ld_abs(fp, &insn)) {
665 				*seen_ld_abs = true;
666 				break;
667 			}
668 
669 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
670 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
671 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
672 				/* Error with exception code on div/mod by 0.
673 				 * For cBPF programs, this was always return 0.
674 				 */
675 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
676 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
677 				*insn++ = BPF_EXIT_INSN();
678 			}
679 
680 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
681 			break;
682 
683 		/* Jump transformation cannot use BPF block macros
684 		 * everywhere as offset calculation and target updates
685 		 * require a bit more work than the rest, i.e. jump
686 		 * opcodes map as-is, but offsets need adjustment.
687 		 */
688 
689 #define BPF_EMIT_JMP							\
690 	do {								\
691 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
692 		s32 off;						\
693 									\
694 		if (target >= len || target < 0)			\
695 			goto err;					\
696 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
697 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
698 		off -= insn - tmp_insns;				\
699 		/* Reject anything not fitting into insn->off. */	\
700 		if (off < off_min || off > off_max)			\
701 			goto err;					\
702 		insn->off = off;					\
703 	} while (0)
704 
705 		case BPF_JMP | BPF_JA:
706 			target = i + fp->k + 1;
707 			insn->code = fp->code;
708 			BPF_EMIT_JMP;
709 			break;
710 
711 		case BPF_JMP | BPF_JEQ | BPF_K:
712 		case BPF_JMP | BPF_JEQ | BPF_X:
713 		case BPF_JMP | BPF_JSET | BPF_K:
714 		case BPF_JMP | BPF_JSET | BPF_X:
715 		case BPF_JMP | BPF_JGT | BPF_K:
716 		case BPF_JMP | BPF_JGT | BPF_X:
717 		case BPF_JMP | BPF_JGE | BPF_K:
718 		case BPF_JMP | BPF_JGE | BPF_X:
719 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
720 				/* BPF immediates are signed, zero extend
721 				 * immediate into tmp register and use it
722 				 * in compare insn.
723 				 */
724 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
725 
726 				insn->dst_reg = BPF_REG_A;
727 				insn->src_reg = BPF_REG_TMP;
728 				bpf_src = BPF_X;
729 			} else {
730 				insn->dst_reg = BPF_REG_A;
731 				insn->imm = fp->k;
732 				bpf_src = BPF_SRC(fp->code);
733 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
734 			}
735 
736 			/* Common case where 'jump_false' is next insn. */
737 			if (fp->jf == 0) {
738 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
739 				target = i + fp->jt + 1;
740 				BPF_EMIT_JMP;
741 				break;
742 			}
743 
744 			/* Convert some jumps when 'jump_true' is next insn. */
745 			if (fp->jt == 0) {
746 				switch (BPF_OP(fp->code)) {
747 				case BPF_JEQ:
748 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
749 					break;
750 				case BPF_JGT:
751 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
752 					break;
753 				case BPF_JGE:
754 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
755 					break;
756 				default:
757 					goto jmp_rest;
758 				}
759 
760 				target = i + fp->jf + 1;
761 				BPF_EMIT_JMP;
762 				break;
763 			}
764 jmp_rest:
765 			/* Other jumps are mapped into two insns: Jxx and JA. */
766 			target = i + fp->jt + 1;
767 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
768 			BPF_EMIT_JMP;
769 			insn++;
770 
771 			insn->code = BPF_JMP | BPF_JA;
772 			target = i + fp->jf + 1;
773 			BPF_EMIT_JMP;
774 			break;
775 
776 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
777 		case BPF_LDX | BPF_MSH | BPF_B: {
778 			struct sock_filter tmp = {
779 				.code	= BPF_LD | BPF_ABS | BPF_B,
780 				.k	= fp->k,
781 			};
782 
783 			*seen_ld_abs = true;
784 
785 			/* X = A */
786 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
787 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
788 			convert_bpf_ld_abs(&tmp, &insn);
789 			insn++;
790 			/* A &= 0xf */
791 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
792 			/* A <<= 2 */
793 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
794 			/* tmp = X */
795 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
796 			/* X = A */
797 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
798 			/* A = tmp */
799 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
800 			break;
801 		}
802 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
803 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
804 		 */
805 		case BPF_RET | BPF_A:
806 		case BPF_RET | BPF_K:
807 			if (BPF_RVAL(fp->code) == BPF_K)
808 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
809 							0, fp->k);
810 			*insn = BPF_EXIT_INSN();
811 			break;
812 
813 		/* Store to stack. */
814 		case BPF_ST:
815 		case BPF_STX:
816 			stack_off = fp->k * 4  + 4;
817 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
818 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
819 					    -stack_off);
820 			/* check_load_and_stores() verifies that classic BPF can
821 			 * load from stack only after write, so tracking
822 			 * stack_depth for ST|STX insns is enough
823 			 */
824 			if (new_prog && new_prog->aux->stack_depth < stack_off)
825 				new_prog->aux->stack_depth = stack_off;
826 			break;
827 
828 		/* Load from stack. */
829 		case BPF_LD | BPF_MEM:
830 		case BPF_LDX | BPF_MEM:
831 			stack_off = fp->k * 4  + 4;
832 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
833 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
834 					    -stack_off);
835 			break;
836 
837 		/* A = K or X = K */
838 		case BPF_LD | BPF_IMM:
839 		case BPF_LDX | BPF_IMM:
840 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
841 					      BPF_REG_A : BPF_REG_X, fp->k);
842 			break;
843 
844 		/* X = A */
845 		case BPF_MISC | BPF_TAX:
846 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
847 			break;
848 
849 		/* A = X */
850 		case BPF_MISC | BPF_TXA:
851 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
852 			break;
853 
854 		/* A = skb->len or X = skb->len */
855 		case BPF_LD | BPF_W | BPF_LEN:
856 		case BPF_LDX | BPF_W | BPF_LEN:
857 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
858 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
859 					    offsetof(struct sk_buff, len));
860 			break;
861 
862 		/* Access seccomp_data fields. */
863 		case BPF_LDX | BPF_ABS | BPF_W:
864 			/* A = *(u32 *) (ctx + K) */
865 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
866 			break;
867 
868 		/* Unknown instruction. */
869 		default:
870 			goto err;
871 		}
872 
873 		insn++;
874 		if (new_prog)
875 			memcpy(new_insn, tmp_insns,
876 			       sizeof(*insn) * (insn - tmp_insns));
877 		new_insn += insn - tmp_insns;
878 	}
879 
880 	if (!new_prog) {
881 		/* Only calculating new length. */
882 		*new_len = new_insn - first_insn;
883 		if (*seen_ld_abs)
884 			*new_len += 4; /* Prologue bits. */
885 		return 0;
886 	}
887 
888 	pass++;
889 	if (new_flen != new_insn - first_insn) {
890 		new_flen = new_insn - first_insn;
891 		if (pass > 2)
892 			goto err;
893 		goto do_pass;
894 	}
895 
896 	kfree(addrs);
897 	BUG_ON(*new_len != new_flen);
898 	return 0;
899 err:
900 	kfree(addrs);
901 	return -EINVAL;
902 }
903 
904 /* Security:
905  *
906  * As we dont want to clear mem[] array for each packet going through
907  * __bpf_prog_run(), we check that filter loaded by user never try to read
908  * a cell if not previously written, and we check all branches to be sure
909  * a malicious user doesn't try to abuse us.
910  */
911 static int check_load_and_stores(const struct sock_filter *filter, int flen)
912 {
913 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
914 	int pc, ret = 0;
915 
916 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
917 
918 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
919 	if (!masks)
920 		return -ENOMEM;
921 
922 	memset(masks, 0xff, flen * sizeof(*masks));
923 
924 	for (pc = 0; pc < flen; pc++) {
925 		memvalid &= masks[pc];
926 
927 		switch (filter[pc].code) {
928 		case BPF_ST:
929 		case BPF_STX:
930 			memvalid |= (1 << filter[pc].k);
931 			break;
932 		case BPF_LD | BPF_MEM:
933 		case BPF_LDX | BPF_MEM:
934 			if (!(memvalid & (1 << filter[pc].k))) {
935 				ret = -EINVAL;
936 				goto error;
937 			}
938 			break;
939 		case BPF_JMP | BPF_JA:
940 			/* A jump must set masks on target */
941 			masks[pc + 1 + filter[pc].k] &= memvalid;
942 			memvalid = ~0;
943 			break;
944 		case BPF_JMP | BPF_JEQ | BPF_K:
945 		case BPF_JMP | BPF_JEQ | BPF_X:
946 		case BPF_JMP | BPF_JGE | BPF_K:
947 		case BPF_JMP | BPF_JGE | BPF_X:
948 		case BPF_JMP | BPF_JGT | BPF_K:
949 		case BPF_JMP | BPF_JGT | BPF_X:
950 		case BPF_JMP | BPF_JSET | BPF_K:
951 		case BPF_JMP | BPF_JSET | BPF_X:
952 			/* A jump must set masks on targets */
953 			masks[pc + 1 + filter[pc].jt] &= memvalid;
954 			masks[pc + 1 + filter[pc].jf] &= memvalid;
955 			memvalid = ~0;
956 			break;
957 		}
958 	}
959 error:
960 	kfree(masks);
961 	return ret;
962 }
963 
964 static bool chk_code_allowed(u16 code_to_probe)
965 {
966 	static const bool codes[] = {
967 		/* 32 bit ALU operations */
968 		[BPF_ALU | BPF_ADD | BPF_K] = true,
969 		[BPF_ALU | BPF_ADD | BPF_X] = true,
970 		[BPF_ALU | BPF_SUB | BPF_K] = true,
971 		[BPF_ALU | BPF_SUB | BPF_X] = true,
972 		[BPF_ALU | BPF_MUL | BPF_K] = true,
973 		[BPF_ALU | BPF_MUL | BPF_X] = true,
974 		[BPF_ALU | BPF_DIV | BPF_K] = true,
975 		[BPF_ALU | BPF_DIV | BPF_X] = true,
976 		[BPF_ALU | BPF_MOD | BPF_K] = true,
977 		[BPF_ALU | BPF_MOD | BPF_X] = true,
978 		[BPF_ALU | BPF_AND | BPF_K] = true,
979 		[BPF_ALU | BPF_AND | BPF_X] = true,
980 		[BPF_ALU | BPF_OR | BPF_K] = true,
981 		[BPF_ALU | BPF_OR | BPF_X] = true,
982 		[BPF_ALU | BPF_XOR | BPF_K] = true,
983 		[BPF_ALU | BPF_XOR | BPF_X] = true,
984 		[BPF_ALU | BPF_LSH | BPF_K] = true,
985 		[BPF_ALU | BPF_LSH | BPF_X] = true,
986 		[BPF_ALU | BPF_RSH | BPF_K] = true,
987 		[BPF_ALU | BPF_RSH | BPF_X] = true,
988 		[BPF_ALU | BPF_NEG] = true,
989 		/* Load instructions */
990 		[BPF_LD | BPF_W | BPF_ABS] = true,
991 		[BPF_LD | BPF_H | BPF_ABS] = true,
992 		[BPF_LD | BPF_B | BPF_ABS] = true,
993 		[BPF_LD | BPF_W | BPF_LEN] = true,
994 		[BPF_LD | BPF_W | BPF_IND] = true,
995 		[BPF_LD | BPF_H | BPF_IND] = true,
996 		[BPF_LD | BPF_B | BPF_IND] = true,
997 		[BPF_LD | BPF_IMM] = true,
998 		[BPF_LD | BPF_MEM] = true,
999 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1000 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1001 		[BPF_LDX | BPF_IMM] = true,
1002 		[BPF_LDX | BPF_MEM] = true,
1003 		/* Store instructions */
1004 		[BPF_ST] = true,
1005 		[BPF_STX] = true,
1006 		/* Misc instructions */
1007 		[BPF_MISC | BPF_TAX] = true,
1008 		[BPF_MISC | BPF_TXA] = true,
1009 		/* Return instructions */
1010 		[BPF_RET | BPF_K] = true,
1011 		[BPF_RET | BPF_A] = true,
1012 		/* Jump instructions */
1013 		[BPF_JMP | BPF_JA] = true,
1014 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1015 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1016 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1017 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1018 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1019 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1020 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1021 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1022 	};
1023 
1024 	if (code_to_probe >= ARRAY_SIZE(codes))
1025 		return false;
1026 
1027 	return codes[code_to_probe];
1028 }
1029 
1030 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1031 				unsigned int flen)
1032 {
1033 	if (filter == NULL)
1034 		return false;
1035 	if (flen == 0 || flen > BPF_MAXINSNS)
1036 		return false;
1037 
1038 	return true;
1039 }
1040 
1041 /**
1042  *	bpf_check_classic - verify socket filter code
1043  *	@filter: filter to verify
1044  *	@flen: length of filter
1045  *
1046  * Check the user's filter code. If we let some ugly
1047  * filter code slip through kaboom! The filter must contain
1048  * no references or jumps that are out of range, no illegal
1049  * instructions, and must end with a RET instruction.
1050  *
1051  * All jumps are forward as they are not signed.
1052  *
1053  * Returns 0 if the rule set is legal or -EINVAL if not.
1054  */
1055 static int bpf_check_classic(const struct sock_filter *filter,
1056 			     unsigned int flen)
1057 {
1058 	bool anc_found;
1059 	int pc;
1060 
1061 	/* Check the filter code now */
1062 	for (pc = 0; pc < flen; pc++) {
1063 		const struct sock_filter *ftest = &filter[pc];
1064 
1065 		/* May we actually operate on this code? */
1066 		if (!chk_code_allowed(ftest->code))
1067 			return -EINVAL;
1068 
1069 		/* Some instructions need special checks */
1070 		switch (ftest->code) {
1071 		case BPF_ALU | BPF_DIV | BPF_K:
1072 		case BPF_ALU | BPF_MOD | BPF_K:
1073 			/* Check for division by zero */
1074 			if (ftest->k == 0)
1075 				return -EINVAL;
1076 			break;
1077 		case BPF_ALU | BPF_LSH | BPF_K:
1078 		case BPF_ALU | BPF_RSH | BPF_K:
1079 			if (ftest->k >= 32)
1080 				return -EINVAL;
1081 			break;
1082 		case BPF_LD | BPF_MEM:
1083 		case BPF_LDX | BPF_MEM:
1084 		case BPF_ST:
1085 		case BPF_STX:
1086 			/* Check for invalid memory addresses */
1087 			if (ftest->k >= BPF_MEMWORDS)
1088 				return -EINVAL;
1089 			break;
1090 		case BPF_JMP | BPF_JA:
1091 			/* Note, the large ftest->k might cause loops.
1092 			 * Compare this with conditional jumps below,
1093 			 * where offsets are limited. --ANK (981016)
1094 			 */
1095 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1096 				return -EINVAL;
1097 			break;
1098 		case BPF_JMP | BPF_JEQ | BPF_K:
1099 		case BPF_JMP | BPF_JEQ | BPF_X:
1100 		case BPF_JMP | BPF_JGE | BPF_K:
1101 		case BPF_JMP | BPF_JGE | BPF_X:
1102 		case BPF_JMP | BPF_JGT | BPF_K:
1103 		case BPF_JMP | BPF_JGT | BPF_X:
1104 		case BPF_JMP | BPF_JSET | BPF_K:
1105 		case BPF_JMP | BPF_JSET | BPF_X:
1106 			/* Both conditionals must be safe */
1107 			if (pc + ftest->jt + 1 >= flen ||
1108 			    pc + ftest->jf + 1 >= flen)
1109 				return -EINVAL;
1110 			break;
1111 		case BPF_LD | BPF_W | BPF_ABS:
1112 		case BPF_LD | BPF_H | BPF_ABS:
1113 		case BPF_LD | BPF_B | BPF_ABS:
1114 			anc_found = false;
1115 			if (bpf_anc_helper(ftest) & BPF_ANC)
1116 				anc_found = true;
1117 			/* Ancillary operation unknown or unsupported */
1118 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1119 				return -EINVAL;
1120 		}
1121 	}
1122 
1123 	/* Last instruction must be a RET code */
1124 	switch (filter[flen - 1].code) {
1125 	case BPF_RET | BPF_K:
1126 	case BPF_RET | BPF_A:
1127 		return check_load_and_stores(filter, flen);
1128 	}
1129 
1130 	return -EINVAL;
1131 }
1132 
1133 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1134 				      const struct sock_fprog *fprog)
1135 {
1136 	unsigned int fsize = bpf_classic_proglen(fprog);
1137 	struct sock_fprog_kern *fkprog;
1138 
1139 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1140 	if (!fp->orig_prog)
1141 		return -ENOMEM;
1142 
1143 	fkprog = fp->orig_prog;
1144 	fkprog->len = fprog->len;
1145 
1146 	fkprog->filter = kmemdup(fp->insns, fsize,
1147 				 GFP_KERNEL | __GFP_NOWARN);
1148 	if (!fkprog->filter) {
1149 		kfree(fp->orig_prog);
1150 		return -ENOMEM;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 static void bpf_release_orig_filter(struct bpf_prog *fp)
1157 {
1158 	struct sock_fprog_kern *fprog = fp->orig_prog;
1159 
1160 	if (fprog) {
1161 		kfree(fprog->filter);
1162 		kfree(fprog);
1163 	}
1164 }
1165 
1166 static void __bpf_prog_release(struct bpf_prog *prog)
1167 {
1168 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1169 		bpf_prog_put(prog);
1170 	} else {
1171 		bpf_release_orig_filter(prog);
1172 		bpf_prog_free(prog);
1173 	}
1174 }
1175 
1176 static void __sk_filter_release(struct sk_filter *fp)
1177 {
1178 	__bpf_prog_release(fp->prog);
1179 	kfree(fp);
1180 }
1181 
1182 /**
1183  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1184  *	@rcu: rcu_head that contains the sk_filter to free
1185  */
1186 static void sk_filter_release_rcu(struct rcu_head *rcu)
1187 {
1188 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1189 
1190 	__sk_filter_release(fp);
1191 }
1192 
1193 /**
1194  *	sk_filter_release - release a socket filter
1195  *	@fp: filter to remove
1196  *
1197  *	Remove a filter from a socket and release its resources.
1198  */
1199 static void sk_filter_release(struct sk_filter *fp)
1200 {
1201 	if (refcount_dec_and_test(&fp->refcnt))
1202 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1203 }
1204 
1205 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1206 {
1207 	u32 filter_size = bpf_prog_size(fp->prog->len);
1208 
1209 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1210 	sk_filter_release(fp);
1211 }
1212 
1213 /* try to charge the socket memory if there is space available
1214  * return true on success
1215  */
1216 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1217 {
1218 	u32 filter_size = bpf_prog_size(fp->prog->len);
1219 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1220 
1221 	/* same check as in sock_kmalloc() */
1222 	if (filter_size <= optmem_max &&
1223 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1224 		atomic_add(filter_size, &sk->sk_omem_alloc);
1225 		return true;
1226 	}
1227 	return false;
1228 }
1229 
1230 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1231 {
1232 	if (!refcount_inc_not_zero(&fp->refcnt))
1233 		return false;
1234 
1235 	if (!__sk_filter_charge(sk, fp)) {
1236 		sk_filter_release(fp);
1237 		return false;
1238 	}
1239 	return true;
1240 }
1241 
1242 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1243 {
1244 	struct sock_filter *old_prog;
1245 	struct bpf_prog *old_fp;
1246 	int err, new_len, old_len = fp->len;
1247 	bool seen_ld_abs = false;
1248 
1249 	/* We are free to overwrite insns et al right here as it won't be used at
1250 	 * this point in time anymore internally after the migration to the eBPF
1251 	 * instruction representation.
1252 	 */
1253 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1254 		     sizeof(struct bpf_insn));
1255 
1256 	/* Conversion cannot happen on overlapping memory areas,
1257 	 * so we need to keep the user BPF around until the 2nd
1258 	 * pass. At this time, the user BPF is stored in fp->insns.
1259 	 */
1260 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1261 			   GFP_KERNEL | __GFP_NOWARN);
1262 	if (!old_prog) {
1263 		err = -ENOMEM;
1264 		goto out_err;
1265 	}
1266 
1267 	/* 1st pass: calculate the new program length. */
1268 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1269 				 &seen_ld_abs);
1270 	if (err)
1271 		goto out_err_free;
1272 
1273 	/* Expand fp for appending the new filter representation. */
1274 	old_fp = fp;
1275 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1276 	if (!fp) {
1277 		/* The old_fp is still around in case we couldn't
1278 		 * allocate new memory, so uncharge on that one.
1279 		 */
1280 		fp = old_fp;
1281 		err = -ENOMEM;
1282 		goto out_err_free;
1283 	}
1284 
1285 	fp->len = new_len;
1286 
1287 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1288 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1289 				 &seen_ld_abs);
1290 	if (err)
1291 		/* 2nd bpf_convert_filter() can fail only if it fails
1292 		 * to allocate memory, remapping must succeed. Note,
1293 		 * that at this time old_fp has already been released
1294 		 * by krealloc().
1295 		 */
1296 		goto out_err_free;
1297 
1298 	fp = bpf_prog_select_runtime(fp, &err);
1299 	if (err)
1300 		goto out_err_free;
1301 
1302 	kfree(old_prog);
1303 	return fp;
1304 
1305 out_err_free:
1306 	kfree(old_prog);
1307 out_err:
1308 	__bpf_prog_release(fp);
1309 	return ERR_PTR(err);
1310 }
1311 
1312 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1313 					   bpf_aux_classic_check_t trans)
1314 {
1315 	int err;
1316 
1317 	fp->bpf_func = NULL;
1318 	fp->jited = 0;
1319 
1320 	err = bpf_check_classic(fp->insns, fp->len);
1321 	if (err) {
1322 		__bpf_prog_release(fp);
1323 		return ERR_PTR(err);
1324 	}
1325 
1326 	/* There might be additional checks and transformations
1327 	 * needed on classic filters, f.e. in case of seccomp.
1328 	 */
1329 	if (trans) {
1330 		err = trans(fp->insns, fp->len);
1331 		if (err) {
1332 			__bpf_prog_release(fp);
1333 			return ERR_PTR(err);
1334 		}
1335 	}
1336 
1337 	/* Probe if we can JIT compile the filter and if so, do
1338 	 * the compilation of the filter.
1339 	 */
1340 	bpf_jit_compile(fp);
1341 
1342 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1343 	 * for the optimized interpreter.
1344 	 */
1345 	if (!fp->jited)
1346 		fp = bpf_migrate_filter(fp);
1347 
1348 	return fp;
1349 }
1350 
1351 /**
1352  *	bpf_prog_create - create an unattached filter
1353  *	@pfp: the unattached filter that is created
1354  *	@fprog: the filter program
1355  *
1356  * Create a filter independent of any socket. We first run some
1357  * sanity checks on it to make sure it does not explode on us later.
1358  * If an error occurs or there is insufficient memory for the filter
1359  * a negative errno code is returned. On success the return is zero.
1360  */
1361 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1362 {
1363 	unsigned int fsize = bpf_classic_proglen(fprog);
1364 	struct bpf_prog *fp;
1365 
1366 	/* Make sure new filter is there and in the right amounts. */
1367 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1368 		return -EINVAL;
1369 
1370 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1371 	if (!fp)
1372 		return -ENOMEM;
1373 
1374 	memcpy(fp->insns, fprog->filter, fsize);
1375 
1376 	fp->len = fprog->len;
1377 	/* Since unattached filters are not copied back to user
1378 	 * space through sk_get_filter(), we do not need to hold
1379 	 * a copy here, and can spare us the work.
1380 	 */
1381 	fp->orig_prog = NULL;
1382 
1383 	/* bpf_prepare_filter() already takes care of freeing
1384 	 * memory in case something goes wrong.
1385 	 */
1386 	fp = bpf_prepare_filter(fp, NULL);
1387 	if (IS_ERR(fp))
1388 		return PTR_ERR(fp);
1389 
1390 	*pfp = fp;
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(bpf_prog_create);
1394 
1395 /**
1396  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1397  *	@pfp: the unattached filter that is created
1398  *	@fprog: the filter program
1399  *	@trans: post-classic verifier transformation handler
1400  *	@save_orig: save classic BPF program
1401  *
1402  * This function effectively does the same as bpf_prog_create(), only
1403  * that it builds up its insns buffer from user space provided buffer.
1404  * It also allows for passing a bpf_aux_classic_check_t handler.
1405  */
1406 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1407 			      bpf_aux_classic_check_t trans, bool save_orig)
1408 {
1409 	unsigned int fsize = bpf_classic_proglen(fprog);
1410 	struct bpf_prog *fp;
1411 	int err;
1412 
1413 	/* Make sure new filter is there and in the right amounts. */
1414 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1415 		return -EINVAL;
1416 
1417 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1418 	if (!fp)
1419 		return -ENOMEM;
1420 
1421 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1422 		__bpf_prog_free(fp);
1423 		return -EFAULT;
1424 	}
1425 
1426 	fp->len = fprog->len;
1427 	fp->orig_prog = NULL;
1428 
1429 	if (save_orig) {
1430 		err = bpf_prog_store_orig_filter(fp, fprog);
1431 		if (err) {
1432 			__bpf_prog_free(fp);
1433 			return -ENOMEM;
1434 		}
1435 	}
1436 
1437 	/* bpf_prepare_filter() already takes care of freeing
1438 	 * memory in case something goes wrong.
1439 	 */
1440 	fp = bpf_prepare_filter(fp, trans);
1441 	if (IS_ERR(fp))
1442 		return PTR_ERR(fp);
1443 
1444 	*pfp = fp;
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1448 
1449 void bpf_prog_destroy(struct bpf_prog *fp)
1450 {
1451 	__bpf_prog_release(fp);
1452 }
1453 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1454 
1455 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1456 {
1457 	struct sk_filter *fp, *old_fp;
1458 
1459 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1460 	if (!fp)
1461 		return -ENOMEM;
1462 
1463 	fp->prog = prog;
1464 
1465 	if (!__sk_filter_charge(sk, fp)) {
1466 		kfree(fp);
1467 		return -ENOMEM;
1468 	}
1469 	refcount_set(&fp->refcnt, 1);
1470 
1471 	old_fp = rcu_dereference_protected(sk->sk_filter,
1472 					   lockdep_sock_is_held(sk));
1473 	rcu_assign_pointer(sk->sk_filter, fp);
1474 
1475 	if (old_fp)
1476 		sk_filter_uncharge(sk, old_fp);
1477 
1478 	return 0;
1479 }
1480 
1481 static
1482 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1483 {
1484 	unsigned int fsize = bpf_classic_proglen(fprog);
1485 	struct bpf_prog *prog;
1486 	int err;
1487 
1488 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1489 		return ERR_PTR(-EPERM);
1490 
1491 	/* Make sure new filter is there and in the right amounts. */
1492 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1493 		return ERR_PTR(-EINVAL);
1494 
1495 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1496 	if (!prog)
1497 		return ERR_PTR(-ENOMEM);
1498 
1499 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1500 		__bpf_prog_free(prog);
1501 		return ERR_PTR(-EFAULT);
1502 	}
1503 
1504 	prog->len = fprog->len;
1505 
1506 	err = bpf_prog_store_orig_filter(prog, fprog);
1507 	if (err) {
1508 		__bpf_prog_free(prog);
1509 		return ERR_PTR(-ENOMEM);
1510 	}
1511 
1512 	/* bpf_prepare_filter() already takes care of freeing
1513 	 * memory in case something goes wrong.
1514 	 */
1515 	return bpf_prepare_filter(prog, NULL);
1516 }
1517 
1518 /**
1519  *	sk_attach_filter - attach a socket filter
1520  *	@fprog: the filter program
1521  *	@sk: the socket to use
1522  *
1523  * Attach the user's filter code. We first run some sanity checks on
1524  * it to make sure it does not explode on us later. If an error
1525  * occurs or there is insufficient memory for the filter a negative
1526  * errno code is returned. On success the return is zero.
1527  */
1528 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1529 {
1530 	struct bpf_prog *prog = __get_filter(fprog, sk);
1531 	int err;
1532 
1533 	if (IS_ERR(prog))
1534 		return PTR_ERR(prog);
1535 
1536 	err = __sk_attach_prog(prog, sk);
1537 	if (err < 0) {
1538 		__bpf_prog_release(prog);
1539 		return err;
1540 	}
1541 
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(sk_attach_filter);
1545 
1546 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1547 {
1548 	struct bpf_prog *prog = __get_filter(fprog, sk);
1549 	int err;
1550 
1551 	if (IS_ERR(prog))
1552 		return PTR_ERR(prog);
1553 
1554 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1555 		err = -ENOMEM;
1556 	else
1557 		err = reuseport_attach_prog(sk, prog);
1558 
1559 	if (err)
1560 		__bpf_prog_release(prog);
1561 
1562 	return err;
1563 }
1564 
1565 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1566 {
1567 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1568 		return ERR_PTR(-EPERM);
1569 
1570 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1571 }
1572 
1573 int sk_attach_bpf(u32 ufd, struct sock *sk)
1574 {
1575 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1576 	int err;
1577 
1578 	if (IS_ERR(prog))
1579 		return PTR_ERR(prog);
1580 
1581 	err = __sk_attach_prog(prog, sk);
1582 	if (err < 0) {
1583 		bpf_prog_put(prog);
1584 		return err;
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1591 {
1592 	struct bpf_prog *prog;
1593 	int err;
1594 
1595 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1596 		return -EPERM;
1597 
1598 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1599 	if (PTR_ERR(prog) == -EINVAL)
1600 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1601 	if (IS_ERR(prog))
1602 		return PTR_ERR(prog);
1603 
1604 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1605 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1606 		 * bpf prog (e.g. sockmap).  It depends on the
1607 		 * limitation imposed by bpf_prog_load().
1608 		 * Hence, sysctl_optmem_max is not checked.
1609 		 */
1610 		if ((sk->sk_type != SOCK_STREAM &&
1611 		     sk->sk_type != SOCK_DGRAM) ||
1612 		    (sk->sk_protocol != IPPROTO_UDP &&
1613 		     sk->sk_protocol != IPPROTO_TCP) ||
1614 		    (sk->sk_family != AF_INET &&
1615 		     sk->sk_family != AF_INET6)) {
1616 			err = -ENOTSUPP;
1617 			goto err_prog_put;
1618 		}
1619 	} else {
1620 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1621 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1622 			err = -ENOMEM;
1623 			goto err_prog_put;
1624 		}
1625 	}
1626 
1627 	err = reuseport_attach_prog(sk, prog);
1628 err_prog_put:
1629 	if (err)
1630 		bpf_prog_put(prog);
1631 
1632 	return err;
1633 }
1634 
1635 void sk_reuseport_prog_free(struct bpf_prog *prog)
1636 {
1637 	if (!prog)
1638 		return;
1639 
1640 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1641 		bpf_prog_put(prog);
1642 	else
1643 		bpf_prog_destroy(prog);
1644 }
1645 
1646 struct bpf_scratchpad {
1647 	union {
1648 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1649 		u8     buff[MAX_BPF_STACK];
1650 	};
1651 };
1652 
1653 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1654 
1655 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1656 					  unsigned int write_len)
1657 {
1658 	return skb_ensure_writable(skb, write_len);
1659 }
1660 
1661 static inline int bpf_try_make_writable(struct sk_buff *skb,
1662 					unsigned int write_len)
1663 {
1664 	int err = __bpf_try_make_writable(skb, write_len);
1665 
1666 	bpf_compute_data_pointers(skb);
1667 	return err;
1668 }
1669 
1670 static int bpf_try_make_head_writable(struct sk_buff *skb)
1671 {
1672 	return bpf_try_make_writable(skb, skb_headlen(skb));
1673 }
1674 
1675 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1676 {
1677 	if (skb_at_tc_ingress(skb))
1678 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1679 }
1680 
1681 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1682 {
1683 	if (skb_at_tc_ingress(skb))
1684 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1685 }
1686 
1687 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1688 	   const void *, from, u32, len, u64, flags)
1689 {
1690 	void *ptr;
1691 
1692 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1693 		return -EINVAL;
1694 	if (unlikely(offset > INT_MAX))
1695 		return -EFAULT;
1696 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1697 		return -EFAULT;
1698 
1699 	ptr = skb->data + offset;
1700 	if (flags & BPF_F_RECOMPUTE_CSUM)
1701 		__skb_postpull_rcsum(skb, ptr, len, offset);
1702 
1703 	memcpy(ptr, from, len);
1704 
1705 	if (flags & BPF_F_RECOMPUTE_CSUM)
1706 		__skb_postpush_rcsum(skb, ptr, len, offset);
1707 	if (flags & BPF_F_INVALIDATE_HASH)
1708 		skb_clear_hash(skb);
1709 
1710 	return 0;
1711 }
1712 
1713 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1714 	.func		= bpf_skb_store_bytes,
1715 	.gpl_only	= false,
1716 	.ret_type	= RET_INTEGER,
1717 	.arg1_type	= ARG_PTR_TO_CTX,
1718 	.arg2_type	= ARG_ANYTHING,
1719 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1720 	.arg4_type	= ARG_CONST_SIZE,
1721 	.arg5_type	= ARG_ANYTHING,
1722 };
1723 
1724 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1725 			  u32 len, u64 flags)
1726 {
1727 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1728 }
1729 
1730 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1731 	   void *, to, u32, len)
1732 {
1733 	void *ptr;
1734 
1735 	if (unlikely(offset > INT_MAX))
1736 		goto err_clear;
1737 
1738 	ptr = skb_header_pointer(skb, offset, len, to);
1739 	if (unlikely(!ptr))
1740 		goto err_clear;
1741 	if (ptr != to)
1742 		memcpy(to, ptr, len);
1743 
1744 	return 0;
1745 err_clear:
1746 	memset(to, 0, len);
1747 	return -EFAULT;
1748 }
1749 
1750 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1751 	.func		= bpf_skb_load_bytes,
1752 	.gpl_only	= false,
1753 	.ret_type	= RET_INTEGER,
1754 	.arg1_type	= ARG_PTR_TO_CTX,
1755 	.arg2_type	= ARG_ANYTHING,
1756 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1757 	.arg4_type	= ARG_CONST_SIZE,
1758 };
1759 
1760 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1761 {
1762 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1763 }
1764 
1765 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1766 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1767 	   void *, to, u32, len)
1768 {
1769 	void *ptr;
1770 
1771 	if (unlikely(offset > 0xffff))
1772 		goto err_clear;
1773 
1774 	if (unlikely(!ctx->skb))
1775 		goto err_clear;
1776 
1777 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1778 	if (unlikely(!ptr))
1779 		goto err_clear;
1780 	if (ptr != to)
1781 		memcpy(to, ptr, len);
1782 
1783 	return 0;
1784 err_clear:
1785 	memset(to, 0, len);
1786 	return -EFAULT;
1787 }
1788 
1789 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1790 	.func		= bpf_flow_dissector_load_bytes,
1791 	.gpl_only	= false,
1792 	.ret_type	= RET_INTEGER,
1793 	.arg1_type	= ARG_PTR_TO_CTX,
1794 	.arg2_type	= ARG_ANYTHING,
1795 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1796 	.arg4_type	= ARG_CONST_SIZE,
1797 };
1798 
1799 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1800 	   u32, offset, void *, to, u32, len, u32, start_header)
1801 {
1802 	u8 *end = skb_tail_pointer(skb);
1803 	u8 *start, *ptr;
1804 
1805 	if (unlikely(offset > 0xffff))
1806 		goto err_clear;
1807 
1808 	switch (start_header) {
1809 	case BPF_HDR_START_MAC:
1810 		if (unlikely(!skb_mac_header_was_set(skb)))
1811 			goto err_clear;
1812 		start = skb_mac_header(skb);
1813 		break;
1814 	case BPF_HDR_START_NET:
1815 		start = skb_network_header(skb);
1816 		break;
1817 	default:
1818 		goto err_clear;
1819 	}
1820 
1821 	ptr = start + offset;
1822 
1823 	if (likely(ptr + len <= end)) {
1824 		memcpy(to, ptr, len);
1825 		return 0;
1826 	}
1827 
1828 err_clear:
1829 	memset(to, 0, len);
1830 	return -EFAULT;
1831 }
1832 
1833 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1834 	.func		= bpf_skb_load_bytes_relative,
1835 	.gpl_only	= false,
1836 	.ret_type	= RET_INTEGER,
1837 	.arg1_type	= ARG_PTR_TO_CTX,
1838 	.arg2_type	= ARG_ANYTHING,
1839 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1840 	.arg4_type	= ARG_CONST_SIZE,
1841 	.arg5_type	= ARG_ANYTHING,
1842 };
1843 
1844 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1845 {
1846 	/* Idea is the following: should the needed direct read/write
1847 	 * test fail during runtime, we can pull in more data and redo
1848 	 * again, since implicitly, we invalidate previous checks here.
1849 	 *
1850 	 * Or, since we know how much we need to make read/writeable,
1851 	 * this can be done once at the program beginning for direct
1852 	 * access case. By this we overcome limitations of only current
1853 	 * headroom being accessible.
1854 	 */
1855 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1856 }
1857 
1858 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1859 	.func		= bpf_skb_pull_data,
1860 	.gpl_only	= false,
1861 	.ret_type	= RET_INTEGER,
1862 	.arg1_type	= ARG_PTR_TO_CTX,
1863 	.arg2_type	= ARG_ANYTHING,
1864 };
1865 
1866 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1867 {
1868 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1869 }
1870 
1871 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1872 	.func		= bpf_sk_fullsock,
1873 	.gpl_only	= false,
1874 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1875 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1876 };
1877 
1878 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1879 					   unsigned int write_len)
1880 {
1881 	return __bpf_try_make_writable(skb, write_len);
1882 }
1883 
1884 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1885 {
1886 	/* Idea is the following: should the needed direct read/write
1887 	 * test fail during runtime, we can pull in more data and redo
1888 	 * again, since implicitly, we invalidate previous checks here.
1889 	 *
1890 	 * Or, since we know how much we need to make read/writeable,
1891 	 * this can be done once at the program beginning for direct
1892 	 * access case. By this we overcome limitations of only current
1893 	 * headroom being accessible.
1894 	 */
1895 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1896 }
1897 
1898 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1899 	.func		= sk_skb_pull_data,
1900 	.gpl_only	= false,
1901 	.ret_type	= RET_INTEGER,
1902 	.arg1_type	= ARG_PTR_TO_CTX,
1903 	.arg2_type	= ARG_ANYTHING,
1904 };
1905 
1906 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1907 	   u64, from, u64, to, u64, flags)
1908 {
1909 	__sum16 *ptr;
1910 
1911 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1912 		return -EINVAL;
1913 	if (unlikely(offset > 0xffff || offset & 1))
1914 		return -EFAULT;
1915 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1916 		return -EFAULT;
1917 
1918 	ptr = (__sum16 *)(skb->data + offset);
1919 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1920 	case 0:
1921 		if (unlikely(from != 0))
1922 			return -EINVAL;
1923 
1924 		csum_replace_by_diff(ptr, to);
1925 		break;
1926 	case 2:
1927 		csum_replace2(ptr, from, to);
1928 		break;
1929 	case 4:
1930 		csum_replace4(ptr, from, to);
1931 		break;
1932 	default:
1933 		return -EINVAL;
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1940 	.func		= bpf_l3_csum_replace,
1941 	.gpl_only	= false,
1942 	.ret_type	= RET_INTEGER,
1943 	.arg1_type	= ARG_PTR_TO_CTX,
1944 	.arg2_type	= ARG_ANYTHING,
1945 	.arg3_type	= ARG_ANYTHING,
1946 	.arg4_type	= ARG_ANYTHING,
1947 	.arg5_type	= ARG_ANYTHING,
1948 };
1949 
1950 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1951 	   u64, from, u64, to, u64, flags)
1952 {
1953 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1954 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1955 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1956 	__sum16 *ptr;
1957 
1958 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1959 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1960 		return -EINVAL;
1961 	if (unlikely(offset > 0xffff || offset & 1))
1962 		return -EFAULT;
1963 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1964 		return -EFAULT;
1965 
1966 	ptr = (__sum16 *)(skb->data + offset);
1967 	if (is_mmzero && !do_mforce && !*ptr)
1968 		return 0;
1969 
1970 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1971 	case 0:
1972 		if (unlikely(from != 0))
1973 			return -EINVAL;
1974 
1975 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1976 		break;
1977 	case 2:
1978 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1979 		break;
1980 	case 4:
1981 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1982 		break;
1983 	default:
1984 		return -EINVAL;
1985 	}
1986 
1987 	if (is_mmzero && !*ptr)
1988 		*ptr = CSUM_MANGLED_0;
1989 	return 0;
1990 }
1991 
1992 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1993 	.func		= bpf_l4_csum_replace,
1994 	.gpl_only	= false,
1995 	.ret_type	= RET_INTEGER,
1996 	.arg1_type	= ARG_PTR_TO_CTX,
1997 	.arg2_type	= ARG_ANYTHING,
1998 	.arg3_type	= ARG_ANYTHING,
1999 	.arg4_type	= ARG_ANYTHING,
2000 	.arg5_type	= ARG_ANYTHING,
2001 };
2002 
2003 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2004 	   __be32 *, to, u32, to_size, __wsum, seed)
2005 {
2006 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2007 	u32 diff_size = from_size + to_size;
2008 	int i, j = 0;
2009 
2010 	/* This is quite flexible, some examples:
2011 	 *
2012 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2013 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2014 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2015 	 *
2016 	 * Even for diffing, from_size and to_size don't need to be equal.
2017 	 */
2018 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2019 		     diff_size > sizeof(sp->diff)))
2020 		return -EINVAL;
2021 
2022 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2023 		sp->diff[j] = ~from[i];
2024 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2025 		sp->diff[j] = to[i];
2026 
2027 	return csum_partial(sp->diff, diff_size, seed);
2028 }
2029 
2030 static const struct bpf_func_proto bpf_csum_diff_proto = {
2031 	.func		= bpf_csum_diff,
2032 	.gpl_only	= false,
2033 	.pkt_access	= true,
2034 	.ret_type	= RET_INTEGER,
2035 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2036 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2037 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2038 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2039 	.arg5_type	= ARG_ANYTHING,
2040 };
2041 
2042 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2043 {
2044 	/* The interface is to be used in combination with bpf_csum_diff()
2045 	 * for direct packet writes. csum rotation for alignment as well
2046 	 * as emulating csum_sub() can be done from the eBPF program.
2047 	 */
2048 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2049 		return (skb->csum = csum_add(skb->csum, csum));
2050 
2051 	return -ENOTSUPP;
2052 }
2053 
2054 static const struct bpf_func_proto bpf_csum_update_proto = {
2055 	.func		= bpf_csum_update,
2056 	.gpl_only	= false,
2057 	.ret_type	= RET_INTEGER,
2058 	.arg1_type	= ARG_PTR_TO_CTX,
2059 	.arg2_type	= ARG_ANYTHING,
2060 };
2061 
2062 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2063 {
2064 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2065 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2066 	 * is passed as flags, for example.
2067 	 */
2068 	switch (level) {
2069 	case BPF_CSUM_LEVEL_INC:
2070 		__skb_incr_checksum_unnecessary(skb);
2071 		break;
2072 	case BPF_CSUM_LEVEL_DEC:
2073 		__skb_decr_checksum_unnecessary(skb);
2074 		break;
2075 	case BPF_CSUM_LEVEL_RESET:
2076 		__skb_reset_checksum_unnecessary(skb);
2077 		break;
2078 	case BPF_CSUM_LEVEL_QUERY:
2079 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2080 		       skb->csum_level : -EACCES;
2081 	default:
2082 		return -EINVAL;
2083 	}
2084 
2085 	return 0;
2086 }
2087 
2088 static const struct bpf_func_proto bpf_csum_level_proto = {
2089 	.func		= bpf_csum_level,
2090 	.gpl_only	= false,
2091 	.ret_type	= RET_INTEGER,
2092 	.arg1_type	= ARG_PTR_TO_CTX,
2093 	.arg2_type	= ARG_ANYTHING,
2094 };
2095 
2096 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2097 {
2098 	return dev_forward_skb_nomtu(dev, skb);
2099 }
2100 
2101 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2102 				      struct sk_buff *skb)
2103 {
2104 	int ret = ____dev_forward_skb(dev, skb, false);
2105 
2106 	if (likely(!ret)) {
2107 		skb->dev = dev;
2108 		ret = netif_rx(skb);
2109 	}
2110 
2111 	return ret;
2112 }
2113 
2114 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2115 {
2116 	int ret;
2117 
2118 	if (dev_xmit_recursion()) {
2119 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2120 		kfree_skb(skb);
2121 		return -ENETDOWN;
2122 	}
2123 
2124 	skb->dev = dev;
2125 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2126 	skb_clear_tstamp(skb);
2127 
2128 	dev_xmit_recursion_inc();
2129 	ret = dev_queue_xmit(skb);
2130 	dev_xmit_recursion_dec();
2131 
2132 	return ret;
2133 }
2134 
2135 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2136 				 u32 flags)
2137 {
2138 	unsigned int mlen = skb_network_offset(skb);
2139 
2140 	if (unlikely(skb->len <= mlen)) {
2141 		kfree_skb(skb);
2142 		return -ERANGE;
2143 	}
2144 
2145 	if (mlen) {
2146 		__skb_pull(skb, mlen);
2147 
2148 		/* At ingress, the mac header has already been pulled once.
2149 		 * At egress, skb_pospull_rcsum has to be done in case that
2150 		 * the skb is originated from ingress (i.e. a forwarded skb)
2151 		 * to ensure that rcsum starts at net header.
2152 		 */
2153 		if (!skb_at_tc_ingress(skb))
2154 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2155 	}
2156 	skb_pop_mac_header(skb);
2157 	skb_reset_mac_len(skb);
2158 	return flags & BPF_F_INGRESS ?
2159 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2160 }
2161 
2162 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2163 				 u32 flags)
2164 {
2165 	/* Verify that a link layer header is carried */
2166 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2167 		kfree_skb(skb);
2168 		return -ERANGE;
2169 	}
2170 
2171 	bpf_push_mac_rcsum(skb);
2172 	return flags & BPF_F_INGRESS ?
2173 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2174 }
2175 
2176 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2177 			  u32 flags)
2178 {
2179 	if (dev_is_mac_header_xmit(dev))
2180 		return __bpf_redirect_common(skb, dev, flags);
2181 	else
2182 		return __bpf_redirect_no_mac(skb, dev, flags);
2183 }
2184 
2185 #if IS_ENABLED(CONFIG_IPV6)
2186 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2187 			    struct net_device *dev, struct bpf_nh_params *nh)
2188 {
2189 	u32 hh_len = LL_RESERVED_SPACE(dev);
2190 	const struct in6_addr *nexthop;
2191 	struct dst_entry *dst = NULL;
2192 	struct neighbour *neigh;
2193 
2194 	if (dev_xmit_recursion()) {
2195 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2196 		goto out_drop;
2197 	}
2198 
2199 	skb->dev = dev;
2200 	skb_clear_tstamp(skb);
2201 
2202 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2203 		skb = skb_expand_head(skb, hh_len);
2204 		if (!skb)
2205 			return -ENOMEM;
2206 	}
2207 
2208 	rcu_read_lock();
2209 	if (!nh) {
2210 		dst = skb_dst(skb);
2211 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2212 				      &ipv6_hdr(skb)->daddr);
2213 	} else {
2214 		nexthop = &nh->ipv6_nh;
2215 	}
2216 	neigh = ip_neigh_gw6(dev, nexthop);
2217 	if (likely(!IS_ERR(neigh))) {
2218 		int ret;
2219 
2220 		sock_confirm_neigh(skb, neigh);
2221 		local_bh_disable();
2222 		dev_xmit_recursion_inc();
2223 		ret = neigh_output(neigh, skb, false);
2224 		dev_xmit_recursion_dec();
2225 		local_bh_enable();
2226 		rcu_read_unlock();
2227 		return ret;
2228 	}
2229 	rcu_read_unlock_bh();
2230 	if (dst)
2231 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2232 out_drop:
2233 	kfree_skb(skb);
2234 	return -ENETDOWN;
2235 }
2236 
2237 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2238 				   struct bpf_nh_params *nh)
2239 {
2240 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2241 	struct net *net = dev_net(dev);
2242 	int err, ret = NET_XMIT_DROP;
2243 
2244 	if (!nh) {
2245 		struct dst_entry *dst;
2246 		struct flowi6 fl6 = {
2247 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2248 			.flowi6_mark  = skb->mark,
2249 			.flowlabel    = ip6_flowinfo(ip6h),
2250 			.flowi6_oif   = dev->ifindex,
2251 			.flowi6_proto = ip6h->nexthdr,
2252 			.daddr	      = ip6h->daddr,
2253 			.saddr	      = ip6h->saddr,
2254 		};
2255 
2256 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2257 		if (IS_ERR(dst))
2258 			goto out_drop;
2259 
2260 		skb_dst_set(skb, dst);
2261 	} else if (nh->nh_family != AF_INET6) {
2262 		goto out_drop;
2263 	}
2264 
2265 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2266 	if (unlikely(net_xmit_eval(err)))
2267 		dev->stats.tx_errors++;
2268 	else
2269 		ret = NET_XMIT_SUCCESS;
2270 	goto out_xmit;
2271 out_drop:
2272 	dev->stats.tx_errors++;
2273 	kfree_skb(skb);
2274 out_xmit:
2275 	return ret;
2276 }
2277 #else
2278 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2279 				   struct bpf_nh_params *nh)
2280 {
2281 	kfree_skb(skb);
2282 	return NET_XMIT_DROP;
2283 }
2284 #endif /* CONFIG_IPV6 */
2285 
2286 #if IS_ENABLED(CONFIG_INET)
2287 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2288 			    struct net_device *dev, struct bpf_nh_params *nh)
2289 {
2290 	u32 hh_len = LL_RESERVED_SPACE(dev);
2291 	struct neighbour *neigh;
2292 	bool is_v6gw = false;
2293 
2294 	if (dev_xmit_recursion()) {
2295 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2296 		goto out_drop;
2297 	}
2298 
2299 	skb->dev = dev;
2300 	skb_clear_tstamp(skb);
2301 
2302 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2303 		skb = skb_expand_head(skb, hh_len);
2304 		if (!skb)
2305 			return -ENOMEM;
2306 	}
2307 
2308 	rcu_read_lock();
2309 	if (!nh) {
2310 		struct dst_entry *dst = skb_dst(skb);
2311 		struct rtable *rt = container_of(dst, struct rtable, dst);
2312 
2313 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2314 	} else if (nh->nh_family == AF_INET6) {
2315 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2316 		is_v6gw = true;
2317 	} else if (nh->nh_family == AF_INET) {
2318 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2319 	} else {
2320 		rcu_read_unlock();
2321 		goto out_drop;
2322 	}
2323 
2324 	if (likely(!IS_ERR(neigh))) {
2325 		int ret;
2326 
2327 		sock_confirm_neigh(skb, neigh);
2328 		local_bh_disable();
2329 		dev_xmit_recursion_inc();
2330 		ret = neigh_output(neigh, skb, is_v6gw);
2331 		dev_xmit_recursion_dec();
2332 		local_bh_enable();
2333 		rcu_read_unlock();
2334 		return ret;
2335 	}
2336 	rcu_read_unlock();
2337 out_drop:
2338 	kfree_skb(skb);
2339 	return -ENETDOWN;
2340 }
2341 
2342 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2343 				   struct bpf_nh_params *nh)
2344 {
2345 	const struct iphdr *ip4h = ip_hdr(skb);
2346 	struct net *net = dev_net(dev);
2347 	int err, ret = NET_XMIT_DROP;
2348 
2349 	if (!nh) {
2350 		struct flowi4 fl4 = {
2351 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2352 			.flowi4_mark  = skb->mark,
2353 			.flowi4_tos   = RT_TOS(ip4h->tos),
2354 			.flowi4_oif   = dev->ifindex,
2355 			.flowi4_proto = ip4h->protocol,
2356 			.daddr	      = ip4h->daddr,
2357 			.saddr	      = ip4h->saddr,
2358 		};
2359 		struct rtable *rt;
2360 
2361 		rt = ip_route_output_flow(net, &fl4, NULL);
2362 		if (IS_ERR(rt))
2363 			goto out_drop;
2364 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2365 			ip_rt_put(rt);
2366 			goto out_drop;
2367 		}
2368 
2369 		skb_dst_set(skb, &rt->dst);
2370 	}
2371 
2372 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2373 	if (unlikely(net_xmit_eval(err)))
2374 		dev->stats.tx_errors++;
2375 	else
2376 		ret = NET_XMIT_SUCCESS;
2377 	goto out_xmit;
2378 out_drop:
2379 	dev->stats.tx_errors++;
2380 	kfree_skb(skb);
2381 out_xmit:
2382 	return ret;
2383 }
2384 #else
2385 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2386 				   struct bpf_nh_params *nh)
2387 {
2388 	kfree_skb(skb);
2389 	return NET_XMIT_DROP;
2390 }
2391 #endif /* CONFIG_INET */
2392 
2393 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2394 				struct bpf_nh_params *nh)
2395 {
2396 	struct ethhdr *ethh = eth_hdr(skb);
2397 
2398 	if (unlikely(skb->mac_header >= skb->network_header))
2399 		goto out;
2400 	bpf_push_mac_rcsum(skb);
2401 	if (is_multicast_ether_addr(ethh->h_dest))
2402 		goto out;
2403 
2404 	skb_pull(skb, sizeof(*ethh));
2405 	skb_unset_mac_header(skb);
2406 	skb_reset_network_header(skb);
2407 
2408 	if (skb->protocol == htons(ETH_P_IP))
2409 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2410 	else if (skb->protocol == htons(ETH_P_IPV6))
2411 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2412 out:
2413 	kfree_skb(skb);
2414 	return -ENOTSUPP;
2415 }
2416 
2417 /* Internal, non-exposed redirect flags. */
2418 enum {
2419 	BPF_F_NEIGH	= (1ULL << 1),
2420 	BPF_F_PEER	= (1ULL << 2),
2421 	BPF_F_NEXTHOP	= (1ULL << 3),
2422 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2423 };
2424 
2425 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2426 {
2427 	struct net_device *dev;
2428 	struct sk_buff *clone;
2429 	int ret;
2430 
2431 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2432 		return -EINVAL;
2433 
2434 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2435 	if (unlikely(!dev))
2436 		return -EINVAL;
2437 
2438 	clone = skb_clone(skb, GFP_ATOMIC);
2439 	if (unlikely(!clone))
2440 		return -ENOMEM;
2441 
2442 	/* For direct write, we need to keep the invariant that the skbs
2443 	 * we're dealing with need to be uncloned. Should uncloning fail
2444 	 * here, we need to free the just generated clone to unclone once
2445 	 * again.
2446 	 */
2447 	ret = bpf_try_make_head_writable(skb);
2448 	if (unlikely(ret)) {
2449 		kfree_skb(clone);
2450 		return -ENOMEM;
2451 	}
2452 
2453 	return __bpf_redirect(clone, dev, flags);
2454 }
2455 
2456 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2457 	.func           = bpf_clone_redirect,
2458 	.gpl_only       = false,
2459 	.ret_type       = RET_INTEGER,
2460 	.arg1_type      = ARG_PTR_TO_CTX,
2461 	.arg2_type      = ARG_ANYTHING,
2462 	.arg3_type      = ARG_ANYTHING,
2463 };
2464 
2465 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2466 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2467 
2468 int skb_do_redirect(struct sk_buff *skb)
2469 {
2470 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2471 	struct net *net = dev_net(skb->dev);
2472 	struct net_device *dev;
2473 	u32 flags = ri->flags;
2474 
2475 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2476 	ri->tgt_index = 0;
2477 	ri->flags = 0;
2478 	if (unlikely(!dev))
2479 		goto out_drop;
2480 	if (flags & BPF_F_PEER) {
2481 		const struct net_device_ops *ops = dev->netdev_ops;
2482 
2483 		if (unlikely(!ops->ndo_get_peer_dev ||
2484 			     !skb_at_tc_ingress(skb)))
2485 			goto out_drop;
2486 		dev = ops->ndo_get_peer_dev(dev);
2487 		if (unlikely(!dev ||
2488 			     !(dev->flags & IFF_UP) ||
2489 			     net_eq(net, dev_net(dev))))
2490 			goto out_drop;
2491 		skb->dev = dev;
2492 		return -EAGAIN;
2493 	}
2494 	return flags & BPF_F_NEIGH ?
2495 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2496 				    &ri->nh : NULL) :
2497 	       __bpf_redirect(skb, dev, flags);
2498 out_drop:
2499 	kfree_skb(skb);
2500 	return -EINVAL;
2501 }
2502 
2503 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2504 {
2505 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2506 
2507 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2508 		return TC_ACT_SHOT;
2509 
2510 	ri->flags = flags;
2511 	ri->tgt_index = ifindex;
2512 
2513 	return TC_ACT_REDIRECT;
2514 }
2515 
2516 static const struct bpf_func_proto bpf_redirect_proto = {
2517 	.func           = bpf_redirect,
2518 	.gpl_only       = false,
2519 	.ret_type       = RET_INTEGER,
2520 	.arg1_type      = ARG_ANYTHING,
2521 	.arg2_type      = ARG_ANYTHING,
2522 };
2523 
2524 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2525 {
2526 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2527 
2528 	if (unlikely(flags))
2529 		return TC_ACT_SHOT;
2530 
2531 	ri->flags = BPF_F_PEER;
2532 	ri->tgt_index = ifindex;
2533 
2534 	return TC_ACT_REDIRECT;
2535 }
2536 
2537 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2538 	.func           = bpf_redirect_peer,
2539 	.gpl_only       = false,
2540 	.ret_type       = RET_INTEGER,
2541 	.arg1_type      = ARG_ANYTHING,
2542 	.arg2_type      = ARG_ANYTHING,
2543 };
2544 
2545 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2546 	   int, plen, u64, flags)
2547 {
2548 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2549 
2550 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2551 		return TC_ACT_SHOT;
2552 
2553 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2554 	ri->tgt_index = ifindex;
2555 
2556 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2557 	if (plen)
2558 		memcpy(&ri->nh, params, sizeof(ri->nh));
2559 
2560 	return TC_ACT_REDIRECT;
2561 }
2562 
2563 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2564 	.func		= bpf_redirect_neigh,
2565 	.gpl_only	= false,
2566 	.ret_type	= RET_INTEGER,
2567 	.arg1_type	= ARG_ANYTHING,
2568 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2569 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2570 	.arg4_type	= ARG_ANYTHING,
2571 };
2572 
2573 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2574 {
2575 	msg->apply_bytes = bytes;
2576 	return 0;
2577 }
2578 
2579 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2580 	.func           = bpf_msg_apply_bytes,
2581 	.gpl_only       = false,
2582 	.ret_type       = RET_INTEGER,
2583 	.arg1_type	= ARG_PTR_TO_CTX,
2584 	.arg2_type      = ARG_ANYTHING,
2585 };
2586 
2587 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2588 {
2589 	msg->cork_bytes = bytes;
2590 	return 0;
2591 }
2592 
2593 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2594 	.func           = bpf_msg_cork_bytes,
2595 	.gpl_only       = false,
2596 	.ret_type       = RET_INTEGER,
2597 	.arg1_type	= ARG_PTR_TO_CTX,
2598 	.arg2_type      = ARG_ANYTHING,
2599 };
2600 
2601 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2602 	   u32, end, u64, flags)
2603 {
2604 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2605 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2606 	struct scatterlist *sge;
2607 	u8 *raw, *to, *from;
2608 	struct page *page;
2609 
2610 	if (unlikely(flags || end <= start))
2611 		return -EINVAL;
2612 
2613 	/* First find the starting scatterlist element */
2614 	i = msg->sg.start;
2615 	do {
2616 		offset += len;
2617 		len = sk_msg_elem(msg, i)->length;
2618 		if (start < offset + len)
2619 			break;
2620 		sk_msg_iter_var_next(i);
2621 	} while (i != msg->sg.end);
2622 
2623 	if (unlikely(start >= offset + len))
2624 		return -EINVAL;
2625 
2626 	first_sge = i;
2627 	/* The start may point into the sg element so we need to also
2628 	 * account for the headroom.
2629 	 */
2630 	bytes_sg_total = start - offset + bytes;
2631 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2632 		goto out;
2633 
2634 	/* At this point we need to linearize multiple scatterlist
2635 	 * elements or a single shared page. Either way we need to
2636 	 * copy into a linear buffer exclusively owned by BPF. Then
2637 	 * place the buffer in the scatterlist and fixup the original
2638 	 * entries by removing the entries now in the linear buffer
2639 	 * and shifting the remaining entries. For now we do not try
2640 	 * to copy partial entries to avoid complexity of running out
2641 	 * of sg_entry slots. The downside is reading a single byte
2642 	 * will copy the entire sg entry.
2643 	 */
2644 	do {
2645 		copy += sk_msg_elem(msg, i)->length;
2646 		sk_msg_iter_var_next(i);
2647 		if (bytes_sg_total <= copy)
2648 			break;
2649 	} while (i != msg->sg.end);
2650 	last_sge = i;
2651 
2652 	if (unlikely(bytes_sg_total > copy))
2653 		return -EINVAL;
2654 
2655 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2656 			   get_order(copy));
2657 	if (unlikely(!page))
2658 		return -ENOMEM;
2659 
2660 	raw = page_address(page);
2661 	i = first_sge;
2662 	do {
2663 		sge = sk_msg_elem(msg, i);
2664 		from = sg_virt(sge);
2665 		len = sge->length;
2666 		to = raw + poffset;
2667 
2668 		memcpy(to, from, len);
2669 		poffset += len;
2670 		sge->length = 0;
2671 		put_page(sg_page(sge));
2672 
2673 		sk_msg_iter_var_next(i);
2674 	} while (i != last_sge);
2675 
2676 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2677 
2678 	/* To repair sg ring we need to shift entries. If we only
2679 	 * had a single entry though we can just replace it and
2680 	 * be done. Otherwise walk the ring and shift the entries.
2681 	 */
2682 	WARN_ON_ONCE(last_sge == first_sge);
2683 	shift = last_sge > first_sge ?
2684 		last_sge - first_sge - 1 :
2685 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2686 	if (!shift)
2687 		goto out;
2688 
2689 	i = first_sge;
2690 	sk_msg_iter_var_next(i);
2691 	do {
2692 		u32 move_from;
2693 
2694 		if (i + shift >= NR_MSG_FRAG_IDS)
2695 			move_from = i + shift - NR_MSG_FRAG_IDS;
2696 		else
2697 			move_from = i + shift;
2698 		if (move_from == msg->sg.end)
2699 			break;
2700 
2701 		msg->sg.data[i] = msg->sg.data[move_from];
2702 		msg->sg.data[move_from].length = 0;
2703 		msg->sg.data[move_from].page_link = 0;
2704 		msg->sg.data[move_from].offset = 0;
2705 		sk_msg_iter_var_next(i);
2706 	} while (1);
2707 
2708 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2709 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2710 		      msg->sg.end - shift;
2711 out:
2712 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2713 	msg->data_end = msg->data + bytes;
2714 	return 0;
2715 }
2716 
2717 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2718 	.func		= bpf_msg_pull_data,
2719 	.gpl_only	= false,
2720 	.ret_type	= RET_INTEGER,
2721 	.arg1_type	= ARG_PTR_TO_CTX,
2722 	.arg2_type	= ARG_ANYTHING,
2723 	.arg3_type	= ARG_ANYTHING,
2724 	.arg4_type	= ARG_ANYTHING,
2725 };
2726 
2727 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2728 	   u32, len, u64, flags)
2729 {
2730 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2731 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2732 	u8 *raw, *to, *from;
2733 	struct page *page;
2734 
2735 	if (unlikely(flags))
2736 		return -EINVAL;
2737 
2738 	if (unlikely(len == 0))
2739 		return 0;
2740 
2741 	/* First find the starting scatterlist element */
2742 	i = msg->sg.start;
2743 	do {
2744 		offset += l;
2745 		l = sk_msg_elem(msg, i)->length;
2746 
2747 		if (start < offset + l)
2748 			break;
2749 		sk_msg_iter_var_next(i);
2750 	} while (i != msg->sg.end);
2751 
2752 	if (start >= offset + l)
2753 		return -EINVAL;
2754 
2755 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2756 
2757 	/* If no space available will fallback to copy, we need at
2758 	 * least one scatterlist elem available to push data into
2759 	 * when start aligns to the beginning of an element or two
2760 	 * when it falls inside an element. We handle the start equals
2761 	 * offset case because its the common case for inserting a
2762 	 * header.
2763 	 */
2764 	if (!space || (space == 1 && start != offset))
2765 		copy = msg->sg.data[i].length;
2766 
2767 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2768 			   get_order(copy + len));
2769 	if (unlikely(!page))
2770 		return -ENOMEM;
2771 
2772 	if (copy) {
2773 		int front, back;
2774 
2775 		raw = page_address(page);
2776 
2777 		psge = sk_msg_elem(msg, i);
2778 		front = start - offset;
2779 		back = psge->length - front;
2780 		from = sg_virt(psge);
2781 
2782 		if (front)
2783 			memcpy(raw, from, front);
2784 
2785 		if (back) {
2786 			from += front;
2787 			to = raw + front + len;
2788 
2789 			memcpy(to, from, back);
2790 		}
2791 
2792 		put_page(sg_page(psge));
2793 	} else if (start - offset) {
2794 		psge = sk_msg_elem(msg, i);
2795 		rsge = sk_msg_elem_cpy(msg, i);
2796 
2797 		psge->length = start - offset;
2798 		rsge.length -= psge->length;
2799 		rsge.offset += start;
2800 
2801 		sk_msg_iter_var_next(i);
2802 		sg_unmark_end(psge);
2803 		sg_unmark_end(&rsge);
2804 		sk_msg_iter_next(msg, end);
2805 	}
2806 
2807 	/* Slot(s) to place newly allocated data */
2808 	new = i;
2809 
2810 	/* Shift one or two slots as needed */
2811 	if (!copy) {
2812 		sge = sk_msg_elem_cpy(msg, i);
2813 
2814 		sk_msg_iter_var_next(i);
2815 		sg_unmark_end(&sge);
2816 		sk_msg_iter_next(msg, end);
2817 
2818 		nsge = sk_msg_elem_cpy(msg, i);
2819 		if (rsge.length) {
2820 			sk_msg_iter_var_next(i);
2821 			nnsge = sk_msg_elem_cpy(msg, i);
2822 		}
2823 
2824 		while (i != msg->sg.end) {
2825 			msg->sg.data[i] = sge;
2826 			sge = nsge;
2827 			sk_msg_iter_var_next(i);
2828 			if (rsge.length) {
2829 				nsge = nnsge;
2830 				nnsge = sk_msg_elem_cpy(msg, i);
2831 			} else {
2832 				nsge = sk_msg_elem_cpy(msg, i);
2833 			}
2834 		}
2835 	}
2836 
2837 	/* Place newly allocated data buffer */
2838 	sk_mem_charge(msg->sk, len);
2839 	msg->sg.size += len;
2840 	__clear_bit(new, msg->sg.copy);
2841 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2842 	if (rsge.length) {
2843 		get_page(sg_page(&rsge));
2844 		sk_msg_iter_var_next(new);
2845 		msg->sg.data[new] = rsge;
2846 	}
2847 
2848 	sk_msg_compute_data_pointers(msg);
2849 	return 0;
2850 }
2851 
2852 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2853 	.func		= bpf_msg_push_data,
2854 	.gpl_only	= false,
2855 	.ret_type	= RET_INTEGER,
2856 	.arg1_type	= ARG_PTR_TO_CTX,
2857 	.arg2_type	= ARG_ANYTHING,
2858 	.arg3_type	= ARG_ANYTHING,
2859 	.arg4_type	= ARG_ANYTHING,
2860 };
2861 
2862 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2863 {
2864 	int prev;
2865 
2866 	do {
2867 		prev = i;
2868 		sk_msg_iter_var_next(i);
2869 		msg->sg.data[prev] = msg->sg.data[i];
2870 	} while (i != msg->sg.end);
2871 
2872 	sk_msg_iter_prev(msg, end);
2873 }
2874 
2875 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2876 {
2877 	struct scatterlist tmp, sge;
2878 
2879 	sk_msg_iter_next(msg, end);
2880 	sge = sk_msg_elem_cpy(msg, i);
2881 	sk_msg_iter_var_next(i);
2882 	tmp = sk_msg_elem_cpy(msg, i);
2883 
2884 	while (i != msg->sg.end) {
2885 		msg->sg.data[i] = sge;
2886 		sk_msg_iter_var_next(i);
2887 		sge = tmp;
2888 		tmp = sk_msg_elem_cpy(msg, i);
2889 	}
2890 }
2891 
2892 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2893 	   u32, len, u64, flags)
2894 {
2895 	u32 i = 0, l = 0, space, offset = 0;
2896 	u64 last = start + len;
2897 	int pop;
2898 
2899 	if (unlikely(flags))
2900 		return -EINVAL;
2901 
2902 	/* First find the starting scatterlist element */
2903 	i = msg->sg.start;
2904 	do {
2905 		offset += l;
2906 		l = sk_msg_elem(msg, i)->length;
2907 
2908 		if (start < offset + l)
2909 			break;
2910 		sk_msg_iter_var_next(i);
2911 	} while (i != msg->sg.end);
2912 
2913 	/* Bounds checks: start and pop must be inside message */
2914 	if (start >= offset + l || last >= msg->sg.size)
2915 		return -EINVAL;
2916 
2917 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2918 
2919 	pop = len;
2920 	/* --------------| offset
2921 	 * -| start      |-------- len -------|
2922 	 *
2923 	 *  |----- a ----|-------- pop -------|----- b ----|
2924 	 *  |______________________________________________| length
2925 	 *
2926 	 *
2927 	 * a:   region at front of scatter element to save
2928 	 * b:   region at back of scatter element to save when length > A + pop
2929 	 * pop: region to pop from element, same as input 'pop' here will be
2930 	 *      decremented below per iteration.
2931 	 *
2932 	 * Two top-level cases to handle when start != offset, first B is non
2933 	 * zero and second B is zero corresponding to when a pop includes more
2934 	 * than one element.
2935 	 *
2936 	 * Then if B is non-zero AND there is no space allocate space and
2937 	 * compact A, B regions into page. If there is space shift ring to
2938 	 * the rigth free'ing the next element in ring to place B, leaving
2939 	 * A untouched except to reduce length.
2940 	 */
2941 	if (start != offset) {
2942 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2943 		int a = start;
2944 		int b = sge->length - pop - a;
2945 
2946 		sk_msg_iter_var_next(i);
2947 
2948 		if (pop < sge->length - a) {
2949 			if (space) {
2950 				sge->length = a;
2951 				sk_msg_shift_right(msg, i);
2952 				nsge = sk_msg_elem(msg, i);
2953 				get_page(sg_page(sge));
2954 				sg_set_page(nsge,
2955 					    sg_page(sge),
2956 					    b, sge->offset + pop + a);
2957 			} else {
2958 				struct page *page, *orig;
2959 				u8 *to, *from;
2960 
2961 				page = alloc_pages(__GFP_NOWARN |
2962 						   __GFP_COMP   | GFP_ATOMIC,
2963 						   get_order(a + b));
2964 				if (unlikely(!page))
2965 					return -ENOMEM;
2966 
2967 				sge->length = a;
2968 				orig = sg_page(sge);
2969 				from = sg_virt(sge);
2970 				to = page_address(page);
2971 				memcpy(to, from, a);
2972 				memcpy(to + a, from + a + pop, b);
2973 				sg_set_page(sge, page, a + b, 0);
2974 				put_page(orig);
2975 			}
2976 			pop = 0;
2977 		} else if (pop >= sge->length - a) {
2978 			pop -= (sge->length - a);
2979 			sge->length = a;
2980 		}
2981 	}
2982 
2983 	/* From above the current layout _must_ be as follows,
2984 	 *
2985 	 * -| offset
2986 	 * -| start
2987 	 *
2988 	 *  |---- pop ---|---------------- b ------------|
2989 	 *  |____________________________________________| length
2990 	 *
2991 	 * Offset and start of the current msg elem are equal because in the
2992 	 * previous case we handled offset != start and either consumed the
2993 	 * entire element and advanced to the next element OR pop == 0.
2994 	 *
2995 	 * Two cases to handle here are first pop is less than the length
2996 	 * leaving some remainder b above. Simply adjust the element's layout
2997 	 * in this case. Or pop >= length of the element so that b = 0. In this
2998 	 * case advance to next element decrementing pop.
2999 	 */
3000 	while (pop) {
3001 		struct scatterlist *sge = sk_msg_elem(msg, i);
3002 
3003 		if (pop < sge->length) {
3004 			sge->length -= pop;
3005 			sge->offset += pop;
3006 			pop = 0;
3007 		} else {
3008 			pop -= sge->length;
3009 			sk_msg_shift_left(msg, i);
3010 		}
3011 		sk_msg_iter_var_next(i);
3012 	}
3013 
3014 	sk_mem_uncharge(msg->sk, len - pop);
3015 	msg->sg.size -= (len - pop);
3016 	sk_msg_compute_data_pointers(msg);
3017 	return 0;
3018 }
3019 
3020 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3021 	.func		= bpf_msg_pop_data,
3022 	.gpl_only	= false,
3023 	.ret_type	= RET_INTEGER,
3024 	.arg1_type	= ARG_PTR_TO_CTX,
3025 	.arg2_type	= ARG_ANYTHING,
3026 	.arg3_type	= ARG_ANYTHING,
3027 	.arg4_type	= ARG_ANYTHING,
3028 };
3029 
3030 #ifdef CONFIG_CGROUP_NET_CLASSID
3031 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3032 {
3033 	return __task_get_classid(current);
3034 }
3035 
3036 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3037 	.func		= bpf_get_cgroup_classid_curr,
3038 	.gpl_only	= false,
3039 	.ret_type	= RET_INTEGER,
3040 };
3041 
3042 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3043 {
3044 	struct sock *sk = skb_to_full_sk(skb);
3045 
3046 	if (!sk || !sk_fullsock(sk))
3047 		return 0;
3048 
3049 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3050 }
3051 
3052 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3053 	.func		= bpf_skb_cgroup_classid,
3054 	.gpl_only	= false,
3055 	.ret_type	= RET_INTEGER,
3056 	.arg1_type	= ARG_PTR_TO_CTX,
3057 };
3058 #endif
3059 
3060 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3061 {
3062 	return task_get_classid(skb);
3063 }
3064 
3065 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3066 	.func           = bpf_get_cgroup_classid,
3067 	.gpl_only       = false,
3068 	.ret_type       = RET_INTEGER,
3069 	.arg1_type      = ARG_PTR_TO_CTX,
3070 };
3071 
3072 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3073 {
3074 	return dst_tclassid(skb);
3075 }
3076 
3077 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3078 	.func           = bpf_get_route_realm,
3079 	.gpl_only       = false,
3080 	.ret_type       = RET_INTEGER,
3081 	.arg1_type      = ARG_PTR_TO_CTX,
3082 };
3083 
3084 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3085 {
3086 	/* If skb_clear_hash() was called due to mangling, we can
3087 	 * trigger SW recalculation here. Later access to hash
3088 	 * can then use the inline skb->hash via context directly
3089 	 * instead of calling this helper again.
3090 	 */
3091 	return skb_get_hash(skb);
3092 }
3093 
3094 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3095 	.func		= bpf_get_hash_recalc,
3096 	.gpl_only	= false,
3097 	.ret_type	= RET_INTEGER,
3098 	.arg1_type	= ARG_PTR_TO_CTX,
3099 };
3100 
3101 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3102 {
3103 	/* After all direct packet write, this can be used once for
3104 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3105 	 */
3106 	skb_clear_hash(skb);
3107 	return 0;
3108 }
3109 
3110 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3111 	.func		= bpf_set_hash_invalid,
3112 	.gpl_only	= false,
3113 	.ret_type	= RET_INTEGER,
3114 	.arg1_type	= ARG_PTR_TO_CTX,
3115 };
3116 
3117 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3118 {
3119 	/* Set user specified hash as L4(+), so that it gets returned
3120 	 * on skb_get_hash() call unless BPF prog later on triggers a
3121 	 * skb_clear_hash().
3122 	 */
3123 	__skb_set_sw_hash(skb, hash, true);
3124 	return 0;
3125 }
3126 
3127 static const struct bpf_func_proto bpf_set_hash_proto = {
3128 	.func		= bpf_set_hash,
3129 	.gpl_only	= false,
3130 	.ret_type	= RET_INTEGER,
3131 	.arg1_type	= ARG_PTR_TO_CTX,
3132 	.arg2_type	= ARG_ANYTHING,
3133 };
3134 
3135 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3136 	   u16, vlan_tci)
3137 {
3138 	int ret;
3139 
3140 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3141 		     vlan_proto != htons(ETH_P_8021AD)))
3142 		vlan_proto = htons(ETH_P_8021Q);
3143 
3144 	bpf_push_mac_rcsum(skb);
3145 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3146 	bpf_pull_mac_rcsum(skb);
3147 
3148 	bpf_compute_data_pointers(skb);
3149 	return ret;
3150 }
3151 
3152 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3153 	.func           = bpf_skb_vlan_push,
3154 	.gpl_only       = false,
3155 	.ret_type       = RET_INTEGER,
3156 	.arg1_type      = ARG_PTR_TO_CTX,
3157 	.arg2_type      = ARG_ANYTHING,
3158 	.arg3_type      = ARG_ANYTHING,
3159 };
3160 
3161 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3162 {
3163 	int ret;
3164 
3165 	bpf_push_mac_rcsum(skb);
3166 	ret = skb_vlan_pop(skb);
3167 	bpf_pull_mac_rcsum(skb);
3168 
3169 	bpf_compute_data_pointers(skb);
3170 	return ret;
3171 }
3172 
3173 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3174 	.func           = bpf_skb_vlan_pop,
3175 	.gpl_only       = false,
3176 	.ret_type       = RET_INTEGER,
3177 	.arg1_type      = ARG_PTR_TO_CTX,
3178 };
3179 
3180 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3181 {
3182 	/* Caller already did skb_cow() with len as headroom,
3183 	 * so no need to do it here.
3184 	 */
3185 	skb_push(skb, len);
3186 	memmove(skb->data, skb->data + len, off);
3187 	memset(skb->data + off, 0, len);
3188 
3189 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3190 	 * needed here as it does not change the skb->csum
3191 	 * result for checksum complete when summing over
3192 	 * zeroed blocks.
3193 	 */
3194 	return 0;
3195 }
3196 
3197 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3198 {
3199 	void *old_data;
3200 
3201 	/* skb_ensure_writable() is not needed here, as we're
3202 	 * already working on an uncloned skb.
3203 	 */
3204 	if (unlikely(!pskb_may_pull(skb, off + len)))
3205 		return -ENOMEM;
3206 
3207 	old_data = skb->data;
3208 	__skb_pull(skb, len);
3209 	skb_postpull_rcsum(skb, old_data + off, len);
3210 	memmove(skb->data, old_data, off);
3211 
3212 	return 0;
3213 }
3214 
3215 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3216 {
3217 	bool trans_same = skb->transport_header == skb->network_header;
3218 	int ret;
3219 
3220 	/* There's no need for __skb_push()/__skb_pull() pair to
3221 	 * get to the start of the mac header as we're guaranteed
3222 	 * to always start from here under eBPF.
3223 	 */
3224 	ret = bpf_skb_generic_push(skb, off, len);
3225 	if (likely(!ret)) {
3226 		skb->mac_header -= len;
3227 		skb->network_header -= len;
3228 		if (trans_same)
3229 			skb->transport_header = skb->network_header;
3230 	}
3231 
3232 	return ret;
3233 }
3234 
3235 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3236 {
3237 	bool trans_same = skb->transport_header == skb->network_header;
3238 	int ret;
3239 
3240 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3241 	ret = bpf_skb_generic_pop(skb, off, len);
3242 	if (likely(!ret)) {
3243 		skb->mac_header += len;
3244 		skb->network_header += len;
3245 		if (trans_same)
3246 			skb->transport_header = skb->network_header;
3247 	}
3248 
3249 	return ret;
3250 }
3251 
3252 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3253 {
3254 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3255 	u32 off = skb_mac_header_len(skb);
3256 	int ret;
3257 
3258 	ret = skb_cow(skb, len_diff);
3259 	if (unlikely(ret < 0))
3260 		return ret;
3261 
3262 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3263 	if (unlikely(ret < 0))
3264 		return ret;
3265 
3266 	if (skb_is_gso(skb)) {
3267 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3268 
3269 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3270 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3271 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3272 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3273 		}
3274 	}
3275 
3276 	skb->protocol = htons(ETH_P_IPV6);
3277 	skb_clear_hash(skb);
3278 
3279 	return 0;
3280 }
3281 
3282 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3283 {
3284 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3285 	u32 off = skb_mac_header_len(skb);
3286 	int ret;
3287 
3288 	ret = skb_unclone(skb, GFP_ATOMIC);
3289 	if (unlikely(ret < 0))
3290 		return ret;
3291 
3292 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3293 	if (unlikely(ret < 0))
3294 		return ret;
3295 
3296 	if (skb_is_gso(skb)) {
3297 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3298 
3299 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3300 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3301 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3302 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3303 		}
3304 	}
3305 
3306 	skb->protocol = htons(ETH_P_IP);
3307 	skb_clear_hash(skb);
3308 
3309 	return 0;
3310 }
3311 
3312 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3313 {
3314 	__be16 from_proto = skb->protocol;
3315 
3316 	if (from_proto == htons(ETH_P_IP) &&
3317 	      to_proto == htons(ETH_P_IPV6))
3318 		return bpf_skb_proto_4_to_6(skb);
3319 
3320 	if (from_proto == htons(ETH_P_IPV6) &&
3321 	      to_proto == htons(ETH_P_IP))
3322 		return bpf_skb_proto_6_to_4(skb);
3323 
3324 	return -ENOTSUPP;
3325 }
3326 
3327 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3328 	   u64, flags)
3329 {
3330 	int ret;
3331 
3332 	if (unlikely(flags))
3333 		return -EINVAL;
3334 
3335 	/* General idea is that this helper does the basic groundwork
3336 	 * needed for changing the protocol, and eBPF program fills the
3337 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3338 	 * and other helpers, rather than passing a raw buffer here.
3339 	 *
3340 	 * The rationale is to keep this minimal and without a need to
3341 	 * deal with raw packet data. F.e. even if we would pass buffers
3342 	 * here, the program still needs to call the bpf_lX_csum_replace()
3343 	 * helpers anyway. Plus, this way we keep also separation of
3344 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3345 	 * care of stores.
3346 	 *
3347 	 * Currently, additional options and extension header space are
3348 	 * not supported, but flags register is reserved so we can adapt
3349 	 * that. For offloads, we mark packet as dodgy, so that headers
3350 	 * need to be verified first.
3351 	 */
3352 	ret = bpf_skb_proto_xlat(skb, proto);
3353 	bpf_compute_data_pointers(skb);
3354 	return ret;
3355 }
3356 
3357 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3358 	.func		= bpf_skb_change_proto,
3359 	.gpl_only	= false,
3360 	.ret_type	= RET_INTEGER,
3361 	.arg1_type	= ARG_PTR_TO_CTX,
3362 	.arg2_type	= ARG_ANYTHING,
3363 	.arg3_type	= ARG_ANYTHING,
3364 };
3365 
3366 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3367 {
3368 	/* We only allow a restricted subset to be changed for now. */
3369 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3370 		     !skb_pkt_type_ok(pkt_type)))
3371 		return -EINVAL;
3372 
3373 	skb->pkt_type = pkt_type;
3374 	return 0;
3375 }
3376 
3377 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3378 	.func		= bpf_skb_change_type,
3379 	.gpl_only	= false,
3380 	.ret_type	= RET_INTEGER,
3381 	.arg1_type	= ARG_PTR_TO_CTX,
3382 	.arg2_type	= ARG_ANYTHING,
3383 };
3384 
3385 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3386 {
3387 	switch (skb->protocol) {
3388 	case htons(ETH_P_IP):
3389 		return sizeof(struct iphdr);
3390 	case htons(ETH_P_IPV6):
3391 		return sizeof(struct ipv6hdr);
3392 	default:
3393 		return ~0U;
3394 	}
3395 }
3396 
3397 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3398 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3399 
3400 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3401 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3402 
3403 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3404 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3405 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3406 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3407 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3408 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3409 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3410 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3411 
3412 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3413 			    u64 flags)
3414 {
3415 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3416 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3417 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3418 	unsigned int gso_type = SKB_GSO_DODGY;
3419 	int ret;
3420 
3421 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3422 		/* udp gso_size delineates datagrams, only allow if fixed */
3423 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3424 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3425 			return -ENOTSUPP;
3426 	}
3427 
3428 	ret = skb_cow_head(skb, len_diff);
3429 	if (unlikely(ret < 0))
3430 		return ret;
3431 
3432 	if (encap) {
3433 		if (skb->protocol != htons(ETH_P_IP) &&
3434 		    skb->protocol != htons(ETH_P_IPV6))
3435 			return -ENOTSUPP;
3436 
3437 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3438 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3439 			return -EINVAL;
3440 
3441 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3442 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3443 			return -EINVAL;
3444 
3445 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3446 		    inner_mac_len < ETH_HLEN)
3447 			return -EINVAL;
3448 
3449 		if (skb->encapsulation)
3450 			return -EALREADY;
3451 
3452 		mac_len = skb->network_header - skb->mac_header;
3453 		inner_net = skb->network_header;
3454 		if (inner_mac_len > len_diff)
3455 			return -EINVAL;
3456 		inner_trans = skb->transport_header;
3457 	}
3458 
3459 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3460 	if (unlikely(ret < 0))
3461 		return ret;
3462 
3463 	if (encap) {
3464 		skb->inner_mac_header = inner_net - inner_mac_len;
3465 		skb->inner_network_header = inner_net;
3466 		skb->inner_transport_header = inner_trans;
3467 
3468 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3469 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3470 		else
3471 			skb_set_inner_protocol(skb, skb->protocol);
3472 
3473 		skb->encapsulation = 1;
3474 		skb_set_network_header(skb, mac_len);
3475 
3476 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3477 			gso_type |= SKB_GSO_UDP_TUNNEL;
3478 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3479 			gso_type |= SKB_GSO_GRE;
3480 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3481 			gso_type |= SKB_GSO_IPXIP6;
3482 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3483 			gso_type |= SKB_GSO_IPXIP4;
3484 
3485 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3486 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3487 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3488 					sizeof(struct ipv6hdr) :
3489 					sizeof(struct iphdr);
3490 
3491 			skb_set_transport_header(skb, mac_len + nh_len);
3492 		}
3493 
3494 		/* Match skb->protocol to new outer l3 protocol */
3495 		if (skb->protocol == htons(ETH_P_IP) &&
3496 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3497 			skb->protocol = htons(ETH_P_IPV6);
3498 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3499 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3500 			skb->protocol = htons(ETH_P_IP);
3501 	}
3502 
3503 	if (skb_is_gso(skb)) {
3504 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3505 
3506 		/* Due to header grow, MSS needs to be downgraded. */
3507 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3508 			skb_decrease_gso_size(shinfo, len_diff);
3509 
3510 		/* Header must be checked, and gso_segs recomputed. */
3511 		shinfo->gso_type |= gso_type;
3512 		shinfo->gso_segs = 0;
3513 	}
3514 
3515 	return 0;
3516 }
3517 
3518 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3519 			      u64 flags)
3520 {
3521 	int ret;
3522 
3523 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3524 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3525 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3526 		return -EINVAL;
3527 
3528 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3529 		/* udp gso_size delineates datagrams, only allow if fixed */
3530 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3531 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3532 			return -ENOTSUPP;
3533 	}
3534 
3535 	ret = skb_unclone(skb, GFP_ATOMIC);
3536 	if (unlikely(ret < 0))
3537 		return ret;
3538 
3539 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3540 	if (unlikely(ret < 0))
3541 		return ret;
3542 
3543 	/* Match skb->protocol to new outer l3 protocol */
3544 	if (skb->protocol == htons(ETH_P_IP) &&
3545 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3546 		skb->protocol = htons(ETH_P_IPV6);
3547 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3548 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3549 		skb->protocol = htons(ETH_P_IP);
3550 
3551 	if (skb_is_gso(skb)) {
3552 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3553 
3554 		/* Due to header shrink, MSS can be upgraded. */
3555 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3556 			skb_increase_gso_size(shinfo, len_diff);
3557 
3558 		/* Header must be checked, and gso_segs recomputed. */
3559 		shinfo->gso_type |= SKB_GSO_DODGY;
3560 		shinfo->gso_segs = 0;
3561 	}
3562 
3563 	return 0;
3564 }
3565 
3566 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3567 
3568 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3569 	   u32, mode, u64, flags)
3570 {
3571 	u32 len_diff_abs = abs(len_diff);
3572 	bool shrink = len_diff < 0;
3573 	int ret = 0;
3574 
3575 	if (unlikely(flags || mode))
3576 		return -EINVAL;
3577 	if (unlikely(len_diff_abs > 0xfffU))
3578 		return -EFAULT;
3579 
3580 	if (!shrink) {
3581 		ret = skb_cow(skb, len_diff);
3582 		if (unlikely(ret < 0))
3583 			return ret;
3584 		__skb_push(skb, len_diff_abs);
3585 		memset(skb->data, 0, len_diff_abs);
3586 	} else {
3587 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3588 			return -ENOMEM;
3589 		__skb_pull(skb, len_diff_abs);
3590 	}
3591 	if (tls_sw_has_ctx_rx(skb->sk)) {
3592 		struct strp_msg *rxm = strp_msg(skb);
3593 
3594 		rxm->full_len += len_diff;
3595 	}
3596 	return ret;
3597 }
3598 
3599 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3600 	.func		= sk_skb_adjust_room,
3601 	.gpl_only	= false,
3602 	.ret_type	= RET_INTEGER,
3603 	.arg1_type	= ARG_PTR_TO_CTX,
3604 	.arg2_type	= ARG_ANYTHING,
3605 	.arg3_type	= ARG_ANYTHING,
3606 	.arg4_type	= ARG_ANYTHING,
3607 };
3608 
3609 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3610 	   u32, mode, u64, flags)
3611 {
3612 	u32 len_cur, len_diff_abs = abs(len_diff);
3613 	u32 len_min = bpf_skb_net_base_len(skb);
3614 	u32 len_max = BPF_SKB_MAX_LEN;
3615 	__be16 proto = skb->protocol;
3616 	bool shrink = len_diff < 0;
3617 	u32 off;
3618 	int ret;
3619 
3620 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3621 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3622 		return -EINVAL;
3623 	if (unlikely(len_diff_abs > 0xfffU))
3624 		return -EFAULT;
3625 	if (unlikely(proto != htons(ETH_P_IP) &&
3626 		     proto != htons(ETH_P_IPV6)))
3627 		return -ENOTSUPP;
3628 
3629 	off = skb_mac_header_len(skb);
3630 	switch (mode) {
3631 	case BPF_ADJ_ROOM_NET:
3632 		off += bpf_skb_net_base_len(skb);
3633 		break;
3634 	case BPF_ADJ_ROOM_MAC:
3635 		break;
3636 	default:
3637 		return -ENOTSUPP;
3638 	}
3639 
3640 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3641 		if (!shrink)
3642 			return -EINVAL;
3643 
3644 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3645 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3646 			len_min = sizeof(struct iphdr);
3647 			break;
3648 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3649 			len_min = sizeof(struct ipv6hdr);
3650 			break;
3651 		default:
3652 			return -EINVAL;
3653 		}
3654 	}
3655 
3656 	len_cur = skb->len - skb_network_offset(skb);
3657 	if ((shrink && (len_diff_abs >= len_cur ||
3658 			len_cur - len_diff_abs < len_min)) ||
3659 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3660 			 !skb_is_gso(skb))))
3661 		return -ENOTSUPP;
3662 
3663 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3664 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3665 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3666 		__skb_reset_checksum_unnecessary(skb);
3667 
3668 	bpf_compute_data_pointers(skb);
3669 	return ret;
3670 }
3671 
3672 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3673 	.func		= bpf_skb_adjust_room,
3674 	.gpl_only	= false,
3675 	.ret_type	= RET_INTEGER,
3676 	.arg1_type	= ARG_PTR_TO_CTX,
3677 	.arg2_type	= ARG_ANYTHING,
3678 	.arg3_type	= ARG_ANYTHING,
3679 	.arg4_type	= ARG_ANYTHING,
3680 };
3681 
3682 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3683 {
3684 	u32 min_len = skb_network_offset(skb);
3685 
3686 	if (skb_transport_header_was_set(skb))
3687 		min_len = skb_transport_offset(skb);
3688 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3689 		min_len = skb_checksum_start_offset(skb) +
3690 			  skb->csum_offset + sizeof(__sum16);
3691 	return min_len;
3692 }
3693 
3694 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3695 {
3696 	unsigned int old_len = skb->len;
3697 	int ret;
3698 
3699 	ret = __skb_grow_rcsum(skb, new_len);
3700 	if (!ret)
3701 		memset(skb->data + old_len, 0, new_len - old_len);
3702 	return ret;
3703 }
3704 
3705 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3706 {
3707 	return __skb_trim_rcsum(skb, new_len);
3708 }
3709 
3710 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3711 					u64 flags)
3712 {
3713 	u32 max_len = BPF_SKB_MAX_LEN;
3714 	u32 min_len = __bpf_skb_min_len(skb);
3715 	int ret;
3716 
3717 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3718 		return -EINVAL;
3719 	if (skb->encapsulation)
3720 		return -ENOTSUPP;
3721 
3722 	/* The basic idea of this helper is that it's performing the
3723 	 * needed work to either grow or trim an skb, and eBPF program
3724 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3725 	 * bpf_lX_csum_replace() and others rather than passing a raw
3726 	 * buffer here. This one is a slow path helper and intended
3727 	 * for replies with control messages.
3728 	 *
3729 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3730 	 * minimal and without protocol specifics so that we are able
3731 	 * to separate concerns as in bpf_skb_store_bytes() should only
3732 	 * be the one responsible for writing buffers.
3733 	 *
3734 	 * It's really expected to be a slow path operation here for
3735 	 * control message replies, so we're implicitly linearizing,
3736 	 * uncloning and drop offloads from the skb by this.
3737 	 */
3738 	ret = __bpf_try_make_writable(skb, skb->len);
3739 	if (!ret) {
3740 		if (new_len > skb->len)
3741 			ret = bpf_skb_grow_rcsum(skb, new_len);
3742 		else if (new_len < skb->len)
3743 			ret = bpf_skb_trim_rcsum(skb, new_len);
3744 		if (!ret && skb_is_gso(skb))
3745 			skb_gso_reset(skb);
3746 	}
3747 	return ret;
3748 }
3749 
3750 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3751 	   u64, flags)
3752 {
3753 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3754 
3755 	bpf_compute_data_pointers(skb);
3756 	return ret;
3757 }
3758 
3759 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3760 	.func		= bpf_skb_change_tail,
3761 	.gpl_only	= false,
3762 	.ret_type	= RET_INTEGER,
3763 	.arg1_type	= ARG_PTR_TO_CTX,
3764 	.arg2_type	= ARG_ANYTHING,
3765 	.arg3_type	= ARG_ANYTHING,
3766 };
3767 
3768 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3769 	   u64, flags)
3770 {
3771 	return __bpf_skb_change_tail(skb, new_len, flags);
3772 }
3773 
3774 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3775 	.func		= sk_skb_change_tail,
3776 	.gpl_only	= false,
3777 	.ret_type	= RET_INTEGER,
3778 	.arg1_type	= ARG_PTR_TO_CTX,
3779 	.arg2_type	= ARG_ANYTHING,
3780 	.arg3_type	= ARG_ANYTHING,
3781 };
3782 
3783 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3784 					u64 flags)
3785 {
3786 	u32 max_len = BPF_SKB_MAX_LEN;
3787 	u32 new_len = skb->len + head_room;
3788 	int ret;
3789 
3790 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3791 		     new_len < skb->len))
3792 		return -EINVAL;
3793 
3794 	ret = skb_cow(skb, head_room);
3795 	if (likely(!ret)) {
3796 		/* Idea for this helper is that we currently only
3797 		 * allow to expand on mac header. This means that
3798 		 * skb->protocol network header, etc, stay as is.
3799 		 * Compared to bpf_skb_change_tail(), we're more
3800 		 * flexible due to not needing to linearize or
3801 		 * reset GSO. Intention for this helper is to be
3802 		 * used by an L3 skb that needs to push mac header
3803 		 * for redirection into L2 device.
3804 		 */
3805 		__skb_push(skb, head_room);
3806 		memset(skb->data, 0, head_room);
3807 		skb_reset_mac_header(skb);
3808 		skb_reset_mac_len(skb);
3809 	}
3810 
3811 	return ret;
3812 }
3813 
3814 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3815 	   u64, flags)
3816 {
3817 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3818 
3819 	bpf_compute_data_pointers(skb);
3820 	return ret;
3821 }
3822 
3823 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3824 	.func		= bpf_skb_change_head,
3825 	.gpl_only	= false,
3826 	.ret_type	= RET_INTEGER,
3827 	.arg1_type	= ARG_PTR_TO_CTX,
3828 	.arg2_type	= ARG_ANYTHING,
3829 	.arg3_type	= ARG_ANYTHING,
3830 };
3831 
3832 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3833 	   u64, flags)
3834 {
3835 	return __bpf_skb_change_head(skb, head_room, flags);
3836 }
3837 
3838 static const struct bpf_func_proto sk_skb_change_head_proto = {
3839 	.func		= sk_skb_change_head,
3840 	.gpl_only	= false,
3841 	.ret_type	= RET_INTEGER,
3842 	.arg1_type	= ARG_PTR_TO_CTX,
3843 	.arg2_type	= ARG_ANYTHING,
3844 	.arg3_type	= ARG_ANYTHING,
3845 };
3846 
3847 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3848 {
3849 	return xdp_get_buff_len(xdp);
3850 }
3851 
3852 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3853 	.func		= bpf_xdp_get_buff_len,
3854 	.gpl_only	= false,
3855 	.ret_type	= RET_INTEGER,
3856 	.arg1_type	= ARG_PTR_TO_CTX,
3857 };
3858 
3859 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3860 
3861 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3862 	.func		= bpf_xdp_get_buff_len,
3863 	.gpl_only	= false,
3864 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3865 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3866 };
3867 
3868 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3869 {
3870 	return xdp_data_meta_unsupported(xdp) ? 0 :
3871 	       xdp->data - xdp->data_meta;
3872 }
3873 
3874 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3875 {
3876 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3877 	unsigned long metalen = xdp_get_metalen(xdp);
3878 	void *data_start = xdp_frame_end + metalen;
3879 	void *data = xdp->data + offset;
3880 
3881 	if (unlikely(data < data_start ||
3882 		     data > xdp->data_end - ETH_HLEN))
3883 		return -EINVAL;
3884 
3885 	if (metalen)
3886 		memmove(xdp->data_meta + offset,
3887 			xdp->data_meta, metalen);
3888 	xdp->data_meta += offset;
3889 	xdp->data = data;
3890 
3891 	return 0;
3892 }
3893 
3894 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3895 	.func		= bpf_xdp_adjust_head,
3896 	.gpl_only	= false,
3897 	.ret_type	= RET_INTEGER,
3898 	.arg1_type	= ARG_PTR_TO_CTX,
3899 	.arg2_type	= ARG_ANYTHING,
3900 };
3901 
3902 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3903 		      void *buf, unsigned long len, bool flush)
3904 {
3905 	unsigned long ptr_len, ptr_off = 0;
3906 	skb_frag_t *next_frag, *end_frag;
3907 	struct skb_shared_info *sinfo;
3908 	void *src, *dst;
3909 	u8 *ptr_buf;
3910 
3911 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3912 		src = flush ? buf : xdp->data + off;
3913 		dst = flush ? xdp->data + off : buf;
3914 		memcpy(dst, src, len);
3915 		return;
3916 	}
3917 
3918 	sinfo = xdp_get_shared_info_from_buff(xdp);
3919 	end_frag = &sinfo->frags[sinfo->nr_frags];
3920 	next_frag = &sinfo->frags[0];
3921 
3922 	ptr_len = xdp->data_end - xdp->data;
3923 	ptr_buf = xdp->data;
3924 
3925 	while (true) {
3926 		if (off < ptr_off + ptr_len) {
3927 			unsigned long copy_off = off - ptr_off;
3928 			unsigned long copy_len = min(len, ptr_len - copy_off);
3929 
3930 			src = flush ? buf : ptr_buf + copy_off;
3931 			dst = flush ? ptr_buf + copy_off : buf;
3932 			memcpy(dst, src, copy_len);
3933 
3934 			off += copy_len;
3935 			len -= copy_len;
3936 			buf += copy_len;
3937 		}
3938 
3939 		if (!len || next_frag == end_frag)
3940 			break;
3941 
3942 		ptr_off += ptr_len;
3943 		ptr_buf = skb_frag_address(next_frag);
3944 		ptr_len = skb_frag_size(next_frag);
3945 		next_frag++;
3946 	}
3947 }
3948 
3949 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3950 {
3951 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3952 	u32 size = xdp->data_end - xdp->data;
3953 	void *addr = xdp->data;
3954 	int i;
3955 
3956 	if (unlikely(offset > 0xffff || len > 0xffff))
3957 		return ERR_PTR(-EFAULT);
3958 
3959 	if (offset + len > xdp_get_buff_len(xdp))
3960 		return ERR_PTR(-EINVAL);
3961 
3962 	if (offset < size) /* linear area */
3963 		goto out;
3964 
3965 	offset -= size;
3966 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3967 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3968 
3969 		if  (offset < frag_size) {
3970 			addr = skb_frag_address(&sinfo->frags[i]);
3971 			size = frag_size;
3972 			break;
3973 		}
3974 		offset -= frag_size;
3975 	}
3976 out:
3977 	return offset + len <= size ? addr + offset : NULL;
3978 }
3979 
3980 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3981 	   void *, buf, u32, len)
3982 {
3983 	void *ptr;
3984 
3985 	ptr = bpf_xdp_pointer(xdp, offset, len);
3986 	if (IS_ERR(ptr))
3987 		return PTR_ERR(ptr);
3988 
3989 	if (!ptr)
3990 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3991 	else
3992 		memcpy(buf, ptr, len);
3993 
3994 	return 0;
3995 }
3996 
3997 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3998 	.func		= bpf_xdp_load_bytes,
3999 	.gpl_only	= false,
4000 	.ret_type	= RET_INTEGER,
4001 	.arg1_type	= ARG_PTR_TO_CTX,
4002 	.arg2_type	= ARG_ANYTHING,
4003 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4004 	.arg4_type	= ARG_CONST_SIZE,
4005 };
4006 
4007 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4008 {
4009 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4010 }
4011 
4012 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4013 	   void *, buf, u32, len)
4014 {
4015 	void *ptr;
4016 
4017 	ptr = bpf_xdp_pointer(xdp, offset, len);
4018 	if (IS_ERR(ptr))
4019 		return PTR_ERR(ptr);
4020 
4021 	if (!ptr)
4022 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4023 	else
4024 		memcpy(ptr, buf, len);
4025 
4026 	return 0;
4027 }
4028 
4029 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4030 	.func		= bpf_xdp_store_bytes,
4031 	.gpl_only	= false,
4032 	.ret_type	= RET_INTEGER,
4033 	.arg1_type	= ARG_PTR_TO_CTX,
4034 	.arg2_type	= ARG_ANYTHING,
4035 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4036 	.arg4_type	= ARG_CONST_SIZE,
4037 };
4038 
4039 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4040 {
4041 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4042 }
4043 
4044 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4045 {
4046 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4047 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4048 	struct xdp_rxq_info *rxq = xdp->rxq;
4049 	unsigned int tailroom;
4050 
4051 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4052 		return -EOPNOTSUPP;
4053 
4054 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4055 	if (unlikely(offset > tailroom))
4056 		return -EINVAL;
4057 
4058 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4059 	skb_frag_size_add(frag, offset);
4060 	sinfo->xdp_frags_size += offset;
4061 
4062 	return 0;
4063 }
4064 
4065 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4066 {
4067 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4068 	int i, n_frags_free = 0, len_free = 0;
4069 
4070 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4071 		return -EINVAL;
4072 
4073 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4074 		skb_frag_t *frag = &sinfo->frags[i];
4075 		int shrink = min_t(int, offset, skb_frag_size(frag));
4076 
4077 		len_free += shrink;
4078 		offset -= shrink;
4079 
4080 		if (skb_frag_size(frag) == shrink) {
4081 			struct page *page = skb_frag_page(frag);
4082 
4083 			__xdp_return(page_address(page), &xdp->rxq->mem,
4084 				     false, NULL);
4085 			n_frags_free++;
4086 		} else {
4087 			skb_frag_size_sub(frag, shrink);
4088 			break;
4089 		}
4090 	}
4091 	sinfo->nr_frags -= n_frags_free;
4092 	sinfo->xdp_frags_size -= len_free;
4093 
4094 	if (unlikely(!sinfo->nr_frags)) {
4095 		xdp_buff_clear_frags_flag(xdp);
4096 		xdp->data_end -= offset;
4097 	}
4098 
4099 	return 0;
4100 }
4101 
4102 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4103 {
4104 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4105 	void *data_end = xdp->data_end + offset;
4106 
4107 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4108 		if (offset < 0)
4109 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4110 
4111 		return bpf_xdp_frags_increase_tail(xdp, offset);
4112 	}
4113 
4114 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4115 	if (unlikely(data_end > data_hard_end))
4116 		return -EINVAL;
4117 
4118 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
4119 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4120 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4121 		return -EINVAL;
4122 	}
4123 
4124 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4125 		return -EINVAL;
4126 
4127 	/* Clear memory area on grow, can contain uninit kernel memory */
4128 	if (offset > 0)
4129 		memset(xdp->data_end, 0, offset);
4130 
4131 	xdp->data_end = data_end;
4132 
4133 	return 0;
4134 }
4135 
4136 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4137 	.func		= bpf_xdp_adjust_tail,
4138 	.gpl_only	= false,
4139 	.ret_type	= RET_INTEGER,
4140 	.arg1_type	= ARG_PTR_TO_CTX,
4141 	.arg2_type	= ARG_ANYTHING,
4142 };
4143 
4144 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4145 {
4146 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4147 	void *meta = xdp->data_meta + offset;
4148 	unsigned long metalen = xdp->data - meta;
4149 
4150 	if (xdp_data_meta_unsupported(xdp))
4151 		return -ENOTSUPP;
4152 	if (unlikely(meta < xdp_frame_end ||
4153 		     meta > xdp->data))
4154 		return -EINVAL;
4155 	if (unlikely(xdp_metalen_invalid(metalen)))
4156 		return -EACCES;
4157 
4158 	xdp->data_meta = meta;
4159 
4160 	return 0;
4161 }
4162 
4163 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4164 	.func		= bpf_xdp_adjust_meta,
4165 	.gpl_only	= false,
4166 	.ret_type	= RET_INTEGER,
4167 	.arg1_type	= ARG_PTR_TO_CTX,
4168 	.arg2_type	= ARG_ANYTHING,
4169 };
4170 
4171 /**
4172  * DOC: xdp redirect
4173  *
4174  * XDP_REDIRECT works by a three-step process, implemented in the functions
4175  * below:
4176  *
4177  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4178  *    of the redirect and store it (along with some other metadata) in a per-CPU
4179  *    struct bpf_redirect_info.
4180  *
4181  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4182  *    call xdp_do_redirect() which will use the information in struct
4183  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4184  *    bulk queue structure.
4185  *
4186  * 3. Before exiting its NAPI poll loop, the driver will call
4187  *    xdp_do_flush(), which will flush all the different bulk queues,
4188  *    thus completing the redirect. Note that xdp_do_flush() must be
4189  *    called before napi_complete_done() in the driver, as the
4190  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4191  *    through to the xdp_do_flush() call for RCU protection of all
4192  *    in-kernel data structures.
4193  */
4194 /*
4195  * Pointers to the map entries will be kept around for this whole sequence of
4196  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4197  * the core code; instead, the RCU protection relies on everything happening
4198  * inside a single NAPI poll sequence, which means it's between a pair of calls
4199  * to local_bh_disable()/local_bh_enable().
4200  *
4201  * The map entries are marked as __rcu and the map code makes sure to
4202  * dereference those pointers with rcu_dereference_check() in a way that works
4203  * for both sections that to hold an rcu_read_lock() and sections that are
4204  * called from NAPI without a separate rcu_read_lock(). The code below does not
4205  * use RCU annotations, but relies on those in the map code.
4206  */
4207 void xdp_do_flush(void)
4208 {
4209 	__dev_flush();
4210 	__cpu_map_flush();
4211 	__xsk_map_flush();
4212 }
4213 EXPORT_SYMBOL_GPL(xdp_do_flush);
4214 
4215 void bpf_clear_redirect_map(struct bpf_map *map)
4216 {
4217 	struct bpf_redirect_info *ri;
4218 	int cpu;
4219 
4220 	for_each_possible_cpu(cpu) {
4221 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4222 		/* Avoid polluting remote cacheline due to writes if
4223 		 * not needed. Once we pass this test, we need the
4224 		 * cmpxchg() to make sure it hasn't been changed in
4225 		 * the meantime by remote CPU.
4226 		 */
4227 		if (unlikely(READ_ONCE(ri->map) == map))
4228 			cmpxchg(&ri->map, map, NULL);
4229 	}
4230 }
4231 
4232 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4233 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4234 
4235 u32 xdp_master_redirect(struct xdp_buff *xdp)
4236 {
4237 	struct net_device *master, *slave;
4238 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4239 
4240 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4241 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4242 	if (slave && slave != xdp->rxq->dev) {
4243 		/* The target device is different from the receiving device, so
4244 		 * redirect it to the new device.
4245 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4246 		 * drivers to unmap the packet from their rx ring.
4247 		 */
4248 		ri->tgt_index = slave->ifindex;
4249 		ri->map_id = INT_MAX;
4250 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4251 		return XDP_REDIRECT;
4252 	}
4253 	return XDP_TX;
4254 }
4255 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4256 
4257 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4258 					struct net_device *dev,
4259 					struct xdp_buff *xdp,
4260 					struct bpf_prog *xdp_prog)
4261 {
4262 	enum bpf_map_type map_type = ri->map_type;
4263 	void *fwd = ri->tgt_value;
4264 	u32 map_id = ri->map_id;
4265 	int err;
4266 
4267 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4268 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4269 
4270 	err = __xsk_map_redirect(fwd, xdp);
4271 	if (unlikely(err))
4272 		goto err;
4273 
4274 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4275 	return 0;
4276 err:
4277 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4278 	return err;
4279 }
4280 
4281 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4282 						   struct net_device *dev,
4283 						   struct xdp_frame *xdpf,
4284 						   struct bpf_prog *xdp_prog)
4285 {
4286 	enum bpf_map_type map_type = ri->map_type;
4287 	void *fwd = ri->tgt_value;
4288 	u32 map_id = ri->map_id;
4289 	struct bpf_map *map;
4290 	int err;
4291 
4292 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4293 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4294 
4295 	if (unlikely(!xdpf)) {
4296 		err = -EOVERFLOW;
4297 		goto err;
4298 	}
4299 
4300 	switch (map_type) {
4301 	case BPF_MAP_TYPE_DEVMAP:
4302 		fallthrough;
4303 	case BPF_MAP_TYPE_DEVMAP_HASH:
4304 		map = READ_ONCE(ri->map);
4305 		if (unlikely(map)) {
4306 			WRITE_ONCE(ri->map, NULL);
4307 			err = dev_map_enqueue_multi(xdpf, dev, map,
4308 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4309 		} else {
4310 			err = dev_map_enqueue(fwd, xdpf, dev);
4311 		}
4312 		break;
4313 	case BPF_MAP_TYPE_CPUMAP:
4314 		err = cpu_map_enqueue(fwd, xdpf, dev);
4315 		break;
4316 	case BPF_MAP_TYPE_UNSPEC:
4317 		if (map_id == INT_MAX) {
4318 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4319 			if (unlikely(!fwd)) {
4320 				err = -EINVAL;
4321 				break;
4322 			}
4323 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4324 			break;
4325 		}
4326 		fallthrough;
4327 	default:
4328 		err = -EBADRQC;
4329 	}
4330 
4331 	if (unlikely(err))
4332 		goto err;
4333 
4334 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4335 	return 0;
4336 err:
4337 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4338 	return err;
4339 }
4340 
4341 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4342 		    struct bpf_prog *xdp_prog)
4343 {
4344 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4345 	enum bpf_map_type map_type = ri->map_type;
4346 
4347 	if (map_type == BPF_MAP_TYPE_XSKMAP) {
4348 		/* XDP_REDIRECT is not supported AF_XDP yet. */
4349 		if (unlikely(xdp_buff_has_frags(xdp)))
4350 			return -EOPNOTSUPP;
4351 
4352 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4353 	}
4354 
4355 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4356 				       xdp_prog);
4357 }
4358 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4359 
4360 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4361 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4362 {
4363 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4364 	enum bpf_map_type map_type = ri->map_type;
4365 
4366 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4367 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4368 
4369 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4370 }
4371 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4372 
4373 static int xdp_do_generic_redirect_map(struct net_device *dev,
4374 				       struct sk_buff *skb,
4375 				       struct xdp_buff *xdp,
4376 				       struct bpf_prog *xdp_prog,
4377 				       void *fwd,
4378 				       enum bpf_map_type map_type, u32 map_id)
4379 {
4380 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4381 	struct bpf_map *map;
4382 	int err;
4383 
4384 	switch (map_type) {
4385 	case BPF_MAP_TYPE_DEVMAP:
4386 		fallthrough;
4387 	case BPF_MAP_TYPE_DEVMAP_HASH:
4388 		map = READ_ONCE(ri->map);
4389 		if (unlikely(map)) {
4390 			WRITE_ONCE(ri->map, NULL);
4391 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4392 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4393 		} else {
4394 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4395 		}
4396 		if (unlikely(err))
4397 			goto err;
4398 		break;
4399 	case BPF_MAP_TYPE_XSKMAP:
4400 		err = xsk_generic_rcv(fwd, xdp);
4401 		if (err)
4402 			goto err;
4403 		consume_skb(skb);
4404 		break;
4405 	case BPF_MAP_TYPE_CPUMAP:
4406 		err = cpu_map_generic_redirect(fwd, skb);
4407 		if (unlikely(err))
4408 			goto err;
4409 		break;
4410 	default:
4411 		err = -EBADRQC;
4412 		goto err;
4413 	}
4414 
4415 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4416 	return 0;
4417 err:
4418 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4419 	return err;
4420 }
4421 
4422 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4423 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4424 {
4425 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4426 	enum bpf_map_type map_type = ri->map_type;
4427 	void *fwd = ri->tgt_value;
4428 	u32 map_id = ri->map_id;
4429 	int err;
4430 
4431 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4432 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4433 
4434 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4435 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4436 		if (unlikely(!fwd)) {
4437 			err = -EINVAL;
4438 			goto err;
4439 		}
4440 
4441 		err = xdp_ok_fwd_dev(fwd, skb->len);
4442 		if (unlikely(err))
4443 			goto err;
4444 
4445 		skb->dev = fwd;
4446 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4447 		generic_xdp_tx(skb, xdp_prog);
4448 		return 0;
4449 	}
4450 
4451 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4452 err:
4453 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4454 	return err;
4455 }
4456 
4457 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4458 {
4459 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4460 
4461 	if (unlikely(flags))
4462 		return XDP_ABORTED;
4463 
4464 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4465 	 * by map_idr) is used for ifindex based XDP redirect.
4466 	 */
4467 	ri->tgt_index = ifindex;
4468 	ri->map_id = INT_MAX;
4469 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4470 
4471 	return XDP_REDIRECT;
4472 }
4473 
4474 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4475 	.func           = bpf_xdp_redirect,
4476 	.gpl_only       = false,
4477 	.ret_type       = RET_INTEGER,
4478 	.arg1_type      = ARG_ANYTHING,
4479 	.arg2_type      = ARG_ANYTHING,
4480 };
4481 
4482 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4483 	   u64, flags)
4484 {
4485 	return map->ops->map_redirect(map, key, flags);
4486 }
4487 
4488 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4489 	.func           = bpf_xdp_redirect_map,
4490 	.gpl_only       = false,
4491 	.ret_type       = RET_INTEGER,
4492 	.arg1_type      = ARG_CONST_MAP_PTR,
4493 	.arg2_type      = ARG_ANYTHING,
4494 	.arg3_type      = ARG_ANYTHING,
4495 };
4496 
4497 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4498 				  unsigned long off, unsigned long len)
4499 {
4500 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4501 
4502 	if (unlikely(!ptr))
4503 		return len;
4504 	if (ptr != dst_buff)
4505 		memcpy(dst_buff, ptr, len);
4506 
4507 	return 0;
4508 }
4509 
4510 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4511 	   u64, flags, void *, meta, u64, meta_size)
4512 {
4513 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4514 
4515 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4516 		return -EINVAL;
4517 	if (unlikely(!skb || skb_size > skb->len))
4518 		return -EFAULT;
4519 
4520 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4521 				bpf_skb_copy);
4522 }
4523 
4524 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4525 	.func		= bpf_skb_event_output,
4526 	.gpl_only	= true,
4527 	.ret_type	= RET_INTEGER,
4528 	.arg1_type	= ARG_PTR_TO_CTX,
4529 	.arg2_type	= ARG_CONST_MAP_PTR,
4530 	.arg3_type	= ARG_ANYTHING,
4531 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4532 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4533 };
4534 
4535 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4536 
4537 const struct bpf_func_proto bpf_skb_output_proto = {
4538 	.func		= bpf_skb_event_output,
4539 	.gpl_only	= true,
4540 	.ret_type	= RET_INTEGER,
4541 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4542 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4543 	.arg2_type	= ARG_CONST_MAP_PTR,
4544 	.arg3_type	= ARG_ANYTHING,
4545 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4546 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4547 };
4548 
4549 static unsigned short bpf_tunnel_key_af(u64 flags)
4550 {
4551 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4552 }
4553 
4554 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4555 	   u32, size, u64, flags)
4556 {
4557 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4558 	u8 compat[sizeof(struct bpf_tunnel_key)];
4559 	void *to_orig = to;
4560 	int err;
4561 
4562 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4563 					 BPF_F_TUNINFO_FLAGS)))) {
4564 		err = -EINVAL;
4565 		goto err_clear;
4566 	}
4567 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4568 		err = -EPROTO;
4569 		goto err_clear;
4570 	}
4571 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4572 		err = -EINVAL;
4573 		switch (size) {
4574 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4575 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4576 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4577 			goto set_compat;
4578 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4579 			/* Fixup deprecated structure layouts here, so we have
4580 			 * a common path later on.
4581 			 */
4582 			if (ip_tunnel_info_af(info) != AF_INET)
4583 				goto err_clear;
4584 set_compat:
4585 			to = (struct bpf_tunnel_key *)compat;
4586 			break;
4587 		default:
4588 			goto err_clear;
4589 		}
4590 	}
4591 
4592 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4593 	to->tunnel_tos = info->key.tos;
4594 	to->tunnel_ttl = info->key.ttl;
4595 	if (flags & BPF_F_TUNINFO_FLAGS)
4596 		to->tunnel_flags = info->key.tun_flags;
4597 	else
4598 		to->tunnel_ext = 0;
4599 
4600 	if (flags & BPF_F_TUNINFO_IPV6) {
4601 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4602 		       sizeof(to->remote_ipv6));
4603 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4604 		       sizeof(to->local_ipv6));
4605 		to->tunnel_label = be32_to_cpu(info->key.label);
4606 	} else {
4607 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4608 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4609 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4610 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4611 		to->tunnel_label = 0;
4612 	}
4613 
4614 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4615 		memcpy(to_orig, to, size);
4616 
4617 	return 0;
4618 err_clear:
4619 	memset(to_orig, 0, size);
4620 	return err;
4621 }
4622 
4623 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4624 	.func		= bpf_skb_get_tunnel_key,
4625 	.gpl_only	= false,
4626 	.ret_type	= RET_INTEGER,
4627 	.arg1_type	= ARG_PTR_TO_CTX,
4628 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4629 	.arg3_type	= ARG_CONST_SIZE,
4630 	.arg4_type	= ARG_ANYTHING,
4631 };
4632 
4633 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4634 {
4635 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4636 	int err;
4637 
4638 	if (unlikely(!info ||
4639 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4640 		err = -ENOENT;
4641 		goto err_clear;
4642 	}
4643 	if (unlikely(size < info->options_len)) {
4644 		err = -ENOMEM;
4645 		goto err_clear;
4646 	}
4647 
4648 	ip_tunnel_info_opts_get(to, info);
4649 	if (size > info->options_len)
4650 		memset(to + info->options_len, 0, size - info->options_len);
4651 
4652 	return info->options_len;
4653 err_clear:
4654 	memset(to, 0, size);
4655 	return err;
4656 }
4657 
4658 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4659 	.func		= bpf_skb_get_tunnel_opt,
4660 	.gpl_only	= false,
4661 	.ret_type	= RET_INTEGER,
4662 	.arg1_type	= ARG_PTR_TO_CTX,
4663 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4664 	.arg3_type	= ARG_CONST_SIZE,
4665 };
4666 
4667 static struct metadata_dst __percpu *md_dst;
4668 
4669 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4670 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4671 {
4672 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4673 	u8 compat[sizeof(struct bpf_tunnel_key)];
4674 	struct ip_tunnel_info *info;
4675 
4676 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4677 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4678 			       BPF_F_NO_TUNNEL_KEY)))
4679 		return -EINVAL;
4680 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4681 		switch (size) {
4682 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4683 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4684 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4685 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4686 			/* Fixup deprecated structure layouts here, so we have
4687 			 * a common path later on.
4688 			 */
4689 			memcpy(compat, from, size);
4690 			memset(compat + size, 0, sizeof(compat) - size);
4691 			from = (const struct bpf_tunnel_key *) compat;
4692 			break;
4693 		default:
4694 			return -EINVAL;
4695 		}
4696 	}
4697 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4698 		     from->tunnel_ext))
4699 		return -EINVAL;
4700 
4701 	skb_dst_drop(skb);
4702 	dst_hold((struct dst_entry *) md);
4703 	skb_dst_set(skb, (struct dst_entry *) md);
4704 
4705 	info = &md->u.tun_info;
4706 	memset(info, 0, sizeof(*info));
4707 	info->mode = IP_TUNNEL_INFO_TX;
4708 
4709 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4710 	if (flags & BPF_F_DONT_FRAGMENT)
4711 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4712 	if (flags & BPF_F_ZERO_CSUM_TX)
4713 		info->key.tun_flags &= ~TUNNEL_CSUM;
4714 	if (flags & BPF_F_SEQ_NUMBER)
4715 		info->key.tun_flags |= TUNNEL_SEQ;
4716 	if (flags & BPF_F_NO_TUNNEL_KEY)
4717 		info->key.tun_flags &= ~TUNNEL_KEY;
4718 
4719 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4720 	info->key.tos = from->tunnel_tos;
4721 	info->key.ttl = from->tunnel_ttl;
4722 
4723 	if (flags & BPF_F_TUNINFO_IPV6) {
4724 		info->mode |= IP_TUNNEL_INFO_IPV6;
4725 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4726 		       sizeof(from->remote_ipv6));
4727 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4728 		       sizeof(from->local_ipv6));
4729 		info->key.label = cpu_to_be32(from->tunnel_label) &
4730 				  IPV6_FLOWLABEL_MASK;
4731 	} else {
4732 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4733 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4734 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4735 	}
4736 
4737 	return 0;
4738 }
4739 
4740 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4741 	.func		= bpf_skb_set_tunnel_key,
4742 	.gpl_only	= false,
4743 	.ret_type	= RET_INTEGER,
4744 	.arg1_type	= ARG_PTR_TO_CTX,
4745 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4746 	.arg3_type	= ARG_CONST_SIZE,
4747 	.arg4_type	= ARG_ANYTHING,
4748 };
4749 
4750 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4751 	   const u8 *, from, u32, size)
4752 {
4753 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4754 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4755 
4756 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4757 		return -EINVAL;
4758 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4759 		return -ENOMEM;
4760 
4761 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4762 
4763 	return 0;
4764 }
4765 
4766 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4767 	.func		= bpf_skb_set_tunnel_opt,
4768 	.gpl_only	= false,
4769 	.ret_type	= RET_INTEGER,
4770 	.arg1_type	= ARG_PTR_TO_CTX,
4771 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4772 	.arg3_type	= ARG_CONST_SIZE,
4773 };
4774 
4775 static const struct bpf_func_proto *
4776 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4777 {
4778 	if (!md_dst) {
4779 		struct metadata_dst __percpu *tmp;
4780 
4781 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4782 						METADATA_IP_TUNNEL,
4783 						GFP_KERNEL);
4784 		if (!tmp)
4785 			return NULL;
4786 		if (cmpxchg(&md_dst, NULL, tmp))
4787 			metadata_dst_free_percpu(tmp);
4788 	}
4789 
4790 	switch (which) {
4791 	case BPF_FUNC_skb_set_tunnel_key:
4792 		return &bpf_skb_set_tunnel_key_proto;
4793 	case BPF_FUNC_skb_set_tunnel_opt:
4794 		return &bpf_skb_set_tunnel_opt_proto;
4795 	default:
4796 		return NULL;
4797 	}
4798 }
4799 
4800 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4801 	   u32, idx)
4802 {
4803 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4804 	struct cgroup *cgrp;
4805 	struct sock *sk;
4806 
4807 	sk = skb_to_full_sk(skb);
4808 	if (!sk || !sk_fullsock(sk))
4809 		return -ENOENT;
4810 	if (unlikely(idx >= array->map.max_entries))
4811 		return -E2BIG;
4812 
4813 	cgrp = READ_ONCE(array->ptrs[idx]);
4814 	if (unlikely(!cgrp))
4815 		return -EAGAIN;
4816 
4817 	return sk_under_cgroup_hierarchy(sk, cgrp);
4818 }
4819 
4820 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4821 	.func		= bpf_skb_under_cgroup,
4822 	.gpl_only	= false,
4823 	.ret_type	= RET_INTEGER,
4824 	.arg1_type	= ARG_PTR_TO_CTX,
4825 	.arg2_type	= ARG_CONST_MAP_PTR,
4826 	.arg3_type	= ARG_ANYTHING,
4827 };
4828 
4829 #ifdef CONFIG_SOCK_CGROUP_DATA
4830 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4831 {
4832 	struct cgroup *cgrp;
4833 
4834 	sk = sk_to_full_sk(sk);
4835 	if (!sk || !sk_fullsock(sk))
4836 		return 0;
4837 
4838 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4839 	return cgroup_id(cgrp);
4840 }
4841 
4842 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4843 {
4844 	return __bpf_sk_cgroup_id(skb->sk);
4845 }
4846 
4847 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4848 	.func           = bpf_skb_cgroup_id,
4849 	.gpl_only       = false,
4850 	.ret_type       = RET_INTEGER,
4851 	.arg1_type      = ARG_PTR_TO_CTX,
4852 };
4853 
4854 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4855 					      int ancestor_level)
4856 {
4857 	struct cgroup *ancestor;
4858 	struct cgroup *cgrp;
4859 
4860 	sk = sk_to_full_sk(sk);
4861 	if (!sk || !sk_fullsock(sk))
4862 		return 0;
4863 
4864 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4865 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4866 	if (!ancestor)
4867 		return 0;
4868 
4869 	return cgroup_id(ancestor);
4870 }
4871 
4872 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4873 	   ancestor_level)
4874 {
4875 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4876 }
4877 
4878 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4879 	.func           = bpf_skb_ancestor_cgroup_id,
4880 	.gpl_only       = false,
4881 	.ret_type       = RET_INTEGER,
4882 	.arg1_type      = ARG_PTR_TO_CTX,
4883 	.arg2_type      = ARG_ANYTHING,
4884 };
4885 
4886 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4887 {
4888 	return __bpf_sk_cgroup_id(sk);
4889 }
4890 
4891 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4892 	.func           = bpf_sk_cgroup_id,
4893 	.gpl_only       = false,
4894 	.ret_type       = RET_INTEGER,
4895 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4896 };
4897 
4898 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4899 {
4900 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4901 }
4902 
4903 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4904 	.func           = bpf_sk_ancestor_cgroup_id,
4905 	.gpl_only       = false,
4906 	.ret_type       = RET_INTEGER,
4907 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4908 	.arg2_type      = ARG_ANYTHING,
4909 };
4910 #endif
4911 
4912 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4913 				  unsigned long off, unsigned long len)
4914 {
4915 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4916 
4917 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4918 	return 0;
4919 }
4920 
4921 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4922 	   u64, flags, void *, meta, u64, meta_size)
4923 {
4924 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4925 
4926 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4927 		return -EINVAL;
4928 
4929 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4930 		return -EFAULT;
4931 
4932 	return bpf_event_output(map, flags, meta, meta_size, xdp,
4933 				xdp_size, bpf_xdp_copy);
4934 }
4935 
4936 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4937 	.func		= bpf_xdp_event_output,
4938 	.gpl_only	= true,
4939 	.ret_type	= RET_INTEGER,
4940 	.arg1_type	= ARG_PTR_TO_CTX,
4941 	.arg2_type	= ARG_CONST_MAP_PTR,
4942 	.arg3_type	= ARG_ANYTHING,
4943 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4944 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4945 };
4946 
4947 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4948 
4949 const struct bpf_func_proto bpf_xdp_output_proto = {
4950 	.func		= bpf_xdp_event_output,
4951 	.gpl_only	= true,
4952 	.ret_type	= RET_INTEGER,
4953 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4954 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4955 	.arg2_type	= ARG_CONST_MAP_PTR,
4956 	.arg3_type	= ARG_ANYTHING,
4957 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4958 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4959 };
4960 
4961 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4962 {
4963 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4964 }
4965 
4966 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4967 	.func           = bpf_get_socket_cookie,
4968 	.gpl_only       = false,
4969 	.ret_type       = RET_INTEGER,
4970 	.arg1_type      = ARG_PTR_TO_CTX,
4971 };
4972 
4973 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4974 {
4975 	return __sock_gen_cookie(ctx->sk);
4976 }
4977 
4978 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4979 	.func		= bpf_get_socket_cookie_sock_addr,
4980 	.gpl_only	= false,
4981 	.ret_type	= RET_INTEGER,
4982 	.arg1_type	= ARG_PTR_TO_CTX,
4983 };
4984 
4985 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4986 {
4987 	return __sock_gen_cookie(ctx);
4988 }
4989 
4990 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4991 	.func		= bpf_get_socket_cookie_sock,
4992 	.gpl_only	= false,
4993 	.ret_type	= RET_INTEGER,
4994 	.arg1_type	= ARG_PTR_TO_CTX,
4995 };
4996 
4997 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4998 {
4999 	return sk ? sock_gen_cookie(sk) : 0;
5000 }
5001 
5002 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5003 	.func		= bpf_get_socket_ptr_cookie,
5004 	.gpl_only	= false,
5005 	.ret_type	= RET_INTEGER,
5006 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5007 };
5008 
5009 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5010 {
5011 	return __sock_gen_cookie(ctx->sk);
5012 }
5013 
5014 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5015 	.func		= bpf_get_socket_cookie_sock_ops,
5016 	.gpl_only	= false,
5017 	.ret_type	= RET_INTEGER,
5018 	.arg1_type	= ARG_PTR_TO_CTX,
5019 };
5020 
5021 static u64 __bpf_get_netns_cookie(struct sock *sk)
5022 {
5023 	const struct net *net = sk ? sock_net(sk) : &init_net;
5024 
5025 	return net->net_cookie;
5026 }
5027 
5028 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5029 {
5030 	return __bpf_get_netns_cookie(ctx);
5031 }
5032 
5033 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5034 	.func		= bpf_get_netns_cookie_sock,
5035 	.gpl_only	= false,
5036 	.ret_type	= RET_INTEGER,
5037 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5038 };
5039 
5040 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5041 {
5042 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5043 }
5044 
5045 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5046 	.func		= bpf_get_netns_cookie_sock_addr,
5047 	.gpl_only	= false,
5048 	.ret_type	= RET_INTEGER,
5049 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5050 };
5051 
5052 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5053 {
5054 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5055 }
5056 
5057 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5058 	.func		= bpf_get_netns_cookie_sock_ops,
5059 	.gpl_only	= false,
5060 	.ret_type	= RET_INTEGER,
5061 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5062 };
5063 
5064 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5065 {
5066 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5067 }
5068 
5069 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5070 	.func		= bpf_get_netns_cookie_sk_msg,
5071 	.gpl_only	= false,
5072 	.ret_type	= RET_INTEGER,
5073 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5074 };
5075 
5076 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5077 {
5078 	struct sock *sk = sk_to_full_sk(skb->sk);
5079 	kuid_t kuid;
5080 
5081 	if (!sk || !sk_fullsock(sk))
5082 		return overflowuid;
5083 	kuid = sock_net_uid(sock_net(sk), sk);
5084 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5085 }
5086 
5087 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5088 	.func           = bpf_get_socket_uid,
5089 	.gpl_only       = false,
5090 	.ret_type       = RET_INTEGER,
5091 	.arg1_type      = ARG_PTR_TO_CTX,
5092 };
5093 
5094 static int sol_socket_sockopt(struct sock *sk, int optname,
5095 			      char *optval, int *optlen,
5096 			      bool getopt)
5097 {
5098 	switch (optname) {
5099 	case SO_REUSEADDR:
5100 	case SO_SNDBUF:
5101 	case SO_RCVBUF:
5102 	case SO_KEEPALIVE:
5103 	case SO_PRIORITY:
5104 	case SO_REUSEPORT:
5105 	case SO_RCVLOWAT:
5106 	case SO_MARK:
5107 	case SO_MAX_PACING_RATE:
5108 	case SO_BINDTOIFINDEX:
5109 	case SO_TXREHASH:
5110 		if (*optlen != sizeof(int))
5111 			return -EINVAL;
5112 		break;
5113 	case SO_BINDTODEVICE:
5114 		break;
5115 	default:
5116 		return -EINVAL;
5117 	}
5118 
5119 	if (getopt) {
5120 		if (optname == SO_BINDTODEVICE)
5121 			return -EINVAL;
5122 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5123 				     KERNEL_SOCKPTR(optval),
5124 				     KERNEL_SOCKPTR(optlen));
5125 	}
5126 
5127 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5128 			     KERNEL_SOCKPTR(optval), *optlen);
5129 }
5130 
5131 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5132 				  char *optval, int optlen)
5133 {
5134 	struct tcp_sock *tp = tcp_sk(sk);
5135 	unsigned long timeout;
5136 	int val;
5137 
5138 	if (optlen != sizeof(int))
5139 		return -EINVAL;
5140 
5141 	val = *(int *)optval;
5142 
5143 	/* Only some options are supported */
5144 	switch (optname) {
5145 	case TCP_BPF_IW:
5146 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5147 			return -EINVAL;
5148 		tcp_snd_cwnd_set(tp, val);
5149 		break;
5150 	case TCP_BPF_SNDCWND_CLAMP:
5151 		if (val <= 0)
5152 			return -EINVAL;
5153 		tp->snd_cwnd_clamp = val;
5154 		tp->snd_ssthresh = val;
5155 		break;
5156 	case TCP_BPF_DELACK_MAX:
5157 		timeout = usecs_to_jiffies(val);
5158 		if (timeout > TCP_DELACK_MAX ||
5159 		    timeout < TCP_TIMEOUT_MIN)
5160 			return -EINVAL;
5161 		inet_csk(sk)->icsk_delack_max = timeout;
5162 		break;
5163 	case TCP_BPF_RTO_MIN:
5164 		timeout = usecs_to_jiffies(val);
5165 		if (timeout > TCP_RTO_MIN ||
5166 		    timeout < TCP_TIMEOUT_MIN)
5167 			return -EINVAL;
5168 		inet_csk(sk)->icsk_rto_min = timeout;
5169 		break;
5170 	default:
5171 		return -EINVAL;
5172 	}
5173 
5174 	return 0;
5175 }
5176 
5177 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5178 				      int *optlen, bool getopt)
5179 {
5180 	struct tcp_sock *tp;
5181 	int ret;
5182 
5183 	if (*optlen < 2)
5184 		return -EINVAL;
5185 
5186 	if (getopt) {
5187 		if (!inet_csk(sk)->icsk_ca_ops)
5188 			return -EINVAL;
5189 		/* BPF expects NULL-terminated tcp-cc string */
5190 		optval[--(*optlen)] = '\0';
5191 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5192 					 KERNEL_SOCKPTR(optval),
5193 					 KERNEL_SOCKPTR(optlen));
5194 	}
5195 
5196 	/* "cdg" is the only cc that alloc a ptr
5197 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5198 	 * overwrite this ptr after switching to cdg.
5199 	 */
5200 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5201 		return -ENOTSUPP;
5202 
5203 	/* It stops this looping
5204 	 *
5205 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5206 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5207 	 *
5208 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5209 	 * in order to break the loop when both .init
5210 	 * are the same bpf prog.
5211 	 *
5212 	 * This applies even the second bpf_setsockopt(tcp_cc)
5213 	 * does not cause a loop.  This limits only the first
5214 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5215 	 * pick a fallback cc (eg. peer does not support ECN)
5216 	 * and the second '.init' cannot fallback to
5217 	 * another.
5218 	 */
5219 	tp = tcp_sk(sk);
5220 	if (tp->bpf_chg_cc_inprogress)
5221 		return -EBUSY;
5222 
5223 	tp->bpf_chg_cc_inprogress = 1;
5224 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5225 				KERNEL_SOCKPTR(optval), *optlen);
5226 	tp->bpf_chg_cc_inprogress = 0;
5227 	return ret;
5228 }
5229 
5230 static int sol_tcp_sockopt(struct sock *sk, int optname,
5231 			   char *optval, int *optlen,
5232 			   bool getopt)
5233 {
5234 	if (sk->sk_protocol != IPPROTO_TCP)
5235 		return -EINVAL;
5236 
5237 	switch (optname) {
5238 	case TCP_NODELAY:
5239 	case TCP_MAXSEG:
5240 	case TCP_KEEPIDLE:
5241 	case TCP_KEEPINTVL:
5242 	case TCP_KEEPCNT:
5243 	case TCP_SYNCNT:
5244 	case TCP_WINDOW_CLAMP:
5245 	case TCP_THIN_LINEAR_TIMEOUTS:
5246 	case TCP_USER_TIMEOUT:
5247 	case TCP_NOTSENT_LOWAT:
5248 	case TCP_SAVE_SYN:
5249 		if (*optlen != sizeof(int))
5250 			return -EINVAL;
5251 		break;
5252 	case TCP_CONGESTION:
5253 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5254 	case TCP_SAVED_SYN:
5255 		if (*optlen < 1)
5256 			return -EINVAL;
5257 		break;
5258 	default:
5259 		if (getopt)
5260 			return -EINVAL;
5261 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5262 	}
5263 
5264 	if (getopt) {
5265 		if (optname == TCP_SAVED_SYN) {
5266 			struct tcp_sock *tp = tcp_sk(sk);
5267 
5268 			if (!tp->saved_syn ||
5269 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5270 				return -EINVAL;
5271 			memcpy(optval, tp->saved_syn->data, *optlen);
5272 			/* It cannot free tp->saved_syn here because it
5273 			 * does not know if the user space still needs it.
5274 			 */
5275 			return 0;
5276 		}
5277 
5278 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5279 					 KERNEL_SOCKPTR(optval),
5280 					 KERNEL_SOCKPTR(optlen));
5281 	}
5282 
5283 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5284 				 KERNEL_SOCKPTR(optval), *optlen);
5285 }
5286 
5287 static int sol_ip_sockopt(struct sock *sk, int optname,
5288 			  char *optval, int *optlen,
5289 			  bool getopt)
5290 {
5291 	if (sk->sk_family != AF_INET)
5292 		return -EINVAL;
5293 
5294 	switch (optname) {
5295 	case IP_TOS:
5296 		if (*optlen != sizeof(int))
5297 			return -EINVAL;
5298 		break;
5299 	default:
5300 		return -EINVAL;
5301 	}
5302 
5303 	if (getopt)
5304 		return do_ip_getsockopt(sk, SOL_IP, optname,
5305 					KERNEL_SOCKPTR(optval),
5306 					KERNEL_SOCKPTR(optlen));
5307 
5308 	return do_ip_setsockopt(sk, SOL_IP, optname,
5309 				KERNEL_SOCKPTR(optval), *optlen);
5310 }
5311 
5312 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5313 			    char *optval, int *optlen,
5314 			    bool getopt)
5315 {
5316 	if (sk->sk_family != AF_INET6)
5317 		return -EINVAL;
5318 
5319 	switch (optname) {
5320 	case IPV6_TCLASS:
5321 	case IPV6_AUTOFLOWLABEL:
5322 		if (*optlen != sizeof(int))
5323 			return -EINVAL;
5324 		break;
5325 	default:
5326 		return -EINVAL;
5327 	}
5328 
5329 	if (getopt)
5330 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5331 						      KERNEL_SOCKPTR(optval),
5332 						      KERNEL_SOCKPTR(optlen));
5333 
5334 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5335 					      KERNEL_SOCKPTR(optval), *optlen);
5336 }
5337 
5338 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5339 			    char *optval, int optlen)
5340 {
5341 	if (!sk_fullsock(sk))
5342 		return -EINVAL;
5343 
5344 	if (level == SOL_SOCKET)
5345 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5346 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5347 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5348 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5349 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5350 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5351 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5352 
5353 	return -EINVAL;
5354 }
5355 
5356 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5357 			   char *optval, int optlen)
5358 {
5359 	if (sk_fullsock(sk))
5360 		sock_owned_by_me(sk);
5361 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5362 }
5363 
5364 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5365 			    char *optval, int optlen)
5366 {
5367 	int err, saved_optlen = optlen;
5368 
5369 	if (!sk_fullsock(sk)) {
5370 		err = -EINVAL;
5371 		goto done;
5372 	}
5373 
5374 	if (level == SOL_SOCKET)
5375 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5376 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5377 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5378 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5379 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5380 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5381 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5382 	else
5383 		err = -EINVAL;
5384 
5385 done:
5386 	if (err)
5387 		optlen = 0;
5388 	if (optlen < saved_optlen)
5389 		memset(optval + optlen, 0, saved_optlen - optlen);
5390 	return err;
5391 }
5392 
5393 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5394 			   char *optval, int optlen)
5395 {
5396 	if (sk_fullsock(sk))
5397 		sock_owned_by_me(sk);
5398 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5399 }
5400 
5401 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5402 	   int, optname, char *, optval, int, optlen)
5403 {
5404 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5405 }
5406 
5407 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5408 	.func		= bpf_sk_setsockopt,
5409 	.gpl_only	= false,
5410 	.ret_type	= RET_INTEGER,
5411 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5412 	.arg2_type	= ARG_ANYTHING,
5413 	.arg3_type	= ARG_ANYTHING,
5414 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5415 	.arg5_type	= ARG_CONST_SIZE,
5416 };
5417 
5418 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5419 	   int, optname, char *, optval, int, optlen)
5420 {
5421 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5422 }
5423 
5424 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5425 	.func		= bpf_sk_getsockopt,
5426 	.gpl_only	= false,
5427 	.ret_type	= RET_INTEGER,
5428 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5429 	.arg2_type	= ARG_ANYTHING,
5430 	.arg3_type	= ARG_ANYTHING,
5431 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5432 	.arg5_type	= ARG_CONST_SIZE,
5433 };
5434 
5435 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5436 	   int, optname, char *, optval, int, optlen)
5437 {
5438 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5439 }
5440 
5441 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5442 	.func		= bpf_unlocked_sk_setsockopt,
5443 	.gpl_only	= false,
5444 	.ret_type	= RET_INTEGER,
5445 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5446 	.arg2_type	= ARG_ANYTHING,
5447 	.arg3_type	= ARG_ANYTHING,
5448 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5449 	.arg5_type	= ARG_CONST_SIZE,
5450 };
5451 
5452 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5453 	   int, optname, char *, optval, int, optlen)
5454 {
5455 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5456 }
5457 
5458 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5459 	.func		= bpf_unlocked_sk_getsockopt,
5460 	.gpl_only	= false,
5461 	.ret_type	= RET_INTEGER,
5462 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5463 	.arg2_type	= ARG_ANYTHING,
5464 	.arg3_type	= ARG_ANYTHING,
5465 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5466 	.arg5_type	= ARG_CONST_SIZE,
5467 };
5468 
5469 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5470 	   int, level, int, optname, char *, optval, int, optlen)
5471 {
5472 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5473 }
5474 
5475 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5476 	.func		= bpf_sock_addr_setsockopt,
5477 	.gpl_only	= false,
5478 	.ret_type	= RET_INTEGER,
5479 	.arg1_type	= ARG_PTR_TO_CTX,
5480 	.arg2_type	= ARG_ANYTHING,
5481 	.arg3_type	= ARG_ANYTHING,
5482 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5483 	.arg5_type	= ARG_CONST_SIZE,
5484 };
5485 
5486 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5487 	   int, level, int, optname, char *, optval, int, optlen)
5488 {
5489 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5490 }
5491 
5492 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5493 	.func		= bpf_sock_addr_getsockopt,
5494 	.gpl_only	= false,
5495 	.ret_type	= RET_INTEGER,
5496 	.arg1_type	= ARG_PTR_TO_CTX,
5497 	.arg2_type	= ARG_ANYTHING,
5498 	.arg3_type	= ARG_ANYTHING,
5499 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5500 	.arg5_type	= ARG_CONST_SIZE,
5501 };
5502 
5503 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5504 	   int, level, int, optname, char *, optval, int, optlen)
5505 {
5506 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5507 }
5508 
5509 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5510 	.func		= bpf_sock_ops_setsockopt,
5511 	.gpl_only	= false,
5512 	.ret_type	= RET_INTEGER,
5513 	.arg1_type	= ARG_PTR_TO_CTX,
5514 	.arg2_type	= ARG_ANYTHING,
5515 	.arg3_type	= ARG_ANYTHING,
5516 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5517 	.arg5_type	= ARG_CONST_SIZE,
5518 };
5519 
5520 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5521 				int optname, const u8 **start)
5522 {
5523 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5524 	const u8 *hdr_start;
5525 	int ret;
5526 
5527 	if (syn_skb) {
5528 		/* sk is a request_sock here */
5529 
5530 		if (optname == TCP_BPF_SYN) {
5531 			hdr_start = syn_skb->data;
5532 			ret = tcp_hdrlen(syn_skb);
5533 		} else if (optname == TCP_BPF_SYN_IP) {
5534 			hdr_start = skb_network_header(syn_skb);
5535 			ret = skb_network_header_len(syn_skb) +
5536 				tcp_hdrlen(syn_skb);
5537 		} else {
5538 			/* optname == TCP_BPF_SYN_MAC */
5539 			hdr_start = skb_mac_header(syn_skb);
5540 			ret = skb_mac_header_len(syn_skb) +
5541 				skb_network_header_len(syn_skb) +
5542 				tcp_hdrlen(syn_skb);
5543 		}
5544 	} else {
5545 		struct sock *sk = bpf_sock->sk;
5546 		struct saved_syn *saved_syn;
5547 
5548 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5549 			/* synack retransmit. bpf_sock->syn_skb will
5550 			 * not be available.  It has to resort to
5551 			 * saved_syn (if it is saved).
5552 			 */
5553 			saved_syn = inet_reqsk(sk)->saved_syn;
5554 		else
5555 			saved_syn = tcp_sk(sk)->saved_syn;
5556 
5557 		if (!saved_syn)
5558 			return -ENOENT;
5559 
5560 		if (optname == TCP_BPF_SYN) {
5561 			hdr_start = saved_syn->data +
5562 				saved_syn->mac_hdrlen +
5563 				saved_syn->network_hdrlen;
5564 			ret = saved_syn->tcp_hdrlen;
5565 		} else if (optname == TCP_BPF_SYN_IP) {
5566 			hdr_start = saved_syn->data +
5567 				saved_syn->mac_hdrlen;
5568 			ret = saved_syn->network_hdrlen +
5569 				saved_syn->tcp_hdrlen;
5570 		} else {
5571 			/* optname == TCP_BPF_SYN_MAC */
5572 
5573 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5574 			if (!saved_syn->mac_hdrlen)
5575 				return -ENOENT;
5576 
5577 			hdr_start = saved_syn->data;
5578 			ret = saved_syn->mac_hdrlen +
5579 				saved_syn->network_hdrlen +
5580 				saved_syn->tcp_hdrlen;
5581 		}
5582 	}
5583 
5584 	*start = hdr_start;
5585 	return ret;
5586 }
5587 
5588 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5589 	   int, level, int, optname, char *, optval, int, optlen)
5590 {
5591 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5592 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5593 		int ret, copy_len = 0;
5594 		const u8 *start;
5595 
5596 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5597 		if (ret > 0) {
5598 			copy_len = ret;
5599 			if (optlen < copy_len) {
5600 				copy_len = optlen;
5601 				ret = -ENOSPC;
5602 			}
5603 
5604 			memcpy(optval, start, copy_len);
5605 		}
5606 
5607 		/* Zero out unused buffer at the end */
5608 		memset(optval + copy_len, 0, optlen - copy_len);
5609 
5610 		return ret;
5611 	}
5612 
5613 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5614 }
5615 
5616 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5617 	.func		= bpf_sock_ops_getsockopt,
5618 	.gpl_only	= false,
5619 	.ret_type	= RET_INTEGER,
5620 	.arg1_type	= ARG_PTR_TO_CTX,
5621 	.arg2_type	= ARG_ANYTHING,
5622 	.arg3_type	= ARG_ANYTHING,
5623 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5624 	.arg5_type	= ARG_CONST_SIZE,
5625 };
5626 
5627 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5628 	   int, argval)
5629 {
5630 	struct sock *sk = bpf_sock->sk;
5631 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5632 
5633 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5634 		return -EINVAL;
5635 
5636 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5637 
5638 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5639 }
5640 
5641 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5642 	.func		= bpf_sock_ops_cb_flags_set,
5643 	.gpl_only	= false,
5644 	.ret_type	= RET_INTEGER,
5645 	.arg1_type	= ARG_PTR_TO_CTX,
5646 	.arg2_type	= ARG_ANYTHING,
5647 };
5648 
5649 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5650 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5651 
5652 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5653 	   int, addr_len)
5654 {
5655 #ifdef CONFIG_INET
5656 	struct sock *sk = ctx->sk;
5657 	u32 flags = BIND_FROM_BPF;
5658 	int err;
5659 
5660 	err = -EINVAL;
5661 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5662 		return err;
5663 	if (addr->sa_family == AF_INET) {
5664 		if (addr_len < sizeof(struct sockaddr_in))
5665 			return err;
5666 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5667 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5668 		return __inet_bind(sk, addr, addr_len, flags);
5669 #if IS_ENABLED(CONFIG_IPV6)
5670 	} else if (addr->sa_family == AF_INET6) {
5671 		if (addr_len < SIN6_LEN_RFC2133)
5672 			return err;
5673 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5674 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5675 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5676 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5677 		 */
5678 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5679 #endif /* CONFIG_IPV6 */
5680 	}
5681 #endif /* CONFIG_INET */
5682 
5683 	return -EAFNOSUPPORT;
5684 }
5685 
5686 static const struct bpf_func_proto bpf_bind_proto = {
5687 	.func		= bpf_bind,
5688 	.gpl_only	= false,
5689 	.ret_type	= RET_INTEGER,
5690 	.arg1_type	= ARG_PTR_TO_CTX,
5691 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5692 	.arg3_type	= ARG_CONST_SIZE,
5693 };
5694 
5695 #ifdef CONFIG_XFRM
5696 
5697 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5698     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5699 
5700 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5701 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5702 
5703 #endif
5704 
5705 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5706 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5707 {
5708 	const struct sec_path *sp = skb_sec_path(skb);
5709 	const struct xfrm_state *x;
5710 
5711 	if (!sp || unlikely(index >= sp->len || flags))
5712 		goto err_clear;
5713 
5714 	x = sp->xvec[index];
5715 
5716 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5717 		goto err_clear;
5718 
5719 	to->reqid = x->props.reqid;
5720 	to->spi = x->id.spi;
5721 	to->family = x->props.family;
5722 	to->ext = 0;
5723 
5724 	if (to->family == AF_INET6) {
5725 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5726 		       sizeof(to->remote_ipv6));
5727 	} else {
5728 		to->remote_ipv4 = x->props.saddr.a4;
5729 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5730 	}
5731 
5732 	return 0;
5733 err_clear:
5734 	memset(to, 0, size);
5735 	return -EINVAL;
5736 }
5737 
5738 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5739 	.func		= bpf_skb_get_xfrm_state,
5740 	.gpl_only	= false,
5741 	.ret_type	= RET_INTEGER,
5742 	.arg1_type	= ARG_PTR_TO_CTX,
5743 	.arg2_type	= ARG_ANYTHING,
5744 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5745 	.arg4_type	= ARG_CONST_SIZE,
5746 	.arg5_type	= ARG_ANYTHING,
5747 };
5748 #endif
5749 
5750 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5751 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5752 {
5753 	params->h_vlan_TCI = 0;
5754 	params->h_vlan_proto = 0;
5755 	if (mtu)
5756 		params->mtu_result = mtu; /* union with tot_len */
5757 
5758 	return 0;
5759 }
5760 #endif
5761 
5762 #if IS_ENABLED(CONFIG_INET)
5763 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5764 			       u32 flags, bool check_mtu)
5765 {
5766 	struct fib_nh_common *nhc;
5767 	struct in_device *in_dev;
5768 	struct neighbour *neigh;
5769 	struct net_device *dev;
5770 	struct fib_result res;
5771 	struct flowi4 fl4;
5772 	u32 mtu = 0;
5773 	int err;
5774 
5775 	dev = dev_get_by_index_rcu(net, params->ifindex);
5776 	if (unlikely(!dev))
5777 		return -ENODEV;
5778 
5779 	/* verify forwarding is enabled on this interface */
5780 	in_dev = __in_dev_get_rcu(dev);
5781 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5782 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5783 
5784 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5785 		fl4.flowi4_iif = 1;
5786 		fl4.flowi4_oif = params->ifindex;
5787 	} else {
5788 		fl4.flowi4_iif = params->ifindex;
5789 		fl4.flowi4_oif = 0;
5790 	}
5791 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5792 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5793 	fl4.flowi4_flags = 0;
5794 
5795 	fl4.flowi4_proto = params->l4_protocol;
5796 	fl4.daddr = params->ipv4_dst;
5797 	fl4.saddr = params->ipv4_src;
5798 	fl4.fl4_sport = params->sport;
5799 	fl4.fl4_dport = params->dport;
5800 	fl4.flowi4_multipath_hash = 0;
5801 
5802 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5803 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5804 		struct fib_table *tb;
5805 
5806 		tb = fib_get_table(net, tbid);
5807 		if (unlikely(!tb))
5808 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5809 
5810 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5811 	} else {
5812 		fl4.flowi4_mark = 0;
5813 		fl4.flowi4_secid = 0;
5814 		fl4.flowi4_tun_key.tun_id = 0;
5815 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5816 
5817 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5818 	}
5819 
5820 	if (err) {
5821 		/* map fib lookup errors to RTN_ type */
5822 		if (err == -EINVAL)
5823 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5824 		if (err == -EHOSTUNREACH)
5825 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5826 		if (err == -EACCES)
5827 			return BPF_FIB_LKUP_RET_PROHIBIT;
5828 
5829 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5830 	}
5831 
5832 	if (res.type != RTN_UNICAST)
5833 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5834 
5835 	if (fib_info_num_path(res.fi) > 1)
5836 		fib_select_path(net, &res, &fl4, NULL);
5837 
5838 	if (check_mtu) {
5839 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5840 		if (params->tot_len > mtu) {
5841 			params->mtu_result = mtu; /* union with tot_len */
5842 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5843 		}
5844 	}
5845 
5846 	nhc = res.nhc;
5847 
5848 	/* do not handle lwt encaps right now */
5849 	if (nhc->nhc_lwtstate)
5850 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5851 
5852 	dev = nhc->nhc_dev;
5853 
5854 	params->rt_metric = res.fi->fib_priority;
5855 	params->ifindex = dev->ifindex;
5856 
5857 	/* xdp and cls_bpf programs are run in RCU-bh so
5858 	 * rcu_read_lock_bh is not needed here
5859 	 */
5860 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5861 		if (nhc->nhc_gw_family)
5862 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5863 	} else {
5864 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5865 
5866 		params->family = AF_INET6;
5867 		*dst = nhc->nhc_gw.ipv6;
5868 	}
5869 
5870 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5871 		goto set_fwd_params;
5872 
5873 	if (likely(nhc->nhc_gw_family != AF_INET6))
5874 		neigh = __ipv4_neigh_lookup_noref(dev,
5875 						  (__force u32)params->ipv4_dst);
5876 	else
5877 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5878 
5879 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5880 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5881 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5882 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5883 
5884 set_fwd_params:
5885 	return bpf_fib_set_fwd_params(params, mtu);
5886 }
5887 #endif
5888 
5889 #if IS_ENABLED(CONFIG_IPV6)
5890 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5891 			       u32 flags, bool check_mtu)
5892 {
5893 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5894 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5895 	struct fib6_result res = {};
5896 	struct neighbour *neigh;
5897 	struct net_device *dev;
5898 	struct inet6_dev *idev;
5899 	struct flowi6 fl6;
5900 	int strict = 0;
5901 	int oif, err;
5902 	u32 mtu = 0;
5903 
5904 	/* link local addresses are never forwarded */
5905 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5906 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5907 
5908 	dev = dev_get_by_index_rcu(net, params->ifindex);
5909 	if (unlikely(!dev))
5910 		return -ENODEV;
5911 
5912 	idev = __in6_dev_get_safely(dev);
5913 	if (unlikely(!idev || !idev->cnf.forwarding))
5914 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5915 
5916 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5917 		fl6.flowi6_iif = 1;
5918 		oif = fl6.flowi6_oif = params->ifindex;
5919 	} else {
5920 		oif = fl6.flowi6_iif = params->ifindex;
5921 		fl6.flowi6_oif = 0;
5922 		strict = RT6_LOOKUP_F_HAS_SADDR;
5923 	}
5924 	fl6.flowlabel = params->flowinfo;
5925 	fl6.flowi6_scope = 0;
5926 	fl6.flowi6_flags = 0;
5927 	fl6.mp_hash = 0;
5928 
5929 	fl6.flowi6_proto = params->l4_protocol;
5930 	fl6.daddr = *dst;
5931 	fl6.saddr = *src;
5932 	fl6.fl6_sport = params->sport;
5933 	fl6.fl6_dport = params->dport;
5934 
5935 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5936 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5937 		struct fib6_table *tb;
5938 
5939 		tb = ipv6_stub->fib6_get_table(net, tbid);
5940 		if (unlikely(!tb))
5941 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5942 
5943 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5944 						   strict);
5945 	} else {
5946 		fl6.flowi6_mark = 0;
5947 		fl6.flowi6_secid = 0;
5948 		fl6.flowi6_tun_key.tun_id = 0;
5949 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5950 
5951 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5952 	}
5953 
5954 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5955 		     res.f6i == net->ipv6.fib6_null_entry))
5956 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5957 
5958 	switch (res.fib6_type) {
5959 	/* only unicast is forwarded */
5960 	case RTN_UNICAST:
5961 		break;
5962 	case RTN_BLACKHOLE:
5963 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5964 	case RTN_UNREACHABLE:
5965 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5966 	case RTN_PROHIBIT:
5967 		return BPF_FIB_LKUP_RET_PROHIBIT;
5968 	default:
5969 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5970 	}
5971 
5972 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5973 				    fl6.flowi6_oif != 0, NULL, strict);
5974 
5975 	if (check_mtu) {
5976 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5977 		if (params->tot_len > mtu) {
5978 			params->mtu_result = mtu; /* union with tot_len */
5979 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5980 		}
5981 	}
5982 
5983 	if (res.nh->fib_nh_lws)
5984 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5985 
5986 	if (res.nh->fib_nh_gw_family)
5987 		*dst = res.nh->fib_nh_gw6;
5988 
5989 	dev = res.nh->fib_nh_dev;
5990 	params->rt_metric = res.f6i->fib6_metric;
5991 	params->ifindex = dev->ifindex;
5992 
5993 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5994 		goto set_fwd_params;
5995 
5996 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5997 	 * not needed here.
5998 	 */
5999 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6000 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6001 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6002 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6003 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6004 
6005 set_fwd_params:
6006 	return bpf_fib_set_fwd_params(params, mtu);
6007 }
6008 #endif
6009 
6010 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6011 			     BPF_FIB_LOOKUP_SKIP_NEIGH)
6012 
6013 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6014 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6015 {
6016 	if (plen < sizeof(*params))
6017 		return -EINVAL;
6018 
6019 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6020 		return -EINVAL;
6021 
6022 	switch (params->family) {
6023 #if IS_ENABLED(CONFIG_INET)
6024 	case AF_INET:
6025 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6026 					   flags, true);
6027 #endif
6028 #if IS_ENABLED(CONFIG_IPV6)
6029 	case AF_INET6:
6030 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6031 					   flags, true);
6032 #endif
6033 	}
6034 	return -EAFNOSUPPORT;
6035 }
6036 
6037 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6038 	.func		= bpf_xdp_fib_lookup,
6039 	.gpl_only	= true,
6040 	.ret_type	= RET_INTEGER,
6041 	.arg1_type      = ARG_PTR_TO_CTX,
6042 	.arg2_type      = ARG_PTR_TO_MEM,
6043 	.arg3_type      = ARG_CONST_SIZE,
6044 	.arg4_type	= ARG_ANYTHING,
6045 };
6046 
6047 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6048 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6049 {
6050 	struct net *net = dev_net(skb->dev);
6051 	int rc = -EAFNOSUPPORT;
6052 	bool check_mtu = false;
6053 
6054 	if (plen < sizeof(*params))
6055 		return -EINVAL;
6056 
6057 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6058 		return -EINVAL;
6059 
6060 	if (params->tot_len)
6061 		check_mtu = true;
6062 
6063 	switch (params->family) {
6064 #if IS_ENABLED(CONFIG_INET)
6065 	case AF_INET:
6066 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6067 		break;
6068 #endif
6069 #if IS_ENABLED(CONFIG_IPV6)
6070 	case AF_INET6:
6071 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6072 		break;
6073 #endif
6074 	}
6075 
6076 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6077 		struct net_device *dev;
6078 
6079 		/* When tot_len isn't provided by user, check skb
6080 		 * against MTU of FIB lookup resulting net_device
6081 		 */
6082 		dev = dev_get_by_index_rcu(net, params->ifindex);
6083 		if (!is_skb_forwardable(dev, skb))
6084 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6085 
6086 		params->mtu_result = dev->mtu; /* union with tot_len */
6087 	}
6088 
6089 	return rc;
6090 }
6091 
6092 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6093 	.func		= bpf_skb_fib_lookup,
6094 	.gpl_only	= true,
6095 	.ret_type	= RET_INTEGER,
6096 	.arg1_type      = ARG_PTR_TO_CTX,
6097 	.arg2_type      = ARG_PTR_TO_MEM,
6098 	.arg3_type      = ARG_CONST_SIZE,
6099 	.arg4_type	= ARG_ANYTHING,
6100 };
6101 
6102 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6103 					    u32 ifindex)
6104 {
6105 	struct net *netns = dev_net(dev_curr);
6106 
6107 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6108 	if (ifindex == 0)
6109 		return dev_curr;
6110 
6111 	return dev_get_by_index_rcu(netns, ifindex);
6112 }
6113 
6114 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6115 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6116 {
6117 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6118 	struct net_device *dev = skb->dev;
6119 	int skb_len, dev_len;
6120 	int mtu;
6121 
6122 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6123 		return -EINVAL;
6124 
6125 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6126 		return -EINVAL;
6127 
6128 	dev = __dev_via_ifindex(dev, ifindex);
6129 	if (unlikely(!dev))
6130 		return -ENODEV;
6131 
6132 	mtu = READ_ONCE(dev->mtu);
6133 
6134 	dev_len = mtu + dev->hard_header_len;
6135 
6136 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6137 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6138 
6139 	skb_len += len_diff; /* minus result pass check */
6140 	if (skb_len <= dev_len) {
6141 		ret = BPF_MTU_CHK_RET_SUCCESS;
6142 		goto out;
6143 	}
6144 	/* At this point, skb->len exceed MTU, but as it include length of all
6145 	 * segments, it can still be below MTU.  The SKB can possibly get
6146 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6147 	 * must choose if segs are to be MTU checked.
6148 	 */
6149 	if (skb_is_gso(skb)) {
6150 		ret = BPF_MTU_CHK_RET_SUCCESS;
6151 
6152 		if (flags & BPF_MTU_CHK_SEGS &&
6153 		    !skb_gso_validate_network_len(skb, mtu))
6154 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6155 	}
6156 out:
6157 	/* BPF verifier guarantees valid pointer */
6158 	*mtu_len = mtu;
6159 
6160 	return ret;
6161 }
6162 
6163 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6164 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6165 {
6166 	struct net_device *dev = xdp->rxq->dev;
6167 	int xdp_len = xdp->data_end - xdp->data;
6168 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6169 	int mtu, dev_len;
6170 
6171 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6172 	if (unlikely(flags))
6173 		return -EINVAL;
6174 
6175 	dev = __dev_via_ifindex(dev, ifindex);
6176 	if (unlikely(!dev))
6177 		return -ENODEV;
6178 
6179 	mtu = READ_ONCE(dev->mtu);
6180 
6181 	/* Add L2-header as dev MTU is L3 size */
6182 	dev_len = mtu + dev->hard_header_len;
6183 
6184 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6185 	if (*mtu_len)
6186 		xdp_len = *mtu_len + dev->hard_header_len;
6187 
6188 	xdp_len += len_diff; /* minus result pass check */
6189 	if (xdp_len > dev_len)
6190 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6191 
6192 	/* BPF verifier guarantees valid pointer */
6193 	*mtu_len = mtu;
6194 
6195 	return ret;
6196 }
6197 
6198 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6199 	.func		= bpf_skb_check_mtu,
6200 	.gpl_only	= true,
6201 	.ret_type	= RET_INTEGER,
6202 	.arg1_type      = ARG_PTR_TO_CTX,
6203 	.arg2_type      = ARG_ANYTHING,
6204 	.arg3_type      = ARG_PTR_TO_INT,
6205 	.arg4_type      = ARG_ANYTHING,
6206 	.arg5_type      = ARG_ANYTHING,
6207 };
6208 
6209 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6210 	.func		= bpf_xdp_check_mtu,
6211 	.gpl_only	= true,
6212 	.ret_type	= RET_INTEGER,
6213 	.arg1_type      = ARG_PTR_TO_CTX,
6214 	.arg2_type      = ARG_ANYTHING,
6215 	.arg3_type      = ARG_PTR_TO_INT,
6216 	.arg4_type      = ARG_ANYTHING,
6217 	.arg5_type      = ARG_ANYTHING,
6218 };
6219 
6220 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6221 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6222 {
6223 	int err;
6224 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6225 
6226 	if (!seg6_validate_srh(srh, len, false))
6227 		return -EINVAL;
6228 
6229 	switch (type) {
6230 	case BPF_LWT_ENCAP_SEG6_INLINE:
6231 		if (skb->protocol != htons(ETH_P_IPV6))
6232 			return -EBADMSG;
6233 
6234 		err = seg6_do_srh_inline(skb, srh);
6235 		break;
6236 	case BPF_LWT_ENCAP_SEG6:
6237 		skb_reset_inner_headers(skb);
6238 		skb->encapsulation = 1;
6239 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6240 		break;
6241 	default:
6242 		return -EINVAL;
6243 	}
6244 
6245 	bpf_compute_data_pointers(skb);
6246 	if (err)
6247 		return err;
6248 
6249 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6250 
6251 	return seg6_lookup_nexthop(skb, NULL, 0);
6252 }
6253 #endif /* CONFIG_IPV6_SEG6_BPF */
6254 
6255 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6256 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6257 			     bool ingress)
6258 {
6259 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6260 }
6261 #endif
6262 
6263 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6264 	   u32, len)
6265 {
6266 	switch (type) {
6267 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6268 	case BPF_LWT_ENCAP_SEG6:
6269 	case BPF_LWT_ENCAP_SEG6_INLINE:
6270 		return bpf_push_seg6_encap(skb, type, hdr, len);
6271 #endif
6272 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6273 	case BPF_LWT_ENCAP_IP:
6274 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6275 #endif
6276 	default:
6277 		return -EINVAL;
6278 	}
6279 }
6280 
6281 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6282 	   void *, hdr, u32, len)
6283 {
6284 	switch (type) {
6285 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6286 	case BPF_LWT_ENCAP_IP:
6287 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6288 #endif
6289 	default:
6290 		return -EINVAL;
6291 	}
6292 }
6293 
6294 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6295 	.func		= bpf_lwt_in_push_encap,
6296 	.gpl_only	= false,
6297 	.ret_type	= RET_INTEGER,
6298 	.arg1_type	= ARG_PTR_TO_CTX,
6299 	.arg2_type	= ARG_ANYTHING,
6300 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6301 	.arg4_type	= ARG_CONST_SIZE
6302 };
6303 
6304 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6305 	.func		= bpf_lwt_xmit_push_encap,
6306 	.gpl_only	= false,
6307 	.ret_type	= RET_INTEGER,
6308 	.arg1_type	= ARG_PTR_TO_CTX,
6309 	.arg2_type	= ARG_ANYTHING,
6310 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6311 	.arg4_type	= ARG_CONST_SIZE
6312 };
6313 
6314 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6315 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6316 	   const void *, from, u32, len)
6317 {
6318 	struct seg6_bpf_srh_state *srh_state =
6319 		this_cpu_ptr(&seg6_bpf_srh_states);
6320 	struct ipv6_sr_hdr *srh = srh_state->srh;
6321 	void *srh_tlvs, *srh_end, *ptr;
6322 	int srhoff = 0;
6323 
6324 	if (srh == NULL)
6325 		return -EINVAL;
6326 
6327 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6328 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6329 
6330 	ptr = skb->data + offset;
6331 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6332 		srh_state->valid = false;
6333 	else if (ptr < (void *)&srh->flags ||
6334 		 ptr + len > (void *)&srh->segments)
6335 		return -EFAULT;
6336 
6337 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6338 		return -EFAULT;
6339 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6340 		return -EINVAL;
6341 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6342 
6343 	memcpy(skb->data + offset, from, len);
6344 	return 0;
6345 }
6346 
6347 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6348 	.func		= bpf_lwt_seg6_store_bytes,
6349 	.gpl_only	= false,
6350 	.ret_type	= RET_INTEGER,
6351 	.arg1_type	= ARG_PTR_TO_CTX,
6352 	.arg2_type	= ARG_ANYTHING,
6353 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6354 	.arg4_type	= ARG_CONST_SIZE
6355 };
6356 
6357 static void bpf_update_srh_state(struct sk_buff *skb)
6358 {
6359 	struct seg6_bpf_srh_state *srh_state =
6360 		this_cpu_ptr(&seg6_bpf_srh_states);
6361 	int srhoff = 0;
6362 
6363 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6364 		srh_state->srh = NULL;
6365 	} else {
6366 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6367 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6368 		srh_state->valid = true;
6369 	}
6370 }
6371 
6372 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6373 	   u32, action, void *, param, u32, param_len)
6374 {
6375 	struct seg6_bpf_srh_state *srh_state =
6376 		this_cpu_ptr(&seg6_bpf_srh_states);
6377 	int hdroff = 0;
6378 	int err;
6379 
6380 	switch (action) {
6381 	case SEG6_LOCAL_ACTION_END_X:
6382 		if (!seg6_bpf_has_valid_srh(skb))
6383 			return -EBADMSG;
6384 		if (param_len != sizeof(struct in6_addr))
6385 			return -EINVAL;
6386 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6387 	case SEG6_LOCAL_ACTION_END_T:
6388 		if (!seg6_bpf_has_valid_srh(skb))
6389 			return -EBADMSG;
6390 		if (param_len != sizeof(int))
6391 			return -EINVAL;
6392 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6393 	case SEG6_LOCAL_ACTION_END_DT6:
6394 		if (!seg6_bpf_has_valid_srh(skb))
6395 			return -EBADMSG;
6396 		if (param_len != sizeof(int))
6397 			return -EINVAL;
6398 
6399 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6400 			return -EBADMSG;
6401 		if (!pskb_pull(skb, hdroff))
6402 			return -EBADMSG;
6403 
6404 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6405 		skb_reset_network_header(skb);
6406 		skb_reset_transport_header(skb);
6407 		skb->encapsulation = 0;
6408 
6409 		bpf_compute_data_pointers(skb);
6410 		bpf_update_srh_state(skb);
6411 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6412 	case SEG6_LOCAL_ACTION_END_B6:
6413 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6414 			return -EBADMSG;
6415 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6416 					  param, param_len);
6417 		if (!err)
6418 			bpf_update_srh_state(skb);
6419 
6420 		return err;
6421 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6422 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6423 			return -EBADMSG;
6424 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6425 					  param, param_len);
6426 		if (!err)
6427 			bpf_update_srh_state(skb);
6428 
6429 		return err;
6430 	default:
6431 		return -EINVAL;
6432 	}
6433 }
6434 
6435 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6436 	.func		= bpf_lwt_seg6_action,
6437 	.gpl_only	= false,
6438 	.ret_type	= RET_INTEGER,
6439 	.arg1_type	= ARG_PTR_TO_CTX,
6440 	.arg2_type	= ARG_ANYTHING,
6441 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6442 	.arg4_type	= ARG_CONST_SIZE
6443 };
6444 
6445 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6446 	   s32, len)
6447 {
6448 	struct seg6_bpf_srh_state *srh_state =
6449 		this_cpu_ptr(&seg6_bpf_srh_states);
6450 	struct ipv6_sr_hdr *srh = srh_state->srh;
6451 	void *srh_end, *srh_tlvs, *ptr;
6452 	struct ipv6hdr *hdr;
6453 	int srhoff = 0;
6454 	int ret;
6455 
6456 	if (unlikely(srh == NULL))
6457 		return -EINVAL;
6458 
6459 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6460 			((srh->first_segment + 1) << 4));
6461 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6462 			srh_state->hdrlen);
6463 	ptr = skb->data + offset;
6464 
6465 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6466 		return -EFAULT;
6467 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6468 		return -EFAULT;
6469 
6470 	if (len > 0) {
6471 		ret = skb_cow_head(skb, len);
6472 		if (unlikely(ret < 0))
6473 			return ret;
6474 
6475 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6476 	} else {
6477 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6478 	}
6479 
6480 	bpf_compute_data_pointers(skb);
6481 	if (unlikely(ret < 0))
6482 		return ret;
6483 
6484 	hdr = (struct ipv6hdr *)skb->data;
6485 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6486 
6487 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6488 		return -EINVAL;
6489 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6490 	srh_state->hdrlen += len;
6491 	srh_state->valid = false;
6492 	return 0;
6493 }
6494 
6495 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6496 	.func		= bpf_lwt_seg6_adjust_srh,
6497 	.gpl_only	= false,
6498 	.ret_type	= RET_INTEGER,
6499 	.arg1_type	= ARG_PTR_TO_CTX,
6500 	.arg2_type	= ARG_ANYTHING,
6501 	.arg3_type	= ARG_ANYTHING,
6502 };
6503 #endif /* CONFIG_IPV6_SEG6_BPF */
6504 
6505 #ifdef CONFIG_INET
6506 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6507 			      int dif, int sdif, u8 family, u8 proto)
6508 {
6509 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6510 	bool refcounted = false;
6511 	struct sock *sk = NULL;
6512 
6513 	if (family == AF_INET) {
6514 		__be32 src4 = tuple->ipv4.saddr;
6515 		__be32 dst4 = tuple->ipv4.daddr;
6516 
6517 		if (proto == IPPROTO_TCP)
6518 			sk = __inet_lookup(net, hinfo, NULL, 0,
6519 					   src4, tuple->ipv4.sport,
6520 					   dst4, tuple->ipv4.dport,
6521 					   dif, sdif, &refcounted);
6522 		else
6523 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6524 					       dst4, tuple->ipv4.dport,
6525 					       dif, sdif, net->ipv4.udp_table, NULL);
6526 #if IS_ENABLED(CONFIG_IPV6)
6527 	} else {
6528 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6529 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6530 
6531 		if (proto == IPPROTO_TCP)
6532 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6533 					    src6, tuple->ipv6.sport,
6534 					    dst6, ntohs(tuple->ipv6.dport),
6535 					    dif, sdif, &refcounted);
6536 		else if (likely(ipv6_bpf_stub))
6537 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6538 							    src6, tuple->ipv6.sport,
6539 							    dst6, tuple->ipv6.dport,
6540 							    dif, sdif,
6541 							    net->ipv4.udp_table, NULL);
6542 #endif
6543 	}
6544 
6545 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6546 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6547 		sk = NULL;
6548 	}
6549 	return sk;
6550 }
6551 
6552 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6553  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6554  */
6555 static struct sock *
6556 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6557 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6558 		 u64 flags)
6559 {
6560 	struct sock *sk = NULL;
6561 	struct net *net;
6562 	u8 family;
6563 	int sdif;
6564 
6565 	if (len == sizeof(tuple->ipv4))
6566 		family = AF_INET;
6567 	else if (len == sizeof(tuple->ipv6))
6568 		family = AF_INET6;
6569 	else
6570 		return NULL;
6571 
6572 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6573 		goto out;
6574 
6575 	if (family == AF_INET)
6576 		sdif = inet_sdif(skb);
6577 	else
6578 		sdif = inet6_sdif(skb);
6579 
6580 	if ((s32)netns_id < 0) {
6581 		net = caller_net;
6582 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6583 	} else {
6584 		net = get_net_ns_by_id(caller_net, netns_id);
6585 		if (unlikely(!net))
6586 			goto out;
6587 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6588 		put_net(net);
6589 	}
6590 
6591 out:
6592 	return sk;
6593 }
6594 
6595 static struct sock *
6596 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6597 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6598 		u64 flags)
6599 {
6600 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6601 					   ifindex, proto, netns_id, flags);
6602 
6603 	if (sk) {
6604 		struct sock *sk2 = sk_to_full_sk(sk);
6605 
6606 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6607 		 * sock refcnt is decremented to prevent a request_sock leak.
6608 		 */
6609 		if (!sk_fullsock(sk2))
6610 			sk2 = NULL;
6611 		if (sk2 != sk) {
6612 			sock_gen_put(sk);
6613 			/* Ensure there is no need to bump sk2 refcnt */
6614 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6615 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6616 				return NULL;
6617 			}
6618 			sk = sk2;
6619 		}
6620 	}
6621 
6622 	return sk;
6623 }
6624 
6625 static struct sock *
6626 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6627 	       u8 proto, u64 netns_id, u64 flags)
6628 {
6629 	struct net *caller_net;
6630 	int ifindex;
6631 
6632 	if (skb->dev) {
6633 		caller_net = dev_net(skb->dev);
6634 		ifindex = skb->dev->ifindex;
6635 	} else {
6636 		caller_net = sock_net(skb->sk);
6637 		ifindex = 0;
6638 	}
6639 
6640 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6641 				netns_id, flags);
6642 }
6643 
6644 static struct sock *
6645 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6646 	      u8 proto, u64 netns_id, u64 flags)
6647 {
6648 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6649 					 flags);
6650 
6651 	if (sk) {
6652 		struct sock *sk2 = sk_to_full_sk(sk);
6653 
6654 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6655 		 * sock refcnt is decremented to prevent a request_sock leak.
6656 		 */
6657 		if (!sk_fullsock(sk2))
6658 			sk2 = NULL;
6659 		if (sk2 != sk) {
6660 			sock_gen_put(sk);
6661 			/* Ensure there is no need to bump sk2 refcnt */
6662 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6663 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6664 				return NULL;
6665 			}
6666 			sk = sk2;
6667 		}
6668 	}
6669 
6670 	return sk;
6671 }
6672 
6673 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6674 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6675 {
6676 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6677 					     netns_id, flags);
6678 }
6679 
6680 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6681 	.func		= bpf_skc_lookup_tcp,
6682 	.gpl_only	= false,
6683 	.pkt_access	= true,
6684 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6685 	.arg1_type	= ARG_PTR_TO_CTX,
6686 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6687 	.arg3_type	= ARG_CONST_SIZE,
6688 	.arg4_type	= ARG_ANYTHING,
6689 	.arg5_type	= ARG_ANYTHING,
6690 };
6691 
6692 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6693 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6694 {
6695 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6696 					    netns_id, flags);
6697 }
6698 
6699 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6700 	.func		= bpf_sk_lookup_tcp,
6701 	.gpl_only	= false,
6702 	.pkt_access	= true,
6703 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6704 	.arg1_type	= ARG_PTR_TO_CTX,
6705 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6706 	.arg3_type	= ARG_CONST_SIZE,
6707 	.arg4_type	= ARG_ANYTHING,
6708 	.arg5_type	= ARG_ANYTHING,
6709 };
6710 
6711 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6712 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6713 {
6714 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6715 					    netns_id, flags);
6716 }
6717 
6718 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6719 	.func		= bpf_sk_lookup_udp,
6720 	.gpl_only	= false,
6721 	.pkt_access	= true,
6722 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6723 	.arg1_type	= ARG_PTR_TO_CTX,
6724 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6725 	.arg3_type	= ARG_CONST_SIZE,
6726 	.arg4_type	= ARG_ANYTHING,
6727 	.arg5_type	= ARG_ANYTHING,
6728 };
6729 
6730 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6731 {
6732 	if (sk && sk_is_refcounted(sk))
6733 		sock_gen_put(sk);
6734 	return 0;
6735 }
6736 
6737 static const struct bpf_func_proto bpf_sk_release_proto = {
6738 	.func		= bpf_sk_release,
6739 	.gpl_only	= false,
6740 	.ret_type	= RET_INTEGER,
6741 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6742 };
6743 
6744 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6745 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6746 {
6747 	struct net *caller_net = dev_net(ctx->rxq->dev);
6748 	int ifindex = ctx->rxq->dev->ifindex;
6749 
6750 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6751 					      ifindex, IPPROTO_UDP, netns_id,
6752 					      flags);
6753 }
6754 
6755 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6756 	.func           = bpf_xdp_sk_lookup_udp,
6757 	.gpl_only       = false,
6758 	.pkt_access     = true,
6759 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6760 	.arg1_type      = ARG_PTR_TO_CTX,
6761 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6762 	.arg3_type      = ARG_CONST_SIZE,
6763 	.arg4_type      = ARG_ANYTHING,
6764 	.arg5_type      = ARG_ANYTHING,
6765 };
6766 
6767 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6768 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6769 {
6770 	struct net *caller_net = dev_net(ctx->rxq->dev);
6771 	int ifindex = ctx->rxq->dev->ifindex;
6772 
6773 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6774 					       ifindex, IPPROTO_TCP, netns_id,
6775 					       flags);
6776 }
6777 
6778 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6779 	.func           = bpf_xdp_skc_lookup_tcp,
6780 	.gpl_only       = false,
6781 	.pkt_access     = true,
6782 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6783 	.arg1_type      = ARG_PTR_TO_CTX,
6784 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6785 	.arg3_type      = ARG_CONST_SIZE,
6786 	.arg4_type      = ARG_ANYTHING,
6787 	.arg5_type      = ARG_ANYTHING,
6788 };
6789 
6790 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6791 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6792 {
6793 	struct net *caller_net = dev_net(ctx->rxq->dev);
6794 	int ifindex = ctx->rxq->dev->ifindex;
6795 
6796 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6797 					      ifindex, IPPROTO_TCP, netns_id,
6798 					      flags);
6799 }
6800 
6801 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6802 	.func           = bpf_xdp_sk_lookup_tcp,
6803 	.gpl_only       = false,
6804 	.pkt_access     = true,
6805 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6806 	.arg1_type      = ARG_PTR_TO_CTX,
6807 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6808 	.arg3_type      = ARG_CONST_SIZE,
6809 	.arg4_type      = ARG_ANYTHING,
6810 	.arg5_type      = ARG_ANYTHING,
6811 };
6812 
6813 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6814 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6815 {
6816 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6817 					       sock_net(ctx->sk), 0,
6818 					       IPPROTO_TCP, netns_id, flags);
6819 }
6820 
6821 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6822 	.func		= bpf_sock_addr_skc_lookup_tcp,
6823 	.gpl_only	= false,
6824 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6825 	.arg1_type	= ARG_PTR_TO_CTX,
6826 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6827 	.arg3_type	= ARG_CONST_SIZE,
6828 	.arg4_type	= ARG_ANYTHING,
6829 	.arg5_type	= ARG_ANYTHING,
6830 };
6831 
6832 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6833 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6834 {
6835 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6836 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6837 					      netns_id, flags);
6838 }
6839 
6840 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6841 	.func		= bpf_sock_addr_sk_lookup_tcp,
6842 	.gpl_only	= false,
6843 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6844 	.arg1_type	= ARG_PTR_TO_CTX,
6845 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6846 	.arg3_type	= ARG_CONST_SIZE,
6847 	.arg4_type	= ARG_ANYTHING,
6848 	.arg5_type	= ARG_ANYTHING,
6849 };
6850 
6851 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6852 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6853 {
6854 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6855 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6856 					      netns_id, flags);
6857 }
6858 
6859 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6860 	.func		= bpf_sock_addr_sk_lookup_udp,
6861 	.gpl_only	= false,
6862 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6863 	.arg1_type	= ARG_PTR_TO_CTX,
6864 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6865 	.arg3_type	= ARG_CONST_SIZE,
6866 	.arg4_type	= ARG_ANYTHING,
6867 	.arg5_type	= ARG_ANYTHING,
6868 };
6869 
6870 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6871 				  struct bpf_insn_access_aux *info)
6872 {
6873 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6874 					  icsk_retransmits))
6875 		return false;
6876 
6877 	if (off % size != 0)
6878 		return false;
6879 
6880 	switch (off) {
6881 	case offsetof(struct bpf_tcp_sock, bytes_received):
6882 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6883 		return size == sizeof(__u64);
6884 	default:
6885 		return size == sizeof(__u32);
6886 	}
6887 }
6888 
6889 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6890 				    const struct bpf_insn *si,
6891 				    struct bpf_insn *insn_buf,
6892 				    struct bpf_prog *prog, u32 *target_size)
6893 {
6894 	struct bpf_insn *insn = insn_buf;
6895 
6896 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6897 	do {								\
6898 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6899 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6900 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6901 				      si->dst_reg, si->src_reg,		\
6902 				      offsetof(struct tcp_sock, FIELD)); \
6903 	} while (0)
6904 
6905 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6906 	do {								\
6907 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6908 					  FIELD) >			\
6909 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6910 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6911 					struct inet_connection_sock,	\
6912 					FIELD),				\
6913 				      si->dst_reg, si->src_reg,		\
6914 				      offsetof(				\
6915 					struct inet_connection_sock,	\
6916 					FIELD));			\
6917 	} while (0)
6918 
6919 	switch (si->off) {
6920 	case offsetof(struct bpf_tcp_sock, rtt_min):
6921 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6922 			     sizeof(struct minmax));
6923 		BUILD_BUG_ON(sizeof(struct minmax) <
6924 			     sizeof(struct minmax_sample));
6925 
6926 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6927 				      offsetof(struct tcp_sock, rtt_min) +
6928 				      offsetof(struct minmax_sample, v));
6929 		break;
6930 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6931 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6932 		break;
6933 	case offsetof(struct bpf_tcp_sock, srtt_us):
6934 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6935 		break;
6936 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6937 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6938 		break;
6939 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6940 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6941 		break;
6942 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6943 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6944 		break;
6945 	case offsetof(struct bpf_tcp_sock, snd_una):
6946 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6947 		break;
6948 	case offsetof(struct bpf_tcp_sock, mss_cache):
6949 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6950 		break;
6951 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6952 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6953 		break;
6954 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6955 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6956 		break;
6957 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6958 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6959 		break;
6960 	case offsetof(struct bpf_tcp_sock, packets_out):
6961 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6962 		break;
6963 	case offsetof(struct bpf_tcp_sock, retrans_out):
6964 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6965 		break;
6966 	case offsetof(struct bpf_tcp_sock, total_retrans):
6967 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6968 		break;
6969 	case offsetof(struct bpf_tcp_sock, segs_in):
6970 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6971 		break;
6972 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6973 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6974 		break;
6975 	case offsetof(struct bpf_tcp_sock, segs_out):
6976 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6977 		break;
6978 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6979 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6980 		break;
6981 	case offsetof(struct bpf_tcp_sock, lost_out):
6982 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6983 		break;
6984 	case offsetof(struct bpf_tcp_sock, sacked_out):
6985 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6986 		break;
6987 	case offsetof(struct bpf_tcp_sock, bytes_received):
6988 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6989 		break;
6990 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6991 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6992 		break;
6993 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6994 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6995 		break;
6996 	case offsetof(struct bpf_tcp_sock, delivered):
6997 		BPF_TCP_SOCK_GET_COMMON(delivered);
6998 		break;
6999 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7000 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7001 		break;
7002 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7003 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7004 		break;
7005 	}
7006 
7007 	return insn - insn_buf;
7008 }
7009 
7010 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7011 {
7012 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7013 		return (unsigned long)sk;
7014 
7015 	return (unsigned long)NULL;
7016 }
7017 
7018 const struct bpf_func_proto bpf_tcp_sock_proto = {
7019 	.func		= bpf_tcp_sock,
7020 	.gpl_only	= false,
7021 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7022 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7023 };
7024 
7025 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7026 {
7027 	sk = sk_to_full_sk(sk);
7028 
7029 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7030 		return (unsigned long)sk;
7031 
7032 	return (unsigned long)NULL;
7033 }
7034 
7035 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7036 	.func		= bpf_get_listener_sock,
7037 	.gpl_only	= false,
7038 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7039 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7040 };
7041 
7042 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7043 {
7044 	unsigned int iphdr_len;
7045 
7046 	switch (skb_protocol(skb, true)) {
7047 	case cpu_to_be16(ETH_P_IP):
7048 		iphdr_len = sizeof(struct iphdr);
7049 		break;
7050 	case cpu_to_be16(ETH_P_IPV6):
7051 		iphdr_len = sizeof(struct ipv6hdr);
7052 		break;
7053 	default:
7054 		return 0;
7055 	}
7056 
7057 	if (skb_headlen(skb) < iphdr_len)
7058 		return 0;
7059 
7060 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7061 		return 0;
7062 
7063 	return INET_ECN_set_ce(skb);
7064 }
7065 
7066 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7067 				  struct bpf_insn_access_aux *info)
7068 {
7069 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7070 		return false;
7071 
7072 	if (off % size != 0)
7073 		return false;
7074 
7075 	switch (off) {
7076 	default:
7077 		return size == sizeof(__u32);
7078 	}
7079 }
7080 
7081 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7082 				    const struct bpf_insn *si,
7083 				    struct bpf_insn *insn_buf,
7084 				    struct bpf_prog *prog, u32 *target_size)
7085 {
7086 	struct bpf_insn *insn = insn_buf;
7087 
7088 #define BPF_XDP_SOCK_GET(FIELD)						\
7089 	do {								\
7090 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7091 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7092 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7093 				      si->dst_reg, si->src_reg,		\
7094 				      offsetof(struct xdp_sock, FIELD)); \
7095 	} while (0)
7096 
7097 	switch (si->off) {
7098 	case offsetof(struct bpf_xdp_sock, queue_id):
7099 		BPF_XDP_SOCK_GET(queue_id);
7100 		break;
7101 	}
7102 
7103 	return insn - insn_buf;
7104 }
7105 
7106 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7107 	.func           = bpf_skb_ecn_set_ce,
7108 	.gpl_only       = false,
7109 	.ret_type       = RET_INTEGER,
7110 	.arg1_type      = ARG_PTR_TO_CTX,
7111 };
7112 
7113 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7114 	   struct tcphdr *, th, u32, th_len)
7115 {
7116 #ifdef CONFIG_SYN_COOKIES
7117 	u32 cookie;
7118 	int ret;
7119 
7120 	if (unlikely(!sk || th_len < sizeof(*th)))
7121 		return -EINVAL;
7122 
7123 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7124 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7125 		return -EINVAL;
7126 
7127 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7128 		return -EINVAL;
7129 
7130 	if (!th->ack || th->rst || th->syn)
7131 		return -ENOENT;
7132 
7133 	if (unlikely(iph_len < sizeof(struct iphdr)))
7134 		return -EINVAL;
7135 
7136 	if (tcp_synq_no_recent_overflow(sk))
7137 		return -ENOENT;
7138 
7139 	cookie = ntohl(th->ack_seq) - 1;
7140 
7141 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7142 	 * same offset so we can cast to the shorter header (struct iphdr).
7143 	 */
7144 	switch (((struct iphdr *)iph)->version) {
7145 	case 4:
7146 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7147 			return -EINVAL;
7148 
7149 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7150 		break;
7151 
7152 #if IS_BUILTIN(CONFIG_IPV6)
7153 	case 6:
7154 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7155 			return -EINVAL;
7156 
7157 		if (sk->sk_family != AF_INET6)
7158 			return -EINVAL;
7159 
7160 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7161 		break;
7162 #endif /* CONFIG_IPV6 */
7163 
7164 	default:
7165 		return -EPROTONOSUPPORT;
7166 	}
7167 
7168 	if (ret > 0)
7169 		return 0;
7170 
7171 	return -ENOENT;
7172 #else
7173 	return -ENOTSUPP;
7174 #endif
7175 }
7176 
7177 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7178 	.func		= bpf_tcp_check_syncookie,
7179 	.gpl_only	= true,
7180 	.pkt_access	= true,
7181 	.ret_type	= RET_INTEGER,
7182 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7183 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7184 	.arg3_type	= ARG_CONST_SIZE,
7185 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7186 	.arg5_type	= ARG_CONST_SIZE,
7187 };
7188 
7189 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7190 	   struct tcphdr *, th, u32, th_len)
7191 {
7192 #ifdef CONFIG_SYN_COOKIES
7193 	u32 cookie;
7194 	u16 mss;
7195 
7196 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7197 		return -EINVAL;
7198 
7199 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7200 		return -EINVAL;
7201 
7202 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7203 		return -ENOENT;
7204 
7205 	if (!th->syn || th->ack || th->fin || th->rst)
7206 		return -EINVAL;
7207 
7208 	if (unlikely(iph_len < sizeof(struct iphdr)))
7209 		return -EINVAL;
7210 
7211 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7212 	 * same offset so we can cast to the shorter header (struct iphdr).
7213 	 */
7214 	switch (((struct iphdr *)iph)->version) {
7215 	case 4:
7216 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7217 			return -EINVAL;
7218 
7219 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7220 		break;
7221 
7222 #if IS_BUILTIN(CONFIG_IPV6)
7223 	case 6:
7224 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7225 			return -EINVAL;
7226 
7227 		if (sk->sk_family != AF_INET6)
7228 			return -EINVAL;
7229 
7230 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7231 		break;
7232 #endif /* CONFIG_IPV6 */
7233 
7234 	default:
7235 		return -EPROTONOSUPPORT;
7236 	}
7237 	if (mss == 0)
7238 		return -ENOENT;
7239 
7240 	return cookie | ((u64)mss << 32);
7241 #else
7242 	return -EOPNOTSUPP;
7243 #endif /* CONFIG_SYN_COOKIES */
7244 }
7245 
7246 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7247 	.func		= bpf_tcp_gen_syncookie,
7248 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7249 	.pkt_access	= true,
7250 	.ret_type	= RET_INTEGER,
7251 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7252 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7253 	.arg3_type	= ARG_CONST_SIZE,
7254 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7255 	.arg5_type	= ARG_CONST_SIZE,
7256 };
7257 
7258 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7259 {
7260 	if (!sk || flags != 0)
7261 		return -EINVAL;
7262 	if (!skb_at_tc_ingress(skb))
7263 		return -EOPNOTSUPP;
7264 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7265 		return -ENETUNREACH;
7266 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7267 		return -ESOCKTNOSUPPORT;
7268 	if (sk_is_refcounted(sk) &&
7269 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7270 		return -ENOENT;
7271 
7272 	skb_orphan(skb);
7273 	skb->sk = sk;
7274 	skb->destructor = sock_pfree;
7275 
7276 	return 0;
7277 }
7278 
7279 static const struct bpf_func_proto bpf_sk_assign_proto = {
7280 	.func		= bpf_sk_assign,
7281 	.gpl_only	= false,
7282 	.ret_type	= RET_INTEGER,
7283 	.arg1_type      = ARG_PTR_TO_CTX,
7284 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7285 	.arg3_type	= ARG_ANYTHING,
7286 };
7287 
7288 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7289 				    u8 search_kind, const u8 *magic,
7290 				    u8 magic_len, bool *eol)
7291 {
7292 	u8 kind, kind_len;
7293 
7294 	*eol = false;
7295 
7296 	while (op < opend) {
7297 		kind = op[0];
7298 
7299 		if (kind == TCPOPT_EOL) {
7300 			*eol = true;
7301 			return ERR_PTR(-ENOMSG);
7302 		} else if (kind == TCPOPT_NOP) {
7303 			op++;
7304 			continue;
7305 		}
7306 
7307 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7308 			/* Something is wrong in the received header.
7309 			 * Follow the TCP stack's tcp_parse_options()
7310 			 * and just bail here.
7311 			 */
7312 			return ERR_PTR(-EFAULT);
7313 
7314 		kind_len = op[1];
7315 		if (search_kind == kind) {
7316 			if (!magic_len)
7317 				return op;
7318 
7319 			if (magic_len > kind_len - 2)
7320 				return ERR_PTR(-ENOMSG);
7321 
7322 			if (!memcmp(&op[2], magic, magic_len))
7323 				return op;
7324 		}
7325 
7326 		op += kind_len;
7327 	}
7328 
7329 	return ERR_PTR(-ENOMSG);
7330 }
7331 
7332 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7333 	   void *, search_res, u32, len, u64, flags)
7334 {
7335 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7336 	const u8 *op, *opend, *magic, *search = search_res;
7337 	u8 search_kind, search_len, copy_len, magic_len;
7338 	int ret;
7339 
7340 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7341 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7342 	 * and this helper disallow loading them also.
7343 	 */
7344 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7345 		return -EINVAL;
7346 
7347 	search_kind = search[0];
7348 	search_len = search[1];
7349 
7350 	if (search_len > len || search_kind == TCPOPT_NOP ||
7351 	    search_kind == TCPOPT_EOL)
7352 		return -EINVAL;
7353 
7354 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7355 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7356 		if (search_len != 4 && search_len != 6)
7357 			return -EINVAL;
7358 		magic = &search[2];
7359 		magic_len = search_len - 2;
7360 	} else {
7361 		if (search_len)
7362 			return -EINVAL;
7363 		magic = NULL;
7364 		magic_len = 0;
7365 	}
7366 
7367 	if (load_syn) {
7368 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7369 		if (ret < 0)
7370 			return ret;
7371 
7372 		opend = op + ret;
7373 		op += sizeof(struct tcphdr);
7374 	} else {
7375 		if (!bpf_sock->skb ||
7376 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7377 			/* This bpf_sock->op cannot call this helper */
7378 			return -EPERM;
7379 
7380 		opend = bpf_sock->skb_data_end;
7381 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7382 	}
7383 
7384 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7385 				&eol);
7386 	if (IS_ERR(op))
7387 		return PTR_ERR(op);
7388 
7389 	copy_len = op[1];
7390 	ret = copy_len;
7391 	if (copy_len > len) {
7392 		ret = -ENOSPC;
7393 		copy_len = len;
7394 	}
7395 
7396 	memcpy(search_res, op, copy_len);
7397 	return ret;
7398 }
7399 
7400 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7401 	.func		= bpf_sock_ops_load_hdr_opt,
7402 	.gpl_only	= false,
7403 	.ret_type	= RET_INTEGER,
7404 	.arg1_type	= ARG_PTR_TO_CTX,
7405 	.arg2_type	= ARG_PTR_TO_MEM,
7406 	.arg3_type	= ARG_CONST_SIZE,
7407 	.arg4_type	= ARG_ANYTHING,
7408 };
7409 
7410 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7411 	   const void *, from, u32, len, u64, flags)
7412 {
7413 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7414 	const u8 *op, *new_op, *magic = NULL;
7415 	struct sk_buff *skb;
7416 	bool eol;
7417 
7418 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7419 		return -EPERM;
7420 
7421 	if (len < 2 || flags)
7422 		return -EINVAL;
7423 
7424 	new_op = from;
7425 	new_kind = new_op[0];
7426 	new_kind_len = new_op[1];
7427 
7428 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7429 	    new_kind == TCPOPT_EOL)
7430 		return -EINVAL;
7431 
7432 	if (new_kind_len > bpf_sock->remaining_opt_len)
7433 		return -ENOSPC;
7434 
7435 	/* 253 is another experimental kind */
7436 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7437 		if (new_kind_len < 4)
7438 			return -EINVAL;
7439 		/* Match for the 2 byte magic also.
7440 		 * RFC 6994: the magic could be 2 or 4 bytes.
7441 		 * Hence, matching by 2 byte only is on the
7442 		 * conservative side but it is the right
7443 		 * thing to do for the 'search-for-duplication'
7444 		 * purpose.
7445 		 */
7446 		magic = &new_op[2];
7447 		magic_len = 2;
7448 	}
7449 
7450 	/* Check for duplication */
7451 	skb = bpf_sock->skb;
7452 	op = skb->data + sizeof(struct tcphdr);
7453 	opend = bpf_sock->skb_data_end;
7454 
7455 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7456 				&eol);
7457 	if (!IS_ERR(op))
7458 		return -EEXIST;
7459 
7460 	if (PTR_ERR(op) != -ENOMSG)
7461 		return PTR_ERR(op);
7462 
7463 	if (eol)
7464 		/* The option has been ended.  Treat it as no more
7465 		 * header option can be written.
7466 		 */
7467 		return -ENOSPC;
7468 
7469 	/* No duplication found.  Store the header option. */
7470 	memcpy(opend, from, new_kind_len);
7471 
7472 	bpf_sock->remaining_opt_len -= new_kind_len;
7473 	bpf_sock->skb_data_end += new_kind_len;
7474 
7475 	return 0;
7476 }
7477 
7478 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7479 	.func		= bpf_sock_ops_store_hdr_opt,
7480 	.gpl_only	= false,
7481 	.ret_type	= RET_INTEGER,
7482 	.arg1_type	= ARG_PTR_TO_CTX,
7483 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7484 	.arg3_type	= ARG_CONST_SIZE,
7485 	.arg4_type	= ARG_ANYTHING,
7486 };
7487 
7488 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7489 	   u32, len, u64, flags)
7490 {
7491 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7492 		return -EPERM;
7493 
7494 	if (flags || len < 2)
7495 		return -EINVAL;
7496 
7497 	if (len > bpf_sock->remaining_opt_len)
7498 		return -ENOSPC;
7499 
7500 	bpf_sock->remaining_opt_len -= len;
7501 
7502 	return 0;
7503 }
7504 
7505 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7506 	.func		= bpf_sock_ops_reserve_hdr_opt,
7507 	.gpl_only	= false,
7508 	.ret_type	= RET_INTEGER,
7509 	.arg1_type	= ARG_PTR_TO_CTX,
7510 	.arg2_type	= ARG_ANYTHING,
7511 	.arg3_type	= ARG_ANYTHING,
7512 };
7513 
7514 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7515 	   u64, tstamp, u32, tstamp_type)
7516 {
7517 	/* skb_clear_delivery_time() is done for inet protocol */
7518 	if (skb->protocol != htons(ETH_P_IP) &&
7519 	    skb->protocol != htons(ETH_P_IPV6))
7520 		return -EOPNOTSUPP;
7521 
7522 	switch (tstamp_type) {
7523 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7524 		if (!tstamp)
7525 			return -EINVAL;
7526 		skb->tstamp = tstamp;
7527 		skb->mono_delivery_time = 1;
7528 		break;
7529 	case BPF_SKB_TSTAMP_UNSPEC:
7530 		if (tstamp)
7531 			return -EINVAL;
7532 		skb->tstamp = 0;
7533 		skb->mono_delivery_time = 0;
7534 		break;
7535 	default:
7536 		return -EINVAL;
7537 	}
7538 
7539 	return 0;
7540 }
7541 
7542 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7543 	.func           = bpf_skb_set_tstamp,
7544 	.gpl_only       = false,
7545 	.ret_type       = RET_INTEGER,
7546 	.arg1_type      = ARG_PTR_TO_CTX,
7547 	.arg2_type      = ARG_ANYTHING,
7548 	.arg3_type      = ARG_ANYTHING,
7549 };
7550 
7551 #ifdef CONFIG_SYN_COOKIES
7552 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7553 	   struct tcphdr *, th, u32, th_len)
7554 {
7555 	u32 cookie;
7556 	u16 mss;
7557 
7558 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7559 		return -EINVAL;
7560 
7561 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7562 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7563 
7564 	return cookie | ((u64)mss << 32);
7565 }
7566 
7567 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7568 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7569 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7570 	.pkt_access	= true,
7571 	.ret_type	= RET_INTEGER,
7572 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7573 	.arg1_size	= sizeof(struct iphdr),
7574 	.arg2_type	= ARG_PTR_TO_MEM,
7575 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7576 };
7577 
7578 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7579 	   struct tcphdr *, th, u32, th_len)
7580 {
7581 #if IS_BUILTIN(CONFIG_IPV6)
7582 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7583 		sizeof(struct ipv6hdr);
7584 	u32 cookie;
7585 	u16 mss;
7586 
7587 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7588 		return -EINVAL;
7589 
7590 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7591 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7592 
7593 	return cookie | ((u64)mss << 32);
7594 #else
7595 	return -EPROTONOSUPPORT;
7596 #endif
7597 }
7598 
7599 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7600 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7601 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7602 	.pkt_access	= true,
7603 	.ret_type	= RET_INTEGER,
7604 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7605 	.arg1_size	= sizeof(struct ipv6hdr),
7606 	.arg2_type	= ARG_PTR_TO_MEM,
7607 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7608 };
7609 
7610 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7611 	   struct tcphdr *, th)
7612 {
7613 	u32 cookie = ntohl(th->ack_seq) - 1;
7614 
7615 	if (__cookie_v4_check(iph, th, cookie) > 0)
7616 		return 0;
7617 
7618 	return -EACCES;
7619 }
7620 
7621 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7622 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7623 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7624 	.pkt_access	= true,
7625 	.ret_type	= RET_INTEGER,
7626 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7627 	.arg1_size	= sizeof(struct iphdr),
7628 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7629 	.arg2_size	= sizeof(struct tcphdr),
7630 };
7631 
7632 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7633 	   struct tcphdr *, th)
7634 {
7635 #if IS_BUILTIN(CONFIG_IPV6)
7636 	u32 cookie = ntohl(th->ack_seq) - 1;
7637 
7638 	if (__cookie_v6_check(iph, th, cookie) > 0)
7639 		return 0;
7640 
7641 	return -EACCES;
7642 #else
7643 	return -EPROTONOSUPPORT;
7644 #endif
7645 }
7646 
7647 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7648 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7649 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7650 	.pkt_access	= true,
7651 	.ret_type	= RET_INTEGER,
7652 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7653 	.arg1_size	= sizeof(struct ipv6hdr),
7654 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7655 	.arg2_size	= sizeof(struct tcphdr),
7656 };
7657 #endif /* CONFIG_SYN_COOKIES */
7658 
7659 #endif /* CONFIG_INET */
7660 
7661 bool bpf_helper_changes_pkt_data(void *func)
7662 {
7663 	if (func == bpf_skb_vlan_push ||
7664 	    func == bpf_skb_vlan_pop ||
7665 	    func == bpf_skb_store_bytes ||
7666 	    func == bpf_skb_change_proto ||
7667 	    func == bpf_skb_change_head ||
7668 	    func == sk_skb_change_head ||
7669 	    func == bpf_skb_change_tail ||
7670 	    func == sk_skb_change_tail ||
7671 	    func == bpf_skb_adjust_room ||
7672 	    func == sk_skb_adjust_room ||
7673 	    func == bpf_skb_pull_data ||
7674 	    func == sk_skb_pull_data ||
7675 	    func == bpf_clone_redirect ||
7676 	    func == bpf_l3_csum_replace ||
7677 	    func == bpf_l4_csum_replace ||
7678 	    func == bpf_xdp_adjust_head ||
7679 	    func == bpf_xdp_adjust_meta ||
7680 	    func == bpf_msg_pull_data ||
7681 	    func == bpf_msg_push_data ||
7682 	    func == bpf_msg_pop_data ||
7683 	    func == bpf_xdp_adjust_tail ||
7684 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7685 	    func == bpf_lwt_seg6_store_bytes ||
7686 	    func == bpf_lwt_seg6_adjust_srh ||
7687 	    func == bpf_lwt_seg6_action ||
7688 #endif
7689 #ifdef CONFIG_INET
7690 	    func == bpf_sock_ops_store_hdr_opt ||
7691 #endif
7692 	    func == bpf_lwt_in_push_encap ||
7693 	    func == bpf_lwt_xmit_push_encap)
7694 		return true;
7695 
7696 	return false;
7697 }
7698 
7699 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7700 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7701 
7702 static const struct bpf_func_proto *
7703 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7704 {
7705 	const struct bpf_func_proto *func_proto;
7706 
7707 	func_proto = cgroup_common_func_proto(func_id, prog);
7708 	if (func_proto)
7709 		return func_proto;
7710 
7711 	func_proto = cgroup_current_func_proto(func_id, prog);
7712 	if (func_proto)
7713 		return func_proto;
7714 
7715 	switch (func_id) {
7716 	case BPF_FUNC_get_socket_cookie:
7717 		return &bpf_get_socket_cookie_sock_proto;
7718 	case BPF_FUNC_get_netns_cookie:
7719 		return &bpf_get_netns_cookie_sock_proto;
7720 	case BPF_FUNC_perf_event_output:
7721 		return &bpf_event_output_data_proto;
7722 	case BPF_FUNC_sk_storage_get:
7723 		return &bpf_sk_storage_get_cg_sock_proto;
7724 	case BPF_FUNC_ktime_get_coarse_ns:
7725 		return &bpf_ktime_get_coarse_ns_proto;
7726 	default:
7727 		return bpf_base_func_proto(func_id);
7728 	}
7729 }
7730 
7731 static const struct bpf_func_proto *
7732 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7733 {
7734 	const struct bpf_func_proto *func_proto;
7735 
7736 	func_proto = cgroup_common_func_proto(func_id, prog);
7737 	if (func_proto)
7738 		return func_proto;
7739 
7740 	func_proto = cgroup_current_func_proto(func_id, prog);
7741 	if (func_proto)
7742 		return func_proto;
7743 
7744 	switch (func_id) {
7745 	case BPF_FUNC_bind:
7746 		switch (prog->expected_attach_type) {
7747 		case BPF_CGROUP_INET4_CONNECT:
7748 		case BPF_CGROUP_INET6_CONNECT:
7749 			return &bpf_bind_proto;
7750 		default:
7751 			return NULL;
7752 		}
7753 	case BPF_FUNC_get_socket_cookie:
7754 		return &bpf_get_socket_cookie_sock_addr_proto;
7755 	case BPF_FUNC_get_netns_cookie:
7756 		return &bpf_get_netns_cookie_sock_addr_proto;
7757 	case BPF_FUNC_perf_event_output:
7758 		return &bpf_event_output_data_proto;
7759 #ifdef CONFIG_INET
7760 	case BPF_FUNC_sk_lookup_tcp:
7761 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7762 	case BPF_FUNC_sk_lookup_udp:
7763 		return &bpf_sock_addr_sk_lookup_udp_proto;
7764 	case BPF_FUNC_sk_release:
7765 		return &bpf_sk_release_proto;
7766 	case BPF_FUNC_skc_lookup_tcp:
7767 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7768 #endif /* CONFIG_INET */
7769 	case BPF_FUNC_sk_storage_get:
7770 		return &bpf_sk_storage_get_proto;
7771 	case BPF_FUNC_sk_storage_delete:
7772 		return &bpf_sk_storage_delete_proto;
7773 	case BPF_FUNC_setsockopt:
7774 		switch (prog->expected_attach_type) {
7775 		case BPF_CGROUP_INET4_BIND:
7776 		case BPF_CGROUP_INET6_BIND:
7777 		case BPF_CGROUP_INET4_CONNECT:
7778 		case BPF_CGROUP_INET6_CONNECT:
7779 		case BPF_CGROUP_UDP4_RECVMSG:
7780 		case BPF_CGROUP_UDP6_RECVMSG:
7781 		case BPF_CGROUP_UDP4_SENDMSG:
7782 		case BPF_CGROUP_UDP6_SENDMSG:
7783 		case BPF_CGROUP_INET4_GETPEERNAME:
7784 		case BPF_CGROUP_INET6_GETPEERNAME:
7785 		case BPF_CGROUP_INET4_GETSOCKNAME:
7786 		case BPF_CGROUP_INET6_GETSOCKNAME:
7787 			return &bpf_sock_addr_setsockopt_proto;
7788 		default:
7789 			return NULL;
7790 		}
7791 	case BPF_FUNC_getsockopt:
7792 		switch (prog->expected_attach_type) {
7793 		case BPF_CGROUP_INET4_BIND:
7794 		case BPF_CGROUP_INET6_BIND:
7795 		case BPF_CGROUP_INET4_CONNECT:
7796 		case BPF_CGROUP_INET6_CONNECT:
7797 		case BPF_CGROUP_UDP4_RECVMSG:
7798 		case BPF_CGROUP_UDP6_RECVMSG:
7799 		case BPF_CGROUP_UDP4_SENDMSG:
7800 		case BPF_CGROUP_UDP6_SENDMSG:
7801 		case BPF_CGROUP_INET4_GETPEERNAME:
7802 		case BPF_CGROUP_INET6_GETPEERNAME:
7803 		case BPF_CGROUP_INET4_GETSOCKNAME:
7804 		case BPF_CGROUP_INET6_GETSOCKNAME:
7805 			return &bpf_sock_addr_getsockopt_proto;
7806 		default:
7807 			return NULL;
7808 		}
7809 	default:
7810 		return bpf_sk_base_func_proto(func_id);
7811 	}
7812 }
7813 
7814 static const struct bpf_func_proto *
7815 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7816 {
7817 	switch (func_id) {
7818 	case BPF_FUNC_skb_load_bytes:
7819 		return &bpf_skb_load_bytes_proto;
7820 	case BPF_FUNC_skb_load_bytes_relative:
7821 		return &bpf_skb_load_bytes_relative_proto;
7822 	case BPF_FUNC_get_socket_cookie:
7823 		return &bpf_get_socket_cookie_proto;
7824 	case BPF_FUNC_get_socket_uid:
7825 		return &bpf_get_socket_uid_proto;
7826 	case BPF_FUNC_perf_event_output:
7827 		return &bpf_skb_event_output_proto;
7828 	default:
7829 		return bpf_sk_base_func_proto(func_id);
7830 	}
7831 }
7832 
7833 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7834 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7835 
7836 static const struct bpf_func_proto *
7837 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7838 {
7839 	const struct bpf_func_proto *func_proto;
7840 
7841 	func_proto = cgroup_common_func_proto(func_id, prog);
7842 	if (func_proto)
7843 		return func_proto;
7844 
7845 	switch (func_id) {
7846 	case BPF_FUNC_sk_fullsock:
7847 		return &bpf_sk_fullsock_proto;
7848 	case BPF_FUNC_sk_storage_get:
7849 		return &bpf_sk_storage_get_proto;
7850 	case BPF_FUNC_sk_storage_delete:
7851 		return &bpf_sk_storage_delete_proto;
7852 	case BPF_FUNC_perf_event_output:
7853 		return &bpf_skb_event_output_proto;
7854 #ifdef CONFIG_SOCK_CGROUP_DATA
7855 	case BPF_FUNC_skb_cgroup_id:
7856 		return &bpf_skb_cgroup_id_proto;
7857 	case BPF_FUNC_skb_ancestor_cgroup_id:
7858 		return &bpf_skb_ancestor_cgroup_id_proto;
7859 	case BPF_FUNC_sk_cgroup_id:
7860 		return &bpf_sk_cgroup_id_proto;
7861 	case BPF_FUNC_sk_ancestor_cgroup_id:
7862 		return &bpf_sk_ancestor_cgroup_id_proto;
7863 #endif
7864 #ifdef CONFIG_INET
7865 	case BPF_FUNC_sk_lookup_tcp:
7866 		return &bpf_sk_lookup_tcp_proto;
7867 	case BPF_FUNC_sk_lookup_udp:
7868 		return &bpf_sk_lookup_udp_proto;
7869 	case BPF_FUNC_sk_release:
7870 		return &bpf_sk_release_proto;
7871 	case BPF_FUNC_skc_lookup_tcp:
7872 		return &bpf_skc_lookup_tcp_proto;
7873 	case BPF_FUNC_tcp_sock:
7874 		return &bpf_tcp_sock_proto;
7875 	case BPF_FUNC_get_listener_sock:
7876 		return &bpf_get_listener_sock_proto;
7877 	case BPF_FUNC_skb_ecn_set_ce:
7878 		return &bpf_skb_ecn_set_ce_proto;
7879 #endif
7880 	default:
7881 		return sk_filter_func_proto(func_id, prog);
7882 	}
7883 }
7884 
7885 static const struct bpf_func_proto *
7886 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7887 {
7888 	switch (func_id) {
7889 	case BPF_FUNC_skb_store_bytes:
7890 		return &bpf_skb_store_bytes_proto;
7891 	case BPF_FUNC_skb_load_bytes:
7892 		return &bpf_skb_load_bytes_proto;
7893 	case BPF_FUNC_skb_load_bytes_relative:
7894 		return &bpf_skb_load_bytes_relative_proto;
7895 	case BPF_FUNC_skb_pull_data:
7896 		return &bpf_skb_pull_data_proto;
7897 	case BPF_FUNC_csum_diff:
7898 		return &bpf_csum_diff_proto;
7899 	case BPF_FUNC_csum_update:
7900 		return &bpf_csum_update_proto;
7901 	case BPF_FUNC_csum_level:
7902 		return &bpf_csum_level_proto;
7903 	case BPF_FUNC_l3_csum_replace:
7904 		return &bpf_l3_csum_replace_proto;
7905 	case BPF_FUNC_l4_csum_replace:
7906 		return &bpf_l4_csum_replace_proto;
7907 	case BPF_FUNC_clone_redirect:
7908 		return &bpf_clone_redirect_proto;
7909 	case BPF_FUNC_get_cgroup_classid:
7910 		return &bpf_get_cgroup_classid_proto;
7911 	case BPF_FUNC_skb_vlan_push:
7912 		return &bpf_skb_vlan_push_proto;
7913 	case BPF_FUNC_skb_vlan_pop:
7914 		return &bpf_skb_vlan_pop_proto;
7915 	case BPF_FUNC_skb_change_proto:
7916 		return &bpf_skb_change_proto_proto;
7917 	case BPF_FUNC_skb_change_type:
7918 		return &bpf_skb_change_type_proto;
7919 	case BPF_FUNC_skb_adjust_room:
7920 		return &bpf_skb_adjust_room_proto;
7921 	case BPF_FUNC_skb_change_tail:
7922 		return &bpf_skb_change_tail_proto;
7923 	case BPF_FUNC_skb_change_head:
7924 		return &bpf_skb_change_head_proto;
7925 	case BPF_FUNC_skb_get_tunnel_key:
7926 		return &bpf_skb_get_tunnel_key_proto;
7927 	case BPF_FUNC_skb_set_tunnel_key:
7928 		return bpf_get_skb_set_tunnel_proto(func_id);
7929 	case BPF_FUNC_skb_get_tunnel_opt:
7930 		return &bpf_skb_get_tunnel_opt_proto;
7931 	case BPF_FUNC_skb_set_tunnel_opt:
7932 		return bpf_get_skb_set_tunnel_proto(func_id);
7933 	case BPF_FUNC_redirect:
7934 		return &bpf_redirect_proto;
7935 	case BPF_FUNC_redirect_neigh:
7936 		return &bpf_redirect_neigh_proto;
7937 	case BPF_FUNC_redirect_peer:
7938 		return &bpf_redirect_peer_proto;
7939 	case BPF_FUNC_get_route_realm:
7940 		return &bpf_get_route_realm_proto;
7941 	case BPF_FUNC_get_hash_recalc:
7942 		return &bpf_get_hash_recalc_proto;
7943 	case BPF_FUNC_set_hash_invalid:
7944 		return &bpf_set_hash_invalid_proto;
7945 	case BPF_FUNC_set_hash:
7946 		return &bpf_set_hash_proto;
7947 	case BPF_FUNC_perf_event_output:
7948 		return &bpf_skb_event_output_proto;
7949 	case BPF_FUNC_get_smp_processor_id:
7950 		return &bpf_get_smp_processor_id_proto;
7951 	case BPF_FUNC_skb_under_cgroup:
7952 		return &bpf_skb_under_cgroup_proto;
7953 	case BPF_FUNC_get_socket_cookie:
7954 		return &bpf_get_socket_cookie_proto;
7955 	case BPF_FUNC_get_socket_uid:
7956 		return &bpf_get_socket_uid_proto;
7957 	case BPF_FUNC_fib_lookup:
7958 		return &bpf_skb_fib_lookup_proto;
7959 	case BPF_FUNC_check_mtu:
7960 		return &bpf_skb_check_mtu_proto;
7961 	case BPF_FUNC_sk_fullsock:
7962 		return &bpf_sk_fullsock_proto;
7963 	case BPF_FUNC_sk_storage_get:
7964 		return &bpf_sk_storage_get_proto;
7965 	case BPF_FUNC_sk_storage_delete:
7966 		return &bpf_sk_storage_delete_proto;
7967 #ifdef CONFIG_XFRM
7968 	case BPF_FUNC_skb_get_xfrm_state:
7969 		return &bpf_skb_get_xfrm_state_proto;
7970 #endif
7971 #ifdef CONFIG_CGROUP_NET_CLASSID
7972 	case BPF_FUNC_skb_cgroup_classid:
7973 		return &bpf_skb_cgroup_classid_proto;
7974 #endif
7975 #ifdef CONFIG_SOCK_CGROUP_DATA
7976 	case BPF_FUNC_skb_cgroup_id:
7977 		return &bpf_skb_cgroup_id_proto;
7978 	case BPF_FUNC_skb_ancestor_cgroup_id:
7979 		return &bpf_skb_ancestor_cgroup_id_proto;
7980 #endif
7981 #ifdef CONFIG_INET
7982 	case BPF_FUNC_sk_lookup_tcp:
7983 		return &bpf_sk_lookup_tcp_proto;
7984 	case BPF_FUNC_sk_lookup_udp:
7985 		return &bpf_sk_lookup_udp_proto;
7986 	case BPF_FUNC_sk_release:
7987 		return &bpf_sk_release_proto;
7988 	case BPF_FUNC_tcp_sock:
7989 		return &bpf_tcp_sock_proto;
7990 	case BPF_FUNC_get_listener_sock:
7991 		return &bpf_get_listener_sock_proto;
7992 	case BPF_FUNC_skc_lookup_tcp:
7993 		return &bpf_skc_lookup_tcp_proto;
7994 	case BPF_FUNC_tcp_check_syncookie:
7995 		return &bpf_tcp_check_syncookie_proto;
7996 	case BPF_FUNC_skb_ecn_set_ce:
7997 		return &bpf_skb_ecn_set_ce_proto;
7998 	case BPF_FUNC_tcp_gen_syncookie:
7999 		return &bpf_tcp_gen_syncookie_proto;
8000 	case BPF_FUNC_sk_assign:
8001 		return &bpf_sk_assign_proto;
8002 	case BPF_FUNC_skb_set_tstamp:
8003 		return &bpf_skb_set_tstamp_proto;
8004 #ifdef CONFIG_SYN_COOKIES
8005 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8006 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8007 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8008 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8009 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8010 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8011 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8012 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8013 #endif
8014 #endif
8015 	default:
8016 		return bpf_sk_base_func_proto(func_id);
8017 	}
8018 }
8019 
8020 static const struct bpf_func_proto *
8021 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8022 {
8023 	switch (func_id) {
8024 	case BPF_FUNC_perf_event_output:
8025 		return &bpf_xdp_event_output_proto;
8026 	case BPF_FUNC_get_smp_processor_id:
8027 		return &bpf_get_smp_processor_id_proto;
8028 	case BPF_FUNC_csum_diff:
8029 		return &bpf_csum_diff_proto;
8030 	case BPF_FUNC_xdp_adjust_head:
8031 		return &bpf_xdp_adjust_head_proto;
8032 	case BPF_FUNC_xdp_adjust_meta:
8033 		return &bpf_xdp_adjust_meta_proto;
8034 	case BPF_FUNC_redirect:
8035 		return &bpf_xdp_redirect_proto;
8036 	case BPF_FUNC_redirect_map:
8037 		return &bpf_xdp_redirect_map_proto;
8038 	case BPF_FUNC_xdp_adjust_tail:
8039 		return &bpf_xdp_adjust_tail_proto;
8040 	case BPF_FUNC_xdp_get_buff_len:
8041 		return &bpf_xdp_get_buff_len_proto;
8042 	case BPF_FUNC_xdp_load_bytes:
8043 		return &bpf_xdp_load_bytes_proto;
8044 	case BPF_FUNC_xdp_store_bytes:
8045 		return &bpf_xdp_store_bytes_proto;
8046 	case BPF_FUNC_fib_lookup:
8047 		return &bpf_xdp_fib_lookup_proto;
8048 	case BPF_FUNC_check_mtu:
8049 		return &bpf_xdp_check_mtu_proto;
8050 #ifdef CONFIG_INET
8051 	case BPF_FUNC_sk_lookup_udp:
8052 		return &bpf_xdp_sk_lookup_udp_proto;
8053 	case BPF_FUNC_sk_lookup_tcp:
8054 		return &bpf_xdp_sk_lookup_tcp_proto;
8055 	case BPF_FUNC_sk_release:
8056 		return &bpf_sk_release_proto;
8057 	case BPF_FUNC_skc_lookup_tcp:
8058 		return &bpf_xdp_skc_lookup_tcp_proto;
8059 	case BPF_FUNC_tcp_check_syncookie:
8060 		return &bpf_tcp_check_syncookie_proto;
8061 	case BPF_FUNC_tcp_gen_syncookie:
8062 		return &bpf_tcp_gen_syncookie_proto;
8063 #ifdef CONFIG_SYN_COOKIES
8064 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8065 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8066 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8067 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8068 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8069 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8070 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8071 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8072 #endif
8073 #endif
8074 	default:
8075 		return bpf_sk_base_func_proto(func_id);
8076 	}
8077 
8078 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8079 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8080 	 * kfuncs are defined in two different modules, and we want to be able
8081 	 * to use them interchangably with the same BTF type ID. Because modules
8082 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8083 	 * referenced in the vmlinux BTF or the verifier will get confused about
8084 	 * the different types. So we add this dummy type reference which will
8085 	 * be included in vmlinux BTF, allowing both modules to refer to the
8086 	 * same type ID.
8087 	 */
8088 	BTF_TYPE_EMIT(struct nf_conn___init);
8089 #endif
8090 }
8091 
8092 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8093 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8094 
8095 static const struct bpf_func_proto *
8096 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8097 {
8098 	const struct bpf_func_proto *func_proto;
8099 
8100 	func_proto = cgroup_common_func_proto(func_id, prog);
8101 	if (func_proto)
8102 		return func_proto;
8103 
8104 	switch (func_id) {
8105 	case BPF_FUNC_setsockopt:
8106 		return &bpf_sock_ops_setsockopt_proto;
8107 	case BPF_FUNC_getsockopt:
8108 		return &bpf_sock_ops_getsockopt_proto;
8109 	case BPF_FUNC_sock_ops_cb_flags_set:
8110 		return &bpf_sock_ops_cb_flags_set_proto;
8111 	case BPF_FUNC_sock_map_update:
8112 		return &bpf_sock_map_update_proto;
8113 	case BPF_FUNC_sock_hash_update:
8114 		return &bpf_sock_hash_update_proto;
8115 	case BPF_FUNC_get_socket_cookie:
8116 		return &bpf_get_socket_cookie_sock_ops_proto;
8117 	case BPF_FUNC_perf_event_output:
8118 		return &bpf_event_output_data_proto;
8119 	case BPF_FUNC_sk_storage_get:
8120 		return &bpf_sk_storage_get_proto;
8121 	case BPF_FUNC_sk_storage_delete:
8122 		return &bpf_sk_storage_delete_proto;
8123 	case BPF_FUNC_get_netns_cookie:
8124 		return &bpf_get_netns_cookie_sock_ops_proto;
8125 #ifdef CONFIG_INET
8126 	case BPF_FUNC_load_hdr_opt:
8127 		return &bpf_sock_ops_load_hdr_opt_proto;
8128 	case BPF_FUNC_store_hdr_opt:
8129 		return &bpf_sock_ops_store_hdr_opt_proto;
8130 	case BPF_FUNC_reserve_hdr_opt:
8131 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8132 	case BPF_FUNC_tcp_sock:
8133 		return &bpf_tcp_sock_proto;
8134 #endif /* CONFIG_INET */
8135 	default:
8136 		return bpf_sk_base_func_proto(func_id);
8137 	}
8138 }
8139 
8140 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8141 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8142 
8143 static const struct bpf_func_proto *
8144 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8145 {
8146 	switch (func_id) {
8147 	case BPF_FUNC_msg_redirect_map:
8148 		return &bpf_msg_redirect_map_proto;
8149 	case BPF_FUNC_msg_redirect_hash:
8150 		return &bpf_msg_redirect_hash_proto;
8151 	case BPF_FUNC_msg_apply_bytes:
8152 		return &bpf_msg_apply_bytes_proto;
8153 	case BPF_FUNC_msg_cork_bytes:
8154 		return &bpf_msg_cork_bytes_proto;
8155 	case BPF_FUNC_msg_pull_data:
8156 		return &bpf_msg_pull_data_proto;
8157 	case BPF_FUNC_msg_push_data:
8158 		return &bpf_msg_push_data_proto;
8159 	case BPF_FUNC_msg_pop_data:
8160 		return &bpf_msg_pop_data_proto;
8161 	case BPF_FUNC_perf_event_output:
8162 		return &bpf_event_output_data_proto;
8163 	case BPF_FUNC_get_current_uid_gid:
8164 		return &bpf_get_current_uid_gid_proto;
8165 	case BPF_FUNC_get_current_pid_tgid:
8166 		return &bpf_get_current_pid_tgid_proto;
8167 	case BPF_FUNC_sk_storage_get:
8168 		return &bpf_sk_storage_get_proto;
8169 	case BPF_FUNC_sk_storage_delete:
8170 		return &bpf_sk_storage_delete_proto;
8171 	case BPF_FUNC_get_netns_cookie:
8172 		return &bpf_get_netns_cookie_sk_msg_proto;
8173 #ifdef CONFIG_CGROUP_NET_CLASSID
8174 	case BPF_FUNC_get_cgroup_classid:
8175 		return &bpf_get_cgroup_classid_curr_proto;
8176 #endif
8177 	default:
8178 		return bpf_sk_base_func_proto(func_id);
8179 	}
8180 }
8181 
8182 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8183 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8184 
8185 static const struct bpf_func_proto *
8186 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8187 {
8188 	switch (func_id) {
8189 	case BPF_FUNC_skb_store_bytes:
8190 		return &bpf_skb_store_bytes_proto;
8191 	case BPF_FUNC_skb_load_bytes:
8192 		return &bpf_skb_load_bytes_proto;
8193 	case BPF_FUNC_skb_pull_data:
8194 		return &sk_skb_pull_data_proto;
8195 	case BPF_FUNC_skb_change_tail:
8196 		return &sk_skb_change_tail_proto;
8197 	case BPF_FUNC_skb_change_head:
8198 		return &sk_skb_change_head_proto;
8199 	case BPF_FUNC_skb_adjust_room:
8200 		return &sk_skb_adjust_room_proto;
8201 	case BPF_FUNC_get_socket_cookie:
8202 		return &bpf_get_socket_cookie_proto;
8203 	case BPF_FUNC_get_socket_uid:
8204 		return &bpf_get_socket_uid_proto;
8205 	case BPF_FUNC_sk_redirect_map:
8206 		return &bpf_sk_redirect_map_proto;
8207 	case BPF_FUNC_sk_redirect_hash:
8208 		return &bpf_sk_redirect_hash_proto;
8209 	case BPF_FUNC_perf_event_output:
8210 		return &bpf_skb_event_output_proto;
8211 #ifdef CONFIG_INET
8212 	case BPF_FUNC_sk_lookup_tcp:
8213 		return &bpf_sk_lookup_tcp_proto;
8214 	case BPF_FUNC_sk_lookup_udp:
8215 		return &bpf_sk_lookup_udp_proto;
8216 	case BPF_FUNC_sk_release:
8217 		return &bpf_sk_release_proto;
8218 	case BPF_FUNC_skc_lookup_tcp:
8219 		return &bpf_skc_lookup_tcp_proto;
8220 #endif
8221 	default:
8222 		return bpf_sk_base_func_proto(func_id);
8223 	}
8224 }
8225 
8226 static const struct bpf_func_proto *
8227 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8228 {
8229 	switch (func_id) {
8230 	case BPF_FUNC_skb_load_bytes:
8231 		return &bpf_flow_dissector_load_bytes_proto;
8232 	default:
8233 		return bpf_sk_base_func_proto(func_id);
8234 	}
8235 }
8236 
8237 static const struct bpf_func_proto *
8238 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8239 {
8240 	switch (func_id) {
8241 	case BPF_FUNC_skb_load_bytes:
8242 		return &bpf_skb_load_bytes_proto;
8243 	case BPF_FUNC_skb_pull_data:
8244 		return &bpf_skb_pull_data_proto;
8245 	case BPF_FUNC_csum_diff:
8246 		return &bpf_csum_diff_proto;
8247 	case BPF_FUNC_get_cgroup_classid:
8248 		return &bpf_get_cgroup_classid_proto;
8249 	case BPF_FUNC_get_route_realm:
8250 		return &bpf_get_route_realm_proto;
8251 	case BPF_FUNC_get_hash_recalc:
8252 		return &bpf_get_hash_recalc_proto;
8253 	case BPF_FUNC_perf_event_output:
8254 		return &bpf_skb_event_output_proto;
8255 	case BPF_FUNC_get_smp_processor_id:
8256 		return &bpf_get_smp_processor_id_proto;
8257 	case BPF_FUNC_skb_under_cgroup:
8258 		return &bpf_skb_under_cgroup_proto;
8259 	default:
8260 		return bpf_sk_base_func_proto(func_id);
8261 	}
8262 }
8263 
8264 static const struct bpf_func_proto *
8265 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8266 {
8267 	switch (func_id) {
8268 	case BPF_FUNC_lwt_push_encap:
8269 		return &bpf_lwt_in_push_encap_proto;
8270 	default:
8271 		return lwt_out_func_proto(func_id, prog);
8272 	}
8273 }
8274 
8275 static const struct bpf_func_proto *
8276 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8277 {
8278 	switch (func_id) {
8279 	case BPF_FUNC_skb_get_tunnel_key:
8280 		return &bpf_skb_get_tunnel_key_proto;
8281 	case BPF_FUNC_skb_set_tunnel_key:
8282 		return bpf_get_skb_set_tunnel_proto(func_id);
8283 	case BPF_FUNC_skb_get_tunnel_opt:
8284 		return &bpf_skb_get_tunnel_opt_proto;
8285 	case BPF_FUNC_skb_set_tunnel_opt:
8286 		return bpf_get_skb_set_tunnel_proto(func_id);
8287 	case BPF_FUNC_redirect:
8288 		return &bpf_redirect_proto;
8289 	case BPF_FUNC_clone_redirect:
8290 		return &bpf_clone_redirect_proto;
8291 	case BPF_FUNC_skb_change_tail:
8292 		return &bpf_skb_change_tail_proto;
8293 	case BPF_FUNC_skb_change_head:
8294 		return &bpf_skb_change_head_proto;
8295 	case BPF_FUNC_skb_store_bytes:
8296 		return &bpf_skb_store_bytes_proto;
8297 	case BPF_FUNC_csum_update:
8298 		return &bpf_csum_update_proto;
8299 	case BPF_FUNC_csum_level:
8300 		return &bpf_csum_level_proto;
8301 	case BPF_FUNC_l3_csum_replace:
8302 		return &bpf_l3_csum_replace_proto;
8303 	case BPF_FUNC_l4_csum_replace:
8304 		return &bpf_l4_csum_replace_proto;
8305 	case BPF_FUNC_set_hash_invalid:
8306 		return &bpf_set_hash_invalid_proto;
8307 	case BPF_FUNC_lwt_push_encap:
8308 		return &bpf_lwt_xmit_push_encap_proto;
8309 	default:
8310 		return lwt_out_func_proto(func_id, prog);
8311 	}
8312 }
8313 
8314 static const struct bpf_func_proto *
8315 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8316 {
8317 	switch (func_id) {
8318 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8319 	case BPF_FUNC_lwt_seg6_store_bytes:
8320 		return &bpf_lwt_seg6_store_bytes_proto;
8321 	case BPF_FUNC_lwt_seg6_action:
8322 		return &bpf_lwt_seg6_action_proto;
8323 	case BPF_FUNC_lwt_seg6_adjust_srh:
8324 		return &bpf_lwt_seg6_adjust_srh_proto;
8325 #endif
8326 	default:
8327 		return lwt_out_func_proto(func_id, prog);
8328 	}
8329 }
8330 
8331 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8332 				    const struct bpf_prog *prog,
8333 				    struct bpf_insn_access_aux *info)
8334 {
8335 	const int size_default = sizeof(__u32);
8336 
8337 	if (off < 0 || off >= sizeof(struct __sk_buff))
8338 		return false;
8339 
8340 	/* The verifier guarantees that size > 0. */
8341 	if (off % size != 0)
8342 		return false;
8343 
8344 	switch (off) {
8345 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8346 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8347 			return false;
8348 		break;
8349 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8350 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8351 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8352 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8353 	case bpf_ctx_range(struct __sk_buff, data):
8354 	case bpf_ctx_range(struct __sk_buff, data_meta):
8355 	case bpf_ctx_range(struct __sk_buff, data_end):
8356 		if (size != size_default)
8357 			return false;
8358 		break;
8359 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8360 		return false;
8361 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8362 		if (type == BPF_WRITE || size != sizeof(__u64))
8363 			return false;
8364 		break;
8365 	case bpf_ctx_range(struct __sk_buff, tstamp):
8366 		if (size != sizeof(__u64))
8367 			return false;
8368 		break;
8369 	case offsetof(struct __sk_buff, sk):
8370 		if (type == BPF_WRITE || size != sizeof(__u64))
8371 			return false;
8372 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8373 		break;
8374 	case offsetof(struct __sk_buff, tstamp_type):
8375 		return false;
8376 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8377 		/* Explicitly prohibit access to padding in __sk_buff. */
8378 		return false;
8379 	default:
8380 		/* Only narrow read access allowed for now. */
8381 		if (type == BPF_WRITE) {
8382 			if (size != size_default)
8383 				return false;
8384 		} else {
8385 			bpf_ctx_record_field_size(info, size_default);
8386 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8387 				return false;
8388 		}
8389 	}
8390 
8391 	return true;
8392 }
8393 
8394 static bool sk_filter_is_valid_access(int off, int size,
8395 				      enum bpf_access_type type,
8396 				      const struct bpf_prog *prog,
8397 				      struct bpf_insn_access_aux *info)
8398 {
8399 	switch (off) {
8400 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8401 	case bpf_ctx_range(struct __sk_buff, data):
8402 	case bpf_ctx_range(struct __sk_buff, data_meta):
8403 	case bpf_ctx_range(struct __sk_buff, data_end):
8404 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8405 	case bpf_ctx_range(struct __sk_buff, tstamp):
8406 	case bpf_ctx_range(struct __sk_buff, wire_len):
8407 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8408 		return false;
8409 	}
8410 
8411 	if (type == BPF_WRITE) {
8412 		switch (off) {
8413 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8414 			break;
8415 		default:
8416 			return false;
8417 		}
8418 	}
8419 
8420 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8421 }
8422 
8423 static bool cg_skb_is_valid_access(int off, int size,
8424 				   enum bpf_access_type type,
8425 				   const struct bpf_prog *prog,
8426 				   struct bpf_insn_access_aux *info)
8427 {
8428 	switch (off) {
8429 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8430 	case bpf_ctx_range(struct __sk_buff, data_meta):
8431 	case bpf_ctx_range(struct __sk_buff, wire_len):
8432 		return false;
8433 	case bpf_ctx_range(struct __sk_buff, data):
8434 	case bpf_ctx_range(struct __sk_buff, data_end):
8435 		if (!bpf_capable())
8436 			return false;
8437 		break;
8438 	}
8439 
8440 	if (type == BPF_WRITE) {
8441 		switch (off) {
8442 		case bpf_ctx_range(struct __sk_buff, mark):
8443 		case bpf_ctx_range(struct __sk_buff, priority):
8444 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8445 			break;
8446 		case bpf_ctx_range(struct __sk_buff, tstamp):
8447 			if (!bpf_capable())
8448 				return false;
8449 			break;
8450 		default:
8451 			return false;
8452 		}
8453 	}
8454 
8455 	switch (off) {
8456 	case bpf_ctx_range(struct __sk_buff, data):
8457 		info->reg_type = PTR_TO_PACKET;
8458 		break;
8459 	case bpf_ctx_range(struct __sk_buff, data_end):
8460 		info->reg_type = PTR_TO_PACKET_END;
8461 		break;
8462 	}
8463 
8464 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8465 }
8466 
8467 static bool lwt_is_valid_access(int off, int size,
8468 				enum bpf_access_type type,
8469 				const struct bpf_prog *prog,
8470 				struct bpf_insn_access_aux *info)
8471 {
8472 	switch (off) {
8473 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8474 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8475 	case bpf_ctx_range(struct __sk_buff, data_meta):
8476 	case bpf_ctx_range(struct __sk_buff, tstamp):
8477 	case bpf_ctx_range(struct __sk_buff, wire_len):
8478 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8479 		return false;
8480 	}
8481 
8482 	if (type == BPF_WRITE) {
8483 		switch (off) {
8484 		case bpf_ctx_range(struct __sk_buff, mark):
8485 		case bpf_ctx_range(struct __sk_buff, priority):
8486 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8487 			break;
8488 		default:
8489 			return false;
8490 		}
8491 	}
8492 
8493 	switch (off) {
8494 	case bpf_ctx_range(struct __sk_buff, data):
8495 		info->reg_type = PTR_TO_PACKET;
8496 		break;
8497 	case bpf_ctx_range(struct __sk_buff, data_end):
8498 		info->reg_type = PTR_TO_PACKET_END;
8499 		break;
8500 	}
8501 
8502 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8503 }
8504 
8505 /* Attach type specific accesses */
8506 static bool __sock_filter_check_attach_type(int off,
8507 					    enum bpf_access_type access_type,
8508 					    enum bpf_attach_type attach_type)
8509 {
8510 	switch (off) {
8511 	case offsetof(struct bpf_sock, bound_dev_if):
8512 	case offsetof(struct bpf_sock, mark):
8513 	case offsetof(struct bpf_sock, priority):
8514 		switch (attach_type) {
8515 		case BPF_CGROUP_INET_SOCK_CREATE:
8516 		case BPF_CGROUP_INET_SOCK_RELEASE:
8517 			goto full_access;
8518 		default:
8519 			return false;
8520 		}
8521 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8522 		switch (attach_type) {
8523 		case BPF_CGROUP_INET4_POST_BIND:
8524 			goto read_only;
8525 		default:
8526 			return false;
8527 		}
8528 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8529 		switch (attach_type) {
8530 		case BPF_CGROUP_INET6_POST_BIND:
8531 			goto read_only;
8532 		default:
8533 			return false;
8534 		}
8535 	case bpf_ctx_range(struct bpf_sock, src_port):
8536 		switch (attach_type) {
8537 		case BPF_CGROUP_INET4_POST_BIND:
8538 		case BPF_CGROUP_INET6_POST_BIND:
8539 			goto read_only;
8540 		default:
8541 			return false;
8542 		}
8543 	}
8544 read_only:
8545 	return access_type == BPF_READ;
8546 full_access:
8547 	return true;
8548 }
8549 
8550 bool bpf_sock_common_is_valid_access(int off, int size,
8551 				     enum bpf_access_type type,
8552 				     struct bpf_insn_access_aux *info)
8553 {
8554 	switch (off) {
8555 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8556 		return false;
8557 	default:
8558 		return bpf_sock_is_valid_access(off, size, type, info);
8559 	}
8560 }
8561 
8562 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8563 			      struct bpf_insn_access_aux *info)
8564 {
8565 	const int size_default = sizeof(__u32);
8566 	int field_size;
8567 
8568 	if (off < 0 || off >= sizeof(struct bpf_sock))
8569 		return false;
8570 	if (off % size != 0)
8571 		return false;
8572 
8573 	switch (off) {
8574 	case offsetof(struct bpf_sock, state):
8575 	case offsetof(struct bpf_sock, family):
8576 	case offsetof(struct bpf_sock, type):
8577 	case offsetof(struct bpf_sock, protocol):
8578 	case offsetof(struct bpf_sock, src_port):
8579 	case offsetof(struct bpf_sock, rx_queue_mapping):
8580 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8581 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8582 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8583 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8584 		bpf_ctx_record_field_size(info, size_default);
8585 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8586 	case bpf_ctx_range(struct bpf_sock, dst_port):
8587 		field_size = size == size_default ?
8588 			size_default : sizeof_field(struct bpf_sock, dst_port);
8589 		bpf_ctx_record_field_size(info, field_size);
8590 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8591 	case offsetofend(struct bpf_sock, dst_port) ...
8592 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8593 		return false;
8594 	}
8595 
8596 	return size == size_default;
8597 }
8598 
8599 static bool sock_filter_is_valid_access(int off, int size,
8600 					enum bpf_access_type type,
8601 					const struct bpf_prog *prog,
8602 					struct bpf_insn_access_aux *info)
8603 {
8604 	if (!bpf_sock_is_valid_access(off, size, type, info))
8605 		return false;
8606 	return __sock_filter_check_attach_type(off, type,
8607 					       prog->expected_attach_type);
8608 }
8609 
8610 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8611 			     const struct bpf_prog *prog)
8612 {
8613 	/* Neither direct read nor direct write requires any preliminary
8614 	 * action.
8615 	 */
8616 	return 0;
8617 }
8618 
8619 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8620 				const struct bpf_prog *prog, int drop_verdict)
8621 {
8622 	struct bpf_insn *insn = insn_buf;
8623 
8624 	if (!direct_write)
8625 		return 0;
8626 
8627 	/* if (!skb->cloned)
8628 	 *       goto start;
8629 	 *
8630 	 * (Fast-path, otherwise approximation that we might be
8631 	 *  a clone, do the rest in helper.)
8632 	 */
8633 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8634 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8635 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8636 
8637 	/* ret = bpf_skb_pull_data(skb, 0); */
8638 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8639 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8640 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8641 			       BPF_FUNC_skb_pull_data);
8642 	/* if (!ret)
8643 	 *      goto restore;
8644 	 * return TC_ACT_SHOT;
8645 	 */
8646 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8647 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8648 	*insn++ = BPF_EXIT_INSN();
8649 
8650 	/* restore: */
8651 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8652 	/* start: */
8653 	*insn++ = prog->insnsi[0];
8654 
8655 	return insn - insn_buf;
8656 }
8657 
8658 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8659 			  struct bpf_insn *insn_buf)
8660 {
8661 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8662 	struct bpf_insn *insn = insn_buf;
8663 
8664 	if (!indirect) {
8665 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8666 	} else {
8667 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8668 		if (orig->imm)
8669 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8670 	}
8671 	/* We're guaranteed here that CTX is in R6. */
8672 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8673 
8674 	switch (BPF_SIZE(orig->code)) {
8675 	case BPF_B:
8676 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8677 		break;
8678 	case BPF_H:
8679 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8680 		break;
8681 	case BPF_W:
8682 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8683 		break;
8684 	}
8685 
8686 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8687 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8688 	*insn++ = BPF_EXIT_INSN();
8689 
8690 	return insn - insn_buf;
8691 }
8692 
8693 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8694 			       const struct bpf_prog *prog)
8695 {
8696 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8697 }
8698 
8699 static bool tc_cls_act_is_valid_access(int off, int size,
8700 				       enum bpf_access_type type,
8701 				       const struct bpf_prog *prog,
8702 				       struct bpf_insn_access_aux *info)
8703 {
8704 	if (type == BPF_WRITE) {
8705 		switch (off) {
8706 		case bpf_ctx_range(struct __sk_buff, mark):
8707 		case bpf_ctx_range(struct __sk_buff, tc_index):
8708 		case bpf_ctx_range(struct __sk_buff, priority):
8709 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8710 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8711 		case bpf_ctx_range(struct __sk_buff, tstamp):
8712 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8713 			break;
8714 		default:
8715 			return false;
8716 		}
8717 	}
8718 
8719 	switch (off) {
8720 	case bpf_ctx_range(struct __sk_buff, data):
8721 		info->reg_type = PTR_TO_PACKET;
8722 		break;
8723 	case bpf_ctx_range(struct __sk_buff, data_meta):
8724 		info->reg_type = PTR_TO_PACKET_META;
8725 		break;
8726 	case bpf_ctx_range(struct __sk_buff, data_end):
8727 		info->reg_type = PTR_TO_PACKET_END;
8728 		break;
8729 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8730 		return false;
8731 	case offsetof(struct __sk_buff, tstamp_type):
8732 		/* The convert_ctx_access() on reading and writing
8733 		 * __sk_buff->tstamp depends on whether the bpf prog
8734 		 * has used __sk_buff->tstamp_type or not.
8735 		 * Thus, we need to set prog->tstamp_type_access
8736 		 * earlier during is_valid_access() here.
8737 		 */
8738 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8739 		return size == sizeof(__u8);
8740 	}
8741 
8742 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8743 }
8744 
8745 DEFINE_MUTEX(nf_conn_btf_access_lock);
8746 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8747 
8748 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8749 			      const struct bpf_reg_state *reg,
8750 			      int off, int size);
8751 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8752 
8753 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8754 					const struct bpf_reg_state *reg,
8755 					int off, int size)
8756 {
8757 	int ret = -EACCES;
8758 
8759 	mutex_lock(&nf_conn_btf_access_lock);
8760 	if (nfct_btf_struct_access)
8761 		ret = nfct_btf_struct_access(log, reg, off, size);
8762 	mutex_unlock(&nf_conn_btf_access_lock);
8763 
8764 	return ret;
8765 }
8766 
8767 static bool __is_valid_xdp_access(int off, int size)
8768 {
8769 	if (off < 0 || off >= sizeof(struct xdp_md))
8770 		return false;
8771 	if (off % size != 0)
8772 		return false;
8773 	if (size != sizeof(__u32))
8774 		return false;
8775 
8776 	return true;
8777 }
8778 
8779 static bool xdp_is_valid_access(int off, int size,
8780 				enum bpf_access_type type,
8781 				const struct bpf_prog *prog,
8782 				struct bpf_insn_access_aux *info)
8783 {
8784 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8785 		switch (off) {
8786 		case offsetof(struct xdp_md, egress_ifindex):
8787 			return false;
8788 		}
8789 	}
8790 
8791 	if (type == BPF_WRITE) {
8792 		if (bpf_prog_is_offloaded(prog->aux)) {
8793 			switch (off) {
8794 			case offsetof(struct xdp_md, rx_queue_index):
8795 				return __is_valid_xdp_access(off, size);
8796 			}
8797 		}
8798 		return false;
8799 	}
8800 
8801 	switch (off) {
8802 	case offsetof(struct xdp_md, data):
8803 		info->reg_type = PTR_TO_PACKET;
8804 		break;
8805 	case offsetof(struct xdp_md, data_meta):
8806 		info->reg_type = PTR_TO_PACKET_META;
8807 		break;
8808 	case offsetof(struct xdp_md, data_end):
8809 		info->reg_type = PTR_TO_PACKET_END;
8810 		break;
8811 	}
8812 
8813 	return __is_valid_xdp_access(off, size);
8814 }
8815 
8816 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8817 {
8818 	const u32 act_max = XDP_REDIRECT;
8819 
8820 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8821 		     act > act_max ? "Illegal" : "Driver unsupported",
8822 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8823 }
8824 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8825 
8826 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8827 				 const struct bpf_reg_state *reg,
8828 				 int off, int size)
8829 {
8830 	int ret = -EACCES;
8831 
8832 	mutex_lock(&nf_conn_btf_access_lock);
8833 	if (nfct_btf_struct_access)
8834 		ret = nfct_btf_struct_access(log, reg, off, size);
8835 	mutex_unlock(&nf_conn_btf_access_lock);
8836 
8837 	return ret;
8838 }
8839 
8840 static bool sock_addr_is_valid_access(int off, int size,
8841 				      enum bpf_access_type type,
8842 				      const struct bpf_prog *prog,
8843 				      struct bpf_insn_access_aux *info)
8844 {
8845 	const int size_default = sizeof(__u32);
8846 
8847 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8848 		return false;
8849 	if (off % size != 0)
8850 		return false;
8851 
8852 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8853 	 * versa.
8854 	 */
8855 	switch (off) {
8856 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8857 		switch (prog->expected_attach_type) {
8858 		case BPF_CGROUP_INET4_BIND:
8859 		case BPF_CGROUP_INET4_CONNECT:
8860 		case BPF_CGROUP_INET4_GETPEERNAME:
8861 		case BPF_CGROUP_INET4_GETSOCKNAME:
8862 		case BPF_CGROUP_UDP4_SENDMSG:
8863 		case BPF_CGROUP_UDP4_RECVMSG:
8864 			break;
8865 		default:
8866 			return false;
8867 		}
8868 		break;
8869 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8870 		switch (prog->expected_attach_type) {
8871 		case BPF_CGROUP_INET6_BIND:
8872 		case BPF_CGROUP_INET6_CONNECT:
8873 		case BPF_CGROUP_INET6_GETPEERNAME:
8874 		case BPF_CGROUP_INET6_GETSOCKNAME:
8875 		case BPF_CGROUP_UDP6_SENDMSG:
8876 		case BPF_CGROUP_UDP6_RECVMSG:
8877 			break;
8878 		default:
8879 			return false;
8880 		}
8881 		break;
8882 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8883 		switch (prog->expected_attach_type) {
8884 		case BPF_CGROUP_UDP4_SENDMSG:
8885 			break;
8886 		default:
8887 			return false;
8888 		}
8889 		break;
8890 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8891 				msg_src_ip6[3]):
8892 		switch (prog->expected_attach_type) {
8893 		case BPF_CGROUP_UDP6_SENDMSG:
8894 			break;
8895 		default:
8896 			return false;
8897 		}
8898 		break;
8899 	}
8900 
8901 	switch (off) {
8902 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8903 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8904 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8905 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8906 				msg_src_ip6[3]):
8907 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8908 		if (type == BPF_READ) {
8909 			bpf_ctx_record_field_size(info, size_default);
8910 
8911 			if (bpf_ctx_wide_access_ok(off, size,
8912 						   struct bpf_sock_addr,
8913 						   user_ip6))
8914 				return true;
8915 
8916 			if (bpf_ctx_wide_access_ok(off, size,
8917 						   struct bpf_sock_addr,
8918 						   msg_src_ip6))
8919 				return true;
8920 
8921 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8922 				return false;
8923 		} else {
8924 			if (bpf_ctx_wide_access_ok(off, size,
8925 						   struct bpf_sock_addr,
8926 						   user_ip6))
8927 				return true;
8928 
8929 			if (bpf_ctx_wide_access_ok(off, size,
8930 						   struct bpf_sock_addr,
8931 						   msg_src_ip6))
8932 				return true;
8933 
8934 			if (size != size_default)
8935 				return false;
8936 		}
8937 		break;
8938 	case offsetof(struct bpf_sock_addr, sk):
8939 		if (type != BPF_READ)
8940 			return false;
8941 		if (size != sizeof(__u64))
8942 			return false;
8943 		info->reg_type = PTR_TO_SOCKET;
8944 		break;
8945 	default:
8946 		if (type == BPF_READ) {
8947 			if (size != size_default)
8948 				return false;
8949 		} else {
8950 			return false;
8951 		}
8952 	}
8953 
8954 	return true;
8955 }
8956 
8957 static bool sock_ops_is_valid_access(int off, int size,
8958 				     enum bpf_access_type type,
8959 				     const struct bpf_prog *prog,
8960 				     struct bpf_insn_access_aux *info)
8961 {
8962 	const int size_default = sizeof(__u32);
8963 
8964 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8965 		return false;
8966 
8967 	/* The verifier guarantees that size > 0. */
8968 	if (off % size != 0)
8969 		return false;
8970 
8971 	if (type == BPF_WRITE) {
8972 		switch (off) {
8973 		case offsetof(struct bpf_sock_ops, reply):
8974 		case offsetof(struct bpf_sock_ops, sk_txhash):
8975 			if (size != size_default)
8976 				return false;
8977 			break;
8978 		default:
8979 			return false;
8980 		}
8981 	} else {
8982 		switch (off) {
8983 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8984 					bytes_acked):
8985 			if (size != sizeof(__u64))
8986 				return false;
8987 			break;
8988 		case offsetof(struct bpf_sock_ops, sk):
8989 			if (size != sizeof(__u64))
8990 				return false;
8991 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8992 			break;
8993 		case offsetof(struct bpf_sock_ops, skb_data):
8994 			if (size != sizeof(__u64))
8995 				return false;
8996 			info->reg_type = PTR_TO_PACKET;
8997 			break;
8998 		case offsetof(struct bpf_sock_ops, skb_data_end):
8999 			if (size != sizeof(__u64))
9000 				return false;
9001 			info->reg_type = PTR_TO_PACKET_END;
9002 			break;
9003 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9004 			bpf_ctx_record_field_size(info, size_default);
9005 			return bpf_ctx_narrow_access_ok(off, size,
9006 							size_default);
9007 		case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9008 			if (size != sizeof(__u64))
9009 				return false;
9010 			break;
9011 		default:
9012 			if (size != size_default)
9013 				return false;
9014 			break;
9015 		}
9016 	}
9017 
9018 	return true;
9019 }
9020 
9021 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9022 			   const struct bpf_prog *prog)
9023 {
9024 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9025 }
9026 
9027 static bool sk_skb_is_valid_access(int off, int size,
9028 				   enum bpf_access_type type,
9029 				   const struct bpf_prog *prog,
9030 				   struct bpf_insn_access_aux *info)
9031 {
9032 	switch (off) {
9033 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9034 	case bpf_ctx_range(struct __sk_buff, data_meta):
9035 	case bpf_ctx_range(struct __sk_buff, tstamp):
9036 	case bpf_ctx_range(struct __sk_buff, wire_len):
9037 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9038 		return false;
9039 	}
9040 
9041 	if (type == BPF_WRITE) {
9042 		switch (off) {
9043 		case bpf_ctx_range(struct __sk_buff, tc_index):
9044 		case bpf_ctx_range(struct __sk_buff, priority):
9045 			break;
9046 		default:
9047 			return false;
9048 		}
9049 	}
9050 
9051 	switch (off) {
9052 	case bpf_ctx_range(struct __sk_buff, mark):
9053 		return false;
9054 	case bpf_ctx_range(struct __sk_buff, data):
9055 		info->reg_type = PTR_TO_PACKET;
9056 		break;
9057 	case bpf_ctx_range(struct __sk_buff, data_end):
9058 		info->reg_type = PTR_TO_PACKET_END;
9059 		break;
9060 	}
9061 
9062 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9063 }
9064 
9065 static bool sk_msg_is_valid_access(int off, int size,
9066 				   enum bpf_access_type type,
9067 				   const struct bpf_prog *prog,
9068 				   struct bpf_insn_access_aux *info)
9069 {
9070 	if (type == BPF_WRITE)
9071 		return false;
9072 
9073 	if (off % size != 0)
9074 		return false;
9075 
9076 	switch (off) {
9077 	case offsetof(struct sk_msg_md, data):
9078 		info->reg_type = PTR_TO_PACKET;
9079 		if (size != sizeof(__u64))
9080 			return false;
9081 		break;
9082 	case offsetof(struct sk_msg_md, data_end):
9083 		info->reg_type = PTR_TO_PACKET_END;
9084 		if (size != sizeof(__u64))
9085 			return false;
9086 		break;
9087 	case offsetof(struct sk_msg_md, sk):
9088 		if (size != sizeof(__u64))
9089 			return false;
9090 		info->reg_type = PTR_TO_SOCKET;
9091 		break;
9092 	case bpf_ctx_range(struct sk_msg_md, family):
9093 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9094 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9095 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9096 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9097 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9098 	case bpf_ctx_range(struct sk_msg_md, local_port):
9099 	case bpf_ctx_range(struct sk_msg_md, size):
9100 		if (size != sizeof(__u32))
9101 			return false;
9102 		break;
9103 	default:
9104 		return false;
9105 	}
9106 	return true;
9107 }
9108 
9109 static bool flow_dissector_is_valid_access(int off, int size,
9110 					   enum bpf_access_type type,
9111 					   const struct bpf_prog *prog,
9112 					   struct bpf_insn_access_aux *info)
9113 {
9114 	const int size_default = sizeof(__u32);
9115 
9116 	if (off < 0 || off >= sizeof(struct __sk_buff))
9117 		return false;
9118 
9119 	if (type == BPF_WRITE)
9120 		return false;
9121 
9122 	switch (off) {
9123 	case bpf_ctx_range(struct __sk_buff, data):
9124 		if (size != size_default)
9125 			return false;
9126 		info->reg_type = PTR_TO_PACKET;
9127 		return true;
9128 	case bpf_ctx_range(struct __sk_buff, data_end):
9129 		if (size != size_default)
9130 			return false;
9131 		info->reg_type = PTR_TO_PACKET_END;
9132 		return true;
9133 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9134 		if (size != sizeof(__u64))
9135 			return false;
9136 		info->reg_type = PTR_TO_FLOW_KEYS;
9137 		return true;
9138 	default:
9139 		return false;
9140 	}
9141 }
9142 
9143 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9144 					     const struct bpf_insn *si,
9145 					     struct bpf_insn *insn_buf,
9146 					     struct bpf_prog *prog,
9147 					     u32 *target_size)
9148 
9149 {
9150 	struct bpf_insn *insn = insn_buf;
9151 
9152 	switch (si->off) {
9153 	case offsetof(struct __sk_buff, data):
9154 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9155 				      si->dst_reg, si->src_reg,
9156 				      offsetof(struct bpf_flow_dissector, data));
9157 		break;
9158 
9159 	case offsetof(struct __sk_buff, data_end):
9160 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9161 				      si->dst_reg, si->src_reg,
9162 				      offsetof(struct bpf_flow_dissector, data_end));
9163 		break;
9164 
9165 	case offsetof(struct __sk_buff, flow_keys):
9166 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9167 				      si->dst_reg, si->src_reg,
9168 				      offsetof(struct bpf_flow_dissector, flow_keys));
9169 		break;
9170 	}
9171 
9172 	return insn - insn_buf;
9173 }
9174 
9175 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9176 						     struct bpf_insn *insn)
9177 {
9178 	__u8 value_reg = si->dst_reg;
9179 	__u8 skb_reg = si->src_reg;
9180 	/* AX is needed because src_reg and dst_reg could be the same */
9181 	__u8 tmp_reg = BPF_REG_AX;
9182 
9183 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9184 			      SKB_BF_MONO_TC_OFFSET);
9185 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9186 				SKB_MONO_DELIVERY_TIME_MASK, 2);
9187 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9188 	*insn++ = BPF_JMP_A(1);
9189 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9190 
9191 	return insn;
9192 }
9193 
9194 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9195 						  struct bpf_insn *insn)
9196 {
9197 	/* si->dst_reg = skb_shinfo(SKB); */
9198 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9199 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9200 			      BPF_REG_AX, skb_reg,
9201 			      offsetof(struct sk_buff, end));
9202 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9203 			      dst_reg, skb_reg,
9204 			      offsetof(struct sk_buff, head));
9205 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9206 #else
9207 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9208 			      dst_reg, skb_reg,
9209 			      offsetof(struct sk_buff, end));
9210 #endif
9211 
9212 	return insn;
9213 }
9214 
9215 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9216 						const struct bpf_insn *si,
9217 						struct bpf_insn *insn)
9218 {
9219 	__u8 value_reg = si->dst_reg;
9220 	__u8 skb_reg = si->src_reg;
9221 
9222 #ifdef CONFIG_NET_CLS_ACT
9223 	/* If the tstamp_type is read,
9224 	 * the bpf prog is aware the tstamp could have delivery time.
9225 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9226 	 */
9227 	if (!prog->tstamp_type_access) {
9228 		/* AX is needed because src_reg and dst_reg could be the same */
9229 		__u8 tmp_reg = BPF_REG_AX;
9230 
9231 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9232 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9233 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9234 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9235 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9236 		/* skb->tc_at_ingress && skb->mono_delivery_time,
9237 		 * read 0 as the (rcv) timestamp.
9238 		 */
9239 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9240 		*insn++ = BPF_JMP_A(1);
9241 	}
9242 #endif
9243 
9244 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9245 			      offsetof(struct sk_buff, tstamp));
9246 	return insn;
9247 }
9248 
9249 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9250 						 const struct bpf_insn *si,
9251 						 struct bpf_insn *insn)
9252 {
9253 	__u8 value_reg = si->src_reg;
9254 	__u8 skb_reg = si->dst_reg;
9255 
9256 #ifdef CONFIG_NET_CLS_ACT
9257 	/* If the tstamp_type is read,
9258 	 * the bpf prog is aware the tstamp could have delivery time.
9259 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9260 	 * Otherwise, writing at ingress will have to clear the
9261 	 * mono_delivery_time bit also.
9262 	 */
9263 	if (!prog->tstamp_type_access) {
9264 		__u8 tmp_reg = BPF_REG_AX;
9265 
9266 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9267 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9268 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9269 		/* goto <store> */
9270 		*insn++ = BPF_JMP_A(2);
9271 		/* <clear>: mono_delivery_time */
9272 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9273 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9274 	}
9275 #endif
9276 
9277 	/* <store>: skb->tstamp = tstamp */
9278 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9279 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9280 	return insn;
9281 }
9282 
9283 #define BPF_EMIT_STORE(size, si, off)					\
9284 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9285 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9286 
9287 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9288 				  const struct bpf_insn *si,
9289 				  struct bpf_insn *insn_buf,
9290 				  struct bpf_prog *prog, u32 *target_size)
9291 {
9292 	struct bpf_insn *insn = insn_buf;
9293 	int off;
9294 
9295 	switch (si->off) {
9296 	case offsetof(struct __sk_buff, len):
9297 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9298 				      bpf_target_off(struct sk_buff, len, 4,
9299 						     target_size));
9300 		break;
9301 
9302 	case offsetof(struct __sk_buff, protocol):
9303 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9304 				      bpf_target_off(struct sk_buff, protocol, 2,
9305 						     target_size));
9306 		break;
9307 
9308 	case offsetof(struct __sk_buff, vlan_proto):
9309 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9310 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9311 						     target_size));
9312 		break;
9313 
9314 	case offsetof(struct __sk_buff, priority):
9315 		if (type == BPF_WRITE)
9316 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9317 						 bpf_target_off(struct sk_buff, priority, 4,
9318 								target_size));
9319 		else
9320 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9321 					      bpf_target_off(struct sk_buff, priority, 4,
9322 							     target_size));
9323 		break;
9324 
9325 	case offsetof(struct __sk_buff, ingress_ifindex):
9326 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9327 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9328 						     target_size));
9329 		break;
9330 
9331 	case offsetof(struct __sk_buff, ifindex):
9332 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9333 				      si->dst_reg, si->src_reg,
9334 				      offsetof(struct sk_buff, dev));
9335 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9336 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9337 				      bpf_target_off(struct net_device, ifindex, 4,
9338 						     target_size));
9339 		break;
9340 
9341 	case offsetof(struct __sk_buff, hash):
9342 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9343 				      bpf_target_off(struct sk_buff, hash, 4,
9344 						     target_size));
9345 		break;
9346 
9347 	case offsetof(struct __sk_buff, mark):
9348 		if (type == BPF_WRITE)
9349 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9350 						 bpf_target_off(struct sk_buff, mark, 4,
9351 								target_size));
9352 		else
9353 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9354 					      bpf_target_off(struct sk_buff, mark, 4,
9355 							     target_size));
9356 		break;
9357 
9358 	case offsetof(struct __sk_buff, pkt_type):
9359 		*target_size = 1;
9360 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9361 				      PKT_TYPE_OFFSET);
9362 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9363 #ifdef __BIG_ENDIAN_BITFIELD
9364 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9365 #endif
9366 		break;
9367 
9368 	case offsetof(struct __sk_buff, queue_mapping):
9369 		if (type == BPF_WRITE) {
9370 			u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9371 
9372 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9373 				*insn++ = BPF_JMP_A(0); /* noop */
9374 				break;
9375 			}
9376 
9377 			if (BPF_CLASS(si->code) == BPF_STX)
9378 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9379 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9380 		} else {
9381 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9382 					      bpf_target_off(struct sk_buff,
9383 							     queue_mapping,
9384 							     2, target_size));
9385 		}
9386 		break;
9387 
9388 	case offsetof(struct __sk_buff, vlan_present):
9389 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9390 				      bpf_target_off(struct sk_buff,
9391 						     vlan_all, 4, target_size));
9392 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9393 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9394 		break;
9395 
9396 	case offsetof(struct __sk_buff, vlan_tci):
9397 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9398 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9399 						     target_size));
9400 		break;
9401 
9402 	case offsetof(struct __sk_buff, cb[0]) ...
9403 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9404 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9405 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9406 			      offsetof(struct qdisc_skb_cb, data)) %
9407 			     sizeof(__u64));
9408 
9409 		prog->cb_access = 1;
9410 		off  = si->off;
9411 		off -= offsetof(struct __sk_buff, cb[0]);
9412 		off += offsetof(struct sk_buff, cb);
9413 		off += offsetof(struct qdisc_skb_cb, data);
9414 		if (type == BPF_WRITE)
9415 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9416 		else
9417 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9418 					      si->src_reg, off);
9419 		break;
9420 
9421 	case offsetof(struct __sk_buff, tc_classid):
9422 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9423 
9424 		off  = si->off;
9425 		off -= offsetof(struct __sk_buff, tc_classid);
9426 		off += offsetof(struct sk_buff, cb);
9427 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9428 		*target_size = 2;
9429 		if (type == BPF_WRITE)
9430 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9431 		else
9432 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9433 					      si->src_reg, off);
9434 		break;
9435 
9436 	case offsetof(struct __sk_buff, data):
9437 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9438 				      si->dst_reg, si->src_reg,
9439 				      offsetof(struct sk_buff, data));
9440 		break;
9441 
9442 	case offsetof(struct __sk_buff, data_meta):
9443 		off  = si->off;
9444 		off -= offsetof(struct __sk_buff, data_meta);
9445 		off += offsetof(struct sk_buff, cb);
9446 		off += offsetof(struct bpf_skb_data_end, data_meta);
9447 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9448 				      si->src_reg, off);
9449 		break;
9450 
9451 	case offsetof(struct __sk_buff, data_end):
9452 		off  = si->off;
9453 		off -= offsetof(struct __sk_buff, data_end);
9454 		off += offsetof(struct sk_buff, cb);
9455 		off += offsetof(struct bpf_skb_data_end, data_end);
9456 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9457 				      si->src_reg, off);
9458 		break;
9459 
9460 	case offsetof(struct __sk_buff, tc_index):
9461 #ifdef CONFIG_NET_SCHED
9462 		if (type == BPF_WRITE)
9463 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9464 						 bpf_target_off(struct sk_buff, tc_index, 2,
9465 								target_size));
9466 		else
9467 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9468 					      bpf_target_off(struct sk_buff, tc_index, 2,
9469 							     target_size));
9470 #else
9471 		*target_size = 2;
9472 		if (type == BPF_WRITE)
9473 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9474 		else
9475 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9476 #endif
9477 		break;
9478 
9479 	case offsetof(struct __sk_buff, napi_id):
9480 #if defined(CONFIG_NET_RX_BUSY_POLL)
9481 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9482 				      bpf_target_off(struct sk_buff, napi_id, 4,
9483 						     target_size));
9484 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9485 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9486 #else
9487 		*target_size = 4;
9488 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9489 #endif
9490 		break;
9491 	case offsetof(struct __sk_buff, family):
9492 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9493 
9494 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9495 				      si->dst_reg, si->src_reg,
9496 				      offsetof(struct sk_buff, sk));
9497 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9498 				      bpf_target_off(struct sock_common,
9499 						     skc_family,
9500 						     2, target_size));
9501 		break;
9502 	case offsetof(struct __sk_buff, remote_ip4):
9503 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9504 
9505 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9506 				      si->dst_reg, si->src_reg,
9507 				      offsetof(struct sk_buff, sk));
9508 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9509 				      bpf_target_off(struct sock_common,
9510 						     skc_daddr,
9511 						     4, target_size));
9512 		break;
9513 	case offsetof(struct __sk_buff, local_ip4):
9514 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9515 					  skc_rcv_saddr) != 4);
9516 
9517 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9518 				      si->dst_reg, si->src_reg,
9519 				      offsetof(struct sk_buff, sk));
9520 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9521 				      bpf_target_off(struct sock_common,
9522 						     skc_rcv_saddr,
9523 						     4, target_size));
9524 		break;
9525 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9526 	     offsetof(struct __sk_buff, remote_ip6[3]):
9527 #if IS_ENABLED(CONFIG_IPV6)
9528 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9529 					  skc_v6_daddr.s6_addr32[0]) != 4);
9530 
9531 		off = si->off;
9532 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9533 
9534 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9535 				      si->dst_reg, si->src_reg,
9536 				      offsetof(struct sk_buff, sk));
9537 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9538 				      offsetof(struct sock_common,
9539 					       skc_v6_daddr.s6_addr32[0]) +
9540 				      off);
9541 #else
9542 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9543 #endif
9544 		break;
9545 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9546 	     offsetof(struct __sk_buff, local_ip6[3]):
9547 #if IS_ENABLED(CONFIG_IPV6)
9548 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9549 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9550 
9551 		off = si->off;
9552 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9553 
9554 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9555 				      si->dst_reg, si->src_reg,
9556 				      offsetof(struct sk_buff, sk));
9557 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9558 				      offsetof(struct sock_common,
9559 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9560 				      off);
9561 #else
9562 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9563 #endif
9564 		break;
9565 
9566 	case offsetof(struct __sk_buff, remote_port):
9567 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9568 
9569 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9570 				      si->dst_reg, si->src_reg,
9571 				      offsetof(struct sk_buff, sk));
9572 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9573 				      bpf_target_off(struct sock_common,
9574 						     skc_dport,
9575 						     2, target_size));
9576 #ifndef __BIG_ENDIAN_BITFIELD
9577 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9578 #endif
9579 		break;
9580 
9581 	case offsetof(struct __sk_buff, local_port):
9582 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9583 
9584 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9585 				      si->dst_reg, si->src_reg,
9586 				      offsetof(struct sk_buff, sk));
9587 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9588 				      bpf_target_off(struct sock_common,
9589 						     skc_num, 2, target_size));
9590 		break;
9591 
9592 	case offsetof(struct __sk_buff, tstamp):
9593 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9594 
9595 		if (type == BPF_WRITE)
9596 			insn = bpf_convert_tstamp_write(prog, si, insn);
9597 		else
9598 			insn = bpf_convert_tstamp_read(prog, si, insn);
9599 		break;
9600 
9601 	case offsetof(struct __sk_buff, tstamp_type):
9602 		insn = bpf_convert_tstamp_type_read(si, insn);
9603 		break;
9604 
9605 	case offsetof(struct __sk_buff, gso_segs):
9606 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9607 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9608 				      si->dst_reg, si->dst_reg,
9609 				      bpf_target_off(struct skb_shared_info,
9610 						     gso_segs, 2,
9611 						     target_size));
9612 		break;
9613 	case offsetof(struct __sk_buff, gso_size):
9614 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9615 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9616 				      si->dst_reg, si->dst_reg,
9617 				      bpf_target_off(struct skb_shared_info,
9618 						     gso_size, 2,
9619 						     target_size));
9620 		break;
9621 	case offsetof(struct __sk_buff, wire_len):
9622 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9623 
9624 		off = si->off;
9625 		off -= offsetof(struct __sk_buff, wire_len);
9626 		off += offsetof(struct sk_buff, cb);
9627 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9628 		*target_size = 4;
9629 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9630 		break;
9631 
9632 	case offsetof(struct __sk_buff, sk):
9633 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9634 				      si->dst_reg, si->src_reg,
9635 				      offsetof(struct sk_buff, sk));
9636 		break;
9637 	case offsetof(struct __sk_buff, hwtstamp):
9638 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9639 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9640 
9641 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9642 		*insn++ = BPF_LDX_MEM(BPF_DW,
9643 				      si->dst_reg, si->dst_reg,
9644 				      bpf_target_off(struct skb_shared_info,
9645 						     hwtstamps, 8,
9646 						     target_size));
9647 		break;
9648 	}
9649 
9650 	return insn - insn_buf;
9651 }
9652 
9653 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9654 				const struct bpf_insn *si,
9655 				struct bpf_insn *insn_buf,
9656 				struct bpf_prog *prog, u32 *target_size)
9657 {
9658 	struct bpf_insn *insn = insn_buf;
9659 	int off;
9660 
9661 	switch (si->off) {
9662 	case offsetof(struct bpf_sock, bound_dev_if):
9663 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9664 
9665 		if (type == BPF_WRITE)
9666 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9667 						 offsetof(struct sock, sk_bound_dev_if));
9668 		else
9669 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9670 				      offsetof(struct sock, sk_bound_dev_if));
9671 		break;
9672 
9673 	case offsetof(struct bpf_sock, mark):
9674 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9675 
9676 		if (type == BPF_WRITE)
9677 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9678 						 offsetof(struct sock, sk_mark));
9679 		else
9680 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9681 				      offsetof(struct sock, sk_mark));
9682 		break;
9683 
9684 	case offsetof(struct bpf_sock, priority):
9685 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9686 
9687 		if (type == BPF_WRITE)
9688 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9689 						 offsetof(struct sock, sk_priority));
9690 		else
9691 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9692 				      offsetof(struct sock, sk_priority));
9693 		break;
9694 
9695 	case offsetof(struct bpf_sock, family):
9696 		*insn++ = BPF_LDX_MEM(
9697 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9698 			si->dst_reg, si->src_reg,
9699 			bpf_target_off(struct sock_common,
9700 				       skc_family,
9701 				       sizeof_field(struct sock_common,
9702 						    skc_family),
9703 				       target_size));
9704 		break;
9705 
9706 	case offsetof(struct bpf_sock, type):
9707 		*insn++ = BPF_LDX_MEM(
9708 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9709 			si->dst_reg, si->src_reg,
9710 			bpf_target_off(struct sock, sk_type,
9711 				       sizeof_field(struct sock, sk_type),
9712 				       target_size));
9713 		break;
9714 
9715 	case offsetof(struct bpf_sock, protocol):
9716 		*insn++ = BPF_LDX_MEM(
9717 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9718 			si->dst_reg, si->src_reg,
9719 			bpf_target_off(struct sock, sk_protocol,
9720 				       sizeof_field(struct sock, sk_protocol),
9721 				       target_size));
9722 		break;
9723 
9724 	case offsetof(struct bpf_sock, src_ip4):
9725 		*insn++ = BPF_LDX_MEM(
9726 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9727 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9728 				       sizeof_field(struct sock_common,
9729 						    skc_rcv_saddr),
9730 				       target_size));
9731 		break;
9732 
9733 	case offsetof(struct bpf_sock, dst_ip4):
9734 		*insn++ = BPF_LDX_MEM(
9735 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9736 			bpf_target_off(struct sock_common, skc_daddr,
9737 				       sizeof_field(struct sock_common,
9738 						    skc_daddr),
9739 				       target_size));
9740 		break;
9741 
9742 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9743 #if IS_ENABLED(CONFIG_IPV6)
9744 		off = si->off;
9745 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9746 		*insn++ = BPF_LDX_MEM(
9747 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9748 			bpf_target_off(
9749 				struct sock_common,
9750 				skc_v6_rcv_saddr.s6_addr32[0],
9751 				sizeof_field(struct sock_common,
9752 					     skc_v6_rcv_saddr.s6_addr32[0]),
9753 				target_size) + off);
9754 #else
9755 		(void)off;
9756 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9757 #endif
9758 		break;
9759 
9760 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9761 #if IS_ENABLED(CONFIG_IPV6)
9762 		off = si->off;
9763 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9764 		*insn++ = BPF_LDX_MEM(
9765 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9766 			bpf_target_off(struct sock_common,
9767 				       skc_v6_daddr.s6_addr32[0],
9768 				       sizeof_field(struct sock_common,
9769 						    skc_v6_daddr.s6_addr32[0]),
9770 				       target_size) + off);
9771 #else
9772 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9773 		*target_size = 4;
9774 #endif
9775 		break;
9776 
9777 	case offsetof(struct bpf_sock, src_port):
9778 		*insn++ = BPF_LDX_MEM(
9779 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9780 			si->dst_reg, si->src_reg,
9781 			bpf_target_off(struct sock_common, skc_num,
9782 				       sizeof_field(struct sock_common,
9783 						    skc_num),
9784 				       target_size));
9785 		break;
9786 
9787 	case offsetof(struct bpf_sock, dst_port):
9788 		*insn++ = BPF_LDX_MEM(
9789 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9790 			si->dst_reg, si->src_reg,
9791 			bpf_target_off(struct sock_common, skc_dport,
9792 				       sizeof_field(struct sock_common,
9793 						    skc_dport),
9794 				       target_size));
9795 		break;
9796 
9797 	case offsetof(struct bpf_sock, state):
9798 		*insn++ = BPF_LDX_MEM(
9799 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9800 			si->dst_reg, si->src_reg,
9801 			bpf_target_off(struct sock_common, skc_state,
9802 				       sizeof_field(struct sock_common,
9803 						    skc_state),
9804 				       target_size));
9805 		break;
9806 	case offsetof(struct bpf_sock, rx_queue_mapping):
9807 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9808 		*insn++ = BPF_LDX_MEM(
9809 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9810 			si->dst_reg, si->src_reg,
9811 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9812 				       sizeof_field(struct sock,
9813 						    sk_rx_queue_mapping),
9814 				       target_size));
9815 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9816 				      1);
9817 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9818 #else
9819 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9820 		*target_size = 2;
9821 #endif
9822 		break;
9823 	}
9824 
9825 	return insn - insn_buf;
9826 }
9827 
9828 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9829 					 const struct bpf_insn *si,
9830 					 struct bpf_insn *insn_buf,
9831 					 struct bpf_prog *prog, u32 *target_size)
9832 {
9833 	struct bpf_insn *insn = insn_buf;
9834 
9835 	switch (si->off) {
9836 	case offsetof(struct __sk_buff, ifindex):
9837 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9838 				      si->dst_reg, si->src_reg,
9839 				      offsetof(struct sk_buff, dev));
9840 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9841 				      bpf_target_off(struct net_device, ifindex, 4,
9842 						     target_size));
9843 		break;
9844 	default:
9845 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9846 					      target_size);
9847 	}
9848 
9849 	return insn - insn_buf;
9850 }
9851 
9852 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9853 				  const struct bpf_insn *si,
9854 				  struct bpf_insn *insn_buf,
9855 				  struct bpf_prog *prog, u32 *target_size)
9856 {
9857 	struct bpf_insn *insn = insn_buf;
9858 
9859 	switch (si->off) {
9860 	case offsetof(struct xdp_md, data):
9861 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9862 				      si->dst_reg, si->src_reg,
9863 				      offsetof(struct xdp_buff, data));
9864 		break;
9865 	case offsetof(struct xdp_md, data_meta):
9866 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9867 				      si->dst_reg, si->src_reg,
9868 				      offsetof(struct xdp_buff, data_meta));
9869 		break;
9870 	case offsetof(struct xdp_md, data_end):
9871 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9872 				      si->dst_reg, si->src_reg,
9873 				      offsetof(struct xdp_buff, data_end));
9874 		break;
9875 	case offsetof(struct xdp_md, ingress_ifindex):
9876 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9877 				      si->dst_reg, si->src_reg,
9878 				      offsetof(struct xdp_buff, rxq));
9879 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9880 				      si->dst_reg, si->dst_reg,
9881 				      offsetof(struct xdp_rxq_info, dev));
9882 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9883 				      offsetof(struct net_device, ifindex));
9884 		break;
9885 	case offsetof(struct xdp_md, rx_queue_index):
9886 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9887 				      si->dst_reg, si->src_reg,
9888 				      offsetof(struct xdp_buff, rxq));
9889 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9890 				      offsetof(struct xdp_rxq_info,
9891 					       queue_index));
9892 		break;
9893 	case offsetof(struct xdp_md, egress_ifindex):
9894 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9895 				      si->dst_reg, si->src_reg,
9896 				      offsetof(struct xdp_buff, txq));
9897 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9898 				      si->dst_reg, si->dst_reg,
9899 				      offsetof(struct xdp_txq_info, dev));
9900 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9901 				      offsetof(struct net_device, ifindex));
9902 		break;
9903 	}
9904 
9905 	return insn - insn_buf;
9906 }
9907 
9908 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9909  * context Structure, F is Field in context structure that contains a pointer
9910  * to Nested Structure of type NS that has the field NF.
9911  *
9912  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9913  * sure that SIZE is not greater than actual size of S.F.NF.
9914  *
9915  * If offset OFF is provided, the load happens from that offset relative to
9916  * offset of NF.
9917  */
9918 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9919 	do {								       \
9920 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9921 				      si->src_reg, offsetof(S, F));	       \
9922 		*insn++ = BPF_LDX_MEM(					       \
9923 			SIZE, si->dst_reg, si->dst_reg,			       \
9924 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9925 				       target_size)			       \
9926 				+ OFF);					       \
9927 	} while (0)
9928 
9929 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9930 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9931 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9932 
9933 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9934  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9935  *
9936  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9937  * "register" since two registers available in convert_ctx_access are not
9938  * enough: we can't override neither SRC, since it contains value to store, nor
9939  * DST since it contains pointer to context that may be used by later
9940  * instructions. But we need a temporary place to save pointer to nested
9941  * structure whose field we want to store to.
9942  */
9943 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9944 	do {								       \
9945 		int tmp_reg = BPF_REG_9;				       \
9946 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9947 			--tmp_reg;					       \
9948 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9949 			--tmp_reg;					       \
9950 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9951 				      offsetof(S, TF));			       \
9952 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9953 				      si->dst_reg, offsetof(S, F));	       \
9954 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
9955 				       tmp_reg, si->src_reg,		       \
9956 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9957 				       target_size)			       \
9958 				       + OFF,				       \
9959 				       si->imm);			       \
9960 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9961 				      offsetof(S, TF));			       \
9962 	} while (0)
9963 
9964 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9965 						      TF)		       \
9966 	do {								       \
9967 		if (type == BPF_WRITE) {				       \
9968 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9969 							 OFF, TF);	       \
9970 		} else {						       \
9971 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9972 				S, NS, F, NF, SIZE, OFF);  \
9973 		}							       \
9974 	} while (0)
9975 
9976 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9977 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9978 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9979 
9980 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9981 					const struct bpf_insn *si,
9982 					struct bpf_insn *insn_buf,
9983 					struct bpf_prog *prog, u32 *target_size)
9984 {
9985 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9986 	struct bpf_insn *insn = insn_buf;
9987 
9988 	switch (si->off) {
9989 	case offsetof(struct bpf_sock_addr, user_family):
9990 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9991 					    struct sockaddr, uaddr, sa_family);
9992 		break;
9993 
9994 	case offsetof(struct bpf_sock_addr, user_ip4):
9995 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9996 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9997 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9998 		break;
9999 
10000 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10001 		off = si->off;
10002 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10003 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10004 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10005 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10006 			tmp_reg);
10007 		break;
10008 
10009 	case offsetof(struct bpf_sock_addr, user_port):
10010 		/* To get port we need to know sa_family first and then treat
10011 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10012 		 * Though we can simplify since port field has same offset and
10013 		 * size in both structures.
10014 		 * Here we check this invariant and use just one of the
10015 		 * structures if it's true.
10016 		 */
10017 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10018 			     offsetof(struct sockaddr_in6, sin6_port));
10019 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10020 			     sizeof_field(struct sockaddr_in6, sin6_port));
10021 		/* Account for sin6_port being smaller than user_port. */
10022 		port_size = min(port_size, BPF_LDST_BYTES(si));
10023 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10024 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10025 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10026 		break;
10027 
10028 	case offsetof(struct bpf_sock_addr, family):
10029 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10030 					    struct sock, sk, sk_family);
10031 		break;
10032 
10033 	case offsetof(struct bpf_sock_addr, type):
10034 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10035 					    struct sock, sk, sk_type);
10036 		break;
10037 
10038 	case offsetof(struct bpf_sock_addr, protocol):
10039 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10040 					    struct sock, sk, sk_protocol);
10041 		break;
10042 
10043 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10044 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10045 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10046 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10047 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10048 		break;
10049 
10050 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10051 				msg_src_ip6[3]):
10052 		off = si->off;
10053 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10054 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10055 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10056 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10057 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10058 		break;
10059 	case offsetof(struct bpf_sock_addr, sk):
10060 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10061 				      si->dst_reg, si->src_reg,
10062 				      offsetof(struct bpf_sock_addr_kern, sk));
10063 		break;
10064 	}
10065 
10066 	return insn - insn_buf;
10067 }
10068 
10069 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10070 				       const struct bpf_insn *si,
10071 				       struct bpf_insn *insn_buf,
10072 				       struct bpf_prog *prog,
10073 				       u32 *target_size)
10074 {
10075 	struct bpf_insn *insn = insn_buf;
10076 	int off;
10077 
10078 /* Helper macro for adding read access to tcp_sock or sock fields. */
10079 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10080 	do {								      \
10081 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10082 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10083 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10084 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10085 			reg--;						      \
10086 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10087 			reg--;						      \
10088 		if (si->dst_reg == si->src_reg) {			      \
10089 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10090 					  offsetof(struct bpf_sock_ops_kern,  \
10091 					  temp));			      \
10092 			fullsock_reg = reg;				      \
10093 			jmp += 2;					      \
10094 		}							      \
10095 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10096 						struct bpf_sock_ops_kern,     \
10097 						is_fullsock),		      \
10098 				      fullsock_reg, si->src_reg,	      \
10099 				      offsetof(struct bpf_sock_ops_kern,      \
10100 					       is_fullsock));		      \
10101 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10102 		if (si->dst_reg == si->src_reg)				      \
10103 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10104 				      offsetof(struct bpf_sock_ops_kern,      \
10105 				      temp));				      \
10106 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10107 						struct bpf_sock_ops_kern, sk),\
10108 				      si->dst_reg, si->src_reg,		      \
10109 				      offsetof(struct bpf_sock_ops_kern, sk));\
10110 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10111 						       OBJ_FIELD),	      \
10112 				      si->dst_reg, si->dst_reg,		      \
10113 				      offsetof(OBJ, OBJ_FIELD));	      \
10114 		if (si->dst_reg == si->src_reg)	{			      \
10115 			*insn++ = BPF_JMP_A(1);				      \
10116 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10117 				      offsetof(struct bpf_sock_ops_kern,      \
10118 				      temp));				      \
10119 		}							      \
10120 	} while (0)
10121 
10122 #define SOCK_OPS_GET_SK()							      \
10123 	do {								      \
10124 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10125 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10126 			reg--;						      \
10127 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10128 			reg--;						      \
10129 		if (si->dst_reg == si->src_reg) {			      \
10130 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10131 					  offsetof(struct bpf_sock_ops_kern,  \
10132 					  temp));			      \
10133 			fullsock_reg = reg;				      \
10134 			jmp += 2;					      \
10135 		}							      \
10136 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10137 						struct bpf_sock_ops_kern,     \
10138 						is_fullsock),		      \
10139 				      fullsock_reg, si->src_reg,	      \
10140 				      offsetof(struct bpf_sock_ops_kern,      \
10141 					       is_fullsock));		      \
10142 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10143 		if (si->dst_reg == si->src_reg)				      \
10144 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10145 				      offsetof(struct bpf_sock_ops_kern,      \
10146 				      temp));				      \
10147 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10148 						struct bpf_sock_ops_kern, sk),\
10149 				      si->dst_reg, si->src_reg,		      \
10150 				      offsetof(struct bpf_sock_ops_kern, sk));\
10151 		if (si->dst_reg == si->src_reg)	{			      \
10152 			*insn++ = BPF_JMP_A(1);				      \
10153 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10154 				      offsetof(struct bpf_sock_ops_kern,      \
10155 				      temp));				      \
10156 		}							      \
10157 	} while (0)
10158 
10159 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10160 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10161 
10162 /* Helper macro for adding write access to tcp_sock or sock fields.
10163  * The macro is called with two registers, dst_reg which contains a pointer
10164  * to ctx (context) and src_reg which contains the value that should be
10165  * stored. However, we need an additional register since we cannot overwrite
10166  * dst_reg because it may be used later in the program.
10167  * Instead we "borrow" one of the other register. We first save its value
10168  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10169  * it at the end of the macro.
10170  */
10171 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10172 	do {								      \
10173 		int reg = BPF_REG_9;					      \
10174 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10175 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10176 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10177 			reg--;						      \
10178 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10179 			reg--;						      \
10180 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10181 				      offsetof(struct bpf_sock_ops_kern,      \
10182 					       temp));			      \
10183 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10184 						struct bpf_sock_ops_kern,     \
10185 						is_fullsock),		      \
10186 				      reg, si->dst_reg,			      \
10187 				      offsetof(struct bpf_sock_ops_kern,      \
10188 					       is_fullsock));		      \
10189 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10190 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10191 						struct bpf_sock_ops_kern, sk),\
10192 				      reg, si->dst_reg,			      \
10193 				      offsetof(struct bpf_sock_ops_kern, sk));\
10194 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10195 				       BPF_MEM | BPF_CLASS(si->code),	      \
10196 				       reg, si->src_reg,		      \
10197 				       offsetof(OBJ, OBJ_FIELD),	      \
10198 				       si->imm);			      \
10199 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10200 				      offsetof(struct bpf_sock_ops_kern,      \
10201 					       temp));			      \
10202 	} while (0)
10203 
10204 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10205 	do {								      \
10206 		if (TYPE == BPF_WRITE)					      \
10207 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10208 		else							      \
10209 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10210 	} while (0)
10211 
10212 	switch (si->off) {
10213 	case offsetof(struct bpf_sock_ops, op):
10214 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10215 						       op),
10216 				      si->dst_reg, si->src_reg,
10217 				      offsetof(struct bpf_sock_ops_kern, op));
10218 		break;
10219 
10220 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10221 	     offsetof(struct bpf_sock_ops, replylong[3]):
10222 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10223 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10224 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10225 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10226 		off = si->off;
10227 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10228 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10229 		if (type == BPF_WRITE)
10230 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10231 		else
10232 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10233 					      off);
10234 		break;
10235 
10236 	case offsetof(struct bpf_sock_ops, family):
10237 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10238 
10239 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10240 					      struct bpf_sock_ops_kern, sk),
10241 				      si->dst_reg, si->src_reg,
10242 				      offsetof(struct bpf_sock_ops_kern, sk));
10243 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10244 				      offsetof(struct sock_common, skc_family));
10245 		break;
10246 
10247 	case offsetof(struct bpf_sock_ops, remote_ip4):
10248 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10249 
10250 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10251 						struct bpf_sock_ops_kern, sk),
10252 				      si->dst_reg, si->src_reg,
10253 				      offsetof(struct bpf_sock_ops_kern, sk));
10254 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10255 				      offsetof(struct sock_common, skc_daddr));
10256 		break;
10257 
10258 	case offsetof(struct bpf_sock_ops, local_ip4):
10259 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10260 					  skc_rcv_saddr) != 4);
10261 
10262 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10263 					      struct bpf_sock_ops_kern, sk),
10264 				      si->dst_reg, si->src_reg,
10265 				      offsetof(struct bpf_sock_ops_kern, sk));
10266 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10267 				      offsetof(struct sock_common,
10268 					       skc_rcv_saddr));
10269 		break;
10270 
10271 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10272 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10273 #if IS_ENABLED(CONFIG_IPV6)
10274 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10275 					  skc_v6_daddr.s6_addr32[0]) != 4);
10276 
10277 		off = si->off;
10278 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10279 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10280 						struct bpf_sock_ops_kern, sk),
10281 				      si->dst_reg, si->src_reg,
10282 				      offsetof(struct bpf_sock_ops_kern, sk));
10283 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10284 				      offsetof(struct sock_common,
10285 					       skc_v6_daddr.s6_addr32[0]) +
10286 				      off);
10287 #else
10288 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10289 #endif
10290 		break;
10291 
10292 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10293 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10294 #if IS_ENABLED(CONFIG_IPV6)
10295 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10296 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10297 
10298 		off = si->off;
10299 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10300 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10301 						struct bpf_sock_ops_kern, sk),
10302 				      si->dst_reg, si->src_reg,
10303 				      offsetof(struct bpf_sock_ops_kern, sk));
10304 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10305 				      offsetof(struct sock_common,
10306 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10307 				      off);
10308 #else
10309 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10310 #endif
10311 		break;
10312 
10313 	case offsetof(struct bpf_sock_ops, remote_port):
10314 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10315 
10316 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10317 						struct bpf_sock_ops_kern, sk),
10318 				      si->dst_reg, si->src_reg,
10319 				      offsetof(struct bpf_sock_ops_kern, sk));
10320 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10321 				      offsetof(struct sock_common, skc_dport));
10322 #ifndef __BIG_ENDIAN_BITFIELD
10323 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10324 #endif
10325 		break;
10326 
10327 	case offsetof(struct bpf_sock_ops, local_port):
10328 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10329 
10330 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10331 						struct bpf_sock_ops_kern, sk),
10332 				      si->dst_reg, si->src_reg,
10333 				      offsetof(struct bpf_sock_ops_kern, sk));
10334 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10335 				      offsetof(struct sock_common, skc_num));
10336 		break;
10337 
10338 	case offsetof(struct bpf_sock_ops, is_fullsock):
10339 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10340 						struct bpf_sock_ops_kern,
10341 						is_fullsock),
10342 				      si->dst_reg, si->src_reg,
10343 				      offsetof(struct bpf_sock_ops_kern,
10344 					       is_fullsock));
10345 		break;
10346 
10347 	case offsetof(struct bpf_sock_ops, state):
10348 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10349 
10350 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10351 						struct bpf_sock_ops_kern, sk),
10352 				      si->dst_reg, si->src_reg,
10353 				      offsetof(struct bpf_sock_ops_kern, sk));
10354 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10355 				      offsetof(struct sock_common, skc_state));
10356 		break;
10357 
10358 	case offsetof(struct bpf_sock_ops, rtt_min):
10359 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10360 			     sizeof(struct minmax));
10361 		BUILD_BUG_ON(sizeof(struct minmax) <
10362 			     sizeof(struct minmax_sample));
10363 
10364 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10365 						struct bpf_sock_ops_kern, sk),
10366 				      si->dst_reg, si->src_reg,
10367 				      offsetof(struct bpf_sock_ops_kern, sk));
10368 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10369 				      offsetof(struct tcp_sock, rtt_min) +
10370 				      sizeof_field(struct minmax_sample, t));
10371 		break;
10372 
10373 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10374 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10375 				   struct tcp_sock);
10376 		break;
10377 
10378 	case offsetof(struct bpf_sock_ops, sk_txhash):
10379 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10380 					  struct sock, type);
10381 		break;
10382 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10383 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10384 		break;
10385 	case offsetof(struct bpf_sock_ops, srtt_us):
10386 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10387 		break;
10388 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10389 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10390 		break;
10391 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10392 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10393 		break;
10394 	case offsetof(struct bpf_sock_ops, snd_nxt):
10395 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10396 		break;
10397 	case offsetof(struct bpf_sock_ops, snd_una):
10398 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10399 		break;
10400 	case offsetof(struct bpf_sock_ops, mss_cache):
10401 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10402 		break;
10403 	case offsetof(struct bpf_sock_ops, ecn_flags):
10404 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10405 		break;
10406 	case offsetof(struct bpf_sock_ops, rate_delivered):
10407 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10408 		break;
10409 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10410 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10411 		break;
10412 	case offsetof(struct bpf_sock_ops, packets_out):
10413 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10414 		break;
10415 	case offsetof(struct bpf_sock_ops, retrans_out):
10416 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10417 		break;
10418 	case offsetof(struct bpf_sock_ops, total_retrans):
10419 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10420 		break;
10421 	case offsetof(struct bpf_sock_ops, segs_in):
10422 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10423 		break;
10424 	case offsetof(struct bpf_sock_ops, data_segs_in):
10425 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10426 		break;
10427 	case offsetof(struct bpf_sock_ops, segs_out):
10428 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10429 		break;
10430 	case offsetof(struct bpf_sock_ops, data_segs_out):
10431 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10432 		break;
10433 	case offsetof(struct bpf_sock_ops, lost_out):
10434 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10435 		break;
10436 	case offsetof(struct bpf_sock_ops, sacked_out):
10437 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10438 		break;
10439 	case offsetof(struct bpf_sock_ops, bytes_received):
10440 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10441 		break;
10442 	case offsetof(struct bpf_sock_ops, bytes_acked):
10443 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10444 		break;
10445 	case offsetof(struct bpf_sock_ops, sk):
10446 		SOCK_OPS_GET_SK();
10447 		break;
10448 	case offsetof(struct bpf_sock_ops, skb_data_end):
10449 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10450 						       skb_data_end),
10451 				      si->dst_reg, si->src_reg,
10452 				      offsetof(struct bpf_sock_ops_kern,
10453 					       skb_data_end));
10454 		break;
10455 	case offsetof(struct bpf_sock_ops, skb_data):
10456 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10457 						       skb),
10458 				      si->dst_reg, si->src_reg,
10459 				      offsetof(struct bpf_sock_ops_kern,
10460 					       skb));
10461 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10462 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10463 				      si->dst_reg, si->dst_reg,
10464 				      offsetof(struct sk_buff, data));
10465 		break;
10466 	case offsetof(struct bpf_sock_ops, skb_len):
10467 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10468 						       skb),
10469 				      si->dst_reg, si->src_reg,
10470 				      offsetof(struct bpf_sock_ops_kern,
10471 					       skb));
10472 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10473 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10474 				      si->dst_reg, si->dst_reg,
10475 				      offsetof(struct sk_buff, len));
10476 		break;
10477 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10478 		off = offsetof(struct sk_buff, cb);
10479 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10480 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10481 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10482 						       skb),
10483 				      si->dst_reg, si->src_reg,
10484 				      offsetof(struct bpf_sock_ops_kern,
10485 					       skb));
10486 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10487 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10488 						       tcp_flags),
10489 				      si->dst_reg, si->dst_reg, off);
10490 		break;
10491 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10492 		struct bpf_insn *jmp_on_null_skb;
10493 
10494 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10495 						       skb),
10496 				      si->dst_reg, si->src_reg,
10497 				      offsetof(struct bpf_sock_ops_kern,
10498 					       skb));
10499 		/* Reserve one insn to test skb == NULL */
10500 		jmp_on_null_skb = insn++;
10501 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10502 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10503 				      bpf_target_off(struct skb_shared_info,
10504 						     hwtstamps, 8,
10505 						     target_size));
10506 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10507 					       insn - jmp_on_null_skb - 1);
10508 		break;
10509 	}
10510 	}
10511 	return insn - insn_buf;
10512 }
10513 
10514 /* data_end = skb->data + skb_headlen() */
10515 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10516 						    struct bpf_insn *insn)
10517 {
10518 	int reg;
10519 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10520 			   offsetof(struct sk_skb_cb, temp_reg);
10521 
10522 	if (si->src_reg == si->dst_reg) {
10523 		/* We need an extra register, choose and save a register. */
10524 		reg = BPF_REG_9;
10525 		if (si->src_reg == reg || si->dst_reg == reg)
10526 			reg--;
10527 		if (si->src_reg == reg || si->dst_reg == reg)
10528 			reg--;
10529 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10530 	} else {
10531 		reg = si->dst_reg;
10532 	}
10533 
10534 	/* reg = skb->data */
10535 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10536 			      reg, si->src_reg,
10537 			      offsetof(struct sk_buff, data));
10538 	/* AX = skb->len */
10539 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10540 			      BPF_REG_AX, si->src_reg,
10541 			      offsetof(struct sk_buff, len));
10542 	/* reg = skb->data + skb->len */
10543 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10544 	/* AX = skb->data_len */
10545 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10546 			      BPF_REG_AX, si->src_reg,
10547 			      offsetof(struct sk_buff, data_len));
10548 
10549 	/* reg = skb->data + skb->len - skb->data_len */
10550 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10551 
10552 	if (si->src_reg == si->dst_reg) {
10553 		/* Restore the saved register */
10554 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10555 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10556 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10557 	}
10558 
10559 	return insn;
10560 }
10561 
10562 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10563 				     const struct bpf_insn *si,
10564 				     struct bpf_insn *insn_buf,
10565 				     struct bpf_prog *prog, u32 *target_size)
10566 {
10567 	struct bpf_insn *insn = insn_buf;
10568 	int off;
10569 
10570 	switch (si->off) {
10571 	case offsetof(struct __sk_buff, data_end):
10572 		insn = bpf_convert_data_end_access(si, insn);
10573 		break;
10574 	case offsetof(struct __sk_buff, cb[0]) ...
10575 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10576 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10577 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10578 			      offsetof(struct sk_skb_cb, data)) %
10579 			     sizeof(__u64));
10580 
10581 		prog->cb_access = 1;
10582 		off  = si->off;
10583 		off -= offsetof(struct __sk_buff, cb[0]);
10584 		off += offsetof(struct sk_buff, cb);
10585 		off += offsetof(struct sk_skb_cb, data);
10586 		if (type == BPF_WRITE)
10587 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10588 		else
10589 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10590 					      si->src_reg, off);
10591 		break;
10592 
10593 
10594 	default:
10595 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10596 					      target_size);
10597 	}
10598 
10599 	return insn - insn_buf;
10600 }
10601 
10602 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10603 				     const struct bpf_insn *si,
10604 				     struct bpf_insn *insn_buf,
10605 				     struct bpf_prog *prog, u32 *target_size)
10606 {
10607 	struct bpf_insn *insn = insn_buf;
10608 #if IS_ENABLED(CONFIG_IPV6)
10609 	int off;
10610 #endif
10611 
10612 	/* convert ctx uses the fact sg element is first in struct */
10613 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10614 
10615 	switch (si->off) {
10616 	case offsetof(struct sk_msg_md, data):
10617 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10618 				      si->dst_reg, si->src_reg,
10619 				      offsetof(struct sk_msg, data));
10620 		break;
10621 	case offsetof(struct sk_msg_md, data_end):
10622 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10623 				      si->dst_reg, si->src_reg,
10624 				      offsetof(struct sk_msg, data_end));
10625 		break;
10626 	case offsetof(struct sk_msg_md, family):
10627 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10628 
10629 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10630 					      struct sk_msg, sk),
10631 				      si->dst_reg, si->src_reg,
10632 				      offsetof(struct sk_msg, sk));
10633 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10634 				      offsetof(struct sock_common, skc_family));
10635 		break;
10636 
10637 	case offsetof(struct sk_msg_md, remote_ip4):
10638 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10639 
10640 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10641 						struct sk_msg, sk),
10642 				      si->dst_reg, si->src_reg,
10643 				      offsetof(struct sk_msg, sk));
10644 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10645 				      offsetof(struct sock_common, skc_daddr));
10646 		break;
10647 
10648 	case offsetof(struct sk_msg_md, local_ip4):
10649 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10650 					  skc_rcv_saddr) != 4);
10651 
10652 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10653 					      struct sk_msg, sk),
10654 				      si->dst_reg, si->src_reg,
10655 				      offsetof(struct sk_msg, sk));
10656 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10657 				      offsetof(struct sock_common,
10658 					       skc_rcv_saddr));
10659 		break;
10660 
10661 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10662 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10663 #if IS_ENABLED(CONFIG_IPV6)
10664 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10665 					  skc_v6_daddr.s6_addr32[0]) != 4);
10666 
10667 		off = si->off;
10668 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10669 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10670 						struct sk_msg, sk),
10671 				      si->dst_reg, si->src_reg,
10672 				      offsetof(struct sk_msg, sk));
10673 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10674 				      offsetof(struct sock_common,
10675 					       skc_v6_daddr.s6_addr32[0]) +
10676 				      off);
10677 #else
10678 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10679 #endif
10680 		break;
10681 
10682 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10683 	     offsetof(struct sk_msg_md, local_ip6[3]):
10684 #if IS_ENABLED(CONFIG_IPV6)
10685 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10686 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10687 
10688 		off = si->off;
10689 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10690 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10691 						struct sk_msg, sk),
10692 				      si->dst_reg, si->src_reg,
10693 				      offsetof(struct sk_msg, sk));
10694 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10695 				      offsetof(struct sock_common,
10696 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10697 				      off);
10698 #else
10699 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10700 #endif
10701 		break;
10702 
10703 	case offsetof(struct sk_msg_md, remote_port):
10704 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10705 
10706 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10707 						struct sk_msg, sk),
10708 				      si->dst_reg, si->src_reg,
10709 				      offsetof(struct sk_msg, sk));
10710 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10711 				      offsetof(struct sock_common, skc_dport));
10712 #ifndef __BIG_ENDIAN_BITFIELD
10713 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10714 #endif
10715 		break;
10716 
10717 	case offsetof(struct sk_msg_md, local_port):
10718 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10719 
10720 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10721 						struct sk_msg, sk),
10722 				      si->dst_reg, si->src_reg,
10723 				      offsetof(struct sk_msg, sk));
10724 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10725 				      offsetof(struct sock_common, skc_num));
10726 		break;
10727 
10728 	case offsetof(struct sk_msg_md, size):
10729 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10730 				      si->dst_reg, si->src_reg,
10731 				      offsetof(struct sk_msg_sg, size));
10732 		break;
10733 
10734 	case offsetof(struct sk_msg_md, sk):
10735 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10736 				      si->dst_reg, si->src_reg,
10737 				      offsetof(struct sk_msg, sk));
10738 		break;
10739 	}
10740 
10741 	return insn - insn_buf;
10742 }
10743 
10744 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10745 	.get_func_proto		= sk_filter_func_proto,
10746 	.is_valid_access	= sk_filter_is_valid_access,
10747 	.convert_ctx_access	= bpf_convert_ctx_access,
10748 	.gen_ld_abs		= bpf_gen_ld_abs,
10749 };
10750 
10751 const struct bpf_prog_ops sk_filter_prog_ops = {
10752 	.test_run		= bpf_prog_test_run_skb,
10753 };
10754 
10755 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10756 	.get_func_proto		= tc_cls_act_func_proto,
10757 	.is_valid_access	= tc_cls_act_is_valid_access,
10758 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10759 	.gen_prologue		= tc_cls_act_prologue,
10760 	.gen_ld_abs		= bpf_gen_ld_abs,
10761 	.btf_struct_access	= tc_cls_act_btf_struct_access,
10762 };
10763 
10764 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10765 	.test_run		= bpf_prog_test_run_skb,
10766 };
10767 
10768 const struct bpf_verifier_ops xdp_verifier_ops = {
10769 	.get_func_proto		= xdp_func_proto,
10770 	.is_valid_access	= xdp_is_valid_access,
10771 	.convert_ctx_access	= xdp_convert_ctx_access,
10772 	.gen_prologue		= bpf_noop_prologue,
10773 	.btf_struct_access	= xdp_btf_struct_access,
10774 };
10775 
10776 const struct bpf_prog_ops xdp_prog_ops = {
10777 	.test_run		= bpf_prog_test_run_xdp,
10778 };
10779 
10780 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10781 	.get_func_proto		= cg_skb_func_proto,
10782 	.is_valid_access	= cg_skb_is_valid_access,
10783 	.convert_ctx_access	= bpf_convert_ctx_access,
10784 };
10785 
10786 const struct bpf_prog_ops cg_skb_prog_ops = {
10787 	.test_run		= bpf_prog_test_run_skb,
10788 };
10789 
10790 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10791 	.get_func_proto		= lwt_in_func_proto,
10792 	.is_valid_access	= lwt_is_valid_access,
10793 	.convert_ctx_access	= bpf_convert_ctx_access,
10794 };
10795 
10796 const struct bpf_prog_ops lwt_in_prog_ops = {
10797 	.test_run		= bpf_prog_test_run_skb,
10798 };
10799 
10800 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10801 	.get_func_proto		= lwt_out_func_proto,
10802 	.is_valid_access	= lwt_is_valid_access,
10803 	.convert_ctx_access	= bpf_convert_ctx_access,
10804 };
10805 
10806 const struct bpf_prog_ops lwt_out_prog_ops = {
10807 	.test_run		= bpf_prog_test_run_skb,
10808 };
10809 
10810 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10811 	.get_func_proto		= lwt_xmit_func_proto,
10812 	.is_valid_access	= lwt_is_valid_access,
10813 	.convert_ctx_access	= bpf_convert_ctx_access,
10814 	.gen_prologue		= tc_cls_act_prologue,
10815 };
10816 
10817 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10818 	.test_run		= bpf_prog_test_run_skb,
10819 };
10820 
10821 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10822 	.get_func_proto		= lwt_seg6local_func_proto,
10823 	.is_valid_access	= lwt_is_valid_access,
10824 	.convert_ctx_access	= bpf_convert_ctx_access,
10825 };
10826 
10827 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10828 	.test_run		= bpf_prog_test_run_skb,
10829 };
10830 
10831 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10832 	.get_func_proto		= sock_filter_func_proto,
10833 	.is_valid_access	= sock_filter_is_valid_access,
10834 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10835 };
10836 
10837 const struct bpf_prog_ops cg_sock_prog_ops = {
10838 };
10839 
10840 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10841 	.get_func_proto		= sock_addr_func_proto,
10842 	.is_valid_access	= sock_addr_is_valid_access,
10843 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10844 };
10845 
10846 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10847 };
10848 
10849 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10850 	.get_func_proto		= sock_ops_func_proto,
10851 	.is_valid_access	= sock_ops_is_valid_access,
10852 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10853 };
10854 
10855 const struct bpf_prog_ops sock_ops_prog_ops = {
10856 };
10857 
10858 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10859 	.get_func_proto		= sk_skb_func_proto,
10860 	.is_valid_access	= sk_skb_is_valid_access,
10861 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10862 	.gen_prologue		= sk_skb_prologue,
10863 };
10864 
10865 const struct bpf_prog_ops sk_skb_prog_ops = {
10866 };
10867 
10868 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10869 	.get_func_proto		= sk_msg_func_proto,
10870 	.is_valid_access	= sk_msg_is_valid_access,
10871 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10872 	.gen_prologue		= bpf_noop_prologue,
10873 };
10874 
10875 const struct bpf_prog_ops sk_msg_prog_ops = {
10876 };
10877 
10878 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10879 	.get_func_proto		= flow_dissector_func_proto,
10880 	.is_valid_access	= flow_dissector_is_valid_access,
10881 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10882 };
10883 
10884 const struct bpf_prog_ops flow_dissector_prog_ops = {
10885 	.test_run		= bpf_prog_test_run_flow_dissector,
10886 };
10887 
10888 int sk_detach_filter(struct sock *sk)
10889 {
10890 	int ret = -ENOENT;
10891 	struct sk_filter *filter;
10892 
10893 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10894 		return -EPERM;
10895 
10896 	filter = rcu_dereference_protected(sk->sk_filter,
10897 					   lockdep_sock_is_held(sk));
10898 	if (filter) {
10899 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10900 		sk_filter_uncharge(sk, filter);
10901 		ret = 0;
10902 	}
10903 
10904 	return ret;
10905 }
10906 EXPORT_SYMBOL_GPL(sk_detach_filter);
10907 
10908 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10909 {
10910 	struct sock_fprog_kern *fprog;
10911 	struct sk_filter *filter;
10912 	int ret = 0;
10913 
10914 	sockopt_lock_sock(sk);
10915 	filter = rcu_dereference_protected(sk->sk_filter,
10916 					   lockdep_sock_is_held(sk));
10917 	if (!filter)
10918 		goto out;
10919 
10920 	/* We're copying the filter that has been originally attached,
10921 	 * so no conversion/decode needed anymore. eBPF programs that
10922 	 * have no original program cannot be dumped through this.
10923 	 */
10924 	ret = -EACCES;
10925 	fprog = filter->prog->orig_prog;
10926 	if (!fprog)
10927 		goto out;
10928 
10929 	ret = fprog->len;
10930 	if (!len)
10931 		/* User space only enquires number of filter blocks. */
10932 		goto out;
10933 
10934 	ret = -EINVAL;
10935 	if (len < fprog->len)
10936 		goto out;
10937 
10938 	ret = -EFAULT;
10939 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
10940 		goto out;
10941 
10942 	/* Instead of bytes, the API requests to return the number
10943 	 * of filter blocks.
10944 	 */
10945 	ret = fprog->len;
10946 out:
10947 	sockopt_release_sock(sk);
10948 	return ret;
10949 }
10950 
10951 #ifdef CONFIG_INET
10952 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10953 				    struct sock_reuseport *reuse,
10954 				    struct sock *sk, struct sk_buff *skb,
10955 				    struct sock *migrating_sk,
10956 				    u32 hash)
10957 {
10958 	reuse_kern->skb = skb;
10959 	reuse_kern->sk = sk;
10960 	reuse_kern->selected_sk = NULL;
10961 	reuse_kern->migrating_sk = migrating_sk;
10962 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10963 	reuse_kern->hash = hash;
10964 	reuse_kern->reuseport_id = reuse->reuseport_id;
10965 	reuse_kern->bind_inany = reuse->bind_inany;
10966 }
10967 
10968 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10969 				  struct bpf_prog *prog, struct sk_buff *skb,
10970 				  struct sock *migrating_sk,
10971 				  u32 hash)
10972 {
10973 	struct sk_reuseport_kern reuse_kern;
10974 	enum sk_action action;
10975 
10976 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10977 	action = bpf_prog_run(prog, &reuse_kern);
10978 
10979 	if (action == SK_PASS)
10980 		return reuse_kern.selected_sk;
10981 	else
10982 		return ERR_PTR(-ECONNREFUSED);
10983 }
10984 
10985 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10986 	   struct bpf_map *, map, void *, key, u32, flags)
10987 {
10988 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10989 	struct sock_reuseport *reuse;
10990 	struct sock *selected_sk;
10991 
10992 	selected_sk = map->ops->map_lookup_elem(map, key);
10993 	if (!selected_sk)
10994 		return -ENOENT;
10995 
10996 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10997 	if (!reuse) {
10998 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10999 		if (sk_is_refcounted(selected_sk))
11000 			sock_put(selected_sk);
11001 
11002 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11003 		 * The only (!reuse) case here is - the sk has already been
11004 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11005 		 *
11006 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11007 		 * the sk may never be in the reuseport group to begin with.
11008 		 */
11009 		return is_sockarray ? -ENOENT : -EINVAL;
11010 	}
11011 
11012 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11013 		struct sock *sk = reuse_kern->sk;
11014 
11015 		if (sk->sk_protocol != selected_sk->sk_protocol)
11016 			return -EPROTOTYPE;
11017 		else if (sk->sk_family != selected_sk->sk_family)
11018 			return -EAFNOSUPPORT;
11019 
11020 		/* Catch all. Likely bound to a different sockaddr. */
11021 		return -EBADFD;
11022 	}
11023 
11024 	reuse_kern->selected_sk = selected_sk;
11025 
11026 	return 0;
11027 }
11028 
11029 static const struct bpf_func_proto sk_select_reuseport_proto = {
11030 	.func           = sk_select_reuseport,
11031 	.gpl_only       = false,
11032 	.ret_type       = RET_INTEGER,
11033 	.arg1_type	= ARG_PTR_TO_CTX,
11034 	.arg2_type      = ARG_CONST_MAP_PTR,
11035 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11036 	.arg4_type	= ARG_ANYTHING,
11037 };
11038 
11039 BPF_CALL_4(sk_reuseport_load_bytes,
11040 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11041 	   void *, to, u32, len)
11042 {
11043 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11044 }
11045 
11046 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11047 	.func		= sk_reuseport_load_bytes,
11048 	.gpl_only	= false,
11049 	.ret_type	= RET_INTEGER,
11050 	.arg1_type	= ARG_PTR_TO_CTX,
11051 	.arg2_type	= ARG_ANYTHING,
11052 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11053 	.arg4_type	= ARG_CONST_SIZE,
11054 };
11055 
11056 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11057 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11058 	   void *, to, u32, len, u32, start_header)
11059 {
11060 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11061 					       len, start_header);
11062 }
11063 
11064 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11065 	.func		= sk_reuseport_load_bytes_relative,
11066 	.gpl_only	= false,
11067 	.ret_type	= RET_INTEGER,
11068 	.arg1_type	= ARG_PTR_TO_CTX,
11069 	.arg2_type	= ARG_ANYTHING,
11070 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11071 	.arg4_type	= ARG_CONST_SIZE,
11072 	.arg5_type	= ARG_ANYTHING,
11073 };
11074 
11075 static const struct bpf_func_proto *
11076 sk_reuseport_func_proto(enum bpf_func_id func_id,
11077 			const struct bpf_prog *prog)
11078 {
11079 	switch (func_id) {
11080 	case BPF_FUNC_sk_select_reuseport:
11081 		return &sk_select_reuseport_proto;
11082 	case BPF_FUNC_skb_load_bytes:
11083 		return &sk_reuseport_load_bytes_proto;
11084 	case BPF_FUNC_skb_load_bytes_relative:
11085 		return &sk_reuseport_load_bytes_relative_proto;
11086 	case BPF_FUNC_get_socket_cookie:
11087 		return &bpf_get_socket_ptr_cookie_proto;
11088 	case BPF_FUNC_ktime_get_coarse_ns:
11089 		return &bpf_ktime_get_coarse_ns_proto;
11090 	default:
11091 		return bpf_base_func_proto(func_id);
11092 	}
11093 }
11094 
11095 static bool
11096 sk_reuseport_is_valid_access(int off, int size,
11097 			     enum bpf_access_type type,
11098 			     const struct bpf_prog *prog,
11099 			     struct bpf_insn_access_aux *info)
11100 {
11101 	const u32 size_default = sizeof(__u32);
11102 
11103 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11104 	    off % size || type != BPF_READ)
11105 		return false;
11106 
11107 	switch (off) {
11108 	case offsetof(struct sk_reuseport_md, data):
11109 		info->reg_type = PTR_TO_PACKET;
11110 		return size == sizeof(__u64);
11111 
11112 	case offsetof(struct sk_reuseport_md, data_end):
11113 		info->reg_type = PTR_TO_PACKET_END;
11114 		return size == sizeof(__u64);
11115 
11116 	case offsetof(struct sk_reuseport_md, hash):
11117 		return size == size_default;
11118 
11119 	case offsetof(struct sk_reuseport_md, sk):
11120 		info->reg_type = PTR_TO_SOCKET;
11121 		return size == sizeof(__u64);
11122 
11123 	case offsetof(struct sk_reuseport_md, migrating_sk):
11124 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11125 		return size == sizeof(__u64);
11126 
11127 	/* Fields that allow narrowing */
11128 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11129 		if (size < sizeof_field(struct sk_buff, protocol))
11130 			return false;
11131 		fallthrough;
11132 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11133 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11134 	case bpf_ctx_range(struct sk_reuseport_md, len):
11135 		bpf_ctx_record_field_size(info, size_default);
11136 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11137 
11138 	default:
11139 		return false;
11140 	}
11141 }
11142 
11143 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11144 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11145 			      si->dst_reg, si->src_reg,			\
11146 			      bpf_target_off(struct sk_reuseport_kern, F, \
11147 					     sizeof_field(struct sk_reuseport_kern, F), \
11148 					     target_size));		\
11149 	})
11150 
11151 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11152 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11153 				    struct sk_buff,			\
11154 				    skb,				\
11155 				    SKB_FIELD)
11156 
11157 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11158 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11159 				    struct sock,			\
11160 				    sk,					\
11161 				    SK_FIELD)
11162 
11163 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11164 					   const struct bpf_insn *si,
11165 					   struct bpf_insn *insn_buf,
11166 					   struct bpf_prog *prog,
11167 					   u32 *target_size)
11168 {
11169 	struct bpf_insn *insn = insn_buf;
11170 
11171 	switch (si->off) {
11172 	case offsetof(struct sk_reuseport_md, data):
11173 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11174 		break;
11175 
11176 	case offsetof(struct sk_reuseport_md, len):
11177 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11178 		break;
11179 
11180 	case offsetof(struct sk_reuseport_md, eth_protocol):
11181 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11182 		break;
11183 
11184 	case offsetof(struct sk_reuseport_md, ip_protocol):
11185 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11186 		break;
11187 
11188 	case offsetof(struct sk_reuseport_md, data_end):
11189 		SK_REUSEPORT_LOAD_FIELD(data_end);
11190 		break;
11191 
11192 	case offsetof(struct sk_reuseport_md, hash):
11193 		SK_REUSEPORT_LOAD_FIELD(hash);
11194 		break;
11195 
11196 	case offsetof(struct sk_reuseport_md, bind_inany):
11197 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11198 		break;
11199 
11200 	case offsetof(struct sk_reuseport_md, sk):
11201 		SK_REUSEPORT_LOAD_FIELD(sk);
11202 		break;
11203 
11204 	case offsetof(struct sk_reuseport_md, migrating_sk):
11205 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11206 		break;
11207 	}
11208 
11209 	return insn - insn_buf;
11210 }
11211 
11212 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11213 	.get_func_proto		= sk_reuseport_func_proto,
11214 	.is_valid_access	= sk_reuseport_is_valid_access,
11215 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11216 };
11217 
11218 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11219 };
11220 
11221 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11222 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11223 
11224 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11225 	   struct sock *, sk, u64, flags)
11226 {
11227 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11228 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11229 		return -EINVAL;
11230 	if (unlikely(sk && sk_is_refcounted(sk)))
11231 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11232 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11233 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11234 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11235 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11236 
11237 	/* Check if socket is suitable for packet L3/L4 protocol */
11238 	if (sk && sk->sk_protocol != ctx->protocol)
11239 		return -EPROTOTYPE;
11240 	if (sk && sk->sk_family != ctx->family &&
11241 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11242 		return -EAFNOSUPPORT;
11243 
11244 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11245 		return -EEXIST;
11246 
11247 	/* Select socket as lookup result */
11248 	ctx->selected_sk = sk;
11249 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11250 	return 0;
11251 }
11252 
11253 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11254 	.func		= bpf_sk_lookup_assign,
11255 	.gpl_only	= false,
11256 	.ret_type	= RET_INTEGER,
11257 	.arg1_type	= ARG_PTR_TO_CTX,
11258 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11259 	.arg3_type	= ARG_ANYTHING,
11260 };
11261 
11262 static const struct bpf_func_proto *
11263 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11264 {
11265 	switch (func_id) {
11266 	case BPF_FUNC_perf_event_output:
11267 		return &bpf_event_output_data_proto;
11268 	case BPF_FUNC_sk_assign:
11269 		return &bpf_sk_lookup_assign_proto;
11270 	case BPF_FUNC_sk_release:
11271 		return &bpf_sk_release_proto;
11272 	default:
11273 		return bpf_sk_base_func_proto(func_id);
11274 	}
11275 }
11276 
11277 static bool sk_lookup_is_valid_access(int off, int size,
11278 				      enum bpf_access_type type,
11279 				      const struct bpf_prog *prog,
11280 				      struct bpf_insn_access_aux *info)
11281 {
11282 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11283 		return false;
11284 	if (off % size != 0)
11285 		return false;
11286 	if (type != BPF_READ)
11287 		return false;
11288 
11289 	switch (off) {
11290 	case offsetof(struct bpf_sk_lookup, sk):
11291 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11292 		return size == sizeof(__u64);
11293 
11294 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11295 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11296 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11297 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11298 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11299 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11300 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11301 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11302 		bpf_ctx_record_field_size(info, sizeof(__u32));
11303 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11304 
11305 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11306 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11307 		if (size == sizeof(__u32))
11308 			return true;
11309 		bpf_ctx_record_field_size(info, sizeof(__be16));
11310 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11311 
11312 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11313 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11314 		/* Allow access to zero padding for backward compatibility */
11315 		bpf_ctx_record_field_size(info, sizeof(__u16));
11316 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11317 
11318 	default:
11319 		return false;
11320 	}
11321 }
11322 
11323 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11324 					const struct bpf_insn *si,
11325 					struct bpf_insn *insn_buf,
11326 					struct bpf_prog *prog,
11327 					u32 *target_size)
11328 {
11329 	struct bpf_insn *insn = insn_buf;
11330 
11331 	switch (si->off) {
11332 	case offsetof(struct bpf_sk_lookup, sk):
11333 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11334 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11335 		break;
11336 
11337 	case offsetof(struct bpf_sk_lookup, family):
11338 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11339 				      bpf_target_off(struct bpf_sk_lookup_kern,
11340 						     family, 2, target_size));
11341 		break;
11342 
11343 	case offsetof(struct bpf_sk_lookup, protocol):
11344 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11345 				      bpf_target_off(struct bpf_sk_lookup_kern,
11346 						     protocol, 2, target_size));
11347 		break;
11348 
11349 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11350 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11351 				      bpf_target_off(struct bpf_sk_lookup_kern,
11352 						     v4.saddr, 4, target_size));
11353 		break;
11354 
11355 	case offsetof(struct bpf_sk_lookup, local_ip4):
11356 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11357 				      bpf_target_off(struct bpf_sk_lookup_kern,
11358 						     v4.daddr, 4, target_size));
11359 		break;
11360 
11361 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11362 				remote_ip6[0], remote_ip6[3]): {
11363 #if IS_ENABLED(CONFIG_IPV6)
11364 		int off = si->off;
11365 
11366 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11367 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11368 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11369 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11370 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11371 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11372 #else
11373 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11374 #endif
11375 		break;
11376 	}
11377 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11378 				local_ip6[0], local_ip6[3]): {
11379 #if IS_ENABLED(CONFIG_IPV6)
11380 		int off = si->off;
11381 
11382 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11383 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11384 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11385 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11386 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11387 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11388 #else
11389 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11390 #endif
11391 		break;
11392 	}
11393 	case offsetof(struct bpf_sk_lookup, remote_port):
11394 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11395 				      bpf_target_off(struct bpf_sk_lookup_kern,
11396 						     sport, 2, target_size));
11397 		break;
11398 
11399 	case offsetofend(struct bpf_sk_lookup, remote_port):
11400 		*target_size = 2;
11401 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11402 		break;
11403 
11404 	case offsetof(struct bpf_sk_lookup, local_port):
11405 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11406 				      bpf_target_off(struct bpf_sk_lookup_kern,
11407 						     dport, 2, target_size));
11408 		break;
11409 
11410 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11411 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11412 				      bpf_target_off(struct bpf_sk_lookup_kern,
11413 						     ingress_ifindex, 4, target_size));
11414 		break;
11415 	}
11416 
11417 	return insn - insn_buf;
11418 }
11419 
11420 const struct bpf_prog_ops sk_lookup_prog_ops = {
11421 	.test_run = bpf_prog_test_run_sk_lookup,
11422 };
11423 
11424 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11425 	.get_func_proto		= sk_lookup_func_proto,
11426 	.is_valid_access	= sk_lookup_is_valid_access,
11427 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11428 };
11429 
11430 #endif /* CONFIG_INET */
11431 
11432 DEFINE_BPF_DISPATCHER(xdp)
11433 
11434 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11435 {
11436 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11437 }
11438 
11439 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11440 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11441 BTF_SOCK_TYPE_xxx
11442 #undef BTF_SOCK_TYPE
11443 
11444 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11445 {
11446 	/* tcp6_sock type is not generated in dwarf and hence btf,
11447 	 * trigger an explicit type generation here.
11448 	 */
11449 	BTF_TYPE_EMIT(struct tcp6_sock);
11450 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11451 	    sk->sk_family == AF_INET6)
11452 		return (unsigned long)sk;
11453 
11454 	return (unsigned long)NULL;
11455 }
11456 
11457 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11458 	.func			= bpf_skc_to_tcp6_sock,
11459 	.gpl_only		= false,
11460 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11461 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11462 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11463 };
11464 
11465 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11466 {
11467 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11468 		return (unsigned long)sk;
11469 
11470 	return (unsigned long)NULL;
11471 }
11472 
11473 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11474 	.func			= bpf_skc_to_tcp_sock,
11475 	.gpl_only		= false,
11476 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11477 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11478 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11479 };
11480 
11481 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11482 {
11483 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11484 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11485 	 */
11486 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11487 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11488 
11489 #ifdef CONFIG_INET
11490 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11491 		return (unsigned long)sk;
11492 #endif
11493 
11494 #if IS_BUILTIN(CONFIG_IPV6)
11495 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11496 		return (unsigned long)sk;
11497 #endif
11498 
11499 	return (unsigned long)NULL;
11500 }
11501 
11502 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11503 	.func			= bpf_skc_to_tcp_timewait_sock,
11504 	.gpl_only		= false,
11505 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11506 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11507 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11508 };
11509 
11510 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11511 {
11512 #ifdef CONFIG_INET
11513 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11514 		return (unsigned long)sk;
11515 #endif
11516 
11517 #if IS_BUILTIN(CONFIG_IPV6)
11518 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11519 		return (unsigned long)sk;
11520 #endif
11521 
11522 	return (unsigned long)NULL;
11523 }
11524 
11525 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11526 	.func			= bpf_skc_to_tcp_request_sock,
11527 	.gpl_only		= false,
11528 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11529 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11530 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11531 };
11532 
11533 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11534 {
11535 	/* udp6_sock type is not generated in dwarf and hence btf,
11536 	 * trigger an explicit type generation here.
11537 	 */
11538 	BTF_TYPE_EMIT(struct udp6_sock);
11539 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11540 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11541 		return (unsigned long)sk;
11542 
11543 	return (unsigned long)NULL;
11544 }
11545 
11546 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11547 	.func			= bpf_skc_to_udp6_sock,
11548 	.gpl_only		= false,
11549 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11550 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11551 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11552 };
11553 
11554 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11555 {
11556 	/* unix_sock type is not generated in dwarf and hence btf,
11557 	 * trigger an explicit type generation here.
11558 	 */
11559 	BTF_TYPE_EMIT(struct unix_sock);
11560 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11561 		return (unsigned long)sk;
11562 
11563 	return (unsigned long)NULL;
11564 }
11565 
11566 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11567 	.func			= bpf_skc_to_unix_sock,
11568 	.gpl_only		= false,
11569 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11570 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11571 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11572 };
11573 
11574 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11575 {
11576 	BTF_TYPE_EMIT(struct mptcp_sock);
11577 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11578 }
11579 
11580 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11581 	.func		= bpf_skc_to_mptcp_sock,
11582 	.gpl_only	= false,
11583 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11584 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11585 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11586 };
11587 
11588 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11589 {
11590 	return (unsigned long)sock_from_file(file);
11591 }
11592 
11593 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11594 BTF_ID(struct, socket)
11595 BTF_ID(struct, file)
11596 
11597 const struct bpf_func_proto bpf_sock_from_file_proto = {
11598 	.func		= bpf_sock_from_file,
11599 	.gpl_only	= false,
11600 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11601 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11602 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11603 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11604 };
11605 
11606 static const struct bpf_func_proto *
11607 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11608 {
11609 	const struct bpf_func_proto *func;
11610 
11611 	switch (func_id) {
11612 	case BPF_FUNC_skc_to_tcp6_sock:
11613 		func = &bpf_skc_to_tcp6_sock_proto;
11614 		break;
11615 	case BPF_FUNC_skc_to_tcp_sock:
11616 		func = &bpf_skc_to_tcp_sock_proto;
11617 		break;
11618 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11619 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11620 		break;
11621 	case BPF_FUNC_skc_to_tcp_request_sock:
11622 		func = &bpf_skc_to_tcp_request_sock_proto;
11623 		break;
11624 	case BPF_FUNC_skc_to_udp6_sock:
11625 		func = &bpf_skc_to_udp6_sock_proto;
11626 		break;
11627 	case BPF_FUNC_skc_to_unix_sock:
11628 		func = &bpf_skc_to_unix_sock_proto;
11629 		break;
11630 	case BPF_FUNC_skc_to_mptcp_sock:
11631 		func = &bpf_skc_to_mptcp_sock_proto;
11632 		break;
11633 	case BPF_FUNC_ktime_get_coarse_ns:
11634 		return &bpf_ktime_get_coarse_ns_proto;
11635 	default:
11636 		return bpf_base_func_proto(func_id);
11637 	}
11638 
11639 	if (!perfmon_capable())
11640 		return NULL;
11641 
11642 	return func;
11643 }
11644 
11645 __diag_push();
11646 __diag_ignore_all("-Wmissing-prototypes",
11647 		  "Global functions as their definitions will be in vmlinux BTF");
11648 __bpf_kfunc int bpf_dynptr_from_skb(struct sk_buff *skb, u64 flags,
11649 				    struct bpf_dynptr_kern *ptr__uninit)
11650 {
11651 	if (flags) {
11652 		bpf_dynptr_set_null(ptr__uninit);
11653 		return -EINVAL;
11654 	}
11655 
11656 	bpf_dynptr_init(ptr__uninit, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11657 
11658 	return 0;
11659 }
11660 
11661 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_buff *xdp, u64 flags,
11662 				    struct bpf_dynptr_kern *ptr__uninit)
11663 {
11664 	if (flags) {
11665 		bpf_dynptr_set_null(ptr__uninit);
11666 		return -EINVAL;
11667 	}
11668 
11669 	bpf_dynptr_init(ptr__uninit, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11670 
11671 	return 0;
11672 }
11673 __diag_pop();
11674 
11675 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
11676 			       struct bpf_dynptr_kern *ptr__uninit)
11677 {
11678 	int err;
11679 
11680 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
11681 	if (err)
11682 		return err;
11683 
11684 	bpf_dynptr_set_rdonly(ptr__uninit);
11685 
11686 	return 0;
11687 }
11688 
11689 BTF_SET8_START(bpf_kfunc_check_set_skb)
11690 BTF_ID_FLAGS(func, bpf_dynptr_from_skb)
11691 BTF_SET8_END(bpf_kfunc_check_set_skb)
11692 
11693 BTF_SET8_START(bpf_kfunc_check_set_xdp)
11694 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
11695 BTF_SET8_END(bpf_kfunc_check_set_xdp)
11696 
11697 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
11698 	.owner = THIS_MODULE,
11699 	.set = &bpf_kfunc_check_set_skb,
11700 };
11701 
11702 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
11703 	.owner = THIS_MODULE,
11704 	.set = &bpf_kfunc_check_set_xdp,
11705 };
11706 
11707 static int __init bpf_kfunc_init(void)
11708 {
11709 	int ret;
11710 
11711 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
11712 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
11713 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
11714 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
11715 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
11716 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
11717 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
11718 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
11719 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
11720 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
11721 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
11722 }
11723 late_initcall(bpf_kfunc_init);
11724