xref: /openbmc/linux/net/core/filter.c (revision a2faac39)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81 #include <net/mptcp.h>
82 
83 static const struct bpf_func_proto *
84 bpf_sk_base_func_proto(enum bpf_func_id func_id);
85 
86 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
87 {
88 	if (in_compat_syscall()) {
89 		struct compat_sock_fprog f32;
90 
91 		if (len != sizeof(f32))
92 			return -EINVAL;
93 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
94 			return -EFAULT;
95 		memset(dst, 0, sizeof(*dst));
96 		dst->len = f32.len;
97 		dst->filter = compat_ptr(f32.filter);
98 	} else {
99 		if (len != sizeof(*dst))
100 			return -EINVAL;
101 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
102 			return -EFAULT;
103 	}
104 
105 	return 0;
106 }
107 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
108 
109 /**
110  *	sk_filter_trim_cap - run a packet through a socket filter
111  *	@sk: sock associated with &sk_buff
112  *	@skb: buffer to filter
113  *	@cap: limit on how short the eBPF program may trim the packet
114  *
115  * Run the eBPF program and then cut skb->data to correct size returned by
116  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
117  * than pkt_len we keep whole skb->data. This is the socket level
118  * wrapper to bpf_prog_run. It returns 0 if the packet should
119  * be accepted or -EPERM if the packet should be tossed.
120  *
121  */
122 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
123 {
124 	int err;
125 	struct sk_filter *filter;
126 
127 	/*
128 	 * If the skb was allocated from pfmemalloc reserves, only
129 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
130 	 * helping free memory
131 	 */
132 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
133 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
134 		return -ENOMEM;
135 	}
136 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
137 	if (err)
138 		return err;
139 
140 	err = security_sock_rcv_skb(sk, skb);
141 	if (err)
142 		return err;
143 
144 	rcu_read_lock();
145 	filter = rcu_dereference(sk->sk_filter);
146 	if (filter) {
147 		struct sock *save_sk = skb->sk;
148 		unsigned int pkt_len;
149 
150 		skb->sk = sk;
151 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
152 		skb->sk = save_sk;
153 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
154 	}
155 	rcu_read_unlock();
156 
157 	return err;
158 }
159 EXPORT_SYMBOL(sk_filter_trim_cap);
160 
161 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
162 {
163 	return skb_get_poff(skb);
164 }
165 
166 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
167 {
168 	struct nlattr *nla;
169 
170 	if (skb_is_nonlinear(skb))
171 		return 0;
172 
173 	if (skb->len < sizeof(struct nlattr))
174 		return 0;
175 
176 	if (a > skb->len - sizeof(struct nlattr))
177 		return 0;
178 
179 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
180 	if (nla)
181 		return (void *) nla - (void *) skb->data;
182 
183 	return 0;
184 }
185 
186 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
187 {
188 	struct nlattr *nla;
189 
190 	if (skb_is_nonlinear(skb))
191 		return 0;
192 
193 	if (skb->len < sizeof(struct nlattr))
194 		return 0;
195 
196 	if (a > skb->len - sizeof(struct nlattr))
197 		return 0;
198 
199 	nla = (struct nlattr *) &skb->data[a];
200 	if (nla->nla_len > skb->len - a)
201 		return 0;
202 
203 	nla = nla_find_nested(nla, x);
204 	if (nla)
205 		return (void *) nla - (void *) skb->data;
206 
207 	return 0;
208 }
209 
210 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
211 	   data, int, headlen, int, offset)
212 {
213 	u8 tmp, *ptr;
214 	const int len = sizeof(tmp);
215 
216 	if (offset >= 0) {
217 		if (headlen - offset >= len)
218 			return *(u8 *)(data + offset);
219 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
220 			return tmp;
221 	} else {
222 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
223 		if (likely(ptr))
224 			return *(u8 *)ptr;
225 	}
226 
227 	return -EFAULT;
228 }
229 
230 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
231 	   int, offset)
232 {
233 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
234 					 offset);
235 }
236 
237 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
238 	   data, int, headlen, int, offset)
239 {
240 	__be16 tmp, *ptr;
241 	const int len = sizeof(tmp);
242 
243 	if (offset >= 0) {
244 		if (headlen - offset >= len)
245 			return get_unaligned_be16(data + offset);
246 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
247 			return be16_to_cpu(tmp);
248 	} else {
249 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
250 		if (likely(ptr))
251 			return get_unaligned_be16(ptr);
252 	}
253 
254 	return -EFAULT;
255 }
256 
257 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
258 	   int, offset)
259 {
260 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
261 					  offset);
262 }
263 
264 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
265 	   data, int, headlen, int, offset)
266 {
267 	__be32 tmp, *ptr;
268 	const int len = sizeof(tmp);
269 
270 	if (likely(offset >= 0)) {
271 		if (headlen - offset >= len)
272 			return get_unaligned_be32(data + offset);
273 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
274 			return be32_to_cpu(tmp);
275 	} else {
276 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
277 		if (likely(ptr))
278 			return get_unaligned_be32(ptr);
279 	}
280 
281 	return -EFAULT;
282 }
283 
284 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
285 	   int, offset)
286 {
287 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
288 					  offset);
289 }
290 
291 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
292 			      struct bpf_insn *insn_buf)
293 {
294 	struct bpf_insn *insn = insn_buf;
295 
296 	switch (skb_field) {
297 	case SKF_AD_MARK:
298 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
299 
300 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
301 				      offsetof(struct sk_buff, mark));
302 		break;
303 
304 	case SKF_AD_PKTTYPE:
305 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
306 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
307 #ifdef __BIG_ENDIAN_BITFIELD
308 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
309 #endif
310 		break;
311 
312 	case SKF_AD_QUEUE:
313 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
314 
315 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
316 				      offsetof(struct sk_buff, queue_mapping));
317 		break;
318 
319 	case SKF_AD_VLAN_TAG:
320 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
321 
322 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
323 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
324 				      offsetof(struct sk_buff, vlan_tci));
325 		break;
326 	case SKF_AD_VLAN_TAG_PRESENT:
327 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
328 		if (PKT_VLAN_PRESENT_BIT)
329 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
330 		if (PKT_VLAN_PRESENT_BIT < 7)
331 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
332 		break;
333 	}
334 
335 	return insn - insn_buf;
336 }
337 
338 static bool convert_bpf_extensions(struct sock_filter *fp,
339 				   struct bpf_insn **insnp)
340 {
341 	struct bpf_insn *insn = *insnp;
342 	u32 cnt;
343 
344 	switch (fp->k) {
345 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
346 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
347 
348 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
349 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
350 				      offsetof(struct sk_buff, protocol));
351 		/* A = ntohs(A) [emitting a nop or swap16] */
352 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
353 		break;
354 
355 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
356 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
357 		insn += cnt - 1;
358 		break;
359 
360 	case SKF_AD_OFF + SKF_AD_IFINDEX:
361 	case SKF_AD_OFF + SKF_AD_HATYPE:
362 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
363 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
364 
365 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
366 				      BPF_REG_TMP, BPF_REG_CTX,
367 				      offsetof(struct sk_buff, dev));
368 		/* if (tmp != 0) goto pc + 1 */
369 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
370 		*insn++ = BPF_EXIT_INSN();
371 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
372 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
373 					    offsetof(struct net_device, ifindex));
374 		else
375 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
376 					    offsetof(struct net_device, type));
377 		break;
378 
379 	case SKF_AD_OFF + SKF_AD_MARK:
380 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
381 		insn += cnt - 1;
382 		break;
383 
384 	case SKF_AD_OFF + SKF_AD_RXHASH:
385 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
386 
387 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
388 				    offsetof(struct sk_buff, hash));
389 		break;
390 
391 	case SKF_AD_OFF + SKF_AD_QUEUE:
392 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
393 		insn += cnt - 1;
394 		break;
395 
396 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
397 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
398 					 BPF_REG_A, BPF_REG_CTX, insn);
399 		insn += cnt - 1;
400 		break;
401 
402 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
403 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
404 					 BPF_REG_A, BPF_REG_CTX, insn);
405 		insn += cnt - 1;
406 		break;
407 
408 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
409 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
410 
411 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
412 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
413 				      offsetof(struct sk_buff, vlan_proto));
414 		/* A = ntohs(A) [emitting a nop or swap16] */
415 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
416 		break;
417 
418 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
419 	case SKF_AD_OFF + SKF_AD_NLATTR:
420 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
421 	case SKF_AD_OFF + SKF_AD_CPU:
422 	case SKF_AD_OFF + SKF_AD_RANDOM:
423 		/* arg1 = CTX */
424 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
425 		/* arg2 = A */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
427 		/* arg3 = X */
428 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
429 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
430 		switch (fp->k) {
431 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
432 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
433 			break;
434 		case SKF_AD_OFF + SKF_AD_NLATTR:
435 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
436 			break;
437 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
438 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
439 			break;
440 		case SKF_AD_OFF + SKF_AD_CPU:
441 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
442 			break;
443 		case SKF_AD_OFF + SKF_AD_RANDOM:
444 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
445 			bpf_user_rnd_init_once();
446 			break;
447 		}
448 		break;
449 
450 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
451 		/* A ^= X */
452 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
453 		break;
454 
455 	default:
456 		/* This is just a dummy call to avoid letting the compiler
457 		 * evict __bpf_call_base() as an optimization. Placed here
458 		 * where no-one bothers.
459 		 */
460 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
461 		return false;
462 	}
463 
464 	*insnp = insn;
465 	return true;
466 }
467 
468 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
469 {
470 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
471 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
472 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
473 		      BPF_SIZE(fp->code) == BPF_W;
474 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
475 	const int ip_align = NET_IP_ALIGN;
476 	struct bpf_insn *insn = *insnp;
477 	int offset = fp->k;
478 
479 	if (!indirect &&
480 	    ((unaligned_ok && offset >= 0) ||
481 	     (!unaligned_ok && offset >= 0 &&
482 	      offset + ip_align >= 0 &&
483 	      offset + ip_align % size == 0))) {
484 		bool ldx_off_ok = offset <= S16_MAX;
485 
486 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
487 		if (offset)
488 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
489 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
490 				      size, 2 + endian + (!ldx_off_ok * 2));
491 		if (ldx_off_ok) {
492 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
493 					      BPF_REG_D, offset);
494 		} else {
495 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
496 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
497 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
498 					      BPF_REG_TMP, 0);
499 		}
500 		if (endian)
501 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
502 		*insn++ = BPF_JMP_A(8);
503 	}
504 
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
506 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
507 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
508 	if (!indirect) {
509 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
510 	} else {
511 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
512 		if (fp->k)
513 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
514 	}
515 
516 	switch (BPF_SIZE(fp->code)) {
517 	case BPF_B:
518 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
519 		break;
520 	case BPF_H:
521 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
522 		break;
523 	case BPF_W:
524 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
525 		break;
526 	default:
527 		return false;
528 	}
529 
530 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
531 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
532 	*insn   = BPF_EXIT_INSN();
533 
534 	*insnp = insn;
535 	return true;
536 }
537 
538 /**
539  *	bpf_convert_filter - convert filter program
540  *	@prog: the user passed filter program
541  *	@len: the length of the user passed filter program
542  *	@new_prog: allocated 'struct bpf_prog' or NULL
543  *	@new_len: pointer to store length of converted program
544  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
545  *
546  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
547  * style extended BPF (eBPF).
548  * Conversion workflow:
549  *
550  * 1) First pass for calculating the new program length:
551  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
552  *
553  * 2) 2nd pass to remap in two passes: 1st pass finds new
554  *    jump offsets, 2nd pass remapping:
555  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
556  */
557 static int bpf_convert_filter(struct sock_filter *prog, int len,
558 			      struct bpf_prog *new_prog, int *new_len,
559 			      bool *seen_ld_abs)
560 {
561 	int new_flen = 0, pass = 0, target, i, stack_off;
562 	struct bpf_insn *new_insn, *first_insn = NULL;
563 	struct sock_filter *fp;
564 	int *addrs = NULL;
565 	u8 bpf_src;
566 
567 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
568 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
569 
570 	if (len <= 0 || len > BPF_MAXINSNS)
571 		return -EINVAL;
572 
573 	if (new_prog) {
574 		first_insn = new_prog->insnsi;
575 		addrs = kcalloc(len, sizeof(*addrs),
576 				GFP_KERNEL | __GFP_NOWARN);
577 		if (!addrs)
578 			return -ENOMEM;
579 	}
580 
581 do_pass:
582 	new_insn = first_insn;
583 	fp = prog;
584 
585 	/* Classic BPF related prologue emission. */
586 	if (new_prog) {
587 		/* Classic BPF expects A and X to be reset first. These need
588 		 * to be guaranteed to be the first two instructions.
589 		 */
590 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
591 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
592 
593 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
594 		 * In eBPF case it's done by the compiler, here we need to
595 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
596 		 */
597 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
598 		if (*seen_ld_abs) {
599 			/* For packet access in classic BPF, cache skb->data
600 			 * in callee-saved BPF R8 and skb->len - skb->data_len
601 			 * (headlen) in BPF R9. Since classic BPF is read-only
602 			 * on CTX, we only need to cache it once.
603 			 */
604 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
605 						  BPF_REG_D, BPF_REG_CTX,
606 						  offsetof(struct sk_buff, data));
607 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, len));
609 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
610 						  offsetof(struct sk_buff, data_len));
611 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
612 		}
613 	} else {
614 		new_insn += 3;
615 	}
616 
617 	for (i = 0; i < len; fp++, i++) {
618 		struct bpf_insn tmp_insns[32] = { };
619 		struct bpf_insn *insn = tmp_insns;
620 
621 		if (addrs)
622 			addrs[i] = new_insn - first_insn;
623 
624 		switch (fp->code) {
625 		/* All arithmetic insns and skb loads map as-is. */
626 		case BPF_ALU | BPF_ADD | BPF_X:
627 		case BPF_ALU | BPF_ADD | BPF_K:
628 		case BPF_ALU | BPF_SUB | BPF_X:
629 		case BPF_ALU | BPF_SUB | BPF_K:
630 		case BPF_ALU | BPF_AND | BPF_X:
631 		case BPF_ALU | BPF_AND | BPF_K:
632 		case BPF_ALU | BPF_OR | BPF_X:
633 		case BPF_ALU | BPF_OR | BPF_K:
634 		case BPF_ALU | BPF_LSH | BPF_X:
635 		case BPF_ALU | BPF_LSH | BPF_K:
636 		case BPF_ALU | BPF_RSH | BPF_X:
637 		case BPF_ALU | BPF_RSH | BPF_K:
638 		case BPF_ALU | BPF_XOR | BPF_X:
639 		case BPF_ALU | BPF_XOR | BPF_K:
640 		case BPF_ALU | BPF_MUL | BPF_X:
641 		case BPF_ALU | BPF_MUL | BPF_K:
642 		case BPF_ALU | BPF_DIV | BPF_X:
643 		case BPF_ALU | BPF_DIV | BPF_K:
644 		case BPF_ALU | BPF_MOD | BPF_X:
645 		case BPF_ALU | BPF_MOD | BPF_K:
646 		case BPF_ALU | BPF_NEG:
647 		case BPF_LD | BPF_ABS | BPF_W:
648 		case BPF_LD | BPF_ABS | BPF_H:
649 		case BPF_LD | BPF_ABS | BPF_B:
650 		case BPF_LD | BPF_IND | BPF_W:
651 		case BPF_LD | BPF_IND | BPF_H:
652 		case BPF_LD | BPF_IND | BPF_B:
653 			/* Check for overloaded BPF extension and
654 			 * directly convert it if found, otherwise
655 			 * just move on with mapping.
656 			 */
657 			if (BPF_CLASS(fp->code) == BPF_LD &&
658 			    BPF_MODE(fp->code) == BPF_ABS &&
659 			    convert_bpf_extensions(fp, &insn))
660 				break;
661 			if (BPF_CLASS(fp->code) == BPF_LD &&
662 			    convert_bpf_ld_abs(fp, &insn)) {
663 				*seen_ld_abs = true;
664 				break;
665 			}
666 
667 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
668 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
669 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
670 				/* Error with exception code on div/mod by 0.
671 				 * For cBPF programs, this was always return 0.
672 				 */
673 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
674 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
675 				*insn++ = BPF_EXIT_INSN();
676 			}
677 
678 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
679 			break;
680 
681 		/* Jump transformation cannot use BPF block macros
682 		 * everywhere as offset calculation and target updates
683 		 * require a bit more work than the rest, i.e. jump
684 		 * opcodes map as-is, but offsets need adjustment.
685 		 */
686 
687 #define BPF_EMIT_JMP							\
688 	do {								\
689 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
690 		s32 off;						\
691 									\
692 		if (target >= len || target < 0)			\
693 			goto err;					\
694 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
695 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
696 		off -= insn - tmp_insns;				\
697 		/* Reject anything not fitting into insn->off. */	\
698 		if (off < off_min || off > off_max)			\
699 			goto err;					\
700 		insn->off = off;					\
701 	} while (0)
702 
703 		case BPF_JMP | BPF_JA:
704 			target = i + fp->k + 1;
705 			insn->code = fp->code;
706 			BPF_EMIT_JMP;
707 			break;
708 
709 		case BPF_JMP | BPF_JEQ | BPF_K:
710 		case BPF_JMP | BPF_JEQ | BPF_X:
711 		case BPF_JMP | BPF_JSET | BPF_K:
712 		case BPF_JMP | BPF_JSET | BPF_X:
713 		case BPF_JMP | BPF_JGT | BPF_K:
714 		case BPF_JMP | BPF_JGT | BPF_X:
715 		case BPF_JMP | BPF_JGE | BPF_K:
716 		case BPF_JMP | BPF_JGE | BPF_X:
717 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
718 				/* BPF immediates are signed, zero extend
719 				 * immediate into tmp register and use it
720 				 * in compare insn.
721 				 */
722 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
723 
724 				insn->dst_reg = BPF_REG_A;
725 				insn->src_reg = BPF_REG_TMP;
726 				bpf_src = BPF_X;
727 			} else {
728 				insn->dst_reg = BPF_REG_A;
729 				insn->imm = fp->k;
730 				bpf_src = BPF_SRC(fp->code);
731 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
732 			}
733 
734 			/* Common case where 'jump_false' is next insn. */
735 			if (fp->jf == 0) {
736 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
737 				target = i + fp->jt + 1;
738 				BPF_EMIT_JMP;
739 				break;
740 			}
741 
742 			/* Convert some jumps when 'jump_true' is next insn. */
743 			if (fp->jt == 0) {
744 				switch (BPF_OP(fp->code)) {
745 				case BPF_JEQ:
746 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
747 					break;
748 				case BPF_JGT:
749 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
750 					break;
751 				case BPF_JGE:
752 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
753 					break;
754 				default:
755 					goto jmp_rest;
756 				}
757 
758 				target = i + fp->jf + 1;
759 				BPF_EMIT_JMP;
760 				break;
761 			}
762 jmp_rest:
763 			/* Other jumps are mapped into two insns: Jxx and JA. */
764 			target = i + fp->jt + 1;
765 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
766 			BPF_EMIT_JMP;
767 			insn++;
768 
769 			insn->code = BPF_JMP | BPF_JA;
770 			target = i + fp->jf + 1;
771 			BPF_EMIT_JMP;
772 			break;
773 
774 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
775 		case BPF_LDX | BPF_MSH | BPF_B: {
776 			struct sock_filter tmp = {
777 				.code	= BPF_LD | BPF_ABS | BPF_B,
778 				.k	= fp->k,
779 			};
780 
781 			*seen_ld_abs = true;
782 
783 			/* X = A */
784 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
785 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
786 			convert_bpf_ld_abs(&tmp, &insn);
787 			insn++;
788 			/* A &= 0xf */
789 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
790 			/* A <<= 2 */
791 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
792 			/* tmp = X */
793 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
794 			/* X = A */
795 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
796 			/* A = tmp */
797 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
798 			break;
799 		}
800 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
801 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
802 		 */
803 		case BPF_RET | BPF_A:
804 		case BPF_RET | BPF_K:
805 			if (BPF_RVAL(fp->code) == BPF_K)
806 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
807 							0, fp->k);
808 			*insn = BPF_EXIT_INSN();
809 			break;
810 
811 		/* Store to stack. */
812 		case BPF_ST:
813 		case BPF_STX:
814 			stack_off = fp->k * 4  + 4;
815 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
816 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
817 					    -stack_off);
818 			/* check_load_and_stores() verifies that classic BPF can
819 			 * load from stack only after write, so tracking
820 			 * stack_depth for ST|STX insns is enough
821 			 */
822 			if (new_prog && new_prog->aux->stack_depth < stack_off)
823 				new_prog->aux->stack_depth = stack_off;
824 			break;
825 
826 		/* Load from stack. */
827 		case BPF_LD | BPF_MEM:
828 		case BPF_LDX | BPF_MEM:
829 			stack_off = fp->k * 4  + 4;
830 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
831 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
832 					    -stack_off);
833 			break;
834 
835 		/* A = K or X = K */
836 		case BPF_LD | BPF_IMM:
837 		case BPF_LDX | BPF_IMM:
838 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
839 					      BPF_REG_A : BPF_REG_X, fp->k);
840 			break;
841 
842 		/* X = A */
843 		case BPF_MISC | BPF_TAX:
844 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
845 			break;
846 
847 		/* A = X */
848 		case BPF_MISC | BPF_TXA:
849 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
850 			break;
851 
852 		/* A = skb->len or X = skb->len */
853 		case BPF_LD | BPF_W | BPF_LEN:
854 		case BPF_LDX | BPF_W | BPF_LEN:
855 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
856 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
857 					    offsetof(struct sk_buff, len));
858 			break;
859 
860 		/* Access seccomp_data fields. */
861 		case BPF_LDX | BPF_ABS | BPF_W:
862 			/* A = *(u32 *) (ctx + K) */
863 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
864 			break;
865 
866 		/* Unknown instruction. */
867 		default:
868 			goto err;
869 		}
870 
871 		insn++;
872 		if (new_prog)
873 			memcpy(new_insn, tmp_insns,
874 			       sizeof(*insn) * (insn - tmp_insns));
875 		new_insn += insn - tmp_insns;
876 	}
877 
878 	if (!new_prog) {
879 		/* Only calculating new length. */
880 		*new_len = new_insn - first_insn;
881 		if (*seen_ld_abs)
882 			*new_len += 4; /* Prologue bits. */
883 		return 0;
884 	}
885 
886 	pass++;
887 	if (new_flen != new_insn - first_insn) {
888 		new_flen = new_insn - first_insn;
889 		if (pass > 2)
890 			goto err;
891 		goto do_pass;
892 	}
893 
894 	kfree(addrs);
895 	BUG_ON(*new_len != new_flen);
896 	return 0;
897 err:
898 	kfree(addrs);
899 	return -EINVAL;
900 }
901 
902 /* Security:
903  *
904  * As we dont want to clear mem[] array for each packet going through
905  * __bpf_prog_run(), we check that filter loaded by user never try to read
906  * a cell if not previously written, and we check all branches to be sure
907  * a malicious user doesn't try to abuse us.
908  */
909 static int check_load_and_stores(const struct sock_filter *filter, int flen)
910 {
911 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
912 	int pc, ret = 0;
913 
914 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
915 
916 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
917 	if (!masks)
918 		return -ENOMEM;
919 
920 	memset(masks, 0xff, flen * sizeof(*masks));
921 
922 	for (pc = 0; pc < flen; pc++) {
923 		memvalid &= masks[pc];
924 
925 		switch (filter[pc].code) {
926 		case BPF_ST:
927 		case BPF_STX:
928 			memvalid |= (1 << filter[pc].k);
929 			break;
930 		case BPF_LD | BPF_MEM:
931 		case BPF_LDX | BPF_MEM:
932 			if (!(memvalid & (1 << filter[pc].k))) {
933 				ret = -EINVAL;
934 				goto error;
935 			}
936 			break;
937 		case BPF_JMP | BPF_JA:
938 			/* A jump must set masks on target */
939 			masks[pc + 1 + filter[pc].k] &= memvalid;
940 			memvalid = ~0;
941 			break;
942 		case BPF_JMP | BPF_JEQ | BPF_K:
943 		case BPF_JMP | BPF_JEQ | BPF_X:
944 		case BPF_JMP | BPF_JGE | BPF_K:
945 		case BPF_JMP | BPF_JGE | BPF_X:
946 		case BPF_JMP | BPF_JGT | BPF_K:
947 		case BPF_JMP | BPF_JGT | BPF_X:
948 		case BPF_JMP | BPF_JSET | BPF_K:
949 		case BPF_JMP | BPF_JSET | BPF_X:
950 			/* A jump must set masks on targets */
951 			masks[pc + 1 + filter[pc].jt] &= memvalid;
952 			masks[pc + 1 + filter[pc].jf] &= memvalid;
953 			memvalid = ~0;
954 			break;
955 		}
956 	}
957 error:
958 	kfree(masks);
959 	return ret;
960 }
961 
962 static bool chk_code_allowed(u16 code_to_probe)
963 {
964 	static const bool codes[] = {
965 		/* 32 bit ALU operations */
966 		[BPF_ALU | BPF_ADD | BPF_K] = true,
967 		[BPF_ALU | BPF_ADD | BPF_X] = true,
968 		[BPF_ALU | BPF_SUB | BPF_K] = true,
969 		[BPF_ALU | BPF_SUB | BPF_X] = true,
970 		[BPF_ALU | BPF_MUL | BPF_K] = true,
971 		[BPF_ALU | BPF_MUL | BPF_X] = true,
972 		[BPF_ALU | BPF_DIV | BPF_K] = true,
973 		[BPF_ALU | BPF_DIV | BPF_X] = true,
974 		[BPF_ALU | BPF_MOD | BPF_K] = true,
975 		[BPF_ALU | BPF_MOD | BPF_X] = true,
976 		[BPF_ALU | BPF_AND | BPF_K] = true,
977 		[BPF_ALU | BPF_AND | BPF_X] = true,
978 		[BPF_ALU | BPF_OR | BPF_K] = true,
979 		[BPF_ALU | BPF_OR | BPF_X] = true,
980 		[BPF_ALU | BPF_XOR | BPF_K] = true,
981 		[BPF_ALU | BPF_XOR | BPF_X] = true,
982 		[BPF_ALU | BPF_LSH | BPF_K] = true,
983 		[BPF_ALU | BPF_LSH | BPF_X] = true,
984 		[BPF_ALU | BPF_RSH | BPF_K] = true,
985 		[BPF_ALU | BPF_RSH | BPF_X] = true,
986 		[BPF_ALU | BPF_NEG] = true,
987 		/* Load instructions */
988 		[BPF_LD | BPF_W | BPF_ABS] = true,
989 		[BPF_LD | BPF_H | BPF_ABS] = true,
990 		[BPF_LD | BPF_B | BPF_ABS] = true,
991 		[BPF_LD | BPF_W | BPF_LEN] = true,
992 		[BPF_LD | BPF_W | BPF_IND] = true,
993 		[BPF_LD | BPF_H | BPF_IND] = true,
994 		[BPF_LD | BPF_B | BPF_IND] = true,
995 		[BPF_LD | BPF_IMM] = true,
996 		[BPF_LD | BPF_MEM] = true,
997 		[BPF_LDX | BPF_W | BPF_LEN] = true,
998 		[BPF_LDX | BPF_B | BPF_MSH] = true,
999 		[BPF_LDX | BPF_IMM] = true,
1000 		[BPF_LDX | BPF_MEM] = true,
1001 		/* Store instructions */
1002 		[BPF_ST] = true,
1003 		[BPF_STX] = true,
1004 		/* Misc instructions */
1005 		[BPF_MISC | BPF_TAX] = true,
1006 		[BPF_MISC | BPF_TXA] = true,
1007 		/* Return instructions */
1008 		[BPF_RET | BPF_K] = true,
1009 		[BPF_RET | BPF_A] = true,
1010 		/* Jump instructions */
1011 		[BPF_JMP | BPF_JA] = true,
1012 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1013 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1014 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1015 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1016 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1017 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1018 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1019 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1020 	};
1021 
1022 	if (code_to_probe >= ARRAY_SIZE(codes))
1023 		return false;
1024 
1025 	return codes[code_to_probe];
1026 }
1027 
1028 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1029 				unsigned int flen)
1030 {
1031 	if (filter == NULL)
1032 		return false;
1033 	if (flen == 0 || flen > BPF_MAXINSNS)
1034 		return false;
1035 
1036 	return true;
1037 }
1038 
1039 /**
1040  *	bpf_check_classic - verify socket filter code
1041  *	@filter: filter to verify
1042  *	@flen: length of filter
1043  *
1044  * Check the user's filter code. If we let some ugly
1045  * filter code slip through kaboom! The filter must contain
1046  * no references or jumps that are out of range, no illegal
1047  * instructions, and must end with a RET instruction.
1048  *
1049  * All jumps are forward as they are not signed.
1050  *
1051  * Returns 0 if the rule set is legal or -EINVAL if not.
1052  */
1053 static int bpf_check_classic(const struct sock_filter *filter,
1054 			     unsigned int flen)
1055 {
1056 	bool anc_found;
1057 	int pc;
1058 
1059 	/* Check the filter code now */
1060 	for (pc = 0; pc < flen; pc++) {
1061 		const struct sock_filter *ftest = &filter[pc];
1062 
1063 		/* May we actually operate on this code? */
1064 		if (!chk_code_allowed(ftest->code))
1065 			return -EINVAL;
1066 
1067 		/* Some instructions need special checks */
1068 		switch (ftest->code) {
1069 		case BPF_ALU | BPF_DIV | BPF_K:
1070 		case BPF_ALU | BPF_MOD | BPF_K:
1071 			/* Check for division by zero */
1072 			if (ftest->k == 0)
1073 				return -EINVAL;
1074 			break;
1075 		case BPF_ALU | BPF_LSH | BPF_K:
1076 		case BPF_ALU | BPF_RSH | BPF_K:
1077 			if (ftest->k >= 32)
1078 				return -EINVAL;
1079 			break;
1080 		case BPF_LD | BPF_MEM:
1081 		case BPF_LDX | BPF_MEM:
1082 		case BPF_ST:
1083 		case BPF_STX:
1084 			/* Check for invalid memory addresses */
1085 			if (ftest->k >= BPF_MEMWORDS)
1086 				return -EINVAL;
1087 			break;
1088 		case BPF_JMP | BPF_JA:
1089 			/* Note, the large ftest->k might cause loops.
1090 			 * Compare this with conditional jumps below,
1091 			 * where offsets are limited. --ANK (981016)
1092 			 */
1093 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1094 				return -EINVAL;
1095 			break;
1096 		case BPF_JMP | BPF_JEQ | BPF_K:
1097 		case BPF_JMP | BPF_JEQ | BPF_X:
1098 		case BPF_JMP | BPF_JGE | BPF_K:
1099 		case BPF_JMP | BPF_JGE | BPF_X:
1100 		case BPF_JMP | BPF_JGT | BPF_K:
1101 		case BPF_JMP | BPF_JGT | BPF_X:
1102 		case BPF_JMP | BPF_JSET | BPF_K:
1103 		case BPF_JMP | BPF_JSET | BPF_X:
1104 			/* Both conditionals must be safe */
1105 			if (pc + ftest->jt + 1 >= flen ||
1106 			    pc + ftest->jf + 1 >= flen)
1107 				return -EINVAL;
1108 			break;
1109 		case BPF_LD | BPF_W | BPF_ABS:
1110 		case BPF_LD | BPF_H | BPF_ABS:
1111 		case BPF_LD | BPF_B | BPF_ABS:
1112 			anc_found = false;
1113 			if (bpf_anc_helper(ftest) & BPF_ANC)
1114 				anc_found = true;
1115 			/* Ancillary operation unknown or unsupported */
1116 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1117 				return -EINVAL;
1118 		}
1119 	}
1120 
1121 	/* Last instruction must be a RET code */
1122 	switch (filter[flen - 1].code) {
1123 	case BPF_RET | BPF_K:
1124 	case BPF_RET | BPF_A:
1125 		return check_load_and_stores(filter, flen);
1126 	}
1127 
1128 	return -EINVAL;
1129 }
1130 
1131 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1132 				      const struct sock_fprog *fprog)
1133 {
1134 	unsigned int fsize = bpf_classic_proglen(fprog);
1135 	struct sock_fprog_kern *fkprog;
1136 
1137 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1138 	if (!fp->orig_prog)
1139 		return -ENOMEM;
1140 
1141 	fkprog = fp->orig_prog;
1142 	fkprog->len = fprog->len;
1143 
1144 	fkprog->filter = kmemdup(fp->insns, fsize,
1145 				 GFP_KERNEL | __GFP_NOWARN);
1146 	if (!fkprog->filter) {
1147 		kfree(fp->orig_prog);
1148 		return -ENOMEM;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 static void bpf_release_orig_filter(struct bpf_prog *fp)
1155 {
1156 	struct sock_fprog_kern *fprog = fp->orig_prog;
1157 
1158 	if (fprog) {
1159 		kfree(fprog->filter);
1160 		kfree(fprog);
1161 	}
1162 }
1163 
1164 static void __bpf_prog_release(struct bpf_prog *prog)
1165 {
1166 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1167 		bpf_prog_put(prog);
1168 	} else {
1169 		bpf_release_orig_filter(prog);
1170 		bpf_prog_free(prog);
1171 	}
1172 }
1173 
1174 static void __sk_filter_release(struct sk_filter *fp)
1175 {
1176 	__bpf_prog_release(fp->prog);
1177 	kfree(fp);
1178 }
1179 
1180 /**
1181  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1182  *	@rcu: rcu_head that contains the sk_filter to free
1183  */
1184 static void sk_filter_release_rcu(struct rcu_head *rcu)
1185 {
1186 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1187 
1188 	__sk_filter_release(fp);
1189 }
1190 
1191 /**
1192  *	sk_filter_release - release a socket filter
1193  *	@fp: filter to remove
1194  *
1195  *	Remove a filter from a socket and release its resources.
1196  */
1197 static void sk_filter_release(struct sk_filter *fp)
1198 {
1199 	if (refcount_dec_and_test(&fp->refcnt))
1200 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1201 }
1202 
1203 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1204 {
1205 	u32 filter_size = bpf_prog_size(fp->prog->len);
1206 
1207 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1208 	sk_filter_release(fp);
1209 }
1210 
1211 /* try to charge the socket memory if there is space available
1212  * return true on success
1213  */
1214 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1215 {
1216 	u32 filter_size = bpf_prog_size(fp->prog->len);
1217 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1218 
1219 	/* same check as in sock_kmalloc() */
1220 	if (filter_size <= optmem_max &&
1221 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1222 		atomic_add(filter_size, &sk->sk_omem_alloc);
1223 		return true;
1224 	}
1225 	return false;
1226 }
1227 
1228 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1229 {
1230 	if (!refcount_inc_not_zero(&fp->refcnt))
1231 		return false;
1232 
1233 	if (!__sk_filter_charge(sk, fp)) {
1234 		sk_filter_release(fp);
1235 		return false;
1236 	}
1237 	return true;
1238 }
1239 
1240 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1241 {
1242 	struct sock_filter *old_prog;
1243 	struct bpf_prog *old_fp;
1244 	int err, new_len, old_len = fp->len;
1245 	bool seen_ld_abs = false;
1246 
1247 	/* We are free to overwrite insns et al right here as it won't be used at
1248 	 * this point in time anymore internally after the migration to the eBPF
1249 	 * instruction representation.
1250 	 */
1251 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1252 		     sizeof(struct bpf_insn));
1253 
1254 	/* Conversion cannot happen on overlapping memory areas,
1255 	 * so we need to keep the user BPF around until the 2nd
1256 	 * pass. At this time, the user BPF is stored in fp->insns.
1257 	 */
1258 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1259 			   GFP_KERNEL | __GFP_NOWARN);
1260 	if (!old_prog) {
1261 		err = -ENOMEM;
1262 		goto out_err;
1263 	}
1264 
1265 	/* 1st pass: calculate the new program length. */
1266 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1267 				 &seen_ld_abs);
1268 	if (err)
1269 		goto out_err_free;
1270 
1271 	/* Expand fp for appending the new filter representation. */
1272 	old_fp = fp;
1273 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1274 	if (!fp) {
1275 		/* The old_fp is still around in case we couldn't
1276 		 * allocate new memory, so uncharge on that one.
1277 		 */
1278 		fp = old_fp;
1279 		err = -ENOMEM;
1280 		goto out_err_free;
1281 	}
1282 
1283 	fp->len = new_len;
1284 
1285 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1286 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1287 				 &seen_ld_abs);
1288 	if (err)
1289 		/* 2nd bpf_convert_filter() can fail only if it fails
1290 		 * to allocate memory, remapping must succeed. Note,
1291 		 * that at this time old_fp has already been released
1292 		 * by krealloc().
1293 		 */
1294 		goto out_err_free;
1295 
1296 	fp = bpf_prog_select_runtime(fp, &err);
1297 	if (err)
1298 		goto out_err_free;
1299 
1300 	kfree(old_prog);
1301 	return fp;
1302 
1303 out_err_free:
1304 	kfree(old_prog);
1305 out_err:
1306 	__bpf_prog_release(fp);
1307 	return ERR_PTR(err);
1308 }
1309 
1310 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1311 					   bpf_aux_classic_check_t trans)
1312 {
1313 	int err;
1314 
1315 	fp->bpf_func = NULL;
1316 	fp->jited = 0;
1317 
1318 	err = bpf_check_classic(fp->insns, fp->len);
1319 	if (err) {
1320 		__bpf_prog_release(fp);
1321 		return ERR_PTR(err);
1322 	}
1323 
1324 	/* There might be additional checks and transformations
1325 	 * needed on classic filters, f.e. in case of seccomp.
1326 	 */
1327 	if (trans) {
1328 		err = trans(fp->insns, fp->len);
1329 		if (err) {
1330 			__bpf_prog_release(fp);
1331 			return ERR_PTR(err);
1332 		}
1333 	}
1334 
1335 	/* Probe if we can JIT compile the filter and if so, do
1336 	 * the compilation of the filter.
1337 	 */
1338 	bpf_jit_compile(fp);
1339 
1340 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1341 	 * for the optimized interpreter.
1342 	 */
1343 	if (!fp->jited)
1344 		fp = bpf_migrate_filter(fp);
1345 
1346 	return fp;
1347 }
1348 
1349 /**
1350  *	bpf_prog_create - create an unattached filter
1351  *	@pfp: the unattached filter that is created
1352  *	@fprog: the filter program
1353  *
1354  * Create a filter independent of any socket. We first run some
1355  * sanity checks on it to make sure it does not explode on us later.
1356  * If an error occurs or there is insufficient memory for the filter
1357  * a negative errno code is returned. On success the return is zero.
1358  */
1359 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1360 {
1361 	unsigned int fsize = bpf_classic_proglen(fprog);
1362 	struct bpf_prog *fp;
1363 
1364 	/* Make sure new filter is there and in the right amounts. */
1365 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1366 		return -EINVAL;
1367 
1368 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1369 	if (!fp)
1370 		return -ENOMEM;
1371 
1372 	memcpy(fp->insns, fprog->filter, fsize);
1373 
1374 	fp->len = fprog->len;
1375 	/* Since unattached filters are not copied back to user
1376 	 * space through sk_get_filter(), we do not need to hold
1377 	 * a copy here, and can spare us the work.
1378 	 */
1379 	fp->orig_prog = NULL;
1380 
1381 	/* bpf_prepare_filter() already takes care of freeing
1382 	 * memory in case something goes wrong.
1383 	 */
1384 	fp = bpf_prepare_filter(fp, NULL);
1385 	if (IS_ERR(fp))
1386 		return PTR_ERR(fp);
1387 
1388 	*pfp = fp;
1389 	return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(bpf_prog_create);
1392 
1393 /**
1394  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1395  *	@pfp: the unattached filter that is created
1396  *	@fprog: the filter program
1397  *	@trans: post-classic verifier transformation handler
1398  *	@save_orig: save classic BPF program
1399  *
1400  * This function effectively does the same as bpf_prog_create(), only
1401  * that it builds up its insns buffer from user space provided buffer.
1402  * It also allows for passing a bpf_aux_classic_check_t handler.
1403  */
1404 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1405 			      bpf_aux_classic_check_t trans, bool save_orig)
1406 {
1407 	unsigned int fsize = bpf_classic_proglen(fprog);
1408 	struct bpf_prog *fp;
1409 	int err;
1410 
1411 	/* Make sure new filter is there and in the right amounts. */
1412 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1413 		return -EINVAL;
1414 
1415 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1416 	if (!fp)
1417 		return -ENOMEM;
1418 
1419 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1420 		__bpf_prog_free(fp);
1421 		return -EFAULT;
1422 	}
1423 
1424 	fp->len = fprog->len;
1425 	fp->orig_prog = NULL;
1426 
1427 	if (save_orig) {
1428 		err = bpf_prog_store_orig_filter(fp, fprog);
1429 		if (err) {
1430 			__bpf_prog_free(fp);
1431 			return -ENOMEM;
1432 		}
1433 	}
1434 
1435 	/* bpf_prepare_filter() already takes care of freeing
1436 	 * memory in case something goes wrong.
1437 	 */
1438 	fp = bpf_prepare_filter(fp, trans);
1439 	if (IS_ERR(fp))
1440 		return PTR_ERR(fp);
1441 
1442 	*pfp = fp;
1443 	return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1446 
1447 void bpf_prog_destroy(struct bpf_prog *fp)
1448 {
1449 	__bpf_prog_release(fp);
1450 }
1451 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1452 
1453 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1454 {
1455 	struct sk_filter *fp, *old_fp;
1456 
1457 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1458 	if (!fp)
1459 		return -ENOMEM;
1460 
1461 	fp->prog = prog;
1462 
1463 	if (!__sk_filter_charge(sk, fp)) {
1464 		kfree(fp);
1465 		return -ENOMEM;
1466 	}
1467 	refcount_set(&fp->refcnt, 1);
1468 
1469 	old_fp = rcu_dereference_protected(sk->sk_filter,
1470 					   lockdep_sock_is_held(sk));
1471 	rcu_assign_pointer(sk->sk_filter, fp);
1472 
1473 	if (old_fp)
1474 		sk_filter_uncharge(sk, old_fp);
1475 
1476 	return 0;
1477 }
1478 
1479 static
1480 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1481 {
1482 	unsigned int fsize = bpf_classic_proglen(fprog);
1483 	struct bpf_prog *prog;
1484 	int err;
1485 
1486 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1487 		return ERR_PTR(-EPERM);
1488 
1489 	/* Make sure new filter is there and in the right amounts. */
1490 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1491 		return ERR_PTR(-EINVAL);
1492 
1493 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1494 	if (!prog)
1495 		return ERR_PTR(-ENOMEM);
1496 
1497 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1498 		__bpf_prog_free(prog);
1499 		return ERR_PTR(-EFAULT);
1500 	}
1501 
1502 	prog->len = fprog->len;
1503 
1504 	err = bpf_prog_store_orig_filter(prog, fprog);
1505 	if (err) {
1506 		__bpf_prog_free(prog);
1507 		return ERR_PTR(-ENOMEM);
1508 	}
1509 
1510 	/* bpf_prepare_filter() already takes care of freeing
1511 	 * memory in case something goes wrong.
1512 	 */
1513 	return bpf_prepare_filter(prog, NULL);
1514 }
1515 
1516 /**
1517  *	sk_attach_filter - attach a socket filter
1518  *	@fprog: the filter program
1519  *	@sk: the socket to use
1520  *
1521  * Attach the user's filter code. We first run some sanity checks on
1522  * it to make sure it does not explode on us later. If an error
1523  * occurs or there is insufficient memory for the filter a negative
1524  * errno code is returned. On success the return is zero.
1525  */
1526 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1527 {
1528 	struct bpf_prog *prog = __get_filter(fprog, sk);
1529 	int err;
1530 
1531 	if (IS_ERR(prog))
1532 		return PTR_ERR(prog);
1533 
1534 	err = __sk_attach_prog(prog, sk);
1535 	if (err < 0) {
1536 		__bpf_prog_release(prog);
1537 		return err;
1538 	}
1539 
1540 	return 0;
1541 }
1542 EXPORT_SYMBOL_GPL(sk_attach_filter);
1543 
1544 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1545 {
1546 	struct bpf_prog *prog = __get_filter(fprog, sk);
1547 	int err;
1548 
1549 	if (IS_ERR(prog))
1550 		return PTR_ERR(prog);
1551 
1552 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1553 		err = -ENOMEM;
1554 	else
1555 		err = reuseport_attach_prog(sk, prog);
1556 
1557 	if (err)
1558 		__bpf_prog_release(prog);
1559 
1560 	return err;
1561 }
1562 
1563 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1564 {
1565 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1566 		return ERR_PTR(-EPERM);
1567 
1568 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1569 }
1570 
1571 int sk_attach_bpf(u32 ufd, struct sock *sk)
1572 {
1573 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1574 	int err;
1575 
1576 	if (IS_ERR(prog))
1577 		return PTR_ERR(prog);
1578 
1579 	err = __sk_attach_prog(prog, sk);
1580 	if (err < 0) {
1581 		bpf_prog_put(prog);
1582 		return err;
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1589 {
1590 	struct bpf_prog *prog;
1591 	int err;
1592 
1593 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1594 		return -EPERM;
1595 
1596 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1597 	if (PTR_ERR(prog) == -EINVAL)
1598 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1599 	if (IS_ERR(prog))
1600 		return PTR_ERR(prog);
1601 
1602 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1603 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1604 		 * bpf prog (e.g. sockmap).  It depends on the
1605 		 * limitation imposed by bpf_prog_load().
1606 		 * Hence, sysctl_optmem_max is not checked.
1607 		 */
1608 		if ((sk->sk_type != SOCK_STREAM &&
1609 		     sk->sk_type != SOCK_DGRAM) ||
1610 		    (sk->sk_protocol != IPPROTO_UDP &&
1611 		     sk->sk_protocol != IPPROTO_TCP) ||
1612 		    (sk->sk_family != AF_INET &&
1613 		     sk->sk_family != AF_INET6)) {
1614 			err = -ENOTSUPP;
1615 			goto err_prog_put;
1616 		}
1617 	} else {
1618 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1619 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1620 			err = -ENOMEM;
1621 			goto err_prog_put;
1622 		}
1623 	}
1624 
1625 	err = reuseport_attach_prog(sk, prog);
1626 err_prog_put:
1627 	if (err)
1628 		bpf_prog_put(prog);
1629 
1630 	return err;
1631 }
1632 
1633 void sk_reuseport_prog_free(struct bpf_prog *prog)
1634 {
1635 	if (!prog)
1636 		return;
1637 
1638 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1639 		bpf_prog_put(prog);
1640 	else
1641 		bpf_prog_destroy(prog);
1642 }
1643 
1644 struct bpf_scratchpad {
1645 	union {
1646 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1647 		u8     buff[MAX_BPF_STACK];
1648 	};
1649 };
1650 
1651 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1652 
1653 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1654 					  unsigned int write_len)
1655 {
1656 	return skb_ensure_writable(skb, write_len);
1657 }
1658 
1659 static inline int bpf_try_make_writable(struct sk_buff *skb,
1660 					unsigned int write_len)
1661 {
1662 	int err = __bpf_try_make_writable(skb, write_len);
1663 
1664 	bpf_compute_data_pointers(skb);
1665 	return err;
1666 }
1667 
1668 static int bpf_try_make_head_writable(struct sk_buff *skb)
1669 {
1670 	return bpf_try_make_writable(skb, skb_headlen(skb));
1671 }
1672 
1673 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1674 {
1675 	if (skb_at_tc_ingress(skb))
1676 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1677 }
1678 
1679 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1680 {
1681 	if (skb_at_tc_ingress(skb))
1682 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1683 }
1684 
1685 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1686 	   const void *, from, u32, len, u64, flags)
1687 {
1688 	void *ptr;
1689 
1690 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1691 		return -EINVAL;
1692 	if (unlikely(offset > INT_MAX))
1693 		return -EFAULT;
1694 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1695 		return -EFAULT;
1696 
1697 	ptr = skb->data + offset;
1698 	if (flags & BPF_F_RECOMPUTE_CSUM)
1699 		__skb_postpull_rcsum(skb, ptr, len, offset);
1700 
1701 	memcpy(ptr, from, len);
1702 
1703 	if (flags & BPF_F_RECOMPUTE_CSUM)
1704 		__skb_postpush_rcsum(skb, ptr, len, offset);
1705 	if (flags & BPF_F_INVALIDATE_HASH)
1706 		skb_clear_hash(skb);
1707 
1708 	return 0;
1709 }
1710 
1711 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1712 	.func		= bpf_skb_store_bytes,
1713 	.gpl_only	= false,
1714 	.ret_type	= RET_INTEGER,
1715 	.arg1_type	= ARG_PTR_TO_CTX,
1716 	.arg2_type	= ARG_ANYTHING,
1717 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1718 	.arg4_type	= ARG_CONST_SIZE,
1719 	.arg5_type	= ARG_ANYTHING,
1720 };
1721 
1722 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1723 	   void *, to, u32, len)
1724 {
1725 	void *ptr;
1726 
1727 	if (unlikely(offset > INT_MAX))
1728 		goto err_clear;
1729 
1730 	ptr = skb_header_pointer(skb, offset, len, to);
1731 	if (unlikely(!ptr))
1732 		goto err_clear;
1733 	if (ptr != to)
1734 		memcpy(to, ptr, len);
1735 
1736 	return 0;
1737 err_clear:
1738 	memset(to, 0, len);
1739 	return -EFAULT;
1740 }
1741 
1742 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1743 	.func		= bpf_skb_load_bytes,
1744 	.gpl_only	= false,
1745 	.ret_type	= RET_INTEGER,
1746 	.arg1_type	= ARG_PTR_TO_CTX,
1747 	.arg2_type	= ARG_ANYTHING,
1748 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1749 	.arg4_type	= ARG_CONST_SIZE,
1750 };
1751 
1752 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1753 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1754 	   void *, to, u32, len)
1755 {
1756 	void *ptr;
1757 
1758 	if (unlikely(offset > 0xffff))
1759 		goto err_clear;
1760 
1761 	if (unlikely(!ctx->skb))
1762 		goto err_clear;
1763 
1764 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1765 	if (unlikely(!ptr))
1766 		goto err_clear;
1767 	if (ptr != to)
1768 		memcpy(to, ptr, len);
1769 
1770 	return 0;
1771 err_clear:
1772 	memset(to, 0, len);
1773 	return -EFAULT;
1774 }
1775 
1776 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1777 	.func		= bpf_flow_dissector_load_bytes,
1778 	.gpl_only	= false,
1779 	.ret_type	= RET_INTEGER,
1780 	.arg1_type	= ARG_PTR_TO_CTX,
1781 	.arg2_type	= ARG_ANYTHING,
1782 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1783 	.arg4_type	= ARG_CONST_SIZE,
1784 };
1785 
1786 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1787 	   u32, offset, void *, to, u32, len, u32, start_header)
1788 {
1789 	u8 *end = skb_tail_pointer(skb);
1790 	u8 *start, *ptr;
1791 
1792 	if (unlikely(offset > 0xffff))
1793 		goto err_clear;
1794 
1795 	switch (start_header) {
1796 	case BPF_HDR_START_MAC:
1797 		if (unlikely(!skb_mac_header_was_set(skb)))
1798 			goto err_clear;
1799 		start = skb_mac_header(skb);
1800 		break;
1801 	case BPF_HDR_START_NET:
1802 		start = skb_network_header(skb);
1803 		break;
1804 	default:
1805 		goto err_clear;
1806 	}
1807 
1808 	ptr = start + offset;
1809 
1810 	if (likely(ptr + len <= end)) {
1811 		memcpy(to, ptr, len);
1812 		return 0;
1813 	}
1814 
1815 err_clear:
1816 	memset(to, 0, len);
1817 	return -EFAULT;
1818 }
1819 
1820 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1821 	.func		= bpf_skb_load_bytes_relative,
1822 	.gpl_only	= false,
1823 	.ret_type	= RET_INTEGER,
1824 	.arg1_type	= ARG_PTR_TO_CTX,
1825 	.arg2_type	= ARG_ANYTHING,
1826 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1827 	.arg4_type	= ARG_CONST_SIZE,
1828 	.arg5_type	= ARG_ANYTHING,
1829 };
1830 
1831 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1832 {
1833 	/* Idea is the following: should the needed direct read/write
1834 	 * test fail during runtime, we can pull in more data and redo
1835 	 * again, since implicitly, we invalidate previous checks here.
1836 	 *
1837 	 * Or, since we know how much we need to make read/writeable,
1838 	 * this can be done once at the program beginning for direct
1839 	 * access case. By this we overcome limitations of only current
1840 	 * headroom being accessible.
1841 	 */
1842 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1843 }
1844 
1845 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1846 	.func		= bpf_skb_pull_data,
1847 	.gpl_only	= false,
1848 	.ret_type	= RET_INTEGER,
1849 	.arg1_type	= ARG_PTR_TO_CTX,
1850 	.arg2_type	= ARG_ANYTHING,
1851 };
1852 
1853 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1854 {
1855 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1856 }
1857 
1858 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1859 	.func		= bpf_sk_fullsock,
1860 	.gpl_only	= false,
1861 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1862 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1863 };
1864 
1865 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1866 					   unsigned int write_len)
1867 {
1868 	return __bpf_try_make_writable(skb, write_len);
1869 }
1870 
1871 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1872 {
1873 	/* Idea is the following: should the needed direct read/write
1874 	 * test fail during runtime, we can pull in more data and redo
1875 	 * again, since implicitly, we invalidate previous checks here.
1876 	 *
1877 	 * Or, since we know how much we need to make read/writeable,
1878 	 * this can be done once at the program beginning for direct
1879 	 * access case. By this we overcome limitations of only current
1880 	 * headroom being accessible.
1881 	 */
1882 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1883 }
1884 
1885 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1886 	.func		= sk_skb_pull_data,
1887 	.gpl_only	= false,
1888 	.ret_type	= RET_INTEGER,
1889 	.arg1_type	= ARG_PTR_TO_CTX,
1890 	.arg2_type	= ARG_ANYTHING,
1891 };
1892 
1893 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1894 	   u64, from, u64, to, u64, flags)
1895 {
1896 	__sum16 *ptr;
1897 
1898 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1899 		return -EINVAL;
1900 	if (unlikely(offset > 0xffff || offset & 1))
1901 		return -EFAULT;
1902 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1903 		return -EFAULT;
1904 
1905 	ptr = (__sum16 *)(skb->data + offset);
1906 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1907 	case 0:
1908 		if (unlikely(from != 0))
1909 			return -EINVAL;
1910 
1911 		csum_replace_by_diff(ptr, to);
1912 		break;
1913 	case 2:
1914 		csum_replace2(ptr, from, to);
1915 		break;
1916 	case 4:
1917 		csum_replace4(ptr, from, to);
1918 		break;
1919 	default:
1920 		return -EINVAL;
1921 	}
1922 
1923 	return 0;
1924 }
1925 
1926 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1927 	.func		= bpf_l3_csum_replace,
1928 	.gpl_only	= false,
1929 	.ret_type	= RET_INTEGER,
1930 	.arg1_type	= ARG_PTR_TO_CTX,
1931 	.arg2_type	= ARG_ANYTHING,
1932 	.arg3_type	= ARG_ANYTHING,
1933 	.arg4_type	= ARG_ANYTHING,
1934 	.arg5_type	= ARG_ANYTHING,
1935 };
1936 
1937 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1938 	   u64, from, u64, to, u64, flags)
1939 {
1940 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1941 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1942 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1943 	__sum16 *ptr;
1944 
1945 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1946 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1947 		return -EINVAL;
1948 	if (unlikely(offset > 0xffff || offset & 1))
1949 		return -EFAULT;
1950 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1951 		return -EFAULT;
1952 
1953 	ptr = (__sum16 *)(skb->data + offset);
1954 	if (is_mmzero && !do_mforce && !*ptr)
1955 		return 0;
1956 
1957 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1958 	case 0:
1959 		if (unlikely(from != 0))
1960 			return -EINVAL;
1961 
1962 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1963 		break;
1964 	case 2:
1965 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1966 		break;
1967 	case 4:
1968 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1969 		break;
1970 	default:
1971 		return -EINVAL;
1972 	}
1973 
1974 	if (is_mmzero && !*ptr)
1975 		*ptr = CSUM_MANGLED_0;
1976 	return 0;
1977 }
1978 
1979 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1980 	.func		= bpf_l4_csum_replace,
1981 	.gpl_only	= false,
1982 	.ret_type	= RET_INTEGER,
1983 	.arg1_type	= ARG_PTR_TO_CTX,
1984 	.arg2_type	= ARG_ANYTHING,
1985 	.arg3_type	= ARG_ANYTHING,
1986 	.arg4_type	= ARG_ANYTHING,
1987 	.arg5_type	= ARG_ANYTHING,
1988 };
1989 
1990 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1991 	   __be32 *, to, u32, to_size, __wsum, seed)
1992 {
1993 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1994 	u32 diff_size = from_size + to_size;
1995 	int i, j = 0;
1996 
1997 	/* This is quite flexible, some examples:
1998 	 *
1999 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2000 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2001 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2002 	 *
2003 	 * Even for diffing, from_size and to_size don't need to be equal.
2004 	 */
2005 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2006 		     diff_size > sizeof(sp->diff)))
2007 		return -EINVAL;
2008 
2009 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2010 		sp->diff[j] = ~from[i];
2011 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2012 		sp->diff[j] = to[i];
2013 
2014 	return csum_partial(sp->diff, diff_size, seed);
2015 }
2016 
2017 static const struct bpf_func_proto bpf_csum_diff_proto = {
2018 	.func		= bpf_csum_diff,
2019 	.gpl_only	= false,
2020 	.pkt_access	= true,
2021 	.ret_type	= RET_INTEGER,
2022 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2023 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2024 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2026 	.arg5_type	= ARG_ANYTHING,
2027 };
2028 
2029 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2030 {
2031 	/* The interface is to be used in combination with bpf_csum_diff()
2032 	 * for direct packet writes. csum rotation for alignment as well
2033 	 * as emulating csum_sub() can be done from the eBPF program.
2034 	 */
2035 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2036 		return (skb->csum = csum_add(skb->csum, csum));
2037 
2038 	return -ENOTSUPP;
2039 }
2040 
2041 static const struct bpf_func_proto bpf_csum_update_proto = {
2042 	.func		= bpf_csum_update,
2043 	.gpl_only	= false,
2044 	.ret_type	= RET_INTEGER,
2045 	.arg1_type	= ARG_PTR_TO_CTX,
2046 	.arg2_type	= ARG_ANYTHING,
2047 };
2048 
2049 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2050 {
2051 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2052 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2053 	 * is passed as flags, for example.
2054 	 */
2055 	switch (level) {
2056 	case BPF_CSUM_LEVEL_INC:
2057 		__skb_incr_checksum_unnecessary(skb);
2058 		break;
2059 	case BPF_CSUM_LEVEL_DEC:
2060 		__skb_decr_checksum_unnecessary(skb);
2061 		break;
2062 	case BPF_CSUM_LEVEL_RESET:
2063 		__skb_reset_checksum_unnecessary(skb);
2064 		break;
2065 	case BPF_CSUM_LEVEL_QUERY:
2066 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2067 		       skb->csum_level : -EACCES;
2068 	default:
2069 		return -EINVAL;
2070 	}
2071 
2072 	return 0;
2073 }
2074 
2075 static const struct bpf_func_proto bpf_csum_level_proto = {
2076 	.func		= bpf_csum_level,
2077 	.gpl_only	= false,
2078 	.ret_type	= RET_INTEGER,
2079 	.arg1_type	= ARG_PTR_TO_CTX,
2080 	.arg2_type	= ARG_ANYTHING,
2081 };
2082 
2083 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2084 {
2085 	return dev_forward_skb_nomtu(dev, skb);
2086 }
2087 
2088 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2089 				      struct sk_buff *skb)
2090 {
2091 	int ret = ____dev_forward_skb(dev, skb, false);
2092 
2093 	if (likely(!ret)) {
2094 		skb->dev = dev;
2095 		ret = netif_rx(skb);
2096 	}
2097 
2098 	return ret;
2099 }
2100 
2101 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2102 {
2103 	int ret;
2104 
2105 	if (dev_xmit_recursion()) {
2106 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2107 		kfree_skb(skb);
2108 		return -ENETDOWN;
2109 	}
2110 
2111 	skb->dev = dev;
2112 	skb_clear_tstamp(skb);
2113 
2114 	dev_xmit_recursion_inc();
2115 	ret = dev_queue_xmit(skb);
2116 	dev_xmit_recursion_dec();
2117 
2118 	return ret;
2119 }
2120 
2121 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2122 				 u32 flags)
2123 {
2124 	unsigned int mlen = skb_network_offset(skb);
2125 
2126 	if (mlen) {
2127 		__skb_pull(skb, mlen);
2128 
2129 		/* At ingress, the mac header has already been pulled once.
2130 		 * At egress, skb_pospull_rcsum has to be done in case that
2131 		 * the skb is originated from ingress (i.e. a forwarded skb)
2132 		 * to ensure that rcsum starts at net header.
2133 		 */
2134 		if (!skb_at_tc_ingress(skb))
2135 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2136 	}
2137 	skb_pop_mac_header(skb);
2138 	skb_reset_mac_len(skb);
2139 	return flags & BPF_F_INGRESS ?
2140 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2141 }
2142 
2143 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2144 				 u32 flags)
2145 {
2146 	/* Verify that a link layer header is carried */
2147 	if (unlikely(skb->mac_header >= skb->network_header)) {
2148 		kfree_skb(skb);
2149 		return -ERANGE;
2150 	}
2151 
2152 	bpf_push_mac_rcsum(skb);
2153 	return flags & BPF_F_INGRESS ?
2154 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2155 }
2156 
2157 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2158 			  u32 flags)
2159 {
2160 	if (dev_is_mac_header_xmit(dev))
2161 		return __bpf_redirect_common(skb, dev, flags);
2162 	else
2163 		return __bpf_redirect_no_mac(skb, dev, flags);
2164 }
2165 
2166 #if IS_ENABLED(CONFIG_IPV6)
2167 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2168 			    struct net_device *dev, struct bpf_nh_params *nh)
2169 {
2170 	u32 hh_len = LL_RESERVED_SPACE(dev);
2171 	const struct in6_addr *nexthop;
2172 	struct dst_entry *dst = NULL;
2173 	struct neighbour *neigh;
2174 
2175 	if (dev_xmit_recursion()) {
2176 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2177 		goto out_drop;
2178 	}
2179 
2180 	skb->dev = dev;
2181 	skb_clear_tstamp(skb);
2182 
2183 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2184 		skb = skb_expand_head(skb, hh_len);
2185 		if (!skb)
2186 			return -ENOMEM;
2187 	}
2188 
2189 	rcu_read_lock_bh();
2190 	if (!nh) {
2191 		dst = skb_dst(skb);
2192 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2193 				      &ipv6_hdr(skb)->daddr);
2194 	} else {
2195 		nexthop = &nh->ipv6_nh;
2196 	}
2197 	neigh = ip_neigh_gw6(dev, nexthop);
2198 	if (likely(!IS_ERR(neigh))) {
2199 		int ret;
2200 
2201 		sock_confirm_neigh(skb, neigh);
2202 		dev_xmit_recursion_inc();
2203 		ret = neigh_output(neigh, skb, false);
2204 		dev_xmit_recursion_dec();
2205 		rcu_read_unlock_bh();
2206 		return ret;
2207 	}
2208 	rcu_read_unlock_bh();
2209 	if (dst)
2210 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2211 out_drop:
2212 	kfree_skb(skb);
2213 	return -ENETDOWN;
2214 }
2215 
2216 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2217 				   struct bpf_nh_params *nh)
2218 {
2219 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2220 	struct net *net = dev_net(dev);
2221 	int err, ret = NET_XMIT_DROP;
2222 
2223 	if (!nh) {
2224 		struct dst_entry *dst;
2225 		struct flowi6 fl6 = {
2226 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2227 			.flowi6_mark  = skb->mark,
2228 			.flowlabel    = ip6_flowinfo(ip6h),
2229 			.flowi6_oif   = dev->ifindex,
2230 			.flowi6_proto = ip6h->nexthdr,
2231 			.daddr	      = ip6h->daddr,
2232 			.saddr	      = ip6h->saddr,
2233 		};
2234 
2235 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2236 		if (IS_ERR(dst))
2237 			goto out_drop;
2238 
2239 		skb_dst_set(skb, dst);
2240 	} else if (nh->nh_family != AF_INET6) {
2241 		goto out_drop;
2242 	}
2243 
2244 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2245 	if (unlikely(net_xmit_eval(err)))
2246 		dev->stats.tx_errors++;
2247 	else
2248 		ret = NET_XMIT_SUCCESS;
2249 	goto out_xmit;
2250 out_drop:
2251 	dev->stats.tx_errors++;
2252 	kfree_skb(skb);
2253 out_xmit:
2254 	return ret;
2255 }
2256 #else
2257 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2258 				   struct bpf_nh_params *nh)
2259 {
2260 	kfree_skb(skb);
2261 	return NET_XMIT_DROP;
2262 }
2263 #endif /* CONFIG_IPV6 */
2264 
2265 #if IS_ENABLED(CONFIG_INET)
2266 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2267 			    struct net_device *dev, struct bpf_nh_params *nh)
2268 {
2269 	u32 hh_len = LL_RESERVED_SPACE(dev);
2270 	struct neighbour *neigh;
2271 	bool is_v6gw = false;
2272 
2273 	if (dev_xmit_recursion()) {
2274 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2275 		goto out_drop;
2276 	}
2277 
2278 	skb->dev = dev;
2279 	skb_clear_tstamp(skb);
2280 
2281 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2282 		skb = skb_expand_head(skb, hh_len);
2283 		if (!skb)
2284 			return -ENOMEM;
2285 	}
2286 
2287 	rcu_read_lock_bh();
2288 	if (!nh) {
2289 		struct dst_entry *dst = skb_dst(skb);
2290 		struct rtable *rt = container_of(dst, struct rtable, dst);
2291 
2292 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2293 	} else if (nh->nh_family == AF_INET6) {
2294 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2295 		is_v6gw = true;
2296 	} else if (nh->nh_family == AF_INET) {
2297 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2298 	} else {
2299 		rcu_read_unlock_bh();
2300 		goto out_drop;
2301 	}
2302 
2303 	if (likely(!IS_ERR(neigh))) {
2304 		int ret;
2305 
2306 		sock_confirm_neigh(skb, neigh);
2307 		dev_xmit_recursion_inc();
2308 		ret = neigh_output(neigh, skb, is_v6gw);
2309 		dev_xmit_recursion_dec();
2310 		rcu_read_unlock_bh();
2311 		return ret;
2312 	}
2313 	rcu_read_unlock_bh();
2314 out_drop:
2315 	kfree_skb(skb);
2316 	return -ENETDOWN;
2317 }
2318 
2319 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2320 				   struct bpf_nh_params *nh)
2321 {
2322 	const struct iphdr *ip4h = ip_hdr(skb);
2323 	struct net *net = dev_net(dev);
2324 	int err, ret = NET_XMIT_DROP;
2325 
2326 	if (!nh) {
2327 		struct flowi4 fl4 = {
2328 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2329 			.flowi4_mark  = skb->mark,
2330 			.flowi4_tos   = RT_TOS(ip4h->tos),
2331 			.flowi4_oif   = dev->ifindex,
2332 			.flowi4_proto = ip4h->protocol,
2333 			.daddr	      = ip4h->daddr,
2334 			.saddr	      = ip4h->saddr,
2335 		};
2336 		struct rtable *rt;
2337 
2338 		rt = ip_route_output_flow(net, &fl4, NULL);
2339 		if (IS_ERR(rt))
2340 			goto out_drop;
2341 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2342 			ip_rt_put(rt);
2343 			goto out_drop;
2344 		}
2345 
2346 		skb_dst_set(skb, &rt->dst);
2347 	}
2348 
2349 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2350 	if (unlikely(net_xmit_eval(err)))
2351 		dev->stats.tx_errors++;
2352 	else
2353 		ret = NET_XMIT_SUCCESS;
2354 	goto out_xmit;
2355 out_drop:
2356 	dev->stats.tx_errors++;
2357 	kfree_skb(skb);
2358 out_xmit:
2359 	return ret;
2360 }
2361 #else
2362 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2363 				   struct bpf_nh_params *nh)
2364 {
2365 	kfree_skb(skb);
2366 	return NET_XMIT_DROP;
2367 }
2368 #endif /* CONFIG_INET */
2369 
2370 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2371 				struct bpf_nh_params *nh)
2372 {
2373 	struct ethhdr *ethh = eth_hdr(skb);
2374 
2375 	if (unlikely(skb->mac_header >= skb->network_header))
2376 		goto out;
2377 	bpf_push_mac_rcsum(skb);
2378 	if (is_multicast_ether_addr(ethh->h_dest))
2379 		goto out;
2380 
2381 	skb_pull(skb, sizeof(*ethh));
2382 	skb_unset_mac_header(skb);
2383 	skb_reset_network_header(skb);
2384 
2385 	if (skb->protocol == htons(ETH_P_IP))
2386 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2387 	else if (skb->protocol == htons(ETH_P_IPV6))
2388 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2389 out:
2390 	kfree_skb(skb);
2391 	return -ENOTSUPP;
2392 }
2393 
2394 /* Internal, non-exposed redirect flags. */
2395 enum {
2396 	BPF_F_NEIGH	= (1ULL << 1),
2397 	BPF_F_PEER	= (1ULL << 2),
2398 	BPF_F_NEXTHOP	= (1ULL << 3),
2399 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2400 };
2401 
2402 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2403 {
2404 	struct net_device *dev;
2405 	struct sk_buff *clone;
2406 	int ret;
2407 
2408 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2409 		return -EINVAL;
2410 
2411 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2412 	if (unlikely(!dev))
2413 		return -EINVAL;
2414 
2415 	clone = skb_clone(skb, GFP_ATOMIC);
2416 	if (unlikely(!clone))
2417 		return -ENOMEM;
2418 
2419 	/* For direct write, we need to keep the invariant that the skbs
2420 	 * we're dealing with need to be uncloned. Should uncloning fail
2421 	 * here, we need to free the just generated clone to unclone once
2422 	 * again.
2423 	 */
2424 	ret = bpf_try_make_head_writable(skb);
2425 	if (unlikely(ret)) {
2426 		kfree_skb(clone);
2427 		return -ENOMEM;
2428 	}
2429 
2430 	return __bpf_redirect(clone, dev, flags);
2431 }
2432 
2433 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2434 	.func           = bpf_clone_redirect,
2435 	.gpl_only       = false,
2436 	.ret_type       = RET_INTEGER,
2437 	.arg1_type      = ARG_PTR_TO_CTX,
2438 	.arg2_type      = ARG_ANYTHING,
2439 	.arg3_type      = ARG_ANYTHING,
2440 };
2441 
2442 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2443 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2444 
2445 int skb_do_redirect(struct sk_buff *skb)
2446 {
2447 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2448 	struct net *net = dev_net(skb->dev);
2449 	struct net_device *dev;
2450 	u32 flags = ri->flags;
2451 
2452 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2453 	ri->tgt_index = 0;
2454 	ri->flags = 0;
2455 	if (unlikely(!dev))
2456 		goto out_drop;
2457 	if (flags & BPF_F_PEER) {
2458 		const struct net_device_ops *ops = dev->netdev_ops;
2459 
2460 		if (unlikely(!ops->ndo_get_peer_dev ||
2461 			     !skb_at_tc_ingress(skb)))
2462 			goto out_drop;
2463 		dev = ops->ndo_get_peer_dev(dev);
2464 		if (unlikely(!dev ||
2465 			     !(dev->flags & IFF_UP) ||
2466 			     net_eq(net, dev_net(dev))))
2467 			goto out_drop;
2468 		skb->dev = dev;
2469 		return -EAGAIN;
2470 	}
2471 	return flags & BPF_F_NEIGH ?
2472 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2473 				    &ri->nh : NULL) :
2474 	       __bpf_redirect(skb, dev, flags);
2475 out_drop:
2476 	kfree_skb(skb);
2477 	return -EINVAL;
2478 }
2479 
2480 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2481 {
2482 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2483 
2484 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2485 		return TC_ACT_SHOT;
2486 
2487 	ri->flags = flags;
2488 	ri->tgt_index = ifindex;
2489 
2490 	return TC_ACT_REDIRECT;
2491 }
2492 
2493 static const struct bpf_func_proto bpf_redirect_proto = {
2494 	.func           = bpf_redirect,
2495 	.gpl_only       = false,
2496 	.ret_type       = RET_INTEGER,
2497 	.arg1_type      = ARG_ANYTHING,
2498 	.arg2_type      = ARG_ANYTHING,
2499 };
2500 
2501 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2502 {
2503 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2504 
2505 	if (unlikely(flags))
2506 		return TC_ACT_SHOT;
2507 
2508 	ri->flags = BPF_F_PEER;
2509 	ri->tgt_index = ifindex;
2510 
2511 	return TC_ACT_REDIRECT;
2512 }
2513 
2514 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2515 	.func           = bpf_redirect_peer,
2516 	.gpl_only       = false,
2517 	.ret_type       = RET_INTEGER,
2518 	.arg1_type      = ARG_ANYTHING,
2519 	.arg2_type      = ARG_ANYTHING,
2520 };
2521 
2522 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2523 	   int, plen, u64, flags)
2524 {
2525 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2526 
2527 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2528 		return TC_ACT_SHOT;
2529 
2530 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2531 	ri->tgt_index = ifindex;
2532 
2533 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2534 	if (plen)
2535 		memcpy(&ri->nh, params, sizeof(ri->nh));
2536 
2537 	return TC_ACT_REDIRECT;
2538 }
2539 
2540 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2541 	.func		= bpf_redirect_neigh,
2542 	.gpl_only	= false,
2543 	.ret_type	= RET_INTEGER,
2544 	.arg1_type	= ARG_ANYTHING,
2545 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2546 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2547 	.arg4_type	= ARG_ANYTHING,
2548 };
2549 
2550 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2551 {
2552 	msg->apply_bytes = bytes;
2553 	return 0;
2554 }
2555 
2556 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2557 	.func           = bpf_msg_apply_bytes,
2558 	.gpl_only       = false,
2559 	.ret_type       = RET_INTEGER,
2560 	.arg1_type	= ARG_PTR_TO_CTX,
2561 	.arg2_type      = ARG_ANYTHING,
2562 };
2563 
2564 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2565 {
2566 	msg->cork_bytes = bytes;
2567 	return 0;
2568 }
2569 
2570 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2571 	.func           = bpf_msg_cork_bytes,
2572 	.gpl_only       = false,
2573 	.ret_type       = RET_INTEGER,
2574 	.arg1_type	= ARG_PTR_TO_CTX,
2575 	.arg2_type      = ARG_ANYTHING,
2576 };
2577 
2578 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2579 	   u32, end, u64, flags)
2580 {
2581 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2582 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2583 	struct scatterlist *sge;
2584 	u8 *raw, *to, *from;
2585 	struct page *page;
2586 
2587 	if (unlikely(flags || end <= start))
2588 		return -EINVAL;
2589 
2590 	/* First find the starting scatterlist element */
2591 	i = msg->sg.start;
2592 	do {
2593 		offset += len;
2594 		len = sk_msg_elem(msg, i)->length;
2595 		if (start < offset + len)
2596 			break;
2597 		sk_msg_iter_var_next(i);
2598 	} while (i != msg->sg.end);
2599 
2600 	if (unlikely(start >= offset + len))
2601 		return -EINVAL;
2602 
2603 	first_sge = i;
2604 	/* The start may point into the sg element so we need to also
2605 	 * account for the headroom.
2606 	 */
2607 	bytes_sg_total = start - offset + bytes;
2608 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2609 		goto out;
2610 
2611 	/* At this point we need to linearize multiple scatterlist
2612 	 * elements or a single shared page. Either way we need to
2613 	 * copy into a linear buffer exclusively owned by BPF. Then
2614 	 * place the buffer in the scatterlist and fixup the original
2615 	 * entries by removing the entries now in the linear buffer
2616 	 * and shifting the remaining entries. For now we do not try
2617 	 * to copy partial entries to avoid complexity of running out
2618 	 * of sg_entry slots. The downside is reading a single byte
2619 	 * will copy the entire sg entry.
2620 	 */
2621 	do {
2622 		copy += sk_msg_elem(msg, i)->length;
2623 		sk_msg_iter_var_next(i);
2624 		if (bytes_sg_total <= copy)
2625 			break;
2626 	} while (i != msg->sg.end);
2627 	last_sge = i;
2628 
2629 	if (unlikely(bytes_sg_total > copy))
2630 		return -EINVAL;
2631 
2632 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2633 			   get_order(copy));
2634 	if (unlikely(!page))
2635 		return -ENOMEM;
2636 
2637 	raw = page_address(page);
2638 	i = first_sge;
2639 	do {
2640 		sge = sk_msg_elem(msg, i);
2641 		from = sg_virt(sge);
2642 		len = sge->length;
2643 		to = raw + poffset;
2644 
2645 		memcpy(to, from, len);
2646 		poffset += len;
2647 		sge->length = 0;
2648 		put_page(sg_page(sge));
2649 
2650 		sk_msg_iter_var_next(i);
2651 	} while (i != last_sge);
2652 
2653 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2654 
2655 	/* To repair sg ring we need to shift entries. If we only
2656 	 * had a single entry though we can just replace it and
2657 	 * be done. Otherwise walk the ring and shift the entries.
2658 	 */
2659 	WARN_ON_ONCE(last_sge == first_sge);
2660 	shift = last_sge > first_sge ?
2661 		last_sge - first_sge - 1 :
2662 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2663 	if (!shift)
2664 		goto out;
2665 
2666 	i = first_sge;
2667 	sk_msg_iter_var_next(i);
2668 	do {
2669 		u32 move_from;
2670 
2671 		if (i + shift >= NR_MSG_FRAG_IDS)
2672 			move_from = i + shift - NR_MSG_FRAG_IDS;
2673 		else
2674 			move_from = i + shift;
2675 		if (move_from == msg->sg.end)
2676 			break;
2677 
2678 		msg->sg.data[i] = msg->sg.data[move_from];
2679 		msg->sg.data[move_from].length = 0;
2680 		msg->sg.data[move_from].page_link = 0;
2681 		msg->sg.data[move_from].offset = 0;
2682 		sk_msg_iter_var_next(i);
2683 	} while (1);
2684 
2685 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2686 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2687 		      msg->sg.end - shift;
2688 out:
2689 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2690 	msg->data_end = msg->data + bytes;
2691 	return 0;
2692 }
2693 
2694 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2695 	.func		= bpf_msg_pull_data,
2696 	.gpl_only	= false,
2697 	.ret_type	= RET_INTEGER,
2698 	.arg1_type	= ARG_PTR_TO_CTX,
2699 	.arg2_type	= ARG_ANYTHING,
2700 	.arg3_type	= ARG_ANYTHING,
2701 	.arg4_type	= ARG_ANYTHING,
2702 };
2703 
2704 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2705 	   u32, len, u64, flags)
2706 {
2707 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2708 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2709 	u8 *raw, *to, *from;
2710 	struct page *page;
2711 
2712 	if (unlikely(flags))
2713 		return -EINVAL;
2714 
2715 	if (unlikely(len == 0))
2716 		return 0;
2717 
2718 	/* First find the starting scatterlist element */
2719 	i = msg->sg.start;
2720 	do {
2721 		offset += l;
2722 		l = sk_msg_elem(msg, i)->length;
2723 
2724 		if (start < offset + l)
2725 			break;
2726 		sk_msg_iter_var_next(i);
2727 	} while (i != msg->sg.end);
2728 
2729 	if (start >= offset + l)
2730 		return -EINVAL;
2731 
2732 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2733 
2734 	/* If no space available will fallback to copy, we need at
2735 	 * least one scatterlist elem available to push data into
2736 	 * when start aligns to the beginning of an element or two
2737 	 * when it falls inside an element. We handle the start equals
2738 	 * offset case because its the common case for inserting a
2739 	 * header.
2740 	 */
2741 	if (!space || (space == 1 && start != offset))
2742 		copy = msg->sg.data[i].length;
2743 
2744 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2745 			   get_order(copy + len));
2746 	if (unlikely(!page))
2747 		return -ENOMEM;
2748 
2749 	if (copy) {
2750 		int front, back;
2751 
2752 		raw = page_address(page);
2753 
2754 		psge = sk_msg_elem(msg, i);
2755 		front = start - offset;
2756 		back = psge->length - front;
2757 		from = sg_virt(psge);
2758 
2759 		if (front)
2760 			memcpy(raw, from, front);
2761 
2762 		if (back) {
2763 			from += front;
2764 			to = raw + front + len;
2765 
2766 			memcpy(to, from, back);
2767 		}
2768 
2769 		put_page(sg_page(psge));
2770 	} else if (start - offset) {
2771 		psge = sk_msg_elem(msg, i);
2772 		rsge = sk_msg_elem_cpy(msg, i);
2773 
2774 		psge->length = start - offset;
2775 		rsge.length -= psge->length;
2776 		rsge.offset += start;
2777 
2778 		sk_msg_iter_var_next(i);
2779 		sg_unmark_end(psge);
2780 		sg_unmark_end(&rsge);
2781 		sk_msg_iter_next(msg, end);
2782 	}
2783 
2784 	/* Slot(s) to place newly allocated data */
2785 	new = i;
2786 
2787 	/* Shift one or two slots as needed */
2788 	if (!copy) {
2789 		sge = sk_msg_elem_cpy(msg, i);
2790 
2791 		sk_msg_iter_var_next(i);
2792 		sg_unmark_end(&sge);
2793 		sk_msg_iter_next(msg, end);
2794 
2795 		nsge = sk_msg_elem_cpy(msg, i);
2796 		if (rsge.length) {
2797 			sk_msg_iter_var_next(i);
2798 			nnsge = sk_msg_elem_cpy(msg, i);
2799 		}
2800 
2801 		while (i != msg->sg.end) {
2802 			msg->sg.data[i] = sge;
2803 			sge = nsge;
2804 			sk_msg_iter_var_next(i);
2805 			if (rsge.length) {
2806 				nsge = nnsge;
2807 				nnsge = sk_msg_elem_cpy(msg, i);
2808 			} else {
2809 				nsge = sk_msg_elem_cpy(msg, i);
2810 			}
2811 		}
2812 	}
2813 
2814 	/* Place newly allocated data buffer */
2815 	sk_mem_charge(msg->sk, len);
2816 	msg->sg.size += len;
2817 	__clear_bit(new, msg->sg.copy);
2818 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2819 	if (rsge.length) {
2820 		get_page(sg_page(&rsge));
2821 		sk_msg_iter_var_next(new);
2822 		msg->sg.data[new] = rsge;
2823 	}
2824 
2825 	sk_msg_compute_data_pointers(msg);
2826 	return 0;
2827 }
2828 
2829 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2830 	.func		= bpf_msg_push_data,
2831 	.gpl_only	= false,
2832 	.ret_type	= RET_INTEGER,
2833 	.arg1_type	= ARG_PTR_TO_CTX,
2834 	.arg2_type	= ARG_ANYTHING,
2835 	.arg3_type	= ARG_ANYTHING,
2836 	.arg4_type	= ARG_ANYTHING,
2837 };
2838 
2839 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2840 {
2841 	int prev;
2842 
2843 	do {
2844 		prev = i;
2845 		sk_msg_iter_var_next(i);
2846 		msg->sg.data[prev] = msg->sg.data[i];
2847 	} while (i != msg->sg.end);
2848 
2849 	sk_msg_iter_prev(msg, end);
2850 }
2851 
2852 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2853 {
2854 	struct scatterlist tmp, sge;
2855 
2856 	sk_msg_iter_next(msg, end);
2857 	sge = sk_msg_elem_cpy(msg, i);
2858 	sk_msg_iter_var_next(i);
2859 	tmp = sk_msg_elem_cpy(msg, i);
2860 
2861 	while (i != msg->sg.end) {
2862 		msg->sg.data[i] = sge;
2863 		sk_msg_iter_var_next(i);
2864 		sge = tmp;
2865 		tmp = sk_msg_elem_cpy(msg, i);
2866 	}
2867 }
2868 
2869 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2870 	   u32, len, u64, flags)
2871 {
2872 	u32 i = 0, l = 0, space, offset = 0;
2873 	u64 last = start + len;
2874 	int pop;
2875 
2876 	if (unlikely(flags))
2877 		return -EINVAL;
2878 
2879 	/* First find the starting scatterlist element */
2880 	i = msg->sg.start;
2881 	do {
2882 		offset += l;
2883 		l = sk_msg_elem(msg, i)->length;
2884 
2885 		if (start < offset + l)
2886 			break;
2887 		sk_msg_iter_var_next(i);
2888 	} while (i != msg->sg.end);
2889 
2890 	/* Bounds checks: start and pop must be inside message */
2891 	if (start >= offset + l || last >= msg->sg.size)
2892 		return -EINVAL;
2893 
2894 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2895 
2896 	pop = len;
2897 	/* --------------| offset
2898 	 * -| start      |-------- len -------|
2899 	 *
2900 	 *  |----- a ----|-------- pop -------|----- b ----|
2901 	 *  |______________________________________________| length
2902 	 *
2903 	 *
2904 	 * a:   region at front of scatter element to save
2905 	 * b:   region at back of scatter element to save when length > A + pop
2906 	 * pop: region to pop from element, same as input 'pop' here will be
2907 	 *      decremented below per iteration.
2908 	 *
2909 	 * Two top-level cases to handle when start != offset, first B is non
2910 	 * zero and second B is zero corresponding to when a pop includes more
2911 	 * than one element.
2912 	 *
2913 	 * Then if B is non-zero AND there is no space allocate space and
2914 	 * compact A, B regions into page. If there is space shift ring to
2915 	 * the rigth free'ing the next element in ring to place B, leaving
2916 	 * A untouched except to reduce length.
2917 	 */
2918 	if (start != offset) {
2919 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2920 		int a = start;
2921 		int b = sge->length - pop - a;
2922 
2923 		sk_msg_iter_var_next(i);
2924 
2925 		if (pop < sge->length - a) {
2926 			if (space) {
2927 				sge->length = a;
2928 				sk_msg_shift_right(msg, i);
2929 				nsge = sk_msg_elem(msg, i);
2930 				get_page(sg_page(sge));
2931 				sg_set_page(nsge,
2932 					    sg_page(sge),
2933 					    b, sge->offset + pop + a);
2934 			} else {
2935 				struct page *page, *orig;
2936 				u8 *to, *from;
2937 
2938 				page = alloc_pages(__GFP_NOWARN |
2939 						   __GFP_COMP   | GFP_ATOMIC,
2940 						   get_order(a + b));
2941 				if (unlikely(!page))
2942 					return -ENOMEM;
2943 
2944 				sge->length = a;
2945 				orig = sg_page(sge);
2946 				from = sg_virt(sge);
2947 				to = page_address(page);
2948 				memcpy(to, from, a);
2949 				memcpy(to + a, from + a + pop, b);
2950 				sg_set_page(sge, page, a + b, 0);
2951 				put_page(orig);
2952 			}
2953 			pop = 0;
2954 		} else if (pop >= sge->length - a) {
2955 			pop -= (sge->length - a);
2956 			sge->length = a;
2957 		}
2958 	}
2959 
2960 	/* From above the current layout _must_ be as follows,
2961 	 *
2962 	 * -| offset
2963 	 * -| start
2964 	 *
2965 	 *  |---- pop ---|---------------- b ------------|
2966 	 *  |____________________________________________| length
2967 	 *
2968 	 * Offset and start of the current msg elem are equal because in the
2969 	 * previous case we handled offset != start and either consumed the
2970 	 * entire element and advanced to the next element OR pop == 0.
2971 	 *
2972 	 * Two cases to handle here are first pop is less than the length
2973 	 * leaving some remainder b above. Simply adjust the element's layout
2974 	 * in this case. Or pop >= length of the element so that b = 0. In this
2975 	 * case advance to next element decrementing pop.
2976 	 */
2977 	while (pop) {
2978 		struct scatterlist *sge = sk_msg_elem(msg, i);
2979 
2980 		if (pop < sge->length) {
2981 			sge->length -= pop;
2982 			sge->offset += pop;
2983 			pop = 0;
2984 		} else {
2985 			pop -= sge->length;
2986 			sk_msg_shift_left(msg, i);
2987 		}
2988 		sk_msg_iter_var_next(i);
2989 	}
2990 
2991 	sk_mem_uncharge(msg->sk, len - pop);
2992 	msg->sg.size -= (len - pop);
2993 	sk_msg_compute_data_pointers(msg);
2994 	return 0;
2995 }
2996 
2997 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2998 	.func		= bpf_msg_pop_data,
2999 	.gpl_only	= false,
3000 	.ret_type	= RET_INTEGER,
3001 	.arg1_type	= ARG_PTR_TO_CTX,
3002 	.arg2_type	= ARG_ANYTHING,
3003 	.arg3_type	= ARG_ANYTHING,
3004 	.arg4_type	= ARG_ANYTHING,
3005 };
3006 
3007 #ifdef CONFIG_CGROUP_NET_CLASSID
3008 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3009 {
3010 	return __task_get_classid(current);
3011 }
3012 
3013 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3014 	.func		= bpf_get_cgroup_classid_curr,
3015 	.gpl_only	= false,
3016 	.ret_type	= RET_INTEGER,
3017 };
3018 
3019 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3020 {
3021 	struct sock *sk = skb_to_full_sk(skb);
3022 
3023 	if (!sk || !sk_fullsock(sk))
3024 		return 0;
3025 
3026 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3027 }
3028 
3029 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3030 	.func		= bpf_skb_cgroup_classid,
3031 	.gpl_only	= false,
3032 	.ret_type	= RET_INTEGER,
3033 	.arg1_type	= ARG_PTR_TO_CTX,
3034 };
3035 #endif
3036 
3037 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3038 {
3039 	return task_get_classid(skb);
3040 }
3041 
3042 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3043 	.func           = bpf_get_cgroup_classid,
3044 	.gpl_only       = false,
3045 	.ret_type       = RET_INTEGER,
3046 	.arg1_type      = ARG_PTR_TO_CTX,
3047 };
3048 
3049 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3050 {
3051 	return dst_tclassid(skb);
3052 }
3053 
3054 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3055 	.func           = bpf_get_route_realm,
3056 	.gpl_only       = false,
3057 	.ret_type       = RET_INTEGER,
3058 	.arg1_type      = ARG_PTR_TO_CTX,
3059 };
3060 
3061 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3062 {
3063 	/* If skb_clear_hash() was called due to mangling, we can
3064 	 * trigger SW recalculation here. Later access to hash
3065 	 * can then use the inline skb->hash via context directly
3066 	 * instead of calling this helper again.
3067 	 */
3068 	return skb_get_hash(skb);
3069 }
3070 
3071 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3072 	.func		= bpf_get_hash_recalc,
3073 	.gpl_only	= false,
3074 	.ret_type	= RET_INTEGER,
3075 	.arg1_type	= ARG_PTR_TO_CTX,
3076 };
3077 
3078 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3079 {
3080 	/* After all direct packet write, this can be used once for
3081 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3082 	 */
3083 	skb_clear_hash(skb);
3084 	return 0;
3085 }
3086 
3087 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3088 	.func		= bpf_set_hash_invalid,
3089 	.gpl_only	= false,
3090 	.ret_type	= RET_INTEGER,
3091 	.arg1_type	= ARG_PTR_TO_CTX,
3092 };
3093 
3094 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3095 {
3096 	/* Set user specified hash as L4(+), so that it gets returned
3097 	 * on skb_get_hash() call unless BPF prog later on triggers a
3098 	 * skb_clear_hash().
3099 	 */
3100 	__skb_set_sw_hash(skb, hash, true);
3101 	return 0;
3102 }
3103 
3104 static const struct bpf_func_proto bpf_set_hash_proto = {
3105 	.func		= bpf_set_hash,
3106 	.gpl_only	= false,
3107 	.ret_type	= RET_INTEGER,
3108 	.arg1_type	= ARG_PTR_TO_CTX,
3109 	.arg2_type	= ARG_ANYTHING,
3110 };
3111 
3112 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3113 	   u16, vlan_tci)
3114 {
3115 	int ret;
3116 
3117 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3118 		     vlan_proto != htons(ETH_P_8021AD)))
3119 		vlan_proto = htons(ETH_P_8021Q);
3120 
3121 	bpf_push_mac_rcsum(skb);
3122 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3123 	bpf_pull_mac_rcsum(skb);
3124 
3125 	bpf_compute_data_pointers(skb);
3126 	return ret;
3127 }
3128 
3129 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3130 	.func           = bpf_skb_vlan_push,
3131 	.gpl_only       = false,
3132 	.ret_type       = RET_INTEGER,
3133 	.arg1_type      = ARG_PTR_TO_CTX,
3134 	.arg2_type      = ARG_ANYTHING,
3135 	.arg3_type      = ARG_ANYTHING,
3136 };
3137 
3138 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3139 {
3140 	int ret;
3141 
3142 	bpf_push_mac_rcsum(skb);
3143 	ret = skb_vlan_pop(skb);
3144 	bpf_pull_mac_rcsum(skb);
3145 
3146 	bpf_compute_data_pointers(skb);
3147 	return ret;
3148 }
3149 
3150 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3151 	.func           = bpf_skb_vlan_pop,
3152 	.gpl_only       = false,
3153 	.ret_type       = RET_INTEGER,
3154 	.arg1_type      = ARG_PTR_TO_CTX,
3155 };
3156 
3157 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3158 {
3159 	/* Caller already did skb_cow() with len as headroom,
3160 	 * so no need to do it here.
3161 	 */
3162 	skb_push(skb, len);
3163 	memmove(skb->data, skb->data + len, off);
3164 	memset(skb->data + off, 0, len);
3165 
3166 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3167 	 * needed here as it does not change the skb->csum
3168 	 * result for checksum complete when summing over
3169 	 * zeroed blocks.
3170 	 */
3171 	return 0;
3172 }
3173 
3174 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3175 {
3176 	/* skb_ensure_writable() is not needed here, as we're
3177 	 * already working on an uncloned skb.
3178 	 */
3179 	if (unlikely(!pskb_may_pull(skb, off + len)))
3180 		return -ENOMEM;
3181 
3182 	skb_postpull_rcsum(skb, skb->data + off, len);
3183 	memmove(skb->data + len, skb->data, off);
3184 	__skb_pull(skb, len);
3185 
3186 	return 0;
3187 }
3188 
3189 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3190 {
3191 	bool trans_same = skb->transport_header == skb->network_header;
3192 	int ret;
3193 
3194 	/* There's no need for __skb_push()/__skb_pull() pair to
3195 	 * get to the start of the mac header as we're guaranteed
3196 	 * to always start from here under eBPF.
3197 	 */
3198 	ret = bpf_skb_generic_push(skb, off, len);
3199 	if (likely(!ret)) {
3200 		skb->mac_header -= len;
3201 		skb->network_header -= len;
3202 		if (trans_same)
3203 			skb->transport_header = skb->network_header;
3204 	}
3205 
3206 	return ret;
3207 }
3208 
3209 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3210 {
3211 	bool trans_same = skb->transport_header == skb->network_header;
3212 	int ret;
3213 
3214 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3215 	ret = bpf_skb_generic_pop(skb, off, len);
3216 	if (likely(!ret)) {
3217 		skb->mac_header += len;
3218 		skb->network_header += len;
3219 		if (trans_same)
3220 			skb->transport_header = skb->network_header;
3221 	}
3222 
3223 	return ret;
3224 }
3225 
3226 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3227 {
3228 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3229 	u32 off = skb_mac_header_len(skb);
3230 	int ret;
3231 
3232 	ret = skb_cow(skb, len_diff);
3233 	if (unlikely(ret < 0))
3234 		return ret;
3235 
3236 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3237 	if (unlikely(ret < 0))
3238 		return ret;
3239 
3240 	if (skb_is_gso(skb)) {
3241 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3242 
3243 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3244 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3245 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3246 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3247 		}
3248 	}
3249 
3250 	skb->protocol = htons(ETH_P_IPV6);
3251 	skb_clear_hash(skb);
3252 
3253 	return 0;
3254 }
3255 
3256 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3257 {
3258 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3259 	u32 off = skb_mac_header_len(skb);
3260 	int ret;
3261 
3262 	ret = skb_unclone(skb, GFP_ATOMIC);
3263 	if (unlikely(ret < 0))
3264 		return ret;
3265 
3266 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3267 	if (unlikely(ret < 0))
3268 		return ret;
3269 
3270 	if (skb_is_gso(skb)) {
3271 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3272 
3273 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3274 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3275 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3276 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3277 		}
3278 	}
3279 
3280 	skb->protocol = htons(ETH_P_IP);
3281 	skb_clear_hash(skb);
3282 
3283 	return 0;
3284 }
3285 
3286 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3287 {
3288 	__be16 from_proto = skb->protocol;
3289 
3290 	if (from_proto == htons(ETH_P_IP) &&
3291 	      to_proto == htons(ETH_P_IPV6))
3292 		return bpf_skb_proto_4_to_6(skb);
3293 
3294 	if (from_proto == htons(ETH_P_IPV6) &&
3295 	      to_proto == htons(ETH_P_IP))
3296 		return bpf_skb_proto_6_to_4(skb);
3297 
3298 	return -ENOTSUPP;
3299 }
3300 
3301 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3302 	   u64, flags)
3303 {
3304 	int ret;
3305 
3306 	if (unlikely(flags))
3307 		return -EINVAL;
3308 
3309 	/* General idea is that this helper does the basic groundwork
3310 	 * needed for changing the protocol, and eBPF program fills the
3311 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3312 	 * and other helpers, rather than passing a raw buffer here.
3313 	 *
3314 	 * The rationale is to keep this minimal and without a need to
3315 	 * deal with raw packet data. F.e. even if we would pass buffers
3316 	 * here, the program still needs to call the bpf_lX_csum_replace()
3317 	 * helpers anyway. Plus, this way we keep also separation of
3318 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3319 	 * care of stores.
3320 	 *
3321 	 * Currently, additional options and extension header space are
3322 	 * not supported, but flags register is reserved so we can adapt
3323 	 * that. For offloads, we mark packet as dodgy, so that headers
3324 	 * need to be verified first.
3325 	 */
3326 	ret = bpf_skb_proto_xlat(skb, proto);
3327 	bpf_compute_data_pointers(skb);
3328 	return ret;
3329 }
3330 
3331 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3332 	.func		= bpf_skb_change_proto,
3333 	.gpl_only	= false,
3334 	.ret_type	= RET_INTEGER,
3335 	.arg1_type	= ARG_PTR_TO_CTX,
3336 	.arg2_type	= ARG_ANYTHING,
3337 	.arg3_type	= ARG_ANYTHING,
3338 };
3339 
3340 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3341 {
3342 	/* We only allow a restricted subset to be changed for now. */
3343 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3344 		     !skb_pkt_type_ok(pkt_type)))
3345 		return -EINVAL;
3346 
3347 	skb->pkt_type = pkt_type;
3348 	return 0;
3349 }
3350 
3351 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3352 	.func		= bpf_skb_change_type,
3353 	.gpl_only	= false,
3354 	.ret_type	= RET_INTEGER,
3355 	.arg1_type	= ARG_PTR_TO_CTX,
3356 	.arg2_type	= ARG_ANYTHING,
3357 };
3358 
3359 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3360 {
3361 	switch (skb->protocol) {
3362 	case htons(ETH_P_IP):
3363 		return sizeof(struct iphdr);
3364 	case htons(ETH_P_IPV6):
3365 		return sizeof(struct ipv6hdr);
3366 	default:
3367 		return ~0U;
3368 	}
3369 }
3370 
3371 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3372 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3373 
3374 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3375 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3376 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3377 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3378 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3379 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3380 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3381 
3382 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3383 			    u64 flags)
3384 {
3385 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3386 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3387 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3388 	unsigned int gso_type = SKB_GSO_DODGY;
3389 	int ret;
3390 
3391 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3392 		/* udp gso_size delineates datagrams, only allow if fixed */
3393 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3394 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3395 			return -ENOTSUPP;
3396 	}
3397 
3398 	ret = skb_cow_head(skb, len_diff);
3399 	if (unlikely(ret < 0))
3400 		return ret;
3401 
3402 	if (encap) {
3403 		if (skb->protocol != htons(ETH_P_IP) &&
3404 		    skb->protocol != htons(ETH_P_IPV6))
3405 			return -ENOTSUPP;
3406 
3407 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3408 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3409 			return -EINVAL;
3410 
3411 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3412 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3413 			return -EINVAL;
3414 
3415 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3416 		    inner_mac_len < ETH_HLEN)
3417 			return -EINVAL;
3418 
3419 		if (skb->encapsulation)
3420 			return -EALREADY;
3421 
3422 		mac_len = skb->network_header - skb->mac_header;
3423 		inner_net = skb->network_header;
3424 		if (inner_mac_len > len_diff)
3425 			return -EINVAL;
3426 		inner_trans = skb->transport_header;
3427 	}
3428 
3429 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3430 	if (unlikely(ret < 0))
3431 		return ret;
3432 
3433 	if (encap) {
3434 		skb->inner_mac_header = inner_net - inner_mac_len;
3435 		skb->inner_network_header = inner_net;
3436 		skb->inner_transport_header = inner_trans;
3437 
3438 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3439 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3440 		else
3441 			skb_set_inner_protocol(skb, skb->protocol);
3442 
3443 		skb->encapsulation = 1;
3444 		skb_set_network_header(skb, mac_len);
3445 
3446 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3447 			gso_type |= SKB_GSO_UDP_TUNNEL;
3448 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3449 			gso_type |= SKB_GSO_GRE;
3450 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3451 			gso_type |= SKB_GSO_IPXIP6;
3452 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3453 			gso_type |= SKB_GSO_IPXIP4;
3454 
3455 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3456 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3457 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3458 					sizeof(struct ipv6hdr) :
3459 					sizeof(struct iphdr);
3460 
3461 			skb_set_transport_header(skb, mac_len + nh_len);
3462 		}
3463 
3464 		/* Match skb->protocol to new outer l3 protocol */
3465 		if (skb->protocol == htons(ETH_P_IP) &&
3466 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3467 			skb->protocol = htons(ETH_P_IPV6);
3468 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3469 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3470 			skb->protocol = htons(ETH_P_IP);
3471 	}
3472 
3473 	if (skb_is_gso(skb)) {
3474 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3475 
3476 		/* Due to header grow, MSS needs to be downgraded. */
3477 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3478 			skb_decrease_gso_size(shinfo, len_diff);
3479 
3480 		/* Header must be checked, and gso_segs recomputed. */
3481 		shinfo->gso_type |= gso_type;
3482 		shinfo->gso_segs = 0;
3483 	}
3484 
3485 	return 0;
3486 }
3487 
3488 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3489 			      u64 flags)
3490 {
3491 	int ret;
3492 
3493 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3494 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3495 		return -EINVAL;
3496 
3497 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3498 		/* udp gso_size delineates datagrams, only allow if fixed */
3499 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3500 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3501 			return -ENOTSUPP;
3502 	}
3503 
3504 	ret = skb_unclone(skb, GFP_ATOMIC);
3505 	if (unlikely(ret < 0))
3506 		return ret;
3507 
3508 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3509 	if (unlikely(ret < 0))
3510 		return ret;
3511 
3512 	if (skb_is_gso(skb)) {
3513 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3514 
3515 		/* Due to header shrink, MSS can be upgraded. */
3516 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3517 			skb_increase_gso_size(shinfo, len_diff);
3518 
3519 		/* Header must be checked, and gso_segs recomputed. */
3520 		shinfo->gso_type |= SKB_GSO_DODGY;
3521 		shinfo->gso_segs = 0;
3522 	}
3523 
3524 	return 0;
3525 }
3526 
3527 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3528 
3529 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3530 	   u32, mode, u64, flags)
3531 {
3532 	u32 len_diff_abs = abs(len_diff);
3533 	bool shrink = len_diff < 0;
3534 	int ret = 0;
3535 
3536 	if (unlikely(flags || mode))
3537 		return -EINVAL;
3538 	if (unlikely(len_diff_abs > 0xfffU))
3539 		return -EFAULT;
3540 
3541 	if (!shrink) {
3542 		ret = skb_cow(skb, len_diff);
3543 		if (unlikely(ret < 0))
3544 			return ret;
3545 		__skb_push(skb, len_diff_abs);
3546 		memset(skb->data, 0, len_diff_abs);
3547 	} else {
3548 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3549 			return -ENOMEM;
3550 		__skb_pull(skb, len_diff_abs);
3551 	}
3552 	if (tls_sw_has_ctx_rx(skb->sk)) {
3553 		struct strp_msg *rxm = strp_msg(skb);
3554 
3555 		rxm->full_len += len_diff;
3556 	}
3557 	return ret;
3558 }
3559 
3560 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3561 	.func		= sk_skb_adjust_room,
3562 	.gpl_only	= false,
3563 	.ret_type	= RET_INTEGER,
3564 	.arg1_type	= ARG_PTR_TO_CTX,
3565 	.arg2_type	= ARG_ANYTHING,
3566 	.arg3_type	= ARG_ANYTHING,
3567 	.arg4_type	= ARG_ANYTHING,
3568 };
3569 
3570 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3571 	   u32, mode, u64, flags)
3572 {
3573 	u32 len_cur, len_diff_abs = abs(len_diff);
3574 	u32 len_min = bpf_skb_net_base_len(skb);
3575 	u32 len_max = BPF_SKB_MAX_LEN;
3576 	__be16 proto = skb->protocol;
3577 	bool shrink = len_diff < 0;
3578 	u32 off;
3579 	int ret;
3580 
3581 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3582 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3583 		return -EINVAL;
3584 	if (unlikely(len_diff_abs > 0xfffU))
3585 		return -EFAULT;
3586 	if (unlikely(proto != htons(ETH_P_IP) &&
3587 		     proto != htons(ETH_P_IPV6)))
3588 		return -ENOTSUPP;
3589 
3590 	off = skb_mac_header_len(skb);
3591 	switch (mode) {
3592 	case BPF_ADJ_ROOM_NET:
3593 		off += bpf_skb_net_base_len(skb);
3594 		break;
3595 	case BPF_ADJ_ROOM_MAC:
3596 		break;
3597 	default:
3598 		return -ENOTSUPP;
3599 	}
3600 
3601 	len_cur = skb->len - skb_network_offset(skb);
3602 	if ((shrink && (len_diff_abs >= len_cur ||
3603 			len_cur - len_diff_abs < len_min)) ||
3604 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3605 			 !skb_is_gso(skb))))
3606 		return -ENOTSUPP;
3607 
3608 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3609 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3610 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3611 		__skb_reset_checksum_unnecessary(skb);
3612 
3613 	bpf_compute_data_pointers(skb);
3614 	return ret;
3615 }
3616 
3617 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3618 	.func		= bpf_skb_adjust_room,
3619 	.gpl_only	= false,
3620 	.ret_type	= RET_INTEGER,
3621 	.arg1_type	= ARG_PTR_TO_CTX,
3622 	.arg2_type	= ARG_ANYTHING,
3623 	.arg3_type	= ARG_ANYTHING,
3624 	.arg4_type	= ARG_ANYTHING,
3625 };
3626 
3627 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3628 {
3629 	u32 min_len = skb_network_offset(skb);
3630 
3631 	if (skb_transport_header_was_set(skb))
3632 		min_len = skb_transport_offset(skb);
3633 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3634 		min_len = skb_checksum_start_offset(skb) +
3635 			  skb->csum_offset + sizeof(__sum16);
3636 	return min_len;
3637 }
3638 
3639 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3640 {
3641 	unsigned int old_len = skb->len;
3642 	int ret;
3643 
3644 	ret = __skb_grow_rcsum(skb, new_len);
3645 	if (!ret)
3646 		memset(skb->data + old_len, 0, new_len - old_len);
3647 	return ret;
3648 }
3649 
3650 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3651 {
3652 	return __skb_trim_rcsum(skb, new_len);
3653 }
3654 
3655 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3656 					u64 flags)
3657 {
3658 	u32 max_len = BPF_SKB_MAX_LEN;
3659 	u32 min_len = __bpf_skb_min_len(skb);
3660 	int ret;
3661 
3662 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3663 		return -EINVAL;
3664 	if (skb->encapsulation)
3665 		return -ENOTSUPP;
3666 
3667 	/* The basic idea of this helper is that it's performing the
3668 	 * needed work to either grow or trim an skb, and eBPF program
3669 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3670 	 * bpf_lX_csum_replace() and others rather than passing a raw
3671 	 * buffer here. This one is a slow path helper and intended
3672 	 * for replies with control messages.
3673 	 *
3674 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3675 	 * minimal and without protocol specifics so that we are able
3676 	 * to separate concerns as in bpf_skb_store_bytes() should only
3677 	 * be the one responsible for writing buffers.
3678 	 *
3679 	 * It's really expected to be a slow path operation here for
3680 	 * control message replies, so we're implicitly linearizing,
3681 	 * uncloning and drop offloads from the skb by this.
3682 	 */
3683 	ret = __bpf_try_make_writable(skb, skb->len);
3684 	if (!ret) {
3685 		if (new_len > skb->len)
3686 			ret = bpf_skb_grow_rcsum(skb, new_len);
3687 		else if (new_len < skb->len)
3688 			ret = bpf_skb_trim_rcsum(skb, new_len);
3689 		if (!ret && skb_is_gso(skb))
3690 			skb_gso_reset(skb);
3691 	}
3692 	return ret;
3693 }
3694 
3695 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3696 	   u64, flags)
3697 {
3698 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3699 
3700 	bpf_compute_data_pointers(skb);
3701 	return ret;
3702 }
3703 
3704 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3705 	.func		= bpf_skb_change_tail,
3706 	.gpl_only	= false,
3707 	.ret_type	= RET_INTEGER,
3708 	.arg1_type	= ARG_PTR_TO_CTX,
3709 	.arg2_type	= ARG_ANYTHING,
3710 	.arg3_type	= ARG_ANYTHING,
3711 };
3712 
3713 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3714 	   u64, flags)
3715 {
3716 	return __bpf_skb_change_tail(skb, new_len, flags);
3717 }
3718 
3719 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3720 	.func		= sk_skb_change_tail,
3721 	.gpl_only	= false,
3722 	.ret_type	= RET_INTEGER,
3723 	.arg1_type	= ARG_PTR_TO_CTX,
3724 	.arg2_type	= ARG_ANYTHING,
3725 	.arg3_type	= ARG_ANYTHING,
3726 };
3727 
3728 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3729 					u64 flags)
3730 {
3731 	u32 max_len = BPF_SKB_MAX_LEN;
3732 	u32 new_len = skb->len + head_room;
3733 	int ret;
3734 
3735 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3736 		     new_len < skb->len))
3737 		return -EINVAL;
3738 
3739 	ret = skb_cow(skb, head_room);
3740 	if (likely(!ret)) {
3741 		/* Idea for this helper is that we currently only
3742 		 * allow to expand on mac header. This means that
3743 		 * skb->protocol network header, etc, stay as is.
3744 		 * Compared to bpf_skb_change_tail(), we're more
3745 		 * flexible due to not needing to linearize or
3746 		 * reset GSO. Intention for this helper is to be
3747 		 * used by an L3 skb that needs to push mac header
3748 		 * for redirection into L2 device.
3749 		 */
3750 		__skb_push(skb, head_room);
3751 		memset(skb->data, 0, head_room);
3752 		skb_reset_mac_header(skb);
3753 		skb_reset_mac_len(skb);
3754 	}
3755 
3756 	return ret;
3757 }
3758 
3759 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3760 	   u64, flags)
3761 {
3762 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3763 
3764 	bpf_compute_data_pointers(skb);
3765 	return ret;
3766 }
3767 
3768 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3769 	.func		= bpf_skb_change_head,
3770 	.gpl_only	= false,
3771 	.ret_type	= RET_INTEGER,
3772 	.arg1_type	= ARG_PTR_TO_CTX,
3773 	.arg2_type	= ARG_ANYTHING,
3774 	.arg3_type	= ARG_ANYTHING,
3775 };
3776 
3777 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3778 	   u64, flags)
3779 {
3780 	return __bpf_skb_change_head(skb, head_room, flags);
3781 }
3782 
3783 static const struct bpf_func_proto sk_skb_change_head_proto = {
3784 	.func		= sk_skb_change_head,
3785 	.gpl_only	= false,
3786 	.ret_type	= RET_INTEGER,
3787 	.arg1_type	= ARG_PTR_TO_CTX,
3788 	.arg2_type	= ARG_ANYTHING,
3789 	.arg3_type	= ARG_ANYTHING,
3790 };
3791 
3792 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3793 {
3794 	return xdp_get_buff_len(xdp);
3795 }
3796 
3797 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3798 	.func		= bpf_xdp_get_buff_len,
3799 	.gpl_only	= false,
3800 	.ret_type	= RET_INTEGER,
3801 	.arg1_type	= ARG_PTR_TO_CTX,
3802 };
3803 
3804 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3805 
3806 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3807 	.func		= bpf_xdp_get_buff_len,
3808 	.gpl_only	= false,
3809 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3810 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3811 };
3812 
3813 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3814 {
3815 	return xdp_data_meta_unsupported(xdp) ? 0 :
3816 	       xdp->data - xdp->data_meta;
3817 }
3818 
3819 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3820 {
3821 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3822 	unsigned long metalen = xdp_get_metalen(xdp);
3823 	void *data_start = xdp_frame_end + metalen;
3824 	void *data = xdp->data + offset;
3825 
3826 	if (unlikely(data < data_start ||
3827 		     data > xdp->data_end - ETH_HLEN))
3828 		return -EINVAL;
3829 
3830 	if (metalen)
3831 		memmove(xdp->data_meta + offset,
3832 			xdp->data_meta, metalen);
3833 	xdp->data_meta += offset;
3834 	xdp->data = data;
3835 
3836 	return 0;
3837 }
3838 
3839 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3840 	.func		= bpf_xdp_adjust_head,
3841 	.gpl_only	= false,
3842 	.ret_type	= RET_INTEGER,
3843 	.arg1_type	= ARG_PTR_TO_CTX,
3844 	.arg2_type	= ARG_ANYTHING,
3845 };
3846 
3847 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3848 			     void *buf, unsigned long len, bool flush)
3849 {
3850 	unsigned long ptr_len, ptr_off = 0;
3851 	skb_frag_t *next_frag, *end_frag;
3852 	struct skb_shared_info *sinfo;
3853 	void *src, *dst;
3854 	u8 *ptr_buf;
3855 
3856 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3857 		src = flush ? buf : xdp->data + off;
3858 		dst = flush ? xdp->data + off : buf;
3859 		memcpy(dst, src, len);
3860 		return;
3861 	}
3862 
3863 	sinfo = xdp_get_shared_info_from_buff(xdp);
3864 	end_frag = &sinfo->frags[sinfo->nr_frags];
3865 	next_frag = &sinfo->frags[0];
3866 
3867 	ptr_len = xdp->data_end - xdp->data;
3868 	ptr_buf = xdp->data;
3869 
3870 	while (true) {
3871 		if (off < ptr_off + ptr_len) {
3872 			unsigned long copy_off = off - ptr_off;
3873 			unsigned long copy_len = min(len, ptr_len - copy_off);
3874 
3875 			src = flush ? buf : ptr_buf + copy_off;
3876 			dst = flush ? ptr_buf + copy_off : buf;
3877 			memcpy(dst, src, copy_len);
3878 
3879 			off += copy_len;
3880 			len -= copy_len;
3881 			buf += copy_len;
3882 		}
3883 
3884 		if (!len || next_frag == end_frag)
3885 			break;
3886 
3887 		ptr_off += ptr_len;
3888 		ptr_buf = skb_frag_address(next_frag);
3889 		ptr_len = skb_frag_size(next_frag);
3890 		next_frag++;
3891 	}
3892 }
3893 
3894 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3895 {
3896 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3897 	u32 size = xdp->data_end - xdp->data;
3898 	void *addr = xdp->data;
3899 	int i;
3900 
3901 	if (unlikely(offset > 0xffff || len > 0xffff))
3902 		return ERR_PTR(-EFAULT);
3903 
3904 	if (offset + len > xdp_get_buff_len(xdp))
3905 		return ERR_PTR(-EINVAL);
3906 
3907 	if (offset < size) /* linear area */
3908 		goto out;
3909 
3910 	offset -= size;
3911 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3912 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3913 
3914 		if  (offset < frag_size) {
3915 			addr = skb_frag_address(&sinfo->frags[i]);
3916 			size = frag_size;
3917 			break;
3918 		}
3919 		offset -= frag_size;
3920 	}
3921 out:
3922 	return offset + len <= size ? addr + offset : NULL;
3923 }
3924 
3925 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3926 	   void *, buf, u32, len)
3927 {
3928 	void *ptr;
3929 
3930 	ptr = bpf_xdp_pointer(xdp, offset, len);
3931 	if (IS_ERR(ptr))
3932 		return PTR_ERR(ptr);
3933 
3934 	if (!ptr)
3935 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3936 	else
3937 		memcpy(buf, ptr, len);
3938 
3939 	return 0;
3940 }
3941 
3942 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3943 	.func		= bpf_xdp_load_bytes,
3944 	.gpl_only	= false,
3945 	.ret_type	= RET_INTEGER,
3946 	.arg1_type	= ARG_PTR_TO_CTX,
3947 	.arg2_type	= ARG_ANYTHING,
3948 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3949 	.arg4_type	= ARG_CONST_SIZE,
3950 };
3951 
3952 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3953 	   void *, buf, u32, len)
3954 {
3955 	void *ptr;
3956 
3957 	ptr = bpf_xdp_pointer(xdp, offset, len);
3958 	if (IS_ERR(ptr))
3959 		return PTR_ERR(ptr);
3960 
3961 	if (!ptr)
3962 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
3963 	else
3964 		memcpy(ptr, buf, len);
3965 
3966 	return 0;
3967 }
3968 
3969 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
3970 	.func		= bpf_xdp_store_bytes,
3971 	.gpl_only	= false,
3972 	.ret_type	= RET_INTEGER,
3973 	.arg1_type	= ARG_PTR_TO_CTX,
3974 	.arg2_type	= ARG_ANYTHING,
3975 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3976 	.arg4_type	= ARG_CONST_SIZE,
3977 };
3978 
3979 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
3980 {
3981 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3982 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
3983 	struct xdp_rxq_info *rxq = xdp->rxq;
3984 	unsigned int tailroom;
3985 
3986 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
3987 		return -EOPNOTSUPP;
3988 
3989 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
3990 	if (unlikely(offset > tailroom))
3991 		return -EINVAL;
3992 
3993 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
3994 	skb_frag_size_add(frag, offset);
3995 	sinfo->xdp_frags_size += offset;
3996 
3997 	return 0;
3998 }
3999 
4000 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4001 {
4002 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4003 	int i, n_frags_free = 0, len_free = 0;
4004 
4005 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4006 		return -EINVAL;
4007 
4008 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4009 		skb_frag_t *frag = &sinfo->frags[i];
4010 		int shrink = min_t(int, offset, skb_frag_size(frag));
4011 
4012 		len_free += shrink;
4013 		offset -= shrink;
4014 
4015 		if (skb_frag_size(frag) == shrink) {
4016 			struct page *page = skb_frag_page(frag);
4017 
4018 			__xdp_return(page_address(page), &xdp->rxq->mem,
4019 				     false, NULL);
4020 			n_frags_free++;
4021 		} else {
4022 			skb_frag_size_sub(frag, shrink);
4023 			break;
4024 		}
4025 	}
4026 	sinfo->nr_frags -= n_frags_free;
4027 	sinfo->xdp_frags_size -= len_free;
4028 
4029 	if (unlikely(!sinfo->nr_frags)) {
4030 		xdp_buff_clear_frags_flag(xdp);
4031 		xdp->data_end -= offset;
4032 	}
4033 
4034 	return 0;
4035 }
4036 
4037 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4038 {
4039 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4040 	void *data_end = xdp->data_end + offset;
4041 
4042 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4043 		if (offset < 0)
4044 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4045 
4046 		return bpf_xdp_frags_increase_tail(xdp, offset);
4047 	}
4048 
4049 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4050 	if (unlikely(data_end > data_hard_end))
4051 		return -EINVAL;
4052 
4053 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
4054 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4055 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4056 		return -EINVAL;
4057 	}
4058 
4059 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4060 		return -EINVAL;
4061 
4062 	/* Clear memory area on grow, can contain uninit kernel memory */
4063 	if (offset > 0)
4064 		memset(xdp->data_end, 0, offset);
4065 
4066 	xdp->data_end = data_end;
4067 
4068 	return 0;
4069 }
4070 
4071 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4072 	.func		= bpf_xdp_adjust_tail,
4073 	.gpl_only	= false,
4074 	.ret_type	= RET_INTEGER,
4075 	.arg1_type	= ARG_PTR_TO_CTX,
4076 	.arg2_type	= ARG_ANYTHING,
4077 };
4078 
4079 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4080 {
4081 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4082 	void *meta = xdp->data_meta + offset;
4083 	unsigned long metalen = xdp->data - meta;
4084 
4085 	if (xdp_data_meta_unsupported(xdp))
4086 		return -ENOTSUPP;
4087 	if (unlikely(meta < xdp_frame_end ||
4088 		     meta > xdp->data))
4089 		return -EINVAL;
4090 	if (unlikely(xdp_metalen_invalid(metalen)))
4091 		return -EACCES;
4092 
4093 	xdp->data_meta = meta;
4094 
4095 	return 0;
4096 }
4097 
4098 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4099 	.func		= bpf_xdp_adjust_meta,
4100 	.gpl_only	= false,
4101 	.ret_type	= RET_INTEGER,
4102 	.arg1_type	= ARG_PTR_TO_CTX,
4103 	.arg2_type	= ARG_ANYTHING,
4104 };
4105 
4106 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4107  * below:
4108  *
4109  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4110  *    of the redirect and store it (along with some other metadata) in a per-CPU
4111  *    struct bpf_redirect_info.
4112  *
4113  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4114  *    call xdp_do_redirect() which will use the information in struct
4115  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4116  *    bulk queue structure.
4117  *
4118  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4119  *    which will flush all the different bulk queues, thus completing the
4120  *    redirect.
4121  *
4122  * Pointers to the map entries will be kept around for this whole sequence of
4123  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4124  * the core code; instead, the RCU protection relies on everything happening
4125  * inside a single NAPI poll sequence, which means it's between a pair of calls
4126  * to local_bh_disable()/local_bh_enable().
4127  *
4128  * The map entries are marked as __rcu and the map code makes sure to
4129  * dereference those pointers with rcu_dereference_check() in a way that works
4130  * for both sections that to hold an rcu_read_lock() and sections that are
4131  * called from NAPI without a separate rcu_read_lock(). The code below does not
4132  * use RCU annotations, but relies on those in the map code.
4133  */
4134 void xdp_do_flush(void)
4135 {
4136 	__dev_flush();
4137 	__cpu_map_flush();
4138 	__xsk_map_flush();
4139 }
4140 EXPORT_SYMBOL_GPL(xdp_do_flush);
4141 
4142 void bpf_clear_redirect_map(struct bpf_map *map)
4143 {
4144 	struct bpf_redirect_info *ri;
4145 	int cpu;
4146 
4147 	for_each_possible_cpu(cpu) {
4148 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4149 		/* Avoid polluting remote cacheline due to writes if
4150 		 * not needed. Once we pass this test, we need the
4151 		 * cmpxchg() to make sure it hasn't been changed in
4152 		 * the meantime by remote CPU.
4153 		 */
4154 		if (unlikely(READ_ONCE(ri->map) == map))
4155 			cmpxchg(&ri->map, map, NULL);
4156 	}
4157 }
4158 
4159 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4160 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4161 
4162 u32 xdp_master_redirect(struct xdp_buff *xdp)
4163 {
4164 	struct net_device *master, *slave;
4165 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4166 
4167 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4168 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4169 	if (slave && slave != xdp->rxq->dev) {
4170 		/* The target device is different from the receiving device, so
4171 		 * redirect it to the new device.
4172 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4173 		 * drivers to unmap the packet from their rx ring.
4174 		 */
4175 		ri->tgt_index = slave->ifindex;
4176 		ri->map_id = INT_MAX;
4177 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4178 		return XDP_REDIRECT;
4179 	}
4180 	return XDP_TX;
4181 }
4182 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4183 
4184 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4185 					struct net_device *dev,
4186 					struct xdp_buff *xdp,
4187 					struct bpf_prog *xdp_prog)
4188 {
4189 	enum bpf_map_type map_type = ri->map_type;
4190 	void *fwd = ri->tgt_value;
4191 	u32 map_id = ri->map_id;
4192 	int err;
4193 
4194 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4195 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4196 
4197 	err = __xsk_map_redirect(fwd, xdp);
4198 	if (unlikely(err))
4199 		goto err;
4200 
4201 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4202 	return 0;
4203 err:
4204 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4205 	return err;
4206 }
4207 
4208 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4209 						   struct net_device *dev,
4210 						   struct xdp_frame *xdpf,
4211 						   struct bpf_prog *xdp_prog)
4212 {
4213 	enum bpf_map_type map_type = ri->map_type;
4214 	void *fwd = ri->tgt_value;
4215 	u32 map_id = ri->map_id;
4216 	struct bpf_map *map;
4217 	int err;
4218 
4219 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4220 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4221 
4222 	if (unlikely(!xdpf)) {
4223 		err = -EOVERFLOW;
4224 		goto err;
4225 	}
4226 
4227 	switch (map_type) {
4228 	case BPF_MAP_TYPE_DEVMAP:
4229 		fallthrough;
4230 	case BPF_MAP_TYPE_DEVMAP_HASH:
4231 		map = READ_ONCE(ri->map);
4232 		if (unlikely(map)) {
4233 			WRITE_ONCE(ri->map, NULL);
4234 			err = dev_map_enqueue_multi(xdpf, dev, map,
4235 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4236 		} else {
4237 			err = dev_map_enqueue(fwd, xdpf, dev);
4238 		}
4239 		break;
4240 	case BPF_MAP_TYPE_CPUMAP:
4241 		err = cpu_map_enqueue(fwd, xdpf, dev);
4242 		break;
4243 	case BPF_MAP_TYPE_UNSPEC:
4244 		if (map_id == INT_MAX) {
4245 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4246 			if (unlikely(!fwd)) {
4247 				err = -EINVAL;
4248 				break;
4249 			}
4250 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4251 			break;
4252 		}
4253 		fallthrough;
4254 	default:
4255 		err = -EBADRQC;
4256 	}
4257 
4258 	if (unlikely(err))
4259 		goto err;
4260 
4261 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4262 	return 0;
4263 err:
4264 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4265 	return err;
4266 }
4267 
4268 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4269 		    struct bpf_prog *xdp_prog)
4270 {
4271 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4272 	enum bpf_map_type map_type = ri->map_type;
4273 
4274 	/* XDP_REDIRECT is not fully supported yet for xdp frags since
4275 	 * not all XDP capable drivers can map non-linear xdp_frame in
4276 	 * ndo_xdp_xmit.
4277 	 */
4278 	if (unlikely(xdp_buff_has_frags(xdp) &&
4279 		     map_type != BPF_MAP_TYPE_CPUMAP))
4280 		return -EOPNOTSUPP;
4281 
4282 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4283 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4284 
4285 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4286 				       xdp_prog);
4287 }
4288 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4289 
4290 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4291 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4292 {
4293 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4294 	enum bpf_map_type map_type = ri->map_type;
4295 
4296 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4297 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4298 
4299 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4300 }
4301 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4302 
4303 static int xdp_do_generic_redirect_map(struct net_device *dev,
4304 				       struct sk_buff *skb,
4305 				       struct xdp_buff *xdp,
4306 				       struct bpf_prog *xdp_prog,
4307 				       void *fwd,
4308 				       enum bpf_map_type map_type, u32 map_id)
4309 {
4310 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4311 	struct bpf_map *map;
4312 	int err;
4313 
4314 	switch (map_type) {
4315 	case BPF_MAP_TYPE_DEVMAP:
4316 		fallthrough;
4317 	case BPF_MAP_TYPE_DEVMAP_HASH:
4318 		map = READ_ONCE(ri->map);
4319 		if (unlikely(map)) {
4320 			WRITE_ONCE(ri->map, NULL);
4321 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4322 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4323 		} else {
4324 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4325 		}
4326 		if (unlikely(err))
4327 			goto err;
4328 		break;
4329 	case BPF_MAP_TYPE_XSKMAP:
4330 		err = xsk_generic_rcv(fwd, xdp);
4331 		if (err)
4332 			goto err;
4333 		consume_skb(skb);
4334 		break;
4335 	case BPF_MAP_TYPE_CPUMAP:
4336 		err = cpu_map_generic_redirect(fwd, skb);
4337 		if (unlikely(err))
4338 			goto err;
4339 		break;
4340 	default:
4341 		err = -EBADRQC;
4342 		goto err;
4343 	}
4344 
4345 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4346 	return 0;
4347 err:
4348 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4349 	return err;
4350 }
4351 
4352 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4353 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4354 {
4355 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4356 	enum bpf_map_type map_type = ri->map_type;
4357 	void *fwd = ri->tgt_value;
4358 	u32 map_id = ri->map_id;
4359 	int err;
4360 
4361 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4362 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4363 
4364 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4365 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4366 		if (unlikely(!fwd)) {
4367 			err = -EINVAL;
4368 			goto err;
4369 		}
4370 
4371 		err = xdp_ok_fwd_dev(fwd, skb->len);
4372 		if (unlikely(err))
4373 			goto err;
4374 
4375 		skb->dev = fwd;
4376 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4377 		generic_xdp_tx(skb, xdp_prog);
4378 		return 0;
4379 	}
4380 
4381 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4382 err:
4383 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4384 	return err;
4385 }
4386 
4387 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4388 {
4389 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4390 
4391 	if (unlikely(flags))
4392 		return XDP_ABORTED;
4393 
4394 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4395 	 * by map_idr) is used for ifindex based XDP redirect.
4396 	 */
4397 	ri->tgt_index = ifindex;
4398 	ri->map_id = INT_MAX;
4399 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4400 
4401 	return XDP_REDIRECT;
4402 }
4403 
4404 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4405 	.func           = bpf_xdp_redirect,
4406 	.gpl_only       = false,
4407 	.ret_type       = RET_INTEGER,
4408 	.arg1_type      = ARG_ANYTHING,
4409 	.arg2_type      = ARG_ANYTHING,
4410 };
4411 
4412 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4413 	   u64, flags)
4414 {
4415 	return map->ops->map_redirect(map, ifindex, flags);
4416 }
4417 
4418 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4419 	.func           = bpf_xdp_redirect_map,
4420 	.gpl_only       = false,
4421 	.ret_type       = RET_INTEGER,
4422 	.arg1_type      = ARG_CONST_MAP_PTR,
4423 	.arg2_type      = ARG_ANYTHING,
4424 	.arg3_type      = ARG_ANYTHING,
4425 };
4426 
4427 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4428 				  unsigned long off, unsigned long len)
4429 {
4430 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4431 
4432 	if (unlikely(!ptr))
4433 		return len;
4434 	if (ptr != dst_buff)
4435 		memcpy(dst_buff, ptr, len);
4436 
4437 	return 0;
4438 }
4439 
4440 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4441 	   u64, flags, void *, meta, u64, meta_size)
4442 {
4443 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4444 
4445 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4446 		return -EINVAL;
4447 	if (unlikely(!skb || skb_size > skb->len))
4448 		return -EFAULT;
4449 
4450 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4451 				bpf_skb_copy);
4452 }
4453 
4454 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4455 	.func		= bpf_skb_event_output,
4456 	.gpl_only	= true,
4457 	.ret_type	= RET_INTEGER,
4458 	.arg1_type	= ARG_PTR_TO_CTX,
4459 	.arg2_type	= ARG_CONST_MAP_PTR,
4460 	.arg3_type	= ARG_ANYTHING,
4461 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4462 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4463 };
4464 
4465 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4466 
4467 const struct bpf_func_proto bpf_skb_output_proto = {
4468 	.func		= bpf_skb_event_output,
4469 	.gpl_only	= true,
4470 	.ret_type	= RET_INTEGER,
4471 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4472 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4473 	.arg2_type	= ARG_CONST_MAP_PTR,
4474 	.arg3_type	= ARG_ANYTHING,
4475 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4476 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4477 };
4478 
4479 static unsigned short bpf_tunnel_key_af(u64 flags)
4480 {
4481 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4482 }
4483 
4484 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4485 	   u32, size, u64, flags)
4486 {
4487 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4488 	u8 compat[sizeof(struct bpf_tunnel_key)];
4489 	void *to_orig = to;
4490 	int err;
4491 
4492 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4493 		err = -EINVAL;
4494 		goto err_clear;
4495 	}
4496 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4497 		err = -EPROTO;
4498 		goto err_clear;
4499 	}
4500 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4501 		err = -EINVAL;
4502 		switch (size) {
4503 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4504 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4505 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4506 			goto set_compat;
4507 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4508 			/* Fixup deprecated structure layouts here, so we have
4509 			 * a common path later on.
4510 			 */
4511 			if (ip_tunnel_info_af(info) != AF_INET)
4512 				goto err_clear;
4513 set_compat:
4514 			to = (struct bpf_tunnel_key *)compat;
4515 			break;
4516 		default:
4517 			goto err_clear;
4518 		}
4519 	}
4520 
4521 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4522 	to->tunnel_tos = info->key.tos;
4523 	to->tunnel_ttl = info->key.ttl;
4524 	to->tunnel_ext = 0;
4525 
4526 	if (flags & BPF_F_TUNINFO_IPV6) {
4527 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4528 		       sizeof(to->remote_ipv6));
4529 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4530 		       sizeof(to->local_ipv6));
4531 		to->tunnel_label = be32_to_cpu(info->key.label);
4532 	} else {
4533 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4534 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4535 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4536 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4537 		to->tunnel_label = 0;
4538 	}
4539 
4540 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4541 		memcpy(to_orig, to, size);
4542 
4543 	return 0;
4544 err_clear:
4545 	memset(to_orig, 0, size);
4546 	return err;
4547 }
4548 
4549 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4550 	.func		= bpf_skb_get_tunnel_key,
4551 	.gpl_only	= false,
4552 	.ret_type	= RET_INTEGER,
4553 	.arg1_type	= ARG_PTR_TO_CTX,
4554 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4555 	.arg3_type	= ARG_CONST_SIZE,
4556 	.arg4_type	= ARG_ANYTHING,
4557 };
4558 
4559 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4560 {
4561 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4562 	int err;
4563 
4564 	if (unlikely(!info ||
4565 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4566 		err = -ENOENT;
4567 		goto err_clear;
4568 	}
4569 	if (unlikely(size < info->options_len)) {
4570 		err = -ENOMEM;
4571 		goto err_clear;
4572 	}
4573 
4574 	ip_tunnel_info_opts_get(to, info);
4575 	if (size > info->options_len)
4576 		memset(to + info->options_len, 0, size - info->options_len);
4577 
4578 	return info->options_len;
4579 err_clear:
4580 	memset(to, 0, size);
4581 	return err;
4582 }
4583 
4584 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4585 	.func		= bpf_skb_get_tunnel_opt,
4586 	.gpl_only	= false,
4587 	.ret_type	= RET_INTEGER,
4588 	.arg1_type	= ARG_PTR_TO_CTX,
4589 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4590 	.arg3_type	= ARG_CONST_SIZE,
4591 };
4592 
4593 static struct metadata_dst __percpu *md_dst;
4594 
4595 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4596 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4597 {
4598 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4599 	u8 compat[sizeof(struct bpf_tunnel_key)];
4600 	struct ip_tunnel_info *info;
4601 
4602 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4603 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4604 		return -EINVAL;
4605 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4606 		switch (size) {
4607 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4608 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4609 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4610 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4611 			/* Fixup deprecated structure layouts here, so we have
4612 			 * a common path later on.
4613 			 */
4614 			memcpy(compat, from, size);
4615 			memset(compat + size, 0, sizeof(compat) - size);
4616 			from = (const struct bpf_tunnel_key *) compat;
4617 			break;
4618 		default:
4619 			return -EINVAL;
4620 		}
4621 	}
4622 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4623 		     from->tunnel_ext))
4624 		return -EINVAL;
4625 
4626 	skb_dst_drop(skb);
4627 	dst_hold((struct dst_entry *) md);
4628 	skb_dst_set(skb, (struct dst_entry *) md);
4629 
4630 	info = &md->u.tun_info;
4631 	memset(info, 0, sizeof(*info));
4632 	info->mode = IP_TUNNEL_INFO_TX;
4633 
4634 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4635 	if (flags & BPF_F_DONT_FRAGMENT)
4636 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4637 	if (flags & BPF_F_ZERO_CSUM_TX)
4638 		info->key.tun_flags &= ~TUNNEL_CSUM;
4639 	if (flags & BPF_F_SEQ_NUMBER)
4640 		info->key.tun_flags |= TUNNEL_SEQ;
4641 
4642 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4643 	info->key.tos = from->tunnel_tos;
4644 	info->key.ttl = from->tunnel_ttl;
4645 
4646 	if (flags & BPF_F_TUNINFO_IPV6) {
4647 		info->mode |= IP_TUNNEL_INFO_IPV6;
4648 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4649 		       sizeof(from->remote_ipv6));
4650 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4651 		       sizeof(from->local_ipv6));
4652 		info->key.label = cpu_to_be32(from->tunnel_label) &
4653 				  IPV6_FLOWLABEL_MASK;
4654 	} else {
4655 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4656 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4657 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4658 	}
4659 
4660 	return 0;
4661 }
4662 
4663 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4664 	.func		= bpf_skb_set_tunnel_key,
4665 	.gpl_only	= false,
4666 	.ret_type	= RET_INTEGER,
4667 	.arg1_type	= ARG_PTR_TO_CTX,
4668 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4669 	.arg3_type	= ARG_CONST_SIZE,
4670 	.arg4_type	= ARG_ANYTHING,
4671 };
4672 
4673 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4674 	   const u8 *, from, u32, size)
4675 {
4676 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4677 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4678 
4679 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4680 		return -EINVAL;
4681 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4682 		return -ENOMEM;
4683 
4684 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4685 
4686 	return 0;
4687 }
4688 
4689 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4690 	.func		= bpf_skb_set_tunnel_opt,
4691 	.gpl_only	= false,
4692 	.ret_type	= RET_INTEGER,
4693 	.arg1_type	= ARG_PTR_TO_CTX,
4694 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4695 	.arg3_type	= ARG_CONST_SIZE,
4696 };
4697 
4698 static const struct bpf_func_proto *
4699 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4700 {
4701 	if (!md_dst) {
4702 		struct metadata_dst __percpu *tmp;
4703 
4704 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4705 						METADATA_IP_TUNNEL,
4706 						GFP_KERNEL);
4707 		if (!tmp)
4708 			return NULL;
4709 		if (cmpxchg(&md_dst, NULL, tmp))
4710 			metadata_dst_free_percpu(tmp);
4711 	}
4712 
4713 	switch (which) {
4714 	case BPF_FUNC_skb_set_tunnel_key:
4715 		return &bpf_skb_set_tunnel_key_proto;
4716 	case BPF_FUNC_skb_set_tunnel_opt:
4717 		return &bpf_skb_set_tunnel_opt_proto;
4718 	default:
4719 		return NULL;
4720 	}
4721 }
4722 
4723 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4724 	   u32, idx)
4725 {
4726 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4727 	struct cgroup *cgrp;
4728 	struct sock *sk;
4729 
4730 	sk = skb_to_full_sk(skb);
4731 	if (!sk || !sk_fullsock(sk))
4732 		return -ENOENT;
4733 	if (unlikely(idx >= array->map.max_entries))
4734 		return -E2BIG;
4735 
4736 	cgrp = READ_ONCE(array->ptrs[idx]);
4737 	if (unlikely(!cgrp))
4738 		return -EAGAIN;
4739 
4740 	return sk_under_cgroup_hierarchy(sk, cgrp);
4741 }
4742 
4743 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4744 	.func		= bpf_skb_under_cgroup,
4745 	.gpl_only	= false,
4746 	.ret_type	= RET_INTEGER,
4747 	.arg1_type	= ARG_PTR_TO_CTX,
4748 	.arg2_type	= ARG_CONST_MAP_PTR,
4749 	.arg3_type	= ARG_ANYTHING,
4750 };
4751 
4752 #ifdef CONFIG_SOCK_CGROUP_DATA
4753 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4754 {
4755 	struct cgroup *cgrp;
4756 
4757 	sk = sk_to_full_sk(sk);
4758 	if (!sk || !sk_fullsock(sk))
4759 		return 0;
4760 
4761 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4762 	return cgroup_id(cgrp);
4763 }
4764 
4765 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4766 {
4767 	return __bpf_sk_cgroup_id(skb->sk);
4768 }
4769 
4770 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4771 	.func           = bpf_skb_cgroup_id,
4772 	.gpl_only       = false,
4773 	.ret_type       = RET_INTEGER,
4774 	.arg1_type      = ARG_PTR_TO_CTX,
4775 };
4776 
4777 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4778 					      int ancestor_level)
4779 {
4780 	struct cgroup *ancestor;
4781 	struct cgroup *cgrp;
4782 
4783 	sk = sk_to_full_sk(sk);
4784 	if (!sk || !sk_fullsock(sk))
4785 		return 0;
4786 
4787 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4788 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4789 	if (!ancestor)
4790 		return 0;
4791 
4792 	return cgroup_id(ancestor);
4793 }
4794 
4795 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4796 	   ancestor_level)
4797 {
4798 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4799 }
4800 
4801 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4802 	.func           = bpf_skb_ancestor_cgroup_id,
4803 	.gpl_only       = false,
4804 	.ret_type       = RET_INTEGER,
4805 	.arg1_type      = ARG_PTR_TO_CTX,
4806 	.arg2_type      = ARG_ANYTHING,
4807 };
4808 
4809 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4810 {
4811 	return __bpf_sk_cgroup_id(sk);
4812 }
4813 
4814 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4815 	.func           = bpf_sk_cgroup_id,
4816 	.gpl_only       = false,
4817 	.ret_type       = RET_INTEGER,
4818 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4819 };
4820 
4821 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4822 {
4823 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4824 }
4825 
4826 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4827 	.func           = bpf_sk_ancestor_cgroup_id,
4828 	.gpl_only       = false,
4829 	.ret_type       = RET_INTEGER,
4830 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4831 	.arg2_type      = ARG_ANYTHING,
4832 };
4833 #endif
4834 
4835 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4836 				  unsigned long off, unsigned long len)
4837 {
4838 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4839 
4840 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4841 	return 0;
4842 }
4843 
4844 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4845 	   u64, flags, void *, meta, u64, meta_size)
4846 {
4847 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4848 
4849 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4850 		return -EINVAL;
4851 
4852 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4853 		return -EFAULT;
4854 
4855 	return bpf_event_output(map, flags, meta, meta_size, xdp,
4856 				xdp_size, bpf_xdp_copy);
4857 }
4858 
4859 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4860 	.func		= bpf_xdp_event_output,
4861 	.gpl_only	= true,
4862 	.ret_type	= RET_INTEGER,
4863 	.arg1_type	= ARG_PTR_TO_CTX,
4864 	.arg2_type	= ARG_CONST_MAP_PTR,
4865 	.arg3_type	= ARG_ANYTHING,
4866 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4867 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4868 };
4869 
4870 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4871 
4872 const struct bpf_func_proto bpf_xdp_output_proto = {
4873 	.func		= bpf_xdp_event_output,
4874 	.gpl_only	= true,
4875 	.ret_type	= RET_INTEGER,
4876 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4877 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4878 	.arg2_type	= ARG_CONST_MAP_PTR,
4879 	.arg3_type	= ARG_ANYTHING,
4880 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4881 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4882 };
4883 
4884 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4885 {
4886 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4887 }
4888 
4889 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4890 	.func           = bpf_get_socket_cookie,
4891 	.gpl_only       = false,
4892 	.ret_type       = RET_INTEGER,
4893 	.arg1_type      = ARG_PTR_TO_CTX,
4894 };
4895 
4896 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4897 {
4898 	return __sock_gen_cookie(ctx->sk);
4899 }
4900 
4901 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4902 	.func		= bpf_get_socket_cookie_sock_addr,
4903 	.gpl_only	= false,
4904 	.ret_type	= RET_INTEGER,
4905 	.arg1_type	= ARG_PTR_TO_CTX,
4906 };
4907 
4908 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4909 {
4910 	return __sock_gen_cookie(ctx);
4911 }
4912 
4913 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4914 	.func		= bpf_get_socket_cookie_sock,
4915 	.gpl_only	= false,
4916 	.ret_type	= RET_INTEGER,
4917 	.arg1_type	= ARG_PTR_TO_CTX,
4918 };
4919 
4920 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4921 {
4922 	return sk ? sock_gen_cookie(sk) : 0;
4923 }
4924 
4925 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4926 	.func		= bpf_get_socket_ptr_cookie,
4927 	.gpl_only	= false,
4928 	.ret_type	= RET_INTEGER,
4929 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4930 };
4931 
4932 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4933 {
4934 	return __sock_gen_cookie(ctx->sk);
4935 }
4936 
4937 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4938 	.func		= bpf_get_socket_cookie_sock_ops,
4939 	.gpl_only	= false,
4940 	.ret_type	= RET_INTEGER,
4941 	.arg1_type	= ARG_PTR_TO_CTX,
4942 };
4943 
4944 static u64 __bpf_get_netns_cookie(struct sock *sk)
4945 {
4946 	const struct net *net = sk ? sock_net(sk) : &init_net;
4947 
4948 	return net->net_cookie;
4949 }
4950 
4951 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4952 {
4953 	return __bpf_get_netns_cookie(ctx);
4954 }
4955 
4956 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4957 	.func		= bpf_get_netns_cookie_sock,
4958 	.gpl_only	= false,
4959 	.ret_type	= RET_INTEGER,
4960 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4961 };
4962 
4963 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4964 {
4965 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4966 }
4967 
4968 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4969 	.func		= bpf_get_netns_cookie_sock_addr,
4970 	.gpl_only	= false,
4971 	.ret_type	= RET_INTEGER,
4972 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4973 };
4974 
4975 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4976 {
4977 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4978 }
4979 
4980 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4981 	.func		= bpf_get_netns_cookie_sock_ops,
4982 	.gpl_only	= false,
4983 	.ret_type	= RET_INTEGER,
4984 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4985 };
4986 
4987 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4988 {
4989 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4990 }
4991 
4992 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4993 	.func		= bpf_get_netns_cookie_sk_msg,
4994 	.gpl_only	= false,
4995 	.ret_type	= RET_INTEGER,
4996 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4997 };
4998 
4999 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5000 {
5001 	struct sock *sk = sk_to_full_sk(skb->sk);
5002 	kuid_t kuid;
5003 
5004 	if (!sk || !sk_fullsock(sk))
5005 		return overflowuid;
5006 	kuid = sock_net_uid(sock_net(sk), sk);
5007 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5008 }
5009 
5010 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5011 	.func           = bpf_get_socket_uid,
5012 	.gpl_only       = false,
5013 	.ret_type       = RET_INTEGER,
5014 	.arg1_type      = ARG_PTR_TO_CTX,
5015 };
5016 
5017 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5018 			    char *optval, int optlen)
5019 {
5020 	char devname[IFNAMSIZ];
5021 	int val, valbool;
5022 	struct net *net;
5023 	int ifindex;
5024 	int ret = 0;
5025 
5026 	if (!sk_fullsock(sk))
5027 		return -EINVAL;
5028 
5029 	if (level == SOL_SOCKET) {
5030 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
5031 			return -EINVAL;
5032 		val = *((int *)optval);
5033 		valbool = val ? 1 : 0;
5034 
5035 		/* Only some socketops are supported */
5036 		switch (optname) {
5037 		case SO_RCVBUF:
5038 			val = min_t(u32, val, READ_ONCE(sysctl_rmem_max));
5039 			val = min_t(int, val, INT_MAX / 2);
5040 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
5041 			WRITE_ONCE(sk->sk_rcvbuf,
5042 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
5043 			break;
5044 		case SO_SNDBUF:
5045 			val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
5046 			val = min_t(int, val, INT_MAX / 2);
5047 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
5048 			WRITE_ONCE(sk->sk_sndbuf,
5049 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
5050 			break;
5051 		case SO_MAX_PACING_RATE: /* 32bit version */
5052 			if (val != ~0U)
5053 				cmpxchg(&sk->sk_pacing_status,
5054 					SK_PACING_NONE,
5055 					SK_PACING_NEEDED);
5056 			sk->sk_max_pacing_rate = (val == ~0U) ?
5057 						 ~0UL : (unsigned int)val;
5058 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
5059 						 sk->sk_max_pacing_rate);
5060 			break;
5061 		case SO_PRIORITY:
5062 			sk->sk_priority = val;
5063 			break;
5064 		case SO_RCVLOWAT:
5065 			if (val < 0)
5066 				val = INT_MAX;
5067 			if (sk->sk_socket && sk->sk_socket->ops->set_rcvlowat)
5068 				ret = sk->sk_socket->ops->set_rcvlowat(sk, val);
5069 			else
5070 				WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
5071 			break;
5072 		case SO_MARK:
5073 			if (sk->sk_mark != val) {
5074 				sk->sk_mark = val;
5075 				sk_dst_reset(sk);
5076 			}
5077 			break;
5078 		case SO_BINDTODEVICE:
5079 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
5080 			strncpy(devname, optval, optlen);
5081 			devname[optlen] = 0;
5082 
5083 			ifindex = 0;
5084 			if (devname[0] != '\0') {
5085 				struct net_device *dev;
5086 
5087 				ret = -ENODEV;
5088 
5089 				net = sock_net(sk);
5090 				dev = dev_get_by_name(net, devname);
5091 				if (!dev)
5092 					break;
5093 				ifindex = dev->ifindex;
5094 				dev_put(dev);
5095 			}
5096 			fallthrough;
5097 		case SO_BINDTOIFINDEX:
5098 			if (optname == SO_BINDTOIFINDEX)
5099 				ifindex = val;
5100 			ret = sock_bindtoindex(sk, ifindex, false);
5101 			break;
5102 		case SO_KEEPALIVE:
5103 			if (sk->sk_prot->keepalive)
5104 				sk->sk_prot->keepalive(sk, valbool);
5105 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
5106 			break;
5107 		case SO_REUSEPORT:
5108 			sk->sk_reuseport = valbool;
5109 			break;
5110 		case SO_TXREHASH:
5111 			if (val < -1 || val > 1) {
5112 				ret = -EINVAL;
5113 				break;
5114 			}
5115 			sk->sk_txrehash = (u8)val;
5116 			break;
5117 		default:
5118 			ret = -EINVAL;
5119 		}
5120 #ifdef CONFIG_INET
5121 	} else if (level == SOL_IP) {
5122 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5123 			return -EINVAL;
5124 
5125 		val = *((int *)optval);
5126 		/* Only some options are supported */
5127 		switch (optname) {
5128 		case IP_TOS:
5129 			if (val < -1 || val > 0xff) {
5130 				ret = -EINVAL;
5131 			} else {
5132 				struct inet_sock *inet = inet_sk(sk);
5133 
5134 				if (val == -1)
5135 					val = 0;
5136 				inet->tos = val;
5137 			}
5138 			break;
5139 		default:
5140 			ret = -EINVAL;
5141 		}
5142 #if IS_ENABLED(CONFIG_IPV6)
5143 	} else if (level == SOL_IPV6) {
5144 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5145 			return -EINVAL;
5146 
5147 		val = *((int *)optval);
5148 		/* Only some options are supported */
5149 		switch (optname) {
5150 		case IPV6_TCLASS:
5151 			if (val < -1 || val > 0xff) {
5152 				ret = -EINVAL;
5153 			} else {
5154 				struct ipv6_pinfo *np = inet6_sk(sk);
5155 
5156 				if (val == -1)
5157 					val = 0;
5158 				np->tclass = val;
5159 			}
5160 			break;
5161 		default:
5162 			ret = -EINVAL;
5163 		}
5164 #endif
5165 	} else if (level == SOL_TCP &&
5166 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
5167 		if (optname == TCP_CONGESTION) {
5168 			char name[TCP_CA_NAME_MAX];
5169 
5170 			strncpy(name, optval, min_t(long, optlen,
5171 						    TCP_CA_NAME_MAX-1));
5172 			name[TCP_CA_NAME_MAX-1] = 0;
5173 			ret = tcp_set_congestion_control(sk, name, false, true);
5174 		} else {
5175 			struct inet_connection_sock *icsk = inet_csk(sk);
5176 			struct tcp_sock *tp = tcp_sk(sk);
5177 			unsigned long timeout;
5178 
5179 			if (optlen != sizeof(int))
5180 				return -EINVAL;
5181 
5182 			val = *((int *)optval);
5183 			/* Only some options are supported */
5184 			switch (optname) {
5185 			case TCP_BPF_IW:
5186 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
5187 					ret = -EINVAL;
5188 				else
5189 					tcp_snd_cwnd_set(tp, val);
5190 				break;
5191 			case TCP_BPF_SNDCWND_CLAMP:
5192 				if (val <= 0) {
5193 					ret = -EINVAL;
5194 				} else {
5195 					tp->snd_cwnd_clamp = val;
5196 					tp->snd_ssthresh = val;
5197 				}
5198 				break;
5199 			case TCP_BPF_DELACK_MAX:
5200 				timeout = usecs_to_jiffies(val);
5201 				if (timeout > TCP_DELACK_MAX ||
5202 				    timeout < TCP_TIMEOUT_MIN)
5203 					return -EINVAL;
5204 				inet_csk(sk)->icsk_delack_max = timeout;
5205 				break;
5206 			case TCP_BPF_RTO_MIN:
5207 				timeout = usecs_to_jiffies(val);
5208 				if (timeout > TCP_RTO_MIN ||
5209 				    timeout < TCP_TIMEOUT_MIN)
5210 					return -EINVAL;
5211 				inet_csk(sk)->icsk_rto_min = timeout;
5212 				break;
5213 			case TCP_SAVE_SYN:
5214 				if (val < 0 || val > 1)
5215 					ret = -EINVAL;
5216 				else
5217 					tp->save_syn = val;
5218 				break;
5219 			case TCP_KEEPIDLE:
5220 				ret = tcp_sock_set_keepidle_locked(sk, val);
5221 				break;
5222 			case TCP_KEEPINTVL:
5223 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
5224 					ret = -EINVAL;
5225 				else
5226 					tp->keepalive_intvl = val * HZ;
5227 				break;
5228 			case TCP_KEEPCNT:
5229 				if (val < 1 || val > MAX_TCP_KEEPCNT)
5230 					ret = -EINVAL;
5231 				else
5232 					tp->keepalive_probes = val;
5233 				break;
5234 			case TCP_SYNCNT:
5235 				if (val < 1 || val > MAX_TCP_SYNCNT)
5236 					ret = -EINVAL;
5237 				else
5238 					icsk->icsk_syn_retries = val;
5239 				break;
5240 			case TCP_USER_TIMEOUT:
5241 				if (val < 0)
5242 					ret = -EINVAL;
5243 				else
5244 					icsk->icsk_user_timeout = val;
5245 				break;
5246 			case TCP_NOTSENT_LOWAT:
5247 				tp->notsent_lowat = val;
5248 				sk->sk_write_space(sk);
5249 				break;
5250 			case TCP_WINDOW_CLAMP:
5251 				ret = tcp_set_window_clamp(sk, val);
5252 				break;
5253 			default:
5254 				ret = -EINVAL;
5255 			}
5256 		}
5257 #endif
5258 	} else {
5259 		ret = -EINVAL;
5260 	}
5261 	return ret;
5262 }
5263 
5264 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5265 			   char *optval, int optlen)
5266 {
5267 	if (sk_fullsock(sk))
5268 		sock_owned_by_me(sk);
5269 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5270 }
5271 
5272 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5273 			    char *optval, int optlen)
5274 {
5275 	if (!sk_fullsock(sk))
5276 		goto err_clear;
5277 
5278 	if (level == SOL_SOCKET) {
5279 		if (optlen != sizeof(int))
5280 			goto err_clear;
5281 
5282 		switch (optname) {
5283 		case SO_RCVBUF:
5284 			*((int *)optval) = sk->sk_rcvbuf;
5285 			break;
5286 		case SO_SNDBUF:
5287 			*((int *)optval) = sk->sk_sndbuf;
5288 			break;
5289 		case SO_MARK:
5290 			*((int *)optval) = sk->sk_mark;
5291 			break;
5292 		case SO_PRIORITY:
5293 			*((int *)optval) = sk->sk_priority;
5294 			break;
5295 		case SO_BINDTOIFINDEX:
5296 			*((int *)optval) = sk->sk_bound_dev_if;
5297 			break;
5298 		case SO_REUSEPORT:
5299 			*((int *)optval) = sk->sk_reuseport;
5300 			break;
5301 		case SO_TXREHASH:
5302 			*((int *)optval) = sk->sk_txrehash;
5303 			break;
5304 		default:
5305 			goto err_clear;
5306 		}
5307 #ifdef CONFIG_INET
5308 	} else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
5309 		struct inet_connection_sock *icsk;
5310 		struct tcp_sock *tp;
5311 
5312 		switch (optname) {
5313 		case TCP_CONGESTION:
5314 			icsk = inet_csk(sk);
5315 
5316 			if (!icsk->icsk_ca_ops || optlen <= 1)
5317 				goto err_clear;
5318 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
5319 			optval[optlen - 1] = 0;
5320 			break;
5321 		case TCP_SAVED_SYN:
5322 			tp = tcp_sk(sk);
5323 
5324 			if (optlen <= 0 || !tp->saved_syn ||
5325 			    optlen > tcp_saved_syn_len(tp->saved_syn))
5326 				goto err_clear;
5327 			memcpy(optval, tp->saved_syn->data, optlen);
5328 			break;
5329 		default:
5330 			goto err_clear;
5331 		}
5332 	} else if (level == SOL_IP) {
5333 		struct inet_sock *inet = inet_sk(sk);
5334 
5335 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5336 			goto err_clear;
5337 
5338 		/* Only some options are supported */
5339 		switch (optname) {
5340 		case IP_TOS:
5341 			*((int *)optval) = (int)inet->tos;
5342 			break;
5343 		default:
5344 			goto err_clear;
5345 		}
5346 #if IS_ENABLED(CONFIG_IPV6)
5347 	} else if (level == SOL_IPV6) {
5348 		struct ipv6_pinfo *np = inet6_sk(sk);
5349 
5350 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5351 			goto err_clear;
5352 
5353 		/* Only some options are supported */
5354 		switch (optname) {
5355 		case IPV6_TCLASS:
5356 			*((int *)optval) = (int)np->tclass;
5357 			break;
5358 		default:
5359 			goto err_clear;
5360 		}
5361 #endif
5362 #endif
5363 	} else {
5364 		goto err_clear;
5365 	}
5366 	return 0;
5367 err_clear:
5368 	memset(optval, 0, optlen);
5369 	return -EINVAL;
5370 }
5371 
5372 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5373 			   char *optval, int optlen)
5374 {
5375 	if (sk_fullsock(sk))
5376 		sock_owned_by_me(sk);
5377 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5378 }
5379 
5380 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5381 	   int, optname, char *, optval, int, optlen)
5382 {
5383 	if (level == SOL_TCP && optname == TCP_CONGESTION) {
5384 		if (optlen >= sizeof("cdg") - 1 &&
5385 		    !strncmp("cdg", optval, optlen))
5386 			return -ENOTSUPP;
5387 	}
5388 
5389 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5390 }
5391 
5392 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5393 	.func		= bpf_sk_setsockopt,
5394 	.gpl_only	= false,
5395 	.ret_type	= RET_INTEGER,
5396 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5397 	.arg2_type	= ARG_ANYTHING,
5398 	.arg3_type	= ARG_ANYTHING,
5399 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5400 	.arg5_type	= ARG_CONST_SIZE,
5401 };
5402 
5403 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5404 	   int, optname, char *, optval, int, optlen)
5405 {
5406 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5407 }
5408 
5409 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5410 	.func		= bpf_sk_getsockopt,
5411 	.gpl_only	= false,
5412 	.ret_type	= RET_INTEGER,
5413 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5414 	.arg2_type	= ARG_ANYTHING,
5415 	.arg3_type	= ARG_ANYTHING,
5416 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5417 	.arg5_type	= ARG_CONST_SIZE,
5418 };
5419 
5420 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5421 	   int, optname, char *, optval, int, optlen)
5422 {
5423 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5424 }
5425 
5426 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5427 	.func		= bpf_unlocked_sk_setsockopt,
5428 	.gpl_only	= false,
5429 	.ret_type	= RET_INTEGER,
5430 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5431 	.arg2_type	= ARG_ANYTHING,
5432 	.arg3_type	= ARG_ANYTHING,
5433 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5434 	.arg5_type	= ARG_CONST_SIZE,
5435 };
5436 
5437 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5438 	   int, optname, char *, optval, int, optlen)
5439 {
5440 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5441 }
5442 
5443 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5444 	.func		= bpf_unlocked_sk_getsockopt,
5445 	.gpl_only	= false,
5446 	.ret_type	= RET_INTEGER,
5447 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5448 	.arg2_type	= ARG_ANYTHING,
5449 	.arg3_type	= ARG_ANYTHING,
5450 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5451 	.arg5_type	= ARG_CONST_SIZE,
5452 };
5453 
5454 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5455 	   int, level, int, optname, char *, optval, int, optlen)
5456 {
5457 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5458 }
5459 
5460 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5461 	.func		= bpf_sock_addr_setsockopt,
5462 	.gpl_only	= false,
5463 	.ret_type	= RET_INTEGER,
5464 	.arg1_type	= ARG_PTR_TO_CTX,
5465 	.arg2_type	= ARG_ANYTHING,
5466 	.arg3_type	= ARG_ANYTHING,
5467 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5468 	.arg5_type	= ARG_CONST_SIZE,
5469 };
5470 
5471 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5472 	   int, level, int, optname, char *, optval, int, optlen)
5473 {
5474 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5475 }
5476 
5477 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5478 	.func		= bpf_sock_addr_getsockopt,
5479 	.gpl_only	= false,
5480 	.ret_type	= RET_INTEGER,
5481 	.arg1_type	= ARG_PTR_TO_CTX,
5482 	.arg2_type	= ARG_ANYTHING,
5483 	.arg3_type	= ARG_ANYTHING,
5484 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5485 	.arg5_type	= ARG_CONST_SIZE,
5486 };
5487 
5488 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5489 	   int, level, int, optname, char *, optval, int, optlen)
5490 {
5491 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5492 }
5493 
5494 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5495 	.func		= bpf_sock_ops_setsockopt,
5496 	.gpl_only	= false,
5497 	.ret_type	= RET_INTEGER,
5498 	.arg1_type	= ARG_PTR_TO_CTX,
5499 	.arg2_type	= ARG_ANYTHING,
5500 	.arg3_type	= ARG_ANYTHING,
5501 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5502 	.arg5_type	= ARG_CONST_SIZE,
5503 };
5504 
5505 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5506 				int optname, const u8 **start)
5507 {
5508 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5509 	const u8 *hdr_start;
5510 	int ret;
5511 
5512 	if (syn_skb) {
5513 		/* sk is a request_sock here */
5514 
5515 		if (optname == TCP_BPF_SYN) {
5516 			hdr_start = syn_skb->data;
5517 			ret = tcp_hdrlen(syn_skb);
5518 		} else if (optname == TCP_BPF_SYN_IP) {
5519 			hdr_start = skb_network_header(syn_skb);
5520 			ret = skb_network_header_len(syn_skb) +
5521 				tcp_hdrlen(syn_skb);
5522 		} else {
5523 			/* optname == TCP_BPF_SYN_MAC */
5524 			hdr_start = skb_mac_header(syn_skb);
5525 			ret = skb_mac_header_len(syn_skb) +
5526 				skb_network_header_len(syn_skb) +
5527 				tcp_hdrlen(syn_skb);
5528 		}
5529 	} else {
5530 		struct sock *sk = bpf_sock->sk;
5531 		struct saved_syn *saved_syn;
5532 
5533 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5534 			/* synack retransmit. bpf_sock->syn_skb will
5535 			 * not be available.  It has to resort to
5536 			 * saved_syn (if it is saved).
5537 			 */
5538 			saved_syn = inet_reqsk(sk)->saved_syn;
5539 		else
5540 			saved_syn = tcp_sk(sk)->saved_syn;
5541 
5542 		if (!saved_syn)
5543 			return -ENOENT;
5544 
5545 		if (optname == TCP_BPF_SYN) {
5546 			hdr_start = saved_syn->data +
5547 				saved_syn->mac_hdrlen +
5548 				saved_syn->network_hdrlen;
5549 			ret = saved_syn->tcp_hdrlen;
5550 		} else if (optname == TCP_BPF_SYN_IP) {
5551 			hdr_start = saved_syn->data +
5552 				saved_syn->mac_hdrlen;
5553 			ret = saved_syn->network_hdrlen +
5554 				saved_syn->tcp_hdrlen;
5555 		} else {
5556 			/* optname == TCP_BPF_SYN_MAC */
5557 
5558 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5559 			if (!saved_syn->mac_hdrlen)
5560 				return -ENOENT;
5561 
5562 			hdr_start = saved_syn->data;
5563 			ret = saved_syn->mac_hdrlen +
5564 				saved_syn->network_hdrlen +
5565 				saved_syn->tcp_hdrlen;
5566 		}
5567 	}
5568 
5569 	*start = hdr_start;
5570 	return ret;
5571 }
5572 
5573 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5574 	   int, level, int, optname, char *, optval, int, optlen)
5575 {
5576 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5577 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5578 		int ret, copy_len = 0;
5579 		const u8 *start;
5580 
5581 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5582 		if (ret > 0) {
5583 			copy_len = ret;
5584 			if (optlen < copy_len) {
5585 				copy_len = optlen;
5586 				ret = -ENOSPC;
5587 			}
5588 
5589 			memcpy(optval, start, copy_len);
5590 		}
5591 
5592 		/* Zero out unused buffer at the end */
5593 		memset(optval + copy_len, 0, optlen - copy_len);
5594 
5595 		return ret;
5596 	}
5597 
5598 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5599 }
5600 
5601 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5602 	.func		= bpf_sock_ops_getsockopt,
5603 	.gpl_only	= false,
5604 	.ret_type	= RET_INTEGER,
5605 	.arg1_type	= ARG_PTR_TO_CTX,
5606 	.arg2_type	= ARG_ANYTHING,
5607 	.arg3_type	= ARG_ANYTHING,
5608 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5609 	.arg5_type	= ARG_CONST_SIZE,
5610 };
5611 
5612 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5613 	   int, argval)
5614 {
5615 	struct sock *sk = bpf_sock->sk;
5616 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5617 
5618 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5619 		return -EINVAL;
5620 
5621 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5622 
5623 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5624 }
5625 
5626 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5627 	.func		= bpf_sock_ops_cb_flags_set,
5628 	.gpl_only	= false,
5629 	.ret_type	= RET_INTEGER,
5630 	.arg1_type	= ARG_PTR_TO_CTX,
5631 	.arg2_type	= ARG_ANYTHING,
5632 };
5633 
5634 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5635 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5636 
5637 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5638 	   int, addr_len)
5639 {
5640 #ifdef CONFIG_INET
5641 	struct sock *sk = ctx->sk;
5642 	u32 flags = BIND_FROM_BPF;
5643 	int err;
5644 
5645 	err = -EINVAL;
5646 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5647 		return err;
5648 	if (addr->sa_family == AF_INET) {
5649 		if (addr_len < sizeof(struct sockaddr_in))
5650 			return err;
5651 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5652 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5653 		return __inet_bind(sk, addr, addr_len, flags);
5654 #if IS_ENABLED(CONFIG_IPV6)
5655 	} else if (addr->sa_family == AF_INET6) {
5656 		if (addr_len < SIN6_LEN_RFC2133)
5657 			return err;
5658 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5659 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5660 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5661 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5662 		 */
5663 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5664 #endif /* CONFIG_IPV6 */
5665 	}
5666 #endif /* CONFIG_INET */
5667 
5668 	return -EAFNOSUPPORT;
5669 }
5670 
5671 static const struct bpf_func_proto bpf_bind_proto = {
5672 	.func		= bpf_bind,
5673 	.gpl_only	= false,
5674 	.ret_type	= RET_INTEGER,
5675 	.arg1_type	= ARG_PTR_TO_CTX,
5676 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5677 	.arg3_type	= ARG_CONST_SIZE,
5678 };
5679 
5680 #ifdef CONFIG_XFRM
5681 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5682 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5683 {
5684 	const struct sec_path *sp = skb_sec_path(skb);
5685 	const struct xfrm_state *x;
5686 
5687 	if (!sp || unlikely(index >= sp->len || flags))
5688 		goto err_clear;
5689 
5690 	x = sp->xvec[index];
5691 
5692 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5693 		goto err_clear;
5694 
5695 	to->reqid = x->props.reqid;
5696 	to->spi = x->id.spi;
5697 	to->family = x->props.family;
5698 	to->ext = 0;
5699 
5700 	if (to->family == AF_INET6) {
5701 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5702 		       sizeof(to->remote_ipv6));
5703 	} else {
5704 		to->remote_ipv4 = x->props.saddr.a4;
5705 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5706 	}
5707 
5708 	return 0;
5709 err_clear:
5710 	memset(to, 0, size);
5711 	return -EINVAL;
5712 }
5713 
5714 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5715 	.func		= bpf_skb_get_xfrm_state,
5716 	.gpl_only	= false,
5717 	.ret_type	= RET_INTEGER,
5718 	.arg1_type	= ARG_PTR_TO_CTX,
5719 	.arg2_type	= ARG_ANYTHING,
5720 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5721 	.arg4_type	= ARG_CONST_SIZE,
5722 	.arg5_type	= ARG_ANYTHING,
5723 };
5724 #endif
5725 
5726 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5727 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5728 				  const struct neighbour *neigh,
5729 				  const struct net_device *dev, u32 mtu)
5730 {
5731 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5732 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5733 	params->h_vlan_TCI = 0;
5734 	params->h_vlan_proto = 0;
5735 	if (mtu)
5736 		params->mtu_result = mtu; /* union with tot_len */
5737 
5738 	return 0;
5739 }
5740 #endif
5741 
5742 #if IS_ENABLED(CONFIG_INET)
5743 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5744 			       u32 flags, bool check_mtu)
5745 {
5746 	struct fib_nh_common *nhc;
5747 	struct in_device *in_dev;
5748 	struct neighbour *neigh;
5749 	struct net_device *dev;
5750 	struct fib_result res;
5751 	struct flowi4 fl4;
5752 	u32 mtu = 0;
5753 	int err;
5754 
5755 	dev = dev_get_by_index_rcu(net, params->ifindex);
5756 	if (unlikely(!dev))
5757 		return -ENODEV;
5758 
5759 	/* verify forwarding is enabled on this interface */
5760 	in_dev = __in_dev_get_rcu(dev);
5761 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5762 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5763 
5764 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5765 		fl4.flowi4_iif = 1;
5766 		fl4.flowi4_oif = params->ifindex;
5767 	} else {
5768 		fl4.flowi4_iif = params->ifindex;
5769 		fl4.flowi4_oif = 0;
5770 	}
5771 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5772 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5773 	fl4.flowi4_flags = 0;
5774 
5775 	fl4.flowi4_proto = params->l4_protocol;
5776 	fl4.daddr = params->ipv4_dst;
5777 	fl4.saddr = params->ipv4_src;
5778 	fl4.fl4_sport = params->sport;
5779 	fl4.fl4_dport = params->dport;
5780 	fl4.flowi4_multipath_hash = 0;
5781 
5782 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5783 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5784 		struct fib_table *tb;
5785 
5786 		tb = fib_get_table(net, tbid);
5787 		if (unlikely(!tb))
5788 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5789 
5790 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5791 	} else {
5792 		fl4.flowi4_mark = 0;
5793 		fl4.flowi4_secid = 0;
5794 		fl4.flowi4_tun_key.tun_id = 0;
5795 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5796 
5797 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5798 	}
5799 
5800 	if (err) {
5801 		/* map fib lookup errors to RTN_ type */
5802 		if (err == -EINVAL)
5803 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5804 		if (err == -EHOSTUNREACH)
5805 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5806 		if (err == -EACCES)
5807 			return BPF_FIB_LKUP_RET_PROHIBIT;
5808 
5809 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5810 	}
5811 
5812 	if (res.type != RTN_UNICAST)
5813 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5814 
5815 	if (fib_info_num_path(res.fi) > 1)
5816 		fib_select_path(net, &res, &fl4, NULL);
5817 
5818 	if (check_mtu) {
5819 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5820 		if (params->tot_len > mtu) {
5821 			params->mtu_result = mtu; /* union with tot_len */
5822 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5823 		}
5824 	}
5825 
5826 	nhc = res.nhc;
5827 
5828 	/* do not handle lwt encaps right now */
5829 	if (nhc->nhc_lwtstate)
5830 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5831 
5832 	dev = nhc->nhc_dev;
5833 
5834 	params->rt_metric = res.fi->fib_priority;
5835 	params->ifindex = dev->ifindex;
5836 
5837 	/* xdp and cls_bpf programs are run in RCU-bh so
5838 	 * rcu_read_lock_bh is not needed here
5839 	 */
5840 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5841 		if (nhc->nhc_gw_family)
5842 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5843 
5844 		neigh = __ipv4_neigh_lookup_noref(dev,
5845 						 (__force u32)params->ipv4_dst);
5846 	} else {
5847 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5848 
5849 		params->family = AF_INET6;
5850 		*dst = nhc->nhc_gw.ipv6;
5851 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5852 	}
5853 
5854 	if (!neigh)
5855 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5856 
5857 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5858 }
5859 #endif
5860 
5861 #if IS_ENABLED(CONFIG_IPV6)
5862 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5863 			       u32 flags, bool check_mtu)
5864 {
5865 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5866 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5867 	struct fib6_result res = {};
5868 	struct neighbour *neigh;
5869 	struct net_device *dev;
5870 	struct inet6_dev *idev;
5871 	struct flowi6 fl6;
5872 	int strict = 0;
5873 	int oif, err;
5874 	u32 mtu = 0;
5875 
5876 	/* link local addresses are never forwarded */
5877 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5878 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5879 
5880 	dev = dev_get_by_index_rcu(net, params->ifindex);
5881 	if (unlikely(!dev))
5882 		return -ENODEV;
5883 
5884 	idev = __in6_dev_get_safely(dev);
5885 	if (unlikely(!idev || !idev->cnf.forwarding))
5886 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5887 
5888 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5889 		fl6.flowi6_iif = 1;
5890 		oif = fl6.flowi6_oif = params->ifindex;
5891 	} else {
5892 		oif = fl6.flowi6_iif = params->ifindex;
5893 		fl6.flowi6_oif = 0;
5894 		strict = RT6_LOOKUP_F_HAS_SADDR;
5895 	}
5896 	fl6.flowlabel = params->flowinfo;
5897 	fl6.flowi6_scope = 0;
5898 	fl6.flowi6_flags = 0;
5899 	fl6.mp_hash = 0;
5900 
5901 	fl6.flowi6_proto = params->l4_protocol;
5902 	fl6.daddr = *dst;
5903 	fl6.saddr = *src;
5904 	fl6.fl6_sport = params->sport;
5905 	fl6.fl6_dport = params->dport;
5906 
5907 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5908 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5909 		struct fib6_table *tb;
5910 
5911 		tb = ipv6_stub->fib6_get_table(net, tbid);
5912 		if (unlikely(!tb))
5913 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5914 
5915 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5916 						   strict);
5917 	} else {
5918 		fl6.flowi6_mark = 0;
5919 		fl6.flowi6_secid = 0;
5920 		fl6.flowi6_tun_key.tun_id = 0;
5921 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5922 
5923 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5924 	}
5925 
5926 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5927 		     res.f6i == net->ipv6.fib6_null_entry))
5928 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5929 
5930 	switch (res.fib6_type) {
5931 	/* only unicast is forwarded */
5932 	case RTN_UNICAST:
5933 		break;
5934 	case RTN_BLACKHOLE:
5935 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5936 	case RTN_UNREACHABLE:
5937 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5938 	case RTN_PROHIBIT:
5939 		return BPF_FIB_LKUP_RET_PROHIBIT;
5940 	default:
5941 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5942 	}
5943 
5944 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5945 				    fl6.flowi6_oif != 0, NULL, strict);
5946 
5947 	if (check_mtu) {
5948 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5949 		if (params->tot_len > mtu) {
5950 			params->mtu_result = mtu; /* union with tot_len */
5951 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5952 		}
5953 	}
5954 
5955 	if (res.nh->fib_nh_lws)
5956 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5957 
5958 	if (res.nh->fib_nh_gw_family)
5959 		*dst = res.nh->fib_nh_gw6;
5960 
5961 	dev = res.nh->fib_nh_dev;
5962 	params->rt_metric = res.f6i->fib6_metric;
5963 	params->ifindex = dev->ifindex;
5964 
5965 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5966 	 * not needed here.
5967 	 */
5968 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5969 	if (!neigh)
5970 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5971 
5972 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5973 }
5974 #endif
5975 
5976 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5977 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5978 {
5979 	if (plen < sizeof(*params))
5980 		return -EINVAL;
5981 
5982 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5983 		return -EINVAL;
5984 
5985 	switch (params->family) {
5986 #if IS_ENABLED(CONFIG_INET)
5987 	case AF_INET:
5988 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5989 					   flags, true);
5990 #endif
5991 #if IS_ENABLED(CONFIG_IPV6)
5992 	case AF_INET6:
5993 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5994 					   flags, true);
5995 #endif
5996 	}
5997 	return -EAFNOSUPPORT;
5998 }
5999 
6000 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6001 	.func		= bpf_xdp_fib_lookup,
6002 	.gpl_only	= true,
6003 	.ret_type	= RET_INTEGER,
6004 	.arg1_type      = ARG_PTR_TO_CTX,
6005 	.arg2_type      = ARG_PTR_TO_MEM,
6006 	.arg3_type      = ARG_CONST_SIZE,
6007 	.arg4_type	= ARG_ANYTHING,
6008 };
6009 
6010 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6011 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6012 {
6013 	struct net *net = dev_net(skb->dev);
6014 	int rc = -EAFNOSUPPORT;
6015 	bool check_mtu = false;
6016 
6017 	if (plen < sizeof(*params))
6018 		return -EINVAL;
6019 
6020 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
6021 		return -EINVAL;
6022 
6023 	if (params->tot_len)
6024 		check_mtu = true;
6025 
6026 	switch (params->family) {
6027 #if IS_ENABLED(CONFIG_INET)
6028 	case AF_INET:
6029 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6030 		break;
6031 #endif
6032 #if IS_ENABLED(CONFIG_IPV6)
6033 	case AF_INET6:
6034 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6035 		break;
6036 #endif
6037 	}
6038 
6039 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6040 		struct net_device *dev;
6041 
6042 		/* When tot_len isn't provided by user, check skb
6043 		 * against MTU of FIB lookup resulting net_device
6044 		 */
6045 		dev = dev_get_by_index_rcu(net, params->ifindex);
6046 		if (!is_skb_forwardable(dev, skb))
6047 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6048 
6049 		params->mtu_result = dev->mtu; /* union with tot_len */
6050 	}
6051 
6052 	return rc;
6053 }
6054 
6055 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6056 	.func		= bpf_skb_fib_lookup,
6057 	.gpl_only	= true,
6058 	.ret_type	= RET_INTEGER,
6059 	.arg1_type      = ARG_PTR_TO_CTX,
6060 	.arg2_type      = ARG_PTR_TO_MEM,
6061 	.arg3_type      = ARG_CONST_SIZE,
6062 	.arg4_type	= ARG_ANYTHING,
6063 };
6064 
6065 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6066 					    u32 ifindex)
6067 {
6068 	struct net *netns = dev_net(dev_curr);
6069 
6070 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6071 	if (ifindex == 0)
6072 		return dev_curr;
6073 
6074 	return dev_get_by_index_rcu(netns, ifindex);
6075 }
6076 
6077 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6078 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6079 {
6080 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6081 	struct net_device *dev = skb->dev;
6082 	int skb_len, dev_len;
6083 	int mtu;
6084 
6085 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6086 		return -EINVAL;
6087 
6088 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6089 		return -EINVAL;
6090 
6091 	dev = __dev_via_ifindex(dev, ifindex);
6092 	if (unlikely(!dev))
6093 		return -ENODEV;
6094 
6095 	mtu = READ_ONCE(dev->mtu);
6096 
6097 	dev_len = mtu + dev->hard_header_len;
6098 
6099 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6100 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6101 
6102 	skb_len += len_diff; /* minus result pass check */
6103 	if (skb_len <= dev_len) {
6104 		ret = BPF_MTU_CHK_RET_SUCCESS;
6105 		goto out;
6106 	}
6107 	/* At this point, skb->len exceed MTU, but as it include length of all
6108 	 * segments, it can still be below MTU.  The SKB can possibly get
6109 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6110 	 * must choose if segs are to be MTU checked.
6111 	 */
6112 	if (skb_is_gso(skb)) {
6113 		ret = BPF_MTU_CHK_RET_SUCCESS;
6114 
6115 		if (flags & BPF_MTU_CHK_SEGS &&
6116 		    !skb_gso_validate_network_len(skb, mtu))
6117 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6118 	}
6119 out:
6120 	/* BPF verifier guarantees valid pointer */
6121 	*mtu_len = mtu;
6122 
6123 	return ret;
6124 }
6125 
6126 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6127 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6128 {
6129 	struct net_device *dev = xdp->rxq->dev;
6130 	int xdp_len = xdp->data_end - xdp->data;
6131 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6132 	int mtu, dev_len;
6133 
6134 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6135 	if (unlikely(flags))
6136 		return -EINVAL;
6137 
6138 	dev = __dev_via_ifindex(dev, ifindex);
6139 	if (unlikely(!dev))
6140 		return -ENODEV;
6141 
6142 	mtu = READ_ONCE(dev->mtu);
6143 
6144 	/* Add L2-header as dev MTU is L3 size */
6145 	dev_len = mtu + dev->hard_header_len;
6146 
6147 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6148 	if (*mtu_len)
6149 		xdp_len = *mtu_len + dev->hard_header_len;
6150 
6151 	xdp_len += len_diff; /* minus result pass check */
6152 	if (xdp_len > dev_len)
6153 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6154 
6155 	/* BPF verifier guarantees valid pointer */
6156 	*mtu_len = mtu;
6157 
6158 	return ret;
6159 }
6160 
6161 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6162 	.func		= bpf_skb_check_mtu,
6163 	.gpl_only	= true,
6164 	.ret_type	= RET_INTEGER,
6165 	.arg1_type      = ARG_PTR_TO_CTX,
6166 	.arg2_type      = ARG_ANYTHING,
6167 	.arg3_type      = ARG_PTR_TO_INT,
6168 	.arg4_type      = ARG_ANYTHING,
6169 	.arg5_type      = ARG_ANYTHING,
6170 };
6171 
6172 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6173 	.func		= bpf_xdp_check_mtu,
6174 	.gpl_only	= true,
6175 	.ret_type	= RET_INTEGER,
6176 	.arg1_type      = ARG_PTR_TO_CTX,
6177 	.arg2_type      = ARG_ANYTHING,
6178 	.arg3_type      = ARG_PTR_TO_INT,
6179 	.arg4_type      = ARG_ANYTHING,
6180 	.arg5_type      = ARG_ANYTHING,
6181 };
6182 
6183 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6184 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6185 {
6186 	int err;
6187 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6188 
6189 	if (!seg6_validate_srh(srh, len, false))
6190 		return -EINVAL;
6191 
6192 	switch (type) {
6193 	case BPF_LWT_ENCAP_SEG6_INLINE:
6194 		if (skb->protocol != htons(ETH_P_IPV6))
6195 			return -EBADMSG;
6196 
6197 		err = seg6_do_srh_inline(skb, srh);
6198 		break;
6199 	case BPF_LWT_ENCAP_SEG6:
6200 		skb_reset_inner_headers(skb);
6201 		skb->encapsulation = 1;
6202 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6203 		break;
6204 	default:
6205 		return -EINVAL;
6206 	}
6207 
6208 	bpf_compute_data_pointers(skb);
6209 	if (err)
6210 		return err;
6211 
6212 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6213 
6214 	return seg6_lookup_nexthop(skb, NULL, 0);
6215 }
6216 #endif /* CONFIG_IPV6_SEG6_BPF */
6217 
6218 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6219 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6220 			     bool ingress)
6221 {
6222 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6223 }
6224 #endif
6225 
6226 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6227 	   u32, len)
6228 {
6229 	switch (type) {
6230 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6231 	case BPF_LWT_ENCAP_SEG6:
6232 	case BPF_LWT_ENCAP_SEG6_INLINE:
6233 		return bpf_push_seg6_encap(skb, type, hdr, len);
6234 #endif
6235 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6236 	case BPF_LWT_ENCAP_IP:
6237 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6238 #endif
6239 	default:
6240 		return -EINVAL;
6241 	}
6242 }
6243 
6244 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6245 	   void *, hdr, u32, len)
6246 {
6247 	switch (type) {
6248 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6249 	case BPF_LWT_ENCAP_IP:
6250 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6251 #endif
6252 	default:
6253 		return -EINVAL;
6254 	}
6255 }
6256 
6257 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6258 	.func		= bpf_lwt_in_push_encap,
6259 	.gpl_only	= false,
6260 	.ret_type	= RET_INTEGER,
6261 	.arg1_type	= ARG_PTR_TO_CTX,
6262 	.arg2_type	= ARG_ANYTHING,
6263 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6264 	.arg4_type	= ARG_CONST_SIZE
6265 };
6266 
6267 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6268 	.func		= bpf_lwt_xmit_push_encap,
6269 	.gpl_only	= false,
6270 	.ret_type	= RET_INTEGER,
6271 	.arg1_type	= ARG_PTR_TO_CTX,
6272 	.arg2_type	= ARG_ANYTHING,
6273 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6274 	.arg4_type	= ARG_CONST_SIZE
6275 };
6276 
6277 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6278 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6279 	   const void *, from, u32, len)
6280 {
6281 	struct seg6_bpf_srh_state *srh_state =
6282 		this_cpu_ptr(&seg6_bpf_srh_states);
6283 	struct ipv6_sr_hdr *srh = srh_state->srh;
6284 	void *srh_tlvs, *srh_end, *ptr;
6285 	int srhoff = 0;
6286 
6287 	if (srh == NULL)
6288 		return -EINVAL;
6289 
6290 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6291 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6292 
6293 	ptr = skb->data + offset;
6294 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6295 		srh_state->valid = false;
6296 	else if (ptr < (void *)&srh->flags ||
6297 		 ptr + len > (void *)&srh->segments)
6298 		return -EFAULT;
6299 
6300 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6301 		return -EFAULT;
6302 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6303 		return -EINVAL;
6304 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6305 
6306 	memcpy(skb->data + offset, from, len);
6307 	return 0;
6308 }
6309 
6310 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6311 	.func		= bpf_lwt_seg6_store_bytes,
6312 	.gpl_only	= false,
6313 	.ret_type	= RET_INTEGER,
6314 	.arg1_type	= ARG_PTR_TO_CTX,
6315 	.arg2_type	= ARG_ANYTHING,
6316 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6317 	.arg4_type	= ARG_CONST_SIZE
6318 };
6319 
6320 static void bpf_update_srh_state(struct sk_buff *skb)
6321 {
6322 	struct seg6_bpf_srh_state *srh_state =
6323 		this_cpu_ptr(&seg6_bpf_srh_states);
6324 	int srhoff = 0;
6325 
6326 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6327 		srh_state->srh = NULL;
6328 	} else {
6329 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6330 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6331 		srh_state->valid = true;
6332 	}
6333 }
6334 
6335 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6336 	   u32, action, void *, param, u32, param_len)
6337 {
6338 	struct seg6_bpf_srh_state *srh_state =
6339 		this_cpu_ptr(&seg6_bpf_srh_states);
6340 	int hdroff = 0;
6341 	int err;
6342 
6343 	switch (action) {
6344 	case SEG6_LOCAL_ACTION_END_X:
6345 		if (!seg6_bpf_has_valid_srh(skb))
6346 			return -EBADMSG;
6347 		if (param_len != sizeof(struct in6_addr))
6348 			return -EINVAL;
6349 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6350 	case SEG6_LOCAL_ACTION_END_T:
6351 		if (!seg6_bpf_has_valid_srh(skb))
6352 			return -EBADMSG;
6353 		if (param_len != sizeof(int))
6354 			return -EINVAL;
6355 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6356 	case SEG6_LOCAL_ACTION_END_DT6:
6357 		if (!seg6_bpf_has_valid_srh(skb))
6358 			return -EBADMSG;
6359 		if (param_len != sizeof(int))
6360 			return -EINVAL;
6361 
6362 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6363 			return -EBADMSG;
6364 		if (!pskb_pull(skb, hdroff))
6365 			return -EBADMSG;
6366 
6367 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6368 		skb_reset_network_header(skb);
6369 		skb_reset_transport_header(skb);
6370 		skb->encapsulation = 0;
6371 
6372 		bpf_compute_data_pointers(skb);
6373 		bpf_update_srh_state(skb);
6374 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6375 	case SEG6_LOCAL_ACTION_END_B6:
6376 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6377 			return -EBADMSG;
6378 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6379 					  param, param_len);
6380 		if (!err)
6381 			bpf_update_srh_state(skb);
6382 
6383 		return err;
6384 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6385 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6386 			return -EBADMSG;
6387 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6388 					  param, param_len);
6389 		if (!err)
6390 			bpf_update_srh_state(skb);
6391 
6392 		return err;
6393 	default:
6394 		return -EINVAL;
6395 	}
6396 }
6397 
6398 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6399 	.func		= bpf_lwt_seg6_action,
6400 	.gpl_only	= false,
6401 	.ret_type	= RET_INTEGER,
6402 	.arg1_type	= ARG_PTR_TO_CTX,
6403 	.arg2_type	= ARG_ANYTHING,
6404 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6405 	.arg4_type	= ARG_CONST_SIZE
6406 };
6407 
6408 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6409 	   s32, len)
6410 {
6411 	struct seg6_bpf_srh_state *srh_state =
6412 		this_cpu_ptr(&seg6_bpf_srh_states);
6413 	struct ipv6_sr_hdr *srh = srh_state->srh;
6414 	void *srh_end, *srh_tlvs, *ptr;
6415 	struct ipv6hdr *hdr;
6416 	int srhoff = 0;
6417 	int ret;
6418 
6419 	if (unlikely(srh == NULL))
6420 		return -EINVAL;
6421 
6422 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6423 			((srh->first_segment + 1) << 4));
6424 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6425 			srh_state->hdrlen);
6426 	ptr = skb->data + offset;
6427 
6428 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6429 		return -EFAULT;
6430 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6431 		return -EFAULT;
6432 
6433 	if (len > 0) {
6434 		ret = skb_cow_head(skb, len);
6435 		if (unlikely(ret < 0))
6436 			return ret;
6437 
6438 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6439 	} else {
6440 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6441 	}
6442 
6443 	bpf_compute_data_pointers(skb);
6444 	if (unlikely(ret < 0))
6445 		return ret;
6446 
6447 	hdr = (struct ipv6hdr *)skb->data;
6448 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6449 
6450 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6451 		return -EINVAL;
6452 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6453 	srh_state->hdrlen += len;
6454 	srh_state->valid = false;
6455 	return 0;
6456 }
6457 
6458 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6459 	.func		= bpf_lwt_seg6_adjust_srh,
6460 	.gpl_only	= false,
6461 	.ret_type	= RET_INTEGER,
6462 	.arg1_type	= ARG_PTR_TO_CTX,
6463 	.arg2_type	= ARG_ANYTHING,
6464 	.arg3_type	= ARG_ANYTHING,
6465 };
6466 #endif /* CONFIG_IPV6_SEG6_BPF */
6467 
6468 #ifdef CONFIG_INET
6469 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6470 			      int dif, int sdif, u8 family, u8 proto)
6471 {
6472 	bool refcounted = false;
6473 	struct sock *sk = NULL;
6474 
6475 	if (family == AF_INET) {
6476 		__be32 src4 = tuple->ipv4.saddr;
6477 		__be32 dst4 = tuple->ipv4.daddr;
6478 
6479 		if (proto == IPPROTO_TCP)
6480 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6481 					   src4, tuple->ipv4.sport,
6482 					   dst4, tuple->ipv4.dport,
6483 					   dif, sdif, &refcounted);
6484 		else
6485 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6486 					       dst4, tuple->ipv4.dport,
6487 					       dif, sdif, &udp_table, NULL);
6488 #if IS_ENABLED(CONFIG_IPV6)
6489 	} else {
6490 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6491 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6492 
6493 		if (proto == IPPROTO_TCP)
6494 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6495 					    src6, tuple->ipv6.sport,
6496 					    dst6, ntohs(tuple->ipv6.dport),
6497 					    dif, sdif, &refcounted);
6498 		else if (likely(ipv6_bpf_stub))
6499 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6500 							    src6, tuple->ipv6.sport,
6501 							    dst6, tuple->ipv6.dport,
6502 							    dif, sdif,
6503 							    &udp_table, NULL);
6504 #endif
6505 	}
6506 
6507 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6508 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6509 		sk = NULL;
6510 	}
6511 	return sk;
6512 }
6513 
6514 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6515  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6516  */
6517 static struct sock *
6518 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6519 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6520 		 u64 flags)
6521 {
6522 	struct sock *sk = NULL;
6523 	struct net *net;
6524 	u8 family;
6525 	int sdif;
6526 
6527 	if (len == sizeof(tuple->ipv4))
6528 		family = AF_INET;
6529 	else if (len == sizeof(tuple->ipv6))
6530 		family = AF_INET6;
6531 	else
6532 		return NULL;
6533 
6534 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6535 		goto out;
6536 
6537 	if (family == AF_INET)
6538 		sdif = inet_sdif(skb);
6539 	else
6540 		sdif = inet6_sdif(skb);
6541 
6542 	if ((s32)netns_id < 0) {
6543 		net = caller_net;
6544 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6545 	} else {
6546 		net = get_net_ns_by_id(caller_net, netns_id);
6547 		if (unlikely(!net))
6548 			goto out;
6549 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6550 		put_net(net);
6551 	}
6552 
6553 out:
6554 	return sk;
6555 }
6556 
6557 static struct sock *
6558 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6559 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6560 		u64 flags)
6561 {
6562 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6563 					   ifindex, proto, netns_id, flags);
6564 
6565 	if (sk) {
6566 		struct sock *sk2 = sk_to_full_sk(sk);
6567 
6568 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6569 		 * sock refcnt is decremented to prevent a request_sock leak.
6570 		 */
6571 		if (!sk_fullsock(sk2))
6572 			sk2 = NULL;
6573 		if (sk2 != sk) {
6574 			sock_gen_put(sk);
6575 			/* Ensure there is no need to bump sk2 refcnt */
6576 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6577 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6578 				return NULL;
6579 			}
6580 			sk = sk2;
6581 		}
6582 	}
6583 
6584 	return sk;
6585 }
6586 
6587 static struct sock *
6588 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6589 	       u8 proto, u64 netns_id, u64 flags)
6590 {
6591 	struct net *caller_net;
6592 	int ifindex;
6593 
6594 	if (skb->dev) {
6595 		caller_net = dev_net(skb->dev);
6596 		ifindex = skb->dev->ifindex;
6597 	} else {
6598 		caller_net = sock_net(skb->sk);
6599 		ifindex = 0;
6600 	}
6601 
6602 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6603 				netns_id, flags);
6604 }
6605 
6606 static struct sock *
6607 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6608 	      u8 proto, u64 netns_id, u64 flags)
6609 {
6610 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6611 					 flags);
6612 
6613 	if (sk) {
6614 		struct sock *sk2 = sk_to_full_sk(sk);
6615 
6616 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6617 		 * sock refcnt is decremented to prevent a request_sock leak.
6618 		 */
6619 		if (!sk_fullsock(sk2))
6620 			sk2 = NULL;
6621 		if (sk2 != sk) {
6622 			sock_gen_put(sk);
6623 			/* Ensure there is no need to bump sk2 refcnt */
6624 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6625 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6626 				return NULL;
6627 			}
6628 			sk = sk2;
6629 		}
6630 	}
6631 
6632 	return sk;
6633 }
6634 
6635 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6636 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6637 {
6638 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6639 					     netns_id, flags);
6640 }
6641 
6642 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6643 	.func		= bpf_skc_lookup_tcp,
6644 	.gpl_only	= false,
6645 	.pkt_access	= true,
6646 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6647 	.arg1_type	= ARG_PTR_TO_CTX,
6648 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6649 	.arg3_type	= ARG_CONST_SIZE,
6650 	.arg4_type	= ARG_ANYTHING,
6651 	.arg5_type	= ARG_ANYTHING,
6652 };
6653 
6654 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6655 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6656 {
6657 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6658 					    netns_id, flags);
6659 }
6660 
6661 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6662 	.func		= bpf_sk_lookup_tcp,
6663 	.gpl_only	= false,
6664 	.pkt_access	= true,
6665 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6666 	.arg1_type	= ARG_PTR_TO_CTX,
6667 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6668 	.arg3_type	= ARG_CONST_SIZE,
6669 	.arg4_type	= ARG_ANYTHING,
6670 	.arg5_type	= ARG_ANYTHING,
6671 };
6672 
6673 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6674 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6675 {
6676 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6677 					    netns_id, flags);
6678 }
6679 
6680 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6681 	.func		= bpf_sk_lookup_udp,
6682 	.gpl_only	= false,
6683 	.pkt_access	= true,
6684 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6685 	.arg1_type	= ARG_PTR_TO_CTX,
6686 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6687 	.arg3_type	= ARG_CONST_SIZE,
6688 	.arg4_type	= ARG_ANYTHING,
6689 	.arg5_type	= ARG_ANYTHING,
6690 };
6691 
6692 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6693 {
6694 	if (sk && sk_is_refcounted(sk))
6695 		sock_gen_put(sk);
6696 	return 0;
6697 }
6698 
6699 static const struct bpf_func_proto bpf_sk_release_proto = {
6700 	.func		= bpf_sk_release,
6701 	.gpl_only	= false,
6702 	.ret_type	= RET_INTEGER,
6703 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6704 };
6705 
6706 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6707 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6708 {
6709 	struct net *caller_net = dev_net(ctx->rxq->dev);
6710 	int ifindex = ctx->rxq->dev->ifindex;
6711 
6712 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6713 					      ifindex, IPPROTO_UDP, netns_id,
6714 					      flags);
6715 }
6716 
6717 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6718 	.func           = bpf_xdp_sk_lookup_udp,
6719 	.gpl_only       = false,
6720 	.pkt_access     = true,
6721 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6722 	.arg1_type      = ARG_PTR_TO_CTX,
6723 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6724 	.arg3_type      = ARG_CONST_SIZE,
6725 	.arg4_type      = ARG_ANYTHING,
6726 	.arg5_type      = ARG_ANYTHING,
6727 };
6728 
6729 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6730 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6731 {
6732 	struct net *caller_net = dev_net(ctx->rxq->dev);
6733 	int ifindex = ctx->rxq->dev->ifindex;
6734 
6735 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6736 					       ifindex, IPPROTO_TCP, netns_id,
6737 					       flags);
6738 }
6739 
6740 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6741 	.func           = bpf_xdp_skc_lookup_tcp,
6742 	.gpl_only       = false,
6743 	.pkt_access     = true,
6744 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6745 	.arg1_type      = ARG_PTR_TO_CTX,
6746 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6747 	.arg3_type      = ARG_CONST_SIZE,
6748 	.arg4_type      = ARG_ANYTHING,
6749 	.arg5_type      = ARG_ANYTHING,
6750 };
6751 
6752 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6753 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6754 {
6755 	struct net *caller_net = dev_net(ctx->rxq->dev);
6756 	int ifindex = ctx->rxq->dev->ifindex;
6757 
6758 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6759 					      ifindex, IPPROTO_TCP, netns_id,
6760 					      flags);
6761 }
6762 
6763 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6764 	.func           = bpf_xdp_sk_lookup_tcp,
6765 	.gpl_only       = false,
6766 	.pkt_access     = true,
6767 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6768 	.arg1_type      = ARG_PTR_TO_CTX,
6769 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6770 	.arg3_type      = ARG_CONST_SIZE,
6771 	.arg4_type      = ARG_ANYTHING,
6772 	.arg5_type      = ARG_ANYTHING,
6773 };
6774 
6775 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6776 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6777 {
6778 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6779 					       sock_net(ctx->sk), 0,
6780 					       IPPROTO_TCP, netns_id, flags);
6781 }
6782 
6783 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6784 	.func		= bpf_sock_addr_skc_lookup_tcp,
6785 	.gpl_only	= false,
6786 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6787 	.arg1_type	= ARG_PTR_TO_CTX,
6788 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6789 	.arg3_type	= ARG_CONST_SIZE,
6790 	.arg4_type	= ARG_ANYTHING,
6791 	.arg5_type	= ARG_ANYTHING,
6792 };
6793 
6794 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6795 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6796 {
6797 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6798 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6799 					      netns_id, flags);
6800 }
6801 
6802 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6803 	.func		= bpf_sock_addr_sk_lookup_tcp,
6804 	.gpl_only	= false,
6805 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6806 	.arg1_type	= ARG_PTR_TO_CTX,
6807 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6808 	.arg3_type	= ARG_CONST_SIZE,
6809 	.arg4_type	= ARG_ANYTHING,
6810 	.arg5_type	= ARG_ANYTHING,
6811 };
6812 
6813 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6814 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6815 {
6816 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6817 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6818 					      netns_id, flags);
6819 }
6820 
6821 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6822 	.func		= bpf_sock_addr_sk_lookup_udp,
6823 	.gpl_only	= false,
6824 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6825 	.arg1_type	= ARG_PTR_TO_CTX,
6826 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6827 	.arg3_type	= ARG_CONST_SIZE,
6828 	.arg4_type	= ARG_ANYTHING,
6829 	.arg5_type	= ARG_ANYTHING,
6830 };
6831 
6832 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6833 				  struct bpf_insn_access_aux *info)
6834 {
6835 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6836 					  icsk_retransmits))
6837 		return false;
6838 
6839 	if (off % size != 0)
6840 		return false;
6841 
6842 	switch (off) {
6843 	case offsetof(struct bpf_tcp_sock, bytes_received):
6844 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6845 		return size == sizeof(__u64);
6846 	default:
6847 		return size == sizeof(__u32);
6848 	}
6849 }
6850 
6851 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6852 				    const struct bpf_insn *si,
6853 				    struct bpf_insn *insn_buf,
6854 				    struct bpf_prog *prog, u32 *target_size)
6855 {
6856 	struct bpf_insn *insn = insn_buf;
6857 
6858 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6859 	do {								\
6860 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6861 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6862 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6863 				      si->dst_reg, si->src_reg,		\
6864 				      offsetof(struct tcp_sock, FIELD)); \
6865 	} while (0)
6866 
6867 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6868 	do {								\
6869 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6870 					  FIELD) >			\
6871 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6872 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6873 					struct inet_connection_sock,	\
6874 					FIELD),				\
6875 				      si->dst_reg, si->src_reg,		\
6876 				      offsetof(				\
6877 					struct inet_connection_sock,	\
6878 					FIELD));			\
6879 	} while (0)
6880 
6881 	if (insn > insn_buf)
6882 		return insn - insn_buf;
6883 
6884 	switch (si->off) {
6885 	case offsetof(struct bpf_tcp_sock, rtt_min):
6886 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6887 			     sizeof(struct minmax));
6888 		BUILD_BUG_ON(sizeof(struct minmax) <
6889 			     sizeof(struct minmax_sample));
6890 
6891 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6892 				      offsetof(struct tcp_sock, rtt_min) +
6893 				      offsetof(struct minmax_sample, v));
6894 		break;
6895 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6896 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6897 		break;
6898 	case offsetof(struct bpf_tcp_sock, srtt_us):
6899 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6900 		break;
6901 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6902 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6903 		break;
6904 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6905 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6906 		break;
6907 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6908 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6909 		break;
6910 	case offsetof(struct bpf_tcp_sock, snd_una):
6911 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6912 		break;
6913 	case offsetof(struct bpf_tcp_sock, mss_cache):
6914 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6915 		break;
6916 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6917 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6918 		break;
6919 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6920 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6921 		break;
6922 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6923 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6924 		break;
6925 	case offsetof(struct bpf_tcp_sock, packets_out):
6926 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6927 		break;
6928 	case offsetof(struct bpf_tcp_sock, retrans_out):
6929 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6930 		break;
6931 	case offsetof(struct bpf_tcp_sock, total_retrans):
6932 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6933 		break;
6934 	case offsetof(struct bpf_tcp_sock, segs_in):
6935 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6936 		break;
6937 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6938 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6939 		break;
6940 	case offsetof(struct bpf_tcp_sock, segs_out):
6941 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6942 		break;
6943 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6944 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6945 		break;
6946 	case offsetof(struct bpf_tcp_sock, lost_out):
6947 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6948 		break;
6949 	case offsetof(struct bpf_tcp_sock, sacked_out):
6950 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6951 		break;
6952 	case offsetof(struct bpf_tcp_sock, bytes_received):
6953 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6954 		break;
6955 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6956 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6957 		break;
6958 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6959 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6960 		break;
6961 	case offsetof(struct bpf_tcp_sock, delivered):
6962 		BPF_TCP_SOCK_GET_COMMON(delivered);
6963 		break;
6964 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6965 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6966 		break;
6967 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6968 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6969 		break;
6970 	}
6971 
6972 	return insn - insn_buf;
6973 }
6974 
6975 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6976 {
6977 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6978 		return (unsigned long)sk;
6979 
6980 	return (unsigned long)NULL;
6981 }
6982 
6983 const struct bpf_func_proto bpf_tcp_sock_proto = {
6984 	.func		= bpf_tcp_sock,
6985 	.gpl_only	= false,
6986 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6987 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6988 };
6989 
6990 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6991 {
6992 	sk = sk_to_full_sk(sk);
6993 
6994 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6995 		return (unsigned long)sk;
6996 
6997 	return (unsigned long)NULL;
6998 }
6999 
7000 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7001 	.func		= bpf_get_listener_sock,
7002 	.gpl_only	= false,
7003 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7004 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7005 };
7006 
7007 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7008 {
7009 	unsigned int iphdr_len;
7010 
7011 	switch (skb_protocol(skb, true)) {
7012 	case cpu_to_be16(ETH_P_IP):
7013 		iphdr_len = sizeof(struct iphdr);
7014 		break;
7015 	case cpu_to_be16(ETH_P_IPV6):
7016 		iphdr_len = sizeof(struct ipv6hdr);
7017 		break;
7018 	default:
7019 		return 0;
7020 	}
7021 
7022 	if (skb_headlen(skb) < iphdr_len)
7023 		return 0;
7024 
7025 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7026 		return 0;
7027 
7028 	return INET_ECN_set_ce(skb);
7029 }
7030 
7031 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7032 				  struct bpf_insn_access_aux *info)
7033 {
7034 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7035 		return false;
7036 
7037 	if (off % size != 0)
7038 		return false;
7039 
7040 	switch (off) {
7041 	default:
7042 		return size == sizeof(__u32);
7043 	}
7044 }
7045 
7046 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7047 				    const struct bpf_insn *si,
7048 				    struct bpf_insn *insn_buf,
7049 				    struct bpf_prog *prog, u32 *target_size)
7050 {
7051 	struct bpf_insn *insn = insn_buf;
7052 
7053 #define BPF_XDP_SOCK_GET(FIELD)						\
7054 	do {								\
7055 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7056 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7057 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7058 				      si->dst_reg, si->src_reg,		\
7059 				      offsetof(struct xdp_sock, FIELD)); \
7060 	} while (0)
7061 
7062 	switch (si->off) {
7063 	case offsetof(struct bpf_xdp_sock, queue_id):
7064 		BPF_XDP_SOCK_GET(queue_id);
7065 		break;
7066 	}
7067 
7068 	return insn - insn_buf;
7069 }
7070 
7071 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7072 	.func           = bpf_skb_ecn_set_ce,
7073 	.gpl_only       = false,
7074 	.ret_type       = RET_INTEGER,
7075 	.arg1_type      = ARG_PTR_TO_CTX,
7076 };
7077 
7078 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7079 	   struct tcphdr *, th, u32, th_len)
7080 {
7081 #ifdef CONFIG_SYN_COOKIES
7082 	u32 cookie;
7083 	int ret;
7084 
7085 	if (unlikely(!sk || th_len < sizeof(*th)))
7086 		return -EINVAL;
7087 
7088 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7089 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7090 		return -EINVAL;
7091 
7092 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7093 		return -EINVAL;
7094 
7095 	if (!th->ack || th->rst || th->syn)
7096 		return -ENOENT;
7097 
7098 	if (unlikely(iph_len < sizeof(struct iphdr)))
7099 		return -EINVAL;
7100 
7101 	if (tcp_synq_no_recent_overflow(sk))
7102 		return -ENOENT;
7103 
7104 	cookie = ntohl(th->ack_seq) - 1;
7105 
7106 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7107 	 * same offset so we can cast to the shorter header (struct iphdr).
7108 	 */
7109 	switch (((struct iphdr *)iph)->version) {
7110 	case 4:
7111 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7112 			return -EINVAL;
7113 
7114 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7115 		break;
7116 
7117 #if IS_BUILTIN(CONFIG_IPV6)
7118 	case 6:
7119 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7120 			return -EINVAL;
7121 
7122 		if (sk->sk_family != AF_INET6)
7123 			return -EINVAL;
7124 
7125 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7126 		break;
7127 #endif /* CONFIG_IPV6 */
7128 
7129 	default:
7130 		return -EPROTONOSUPPORT;
7131 	}
7132 
7133 	if (ret > 0)
7134 		return 0;
7135 
7136 	return -ENOENT;
7137 #else
7138 	return -ENOTSUPP;
7139 #endif
7140 }
7141 
7142 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7143 	.func		= bpf_tcp_check_syncookie,
7144 	.gpl_only	= true,
7145 	.pkt_access	= true,
7146 	.ret_type	= RET_INTEGER,
7147 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7148 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7149 	.arg3_type	= ARG_CONST_SIZE,
7150 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7151 	.arg5_type	= ARG_CONST_SIZE,
7152 };
7153 
7154 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7155 	   struct tcphdr *, th, u32, th_len)
7156 {
7157 #ifdef CONFIG_SYN_COOKIES
7158 	u32 cookie;
7159 	u16 mss;
7160 
7161 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7162 		return -EINVAL;
7163 
7164 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7165 		return -EINVAL;
7166 
7167 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7168 		return -ENOENT;
7169 
7170 	if (!th->syn || th->ack || th->fin || th->rst)
7171 		return -EINVAL;
7172 
7173 	if (unlikely(iph_len < sizeof(struct iphdr)))
7174 		return -EINVAL;
7175 
7176 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7177 	 * same offset so we can cast to the shorter header (struct iphdr).
7178 	 */
7179 	switch (((struct iphdr *)iph)->version) {
7180 	case 4:
7181 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7182 			return -EINVAL;
7183 
7184 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7185 		break;
7186 
7187 #if IS_BUILTIN(CONFIG_IPV6)
7188 	case 6:
7189 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7190 			return -EINVAL;
7191 
7192 		if (sk->sk_family != AF_INET6)
7193 			return -EINVAL;
7194 
7195 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7196 		break;
7197 #endif /* CONFIG_IPV6 */
7198 
7199 	default:
7200 		return -EPROTONOSUPPORT;
7201 	}
7202 	if (mss == 0)
7203 		return -ENOENT;
7204 
7205 	return cookie | ((u64)mss << 32);
7206 #else
7207 	return -EOPNOTSUPP;
7208 #endif /* CONFIG_SYN_COOKIES */
7209 }
7210 
7211 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7212 	.func		= bpf_tcp_gen_syncookie,
7213 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7214 	.pkt_access	= true,
7215 	.ret_type	= RET_INTEGER,
7216 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7217 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7218 	.arg3_type	= ARG_CONST_SIZE,
7219 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7220 	.arg5_type	= ARG_CONST_SIZE,
7221 };
7222 
7223 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7224 {
7225 	if (!sk || flags != 0)
7226 		return -EINVAL;
7227 	if (!skb_at_tc_ingress(skb))
7228 		return -EOPNOTSUPP;
7229 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7230 		return -ENETUNREACH;
7231 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7232 		return -ESOCKTNOSUPPORT;
7233 	if (sk_is_refcounted(sk) &&
7234 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7235 		return -ENOENT;
7236 
7237 	skb_orphan(skb);
7238 	skb->sk = sk;
7239 	skb->destructor = sock_pfree;
7240 
7241 	return 0;
7242 }
7243 
7244 static const struct bpf_func_proto bpf_sk_assign_proto = {
7245 	.func		= bpf_sk_assign,
7246 	.gpl_only	= false,
7247 	.ret_type	= RET_INTEGER,
7248 	.arg1_type      = ARG_PTR_TO_CTX,
7249 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7250 	.arg3_type	= ARG_ANYTHING,
7251 };
7252 
7253 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7254 				    u8 search_kind, const u8 *magic,
7255 				    u8 magic_len, bool *eol)
7256 {
7257 	u8 kind, kind_len;
7258 
7259 	*eol = false;
7260 
7261 	while (op < opend) {
7262 		kind = op[0];
7263 
7264 		if (kind == TCPOPT_EOL) {
7265 			*eol = true;
7266 			return ERR_PTR(-ENOMSG);
7267 		} else if (kind == TCPOPT_NOP) {
7268 			op++;
7269 			continue;
7270 		}
7271 
7272 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7273 			/* Something is wrong in the received header.
7274 			 * Follow the TCP stack's tcp_parse_options()
7275 			 * and just bail here.
7276 			 */
7277 			return ERR_PTR(-EFAULT);
7278 
7279 		kind_len = op[1];
7280 		if (search_kind == kind) {
7281 			if (!magic_len)
7282 				return op;
7283 
7284 			if (magic_len > kind_len - 2)
7285 				return ERR_PTR(-ENOMSG);
7286 
7287 			if (!memcmp(&op[2], magic, magic_len))
7288 				return op;
7289 		}
7290 
7291 		op += kind_len;
7292 	}
7293 
7294 	return ERR_PTR(-ENOMSG);
7295 }
7296 
7297 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7298 	   void *, search_res, u32, len, u64, flags)
7299 {
7300 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7301 	const u8 *op, *opend, *magic, *search = search_res;
7302 	u8 search_kind, search_len, copy_len, magic_len;
7303 	int ret;
7304 
7305 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7306 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7307 	 * and this helper disallow loading them also.
7308 	 */
7309 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7310 		return -EINVAL;
7311 
7312 	search_kind = search[0];
7313 	search_len = search[1];
7314 
7315 	if (search_len > len || search_kind == TCPOPT_NOP ||
7316 	    search_kind == TCPOPT_EOL)
7317 		return -EINVAL;
7318 
7319 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7320 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7321 		if (search_len != 4 && search_len != 6)
7322 			return -EINVAL;
7323 		magic = &search[2];
7324 		magic_len = search_len - 2;
7325 	} else {
7326 		if (search_len)
7327 			return -EINVAL;
7328 		magic = NULL;
7329 		magic_len = 0;
7330 	}
7331 
7332 	if (load_syn) {
7333 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7334 		if (ret < 0)
7335 			return ret;
7336 
7337 		opend = op + ret;
7338 		op += sizeof(struct tcphdr);
7339 	} else {
7340 		if (!bpf_sock->skb ||
7341 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7342 			/* This bpf_sock->op cannot call this helper */
7343 			return -EPERM;
7344 
7345 		opend = bpf_sock->skb_data_end;
7346 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7347 	}
7348 
7349 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7350 				&eol);
7351 	if (IS_ERR(op))
7352 		return PTR_ERR(op);
7353 
7354 	copy_len = op[1];
7355 	ret = copy_len;
7356 	if (copy_len > len) {
7357 		ret = -ENOSPC;
7358 		copy_len = len;
7359 	}
7360 
7361 	memcpy(search_res, op, copy_len);
7362 	return ret;
7363 }
7364 
7365 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7366 	.func		= bpf_sock_ops_load_hdr_opt,
7367 	.gpl_only	= false,
7368 	.ret_type	= RET_INTEGER,
7369 	.arg1_type	= ARG_PTR_TO_CTX,
7370 	.arg2_type	= ARG_PTR_TO_MEM,
7371 	.arg3_type	= ARG_CONST_SIZE,
7372 	.arg4_type	= ARG_ANYTHING,
7373 };
7374 
7375 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7376 	   const void *, from, u32, len, u64, flags)
7377 {
7378 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7379 	const u8 *op, *new_op, *magic = NULL;
7380 	struct sk_buff *skb;
7381 	bool eol;
7382 
7383 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7384 		return -EPERM;
7385 
7386 	if (len < 2 || flags)
7387 		return -EINVAL;
7388 
7389 	new_op = from;
7390 	new_kind = new_op[0];
7391 	new_kind_len = new_op[1];
7392 
7393 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7394 	    new_kind == TCPOPT_EOL)
7395 		return -EINVAL;
7396 
7397 	if (new_kind_len > bpf_sock->remaining_opt_len)
7398 		return -ENOSPC;
7399 
7400 	/* 253 is another experimental kind */
7401 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7402 		if (new_kind_len < 4)
7403 			return -EINVAL;
7404 		/* Match for the 2 byte magic also.
7405 		 * RFC 6994: the magic could be 2 or 4 bytes.
7406 		 * Hence, matching by 2 byte only is on the
7407 		 * conservative side but it is the right
7408 		 * thing to do for the 'search-for-duplication'
7409 		 * purpose.
7410 		 */
7411 		magic = &new_op[2];
7412 		magic_len = 2;
7413 	}
7414 
7415 	/* Check for duplication */
7416 	skb = bpf_sock->skb;
7417 	op = skb->data + sizeof(struct tcphdr);
7418 	opend = bpf_sock->skb_data_end;
7419 
7420 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7421 				&eol);
7422 	if (!IS_ERR(op))
7423 		return -EEXIST;
7424 
7425 	if (PTR_ERR(op) != -ENOMSG)
7426 		return PTR_ERR(op);
7427 
7428 	if (eol)
7429 		/* The option has been ended.  Treat it as no more
7430 		 * header option can be written.
7431 		 */
7432 		return -ENOSPC;
7433 
7434 	/* No duplication found.  Store the header option. */
7435 	memcpy(opend, from, new_kind_len);
7436 
7437 	bpf_sock->remaining_opt_len -= new_kind_len;
7438 	bpf_sock->skb_data_end += new_kind_len;
7439 
7440 	return 0;
7441 }
7442 
7443 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7444 	.func		= bpf_sock_ops_store_hdr_opt,
7445 	.gpl_only	= false,
7446 	.ret_type	= RET_INTEGER,
7447 	.arg1_type	= ARG_PTR_TO_CTX,
7448 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7449 	.arg3_type	= ARG_CONST_SIZE,
7450 	.arg4_type	= ARG_ANYTHING,
7451 };
7452 
7453 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7454 	   u32, len, u64, flags)
7455 {
7456 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7457 		return -EPERM;
7458 
7459 	if (flags || len < 2)
7460 		return -EINVAL;
7461 
7462 	if (len > bpf_sock->remaining_opt_len)
7463 		return -ENOSPC;
7464 
7465 	bpf_sock->remaining_opt_len -= len;
7466 
7467 	return 0;
7468 }
7469 
7470 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7471 	.func		= bpf_sock_ops_reserve_hdr_opt,
7472 	.gpl_only	= false,
7473 	.ret_type	= RET_INTEGER,
7474 	.arg1_type	= ARG_PTR_TO_CTX,
7475 	.arg2_type	= ARG_ANYTHING,
7476 	.arg3_type	= ARG_ANYTHING,
7477 };
7478 
7479 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7480 	   u64, tstamp, u32, tstamp_type)
7481 {
7482 	/* skb_clear_delivery_time() is done for inet protocol */
7483 	if (skb->protocol != htons(ETH_P_IP) &&
7484 	    skb->protocol != htons(ETH_P_IPV6))
7485 		return -EOPNOTSUPP;
7486 
7487 	switch (tstamp_type) {
7488 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7489 		if (!tstamp)
7490 			return -EINVAL;
7491 		skb->tstamp = tstamp;
7492 		skb->mono_delivery_time = 1;
7493 		break;
7494 	case BPF_SKB_TSTAMP_UNSPEC:
7495 		if (tstamp)
7496 			return -EINVAL;
7497 		skb->tstamp = 0;
7498 		skb->mono_delivery_time = 0;
7499 		break;
7500 	default:
7501 		return -EINVAL;
7502 	}
7503 
7504 	return 0;
7505 }
7506 
7507 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7508 	.func           = bpf_skb_set_tstamp,
7509 	.gpl_only       = false,
7510 	.ret_type       = RET_INTEGER,
7511 	.arg1_type      = ARG_PTR_TO_CTX,
7512 	.arg2_type      = ARG_ANYTHING,
7513 	.arg3_type      = ARG_ANYTHING,
7514 };
7515 
7516 #ifdef CONFIG_SYN_COOKIES
7517 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7518 	   struct tcphdr *, th, u32, th_len)
7519 {
7520 	u32 cookie;
7521 	u16 mss;
7522 
7523 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7524 		return -EINVAL;
7525 
7526 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7527 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7528 
7529 	return cookie | ((u64)mss << 32);
7530 }
7531 
7532 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7533 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7534 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7535 	.pkt_access	= true,
7536 	.ret_type	= RET_INTEGER,
7537 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7538 	.arg1_size	= sizeof(struct iphdr),
7539 	.arg2_type	= ARG_PTR_TO_MEM,
7540 	.arg3_type	= ARG_CONST_SIZE,
7541 };
7542 
7543 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7544 	   struct tcphdr *, th, u32, th_len)
7545 {
7546 #if IS_BUILTIN(CONFIG_IPV6)
7547 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7548 		sizeof(struct ipv6hdr);
7549 	u32 cookie;
7550 	u16 mss;
7551 
7552 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7553 		return -EINVAL;
7554 
7555 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7556 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7557 
7558 	return cookie | ((u64)mss << 32);
7559 #else
7560 	return -EPROTONOSUPPORT;
7561 #endif
7562 }
7563 
7564 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7565 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7566 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7567 	.pkt_access	= true,
7568 	.ret_type	= RET_INTEGER,
7569 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7570 	.arg1_size	= sizeof(struct ipv6hdr),
7571 	.arg2_type	= ARG_PTR_TO_MEM,
7572 	.arg3_type	= ARG_CONST_SIZE,
7573 };
7574 
7575 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7576 	   struct tcphdr *, th)
7577 {
7578 	u32 cookie = ntohl(th->ack_seq) - 1;
7579 
7580 	if (__cookie_v4_check(iph, th, cookie) > 0)
7581 		return 0;
7582 
7583 	return -EACCES;
7584 }
7585 
7586 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7587 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7588 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7589 	.pkt_access	= true,
7590 	.ret_type	= RET_INTEGER,
7591 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7592 	.arg1_size	= sizeof(struct iphdr),
7593 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7594 	.arg2_size	= sizeof(struct tcphdr),
7595 };
7596 
7597 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7598 	   struct tcphdr *, th)
7599 {
7600 #if IS_BUILTIN(CONFIG_IPV6)
7601 	u32 cookie = ntohl(th->ack_seq) - 1;
7602 
7603 	if (__cookie_v6_check(iph, th, cookie) > 0)
7604 		return 0;
7605 
7606 	return -EACCES;
7607 #else
7608 	return -EPROTONOSUPPORT;
7609 #endif
7610 }
7611 
7612 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7613 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7614 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7615 	.pkt_access	= true,
7616 	.ret_type	= RET_INTEGER,
7617 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7618 	.arg1_size	= sizeof(struct ipv6hdr),
7619 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7620 	.arg2_size	= sizeof(struct tcphdr),
7621 };
7622 #endif /* CONFIG_SYN_COOKIES */
7623 
7624 #endif /* CONFIG_INET */
7625 
7626 bool bpf_helper_changes_pkt_data(void *func)
7627 {
7628 	if (func == bpf_skb_vlan_push ||
7629 	    func == bpf_skb_vlan_pop ||
7630 	    func == bpf_skb_store_bytes ||
7631 	    func == bpf_skb_change_proto ||
7632 	    func == bpf_skb_change_head ||
7633 	    func == sk_skb_change_head ||
7634 	    func == bpf_skb_change_tail ||
7635 	    func == sk_skb_change_tail ||
7636 	    func == bpf_skb_adjust_room ||
7637 	    func == sk_skb_adjust_room ||
7638 	    func == bpf_skb_pull_data ||
7639 	    func == sk_skb_pull_data ||
7640 	    func == bpf_clone_redirect ||
7641 	    func == bpf_l3_csum_replace ||
7642 	    func == bpf_l4_csum_replace ||
7643 	    func == bpf_xdp_adjust_head ||
7644 	    func == bpf_xdp_adjust_meta ||
7645 	    func == bpf_msg_pull_data ||
7646 	    func == bpf_msg_push_data ||
7647 	    func == bpf_msg_pop_data ||
7648 	    func == bpf_xdp_adjust_tail ||
7649 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7650 	    func == bpf_lwt_seg6_store_bytes ||
7651 	    func == bpf_lwt_seg6_adjust_srh ||
7652 	    func == bpf_lwt_seg6_action ||
7653 #endif
7654 #ifdef CONFIG_INET
7655 	    func == bpf_sock_ops_store_hdr_opt ||
7656 #endif
7657 	    func == bpf_lwt_in_push_encap ||
7658 	    func == bpf_lwt_xmit_push_encap)
7659 		return true;
7660 
7661 	return false;
7662 }
7663 
7664 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7665 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7666 
7667 static const struct bpf_func_proto *
7668 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7669 {
7670 	switch (func_id) {
7671 	/* inet and inet6 sockets are created in a process
7672 	 * context so there is always a valid uid/gid
7673 	 */
7674 	case BPF_FUNC_get_current_uid_gid:
7675 		return &bpf_get_current_uid_gid_proto;
7676 	case BPF_FUNC_get_local_storage:
7677 		return &bpf_get_local_storage_proto;
7678 	case BPF_FUNC_get_socket_cookie:
7679 		return &bpf_get_socket_cookie_sock_proto;
7680 	case BPF_FUNC_get_netns_cookie:
7681 		return &bpf_get_netns_cookie_sock_proto;
7682 	case BPF_FUNC_perf_event_output:
7683 		return &bpf_event_output_data_proto;
7684 	case BPF_FUNC_get_current_pid_tgid:
7685 		return &bpf_get_current_pid_tgid_proto;
7686 	case BPF_FUNC_get_current_comm:
7687 		return &bpf_get_current_comm_proto;
7688 #ifdef CONFIG_CGROUPS
7689 	case BPF_FUNC_get_current_cgroup_id:
7690 		return &bpf_get_current_cgroup_id_proto;
7691 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7692 		return &bpf_get_current_ancestor_cgroup_id_proto;
7693 #endif
7694 #ifdef CONFIG_CGROUP_NET_CLASSID
7695 	case BPF_FUNC_get_cgroup_classid:
7696 		return &bpf_get_cgroup_classid_curr_proto;
7697 #endif
7698 	case BPF_FUNC_sk_storage_get:
7699 		return &bpf_sk_storage_get_cg_sock_proto;
7700 	case BPF_FUNC_ktime_get_coarse_ns:
7701 		return &bpf_ktime_get_coarse_ns_proto;
7702 	default:
7703 		return bpf_base_func_proto(func_id);
7704 	}
7705 }
7706 
7707 static const struct bpf_func_proto *
7708 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7709 {
7710 	switch (func_id) {
7711 	/* inet and inet6 sockets are created in a process
7712 	 * context so there is always a valid uid/gid
7713 	 */
7714 	case BPF_FUNC_get_current_uid_gid:
7715 		return &bpf_get_current_uid_gid_proto;
7716 	case BPF_FUNC_bind:
7717 		switch (prog->expected_attach_type) {
7718 		case BPF_CGROUP_INET4_CONNECT:
7719 		case BPF_CGROUP_INET6_CONNECT:
7720 			return &bpf_bind_proto;
7721 		default:
7722 			return NULL;
7723 		}
7724 	case BPF_FUNC_get_socket_cookie:
7725 		return &bpf_get_socket_cookie_sock_addr_proto;
7726 	case BPF_FUNC_get_netns_cookie:
7727 		return &bpf_get_netns_cookie_sock_addr_proto;
7728 	case BPF_FUNC_get_local_storage:
7729 		return &bpf_get_local_storage_proto;
7730 	case BPF_FUNC_perf_event_output:
7731 		return &bpf_event_output_data_proto;
7732 	case BPF_FUNC_get_current_pid_tgid:
7733 		return &bpf_get_current_pid_tgid_proto;
7734 	case BPF_FUNC_get_current_comm:
7735 		return &bpf_get_current_comm_proto;
7736 #ifdef CONFIG_CGROUPS
7737 	case BPF_FUNC_get_current_cgroup_id:
7738 		return &bpf_get_current_cgroup_id_proto;
7739 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7740 		return &bpf_get_current_ancestor_cgroup_id_proto;
7741 #endif
7742 #ifdef CONFIG_CGROUP_NET_CLASSID
7743 	case BPF_FUNC_get_cgroup_classid:
7744 		return &bpf_get_cgroup_classid_curr_proto;
7745 #endif
7746 #ifdef CONFIG_INET
7747 	case BPF_FUNC_sk_lookup_tcp:
7748 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7749 	case BPF_FUNC_sk_lookup_udp:
7750 		return &bpf_sock_addr_sk_lookup_udp_proto;
7751 	case BPF_FUNC_sk_release:
7752 		return &bpf_sk_release_proto;
7753 	case BPF_FUNC_skc_lookup_tcp:
7754 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7755 #endif /* CONFIG_INET */
7756 	case BPF_FUNC_sk_storage_get:
7757 		return &bpf_sk_storage_get_proto;
7758 	case BPF_FUNC_sk_storage_delete:
7759 		return &bpf_sk_storage_delete_proto;
7760 	case BPF_FUNC_setsockopt:
7761 		switch (prog->expected_attach_type) {
7762 		case BPF_CGROUP_INET4_BIND:
7763 		case BPF_CGROUP_INET6_BIND:
7764 		case BPF_CGROUP_INET4_CONNECT:
7765 		case BPF_CGROUP_INET6_CONNECT:
7766 		case BPF_CGROUP_UDP4_RECVMSG:
7767 		case BPF_CGROUP_UDP6_RECVMSG:
7768 		case BPF_CGROUP_UDP4_SENDMSG:
7769 		case BPF_CGROUP_UDP6_SENDMSG:
7770 		case BPF_CGROUP_INET4_GETPEERNAME:
7771 		case BPF_CGROUP_INET6_GETPEERNAME:
7772 		case BPF_CGROUP_INET4_GETSOCKNAME:
7773 		case BPF_CGROUP_INET6_GETSOCKNAME:
7774 			return &bpf_sock_addr_setsockopt_proto;
7775 		default:
7776 			return NULL;
7777 		}
7778 	case BPF_FUNC_getsockopt:
7779 		switch (prog->expected_attach_type) {
7780 		case BPF_CGROUP_INET4_BIND:
7781 		case BPF_CGROUP_INET6_BIND:
7782 		case BPF_CGROUP_INET4_CONNECT:
7783 		case BPF_CGROUP_INET6_CONNECT:
7784 		case BPF_CGROUP_UDP4_RECVMSG:
7785 		case BPF_CGROUP_UDP6_RECVMSG:
7786 		case BPF_CGROUP_UDP4_SENDMSG:
7787 		case BPF_CGROUP_UDP6_SENDMSG:
7788 		case BPF_CGROUP_INET4_GETPEERNAME:
7789 		case BPF_CGROUP_INET6_GETPEERNAME:
7790 		case BPF_CGROUP_INET4_GETSOCKNAME:
7791 		case BPF_CGROUP_INET6_GETSOCKNAME:
7792 			return &bpf_sock_addr_getsockopt_proto;
7793 		default:
7794 			return NULL;
7795 		}
7796 	default:
7797 		return bpf_sk_base_func_proto(func_id);
7798 	}
7799 }
7800 
7801 static const struct bpf_func_proto *
7802 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7803 {
7804 	switch (func_id) {
7805 	case BPF_FUNC_skb_load_bytes:
7806 		return &bpf_skb_load_bytes_proto;
7807 	case BPF_FUNC_skb_load_bytes_relative:
7808 		return &bpf_skb_load_bytes_relative_proto;
7809 	case BPF_FUNC_get_socket_cookie:
7810 		return &bpf_get_socket_cookie_proto;
7811 	case BPF_FUNC_get_socket_uid:
7812 		return &bpf_get_socket_uid_proto;
7813 	case BPF_FUNC_perf_event_output:
7814 		return &bpf_skb_event_output_proto;
7815 	default:
7816 		return bpf_sk_base_func_proto(func_id);
7817 	}
7818 }
7819 
7820 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7821 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7822 
7823 static const struct bpf_func_proto *
7824 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7825 {
7826 	switch (func_id) {
7827 	case BPF_FUNC_get_local_storage:
7828 		return &bpf_get_local_storage_proto;
7829 	case BPF_FUNC_sk_fullsock:
7830 		return &bpf_sk_fullsock_proto;
7831 	case BPF_FUNC_sk_storage_get:
7832 		return &bpf_sk_storage_get_proto;
7833 	case BPF_FUNC_sk_storage_delete:
7834 		return &bpf_sk_storage_delete_proto;
7835 	case BPF_FUNC_perf_event_output:
7836 		return &bpf_skb_event_output_proto;
7837 #ifdef CONFIG_SOCK_CGROUP_DATA
7838 	case BPF_FUNC_skb_cgroup_id:
7839 		return &bpf_skb_cgroup_id_proto;
7840 	case BPF_FUNC_skb_ancestor_cgroup_id:
7841 		return &bpf_skb_ancestor_cgroup_id_proto;
7842 	case BPF_FUNC_sk_cgroup_id:
7843 		return &bpf_sk_cgroup_id_proto;
7844 	case BPF_FUNC_sk_ancestor_cgroup_id:
7845 		return &bpf_sk_ancestor_cgroup_id_proto;
7846 #endif
7847 #ifdef CONFIG_INET
7848 	case BPF_FUNC_sk_lookup_tcp:
7849 		return &bpf_sk_lookup_tcp_proto;
7850 	case BPF_FUNC_sk_lookup_udp:
7851 		return &bpf_sk_lookup_udp_proto;
7852 	case BPF_FUNC_sk_release:
7853 		return &bpf_sk_release_proto;
7854 	case BPF_FUNC_skc_lookup_tcp:
7855 		return &bpf_skc_lookup_tcp_proto;
7856 	case BPF_FUNC_tcp_sock:
7857 		return &bpf_tcp_sock_proto;
7858 	case BPF_FUNC_get_listener_sock:
7859 		return &bpf_get_listener_sock_proto;
7860 	case BPF_FUNC_skb_ecn_set_ce:
7861 		return &bpf_skb_ecn_set_ce_proto;
7862 #endif
7863 	default:
7864 		return sk_filter_func_proto(func_id, prog);
7865 	}
7866 }
7867 
7868 static const struct bpf_func_proto *
7869 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7870 {
7871 	switch (func_id) {
7872 	case BPF_FUNC_skb_store_bytes:
7873 		return &bpf_skb_store_bytes_proto;
7874 	case BPF_FUNC_skb_load_bytes:
7875 		return &bpf_skb_load_bytes_proto;
7876 	case BPF_FUNC_skb_load_bytes_relative:
7877 		return &bpf_skb_load_bytes_relative_proto;
7878 	case BPF_FUNC_skb_pull_data:
7879 		return &bpf_skb_pull_data_proto;
7880 	case BPF_FUNC_csum_diff:
7881 		return &bpf_csum_diff_proto;
7882 	case BPF_FUNC_csum_update:
7883 		return &bpf_csum_update_proto;
7884 	case BPF_FUNC_csum_level:
7885 		return &bpf_csum_level_proto;
7886 	case BPF_FUNC_l3_csum_replace:
7887 		return &bpf_l3_csum_replace_proto;
7888 	case BPF_FUNC_l4_csum_replace:
7889 		return &bpf_l4_csum_replace_proto;
7890 	case BPF_FUNC_clone_redirect:
7891 		return &bpf_clone_redirect_proto;
7892 	case BPF_FUNC_get_cgroup_classid:
7893 		return &bpf_get_cgroup_classid_proto;
7894 	case BPF_FUNC_skb_vlan_push:
7895 		return &bpf_skb_vlan_push_proto;
7896 	case BPF_FUNC_skb_vlan_pop:
7897 		return &bpf_skb_vlan_pop_proto;
7898 	case BPF_FUNC_skb_change_proto:
7899 		return &bpf_skb_change_proto_proto;
7900 	case BPF_FUNC_skb_change_type:
7901 		return &bpf_skb_change_type_proto;
7902 	case BPF_FUNC_skb_adjust_room:
7903 		return &bpf_skb_adjust_room_proto;
7904 	case BPF_FUNC_skb_change_tail:
7905 		return &bpf_skb_change_tail_proto;
7906 	case BPF_FUNC_skb_change_head:
7907 		return &bpf_skb_change_head_proto;
7908 	case BPF_FUNC_skb_get_tunnel_key:
7909 		return &bpf_skb_get_tunnel_key_proto;
7910 	case BPF_FUNC_skb_set_tunnel_key:
7911 		return bpf_get_skb_set_tunnel_proto(func_id);
7912 	case BPF_FUNC_skb_get_tunnel_opt:
7913 		return &bpf_skb_get_tunnel_opt_proto;
7914 	case BPF_FUNC_skb_set_tunnel_opt:
7915 		return bpf_get_skb_set_tunnel_proto(func_id);
7916 	case BPF_FUNC_redirect:
7917 		return &bpf_redirect_proto;
7918 	case BPF_FUNC_redirect_neigh:
7919 		return &bpf_redirect_neigh_proto;
7920 	case BPF_FUNC_redirect_peer:
7921 		return &bpf_redirect_peer_proto;
7922 	case BPF_FUNC_get_route_realm:
7923 		return &bpf_get_route_realm_proto;
7924 	case BPF_FUNC_get_hash_recalc:
7925 		return &bpf_get_hash_recalc_proto;
7926 	case BPF_FUNC_set_hash_invalid:
7927 		return &bpf_set_hash_invalid_proto;
7928 	case BPF_FUNC_set_hash:
7929 		return &bpf_set_hash_proto;
7930 	case BPF_FUNC_perf_event_output:
7931 		return &bpf_skb_event_output_proto;
7932 	case BPF_FUNC_get_smp_processor_id:
7933 		return &bpf_get_smp_processor_id_proto;
7934 	case BPF_FUNC_skb_under_cgroup:
7935 		return &bpf_skb_under_cgroup_proto;
7936 	case BPF_FUNC_get_socket_cookie:
7937 		return &bpf_get_socket_cookie_proto;
7938 	case BPF_FUNC_get_socket_uid:
7939 		return &bpf_get_socket_uid_proto;
7940 	case BPF_FUNC_fib_lookup:
7941 		return &bpf_skb_fib_lookup_proto;
7942 	case BPF_FUNC_check_mtu:
7943 		return &bpf_skb_check_mtu_proto;
7944 	case BPF_FUNC_sk_fullsock:
7945 		return &bpf_sk_fullsock_proto;
7946 	case BPF_FUNC_sk_storage_get:
7947 		return &bpf_sk_storage_get_proto;
7948 	case BPF_FUNC_sk_storage_delete:
7949 		return &bpf_sk_storage_delete_proto;
7950 #ifdef CONFIG_XFRM
7951 	case BPF_FUNC_skb_get_xfrm_state:
7952 		return &bpf_skb_get_xfrm_state_proto;
7953 #endif
7954 #ifdef CONFIG_CGROUP_NET_CLASSID
7955 	case BPF_FUNC_skb_cgroup_classid:
7956 		return &bpf_skb_cgroup_classid_proto;
7957 #endif
7958 #ifdef CONFIG_SOCK_CGROUP_DATA
7959 	case BPF_FUNC_skb_cgroup_id:
7960 		return &bpf_skb_cgroup_id_proto;
7961 	case BPF_FUNC_skb_ancestor_cgroup_id:
7962 		return &bpf_skb_ancestor_cgroup_id_proto;
7963 #endif
7964 #ifdef CONFIG_INET
7965 	case BPF_FUNC_sk_lookup_tcp:
7966 		return &bpf_sk_lookup_tcp_proto;
7967 	case BPF_FUNC_sk_lookup_udp:
7968 		return &bpf_sk_lookup_udp_proto;
7969 	case BPF_FUNC_sk_release:
7970 		return &bpf_sk_release_proto;
7971 	case BPF_FUNC_tcp_sock:
7972 		return &bpf_tcp_sock_proto;
7973 	case BPF_FUNC_get_listener_sock:
7974 		return &bpf_get_listener_sock_proto;
7975 	case BPF_FUNC_skc_lookup_tcp:
7976 		return &bpf_skc_lookup_tcp_proto;
7977 	case BPF_FUNC_tcp_check_syncookie:
7978 		return &bpf_tcp_check_syncookie_proto;
7979 	case BPF_FUNC_skb_ecn_set_ce:
7980 		return &bpf_skb_ecn_set_ce_proto;
7981 	case BPF_FUNC_tcp_gen_syncookie:
7982 		return &bpf_tcp_gen_syncookie_proto;
7983 	case BPF_FUNC_sk_assign:
7984 		return &bpf_sk_assign_proto;
7985 	case BPF_FUNC_skb_set_tstamp:
7986 		return &bpf_skb_set_tstamp_proto;
7987 #ifdef CONFIG_SYN_COOKIES
7988 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7989 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7990 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7991 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7992 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7993 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7994 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7995 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7996 #endif
7997 #endif
7998 	default:
7999 		return bpf_sk_base_func_proto(func_id);
8000 	}
8001 }
8002 
8003 static const struct bpf_func_proto *
8004 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8005 {
8006 	switch (func_id) {
8007 	case BPF_FUNC_perf_event_output:
8008 		return &bpf_xdp_event_output_proto;
8009 	case BPF_FUNC_get_smp_processor_id:
8010 		return &bpf_get_smp_processor_id_proto;
8011 	case BPF_FUNC_csum_diff:
8012 		return &bpf_csum_diff_proto;
8013 	case BPF_FUNC_xdp_adjust_head:
8014 		return &bpf_xdp_adjust_head_proto;
8015 	case BPF_FUNC_xdp_adjust_meta:
8016 		return &bpf_xdp_adjust_meta_proto;
8017 	case BPF_FUNC_redirect:
8018 		return &bpf_xdp_redirect_proto;
8019 	case BPF_FUNC_redirect_map:
8020 		return &bpf_xdp_redirect_map_proto;
8021 	case BPF_FUNC_xdp_adjust_tail:
8022 		return &bpf_xdp_adjust_tail_proto;
8023 	case BPF_FUNC_xdp_get_buff_len:
8024 		return &bpf_xdp_get_buff_len_proto;
8025 	case BPF_FUNC_xdp_load_bytes:
8026 		return &bpf_xdp_load_bytes_proto;
8027 	case BPF_FUNC_xdp_store_bytes:
8028 		return &bpf_xdp_store_bytes_proto;
8029 	case BPF_FUNC_fib_lookup:
8030 		return &bpf_xdp_fib_lookup_proto;
8031 	case BPF_FUNC_check_mtu:
8032 		return &bpf_xdp_check_mtu_proto;
8033 #ifdef CONFIG_INET
8034 	case BPF_FUNC_sk_lookup_udp:
8035 		return &bpf_xdp_sk_lookup_udp_proto;
8036 	case BPF_FUNC_sk_lookup_tcp:
8037 		return &bpf_xdp_sk_lookup_tcp_proto;
8038 	case BPF_FUNC_sk_release:
8039 		return &bpf_sk_release_proto;
8040 	case BPF_FUNC_skc_lookup_tcp:
8041 		return &bpf_xdp_skc_lookup_tcp_proto;
8042 	case BPF_FUNC_tcp_check_syncookie:
8043 		return &bpf_tcp_check_syncookie_proto;
8044 	case BPF_FUNC_tcp_gen_syncookie:
8045 		return &bpf_tcp_gen_syncookie_proto;
8046 #ifdef CONFIG_SYN_COOKIES
8047 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8048 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8049 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8050 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8051 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8052 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8053 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8054 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8055 #endif
8056 #endif
8057 	default:
8058 		return bpf_sk_base_func_proto(func_id);
8059 	}
8060 }
8061 
8062 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8063 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8064 
8065 static const struct bpf_func_proto *
8066 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8067 {
8068 	switch (func_id) {
8069 	case BPF_FUNC_setsockopt:
8070 		return &bpf_sock_ops_setsockopt_proto;
8071 	case BPF_FUNC_getsockopt:
8072 		return &bpf_sock_ops_getsockopt_proto;
8073 	case BPF_FUNC_sock_ops_cb_flags_set:
8074 		return &bpf_sock_ops_cb_flags_set_proto;
8075 	case BPF_FUNC_sock_map_update:
8076 		return &bpf_sock_map_update_proto;
8077 	case BPF_FUNC_sock_hash_update:
8078 		return &bpf_sock_hash_update_proto;
8079 	case BPF_FUNC_get_socket_cookie:
8080 		return &bpf_get_socket_cookie_sock_ops_proto;
8081 	case BPF_FUNC_get_local_storage:
8082 		return &bpf_get_local_storage_proto;
8083 	case BPF_FUNC_perf_event_output:
8084 		return &bpf_event_output_data_proto;
8085 	case BPF_FUNC_sk_storage_get:
8086 		return &bpf_sk_storage_get_proto;
8087 	case BPF_FUNC_sk_storage_delete:
8088 		return &bpf_sk_storage_delete_proto;
8089 	case BPF_FUNC_get_netns_cookie:
8090 		return &bpf_get_netns_cookie_sock_ops_proto;
8091 #ifdef CONFIG_INET
8092 	case BPF_FUNC_load_hdr_opt:
8093 		return &bpf_sock_ops_load_hdr_opt_proto;
8094 	case BPF_FUNC_store_hdr_opt:
8095 		return &bpf_sock_ops_store_hdr_opt_proto;
8096 	case BPF_FUNC_reserve_hdr_opt:
8097 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8098 	case BPF_FUNC_tcp_sock:
8099 		return &bpf_tcp_sock_proto;
8100 #endif /* CONFIG_INET */
8101 	default:
8102 		return bpf_sk_base_func_proto(func_id);
8103 	}
8104 }
8105 
8106 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8107 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8108 
8109 static const struct bpf_func_proto *
8110 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8111 {
8112 	switch (func_id) {
8113 	case BPF_FUNC_msg_redirect_map:
8114 		return &bpf_msg_redirect_map_proto;
8115 	case BPF_FUNC_msg_redirect_hash:
8116 		return &bpf_msg_redirect_hash_proto;
8117 	case BPF_FUNC_msg_apply_bytes:
8118 		return &bpf_msg_apply_bytes_proto;
8119 	case BPF_FUNC_msg_cork_bytes:
8120 		return &bpf_msg_cork_bytes_proto;
8121 	case BPF_FUNC_msg_pull_data:
8122 		return &bpf_msg_pull_data_proto;
8123 	case BPF_FUNC_msg_push_data:
8124 		return &bpf_msg_push_data_proto;
8125 	case BPF_FUNC_msg_pop_data:
8126 		return &bpf_msg_pop_data_proto;
8127 	case BPF_FUNC_perf_event_output:
8128 		return &bpf_event_output_data_proto;
8129 	case BPF_FUNC_get_current_uid_gid:
8130 		return &bpf_get_current_uid_gid_proto;
8131 	case BPF_FUNC_get_current_pid_tgid:
8132 		return &bpf_get_current_pid_tgid_proto;
8133 	case BPF_FUNC_sk_storage_get:
8134 		return &bpf_sk_storage_get_proto;
8135 	case BPF_FUNC_sk_storage_delete:
8136 		return &bpf_sk_storage_delete_proto;
8137 	case BPF_FUNC_get_netns_cookie:
8138 		return &bpf_get_netns_cookie_sk_msg_proto;
8139 #ifdef CONFIG_CGROUPS
8140 	case BPF_FUNC_get_current_cgroup_id:
8141 		return &bpf_get_current_cgroup_id_proto;
8142 	case BPF_FUNC_get_current_ancestor_cgroup_id:
8143 		return &bpf_get_current_ancestor_cgroup_id_proto;
8144 #endif
8145 #ifdef CONFIG_CGROUP_NET_CLASSID
8146 	case BPF_FUNC_get_cgroup_classid:
8147 		return &bpf_get_cgroup_classid_curr_proto;
8148 #endif
8149 	default:
8150 		return bpf_sk_base_func_proto(func_id);
8151 	}
8152 }
8153 
8154 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8155 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8156 
8157 static const struct bpf_func_proto *
8158 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8159 {
8160 	switch (func_id) {
8161 	case BPF_FUNC_skb_store_bytes:
8162 		return &bpf_skb_store_bytes_proto;
8163 	case BPF_FUNC_skb_load_bytes:
8164 		return &bpf_skb_load_bytes_proto;
8165 	case BPF_FUNC_skb_pull_data:
8166 		return &sk_skb_pull_data_proto;
8167 	case BPF_FUNC_skb_change_tail:
8168 		return &sk_skb_change_tail_proto;
8169 	case BPF_FUNC_skb_change_head:
8170 		return &sk_skb_change_head_proto;
8171 	case BPF_FUNC_skb_adjust_room:
8172 		return &sk_skb_adjust_room_proto;
8173 	case BPF_FUNC_get_socket_cookie:
8174 		return &bpf_get_socket_cookie_proto;
8175 	case BPF_FUNC_get_socket_uid:
8176 		return &bpf_get_socket_uid_proto;
8177 	case BPF_FUNC_sk_redirect_map:
8178 		return &bpf_sk_redirect_map_proto;
8179 	case BPF_FUNC_sk_redirect_hash:
8180 		return &bpf_sk_redirect_hash_proto;
8181 	case BPF_FUNC_perf_event_output:
8182 		return &bpf_skb_event_output_proto;
8183 #ifdef CONFIG_INET
8184 	case BPF_FUNC_sk_lookup_tcp:
8185 		return &bpf_sk_lookup_tcp_proto;
8186 	case BPF_FUNC_sk_lookup_udp:
8187 		return &bpf_sk_lookup_udp_proto;
8188 	case BPF_FUNC_sk_release:
8189 		return &bpf_sk_release_proto;
8190 	case BPF_FUNC_skc_lookup_tcp:
8191 		return &bpf_skc_lookup_tcp_proto;
8192 #endif
8193 	default:
8194 		return bpf_sk_base_func_proto(func_id);
8195 	}
8196 }
8197 
8198 static const struct bpf_func_proto *
8199 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8200 {
8201 	switch (func_id) {
8202 	case BPF_FUNC_skb_load_bytes:
8203 		return &bpf_flow_dissector_load_bytes_proto;
8204 	default:
8205 		return bpf_sk_base_func_proto(func_id);
8206 	}
8207 }
8208 
8209 static const struct bpf_func_proto *
8210 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8211 {
8212 	switch (func_id) {
8213 	case BPF_FUNC_skb_load_bytes:
8214 		return &bpf_skb_load_bytes_proto;
8215 	case BPF_FUNC_skb_pull_data:
8216 		return &bpf_skb_pull_data_proto;
8217 	case BPF_FUNC_csum_diff:
8218 		return &bpf_csum_diff_proto;
8219 	case BPF_FUNC_get_cgroup_classid:
8220 		return &bpf_get_cgroup_classid_proto;
8221 	case BPF_FUNC_get_route_realm:
8222 		return &bpf_get_route_realm_proto;
8223 	case BPF_FUNC_get_hash_recalc:
8224 		return &bpf_get_hash_recalc_proto;
8225 	case BPF_FUNC_perf_event_output:
8226 		return &bpf_skb_event_output_proto;
8227 	case BPF_FUNC_get_smp_processor_id:
8228 		return &bpf_get_smp_processor_id_proto;
8229 	case BPF_FUNC_skb_under_cgroup:
8230 		return &bpf_skb_under_cgroup_proto;
8231 	default:
8232 		return bpf_sk_base_func_proto(func_id);
8233 	}
8234 }
8235 
8236 static const struct bpf_func_proto *
8237 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8238 {
8239 	switch (func_id) {
8240 	case BPF_FUNC_lwt_push_encap:
8241 		return &bpf_lwt_in_push_encap_proto;
8242 	default:
8243 		return lwt_out_func_proto(func_id, prog);
8244 	}
8245 }
8246 
8247 static const struct bpf_func_proto *
8248 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8249 {
8250 	switch (func_id) {
8251 	case BPF_FUNC_skb_get_tunnel_key:
8252 		return &bpf_skb_get_tunnel_key_proto;
8253 	case BPF_FUNC_skb_set_tunnel_key:
8254 		return bpf_get_skb_set_tunnel_proto(func_id);
8255 	case BPF_FUNC_skb_get_tunnel_opt:
8256 		return &bpf_skb_get_tunnel_opt_proto;
8257 	case BPF_FUNC_skb_set_tunnel_opt:
8258 		return bpf_get_skb_set_tunnel_proto(func_id);
8259 	case BPF_FUNC_redirect:
8260 		return &bpf_redirect_proto;
8261 	case BPF_FUNC_clone_redirect:
8262 		return &bpf_clone_redirect_proto;
8263 	case BPF_FUNC_skb_change_tail:
8264 		return &bpf_skb_change_tail_proto;
8265 	case BPF_FUNC_skb_change_head:
8266 		return &bpf_skb_change_head_proto;
8267 	case BPF_FUNC_skb_store_bytes:
8268 		return &bpf_skb_store_bytes_proto;
8269 	case BPF_FUNC_csum_update:
8270 		return &bpf_csum_update_proto;
8271 	case BPF_FUNC_csum_level:
8272 		return &bpf_csum_level_proto;
8273 	case BPF_FUNC_l3_csum_replace:
8274 		return &bpf_l3_csum_replace_proto;
8275 	case BPF_FUNC_l4_csum_replace:
8276 		return &bpf_l4_csum_replace_proto;
8277 	case BPF_FUNC_set_hash_invalid:
8278 		return &bpf_set_hash_invalid_proto;
8279 	case BPF_FUNC_lwt_push_encap:
8280 		return &bpf_lwt_xmit_push_encap_proto;
8281 	default:
8282 		return lwt_out_func_proto(func_id, prog);
8283 	}
8284 }
8285 
8286 static const struct bpf_func_proto *
8287 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8288 {
8289 	switch (func_id) {
8290 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8291 	case BPF_FUNC_lwt_seg6_store_bytes:
8292 		return &bpf_lwt_seg6_store_bytes_proto;
8293 	case BPF_FUNC_lwt_seg6_action:
8294 		return &bpf_lwt_seg6_action_proto;
8295 	case BPF_FUNC_lwt_seg6_adjust_srh:
8296 		return &bpf_lwt_seg6_adjust_srh_proto;
8297 #endif
8298 	default:
8299 		return lwt_out_func_proto(func_id, prog);
8300 	}
8301 }
8302 
8303 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8304 				    const struct bpf_prog *prog,
8305 				    struct bpf_insn_access_aux *info)
8306 {
8307 	const int size_default = sizeof(__u32);
8308 
8309 	if (off < 0 || off >= sizeof(struct __sk_buff))
8310 		return false;
8311 
8312 	/* The verifier guarantees that size > 0. */
8313 	if (off % size != 0)
8314 		return false;
8315 
8316 	switch (off) {
8317 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8318 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8319 			return false;
8320 		break;
8321 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8322 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8323 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8324 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8325 	case bpf_ctx_range(struct __sk_buff, data):
8326 	case bpf_ctx_range(struct __sk_buff, data_meta):
8327 	case bpf_ctx_range(struct __sk_buff, data_end):
8328 		if (size != size_default)
8329 			return false;
8330 		break;
8331 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8332 		return false;
8333 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8334 		if (type == BPF_WRITE || size != sizeof(__u64))
8335 			return false;
8336 		break;
8337 	case bpf_ctx_range(struct __sk_buff, tstamp):
8338 		if (size != sizeof(__u64))
8339 			return false;
8340 		break;
8341 	case offsetof(struct __sk_buff, sk):
8342 		if (type == BPF_WRITE || size != sizeof(__u64))
8343 			return false;
8344 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8345 		break;
8346 	case offsetof(struct __sk_buff, tstamp_type):
8347 		return false;
8348 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8349 		/* Explicitly prohibit access to padding in __sk_buff. */
8350 		return false;
8351 	default:
8352 		/* Only narrow read access allowed for now. */
8353 		if (type == BPF_WRITE) {
8354 			if (size != size_default)
8355 				return false;
8356 		} else {
8357 			bpf_ctx_record_field_size(info, size_default);
8358 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8359 				return false;
8360 		}
8361 	}
8362 
8363 	return true;
8364 }
8365 
8366 static bool sk_filter_is_valid_access(int off, int size,
8367 				      enum bpf_access_type type,
8368 				      const struct bpf_prog *prog,
8369 				      struct bpf_insn_access_aux *info)
8370 {
8371 	switch (off) {
8372 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8373 	case bpf_ctx_range(struct __sk_buff, data):
8374 	case bpf_ctx_range(struct __sk_buff, data_meta):
8375 	case bpf_ctx_range(struct __sk_buff, data_end):
8376 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8377 	case bpf_ctx_range(struct __sk_buff, tstamp):
8378 	case bpf_ctx_range(struct __sk_buff, wire_len):
8379 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8380 		return false;
8381 	}
8382 
8383 	if (type == BPF_WRITE) {
8384 		switch (off) {
8385 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8386 			break;
8387 		default:
8388 			return false;
8389 		}
8390 	}
8391 
8392 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8393 }
8394 
8395 static bool cg_skb_is_valid_access(int off, int size,
8396 				   enum bpf_access_type type,
8397 				   const struct bpf_prog *prog,
8398 				   struct bpf_insn_access_aux *info)
8399 {
8400 	switch (off) {
8401 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8402 	case bpf_ctx_range(struct __sk_buff, data_meta):
8403 	case bpf_ctx_range(struct __sk_buff, wire_len):
8404 		return false;
8405 	case bpf_ctx_range(struct __sk_buff, data):
8406 	case bpf_ctx_range(struct __sk_buff, data_end):
8407 		if (!bpf_capable())
8408 			return false;
8409 		break;
8410 	}
8411 
8412 	if (type == BPF_WRITE) {
8413 		switch (off) {
8414 		case bpf_ctx_range(struct __sk_buff, mark):
8415 		case bpf_ctx_range(struct __sk_buff, priority):
8416 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8417 			break;
8418 		case bpf_ctx_range(struct __sk_buff, tstamp):
8419 			if (!bpf_capable())
8420 				return false;
8421 			break;
8422 		default:
8423 			return false;
8424 		}
8425 	}
8426 
8427 	switch (off) {
8428 	case bpf_ctx_range(struct __sk_buff, data):
8429 		info->reg_type = PTR_TO_PACKET;
8430 		break;
8431 	case bpf_ctx_range(struct __sk_buff, data_end):
8432 		info->reg_type = PTR_TO_PACKET_END;
8433 		break;
8434 	}
8435 
8436 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8437 }
8438 
8439 static bool lwt_is_valid_access(int off, int size,
8440 				enum bpf_access_type type,
8441 				const struct bpf_prog *prog,
8442 				struct bpf_insn_access_aux *info)
8443 {
8444 	switch (off) {
8445 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8446 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8447 	case bpf_ctx_range(struct __sk_buff, data_meta):
8448 	case bpf_ctx_range(struct __sk_buff, tstamp):
8449 	case bpf_ctx_range(struct __sk_buff, wire_len):
8450 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8451 		return false;
8452 	}
8453 
8454 	if (type == BPF_WRITE) {
8455 		switch (off) {
8456 		case bpf_ctx_range(struct __sk_buff, mark):
8457 		case bpf_ctx_range(struct __sk_buff, priority):
8458 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8459 			break;
8460 		default:
8461 			return false;
8462 		}
8463 	}
8464 
8465 	switch (off) {
8466 	case bpf_ctx_range(struct __sk_buff, data):
8467 		info->reg_type = PTR_TO_PACKET;
8468 		break;
8469 	case bpf_ctx_range(struct __sk_buff, data_end):
8470 		info->reg_type = PTR_TO_PACKET_END;
8471 		break;
8472 	}
8473 
8474 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8475 }
8476 
8477 /* Attach type specific accesses */
8478 static bool __sock_filter_check_attach_type(int off,
8479 					    enum bpf_access_type access_type,
8480 					    enum bpf_attach_type attach_type)
8481 {
8482 	switch (off) {
8483 	case offsetof(struct bpf_sock, bound_dev_if):
8484 	case offsetof(struct bpf_sock, mark):
8485 	case offsetof(struct bpf_sock, priority):
8486 		switch (attach_type) {
8487 		case BPF_CGROUP_INET_SOCK_CREATE:
8488 		case BPF_CGROUP_INET_SOCK_RELEASE:
8489 			goto full_access;
8490 		default:
8491 			return false;
8492 		}
8493 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8494 		switch (attach_type) {
8495 		case BPF_CGROUP_INET4_POST_BIND:
8496 			goto read_only;
8497 		default:
8498 			return false;
8499 		}
8500 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8501 		switch (attach_type) {
8502 		case BPF_CGROUP_INET6_POST_BIND:
8503 			goto read_only;
8504 		default:
8505 			return false;
8506 		}
8507 	case bpf_ctx_range(struct bpf_sock, src_port):
8508 		switch (attach_type) {
8509 		case BPF_CGROUP_INET4_POST_BIND:
8510 		case BPF_CGROUP_INET6_POST_BIND:
8511 			goto read_only;
8512 		default:
8513 			return false;
8514 		}
8515 	}
8516 read_only:
8517 	return access_type == BPF_READ;
8518 full_access:
8519 	return true;
8520 }
8521 
8522 bool bpf_sock_common_is_valid_access(int off, int size,
8523 				     enum bpf_access_type type,
8524 				     struct bpf_insn_access_aux *info)
8525 {
8526 	switch (off) {
8527 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8528 		return false;
8529 	default:
8530 		return bpf_sock_is_valid_access(off, size, type, info);
8531 	}
8532 }
8533 
8534 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8535 			      struct bpf_insn_access_aux *info)
8536 {
8537 	const int size_default = sizeof(__u32);
8538 	int field_size;
8539 
8540 	if (off < 0 || off >= sizeof(struct bpf_sock))
8541 		return false;
8542 	if (off % size != 0)
8543 		return false;
8544 
8545 	switch (off) {
8546 	case offsetof(struct bpf_sock, state):
8547 	case offsetof(struct bpf_sock, family):
8548 	case offsetof(struct bpf_sock, type):
8549 	case offsetof(struct bpf_sock, protocol):
8550 	case offsetof(struct bpf_sock, src_port):
8551 	case offsetof(struct bpf_sock, rx_queue_mapping):
8552 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8553 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8554 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8555 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8556 		bpf_ctx_record_field_size(info, size_default);
8557 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8558 	case bpf_ctx_range(struct bpf_sock, dst_port):
8559 		field_size = size == size_default ?
8560 			size_default : sizeof_field(struct bpf_sock, dst_port);
8561 		bpf_ctx_record_field_size(info, field_size);
8562 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8563 	case offsetofend(struct bpf_sock, dst_port) ...
8564 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8565 		return false;
8566 	}
8567 
8568 	return size == size_default;
8569 }
8570 
8571 static bool sock_filter_is_valid_access(int off, int size,
8572 					enum bpf_access_type type,
8573 					const struct bpf_prog *prog,
8574 					struct bpf_insn_access_aux *info)
8575 {
8576 	if (!bpf_sock_is_valid_access(off, size, type, info))
8577 		return false;
8578 	return __sock_filter_check_attach_type(off, type,
8579 					       prog->expected_attach_type);
8580 }
8581 
8582 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8583 			     const struct bpf_prog *prog)
8584 {
8585 	/* Neither direct read nor direct write requires any preliminary
8586 	 * action.
8587 	 */
8588 	return 0;
8589 }
8590 
8591 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8592 				const struct bpf_prog *prog, int drop_verdict)
8593 {
8594 	struct bpf_insn *insn = insn_buf;
8595 
8596 	if (!direct_write)
8597 		return 0;
8598 
8599 	/* if (!skb->cloned)
8600 	 *       goto start;
8601 	 *
8602 	 * (Fast-path, otherwise approximation that we might be
8603 	 *  a clone, do the rest in helper.)
8604 	 */
8605 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8606 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8607 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8608 
8609 	/* ret = bpf_skb_pull_data(skb, 0); */
8610 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8611 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8612 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8613 			       BPF_FUNC_skb_pull_data);
8614 	/* if (!ret)
8615 	 *      goto restore;
8616 	 * return TC_ACT_SHOT;
8617 	 */
8618 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8619 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8620 	*insn++ = BPF_EXIT_INSN();
8621 
8622 	/* restore: */
8623 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8624 	/* start: */
8625 	*insn++ = prog->insnsi[0];
8626 
8627 	return insn - insn_buf;
8628 }
8629 
8630 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8631 			  struct bpf_insn *insn_buf)
8632 {
8633 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8634 	struct bpf_insn *insn = insn_buf;
8635 
8636 	if (!indirect) {
8637 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8638 	} else {
8639 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8640 		if (orig->imm)
8641 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8642 	}
8643 	/* We're guaranteed here that CTX is in R6. */
8644 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8645 
8646 	switch (BPF_SIZE(orig->code)) {
8647 	case BPF_B:
8648 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8649 		break;
8650 	case BPF_H:
8651 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8652 		break;
8653 	case BPF_W:
8654 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8655 		break;
8656 	}
8657 
8658 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8659 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8660 	*insn++ = BPF_EXIT_INSN();
8661 
8662 	return insn - insn_buf;
8663 }
8664 
8665 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8666 			       const struct bpf_prog *prog)
8667 {
8668 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8669 }
8670 
8671 static bool tc_cls_act_is_valid_access(int off, int size,
8672 				       enum bpf_access_type type,
8673 				       const struct bpf_prog *prog,
8674 				       struct bpf_insn_access_aux *info)
8675 {
8676 	if (type == BPF_WRITE) {
8677 		switch (off) {
8678 		case bpf_ctx_range(struct __sk_buff, mark):
8679 		case bpf_ctx_range(struct __sk_buff, tc_index):
8680 		case bpf_ctx_range(struct __sk_buff, priority):
8681 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8682 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8683 		case bpf_ctx_range(struct __sk_buff, tstamp):
8684 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8685 			break;
8686 		default:
8687 			return false;
8688 		}
8689 	}
8690 
8691 	switch (off) {
8692 	case bpf_ctx_range(struct __sk_buff, data):
8693 		info->reg_type = PTR_TO_PACKET;
8694 		break;
8695 	case bpf_ctx_range(struct __sk_buff, data_meta):
8696 		info->reg_type = PTR_TO_PACKET_META;
8697 		break;
8698 	case bpf_ctx_range(struct __sk_buff, data_end):
8699 		info->reg_type = PTR_TO_PACKET_END;
8700 		break;
8701 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8702 		return false;
8703 	case offsetof(struct __sk_buff, tstamp_type):
8704 		/* The convert_ctx_access() on reading and writing
8705 		 * __sk_buff->tstamp depends on whether the bpf prog
8706 		 * has used __sk_buff->tstamp_type or not.
8707 		 * Thus, we need to set prog->tstamp_type_access
8708 		 * earlier during is_valid_access() here.
8709 		 */
8710 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8711 		return size == sizeof(__u8);
8712 	}
8713 
8714 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8715 }
8716 
8717 static bool __is_valid_xdp_access(int off, int size)
8718 {
8719 	if (off < 0 || off >= sizeof(struct xdp_md))
8720 		return false;
8721 	if (off % size != 0)
8722 		return false;
8723 	if (size != sizeof(__u32))
8724 		return false;
8725 
8726 	return true;
8727 }
8728 
8729 static bool xdp_is_valid_access(int off, int size,
8730 				enum bpf_access_type type,
8731 				const struct bpf_prog *prog,
8732 				struct bpf_insn_access_aux *info)
8733 {
8734 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8735 		switch (off) {
8736 		case offsetof(struct xdp_md, egress_ifindex):
8737 			return false;
8738 		}
8739 	}
8740 
8741 	if (type == BPF_WRITE) {
8742 		if (bpf_prog_is_dev_bound(prog->aux)) {
8743 			switch (off) {
8744 			case offsetof(struct xdp_md, rx_queue_index):
8745 				return __is_valid_xdp_access(off, size);
8746 			}
8747 		}
8748 		return false;
8749 	}
8750 
8751 	switch (off) {
8752 	case offsetof(struct xdp_md, data):
8753 		info->reg_type = PTR_TO_PACKET;
8754 		break;
8755 	case offsetof(struct xdp_md, data_meta):
8756 		info->reg_type = PTR_TO_PACKET_META;
8757 		break;
8758 	case offsetof(struct xdp_md, data_end):
8759 		info->reg_type = PTR_TO_PACKET_END;
8760 		break;
8761 	}
8762 
8763 	return __is_valid_xdp_access(off, size);
8764 }
8765 
8766 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8767 {
8768 	const u32 act_max = XDP_REDIRECT;
8769 
8770 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8771 		     act > act_max ? "Illegal" : "Driver unsupported",
8772 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8773 }
8774 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8775 
8776 static bool sock_addr_is_valid_access(int off, int size,
8777 				      enum bpf_access_type type,
8778 				      const struct bpf_prog *prog,
8779 				      struct bpf_insn_access_aux *info)
8780 {
8781 	const int size_default = sizeof(__u32);
8782 
8783 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8784 		return false;
8785 	if (off % size != 0)
8786 		return false;
8787 
8788 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8789 	 * versa.
8790 	 */
8791 	switch (off) {
8792 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8793 		switch (prog->expected_attach_type) {
8794 		case BPF_CGROUP_INET4_BIND:
8795 		case BPF_CGROUP_INET4_CONNECT:
8796 		case BPF_CGROUP_INET4_GETPEERNAME:
8797 		case BPF_CGROUP_INET4_GETSOCKNAME:
8798 		case BPF_CGROUP_UDP4_SENDMSG:
8799 		case BPF_CGROUP_UDP4_RECVMSG:
8800 			break;
8801 		default:
8802 			return false;
8803 		}
8804 		break;
8805 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8806 		switch (prog->expected_attach_type) {
8807 		case BPF_CGROUP_INET6_BIND:
8808 		case BPF_CGROUP_INET6_CONNECT:
8809 		case BPF_CGROUP_INET6_GETPEERNAME:
8810 		case BPF_CGROUP_INET6_GETSOCKNAME:
8811 		case BPF_CGROUP_UDP6_SENDMSG:
8812 		case BPF_CGROUP_UDP6_RECVMSG:
8813 			break;
8814 		default:
8815 			return false;
8816 		}
8817 		break;
8818 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8819 		switch (prog->expected_attach_type) {
8820 		case BPF_CGROUP_UDP4_SENDMSG:
8821 			break;
8822 		default:
8823 			return false;
8824 		}
8825 		break;
8826 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8827 				msg_src_ip6[3]):
8828 		switch (prog->expected_attach_type) {
8829 		case BPF_CGROUP_UDP6_SENDMSG:
8830 			break;
8831 		default:
8832 			return false;
8833 		}
8834 		break;
8835 	}
8836 
8837 	switch (off) {
8838 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8839 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8840 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8841 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8842 				msg_src_ip6[3]):
8843 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8844 		if (type == BPF_READ) {
8845 			bpf_ctx_record_field_size(info, size_default);
8846 
8847 			if (bpf_ctx_wide_access_ok(off, size,
8848 						   struct bpf_sock_addr,
8849 						   user_ip6))
8850 				return true;
8851 
8852 			if (bpf_ctx_wide_access_ok(off, size,
8853 						   struct bpf_sock_addr,
8854 						   msg_src_ip6))
8855 				return true;
8856 
8857 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8858 				return false;
8859 		} else {
8860 			if (bpf_ctx_wide_access_ok(off, size,
8861 						   struct bpf_sock_addr,
8862 						   user_ip6))
8863 				return true;
8864 
8865 			if (bpf_ctx_wide_access_ok(off, size,
8866 						   struct bpf_sock_addr,
8867 						   msg_src_ip6))
8868 				return true;
8869 
8870 			if (size != size_default)
8871 				return false;
8872 		}
8873 		break;
8874 	case offsetof(struct bpf_sock_addr, sk):
8875 		if (type != BPF_READ)
8876 			return false;
8877 		if (size != sizeof(__u64))
8878 			return false;
8879 		info->reg_type = PTR_TO_SOCKET;
8880 		break;
8881 	default:
8882 		if (type == BPF_READ) {
8883 			if (size != size_default)
8884 				return false;
8885 		} else {
8886 			return false;
8887 		}
8888 	}
8889 
8890 	return true;
8891 }
8892 
8893 static bool sock_ops_is_valid_access(int off, int size,
8894 				     enum bpf_access_type type,
8895 				     const struct bpf_prog *prog,
8896 				     struct bpf_insn_access_aux *info)
8897 {
8898 	const int size_default = sizeof(__u32);
8899 
8900 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8901 		return false;
8902 
8903 	/* The verifier guarantees that size > 0. */
8904 	if (off % size != 0)
8905 		return false;
8906 
8907 	if (type == BPF_WRITE) {
8908 		switch (off) {
8909 		case offsetof(struct bpf_sock_ops, reply):
8910 		case offsetof(struct bpf_sock_ops, sk_txhash):
8911 			if (size != size_default)
8912 				return false;
8913 			break;
8914 		default:
8915 			return false;
8916 		}
8917 	} else {
8918 		switch (off) {
8919 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8920 					bytes_acked):
8921 			if (size != sizeof(__u64))
8922 				return false;
8923 			break;
8924 		case offsetof(struct bpf_sock_ops, sk):
8925 			if (size != sizeof(__u64))
8926 				return false;
8927 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8928 			break;
8929 		case offsetof(struct bpf_sock_ops, skb_data):
8930 			if (size != sizeof(__u64))
8931 				return false;
8932 			info->reg_type = PTR_TO_PACKET;
8933 			break;
8934 		case offsetof(struct bpf_sock_ops, skb_data_end):
8935 			if (size != sizeof(__u64))
8936 				return false;
8937 			info->reg_type = PTR_TO_PACKET_END;
8938 			break;
8939 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8940 			bpf_ctx_record_field_size(info, size_default);
8941 			return bpf_ctx_narrow_access_ok(off, size,
8942 							size_default);
8943 		default:
8944 			if (size != size_default)
8945 				return false;
8946 			break;
8947 		}
8948 	}
8949 
8950 	return true;
8951 }
8952 
8953 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8954 			   const struct bpf_prog *prog)
8955 {
8956 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8957 }
8958 
8959 static bool sk_skb_is_valid_access(int off, int size,
8960 				   enum bpf_access_type type,
8961 				   const struct bpf_prog *prog,
8962 				   struct bpf_insn_access_aux *info)
8963 {
8964 	switch (off) {
8965 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8966 	case bpf_ctx_range(struct __sk_buff, data_meta):
8967 	case bpf_ctx_range(struct __sk_buff, tstamp):
8968 	case bpf_ctx_range(struct __sk_buff, wire_len):
8969 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8970 		return false;
8971 	}
8972 
8973 	if (type == BPF_WRITE) {
8974 		switch (off) {
8975 		case bpf_ctx_range(struct __sk_buff, tc_index):
8976 		case bpf_ctx_range(struct __sk_buff, priority):
8977 			break;
8978 		default:
8979 			return false;
8980 		}
8981 	}
8982 
8983 	switch (off) {
8984 	case bpf_ctx_range(struct __sk_buff, mark):
8985 		return false;
8986 	case bpf_ctx_range(struct __sk_buff, data):
8987 		info->reg_type = PTR_TO_PACKET;
8988 		break;
8989 	case bpf_ctx_range(struct __sk_buff, data_end):
8990 		info->reg_type = PTR_TO_PACKET_END;
8991 		break;
8992 	}
8993 
8994 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8995 }
8996 
8997 static bool sk_msg_is_valid_access(int off, int size,
8998 				   enum bpf_access_type type,
8999 				   const struct bpf_prog *prog,
9000 				   struct bpf_insn_access_aux *info)
9001 {
9002 	if (type == BPF_WRITE)
9003 		return false;
9004 
9005 	if (off % size != 0)
9006 		return false;
9007 
9008 	switch (off) {
9009 	case offsetof(struct sk_msg_md, data):
9010 		info->reg_type = PTR_TO_PACKET;
9011 		if (size != sizeof(__u64))
9012 			return false;
9013 		break;
9014 	case offsetof(struct sk_msg_md, data_end):
9015 		info->reg_type = PTR_TO_PACKET_END;
9016 		if (size != sizeof(__u64))
9017 			return false;
9018 		break;
9019 	case offsetof(struct sk_msg_md, sk):
9020 		if (size != sizeof(__u64))
9021 			return false;
9022 		info->reg_type = PTR_TO_SOCKET;
9023 		break;
9024 	case bpf_ctx_range(struct sk_msg_md, family):
9025 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9026 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9027 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9028 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9029 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9030 	case bpf_ctx_range(struct sk_msg_md, local_port):
9031 	case bpf_ctx_range(struct sk_msg_md, size):
9032 		if (size != sizeof(__u32))
9033 			return false;
9034 		break;
9035 	default:
9036 		return false;
9037 	}
9038 	return true;
9039 }
9040 
9041 static bool flow_dissector_is_valid_access(int off, int size,
9042 					   enum bpf_access_type type,
9043 					   const struct bpf_prog *prog,
9044 					   struct bpf_insn_access_aux *info)
9045 {
9046 	const int size_default = sizeof(__u32);
9047 
9048 	if (off < 0 || off >= sizeof(struct __sk_buff))
9049 		return false;
9050 
9051 	if (type == BPF_WRITE)
9052 		return false;
9053 
9054 	switch (off) {
9055 	case bpf_ctx_range(struct __sk_buff, data):
9056 		if (size != size_default)
9057 			return false;
9058 		info->reg_type = PTR_TO_PACKET;
9059 		return true;
9060 	case bpf_ctx_range(struct __sk_buff, data_end):
9061 		if (size != size_default)
9062 			return false;
9063 		info->reg_type = PTR_TO_PACKET_END;
9064 		return true;
9065 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9066 		if (size != sizeof(__u64))
9067 			return false;
9068 		info->reg_type = PTR_TO_FLOW_KEYS;
9069 		return true;
9070 	default:
9071 		return false;
9072 	}
9073 }
9074 
9075 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9076 					     const struct bpf_insn *si,
9077 					     struct bpf_insn *insn_buf,
9078 					     struct bpf_prog *prog,
9079 					     u32 *target_size)
9080 
9081 {
9082 	struct bpf_insn *insn = insn_buf;
9083 
9084 	switch (si->off) {
9085 	case offsetof(struct __sk_buff, data):
9086 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9087 				      si->dst_reg, si->src_reg,
9088 				      offsetof(struct bpf_flow_dissector, data));
9089 		break;
9090 
9091 	case offsetof(struct __sk_buff, data_end):
9092 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9093 				      si->dst_reg, si->src_reg,
9094 				      offsetof(struct bpf_flow_dissector, data_end));
9095 		break;
9096 
9097 	case offsetof(struct __sk_buff, flow_keys):
9098 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9099 				      si->dst_reg, si->src_reg,
9100 				      offsetof(struct bpf_flow_dissector, flow_keys));
9101 		break;
9102 	}
9103 
9104 	return insn - insn_buf;
9105 }
9106 
9107 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9108 						     struct bpf_insn *insn)
9109 {
9110 	__u8 value_reg = si->dst_reg;
9111 	__u8 skb_reg = si->src_reg;
9112 	/* AX is needed because src_reg and dst_reg could be the same */
9113 	__u8 tmp_reg = BPF_REG_AX;
9114 
9115 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9116 			      PKT_VLAN_PRESENT_OFFSET);
9117 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9118 				SKB_MONO_DELIVERY_TIME_MASK, 2);
9119 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9120 	*insn++ = BPF_JMP_A(1);
9121 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9122 
9123 	return insn;
9124 }
9125 
9126 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
9127 						  struct bpf_insn *insn)
9128 {
9129 	/* si->dst_reg = skb_shinfo(SKB); */
9130 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9131 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9132 			      BPF_REG_AX, si->src_reg,
9133 			      offsetof(struct sk_buff, end));
9134 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9135 			      si->dst_reg, si->src_reg,
9136 			      offsetof(struct sk_buff, head));
9137 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9138 #else
9139 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9140 			      si->dst_reg, si->src_reg,
9141 			      offsetof(struct sk_buff, end));
9142 #endif
9143 
9144 	return insn;
9145 }
9146 
9147 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9148 						const struct bpf_insn *si,
9149 						struct bpf_insn *insn)
9150 {
9151 	__u8 value_reg = si->dst_reg;
9152 	__u8 skb_reg = si->src_reg;
9153 
9154 #ifdef CONFIG_NET_CLS_ACT
9155 	/* If the tstamp_type is read,
9156 	 * the bpf prog is aware the tstamp could have delivery time.
9157 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9158 	 */
9159 	if (!prog->tstamp_type_access) {
9160 		/* AX is needed because src_reg and dst_reg could be the same */
9161 		__u8 tmp_reg = BPF_REG_AX;
9162 
9163 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9164 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9165 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9166 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9167 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9168 		/* skb->tc_at_ingress && skb->mono_delivery_time,
9169 		 * read 0 as the (rcv) timestamp.
9170 		 */
9171 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9172 		*insn++ = BPF_JMP_A(1);
9173 	}
9174 #endif
9175 
9176 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9177 			      offsetof(struct sk_buff, tstamp));
9178 	return insn;
9179 }
9180 
9181 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9182 						 const struct bpf_insn *si,
9183 						 struct bpf_insn *insn)
9184 {
9185 	__u8 value_reg = si->src_reg;
9186 	__u8 skb_reg = si->dst_reg;
9187 
9188 #ifdef CONFIG_NET_CLS_ACT
9189 	/* If the tstamp_type is read,
9190 	 * the bpf prog is aware the tstamp could have delivery time.
9191 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9192 	 * Otherwise, writing at ingress will have to clear the
9193 	 * mono_delivery_time bit also.
9194 	 */
9195 	if (!prog->tstamp_type_access) {
9196 		__u8 tmp_reg = BPF_REG_AX;
9197 
9198 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9199 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9200 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9201 		/* goto <store> */
9202 		*insn++ = BPF_JMP_A(2);
9203 		/* <clear>: mono_delivery_time */
9204 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9205 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9206 	}
9207 #endif
9208 
9209 	/* <store>: skb->tstamp = tstamp */
9210 	*insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9211 			      offsetof(struct sk_buff, tstamp));
9212 	return insn;
9213 }
9214 
9215 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9216 				  const struct bpf_insn *si,
9217 				  struct bpf_insn *insn_buf,
9218 				  struct bpf_prog *prog, u32 *target_size)
9219 {
9220 	struct bpf_insn *insn = insn_buf;
9221 	int off;
9222 
9223 	switch (si->off) {
9224 	case offsetof(struct __sk_buff, len):
9225 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9226 				      bpf_target_off(struct sk_buff, len, 4,
9227 						     target_size));
9228 		break;
9229 
9230 	case offsetof(struct __sk_buff, protocol):
9231 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9232 				      bpf_target_off(struct sk_buff, protocol, 2,
9233 						     target_size));
9234 		break;
9235 
9236 	case offsetof(struct __sk_buff, vlan_proto):
9237 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9238 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9239 						     target_size));
9240 		break;
9241 
9242 	case offsetof(struct __sk_buff, priority):
9243 		if (type == BPF_WRITE)
9244 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9245 					      bpf_target_off(struct sk_buff, priority, 4,
9246 							     target_size));
9247 		else
9248 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9249 					      bpf_target_off(struct sk_buff, priority, 4,
9250 							     target_size));
9251 		break;
9252 
9253 	case offsetof(struct __sk_buff, ingress_ifindex):
9254 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9255 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9256 						     target_size));
9257 		break;
9258 
9259 	case offsetof(struct __sk_buff, ifindex):
9260 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9261 				      si->dst_reg, si->src_reg,
9262 				      offsetof(struct sk_buff, dev));
9263 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9264 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9265 				      bpf_target_off(struct net_device, ifindex, 4,
9266 						     target_size));
9267 		break;
9268 
9269 	case offsetof(struct __sk_buff, hash):
9270 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9271 				      bpf_target_off(struct sk_buff, hash, 4,
9272 						     target_size));
9273 		break;
9274 
9275 	case offsetof(struct __sk_buff, mark):
9276 		if (type == BPF_WRITE)
9277 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9278 					      bpf_target_off(struct sk_buff, mark, 4,
9279 							     target_size));
9280 		else
9281 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9282 					      bpf_target_off(struct sk_buff, mark, 4,
9283 							     target_size));
9284 		break;
9285 
9286 	case offsetof(struct __sk_buff, pkt_type):
9287 		*target_size = 1;
9288 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9289 				      PKT_TYPE_OFFSET);
9290 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9291 #ifdef __BIG_ENDIAN_BITFIELD
9292 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9293 #endif
9294 		break;
9295 
9296 	case offsetof(struct __sk_buff, queue_mapping):
9297 		if (type == BPF_WRITE) {
9298 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9299 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9300 					      bpf_target_off(struct sk_buff,
9301 							     queue_mapping,
9302 							     2, target_size));
9303 		} else {
9304 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9305 					      bpf_target_off(struct sk_buff,
9306 							     queue_mapping,
9307 							     2, target_size));
9308 		}
9309 		break;
9310 
9311 	case offsetof(struct __sk_buff, vlan_present):
9312 		*target_size = 1;
9313 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9314 				      PKT_VLAN_PRESENT_OFFSET);
9315 		if (PKT_VLAN_PRESENT_BIT)
9316 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9317 		if (PKT_VLAN_PRESENT_BIT < 7)
9318 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9319 		break;
9320 
9321 	case offsetof(struct __sk_buff, vlan_tci):
9322 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9323 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9324 						     target_size));
9325 		break;
9326 
9327 	case offsetof(struct __sk_buff, cb[0]) ...
9328 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9329 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9330 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9331 			      offsetof(struct qdisc_skb_cb, data)) %
9332 			     sizeof(__u64));
9333 
9334 		prog->cb_access = 1;
9335 		off  = si->off;
9336 		off -= offsetof(struct __sk_buff, cb[0]);
9337 		off += offsetof(struct sk_buff, cb);
9338 		off += offsetof(struct qdisc_skb_cb, data);
9339 		if (type == BPF_WRITE)
9340 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9341 					      si->src_reg, off);
9342 		else
9343 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9344 					      si->src_reg, off);
9345 		break;
9346 
9347 	case offsetof(struct __sk_buff, tc_classid):
9348 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9349 
9350 		off  = si->off;
9351 		off -= offsetof(struct __sk_buff, tc_classid);
9352 		off += offsetof(struct sk_buff, cb);
9353 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9354 		*target_size = 2;
9355 		if (type == BPF_WRITE)
9356 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9357 					      si->src_reg, off);
9358 		else
9359 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9360 					      si->src_reg, off);
9361 		break;
9362 
9363 	case offsetof(struct __sk_buff, data):
9364 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9365 				      si->dst_reg, si->src_reg,
9366 				      offsetof(struct sk_buff, data));
9367 		break;
9368 
9369 	case offsetof(struct __sk_buff, data_meta):
9370 		off  = si->off;
9371 		off -= offsetof(struct __sk_buff, data_meta);
9372 		off += offsetof(struct sk_buff, cb);
9373 		off += offsetof(struct bpf_skb_data_end, data_meta);
9374 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9375 				      si->src_reg, off);
9376 		break;
9377 
9378 	case offsetof(struct __sk_buff, data_end):
9379 		off  = si->off;
9380 		off -= offsetof(struct __sk_buff, data_end);
9381 		off += offsetof(struct sk_buff, cb);
9382 		off += offsetof(struct bpf_skb_data_end, data_end);
9383 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9384 				      si->src_reg, off);
9385 		break;
9386 
9387 	case offsetof(struct __sk_buff, tc_index):
9388 #ifdef CONFIG_NET_SCHED
9389 		if (type == BPF_WRITE)
9390 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9391 					      bpf_target_off(struct sk_buff, tc_index, 2,
9392 							     target_size));
9393 		else
9394 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9395 					      bpf_target_off(struct sk_buff, tc_index, 2,
9396 							     target_size));
9397 #else
9398 		*target_size = 2;
9399 		if (type == BPF_WRITE)
9400 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9401 		else
9402 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9403 #endif
9404 		break;
9405 
9406 	case offsetof(struct __sk_buff, napi_id):
9407 #if defined(CONFIG_NET_RX_BUSY_POLL)
9408 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9409 				      bpf_target_off(struct sk_buff, napi_id, 4,
9410 						     target_size));
9411 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9412 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9413 #else
9414 		*target_size = 4;
9415 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9416 #endif
9417 		break;
9418 	case offsetof(struct __sk_buff, family):
9419 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9420 
9421 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9422 				      si->dst_reg, si->src_reg,
9423 				      offsetof(struct sk_buff, sk));
9424 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9425 				      bpf_target_off(struct sock_common,
9426 						     skc_family,
9427 						     2, target_size));
9428 		break;
9429 	case offsetof(struct __sk_buff, remote_ip4):
9430 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9431 
9432 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9433 				      si->dst_reg, si->src_reg,
9434 				      offsetof(struct sk_buff, sk));
9435 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9436 				      bpf_target_off(struct sock_common,
9437 						     skc_daddr,
9438 						     4, target_size));
9439 		break;
9440 	case offsetof(struct __sk_buff, local_ip4):
9441 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9442 					  skc_rcv_saddr) != 4);
9443 
9444 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9445 				      si->dst_reg, si->src_reg,
9446 				      offsetof(struct sk_buff, sk));
9447 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9448 				      bpf_target_off(struct sock_common,
9449 						     skc_rcv_saddr,
9450 						     4, target_size));
9451 		break;
9452 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9453 	     offsetof(struct __sk_buff, remote_ip6[3]):
9454 #if IS_ENABLED(CONFIG_IPV6)
9455 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9456 					  skc_v6_daddr.s6_addr32[0]) != 4);
9457 
9458 		off = si->off;
9459 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9460 
9461 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9462 				      si->dst_reg, si->src_reg,
9463 				      offsetof(struct sk_buff, sk));
9464 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9465 				      offsetof(struct sock_common,
9466 					       skc_v6_daddr.s6_addr32[0]) +
9467 				      off);
9468 #else
9469 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9470 #endif
9471 		break;
9472 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9473 	     offsetof(struct __sk_buff, local_ip6[3]):
9474 #if IS_ENABLED(CONFIG_IPV6)
9475 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9476 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9477 
9478 		off = si->off;
9479 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9480 
9481 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9482 				      si->dst_reg, si->src_reg,
9483 				      offsetof(struct sk_buff, sk));
9484 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9485 				      offsetof(struct sock_common,
9486 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9487 				      off);
9488 #else
9489 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9490 #endif
9491 		break;
9492 
9493 	case offsetof(struct __sk_buff, remote_port):
9494 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9495 
9496 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9497 				      si->dst_reg, si->src_reg,
9498 				      offsetof(struct sk_buff, sk));
9499 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9500 				      bpf_target_off(struct sock_common,
9501 						     skc_dport,
9502 						     2, target_size));
9503 #ifndef __BIG_ENDIAN_BITFIELD
9504 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9505 #endif
9506 		break;
9507 
9508 	case offsetof(struct __sk_buff, local_port):
9509 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9510 
9511 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9512 				      si->dst_reg, si->src_reg,
9513 				      offsetof(struct sk_buff, sk));
9514 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9515 				      bpf_target_off(struct sock_common,
9516 						     skc_num, 2, target_size));
9517 		break;
9518 
9519 	case offsetof(struct __sk_buff, tstamp):
9520 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9521 
9522 		if (type == BPF_WRITE)
9523 			insn = bpf_convert_tstamp_write(prog, si, insn);
9524 		else
9525 			insn = bpf_convert_tstamp_read(prog, si, insn);
9526 		break;
9527 
9528 	case offsetof(struct __sk_buff, tstamp_type):
9529 		insn = bpf_convert_tstamp_type_read(si, insn);
9530 		break;
9531 
9532 	case offsetof(struct __sk_buff, gso_segs):
9533 		insn = bpf_convert_shinfo_access(si, insn);
9534 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9535 				      si->dst_reg, si->dst_reg,
9536 				      bpf_target_off(struct skb_shared_info,
9537 						     gso_segs, 2,
9538 						     target_size));
9539 		break;
9540 	case offsetof(struct __sk_buff, gso_size):
9541 		insn = bpf_convert_shinfo_access(si, insn);
9542 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9543 				      si->dst_reg, si->dst_reg,
9544 				      bpf_target_off(struct skb_shared_info,
9545 						     gso_size, 2,
9546 						     target_size));
9547 		break;
9548 	case offsetof(struct __sk_buff, wire_len):
9549 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9550 
9551 		off = si->off;
9552 		off -= offsetof(struct __sk_buff, wire_len);
9553 		off += offsetof(struct sk_buff, cb);
9554 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9555 		*target_size = 4;
9556 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9557 		break;
9558 
9559 	case offsetof(struct __sk_buff, sk):
9560 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9561 				      si->dst_reg, si->src_reg,
9562 				      offsetof(struct sk_buff, sk));
9563 		break;
9564 	case offsetof(struct __sk_buff, hwtstamp):
9565 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9566 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9567 
9568 		insn = bpf_convert_shinfo_access(si, insn);
9569 		*insn++ = BPF_LDX_MEM(BPF_DW,
9570 				      si->dst_reg, si->dst_reg,
9571 				      bpf_target_off(struct skb_shared_info,
9572 						     hwtstamps, 8,
9573 						     target_size));
9574 		break;
9575 	}
9576 
9577 	return insn - insn_buf;
9578 }
9579 
9580 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9581 				const struct bpf_insn *si,
9582 				struct bpf_insn *insn_buf,
9583 				struct bpf_prog *prog, u32 *target_size)
9584 {
9585 	struct bpf_insn *insn = insn_buf;
9586 	int off;
9587 
9588 	switch (si->off) {
9589 	case offsetof(struct bpf_sock, bound_dev_if):
9590 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9591 
9592 		if (type == BPF_WRITE)
9593 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9594 					offsetof(struct sock, sk_bound_dev_if));
9595 		else
9596 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9597 				      offsetof(struct sock, sk_bound_dev_if));
9598 		break;
9599 
9600 	case offsetof(struct bpf_sock, mark):
9601 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9602 
9603 		if (type == BPF_WRITE)
9604 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9605 					offsetof(struct sock, sk_mark));
9606 		else
9607 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9608 				      offsetof(struct sock, sk_mark));
9609 		break;
9610 
9611 	case offsetof(struct bpf_sock, priority):
9612 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9613 
9614 		if (type == BPF_WRITE)
9615 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9616 					offsetof(struct sock, sk_priority));
9617 		else
9618 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9619 				      offsetof(struct sock, sk_priority));
9620 		break;
9621 
9622 	case offsetof(struct bpf_sock, family):
9623 		*insn++ = BPF_LDX_MEM(
9624 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9625 			si->dst_reg, si->src_reg,
9626 			bpf_target_off(struct sock_common,
9627 				       skc_family,
9628 				       sizeof_field(struct sock_common,
9629 						    skc_family),
9630 				       target_size));
9631 		break;
9632 
9633 	case offsetof(struct bpf_sock, type):
9634 		*insn++ = BPF_LDX_MEM(
9635 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9636 			si->dst_reg, si->src_reg,
9637 			bpf_target_off(struct sock, sk_type,
9638 				       sizeof_field(struct sock, sk_type),
9639 				       target_size));
9640 		break;
9641 
9642 	case offsetof(struct bpf_sock, protocol):
9643 		*insn++ = BPF_LDX_MEM(
9644 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9645 			si->dst_reg, si->src_reg,
9646 			bpf_target_off(struct sock, sk_protocol,
9647 				       sizeof_field(struct sock, sk_protocol),
9648 				       target_size));
9649 		break;
9650 
9651 	case offsetof(struct bpf_sock, src_ip4):
9652 		*insn++ = BPF_LDX_MEM(
9653 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9654 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9655 				       sizeof_field(struct sock_common,
9656 						    skc_rcv_saddr),
9657 				       target_size));
9658 		break;
9659 
9660 	case offsetof(struct bpf_sock, dst_ip4):
9661 		*insn++ = BPF_LDX_MEM(
9662 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9663 			bpf_target_off(struct sock_common, skc_daddr,
9664 				       sizeof_field(struct sock_common,
9665 						    skc_daddr),
9666 				       target_size));
9667 		break;
9668 
9669 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9670 #if IS_ENABLED(CONFIG_IPV6)
9671 		off = si->off;
9672 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9673 		*insn++ = BPF_LDX_MEM(
9674 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9675 			bpf_target_off(
9676 				struct sock_common,
9677 				skc_v6_rcv_saddr.s6_addr32[0],
9678 				sizeof_field(struct sock_common,
9679 					     skc_v6_rcv_saddr.s6_addr32[0]),
9680 				target_size) + off);
9681 #else
9682 		(void)off;
9683 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9684 #endif
9685 		break;
9686 
9687 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9688 #if IS_ENABLED(CONFIG_IPV6)
9689 		off = si->off;
9690 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9691 		*insn++ = BPF_LDX_MEM(
9692 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9693 			bpf_target_off(struct sock_common,
9694 				       skc_v6_daddr.s6_addr32[0],
9695 				       sizeof_field(struct sock_common,
9696 						    skc_v6_daddr.s6_addr32[0]),
9697 				       target_size) + off);
9698 #else
9699 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9700 		*target_size = 4;
9701 #endif
9702 		break;
9703 
9704 	case offsetof(struct bpf_sock, src_port):
9705 		*insn++ = BPF_LDX_MEM(
9706 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9707 			si->dst_reg, si->src_reg,
9708 			bpf_target_off(struct sock_common, skc_num,
9709 				       sizeof_field(struct sock_common,
9710 						    skc_num),
9711 				       target_size));
9712 		break;
9713 
9714 	case offsetof(struct bpf_sock, dst_port):
9715 		*insn++ = BPF_LDX_MEM(
9716 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9717 			si->dst_reg, si->src_reg,
9718 			bpf_target_off(struct sock_common, skc_dport,
9719 				       sizeof_field(struct sock_common,
9720 						    skc_dport),
9721 				       target_size));
9722 		break;
9723 
9724 	case offsetof(struct bpf_sock, state):
9725 		*insn++ = BPF_LDX_MEM(
9726 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9727 			si->dst_reg, si->src_reg,
9728 			bpf_target_off(struct sock_common, skc_state,
9729 				       sizeof_field(struct sock_common,
9730 						    skc_state),
9731 				       target_size));
9732 		break;
9733 	case offsetof(struct bpf_sock, rx_queue_mapping):
9734 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9735 		*insn++ = BPF_LDX_MEM(
9736 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9737 			si->dst_reg, si->src_reg,
9738 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9739 				       sizeof_field(struct sock,
9740 						    sk_rx_queue_mapping),
9741 				       target_size));
9742 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9743 				      1);
9744 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9745 #else
9746 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9747 		*target_size = 2;
9748 #endif
9749 		break;
9750 	}
9751 
9752 	return insn - insn_buf;
9753 }
9754 
9755 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9756 					 const struct bpf_insn *si,
9757 					 struct bpf_insn *insn_buf,
9758 					 struct bpf_prog *prog, u32 *target_size)
9759 {
9760 	struct bpf_insn *insn = insn_buf;
9761 
9762 	switch (si->off) {
9763 	case offsetof(struct __sk_buff, ifindex):
9764 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9765 				      si->dst_reg, si->src_reg,
9766 				      offsetof(struct sk_buff, dev));
9767 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9768 				      bpf_target_off(struct net_device, ifindex, 4,
9769 						     target_size));
9770 		break;
9771 	default:
9772 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9773 					      target_size);
9774 	}
9775 
9776 	return insn - insn_buf;
9777 }
9778 
9779 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9780 				  const struct bpf_insn *si,
9781 				  struct bpf_insn *insn_buf,
9782 				  struct bpf_prog *prog, u32 *target_size)
9783 {
9784 	struct bpf_insn *insn = insn_buf;
9785 
9786 	switch (si->off) {
9787 	case offsetof(struct xdp_md, data):
9788 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9789 				      si->dst_reg, si->src_reg,
9790 				      offsetof(struct xdp_buff, data));
9791 		break;
9792 	case offsetof(struct xdp_md, data_meta):
9793 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9794 				      si->dst_reg, si->src_reg,
9795 				      offsetof(struct xdp_buff, data_meta));
9796 		break;
9797 	case offsetof(struct xdp_md, data_end):
9798 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9799 				      si->dst_reg, si->src_reg,
9800 				      offsetof(struct xdp_buff, data_end));
9801 		break;
9802 	case offsetof(struct xdp_md, ingress_ifindex):
9803 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9804 				      si->dst_reg, si->src_reg,
9805 				      offsetof(struct xdp_buff, rxq));
9806 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9807 				      si->dst_reg, si->dst_reg,
9808 				      offsetof(struct xdp_rxq_info, dev));
9809 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9810 				      offsetof(struct net_device, ifindex));
9811 		break;
9812 	case offsetof(struct xdp_md, rx_queue_index):
9813 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9814 				      si->dst_reg, si->src_reg,
9815 				      offsetof(struct xdp_buff, rxq));
9816 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9817 				      offsetof(struct xdp_rxq_info,
9818 					       queue_index));
9819 		break;
9820 	case offsetof(struct xdp_md, egress_ifindex):
9821 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9822 				      si->dst_reg, si->src_reg,
9823 				      offsetof(struct xdp_buff, txq));
9824 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9825 				      si->dst_reg, si->dst_reg,
9826 				      offsetof(struct xdp_txq_info, dev));
9827 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9828 				      offsetof(struct net_device, ifindex));
9829 		break;
9830 	}
9831 
9832 	return insn - insn_buf;
9833 }
9834 
9835 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9836  * context Structure, F is Field in context structure that contains a pointer
9837  * to Nested Structure of type NS that has the field NF.
9838  *
9839  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9840  * sure that SIZE is not greater than actual size of S.F.NF.
9841  *
9842  * If offset OFF is provided, the load happens from that offset relative to
9843  * offset of NF.
9844  */
9845 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9846 	do {								       \
9847 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9848 				      si->src_reg, offsetof(S, F));	       \
9849 		*insn++ = BPF_LDX_MEM(					       \
9850 			SIZE, si->dst_reg, si->dst_reg,			       \
9851 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9852 				       target_size)			       \
9853 				+ OFF);					       \
9854 	} while (0)
9855 
9856 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9857 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9858 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9859 
9860 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9861  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9862  *
9863  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9864  * "register" since two registers available in convert_ctx_access are not
9865  * enough: we can't override neither SRC, since it contains value to store, nor
9866  * DST since it contains pointer to context that may be used by later
9867  * instructions. But we need a temporary place to save pointer to nested
9868  * structure whose field we want to store to.
9869  */
9870 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9871 	do {								       \
9872 		int tmp_reg = BPF_REG_9;				       \
9873 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9874 			--tmp_reg;					       \
9875 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9876 			--tmp_reg;					       \
9877 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9878 				      offsetof(S, TF));			       \
9879 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9880 				      si->dst_reg, offsetof(S, F));	       \
9881 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
9882 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9883 				       target_size)			       \
9884 				+ OFF);					       \
9885 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9886 				      offsetof(S, TF));			       \
9887 	} while (0)
9888 
9889 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9890 						      TF)		       \
9891 	do {								       \
9892 		if (type == BPF_WRITE) {				       \
9893 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9894 							 OFF, TF);	       \
9895 		} else {						       \
9896 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9897 				S, NS, F, NF, SIZE, OFF);  \
9898 		}							       \
9899 	} while (0)
9900 
9901 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9902 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9903 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9904 
9905 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9906 					const struct bpf_insn *si,
9907 					struct bpf_insn *insn_buf,
9908 					struct bpf_prog *prog, u32 *target_size)
9909 {
9910 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9911 	struct bpf_insn *insn = insn_buf;
9912 
9913 	switch (si->off) {
9914 	case offsetof(struct bpf_sock_addr, user_family):
9915 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9916 					    struct sockaddr, uaddr, sa_family);
9917 		break;
9918 
9919 	case offsetof(struct bpf_sock_addr, user_ip4):
9920 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9921 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9922 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9923 		break;
9924 
9925 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9926 		off = si->off;
9927 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9928 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9929 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9930 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9931 			tmp_reg);
9932 		break;
9933 
9934 	case offsetof(struct bpf_sock_addr, user_port):
9935 		/* To get port we need to know sa_family first and then treat
9936 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9937 		 * Though we can simplify since port field has same offset and
9938 		 * size in both structures.
9939 		 * Here we check this invariant and use just one of the
9940 		 * structures if it's true.
9941 		 */
9942 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9943 			     offsetof(struct sockaddr_in6, sin6_port));
9944 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9945 			     sizeof_field(struct sockaddr_in6, sin6_port));
9946 		/* Account for sin6_port being smaller than user_port. */
9947 		port_size = min(port_size, BPF_LDST_BYTES(si));
9948 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9949 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9950 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9951 		break;
9952 
9953 	case offsetof(struct bpf_sock_addr, family):
9954 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9955 					    struct sock, sk, sk_family);
9956 		break;
9957 
9958 	case offsetof(struct bpf_sock_addr, type):
9959 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9960 					    struct sock, sk, sk_type);
9961 		break;
9962 
9963 	case offsetof(struct bpf_sock_addr, protocol):
9964 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9965 					    struct sock, sk, sk_protocol);
9966 		break;
9967 
9968 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9969 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9970 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9971 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9972 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9973 		break;
9974 
9975 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9976 				msg_src_ip6[3]):
9977 		off = si->off;
9978 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9979 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9980 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9981 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9982 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9983 		break;
9984 	case offsetof(struct bpf_sock_addr, sk):
9985 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9986 				      si->dst_reg, si->src_reg,
9987 				      offsetof(struct bpf_sock_addr_kern, sk));
9988 		break;
9989 	}
9990 
9991 	return insn - insn_buf;
9992 }
9993 
9994 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9995 				       const struct bpf_insn *si,
9996 				       struct bpf_insn *insn_buf,
9997 				       struct bpf_prog *prog,
9998 				       u32 *target_size)
9999 {
10000 	struct bpf_insn *insn = insn_buf;
10001 	int off;
10002 
10003 /* Helper macro for adding read access to tcp_sock or sock fields. */
10004 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10005 	do {								      \
10006 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10007 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10008 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10009 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10010 			reg--;						      \
10011 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10012 			reg--;						      \
10013 		if (si->dst_reg == si->src_reg) {			      \
10014 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10015 					  offsetof(struct bpf_sock_ops_kern,  \
10016 					  temp));			      \
10017 			fullsock_reg = reg;				      \
10018 			jmp += 2;					      \
10019 		}							      \
10020 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10021 						struct bpf_sock_ops_kern,     \
10022 						is_fullsock),		      \
10023 				      fullsock_reg, si->src_reg,	      \
10024 				      offsetof(struct bpf_sock_ops_kern,      \
10025 					       is_fullsock));		      \
10026 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10027 		if (si->dst_reg == si->src_reg)				      \
10028 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10029 				      offsetof(struct bpf_sock_ops_kern,      \
10030 				      temp));				      \
10031 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10032 						struct bpf_sock_ops_kern, sk),\
10033 				      si->dst_reg, si->src_reg,		      \
10034 				      offsetof(struct bpf_sock_ops_kern, sk));\
10035 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10036 						       OBJ_FIELD),	      \
10037 				      si->dst_reg, si->dst_reg,		      \
10038 				      offsetof(OBJ, OBJ_FIELD));	      \
10039 		if (si->dst_reg == si->src_reg)	{			      \
10040 			*insn++ = BPF_JMP_A(1);				      \
10041 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10042 				      offsetof(struct bpf_sock_ops_kern,      \
10043 				      temp));				      \
10044 		}							      \
10045 	} while (0)
10046 
10047 #define SOCK_OPS_GET_SK()							      \
10048 	do {								      \
10049 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10050 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10051 			reg--;						      \
10052 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10053 			reg--;						      \
10054 		if (si->dst_reg == si->src_reg) {			      \
10055 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10056 					  offsetof(struct bpf_sock_ops_kern,  \
10057 					  temp));			      \
10058 			fullsock_reg = reg;				      \
10059 			jmp += 2;					      \
10060 		}							      \
10061 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10062 						struct bpf_sock_ops_kern,     \
10063 						is_fullsock),		      \
10064 				      fullsock_reg, si->src_reg,	      \
10065 				      offsetof(struct bpf_sock_ops_kern,      \
10066 					       is_fullsock));		      \
10067 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10068 		if (si->dst_reg == si->src_reg)				      \
10069 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10070 				      offsetof(struct bpf_sock_ops_kern,      \
10071 				      temp));				      \
10072 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10073 						struct bpf_sock_ops_kern, sk),\
10074 				      si->dst_reg, si->src_reg,		      \
10075 				      offsetof(struct bpf_sock_ops_kern, sk));\
10076 		if (si->dst_reg == si->src_reg)	{			      \
10077 			*insn++ = BPF_JMP_A(1);				      \
10078 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10079 				      offsetof(struct bpf_sock_ops_kern,      \
10080 				      temp));				      \
10081 		}							      \
10082 	} while (0)
10083 
10084 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10085 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10086 
10087 /* Helper macro for adding write access to tcp_sock or sock fields.
10088  * The macro is called with two registers, dst_reg which contains a pointer
10089  * to ctx (context) and src_reg which contains the value that should be
10090  * stored. However, we need an additional register since we cannot overwrite
10091  * dst_reg because it may be used later in the program.
10092  * Instead we "borrow" one of the other register. We first save its value
10093  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10094  * it at the end of the macro.
10095  */
10096 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10097 	do {								      \
10098 		int reg = BPF_REG_9;					      \
10099 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10100 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10101 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10102 			reg--;						      \
10103 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10104 			reg--;						      \
10105 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10106 				      offsetof(struct bpf_sock_ops_kern,      \
10107 					       temp));			      \
10108 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10109 						struct bpf_sock_ops_kern,     \
10110 						is_fullsock),		      \
10111 				      reg, si->dst_reg,			      \
10112 				      offsetof(struct bpf_sock_ops_kern,      \
10113 					       is_fullsock));		      \
10114 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10115 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10116 						struct bpf_sock_ops_kern, sk),\
10117 				      reg, si->dst_reg,			      \
10118 				      offsetof(struct bpf_sock_ops_kern, sk));\
10119 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
10120 				      reg, si->src_reg,			      \
10121 				      offsetof(OBJ, OBJ_FIELD));	      \
10122 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10123 				      offsetof(struct bpf_sock_ops_kern,      \
10124 					       temp));			      \
10125 	} while (0)
10126 
10127 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10128 	do {								      \
10129 		if (TYPE == BPF_WRITE)					      \
10130 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10131 		else							      \
10132 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10133 	} while (0)
10134 
10135 	if (insn > insn_buf)
10136 		return insn - insn_buf;
10137 
10138 	switch (si->off) {
10139 	case offsetof(struct bpf_sock_ops, op):
10140 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10141 						       op),
10142 				      si->dst_reg, si->src_reg,
10143 				      offsetof(struct bpf_sock_ops_kern, op));
10144 		break;
10145 
10146 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10147 	     offsetof(struct bpf_sock_ops, replylong[3]):
10148 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10149 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10150 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10151 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10152 		off = si->off;
10153 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10154 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10155 		if (type == BPF_WRITE)
10156 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10157 					      off);
10158 		else
10159 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10160 					      off);
10161 		break;
10162 
10163 	case offsetof(struct bpf_sock_ops, family):
10164 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10165 
10166 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10167 					      struct bpf_sock_ops_kern, sk),
10168 				      si->dst_reg, si->src_reg,
10169 				      offsetof(struct bpf_sock_ops_kern, sk));
10170 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10171 				      offsetof(struct sock_common, skc_family));
10172 		break;
10173 
10174 	case offsetof(struct bpf_sock_ops, remote_ip4):
10175 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10176 
10177 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10178 						struct bpf_sock_ops_kern, sk),
10179 				      si->dst_reg, si->src_reg,
10180 				      offsetof(struct bpf_sock_ops_kern, sk));
10181 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10182 				      offsetof(struct sock_common, skc_daddr));
10183 		break;
10184 
10185 	case offsetof(struct bpf_sock_ops, local_ip4):
10186 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10187 					  skc_rcv_saddr) != 4);
10188 
10189 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10190 					      struct bpf_sock_ops_kern, sk),
10191 				      si->dst_reg, si->src_reg,
10192 				      offsetof(struct bpf_sock_ops_kern, sk));
10193 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10194 				      offsetof(struct sock_common,
10195 					       skc_rcv_saddr));
10196 		break;
10197 
10198 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10199 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10200 #if IS_ENABLED(CONFIG_IPV6)
10201 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10202 					  skc_v6_daddr.s6_addr32[0]) != 4);
10203 
10204 		off = si->off;
10205 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10206 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10207 						struct bpf_sock_ops_kern, sk),
10208 				      si->dst_reg, si->src_reg,
10209 				      offsetof(struct bpf_sock_ops_kern, sk));
10210 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10211 				      offsetof(struct sock_common,
10212 					       skc_v6_daddr.s6_addr32[0]) +
10213 				      off);
10214 #else
10215 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10216 #endif
10217 		break;
10218 
10219 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10220 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10221 #if IS_ENABLED(CONFIG_IPV6)
10222 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10223 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10224 
10225 		off = si->off;
10226 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10227 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10228 						struct bpf_sock_ops_kern, sk),
10229 				      si->dst_reg, si->src_reg,
10230 				      offsetof(struct bpf_sock_ops_kern, sk));
10231 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10232 				      offsetof(struct sock_common,
10233 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10234 				      off);
10235 #else
10236 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10237 #endif
10238 		break;
10239 
10240 	case offsetof(struct bpf_sock_ops, remote_port):
10241 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10242 
10243 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10244 						struct bpf_sock_ops_kern, sk),
10245 				      si->dst_reg, si->src_reg,
10246 				      offsetof(struct bpf_sock_ops_kern, sk));
10247 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10248 				      offsetof(struct sock_common, skc_dport));
10249 #ifndef __BIG_ENDIAN_BITFIELD
10250 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10251 #endif
10252 		break;
10253 
10254 	case offsetof(struct bpf_sock_ops, local_port):
10255 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10256 
10257 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10258 						struct bpf_sock_ops_kern, sk),
10259 				      si->dst_reg, si->src_reg,
10260 				      offsetof(struct bpf_sock_ops_kern, sk));
10261 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10262 				      offsetof(struct sock_common, skc_num));
10263 		break;
10264 
10265 	case offsetof(struct bpf_sock_ops, is_fullsock):
10266 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10267 						struct bpf_sock_ops_kern,
10268 						is_fullsock),
10269 				      si->dst_reg, si->src_reg,
10270 				      offsetof(struct bpf_sock_ops_kern,
10271 					       is_fullsock));
10272 		break;
10273 
10274 	case offsetof(struct bpf_sock_ops, state):
10275 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10276 
10277 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10278 						struct bpf_sock_ops_kern, sk),
10279 				      si->dst_reg, si->src_reg,
10280 				      offsetof(struct bpf_sock_ops_kern, sk));
10281 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10282 				      offsetof(struct sock_common, skc_state));
10283 		break;
10284 
10285 	case offsetof(struct bpf_sock_ops, rtt_min):
10286 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10287 			     sizeof(struct minmax));
10288 		BUILD_BUG_ON(sizeof(struct minmax) <
10289 			     sizeof(struct minmax_sample));
10290 
10291 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10292 						struct bpf_sock_ops_kern, sk),
10293 				      si->dst_reg, si->src_reg,
10294 				      offsetof(struct bpf_sock_ops_kern, sk));
10295 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10296 				      offsetof(struct tcp_sock, rtt_min) +
10297 				      sizeof_field(struct minmax_sample, t));
10298 		break;
10299 
10300 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10301 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10302 				   struct tcp_sock);
10303 		break;
10304 
10305 	case offsetof(struct bpf_sock_ops, sk_txhash):
10306 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10307 					  struct sock, type);
10308 		break;
10309 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10310 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10311 		break;
10312 	case offsetof(struct bpf_sock_ops, srtt_us):
10313 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10314 		break;
10315 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10316 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10317 		break;
10318 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10319 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10320 		break;
10321 	case offsetof(struct bpf_sock_ops, snd_nxt):
10322 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10323 		break;
10324 	case offsetof(struct bpf_sock_ops, snd_una):
10325 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10326 		break;
10327 	case offsetof(struct bpf_sock_ops, mss_cache):
10328 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10329 		break;
10330 	case offsetof(struct bpf_sock_ops, ecn_flags):
10331 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10332 		break;
10333 	case offsetof(struct bpf_sock_ops, rate_delivered):
10334 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10335 		break;
10336 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10337 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10338 		break;
10339 	case offsetof(struct bpf_sock_ops, packets_out):
10340 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10341 		break;
10342 	case offsetof(struct bpf_sock_ops, retrans_out):
10343 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10344 		break;
10345 	case offsetof(struct bpf_sock_ops, total_retrans):
10346 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10347 		break;
10348 	case offsetof(struct bpf_sock_ops, segs_in):
10349 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10350 		break;
10351 	case offsetof(struct bpf_sock_ops, data_segs_in):
10352 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10353 		break;
10354 	case offsetof(struct bpf_sock_ops, segs_out):
10355 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10356 		break;
10357 	case offsetof(struct bpf_sock_ops, data_segs_out):
10358 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10359 		break;
10360 	case offsetof(struct bpf_sock_ops, lost_out):
10361 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10362 		break;
10363 	case offsetof(struct bpf_sock_ops, sacked_out):
10364 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10365 		break;
10366 	case offsetof(struct bpf_sock_ops, bytes_received):
10367 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10368 		break;
10369 	case offsetof(struct bpf_sock_ops, bytes_acked):
10370 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10371 		break;
10372 	case offsetof(struct bpf_sock_ops, sk):
10373 		SOCK_OPS_GET_SK();
10374 		break;
10375 	case offsetof(struct bpf_sock_ops, skb_data_end):
10376 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10377 						       skb_data_end),
10378 				      si->dst_reg, si->src_reg,
10379 				      offsetof(struct bpf_sock_ops_kern,
10380 					       skb_data_end));
10381 		break;
10382 	case offsetof(struct bpf_sock_ops, skb_data):
10383 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10384 						       skb),
10385 				      si->dst_reg, si->src_reg,
10386 				      offsetof(struct bpf_sock_ops_kern,
10387 					       skb));
10388 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10389 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10390 				      si->dst_reg, si->dst_reg,
10391 				      offsetof(struct sk_buff, data));
10392 		break;
10393 	case offsetof(struct bpf_sock_ops, skb_len):
10394 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10395 						       skb),
10396 				      si->dst_reg, si->src_reg,
10397 				      offsetof(struct bpf_sock_ops_kern,
10398 					       skb));
10399 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10400 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10401 				      si->dst_reg, si->dst_reg,
10402 				      offsetof(struct sk_buff, len));
10403 		break;
10404 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10405 		off = offsetof(struct sk_buff, cb);
10406 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10407 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10408 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10409 						       skb),
10410 				      si->dst_reg, si->src_reg,
10411 				      offsetof(struct bpf_sock_ops_kern,
10412 					       skb));
10413 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10414 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10415 						       tcp_flags),
10416 				      si->dst_reg, si->dst_reg, off);
10417 		break;
10418 	}
10419 	return insn - insn_buf;
10420 }
10421 
10422 /* data_end = skb->data + skb_headlen() */
10423 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10424 						    struct bpf_insn *insn)
10425 {
10426 	int reg;
10427 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10428 			   offsetof(struct sk_skb_cb, temp_reg);
10429 
10430 	if (si->src_reg == si->dst_reg) {
10431 		/* We need an extra register, choose and save a register. */
10432 		reg = BPF_REG_9;
10433 		if (si->src_reg == reg || si->dst_reg == reg)
10434 			reg--;
10435 		if (si->src_reg == reg || si->dst_reg == reg)
10436 			reg--;
10437 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10438 	} else {
10439 		reg = si->dst_reg;
10440 	}
10441 
10442 	/* reg = skb->data */
10443 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10444 			      reg, si->src_reg,
10445 			      offsetof(struct sk_buff, data));
10446 	/* AX = skb->len */
10447 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10448 			      BPF_REG_AX, si->src_reg,
10449 			      offsetof(struct sk_buff, len));
10450 	/* reg = skb->data + skb->len */
10451 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10452 	/* AX = skb->data_len */
10453 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10454 			      BPF_REG_AX, si->src_reg,
10455 			      offsetof(struct sk_buff, data_len));
10456 
10457 	/* reg = skb->data + skb->len - skb->data_len */
10458 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10459 
10460 	if (si->src_reg == si->dst_reg) {
10461 		/* Restore the saved register */
10462 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10463 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10464 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10465 	}
10466 
10467 	return insn;
10468 }
10469 
10470 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10471 				     const struct bpf_insn *si,
10472 				     struct bpf_insn *insn_buf,
10473 				     struct bpf_prog *prog, u32 *target_size)
10474 {
10475 	struct bpf_insn *insn = insn_buf;
10476 	int off;
10477 
10478 	switch (si->off) {
10479 	case offsetof(struct __sk_buff, data_end):
10480 		insn = bpf_convert_data_end_access(si, insn);
10481 		break;
10482 	case offsetof(struct __sk_buff, cb[0]) ...
10483 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10484 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10485 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10486 			      offsetof(struct sk_skb_cb, data)) %
10487 			     sizeof(__u64));
10488 
10489 		prog->cb_access = 1;
10490 		off  = si->off;
10491 		off -= offsetof(struct __sk_buff, cb[0]);
10492 		off += offsetof(struct sk_buff, cb);
10493 		off += offsetof(struct sk_skb_cb, data);
10494 		if (type == BPF_WRITE)
10495 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10496 					      si->src_reg, off);
10497 		else
10498 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10499 					      si->src_reg, off);
10500 		break;
10501 
10502 
10503 	default:
10504 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10505 					      target_size);
10506 	}
10507 
10508 	return insn - insn_buf;
10509 }
10510 
10511 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10512 				     const struct bpf_insn *si,
10513 				     struct bpf_insn *insn_buf,
10514 				     struct bpf_prog *prog, u32 *target_size)
10515 {
10516 	struct bpf_insn *insn = insn_buf;
10517 #if IS_ENABLED(CONFIG_IPV6)
10518 	int off;
10519 #endif
10520 
10521 	/* convert ctx uses the fact sg element is first in struct */
10522 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10523 
10524 	switch (si->off) {
10525 	case offsetof(struct sk_msg_md, data):
10526 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10527 				      si->dst_reg, si->src_reg,
10528 				      offsetof(struct sk_msg, data));
10529 		break;
10530 	case offsetof(struct sk_msg_md, data_end):
10531 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10532 				      si->dst_reg, si->src_reg,
10533 				      offsetof(struct sk_msg, data_end));
10534 		break;
10535 	case offsetof(struct sk_msg_md, family):
10536 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10537 
10538 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10539 					      struct sk_msg, sk),
10540 				      si->dst_reg, si->src_reg,
10541 				      offsetof(struct sk_msg, sk));
10542 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10543 				      offsetof(struct sock_common, skc_family));
10544 		break;
10545 
10546 	case offsetof(struct sk_msg_md, remote_ip4):
10547 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10548 
10549 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10550 						struct sk_msg, sk),
10551 				      si->dst_reg, si->src_reg,
10552 				      offsetof(struct sk_msg, sk));
10553 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10554 				      offsetof(struct sock_common, skc_daddr));
10555 		break;
10556 
10557 	case offsetof(struct sk_msg_md, local_ip4):
10558 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10559 					  skc_rcv_saddr) != 4);
10560 
10561 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10562 					      struct sk_msg, sk),
10563 				      si->dst_reg, si->src_reg,
10564 				      offsetof(struct sk_msg, sk));
10565 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10566 				      offsetof(struct sock_common,
10567 					       skc_rcv_saddr));
10568 		break;
10569 
10570 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10571 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10572 #if IS_ENABLED(CONFIG_IPV6)
10573 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10574 					  skc_v6_daddr.s6_addr32[0]) != 4);
10575 
10576 		off = si->off;
10577 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10578 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10579 						struct sk_msg, sk),
10580 				      si->dst_reg, si->src_reg,
10581 				      offsetof(struct sk_msg, sk));
10582 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10583 				      offsetof(struct sock_common,
10584 					       skc_v6_daddr.s6_addr32[0]) +
10585 				      off);
10586 #else
10587 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10588 #endif
10589 		break;
10590 
10591 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10592 	     offsetof(struct sk_msg_md, local_ip6[3]):
10593 #if IS_ENABLED(CONFIG_IPV6)
10594 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10595 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10596 
10597 		off = si->off;
10598 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10599 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10600 						struct sk_msg, sk),
10601 				      si->dst_reg, si->src_reg,
10602 				      offsetof(struct sk_msg, sk));
10603 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10604 				      offsetof(struct sock_common,
10605 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10606 				      off);
10607 #else
10608 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10609 #endif
10610 		break;
10611 
10612 	case offsetof(struct sk_msg_md, remote_port):
10613 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10614 
10615 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10616 						struct sk_msg, sk),
10617 				      si->dst_reg, si->src_reg,
10618 				      offsetof(struct sk_msg, sk));
10619 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10620 				      offsetof(struct sock_common, skc_dport));
10621 #ifndef __BIG_ENDIAN_BITFIELD
10622 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10623 #endif
10624 		break;
10625 
10626 	case offsetof(struct sk_msg_md, local_port):
10627 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10628 
10629 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10630 						struct sk_msg, sk),
10631 				      si->dst_reg, si->src_reg,
10632 				      offsetof(struct sk_msg, sk));
10633 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10634 				      offsetof(struct sock_common, skc_num));
10635 		break;
10636 
10637 	case offsetof(struct sk_msg_md, size):
10638 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10639 				      si->dst_reg, si->src_reg,
10640 				      offsetof(struct sk_msg_sg, size));
10641 		break;
10642 
10643 	case offsetof(struct sk_msg_md, sk):
10644 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10645 				      si->dst_reg, si->src_reg,
10646 				      offsetof(struct sk_msg, sk));
10647 		break;
10648 	}
10649 
10650 	return insn - insn_buf;
10651 }
10652 
10653 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10654 	.get_func_proto		= sk_filter_func_proto,
10655 	.is_valid_access	= sk_filter_is_valid_access,
10656 	.convert_ctx_access	= bpf_convert_ctx_access,
10657 	.gen_ld_abs		= bpf_gen_ld_abs,
10658 };
10659 
10660 const struct bpf_prog_ops sk_filter_prog_ops = {
10661 	.test_run		= bpf_prog_test_run_skb,
10662 };
10663 
10664 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10665 	.get_func_proto		= tc_cls_act_func_proto,
10666 	.is_valid_access	= tc_cls_act_is_valid_access,
10667 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10668 	.gen_prologue		= tc_cls_act_prologue,
10669 	.gen_ld_abs		= bpf_gen_ld_abs,
10670 };
10671 
10672 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10673 	.test_run		= bpf_prog_test_run_skb,
10674 };
10675 
10676 const struct bpf_verifier_ops xdp_verifier_ops = {
10677 	.get_func_proto		= xdp_func_proto,
10678 	.is_valid_access	= xdp_is_valid_access,
10679 	.convert_ctx_access	= xdp_convert_ctx_access,
10680 	.gen_prologue		= bpf_noop_prologue,
10681 };
10682 
10683 const struct bpf_prog_ops xdp_prog_ops = {
10684 	.test_run		= bpf_prog_test_run_xdp,
10685 };
10686 
10687 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10688 	.get_func_proto		= cg_skb_func_proto,
10689 	.is_valid_access	= cg_skb_is_valid_access,
10690 	.convert_ctx_access	= bpf_convert_ctx_access,
10691 };
10692 
10693 const struct bpf_prog_ops cg_skb_prog_ops = {
10694 	.test_run		= bpf_prog_test_run_skb,
10695 };
10696 
10697 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10698 	.get_func_proto		= lwt_in_func_proto,
10699 	.is_valid_access	= lwt_is_valid_access,
10700 	.convert_ctx_access	= bpf_convert_ctx_access,
10701 };
10702 
10703 const struct bpf_prog_ops lwt_in_prog_ops = {
10704 	.test_run		= bpf_prog_test_run_skb,
10705 };
10706 
10707 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10708 	.get_func_proto		= lwt_out_func_proto,
10709 	.is_valid_access	= lwt_is_valid_access,
10710 	.convert_ctx_access	= bpf_convert_ctx_access,
10711 };
10712 
10713 const struct bpf_prog_ops lwt_out_prog_ops = {
10714 	.test_run		= bpf_prog_test_run_skb,
10715 };
10716 
10717 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10718 	.get_func_proto		= lwt_xmit_func_proto,
10719 	.is_valid_access	= lwt_is_valid_access,
10720 	.convert_ctx_access	= bpf_convert_ctx_access,
10721 	.gen_prologue		= tc_cls_act_prologue,
10722 };
10723 
10724 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10725 	.test_run		= bpf_prog_test_run_skb,
10726 };
10727 
10728 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10729 	.get_func_proto		= lwt_seg6local_func_proto,
10730 	.is_valid_access	= lwt_is_valid_access,
10731 	.convert_ctx_access	= bpf_convert_ctx_access,
10732 };
10733 
10734 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10735 	.test_run		= bpf_prog_test_run_skb,
10736 };
10737 
10738 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10739 	.get_func_proto		= sock_filter_func_proto,
10740 	.is_valid_access	= sock_filter_is_valid_access,
10741 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10742 };
10743 
10744 const struct bpf_prog_ops cg_sock_prog_ops = {
10745 };
10746 
10747 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10748 	.get_func_proto		= sock_addr_func_proto,
10749 	.is_valid_access	= sock_addr_is_valid_access,
10750 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10751 };
10752 
10753 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10754 };
10755 
10756 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10757 	.get_func_proto		= sock_ops_func_proto,
10758 	.is_valid_access	= sock_ops_is_valid_access,
10759 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10760 };
10761 
10762 const struct bpf_prog_ops sock_ops_prog_ops = {
10763 };
10764 
10765 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10766 	.get_func_proto		= sk_skb_func_proto,
10767 	.is_valid_access	= sk_skb_is_valid_access,
10768 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10769 	.gen_prologue		= sk_skb_prologue,
10770 };
10771 
10772 const struct bpf_prog_ops sk_skb_prog_ops = {
10773 };
10774 
10775 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10776 	.get_func_proto		= sk_msg_func_proto,
10777 	.is_valid_access	= sk_msg_is_valid_access,
10778 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10779 	.gen_prologue		= bpf_noop_prologue,
10780 };
10781 
10782 const struct bpf_prog_ops sk_msg_prog_ops = {
10783 };
10784 
10785 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10786 	.get_func_proto		= flow_dissector_func_proto,
10787 	.is_valid_access	= flow_dissector_is_valid_access,
10788 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10789 };
10790 
10791 const struct bpf_prog_ops flow_dissector_prog_ops = {
10792 	.test_run		= bpf_prog_test_run_flow_dissector,
10793 };
10794 
10795 int sk_detach_filter(struct sock *sk)
10796 {
10797 	int ret = -ENOENT;
10798 	struct sk_filter *filter;
10799 
10800 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10801 		return -EPERM;
10802 
10803 	filter = rcu_dereference_protected(sk->sk_filter,
10804 					   lockdep_sock_is_held(sk));
10805 	if (filter) {
10806 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10807 		sk_filter_uncharge(sk, filter);
10808 		ret = 0;
10809 	}
10810 
10811 	return ret;
10812 }
10813 EXPORT_SYMBOL_GPL(sk_detach_filter);
10814 
10815 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10816 		  unsigned int len)
10817 {
10818 	struct sock_fprog_kern *fprog;
10819 	struct sk_filter *filter;
10820 	int ret = 0;
10821 
10822 	lock_sock(sk);
10823 	filter = rcu_dereference_protected(sk->sk_filter,
10824 					   lockdep_sock_is_held(sk));
10825 	if (!filter)
10826 		goto out;
10827 
10828 	/* We're copying the filter that has been originally attached,
10829 	 * so no conversion/decode needed anymore. eBPF programs that
10830 	 * have no original program cannot be dumped through this.
10831 	 */
10832 	ret = -EACCES;
10833 	fprog = filter->prog->orig_prog;
10834 	if (!fprog)
10835 		goto out;
10836 
10837 	ret = fprog->len;
10838 	if (!len)
10839 		/* User space only enquires number of filter blocks. */
10840 		goto out;
10841 
10842 	ret = -EINVAL;
10843 	if (len < fprog->len)
10844 		goto out;
10845 
10846 	ret = -EFAULT;
10847 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10848 		goto out;
10849 
10850 	/* Instead of bytes, the API requests to return the number
10851 	 * of filter blocks.
10852 	 */
10853 	ret = fprog->len;
10854 out:
10855 	release_sock(sk);
10856 	return ret;
10857 }
10858 
10859 #ifdef CONFIG_INET
10860 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10861 				    struct sock_reuseport *reuse,
10862 				    struct sock *sk, struct sk_buff *skb,
10863 				    struct sock *migrating_sk,
10864 				    u32 hash)
10865 {
10866 	reuse_kern->skb = skb;
10867 	reuse_kern->sk = sk;
10868 	reuse_kern->selected_sk = NULL;
10869 	reuse_kern->migrating_sk = migrating_sk;
10870 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10871 	reuse_kern->hash = hash;
10872 	reuse_kern->reuseport_id = reuse->reuseport_id;
10873 	reuse_kern->bind_inany = reuse->bind_inany;
10874 }
10875 
10876 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10877 				  struct bpf_prog *prog, struct sk_buff *skb,
10878 				  struct sock *migrating_sk,
10879 				  u32 hash)
10880 {
10881 	struct sk_reuseport_kern reuse_kern;
10882 	enum sk_action action;
10883 
10884 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10885 	action = bpf_prog_run(prog, &reuse_kern);
10886 
10887 	if (action == SK_PASS)
10888 		return reuse_kern.selected_sk;
10889 	else
10890 		return ERR_PTR(-ECONNREFUSED);
10891 }
10892 
10893 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10894 	   struct bpf_map *, map, void *, key, u32, flags)
10895 {
10896 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10897 	struct sock_reuseport *reuse;
10898 	struct sock *selected_sk;
10899 
10900 	selected_sk = map->ops->map_lookup_elem(map, key);
10901 	if (!selected_sk)
10902 		return -ENOENT;
10903 
10904 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10905 	if (!reuse) {
10906 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10907 		if (sk_is_refcounted(selected_sk))
10908 			sock_put(selected_sk);
10909 
10910 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
10911 		 * The only (!reuse) case here is - the sk has already been
10912 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
10913 		 *
10914 		 * Other maps (e.g. sock_map) do not provide this guarantee and
10915 		 * the sk may never be in the reuseport group to begin with.
10916 		 */
10917 		return is_sockarray ? -ENOENT : -EINVAL;
10918 	}
10919 
10920 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10921 		struct sock *sk = reuse_kern->sk;
10922 
10923 		if (sk->sk_protocol != selected_sk->sk_protocol)
10924 			return -EPROTOTYPE;
10925 		else if (sk->sk_family != selected_sk->sk_family)
10926 			return -EAFNOSUPPORT;
10927 
10928 		/* Catch all. Likely bound to a different sockaddr. */
10929 		return -EBADFD;
10930 	}
10931 
10932 	reuse_kern->selected_sk = selected_sk;
10933 
10934 	return 0;
10935 }
10936 
10937 static const struct bpf_func_proto sk_select_reuseport_proto = {
10938 	.func           = sk_select_reuseport,
10939 	.gpl_only       = false,
10940 	.ret_type       = RET_INTEGER,
10941 	.arg1_type	= ARG_PTR_TO_CTX,
10942 	.arg2_type      = ARG_CONST_MAP_PTR,
10943 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
10944 	.arg4_type	= ARG_ANYTHING,
10945 };
10946 
10947 BPF_CALL_4(sk_reuseport_load_bytes,
10948 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10949 	   void *, to, u32, len)
10950 {
10951 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10952 }
10953 
10954 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10955 	.func		= sk_reuseport_load_bytes,
10956 	.gpl_only	= false,
10957 	.ret_type	= RET_INTEGER,
10958 	.arg1_type	= ARG_PTR_TO_CTX,
10959 	.arg2_type	= ARG_ANYTHING,
10960 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10961 	.arg4_type	= ARG_CONST_SIZE,
10962 };
10963 
10964 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10965 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10966 	   void *, to, u32, len, u32, start_header)
10967 {
10968 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10969 					       len, start_header);
10970 }
10971 
10972 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10973 	.func		= sk_reuseport_load_bytes_relative,
10974 	.gpl_only	= false,
10975 	.ret_type	= RET_INTEGER,
10976 	.arg1_type	= ARG_PTR_TO_CTX,
10977 	.arg2_type	= ARG_ANYTHING,
10978 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10979 	.arg4_type	= ARG_CONST_SIZE,
10980 	.arg5_type	= ARG_ANYTHING,
10981 };
10982 
10983 static const struct bpf_func_proto *
10984 sk_reuseport_func_proto(enum bpf_func_id func_id,
10985 			const struct bpf_prog *prog)
10986 {
10987 	switch (func_id) {
10988 	case BPF_FUNC_sk_select_reuseport:
10989 		return &sk_select_reuseport_proto;
10990 	case BPF_FUNC_skb_load_bytes:
10991 		return &sk_reuseport_load_bytes_proto;
10992 	case BPF_FUNC_skb_load_bytes_relative:
10993 		return &sk_reuseport_load_bytes_relative_proto;
10994 	case BPF_FUNC_get_socket_cookie:
10995 		return &bpf_get_socket_ptr_cookie_proto;
10996 	case BPF_FUNC_ktime_get_coarse_ns:
10997 		return &bpf_ktime_get_coarse_ns_proto;
10998 	default:
10999 		return bpf_base_func_proto(func_id);
11000 	}
11001 }
11002 
11003 static bool
11004 sk_reuseport_is_valid_access(int off, int size,
11005 			     enum bpf_access_type type,
11006 			     const struct bpf_prog *prog,
11007 			     struct bpf_insn_access_aux *info)
11008 {
11009 	const u32 size_default = sizeof(__u32);
11010 
11011 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11012 	    off % size || type != BPF_READ)
11013 		return false;
11014 
11015 	switch (off) {
11016 	case offsetof(struct sk_reuseport_md, data):
11017 		info->reg_type = PTR_TO_PACKET;
11018 		return size == sizeof(__u64);
11019 
11020 	case offsetof(struct sk_reuseport_md, data_end):
11021 		info->reg_type = PTR_TO_PACKET_END;
11022 		return size == sizeof(__u64);
11023 
11024 	case offsetof(struct sk_reuseport_md, hash):
11025 		return size == size_default;
11026 
11027 	case offsetof(struct sk_reuseport_md, sk):
11028 		info->reg_type = PTR_TO_SOCKET;
11029 		return size == sizeof(__u64);
11030 
11031 	case offsetof(struct sk_reuseport_md, migrating_sk):
11032 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11033 		return size == sizeof(__u64);
11034 
11035 	/* Fields that allow narrowing */
11036 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11037 		if (size < sizeof_field(struct sk_buff, protocol))
11038 			return false;
11039 		fallthrough;
11040 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11041 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11042 	case bpf_ctx_range(struct sk_reuseport_md, len):
11043 		bpf_ctx_record_field_size(info, size_default);
11044 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11045 
11046 	default:
11047 		return false;
11048 	}
11049 }
11050 
11051 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11052 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11053 			      si->dst_reg, si->src_reg,			\
11054 			      bpf_target_off(struct sk_reuseport_kern, F, \
11055 					     sizeof_field(struct sk_reuseport_kern, F), \
11056 					     target_size));		\
11057 	})
11058 
11059 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11060 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11061 				    struct sk_buff,			\
11062 				    skb,				\
11063 				    SKB_FIELD)
11064 
11065 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11066 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11067 				    struct sock,			\
11068 				    sk,					\
11069 				    SK_FIELD)
11070 
11071 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11072 					   const struct bpf_insn *si,
11073 					   struct bpf_insn *insn_buf,
11074 					   struct bpf_prog *prog,
11075 					   u32 *target_size)
11076 {
11077 	struct bpf_insn *insn = insn_buf;
11078 
11079 	switch (si->off) {
11080 	case offsetof(struct sk_reuseport_md, data):
11081 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11082 		break;
11083 
11084 	case offsetof(struct sk_reuseport_md, len):
11085 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11086 		break;
11087 
11088 	case offsetof(struct sk_reuseport_md, eth_protocol):
11089 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11090 		break;
11091 
11092 	case offsetof(struct sk_reuseport_md, ip_protocol):
11093 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11094 		break;
11095 
11096 	case offsetof(struct sk_reuseport_md, data_end):
11097 		SK_REUSEPORT_LOAD_FIELD(data_end);
11098 		break;
11099 
11100 	case offsetof(struct sk_reuseport_md, hash):
11101 		SK_REUSEPORT_LOAD_FIELD(hash);
11102 		break;
11103 
11104 	case offsetof(struct sk_reuseport_md, bind_inany):
11105 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11106 		break;
11107 
11108 	case offsetof(struct sk_reuseport_md, sk):
11109 		SK_REUSEPORT_LOAD_FIELD(sk);
11110 		break;
11111 
11112 	case offsetof(struct sk_reuseport_md, migrating_sk):
11113 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11114 		break;
11115 	}
11116 
11117 	return insn - insn_buf;
11118 }
11119 
11120 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11121 	.get_func_proto		= sk_reuseport_func_proto,
11122 	.is_valid_access	= sk_reuseport_is_valid_access,
11123 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11124 };
11125 
11126 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11127 };
11128 
11129 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11130 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11131 
11132 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11133 	   struct sock *, sk, u64, flags)
11134 {
11135 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11136 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11137 		return -EINVAL;
11138 	if (unlikely(sk && sk_is_refcounted(sk)))
11139 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11140 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11141 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11142 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11143 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11144 
11145 	/* Check if socket is suitable for packet L3/L4 protocol */
11146 	if (sk && sk->sk_protocol != ctx->protocol)
11147 		return -EPROTOTYPE;
11148 	if (sk && sk->sk_family != ctx->family &&
11149 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11150 		return -EAFNOSUPPORT;
11151 
11152 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11153 		return -EEXIST;
11154 
11155 	/* Select socket as lookup result */
11156 	ctx->selected_sk = sk;
11157 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11158 	return 0;
11159 }
11160 
11161 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11162 	.func		= bpf_sk_lookup_assign,
11163 	.gpl_only	= false,
11164 	.ret_type	= RET_INTEGER,
11165 	.arg1_type	= ARG_PTR_TO_CTX,
11166 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11167 	.arg3_type	= ARG_ANYTHING,
11168 };
11169 
11170 static const struct bpf_func_proto *
11171 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11172 {
11173 	switch (func_id) {
11174 	case BPF_FUNC_perf_event_output:
11175 		return &bpf_event_output_data_proto;
11176 	case BPF_FUNC_sk_assign:
11177 		return &bpf_sk_lookup_assign_proto;
11178 	case BPF_FUNC_sk_release:
11179 		return &bpf_sk_release_proto;
11180 	default:
11181 		return bpf_sk_base_func_proto(func_id);
11182 	}
11183 }
11184 
11185 static bool sk_lookup_is_valid_access(int off, int size,
11186 				      enum bpf_access_type type,
11187 				      const struct bpf_prog *prog,
11188 				      struct bpf_insn_access_aux *info)
11189 {
11190 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11191 		return false;
11192 	if (off % size != 0)
11193 		return false;
11194 	if (type != BPF_READ)
11195 		return false;
11196 
11197 	switch (off) {
11198 	case offsetof(struct bpf_sk_lookup, sk):
11199 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11200 		return size == sizeof(__u64);
11201 
11202 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11203 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11204 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11205 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11206 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11207 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11208 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11209 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11210 		bpf_ctx_record_field_size(info, sizeof(__u32));
11211 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11212 
11213 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11214 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11215 		if (size == sizeof(__u32))
11216 			return true;
11217 		bpf_ctx_record_field_size(info, sizeof(__be16));
11218 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11219 
11220 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11221 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11222 		/* Allow access to zero padding for backward compatibility */
11223 		bpf_ctx_record_field_size(info, sizeof(__u16));
11224 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11225 
11226 	default:
11227 		return false;
11228 	}
11229 }
11230 
11231 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11232 					const struct bpf_insn *si,
11233 					struct bpf_insn *insn_buf,
11234 					struct bpf_prog *prog,
11235 					u32 *target_size)
11236 {
11237 	struct bpf_insn *insn = insn_buf;
11238 
11239 	switch (si->off) {
11240 	case offsetof(struct bpf_sk_lookup, sk):
11241 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11242 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11243 		break;
11244 
11245 	case offsetof(struct bpf_sk_lookup, family):
11246 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11247 				      bpf_target_off(struct bpf_sk_lookup_kern,
11248 						     family, 2, target_size));
11249 		break;
11250 
11251 	case offsetof(struct bpf_sk_lookup, protocol):
11252 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11253 				      bpf_target_off(struct bpf_sk_lookup_kern,
11254 						     protocol, 2, target_size));
11255 		break;
11256 
11257 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11258 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11259 				      bpf_target_off(struct bpf_sk_lookup_kern,
11260 						     v4.saddr, 4, target_size));
11261 		break;
11262 
11263 	case offsetof(struct bpf_sk_lookup, local_ip4):
11264 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11265 				      bpf_target_off(struct bpf_sk_lookup_kern,
11266 						     v4.daddr, 4, target_size));
11267 		break;
11268 
11269 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11270 				remote_ip6[0], remote_ip6[3]): {
11271 #if IS_ENABLED(CONFIG_IPV6)
11272 		int off = si->off;
11273 
11274 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11275 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11276 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11277 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11278 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11279 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11280 #else
11281 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11282 #endif
11283 		break;
11284 	}
11285 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11286 				local_ip6[0], local_ip6[3]): {
11287 #if IS_ENABLED(CONFIG_IPV6)
11288 		int off = si->off;
11289 
11290 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11291 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11292 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11293 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11294 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11295 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11296 #else
11297 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11298 #endif
11299 		break;
11300 	}
11301 	case offsetof(struct bpf_sk_lookup, remote_port):
11302 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11303 				      bpf_target_off(struct bpf_sk_lookup_kern,
11304 						     sport, 2, target_size));
11305 		break;
11306 
11307 	case offsetofend(struct bpf_sk_lookup, remote_port):
11308 		*target_size = 2;
11309 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11310 		break;
11311 
11312 	case offsetof(struct bpf_sk_lookup, local_port):
11313 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11314 				      bpf_target_off(struct bpf_sk_lookup_kern,
11315 						     dport, 2, target_size));
11316 		break;
11317 
11318 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11319 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11320 				      bpf_target_off(struct bpf_sk_lookup_kern,
11321 						     ingress_ifindex, 4, target_size));
11322 		break;
11323 	}
11324 
11325 	return insn - insn_buf;
11326 }
11327 
11328 const struct bpf_prog_ops sk_lookup_prog_ops = {
11329 	.test_run = bpf_prog_test_run_sk_lookup,
11330 };
11331 
11332 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11333 	.get_func_proto		= sk_lookup_func_proto,
11334 	.is_valid_access	= sk_lookup_is_valid_access,
11335 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11336 };
11337 
11338 #endif /* CONFIG_INET */
11339 
11340 DEFINE_BPF_DISPATCHER(xdp)
11341 
11342 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11343 {
11344 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11345 }
11346 
11347 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11348 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11349 BTF_SOCK_TYPE_xxx
11350 #undef BTF_SOCK_TYPE
11351 
11352 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11353 {
11354 	/* tcp6_sock type is not generated in dwarf and hence btf,
11355 	 * trigger an explicit type generation here.
11356 	 */
11357 	BTF_TYPE_EMIT(struct tcp6_sock);
11358 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11359 	    sk->sk_family == AF_INET6)
11360 		return (unsigned long)sk;
11361 
11362 	return (unsigned long)NULL;
11363 }
11364 
11365 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11366 	.func			= bpf_skc_to_tcp6_sock,
11367 	.gpl_only		= false,
11368 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11369 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11370 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11371 };
11372 
11373 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11374 {
11375 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11376 		return (unsigned long)sk;
11377 
11378 	return (unsigned long)NULL;
11379 }
11380 
11381 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11382 	.func			= bpf_skc_to_tcp_sock,
11383 	.gpl_only		= false,
11384 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11385 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11386 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11387 };
11388 
11389 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11390 {
11391 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11392 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11393 	 */
11394 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11395 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11396 
11397 #ifdef CONFIG_INET
11398 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11399 		return (unsigned long)sk;
11400 #endif
11401 
11402 #if IS_BUILTIN(CONFIG_IPV6)
11403 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11404 		return (unsigned long)sk;
11405 #endif
11406 
11407 	return (unsigned long)NULL;
11408 }
11409 
11410 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11411 	.func			= bpf_skc_to_tcp_timewait_sock,
11412 	.gpl_only		= false,
11413 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11414 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11415 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11416 };
11417 
11418 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11419 {
11420 #ifdef CONFIG_INET
11421 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11422 		return (unsigned long)sk;
11423 #endif
11424 
11425 #if IS_BUILTIN(CONFIG_IPV6)
11426 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11427 		return (unsigned long)sk;
11428 #endif
11429 
11430 	return (unsigned long)NULL;
11431 }
11432 
11433 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11434 	.func			= bpf_skc_to_tcp_request_sock,
11435 	.gpl_only		= false,
11436 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11437 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11438 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11439 };
11440 
11441 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11442 {
11443 	/* udp6_sock type is not generated in dwarf and hence btf,
11444 	 * trigger an explicit type generation here.
11445 	 */
11446 	BTF_TYPE_EMIT(struct udp6_sock);
11447 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11448 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11449 		return (unsigned long)sk;
11450 
11451 	return (unsigned long)NULL;
11452 }
11453 
11454 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11455 	.func			= bpf_skc_to_udp6_sock,
11456 	.gpl_only		= false,
11457 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11458 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11459 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11460 };
11461 
11462 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11463 {
11464 	/* unix_sock type is not generated in dwarf and hence btf,
11465 	 * trigger an explicit type generation here.
11466 	 */
11467 	BTF_TYPE_EMIT(struct unix_sock);
11468 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11469 		return (unsigned long)sk;
11470 
11471 	return (unsigned long)NULL;
11472 }
11473 
11474 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11475 	.func			= bpf_skc_to_unix_sock,
11476 	.gpl_only		= false,
11477 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11478 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11479 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11480 };
11481 
11482 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11483 {
11484 	BTF_TYPE_EMIT(struct mptcp_sock);
11485 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11486 }
11487 
11488 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11489 	.func		= bpf_skc_to_mptcp_sock,
11490 	.gpl_only	= false,
11491 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11492 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11493 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11494 };
11495 
11496 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11497 {
11498 	return (unsigned long)sock_from_file(file);
11499 }
11500 
11501 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11502 BTF_ID(struct, socket)
11503 BTF_ID(struct, file)
11504 
11505 const struct bpf_func_proto bpf_sock_from_file_proto = {
11506 	.func		= bpf_sock_from_file,
11507 	.gpl_only	= false,
11508 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11509 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11510 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11511 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11512 };
11513 
11514 static const struct bpf_func_proto *
11515 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11516 {
11517 	const struct bpf_func_proto *func;
11518 
11519 	switch (func_id) {
11520 	case BPF_FUNC_skc_to_tcp6_sock:
11521 		func = &bpf_skc_to_tcp6_sock_proto;
11522 		break;
11523 	case BPF_FUNC_skc_to_tcp_sock:
11524 		func = &bpf_skc_to_tcp_sock_proto;
11525 		break;
11526 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11527 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11528 		break;
11529 	case BPF_FUNC_skc_to_tcp_request_sock:
11530 		func = &bpf_skc_to_tcp_request_sock_proto;
11531 		break;
11532 	case BPF_FUNC_skc_to_udp6_sock:
11533 		func = &bpf_skc_to_udp6_sock_proto;
11534 		break;
11535 	case BPF_FUNC_skc_to_unix_sock:
11536 		func = &bpf_skc_to_unix_sock_proto;
11537 		break;
11538 	case BPF_FUNC_skc_to_mptcp_sock:
11539 		func = &bpf_skc_to_mptcp_sock_proto;
11540 		break;
11541 	case BPF_FUNC_ktime_get_coarse_ns:
11542 		return &bpf_ktime_get_coarse_ns_proto;
11543 	default:
11544 		return bpf_base_func_proto(func_id);
11545 	}
11546 
11547 	if (!perfmon_capable())
11548 		return NULL;
11549 
11550 	return func;
11551 }
11552