xref: /openbmc/linux/net/core/filter.c (revision 9fa48a24)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 
85 static const struct bpf_func_proto *
86 bpf_sk_base_func_proto(enum bpf_func_id func_id);
87 
88 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
89 {
90 	if (in_compat_syscall()) {
91 		struct compat_sock_fprog f32;
92 
93 		if (len != sizeof(f32))
94 			return -EINVAL;
95 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
96 			return -EFAULT;
97 		memset(dst, 0, sizeof(*dst));
98 		dst->len = f32.len;
99 		dst->filter = compat_ptr(f32.filter);
100 	} else {
101 		if (len != sizeof(*dst))
102 			return -EINVAL;
103 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
104 			return -EFAULT;
105 	}
106 
107 	return 0;
108 }
109 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
110 
111 /**
112  *	sk_filter_trim_cap - run a packet through a socket filter
113  *	@sk: sock associated with &sk_buff
114  *	@skb: buffer to filter
115  *	@cap: limit on how short the eBPF program may trim the packet
116  *
117  * Run the eBPF program and then cut skb->data to correct size returned by
118  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
119  * than pkt_len we keep whole skb->data. This is the socket level
120  * wrapper to bpf_prog_run. It returns 0 if the packet should
121  * be accepted or -EPERM if the packet should be tossed.
122  *
123  */
124 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
125 {
126 	int err;
127 	struct sk_filter *filter;
128 
129 	/*
130 	 * If the skb was allocated from pfmemalloc reserves, only
131 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
132 	 * helping free memory
133 	 */
134 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
135 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
136 		return -ENOMEM;
137 	}
138 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
139 	if (err)
140 		return err;
141 
142 	err = security_sock_rcv_skb(sk, skb);
143 	if (err)
144 		return err;
145 
146 	rcu_read_lock();
147 	filter = rcu_dereference(sk->sk_filter);
148 	if (filter) {
149 		struct sock *save_sk = skb->sk;
150 		unsigned int pkt_len;
151 
152 		skb->sk = sk;
153 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
154 		skb->sk = save_sk;
155 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
156 	}
157 	rcu_read_unlock();
158 
159 	return err;
160 }
161 EXPORT_SYMBOL(sk_filter_trim_cap);
162 
163 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
164 {
165 	return skb_get_poff(skb);
166 }
167 
168 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
169 {
170 	struct nlattr *nla;
171 
172 	if (skb_is_nonlinear(skb))
173 		return 0;
174 
175 	if (skb->len < sizeof(struct nlattr))
176 		return 0;
177 
178 	if (a > skb->len - sizeof(struct nlattr))
179 		return 0;
180 
181 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
182 	if (nla)
183 		return (void *) nla - (void *) skb->data;
184 
185 	return 0;
186 }
187 
188 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
189 {
190 	struct nlattr *nla;
191 
192 	if (skb_is_nonlinear(skb))
193 		return 0;
194 
195 	if (skb->len < sizeof(struct nlattr))
196 		return 0;
197 
198 	if (a > skb->len - sizeof(struct nlattr))
199 		return 0;
200 
201 	nla = (struct nlattr *) &skb->data[a];
202 	if (nla->nla_len > skb->len - a)
203 		return 0;
204 
205 	nla = nla_find_nested(nla, x);
206 	if (nla)
207 		return (void *) nla - (void *) skb->data;
208 
209 	return 0;
210 }
211 
212 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
213 	   data, int, headlen, int, offset)
214 {
215 	u8 tmp, *ptr;
216 	const int len = sizeof(tmp);
217 
218 	if (offset >= 0) {
219 		if (headlen - offset >= len)
220 			return *(u8 *)(data + offset);
221 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
222 			return tmp;
223 	} else {
224 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
225 		if (likely(ptr))
226 			return *(u8 *)ptr;
227 	}
228 
229 	return -EFAULT;
230 }
231 
232 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
233 	   int, offset)
234 {
235 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
236 					 offset);
237 }
238 
239 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
240 	   data, int, headlen, int, offset)
241 {
242 	__be16 tmp, *ptr;
243 	const int len = sizeof(tmp);
244 
245 	if (offset >= 0) {
246 		if (headlen - offset >= len)
247 			return get_unaligned_be16(data + offset);
248 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
249 			return be16_to_cpu(tmp);
250 	} else {
251 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
252 		if (likely(ptr))
253 			return get_unaligned_be16(ptr);
254 	}
255 
256 	return -EFAULT;
257 }
258 
259 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
260 	   int, offset)
261 {
262 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
263 					  offset);
264 }
265 
266 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
267 	   data, int, headlen, int, offset)
268 {
269 	__be32 tmp, *ptr;
270 	const int len = sizeof(tmp);
271 
272 	if (likely(offset >= 0)) {
273 		if (headlen - offset >= len)
274 			return get_unaligned_be32(data + offset);
275 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
276 			return be32_to_cpu(tmp);
277 	} else {
278 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
279 		if (likely(ptr))
280 			return get_unaligned_be32(ptr);
281 	}
282 
283 	return -EFAULT;
284 }
285 
286 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
287 	   int, offset)
288 {
289 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
290 					  offset);
291 }
292 
293 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
294 			      struct bpf_insn *insn_buf)
295 {
296 	struct bpf_insn *insn = insn_buf;
297 
298 	switch (skb_field) {
299 	case SKF_AD_MARK:
300 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
301 
302 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
303 				      offsetof(struct sk_buff, mark));
304 		break;
305 
306 	case SKF_AD_PKTTYPE:
307 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
308 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
309 #ifdef __BIG_ENDIAN_BITFIELD
310 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
311 #endif
312 		break;
313 
314 	case SKF_AD_QUEUE:
315 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
316 
317 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318 				      offsetof(struct sk_buff, queue_mapping));
319 		break;
320 
321 	case SKF_AD_VLAN_TAG:
322 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
323 
324 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
325 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
326 				      offsetof(struct sk_buff, vlan_tci));
327 		break;
328 	case SKF_AD_VLAN_TAG_PRESENT:
329 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
330 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
331 				      offsetof(struct sk_buff, vlan_all));
332 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
333 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
334 		break;
335 	}
336 
337 	return insn - insn_buf;
338 }
339 
340 static bool convert_bpf_extensions(struct sock_filter *fp,
341 				   struct bpf_insn **insnp)
342 {
343 	struct bpf_insn *insn = *insnp;
344 	u32 cnt;
345 
346 	switch (fp->k) {
347 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
348 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
349 
350 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
351 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
352 				      offsetof(struct sk_buff, protocol));
353 		/* A = ntohs(A) [emitting a nop or swap16] */
354 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
355 		break;
356 
357 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
358 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
359 		insn += cnt - 1;
360 		break;
361 
362 	case SKF_AD_OFF + SKF_AD_IFINDEX:
363 	case SKF_AD_OFF + SKF_AD_HATYPE:
364 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
365 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
366 
367 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
368 				      BPF_REG_TMP, BPF_REG_CTX,
369 				      offsetof(struct sk_buff, dev));
370 		/* if (tmp != 0) goto pc + 1 */
371 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
372 		*insn++ = BPF_EXIT_INSN();
373 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
374 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
375 					    offsetof(struct net_device, ifindex));
376 		else
377 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
378 					    offsetof(struct net_device, type));
379 		break;
380 
381 	case SKF_AD_OFF + SKF_AD_MARK:
382 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
383 		insn += cnt - 1;
384 		break;
385 
386 	case SKF_AD_OFF + SKF_AD_RXHASH:
387 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
388 
389 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
390 				    offsetof(struct sk_buff, hash));
391 		break;
392 
393 	case SKF_AD_OFF + SKF_AD_QUEUE:
394 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
395 		insn += cnt - 1;
396 		break;
397 
398 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
399 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
400 					 BPF_REG_A, BPF_REG_CTX, insn);
401 		insn += cnt - 1;
402 		break;
403 
404 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
405 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
406 					 BPF_REG_A, BPF_REG_CTX, insn);
407 		insn += cnt - 1;
408 		break;
409 
410 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
411 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
412 
413 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
414 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
415 				      offsetof(struct sk_buff, vlan_proto));
416 		/* A = ntohs(A) [emitting a nop or swap16] */
417 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
418 		break;
419 
420 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
421 	case SKF_AD_OFF + SKF_AD_NLATTR:
422 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
423 	case SKF_AD_OFF + SKF_AD_CPU:
424 	case SKF_AD_OFF + SKF_AD_RANDOM:
425 		/* arg1 = CTX */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
427 		/* arg2 = A */
428 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
429 		/* arg3 = X */
430 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
431 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
432 		switch (fp->k) {
433 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
434 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
435 			break;
436 		case SKF_AD_OFF + SKF_AD_NLATTR:
437 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
438 			break;
439 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
441 			break;
442 		case SKF_AD_OFF + SKF_AD_CPU:
443 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
444 			break;
445 		case SKF_AD_OFF + SKF_AD_RANDOM:
446 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
447 			bpf_user_rnd_init_once();
448 			break;
449 		}
450 		break;
451 
452 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
453 		/* A ^= X */
454 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
455 		break;
456 
457 	default:
458 		/* This is just a dummy call to avoid letting the compiler
459 		 * evict __bpf_call_base() as an optimization. Placed here
460 		 * where no-one bothers.
461 		 */
462 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
463 		return false;
464 	}
465 
466 	*insnp = insn;
467 	return true;
468 }
469 
470 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
471 {
472 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
473 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
474 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
475 		      BPF_SIZE(fp->code) == BPF_W;
476 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
477 	const int ip_align = NET_IP_ALIGN;
478 	struct bpf_insn *insn = *insnp;
479 	int offset = fp->k;
480 
481 	if (!indirect &&
482 	    ((unaligned_ok && offset >= 0) ||
483 	     (!unaligned_ok && offset >= 0 &&
484 	      offset + ip_align >= 0 &&
485 	      offset + ip_align % size == 0))) {
486 		bool ldx_off_ok = offset <= S16_MAX;
487 
488 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
489 		if (offset)
490 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
491 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
492 				      size, 2 + endian + (!ldx_off_ok * 2));
493 		if (ldx_off_ok) {
494 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
495 					      BPF_REG_D, offset);
496 		} else {
497 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
498 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
499 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500 					      BPF_REG_TMP, 0);
501 		}
502 		if (endian)
503 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
504 		*insn++ = BPF_JMP_A(8);
505 	}
506 
507 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
508 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
509 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
510 	if (!indirect) {
511 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
512 	} else {
513 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
514 		if (fp->k)
515 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
516 	}
517 
518 	switch (BPF_SIZE(fp->code)) {
519 	case BPF_B:
520 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
521 		break;
522 	case BPF_H:
523 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
524 		break;
525 	case BPF_W:
526 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
527 		break;
528 	default:
529 		return false;
530 	}
531 
532 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
533 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
534 	*insn   = BPF_EXIT_INSN();
535 
536 	*insnp = insn;
537 	return true;
538 }
539 
540 /**
541  *	bpf_convert_filter - convert filter program
542  *	@prog: the user passed filter program
543  *	@len: the length of the user passed filter program
544  *	@new_prog: allocated 'struct bpf_prog' or NULL
545  *	@new_len: pointer to store length of converted program
546  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
547  *
548  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
549  * style extended BPF (eBPF).
550  * Conversion workflow:
551  *
552  * 1) First pass for calculating the new program length:
553  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
554  *
555  * 2) 2nd pass to remap in two passes: 1st pass finds new
556  *    jump offsets, 2nd pass remapping:
557  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
558  */
559 static int bpf_convert_filter(struct sock_filter *prog, int len,
560 			      struct bpf_prog *new_prog, int *new_len,
561 			      bool *seen_ld_abs)
562 {
563 	int new_flen = 0, pass = 0, target, i, stack_off;
564 	struct bpf_insn *new_insn, *first_insn = NULL;
565 	struct sock_filter *fp;
566 	int *addrs = NULL;
567 	u8 bpf_src;
568 
569 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
570 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
571 
572 	if (len <= 0 || len > BPF_MAXINSNS)
573 		return -EINVAL;
574 
575 	if (new_prog) {
576 		first_insn = new_prog->insnsi;
577 		addrs = kcalloc(len, sizeof(*addrs),
578 				GFP_KERNEL | __GFP_NOWARN);
579 		if (!addrs)
580 			return -ENOMEM;
581 	}
582 
583 do_pass:
584 	new_insn = first_insn;
585 	fp = prog;
586 
587 	/* Classic BPF related prologue emission. */
588 	if (new_prog) {
589 		/* Classic BPF expects A and X to be reset first. These need
590 		 * to be guaranteed to be the first two instructions.
591 		 */
592 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
593 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
594 
595 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
596 		 * In eBPF case it's done by the compiler, here we need to
597 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
598 		 */
599 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
600 		if (*seen_ld_abs) {
601 			/* For packet access in classic BPF, cache skb->data
602 			 * in callee-saved BPF R8 and skb->len - skb->data_len
603 			 * (headlen) in BPF R9. Since classic BPF is read-only
604 			 * on CTX, we only need to cache it once.
605 			 */
606 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
607 						  BPF_REG_D, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, data));
609 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
610 						  offsetof(struct sk_buff, len));
611 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
612 						  offsetof(struct sk_buff, data_len));
613 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
614 		}
615 	} else {
616 		new_insn += 3;
617 	}
618 
619 	for (i = 0; i < len; fp++, i++) {
620 		struct bpf_insn tmp_insns[32] = { };
621 		struct bpf_insn *insn = tmp_insns;
622 
623 		if (addrs)
624 			addrs[i] = new_insn - first_insn;
625 
626 		switch (fp->code) {
627 		/* All arithmetic insns and skb loads map as-is. */
628 		case BPF_ALU | BPF_ADD | BPF_X:
629 		case BPF_ALU | BPF_ADD | BPF_K:
630 		case BPF_ALU | BPF_SUB | BPF_X:
631 		case BPF_ALU | BPF_SUB | BPF_K:
632 		case BPF_ALU | BPF_AND | BPF_X:
633 		case BPF_ALU | BPF_AND | BPF_K:
634 		case BPF_ALU | BPF_OR | BPF_X:
635 		case BPF_ALU | BPF_OR | BPF_K:
636 		case BPF_ALU | BPF_LSH | BPF_X:
637 		case BPF_ALU | BPF_LSH | BPF_K:
638 		case BPF_ALU | BPF_RSH | BPF_X:
639 		case BPF_ALU | BPF_RSH | BPF_K:
640 		case BPF_ALU | BPF_XOR | BPF_X:
641 		case BPF_ALU | BPF_XOR | BPF_K:
642 		case BPF_ALU | BPF_MUL | BPF_X:
643 		case BPF_ALU | BPF_MUL | BPF_K:
644 		case BPF_ALU | BPF_DIV | BPF_X:
645 		case BPF_ALU | BPF_DIV | BPF_K:
646 		case BPF_ALU | BPF_MOD | BPF_X:
647 		case BPF_ALU | BPF_MOD | BPF_K:
648 		case BPF_ALU | BPF_NEG:
649 		case BPF_LD | BPF_ABS | BPF_W:
650 		case BPF_LD | BPF_ABS | BPF_H:
651 		case BPF_LD | BPF_ABS | BPF_B:
652 		case BPF_LD | BPF_IND | BPF_W:
653 		case BPF_LD | BPF_IND | BPF_H:
654 		case BPF_LD | BPF_IND | BPF_B:
655 			/* Check for overloaded BPF extension and
656 			 * directly convert it if found, otherwise
657 			 * just move on with mapping.
658 			 */
659 			if (BPF_CLASS(fp->code) == BPF_LD &&
660 			    BPF_MODE(fp->code) == BPF_ABS &&
661 			    convert_bpf_extensions(fp, &insn))
662 				break;
663 			if (BPF_CLASS(fp->code) == BPF_LD &&
664 			    convert_bpf_ld_abs(fp, &insn)) {
665 				*seen_ld_abs = true;
666 				break;
667 			}
668 
669 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
670 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
671 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
672 				/* Error with exception code on div/mod by 0.
673 				 * For cBPF programs, this was always return 0.
674 				 */
675 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
676 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
677 				*insn++ = BPF_EXIT_INSN();
678 			}
679 
680 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
681 			break;
682 
683 		/* Jump transformation cannot use BPF block macros
684 		 * everywhere as offset calculation and target updates
685 		 * require a bit more work than the rest, i.e. jump
686 		 * opcodes map as-is, but offsets need adjustment.
687 		 */
688 
689 #define BPF_EMIT_JMP							\
690 	do {								\
691 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
692 		s32 off;						\
693 									\
694 		if (target >= len || target < 0)			\
695 			goto err;					\
696 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
697 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
698 		off -= insn - tmp_insns;				\
699 		/* Reject anything not fitting into insn->off. */	\
700 		if (off < off_min || off > off_max)			\
701 			goto err;					\
702 		insn->off = off;					\
703 	} while (0)
704 
705 		case BPF_JMP | BPF_JA:
706 			target = i + fp->k + 1;
707 			insn->code = fp->code;
708 			BPF_EMIT_JMP;
709 			break;
710 
711 		case BPF_JMP | BPF_JEQ | BPF_K:
712 		case BPF_JMP | BPF_JEQ | BPF_X:
713 		case BPF_JMP | BPF_JSET | BPF_K:
714 		case BPF_JMP | BPF_JSET | BPF_X:
715 		case BPF_JMP | BPF_JGT | BPF_K:
716 		case BPF_JMP | BPF_JGT | BPF_X:
717 		case BPF_JMP | BPF_JGE | BPF_K:
718 		case BPF_JMP | BPF_JGE | BPF_X:
719 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
720 				/* BPF immediates are signed, zero extend
721 				 * immediate into tmp register and use it
722 				 * in compare insn.
723 				 */
724 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
725 
726 				insn->dst_reg = BPF_REG_A;
727 				insn->src_reg = BPF_REG_TMP;
728 				bpf_src = BPF_X;
729 			} else {
730 				insn->dst_reg = BPF_REG_A;
731 				insn->imm = fp->k;
732 				bpf_src = BPF_SRC(fp->code);
733 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
734 			}
735 
736 			/* Common case where 'jump_false' is next insn. */
737 			if (fp->jf == 0) {
738 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
739 				target = i + fp->jt + 1;
740 				BPF_EMIT_JMP;
741 				break;
742 			}
743 
744 			/* Convert some jumps when 'jump_true' is next insn. */
745 			if (fp->jt == 0) {
746 				switch (BPF_OP(fp->code)) {
747 				case BPF_JEQ:
748 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
749 					break;
750 				case BPF_JGT:
751 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
752 					break;
753 				case BPF_JGE:
754 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
755 					break;
756 				default:
757 					goto jmp_rest;
758 				}
759 
760 				target = i + fp->jf + 1;
761 				BPF_EMIT_JMP;
762 				break;
763 			}
764 jmp_rest:
765 			/* Other jumps are mapped into two insns: Jxx and JA. */
766 			target = i + fp->jt + 1;
767 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
768 			BPF_EMIT_JMP;
769 			insn++;
770 
771 			insn->code = BPF_JMP | BPF_JA;
772 			target = i + fp->jf + 1;
773 			BPF_EMIT_JMP;
774 			break;
775 
776 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
777 		case BPF_LDX | BPF_MSH | BPF_B: {
778 			struct sock_filter tmp = {
779 				.code	= BPF_LD | BPF_ABS | BPF_B,
780 				.k	= fp->k,
781 			};
782 
783 			*seen_ld_abs = true;
784 
785 			/* X = A */
786 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
787 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
788 			convert_bpf_ld_abs(&tmp, &insn);
789 			insn++;
790 			/* A &= 0xf */
791 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
792 			/* A <<= 2 */
793 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
794 			/* tmp = X */
795 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
796 			/* X = A */
797 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
798 			/* A = tmp */
799 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
800 			break;
801 		}
802 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
803 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
804 		 */
805 		case BPF_RET | BPF_A:
806 		case BPF_RET | BPF_K:
807 			if (BPF_RVAL(fp->code) == BPF_K)
808 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
809 							0, fp->k);
810 			*insn = BPF_EXIT_INSN();
811 			break;
812 
813 		/* Store to stack. */
814 		case BPF_ST:
815 		case BPF_STX:
816 			stack_off = fp->k * 4  + 4;
817 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
818 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
819 					    -stack_off);
820 			/* check_load_and_stores() verifies that classic BPF can
821 			 * load from stack only after write, so tracking
822 			 * stack_depth for ST|STX insns is enough
823 			 */
824 			if (new_prog && new_prog->aux->stack_depth < stack_off)
825 				new_prog->aux->stack_depth = stack_off;
826 			break;
827 
828 		/* Load from stack. */
829 		case BPF_LD | BPF_MEM:
830 		case BPF_LDX | BPF_MEM:
831 			stack_off = fp->k * 4  + 4;
832 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
833 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
834 					    -stack_off);
835 			break;
836 
837 		/* A = K or X = K */
838 		case BPF_LD | BPF_IMM:
839 		case BPF_LDX | BPF_IMM:
840 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
841 					      BPF_REG_A : BPF_REG_X, fp->k);
842 			break;
843 
844 		/* X = A */
845 		case BPF_MISC | BPF_TAX:
846 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
847 			break;
848 
849 		/* A = X */
850 		case BPF_MISC | BPF_TXA:
851 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
852 			break;
853 
854 		/* A = skb->len or X = skb->len */
855 		case BPF_LD | BPF_W | BPF_LEN:
856 		case BPF_LDX | BPF_W | BPF_LEN:
857 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
858 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
859 					    offsetof(struct sk_buff, len));
860 			break;
861 
862 		/* Access seccomp_data fields. */
863 		case BPF_LDX | BPF_ABS | BPF_W:
864 			/* A = *(u32 *) (ctx + K) */
865 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
866 			break;
867 
868 		/* Unknown instruction. */
869 		default:
870 			goto err;
871 		}
872 
873 		insn++;
874 		if (new_prog)
875 			memcpy(new_insn, tmp_insns,
876 			       sizeof(*insn) * (insn - tmp_insns));
877 		new_insn += insn - tmp_insns;
878 	}
879 
880 	if (!new_prog) {
881 		/* Only calculating new length. */
882 		*new_len = new_insn - first_insn;
883 		if (*seen_ld_abs)
884 			*new_len += 4; /* Prologue bits. */
885 		return 0;
886 	}
887 
888 	pass++;
889 	if (new_flen != new_insn - first_insn) {
890 		new_flen = new_insn - first_insn;
891 		if (pass > 2)
892 			goto err;
893 		goto do_pass;
894 	}
895 
896 	kfree(addrs);
897 	BUG_ON(*new_len != new_flen);
898 	return 0;
899 err:
900 	kfree(addrs);
901 	return -EINVAL;
902 }
903 
904 /* Security:
905  *
906  * As we dont want to clear mem[] array for each packet going through
907  * __bpf_prog_run(), we check that filter loaded by user never try to read
908  * a cell if not previously written, and we check all branches to be sure
909  * a malicious user doesn't try to abuse us.
910  */
911 static int check_load_and_stores(const struct sock_filter *filter, int flen)
912 {
913 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
914 	int pc, ret = 0;
915 
916 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
917 
918 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
919 	if (!masks)
920 		return -ENOMEM;
921 
922 	memset(masks, 0xff, flen * sizeof(*masks));
923 
924 	for (pc = 0; pc < flen; pc++) {
925 		memvalid &= masks[pc];
926 
927 		switch (filter[pc].code) {
928 		case BPF_ST:
929 		case BPF_STX:
930 			memvalid |= (1 << filter[pc].k);
931 			break;
932 		case BPF_LD | BPF_MEM:
933 		case BPF_LDX | BPF_MEM:
934 			if (!(memvalid & (1 << filter[pc].k))) {
935 				ret = -EINVAL;
936 				goto error;
937 			}
938 			break;
939 		case BPF_JMP | BPF_JA:
940 			/* A jump must set masks on target */
941 			masks[pc + 1 + filter[pc].k] &= memvalid;
942 			memvalid = ~0;
943 			break;
944 		case BPF_JMP | BPF_JEQ | BPF_K:
945 		case BPF_JMP | BPF_JEQ | BPF_X:
946 		case BPF_JMP | BPF_JGE | BPF_K:
947 		case BPF_JMP | BPF_JGE | BPF_X:
948 		case BPF_JMP | BPF_JGT | BPF_K:
949 		case BPF_JMP | BPF_JGT | BPF_X:
950 		case BPF_JMP | BPF_JSET | BPF_K:
951 		case BPF_JMP | BPF_JSET | BPF_X:
952 			/* A jump must set masks on targets */
953 			masks[pc + 1 + filter[pc].jt] &= memvalid;
954 			masks[pc + 1 + filter[pc].jf] &= memvalid;
955 			memvalid = ~0;
956 			break;
957 		}
958 	}
959 error:
960 	kfree(masks);
961 	return ret;
962 }
963 
964 static bool chk_code_allowed(u16 code_to_probe)
965 {
966 	static const bool codes[] = {
967 		/* 32 bit ALU operations */
968 		[BPF_ALU | BPF_ADD | BPF_K] = true,
969 		[BPF_ALU | BPF_ADD | BPF_X] = true,
970 		[BPF_ALU | BPF_SUB | BPF_K] = true,
971 		[BPF_ALU | BPF_SUB | BPF_X] = true,
972 		[BPF_ALU | BPF_MUL | BPF_K] = true,
973 		[BPF_ALU | BPF_MUL | BPF_X] = true,
974 		[BPF_ALU | BPF_DIV | BPF_K] = true,
975 		[BPF_ALU | BPF_DIV | BPF_X] = true,
976 		[BPF_ALU | BPF_MOD | BPF_K] = true,
977 		[BPF_ALU | BPF_MOD | BPF_X] = true,
978 		[BPF_ALU | BPF_AND | BPF_K] = true,
979 		[BPF_ALU | BPF_AND | BPF_X] = true,
980 		[BPF_ALU | BPF_OR | BPF_K] = true,
981 		[BPF_ALU | BPF_OR | BPF_X] = true,
982 		[BPF_ALU | BPF_XOR | BPF_K] = true,
983 		[BPF_ALU | BPF_XOR | BPF_X] = true,
984 		[BPF_ALU | BPF_LSH | BPF_K] = true,
985 		[BPF_ALU | BPF_LSH | BPF_X] = true,
986 		[BPF_ALU | BPF_RSH | BPF_K] = true,
987 		[BPF_ALU | BPF_RSH | BPF_X] = true,
988 		[BPF_ALU | BPF_NEG] = true,
989 		/* Load instructions */
990 		[BPF_LD | BPF_W | BPF_ABS] = true,
991 		[BPF_LD | BPF_H | BPF_ABS] = true,
992 		[BPF_LD | BPF_B | BPF_ABS] = true,
993 		[BPF_LD | BPF_W | BPF_LEN] = true,
994 		[BPF_LD | BPF_W | BPF_IND] = true,
995 		[BPF_LD | BPF_H | BPF_IND] = true,
996 		[BPF_LD | BPF_B | BPF_IND] = true,
997 		[BPF_LD | BPF_IMM] = true,
998 		[BPF_LD | BPF_MEM] = true,
999 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1000 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1001 		[BPF_LDX | BPF_IMM] = true,
1002 		[BPF_LDX | BPF_MEM] = true,
1003 		/* Store instructions */
1004 		[BPF_ST] = true,
1005 		[BPF_STX] = true,
1006 		/* Misc instructions */
1007 		[BPF_MISC | BPF_TAX] = true,
1008 		[BPF_MISC | BPF_TXA] = true,
1009 		/* Return instructions */
1010 		[BPF_RET | BPF_K] = true,
1011 		[BPF_RET | BPF_A] = true,
1012 		/* Jump instructions */
1013 		[BPF_JMP | BPF_JA] = true,
1014 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1015 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1016 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1017 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1018 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1019 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1020 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1021 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1022 	};
1023 
1024 	if (code_to_probe >= ARRAY_SIZE(codes))
1025 		return false;
1026 
1027 	return codes[code_to_probe];
1028 }
1029 
1030 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1031 				unsigned int flen)
1032 {
1033 	if (filter == NULL)
1034 		return false;
1035 	if (flen == 0 || flen > BPF_MAXINSNS)
1036 		return false;
1037 
1038 	return true;
1039 }
1040 
1041 /**
1042  *	bpf_check_classic - verify socket filter code
1043  *	@filter: filter to verify
1044  *	@flen: length of filter
1045  *
1046  * Check the user's filter code. If we let some ugly
1047  * filter code slip through kaboom! The filter must contain
1048  * no references or jumps that are out of range, no illegal
1049  * instructions, and must end with a RET instruction.
1050  *
1051  * All jumps are forward as they are not signed.
1052  *
1053  * Returns 0 if the rule set is legal or -EINVAL if not.
1054  */
1055 static int bpf_check_classic(const struct sock_filter *filter,
1056 			     unsigned int flen)
1057 {
1058 	bool anc_found;
1059 	int pc;
1060 
1061 	/* Check the filter code now */
1062 	for (pc = 0; pc < flen; pc++) {
1063 		const struct sock_filter *ftest = &filter[pc];
1064 
1065 		/* May we actually operate on this code? */
1066 		if (!chk_code_allowed(ftest->code))
1067 			return -EINVAL;
1068 
1069 		/* Some instructions need special checks */
1070 		switch (ftest->code) {
1071 		case BPF_ALU | BPF_DIV | BPF_K:
1072 		case BPF_ALU | BPF_MOD | BPF_K:
1073 			/* Check for division by zero */
1074 			if (ftest->k == 0)
1075 				return -EINVAL;
1076 			break;
1077 		case BPF_ALU | BPF_LSH | BPF_K:
1078 		case BPF_ALU | BPF_RSH | BPF_K:
1079 			if (ftest->k >= 32)
1080 				return -EINVAL;
1081 			break;
1082 		case BPF_LD | BPF_MEM:
1083 		case BPF_LDX | BPF_MEM:
1084 		case BPF_ST:
1085 		case BPF_STX:
1086 			/* Check for invalid memory addresses */
1087 			if (ftest->k >= BPF_MEMWORDS)
1088 				return -EINVAL;
1089 			break;
1090 		case BPF_JMP | BPF_JA:
1091 			/* Note, the large ftest->k might cause loops.
1092 			 * Compare this with conditional jumps below,
1093 			 * where offsets are limited. --ANK (981016)
1094 			 */
1095 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1096 				return -EINVAL;
1097 			break;
1098 		case BPF_JMP | BPF_JEQ | BPF_K:
1099 		case BPF_JMP | BPF_JEQ | BPF_X:
1100 		case BPF_JMP | BPF_JGE | BPF_K:
1101 		case BPF_JMP | BPF_JGE | BPF_X:
1102 		case BPF_JMP | BPF_JGT | BPF_K:
1103 		case BPF_JMP | BPF_JGT | BPF_X:
1104 		case BPF_JMP | BPF_JSET | BPF_K:
1105 		case BPF_JMP | BPF_JSET | BPF_X:
1106 			/* Both conditionals must be safe */
1107 			if (pc + ftest->jt + 1 >= flen ||
1108 			    pc + ftest->jf + 1 >= flen)
1109 				return -EINVAL;
1110 			break;
1111 		case BPF_LD | BPF_W | BPF_ABS:
1112 		case BPF_LD | BPF_H | BPF_ABS:
1113 		case BPF_LD | BPF_B | BPF_ABS:
1114 			anc_found = false;
1115 			if (bpf_anc_helper(ftest) & BPF_ANC)
1116 				anc_found = true;
1117 			/* Ancillary operation unknown or unsupported */
1118 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1119 				return -EINVAL;
1120 		}
1121 	}
1122 
1123 	/* Last instruction must be a RET code */
1124 	switch (filter[flen - 1].code) {
1125 	case BPF_RET | BPF_K:
1126 	case BPF_RET | BPF_A:
1127 		return check_load_and_stores(filter, flen);
1128 	}
1129 
1130 	return -EINVAL;
1131 }
1132 
1133 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1134 				      const struct sock_fprog *fprog)
1135 {
1136 	unsigned int fsize = bpf_classic_proglen(fprog);
1137 	struct sock_fprog_kern *fkprog;
1138 
1139 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1140 	if (!fp->orig_prog)
1141 		return -ENOMEM;
1142 
1143 	fkprog = fp->orig_prog;
1144 	fkprog->len = fprog->len;
1145 
1146 	fkprog->filter = kmemdup(fp->insns, fsize,
1147 				 GFP_KERNEL | __GFP_NOWARN);
1148 	if (!fkprog->filter) {
1149 		kfree(fp->orig_prog);
1150 		return -ENOMEM;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 static void bpf_release_orig_filter(struct bpf_prog *fp)
1157 {
1158 	struct sock_fprog_kern *fprog = fp->orig_prog;
1159 
1160 	if (fprog) {
1161 		kfree(fprog->filter);
1162 		kfree(fprog);
1163 	}
1164 }
1165 
1166 static void __bpf_prog_release(struct bpf_prog *prog)
1167 {
1168 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1169 		bpf_prog_put(prog);
1170 	} else {
1171 		bpf_release_orig_filter(prog);
1172 		bpf_prog_free(prog);
1173 	}
1174 }
1175 
1176 static void __sk_filter_release(struct sk_filter *fp)
1177 {
1178 	__bpf_prog_release(fp->prog);
1179 	kfree(fp);
1180 }
1181 
1182 /**
1183  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1184  *	@rcu: rcu_head that contains the sk_filter to free
1185  */
1186 static void sk_filter_release_rcu(struct rcu_head *rcu)
1187 {
1188 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1189 
1190 	__sk_filter_release(fp);
1191 }
1192 
1193 /**
1194  *	sk_filter_release - release a socket filter
1195  *	@fp: filter to remove
1196  *
1197  *	Remove a filter from a socket and release its resources.
1198  */
1199 static void sk_filter_release(struct sk_filter *fp)
1200 {
1201 	if (refcount_dec_and_test(&fp->refcnt))
1202 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1203 }
1204 
1205 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1206 {
1207 	u32 filter_size = bpf_prog_size(fp->prog->len);
1208 
1209 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1210 	sk_filter_release(fp);
1211 }
1212 
1213 /* try to charge the socket memory if there is space available
1214  * return true on success
1215  */
1216 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1217 {
1218 	u32 filter_size = bpf_prog_size(fp->prog->len);
1219 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1220 
1221 	/* same check as in sock_kmalloc() */
1222 	if (filter_size <= optmem_max &&
1223 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1224 		atomic_add(filter_size, &sk->sk_omem_alloc);
1225 		return true;
1226 	}
1227 	return false;
1228 }
1229 
1230 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1231 {
1232 	if (!refcount_inc_not_zero(&fp->refcnt))
1233 		return false;
1234 
1235 	if (!__sk_filter_charge(sk, fp)) {
1236 		sk_filter_release(fp);
1237 		return false;
1238 	}
1239 	return true;
1240 }
1241 
1242 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1243 {
1244 	struct sock_filter *old_prog;
1245 	struct bpf_prog *old_fp;
1246 	int err, new_len, old_len = fp->len;
1247 	bool seen_ld_abs = false;
1248 
1249 	/* We are free to overwrite insns et al right here as it won't be used at
1250 	 * this point in time anymore internally after the migration to the eBPF
1251 	 * instruction representation.
1252 	 */
1253 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1254 		     sizeof(struct bpf_insn));
1255 
1256 	/* Conversion cannot happen on overlapping memory areas,
1257 	 * so we need to keep the user BPF around until the 2nd
1258 	 * pass. At this time, the user BPF is stored in fp->insns.
1259 	 */
1260 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1261 			   GFP_KERNEL | __GFP_NOWARN);
1262 	if (!old_prog) {
1263 		err = -ENOMEM;
1264 		goto out_err;
1265 	}
1266 
1267 	/* 1st pass: calculate the new program length. */
1268 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1269 				 &seen_ld_abs);
1270 	if (err)
1271 		goto out_err_free;
1272 
1273 	/* Expand fp for appending the new filter representation. */
1274 	old_fp = fp;
1275 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1276 	if (!fp) {
1277 		/* The old_fp is still around in case we couldn't
1278 		 * allocate new memory, so uncharge on that one.
1279 		 */
1280 		fp = old_fp;
1281 		err = -ENOMEM;
1282 		goto out_err_free;
1283 	}
1284 
1285 	fp->len = new_len;
1286 
1287 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1288 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1289 				 &seen_ld_abs);
1290 	if (err)
1291 		/* 2nd bpf_convert_filter() can fail only if it fails
1292 		 * to allocate memory, remapping must succeed. Note,
1293 		 * that at this time old_fp has already been released
1294 		 * by krealloc().
1295 		 */
1296 		goto out_err_free;
1297 
1298 	fp = bpf_prog_select_runtime(fp, &err);
1299 	if (err)
1300 		goto out_err_free;
1301 
1302 	kfree(old_prog);
1303 	return fp;
1304 
1305 out_err_free:
1306 	kfree(old_prog);
1307 out_err:
1308 	__bpf_prog_release(fp);
1309 	return ERR_PTR(err);
1310 }
1311 
1312 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1313 					   bpf_aux_classic_check_t trans)
1314 {
1315 	int err;
1316 
1317 	fp->bpf_func = NULL;
1318 	fp->jited = 0;
1319 
1320 	err = bpf_check_classic(fp->insns, fp->len);
1321 	if (err) {
1322 		__bpf_prog_release(fp);
1323 		return ERR_PTR(err);
1324 	}
1325 
1326 	/* There might be additional checks and transformations
1327 	 * needed on classic filters, f.e. in case of seccomp.
1328 	 */
1329 	if (trans) {
1330 		err = trans(fp->insns, fp->len);
1331 		if (err) {
1332 			__bpf_prog_release(fp);
1333 			return ERR_PTR(err);
1334 		}
1335 	}
1336 
1337 	/* Probe if we can JIT compile the filter and if so, do
1338 	 * the compilation of the filter.
1339 	 */
1340 	bpf_jit_compile(fp);
1341 
1342 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1343 	 * for the optimized interpreter.
1344 	 */
1345 	if (!fp->jited)
1346 		fp = bpf_migrate_filter(fp);
1347 
1348 	return fp;
1349 }
1350 
1351 /**
1352  *	bpf_prog_create - create an unattached filter
1353  *	@pfp: the unattached filter that is created
1354  *	@fprog: the filter program
1355  *
1356  * Create a filter independent of any socket. We first run some
1357  * sanity checks on it to make sure it does not explode on us later.
1358  * If an error occurs or there is insufficient memory for the filter
1359  * a negative errno code is returned. On success the return is zero.
1360  */
1361 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1362 {
1363 	unsigned int fsize = bpf_classic_proglen(fprog);
1364 	struct bpf_prog *fp;
1365 
1366 	/* Make sure new filter is there and in the right amounts. */
1367 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1368 		return -EINVAL;
1369 
1370 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1371 	if (!fp)
1372 		return -ENOMEM;
1373 
1374 	memcpy(fp->insns, fprog->filter, fsize);
1375 
1376 	fp->len = fprog->len;
1377 	/* Since unattached filters are not copied back to user
1378 	 * space through sk_get_filter(), we do not need to hold
1379 	 * a copy here, and can spare us the work.
1380 	 */
1381 	fp->orig_prog = NULL;
1382 
1383 	/* bpf_prepare_filter() already takes care of freeing
1384 	 * memory in case something goes wrong.
1385 	 */
1386 	fp = bpf_prepare_filter(fp, NULL);
1387 	if (IS_ERR(fp))
1388 		return PTR_ERR(fp);
1389 
1390 	*pfp = fp;
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(bpf_prog_create);
1394 
1395 /**
1396  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1397  *	@pfp: the unattached filter that is created
1398  *	@fprog: the filter program
1399  *	@trans: post-classic verifier transformation handler
1400  *	@save_orig: save classic BPF program
1401  *
1402  * This function effectively does the same as bpf_prog_create(), only
1403  * that it builds up its insns buffer from user space provided buffer.
1404  * It also allows for passing a bpf_aux_classic_check_t handler.
1405  */
1406 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1407 			      bpf_aux_classic_check_t trans, bool save_orig)
1408 {
1409 	unsigned int fsize = bpf_classic_proglen(fprog);
1410 	struct bpf_prog *fp;
1411 	int err;
1412 
1413 	/* Make sure new filter is there and in the right amounts. */
1414 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1415 		return -EINVAL;
1416 
1417 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1418 	if (!fp)
1419 		return -ENOMEM;
1420 
1421 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1422 		__bpf_prog_free(fp);
1423 		return -EFAULT;
1424 	}
1425 
1426 	fp->len = fprog->len;
1427 	fp->orig_prog = NULL;
1428 
1429 	if (save_orig) {
1430 		err = bpf_prog_store_orig_filter(fp, fprog);
1431 		if (err) {
1432 			__bpf_prog_free(fp);
1433 			return -ENOMEM;
1434 		}
1435 	}
1436 
1437 	/* bpf_prepare_filter() already takes care of freeing
1438 	 * memory in case something goes wrong.
1439 	 */
1440 	fp = bpf_prepare_filter(fp, trans);
1441 	if (IS_ERR(fp))
1442 		return PTR_ERR(fp);
1443 
1444 	*pfp = fp;
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1448 
1449 void bpf_prog_destroy(struct bpf_prog *fp)
1450 {
1451 	__bpf_prog_release(fp);
1452 }
1453 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1454 
1455 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1456 {
1457 	struct sk_filter *fp, *old_fp;
1458 
1459 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1460 	if (!fp)
1461 		return -ENOMEM;
1462 
1463 	fp->prog = prog;
1464 
1465 	if (!__sk_filter_charge(sk, fp)) {
1466 		kfree(fp);
1467 		return -ENOMEM;
1468 	}
1469 	refcount_set(&fp->refcnt, 1);
1470 
1471 	old_fp = rcu_dereference_protected(sk->sk_filter,
1472 					   lockdep_sock_is_held(sk));
1473 	rcu_assign_pointer(sk->sk_filter, fp);
1474 
1475 	if (old_fp)
1476 		sk_filter_uncharge(sk, old_fp);
1477 
1478 	return 0;
1479 }
1480 
1481 static
1482 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1483 {
1484 	unsigned int fsize = bpf_classic_proglen(fprog);
1485 	struct bpf_prog *prog;
1486 	int err;
1487 
1488 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1489 		return ERR_PTR(-EPERM);
1490 
1491 	/* Make sure new filter is there and in the right amounts. */
1492 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1493 		return ERR_PTR(-EINVAL);
1494 
1495 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1496 	if (!prog)
1497 		return ERR_PTR(-ENOMEM);
1498 
1499 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1500 		__bpf_prog_free(prog);
1501 		return ERR_PTR(-EFAULT);
1502 	}
1503 
1504 	prog->len = fprog->len;
1505 
1506 	err = bpf_prog_store_orig_filter(prog, fprog);
1507 	if (err) {
1508 		__bpf_prog_free(prog);
1509 		return ERR_PTR(-ENOMEM);
1510 	}
1511 
1512 	/* bpf_prepare_filter() already takes care of freeing
1513 	 * memory in case something goes wrong.
1514 	 */
1515 	return bpf_prepare_filter(prog, NULL);
1516 }
1517 
1518 /**
1519  *	sk_attach_filter - attach a socket filter
1520  *	@fprog: the filter program
1521  *	@sk: the socket to use
1522  *
1523  * Attach the user's filter code. We first run some sanity checks on
1524  * it to make sure it does not explode on us later. If an error
1525  * occurs or there is insufficient memory for the filter a negative
1526  * errno code is returned. On success the return is zero.
1527  */
1528 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1529 {
1530 	struct bpf_prog *prog = __get_filter(fprog, sk);
1531 	int err;
1532 
1533 	if (IS_ERR(prog))
1534 		return PTR_ERR(prog);
1535 
1536 	err = __sk_attach_prog(prog, sk);
1537 	if (err < 0) {
1538 		__bpf_prog_release(prog);
1539 		return err;
1540 	}
1541 
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(sk_attach_filter);
1545 
1546 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1547 {
1548 	struct bpf_prog *prog = __get_filter(fprog, sk);
1549 	int err;
1550 
1551 	if (IS_ERR(prog))
1552 		return PTR_ERR(prog);
1553 
1554 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1555 		err = -ENOMEM;
1556 	else
1557 		err = reuseport_attach_prog(sk, prog);
1558 
1559 	if (err)
1560 		__bpf_prog_release(prog);
1561 
1562 	return err;
1563 }
1564 
1565 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1566 {
1567 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1568 		return ERR_PTR(-EPERM);
1569 
1570 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1571 }
1572 
1573 int sk_attach_bpf(u32 ufd, struct sock *sk)
1574 {
1575 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1576 	int err;
1577 
1578 	if (IS_ERR(prog))
1579 		return PTR_ERR(prog);
1580 
1581 	err = __sk_attach_prog(prog, sk);
1582 	if (err < 0) {
1583 		bpf_prog_put(prog);
1584 		return err;
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1591 {
1592 	struct bpf_prog *prog;
1593 	int err;
1594 
1595 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1596 		return -EPERM;
1597 
1598 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1599 	if (PTR_ERR(prog) == -EINVAL)
1600 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1601 	if (IS_ERR(prog))
1602 		return PTR_ERR(prog);
1603 
1604 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1605 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1606 		 * bpf prog (e.g. sockmap).  It depends on the
1607 		 * limitation imposed by bpf_prog_load().
1608 		 * Hence, sysctl_optmem_max is not checked.
1609 		 */
1610 		if ((sk->sk_type != SOCK_STREAM &&
1611 		     sk->sk_type != SOCK_DGRAM) ||
1612 		    (sk->sk_protocol != IPPROTO_UDP &&
1613 		     sk->sk_protocol != IPPROTO_TCP) ||
1614 		    (sk->sk_family != AF_INET &&
1615 		     sk->sk_family != AF_INET6)) {
1616 			err = -ENOTSUPP;
1617 			goto err_prog_put;
1618 		}
1619 	} else {
1620 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1621 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1622 			err = -ENOMEM;
1623 			goto err_prog_put;
1624 		}
1625 	}
1626 
1627 	err = reuseport_attach_prog(sk, prog);
1628 err_prog_put:
1629 	if (err)
1630 		bpf_prog_put(prog);
1631 
1632 	return err;
1633 }
1634 
1635 void sk_reuseport_prog_free(struct bpf_prog *prog)
1636 {
1637 	if (!prog)
1638 		return;
1639 
1640 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1641 		bpf_prog_put(prog);
1642 	else
1643 		bpf_prog_destroy(prog);
1644 }
1645 
1646 struct bpf_scratchpad {
1647 	union {
1648 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1649 		u8     buff[MAX_BPF_STACK];
1650 	};
1651 };
1652 
1653 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1654 
1655 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1656 					  unsigned int write_len)
1657 {
1658 	return skb_ensure_writable(skb, write_len);
1659 }
1660 
1661 static inline int bpf_try_make_writable(struct sk_buff *skb,
1662 					unsigned int write_len)
1663 {
1664 	int err = __bpf_try_make_writable(skb, write_len);
1665 
1666 	bpf_compute_data_pointers(skb);
1667 	return err;
1668 }
1669 
1670 static int bpf_try_make_head_writable(struct sk_buff *skb)
1671 {
1672 	return bpf_try_make_writable(skb, skb_headlen(skb));
1673 }
1674 
1675 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1676 {
1677 	if (skb_at_tc_ingress(skb))
1678 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1679 }
1680 
1681 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1682 {
1683 	if (skb_at_tc_ingress(skb))
1684 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1685 }
1686 
1687 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1688 	   const void *, from, u32, len, u64, flags)
1689 {
1690 	void *ptr;
1691 
1692 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1693 		return -EINVAL;
1694 	if (unlikely(offset > INT_MAX))
1695 		return -EFAULT;
1696 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1697 		return -EFAULT;
1698 
1699 	ptr = skb->data + offset;
1700 	if (flags & BPF_F_RECOMPUTE_CSUM)
1701 		__skb_postpull_rcsum(skb, ptr, len, offset);
1702 
1703 	memcpy(ptr, from, len);
1704 
1705 	if (flags & BPF_F_RECOMPUTE_CSUM)
1706 		__skb_postpush_rcsum(skb, ptr, len, offset);
1707 	if (flags & BPF_F_INVALIDATE_HASH)
1708 		skb_clear_hash(skb);
1709 
1710 	return 0;
1711 }
1712 
1713 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1714 	.func		= bpf_skb_store_bytes,
1715 	.gpl_only	= false,
1716 	.ret_type	= RET_INTEGER,
1717 	.arg1_type	= ARG_PTR_TO_CTX,
1718 	.arg2_type	= ARG_ANYTHING,
1719 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1720 	.arg4_type	= ARG_CONST_SIZE,
1721 	.arg5_type	= ARG_ANYTHING,
1722 };
1723 
1724 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1725 	   void *, to, u32, len)
1726 {
1727 	void *ptr;
1728 
1729 	if (unlikely(offset > INT_MAX))
1730 		goto err_clear;
1731 
1732 	ptr = skb_header_pointer(skb, offset, len, to);
1733 	if (unlikely(!ptr))
1734 		goto err_clear;
1735 	if (ptr != to)
1736 		memcpy(to, ptr, len);
1737 
1738 	return 0;
1739 err_clear:
1740 	memset(to, 0, len);
1741 	return -EFAULT;
1742 }
1743 
1744 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1745 	.func		= bpf_skb_load_bytes,
1746 	.gpl_only	= false,
1747 	.ret_type	= RET_INTEGER,
1748 	.arg1_type	= ARG_PTR_TO_CTX,
1749 	.arg2_type	= ARG_ANYTHING,
1750 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1751 	.arg4_type	= ARG_CONST_SIZE,
1752 };
1753 
1754 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1755 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1756 	   void *, to, u32, len)
1757 {
1758 	void *ptr;
1759 
1760 	if (unlikely(offset > 0xffff))
1761 		goto err_clear;
1762 
1763 	if (unlikely(!ctx->skb))
1764 		goto err_clear;
1765 
1766 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1767 	if (unlikely(!ptr))
1768 		goto err_clear;
1769 	if (ptr != to)
1770 		memcpy(to, ptr, len);
1771 
1772 	return 0;
1773 err_clear:
1774 	memset(to, 0, len);
1775 	return -EFAULT;
1776 }
1777 
1778 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1779 	.func		= bpf_flow_dissector_load_bytes,
1780 	.gpl_only	= false,
1781 	.ret_type	= RET_INTEGER,
1782 	.arg1_type	= ARG_PTR_TO_CTX,
1783 	.arg2_type	= ARG_ANYTHING,
1784 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1785 	.arg4_type	= ARG_CONST_SIZE,
1786 };
1787 
1788 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1789 	   u32, offset, void *, to, u32, len, u32, start_header)
1790 {
1791 	u8 *end = skb_tail_pointer(skb);
1792 	u8 *start, *ptr;
1793 
1794 	if (unlikely(offset > 0xffff))
1795 		goto err_clear;
1796 
1797 	switch (start_header) {
1798 	case BPF_HDR_START_MAC:
1799 		if (unlikely(!skb_mac_header_was_set(skb)))
1800 			goto err_clear;
1801 		start = skb_mac_header(skb);
1802 		break;
1803 	case BPF_HDR_START_NET:
1804 		start = skb_network_header(skb);
1805 		break;
1806 	default:
1807 		goto err_clear;
1808 	}
1809 
1810 	ptr = start + offset;
1811 
1812 	if (likely(ptr + len <= end)) {
1813 		memcpy(to, ptr, len);
1814 		return 0;
1815 	}
1816 
1817 err_clear:
1818 	memset(to, 0, len);
1819 	return -EFAULT;
1820 }
1821 
1822 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1823 	.func		= bpf_skb_load_bytes_relative,
1824 	.gpl_only	= false,
1825 	.ret_type	= RET_INTEGER,
1826 	.arg1_type	= ARG_PTR_TO_CTX,
1827 	.arg2_type	= ARG_ANYTHING,
1828 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1829 	.arg4_type	= ARG_CONST_SIZE,
1830 	.arg5_type	= ARG_ANYTHING,
1831 };
1832 
1833 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1834 {
1835 	/* Idea is the following: should the needed direct read/write
1836 	 * test fail during runtime, we can pull in more data and redo
1837 	 * again, since implicitly, we invalidate previous checks here.
1838 	 *
1839 	 * Or, since we know how much we need to make read/writeable,
1840 	 * this can be done once at the program beginning for direct
1841 	 * access case. By this we overcome limitations of only current
1842 	 * headroom being accessible.
1843 	 */
1844 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1845 }
1846 
1847 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1848 	.func		= bpf_skb_pull_data,
1849 	.gpl_only	= false,
1850 	.ret_type	= RET_INTEGER,
1851 	.arg1_type	= ARG_PTR_TO_CTX,
1852 	.arg2_type	= ARG_ANYTHING,
1853 };
1854 
1855 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1856 {
1857 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1858 }
1859 
1860 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1861 	.func		= bpf_sk_fullsock,
1862 	.gpl_only	= false,
1863 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1864 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1865 };
1866 
1867 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1868 					   unsigned int write_len)
1869 {
1870 	return __bpf_try_make_writable(skb, write_len);
1871 }
1872 
1873 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1874 {
1875 	/* Idea is the following: should the needed direct read/write
1876 	 * test fail during runtime, we can pull in more data and redo
1877 	 * again, since implicitly, we invalidate previous checks here.
1878 	 *
1879 	 * Or, since we know how much we need to make read/writeable,
1880 	 * this can be done once at the program beginning for direct
1881 	 * access case. By this we overcome limitations of only current
1882 	 * headroom being accessible.
1883 	 */
1884 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1885 }
1886 
1887 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1888 	.func		= sk_skb_pull_data,
1889 	.gpl_only	= false,
1890 	.ret_type	= RET_INTEGER,
1891 	.arg1_type	= ARG_PTR_TO_CTX,
1892 	.arg2_type	= ARG_ANYTHING,
1893 };
1894 
1895 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1896 	   u64, from, u64, to, u64, flags)
1897 {
1898 	__sum16 *ptr;
1899 
1900 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1901 		return -EINVAL;
1902 	if (unlikely(offset > 0xffff || offset & 1))
1903 		return -EFAULT;
1904 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1905 		return -EFAULT;
1906 
1907 	ptr = (__sum16 *)(skb->data + offset);
1908 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1909 	case 0:
1910 		if (unlikely(from != 0))
1911 			return -EINVAL;
1912 
1913 		csum_replace_by_diff(ptr, to);
1914 		break;
1915 	case 2:
1916 		csum_replace2(ptr, from, to);
1917 		break;
1918 	case 4:
1919 		csum_replace4(ptr, from, to);
1920 		break;
1921 	default:
1922 		return -EINVAL;
1923 	}
1924 
1925 	return 0;
1926 }
1927 
1928 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1929 	.func		= bpf_l3_csum_replace,
1930 	.gpl_only	= false,
1931 	.ret_type	= RET_INTEGER,
1932 	.arg1_type	= ARG_PTR_TO_CTX,
1933 	.arg2_type	= ARG_ANYTHING,
1934 	.arg3_type	= ARG_ANYTHING,
1935 	.arg4_type	= ARG_ANYTHING,
1936 	.arg5_type	= ARG_ANYTHING,
1937 };
1938 
1939 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1940 	   u64, from, u64, to, u64, flags)
1941 {
1942 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1943 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1944 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1945 	__sum16 *ptr;
1946 
1947 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1948 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1949 		return -EINVAL;
1950 	if (unlikely(offset > 0xffff || offset & 1))
1951 		return -EFAULT;
1952 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1953 		return -EFAULT;
1954 
1955 	ptr = (__sum16 *)(skb->data + offset);
1956 	if (is_mmzero && !do_mforce && !*ptr)
1957 		return 0;
1958 
1959 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1960 	case 0:
1961 		if (unlikely(from != 0))
1962 			return -EINVAL;
1963 
1964 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1965 		break;
1966 	case 2:
1967 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1968 		break;
1969 	case 4:
1970 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1971 		break;
1972 	default:
1973 		return -EINVAL;
1974 	}
1975 
1976 	if (is_mmzero && !*ptr)
1977 		*ptr = CSUM_MANGLED_0;
1978 	return 0;
1979 }
1980 
1981 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1982 	.func		= bpf_l4_csum_replace,
1983 	.gpl_only	= false,
1984 	.ret_type	= RET_INTEGER,
1985 	.arg1_type	= ARG_PTR_TO_CTX,
1986 	.arg2_type	= ARG_ANYTHING,
1987 	.arg3_type	= ARG_ANYTHING,
1988 	.arg4_type	= ARG_ANYTHING,
1989 	.arg5_type	= ARG_ANYTHING,
1990 };
1991 
1992 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1993 	   __be32 *, to, u32, to_size, __wsum, seed)
1994 {
1995 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1996 	u32 diff_size = from_size + to_size;
1997 	int i, j = 0;
1998 
1999 	/* This is quite flexible, some examples:
2000 	 *
2001 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2002 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2003 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2004 	 *
2005 	 * Even for diffing, from_size and to_size don't need to be equal.
2006 	 */
2007 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2008 		     diff_size > sizeof(sp->diff)))
2009 		return -EINVAL;
2010 
2011 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2012 		sp->diff[j] = ~from[i];
2013 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2014 		sp->diff[j] = to[i];
2015 
2016 	return csum_partial(sp->diff, diff_size, seed);
2017 }
2018 
2019 static const struct bpf_func_proto bpf_csum_diff_proto = {
2020 	.func		= bpf_csum_diff,
2021 	.gpl_only	= false,
2022 	.pkt_access	= true,
2023 	.ret_type	= RET_INTEGER,
2024 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2026 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2027 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2028 	.arg5_type	= ARG_ANYTHING,
2029 };
2030 
2031 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2032 {
2033 	/* The interface is to be used in combination with bpf_csum_diff()
2034 	 * for direct packet writes. csum rotation for alignment as well
2035 	 * as emulating csum_sub() can be done from the eBPF program.
2036 	 */
2037 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2038 		return (skb->csum = csum_add(skb->csum, csum));
2039 
2040 	return -ENOTSUPP;
2041 }
2042 
2043 static const struct bpf_func_proto bpf_csum_update_proto = {
2044 	.func		= bpf_csum_update,
2045 	.gpl_only	= false,
2046 	.ret_type	= RET_INTEGER,
2047 	.arg1_type	= ARG_PTR_TO_CTX,
2048 	.arg2_type	= ARG_ANYTHING,
2049 };
2050 
2051 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2052 {
2053 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2054 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2055 	 * is passed as flags, for example.
2056 	 */
2057 	switch (level) {
2058 	case BPF_CSUM_LEVEL_INC:
2059 		__skb_incr_checksum_unnecessary(skb);
2060 		break;
2061 	case BPF_CSUM_LEVEL_DEC:
2062 		__skb_decr_checksum_unnecessary(skb);
2063 		break;
2064 	case BPF_CSUM_LEVEL_RESET:
2065 		__skb_reset_checksum_unnecessary(skb);
2066 		break;
2067 	case BPF_CSUM_LEVEL_QUERY:
2068 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2069 		       skb->csum_level : -EACCES;
2070 	default:
2071 		return -EINVAL;
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 static const struct bpf_func_proto bpf_csum_level_proto = {
2078 	.func		= bpf_csum_level,
2079 	.gpl_only	= false,
2080 	.ret_type	= RET_INTEGER,
2081 	.arg1_type	= ARG_PTR_TO_CTX,
2082 	.arg2_type	= ARG_ANYTHING,
2083 };
2084 
2085 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2086 {
2087 	return dev_forward_skb_nomtu(dev, skb);
2088 }
2089 
2090 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2091 				      struct sk_buff *skb)
2092 {
2093 	int ret = ____dev_forward_skb(dev, skb, false);
2094 
2095 	if (likely(!ret)) {
2096 		skb->dev = dev;
2097 		ret = netif_rx(skb);
2098 	}
2099 
2100 	return ret;
2101 }
2102 
2103 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105 	int ret;
2106 
2107 	if (dev_xmit_recursion()) {
2108 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2109 		kfree_skb(skb);
2110 		return -ENETDOWN;
2111 	}
2112 
2113 	skb->dev = dev;
2114 	skb_clear_tstamp(skb);
2115 
2116 	dev_xmit_recursion_inc();
2117 	ret = dev_queue_xmit(skb);
2118 	dev_xmit_recursion_dec();
2119 
2120 	return ret;
2121 }
2122 
2123 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2124 				 u32 flags)
2125 {
2126 	unsigned int mlen = skb_network_offset(skb);
2127 
2128 	if (unlikely(skb->len <= mlen)) {
2129 		kfree_skb(skb);
2130 		return -ERANGE;
2131 	}
2132 
2133 	if (mlen) {
2134 		__skb_pull(skb, mlen);
2135 
2136 		/* At ingress, the mac header has already been pulled once.
2137 		 * At egress, skb_pospull_rcsum has to be done in case that
2138 		 * the skb is originated from ingress (i.e. a forwarded skb)
2139 		 * to ensure that rcsum starts at net header.
2140 		 */
2141 		if (!skb_at_tc_ingress(skb))
2142 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2143 	}
2144 	skb_pop_mac_header(skb);
2145 	skb_reset_mac_len(skb);
2146 	return flags & BPF_F_INGRESS ?
2147 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2148 }
2149 
2150 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2151 				 u32 flags)
2152 {
2153 	/* Verify that a link layer header is carried */
2154 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2155 		kfree_skb(skb);
2156 		return -ERANGE;
2157 	}
2158 
2159 	bpf_push_mac_rcsum(skb);
2160 	return flags & BPF_F_INGRESS ?
2161 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2162 }
2163 
2164 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2165 			  u32 flags)
2166 {
2167 	if (dev_is_mac_header_xmit(dev))
2168 		return __bpf_redirect_common(skb, dev, flags);
2169 	else
2170 		return __bpf_redirect_no_mac(skb, dev, flags);
2171 }
2172 
2173 #if IS_ENABLED(CONFIG_IPV6)
2174 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2175 			    struct net_device *dev, struct bpf_nh_params *nh)
2176 {
2177 	u32 hh_len = LL_RESERVED_SPACE(dev);
2178 	const struct in6_addr *nexthop;
2179 	struct dst_entry *dst = NULL;
2180 	struct neighbour *neigh;
2181 
2182 	if (dev_xmit_recursion()) {
2183 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2184 		goto out_drop;
2185 	}
2186 
2187 	skb->dev = dev;
2188 	skb_clear_tstamp(skb);
2189 
2190 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2191 		skb = skb_expand_head(skb, hh_len);
2192 		if (!skb)
2193 			return -ENOMEM;
2194 	}
2195 
2196 	rcu_read_lock_bh();
2197 	if (!nh) {
2198 		dst = skb_dst(skb);
2199 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2200 				      &ipv6_hdr(skb)->daddr);
2201 	} else {
2202 		nexthop = &nh->ipv6_nh;
2203 	}
2204 	neigh = ip_neigh_gw6(dev, nexthop);
2205 	if (likely(!IS_ERR(neigh))) {
2206 		int ret;
2207 
2208 		sock_confirm_neigh(skb, neigh);
2209 		dev_xmit_recursion_inc();
2210 		ret = neigh_output(neigh, skb, false);
2211 		dev_xmit_recursion_dec();
2212 		rcu_read_unlock_bh();
2213 		return ret;
2214 	}
2215 	rcu_read_unlock_bh();
2216 	if (dst)
2217 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2218 out_drop:
2219 	kfree_skb(skb);
2220 	return -ENETDOWN;
2221 }
2222 
2223 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2224 				   struct bpf_nh_params *nh)
2225 {
2226 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2227 	struct net *net = dev_net(dev);
2228 	int err, ret = NET_XMIT_DROP;
2229 
2230 	if (!nh) {
2231 		struct dst_entry *dst;
2232 		struct flowi6 fl6 = {
2233 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2234 			.flowi6_mark  = skb->mark,
2235 			.flowlabel    = ip6_flowinfo(ip6h),
2236 			.flowi6_oif   = dev->ifindex,
2237 			.flowi6_proto = ip6h->nexthdr,
2238 			.daddr	      = ip6h->daddr,
2239 			.saddr	      = ip6h->saddr,
2240 		};
2241 
2242 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2243 		if (IS_ERR(dst))
2244 			goto out_drop;
2245 
2246 		skb_dst_set(skb, dst);
2247 	} else if (nh->nh_family != AF_INET6) {
2248 		goto out_drop;
2249 	}
2250 
2251 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2252 	if (unlikely(net_xmit_eval(err)))
2253 		dev->stats.tx_errors++;
2254 	else
2255 		ret = NET_XMIT_SUCCESS;
2256 	goto out_xmit;
2257 out_drop:
2258 	dev->stats.tx_errors++;
2259 	kfree_skb(skb);
2260 out_xmit:
2261 	return ret;
2262 }
2263 #else
2264 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2265 				   struct bpf_nh_params *nh)
2266 {
2267 	kfree_skb(skb);
2268 	return NET_XMIT_DROP;
2269 }
2270 #endif /* CONFIG_IPV6 */
2271 
2272 #if IS_ENABLED(CONFIG_INET)
2273 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2274 			    struct net_device *dev, struct bpf_nh_params *nh)
2275 {
2276 	u32 hh_len = LL_RESERVED_SPACE(dev);
2277 	struct neighbour *neigh;
2278 	bool is_v6gw = false;
2279 
2280 	if (dev_xmit_recursion()) {
2281 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2282 		goto out_drop;
2283 	}
2284 
2285 	skb->dev = dev;
2286 	skb_clear_tstamp(skb);
2287 
2288 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2289 		skb = skb_expand_head(skb, hh_len);
2290 		if (!skb)
2291 			return -ENOMEM;
2292 	}
2293 
2294 	rcu_read_lock_bh();
2295 	if (!nh) {
2296 		struct dst_entry *dst = skb_dst(skb);
2297 		struct rtable *rt = container_of(dst, struct rtable, dst);
2298 
2299 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2300 	} else if (nh->nh_family == AF_INET6) {
2301 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2302 		is_v6gw = true;
2303 	} else if (nh->nh_family == AF_INET) {
2304 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2305 	} else {
2306 		rcu_read_unlock_bh();
2307 		goto out_drop;
2308 	}
2309 
2310 	if (likely(!IS_ERR(neigh))) {
2311 		int ret;
2312 
2313 		sock_confirm_neigh(skb, neigh);
2314 		dev_xmit_recursion_inc();
2315 		ret = neigh_output(neigh, skb, is_v6gw);
2316 		dev_xmit_recursion_dec();
2317 		rcu_read_unlock_bh();
2318 		return ret;
2319 	}
2320 	rcu_read_unlock_bh();
2321 out_drop:
2322 	kfree_skb(skb);
2323 	return -ENETDOWN;
2324 }
2325 
2326 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2327 				   struct bpf_nh_params *nh)
2328 {
2329 	const struct iphdr *ip4h = ip_hdr(skb);
2330 	struct net *net = dev_net(dev);
2331 	int err, ret = NET_XMIT_DROP;
2332 
2333 	if (!nh) {
2334 		struct flowi4 fl4 = {
2335 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2336 			.flowi4_mark  = skb->mark,
2337 			.flowi4_tos   = RT_TOS(ip4h->tos),
2338 			.flowi4_oif   = dev->ifindex,
2339 			.flowi4_proto = ip4h->protocol,
2340 			.daddr	      = ip4h->daddr,
2341 			.saddr	      = ip4h->saddr,
2342 		};
2343 		struct rtable *rt;
2344 
2345 		rt = ip_route_output_flow(net, &fl4, NULL);
2346 		if (IS_ERR(rt))
2347 			goto out_drop;
2348 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2349 			ip_rt_put(rt);
2350 			goto out_drop;
2351 		}
2352 
2353 		skb_dst_set(skb, &rt->dst);
2354 	}
2355 
2356 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2357 	if (unlikely(net_xmit_eval(err)))
2358 		dev->stats.tx_errors++;
2359 	else
2360 		ret = NET_XMIT_SUCCESS;
2361 	goto out_xmit;
2362 out_drop:
2363 	dev->stats.tx_errors++;
2364 	kfree_skb(skb);
2365 out_xmit:
2366 	return ret;
2367 }
2368 #else
2369 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2370 				   struct bpf_nh_params *nh)
2371 {
2372 	kfree_skb(skb);
2373 	return NET_XMIT_DROP;
2374 }
2375 #endif /* CONFIG_INET */
2376 
2377 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2378 				struct bpf_nh_params *nh)
2379 {
2380 	struct ethhdr *ethh = eth_hdr(skb);
2381 
2382 	if (unlikely(skb->mac_header >= skb->network_header))
2383 		goto out;
2384 	bpf_push_mac_rcsum(skb);
2385 	if (is_multicast_ether_addr(ethh->h_dest))
2386 		goto out;
2387 
2388 	skb_pull(skb, sizeof(*ethh));
2389 	skb_unset_mac_header(skb);
2390 	skb_reset_network_header(skb);
2391 
2392 	if (skb->protocol == htons(ETH_P_IP))
2393 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2394 	else if (skb->protocol == htons(ETH_P_IPV6))
2395 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2396 out:
2397 	kfree_skb(skb);
2398 	return -ENOTSUPP;
2399 }
2400 
2401 /* Internal, non-exposed redirect flags. */
2402 enum {
2403 	BPF_F_NEIGH	= (1ULL << 1),
2404 	BPF_F_PEER	= (1ULL << 2),
2405 	BPF_F_NEXTHOP	= (1ULL << 3),
2406 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2407 };
2408 
2409 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2410 {
2411 	struct net_device *dev;
2412 	struct sk_buff *clone;
2413 	int ret;
2414 
2415 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2416 		return -EINVAL;
2417 
2418 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2419 	if (unlikely(!dev))
2420 		return -EINVAL;
2421 
2422 	clone = skb_clone(skb, GFP_ATOMIC);
2423 	if (unlikely(!clone))
2424 		return -ENOMEM;
2425 
2426 	/* For direct write, we need to keep the invariant that the skbs
2427 	 * we're dealing with need to be uncloned. Should uncloning fail
2428 	 * here, we need to free the just generated clone to unclone once
2429 	 * again.
2430 	 */
2431 	ret = bpf_try_make_head_writable(skb);
2432 	if (unlikely(ret)) {
2433 		kfree_skb(clone);
2434 		return -ENOMEM;
2435 	}
2436 
2437 	return __bpf_redirect(clone, dev, flags);
2438 }
2439 
2440 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2441 	.func           = bpf_clone_redirect,
2442 	.gpl_only       = false,
2443 	.ret_type       = RET_INTEGER,
2444 	.arg1_type      = ARG_PTR_TO_CTX,
2445 	.arg2_type      = ARG_ANYTHING,
2446 	.arg3_type      = ARG_ANYTHING,
2447 };
2448 
2449 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2450 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2451 
2452 int skb_do_redirect(struct sk_buff *skb)
2453 {
2454 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2455 	struct net *net = dev_net(skb->dev);
2456 	struct net_device *dev;
2457 	u32 flags = ri->flags;
2458 
2459 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2460 	ri->tgt_index = 0;
2461 	ri->flags = 0;
2462 	if (unlikely(!dev))
2463 		goto out_drop;
2464 	if (flags & BPF_F_PEER) {
2465 		const struct net_device_ops *ops = dev->netdev_ops;
2466 
2467 		if (unlikely(!ops->ndo_get_peer_dev ||
2468 			     !skb_at_tc_ingress(skb)))
2469 			goto out_drop;
2470 		dev = ops->ndo_get_peer_dev(dev);
2471 		if (unlikely(!dev ||
2472 			     !(dev->flags & IFF_UP) ||
2473 			     net_eq(net, dev_net(dev))))
2474 			goto out_drop;
2475 		skb->dev = dev;
2476 		return -EAGAIN;
2477 	}
2478 	return flags & BPF_F_NEIGH ?
2479 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2480 				    &ri->nh : NULL) :
2481 	       __bpf_redirect(skb, dev, flags);
2482 out_drop:
2483 	kfree_skb(skb);
2484 	return -EINVAL;
2485 }
2486 
2487 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2488 {
2489 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2490 
2491 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2492 		return TC_ACT_SHOT;
2493 
2494 	ri->flags = flags;
2495 	ri->tgt_index = ifindex;
2496 
2497 	return TC_ACT_REDIRECT;
2498 }
2499 
2500 static const struct bpf_func_proto bpf_redirect_proto = {
2501 	.func           = bpf_redirect,
2502 	.gpl_only       = false,
2503 	.ret_type       = RET_INTEGER,
2504 	.arg1_type      = ARG_ANYTHING,
2505 	.arg2_type      = ARG_ANYTHING,
2506 };
2507 
2508 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2509 {
2510 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2511 
2512 	if (unlikely(flags))
2513 		return TC_ACT_SHOT;
2514 
2515 	ri->flags = BPF_F_PEER;
2516 	ri->tgt_index = ifindex;
2517 
2518 	return TC_ACT_REDIRECT;
2519 }
2520 
2521 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2522 	.func           = bpf_redirect_peer,
2523 	.gpl_only       = false,
2524 	.ret_type       = RET_INTEGER,
2525 	.arg1_type      = ARG_ANYTHING,
2526 	.arg2_type      = ARG_ANYTHING,
2527 };
2528 
2529 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2530 	   int, plen, u64, flags)
2531 {
2532 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2533 
2534 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2535 		return TC_ACT_SHOT;
2536 
2537 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2538 	ri->tgt_index = ifindex;
2539 
2540 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2541 	if (plen)
2542 		memcpy(&ri->nh, params, sizeof(ri->nh));
2543 
2544 	return TC_ACT_REDIRECT;
2545 }
2546 
2547 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2548 	.func		= bpf_redirect_neigh,
2549 	.gpl_only	= false,
2550 	.ret_type	= RET_INTEGER,
2551 	.arg1_type	= ARG_ANYTHING,
2552 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2553 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2554 	.arg4_type	= ARG_ANYTHING,
2555 };
2556 
2557 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2558 {
2559 	msg->apply_bytes = bytes;
2560 	return 0;
2561 }
2562 
2563 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2564 	.func           = bpf_msg_apply_bytes,
2565 	.gpl_only       = false,
2566 	.ret_type       = RET_INTEGER,
2567 	.arg1_type	= ARG_PTR_TO_CTX,
2568 	.arg2_type      = ARG_ANYTHING,
2569 };
2570 
2571 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2572 {
2573 	msg->cork_bytes = bytes;
2574 	return 0;
2575 }
2576 
2577 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2578 	.func           = bpf_msg_cork_bytes,
2579 	.gpl_only       = false,
2580 	.ret_type       = RET_INTEGER,
2581 	.arg1_type	= ARG_PTR_TO_CTX,
2582 	.arg2_type      = ARG_ANYTHING,
2583 };
2584 
2585 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2586 	   u32, end, u64, flags)
2587 {
2588 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2589 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2590 	struct scatterlist *sge;
2591 	u8 *raw, *to, *from;
2592 	struct page *page;
2593 
2594 	if (unlikely(flags || end <= start))
2595 		return -EINVAL;
2596 
2597 	/* First find the starting scatterlist element */
2598 	i = msg->sg.start;
2599 	do {
2600 		offset += len;
2601 		len = sk_msg_elem(msg, i)->length;
2602 		if (start < offset + len)
2603 			break;
2604 		sk_msg_iter_var_next(i);
2605 	} while (i != msg->sg.end);
2606 
2607 	if (unlikely(start >= offset + len))
2608 		return -EINVAL;
2609 
2610 	first_sge = i;
2611 	/* The start may point into the sg element so we need to also
2612 	 * account for the headroom.
2613 	 */
2614 	bytes_sg_total = start - offset + bytes;
2615 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2616 		goto out;
2617 
2618 	/* At this point we need to linearize multiple scatterlist
2619 	 * elements or a single shared page. Either way we need to
2620 	 * copy into a linear buffer exclusively owned by BPF. Then
2621 	 * place the buffer in the scatterlist and fixup the original
2622 	 * entries by removing the entries now in the linear buffer
2623 	 * and shifting the remaining entries. For now we do not try
2624 	 * to copy partial entries to avoid complexity of running out
2625 	 * of sg_entry slots. The downside is reading a single byte
2626 	 * will copy the entire sg entry.
2627 	 */
2628 	do {
2629 		copy += sk_msg_elem(msg, i)->length;
2630 		sk_msg_iter_var_next(i);
2631 		if (bytes_sg_total <= copy)
2632 			break;
2633 	} while (i != msg->sg.end);
2634 	last_sge = i;
2635 
2636 	if (unlikely(bytes_sg_total > copy))
2637 		return -EINVAL;
2638 
2639 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2640 			   get_order(copy));
2641 	if (unlikely(!page))
2642 		return -ENOMEM;
2643 
2644 	raw = page_address(page);
2645 	i = first_sge;
2646 	do {
2647 		sge = sk_msg_elem(msg, i);
2648 		from = sg_virt(sge);
2649 		len = sge->length;
2650 		to = raw + poffset;
2651 
2652 		memcpy(to, from, len);
2653 		poffset += len;
2654 		sge->length = 0;
2655 		put_page(sg_page(sge));
2656 
2657 		sk_msg_iter_var_next(i);
2658 	} while (i != last_sge);
2659 
2660 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2661 
2662 	/* To repair sg ring we need to shift entries. If we only
2663 	 * had a single entry though we can just replace it and
2664 	 * be done. Otherwise walk the ring and shift the entries.
2665 	 */
2666 	WARN_ON_ONCE(last_sge == first_sge);
2667 	shift = last_sge > first_sge ?
2668 		last_sge - first_sge - 1 :
2669 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2670 	if (!shift)
2671 		goto out;
2672 
2673 	i = first_sge;
2674 	sk_msg_iter_var_next(i);
2675 	do {
2676 		u32 move_from;
2677 
2678 		if (i + shift >= NR_MSG_FRAG_IDS)
2679 			move_from = i + shift - NR_MSG_FRAG_IDS;
2680 		else
2681 			move_from = i + shift;
2682 		if (move_from == msg->sg.end)
2683 			break;
2684 
2685 		msg->sg.data[i] = msg->sg.data[move_from];
2686 		msg->sg.data[move_from].length = 0;
2687 		msg->sg.data[move_from].page_link = 0;
2688 		msg->sg.data[move_from].offset = 0;
2689 		sk_msg_iter_var_next(i);
2690 	} while (1);
2691 
2692 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2693 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2694 		      msg->sg.end - shift;
2695 out:
2696 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2697 	msg->data_end = msg->data + bytes;
2698 	return 0;
2699 }
2700 
2701 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2702 	.func		= bpf_msg_pull_data,
2703 	.gpl_only	= false,
2704 	.ret_type	= RET_INTEGER,
2705 	.arg1_type	= ARG_PTR_TO_CTX,
2706 	.arg2_type	= ARG_ANYTHING,
2707 	.arg3_type	= ARG_ANYTHING,
2708 	.arg4_type	= ARG_ANYTHING,
2709 };
2710 
2711 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2712 	   u32, len, u64, flags)
2713 {
2714 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2715 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2716 	u8 *raw, *to, *from;
2717 	struct page *page;
2718 
2719 	if (unlikely(flags))
2720 		return -EINVAL;
2721 
2722 	if (unlikely(len == 0))
2723 		return 0;
2724 
2725 	/* First find the starting scatterlist element */
2726 	i = msg->sg.start;
2727 	do {
2728 		offset += l;
2729 		l = sk_msg_elem(msg, i)->length;
2730 
2731 		if (start < offset + l)
2732 			break;
2733 		sk_msg_iter_var_next(i);
2734 	} while (i != msg->sg.end);
2735 
2736 	if (start >= offset + l)
2737 		return -EINVAL;
2738 
2739 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2740 
2741 	/* If no space available will fallback to copy, we need at
2742 	 * least one scatterlist elem available to push data into
2743 	 * when start aligns to the beginning of an element or two
2744 	 * when it falls inside an element. We handle the start equals
2745 	 * offset case because its the common case for inserting a
2746 	 * header.
2747 	 */
2748 	if (!space || (space == 1 && start != offset))
2749 		copy = msg->sg.data[i].length;
2750 
2751 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2752 			   get_order(copy + len));
2753 	if (unlikely(!page))
2754 		return -ENOMEM;
2755 
2756 	if (copy) {
2757 		int front, back;
2758 
2759 		raw = page_address(page);
2760 
2761 		psge = sk_msg_elem(msg, i);
2762 		front = start - offset;
2763 		back = psge->length - front;
2764 		from = sg_virt(psge);
2765 
2766 		if (front)
2767 			memcpy(raw, from, front);
2768 
2769 		if (back) {
2770 			from += front;
2771 			to = raw + front + len;
2772 
2773 			memcpy(to, from, back);
2774 		}
2775 
2776 		put_page(sg_page(psge));
2777 	} else if (start - offset) {
2778 		psge = sk_msg_elem(msg, i);
2779 		rsge = sk_msg_elem_cpy(msg, i);
2780 
2781 		psge->length = start - offset;
2782 		rsge.length -= psge->length;
2783 		rsge.offset += start;
2784 
2785 		sk_msg_iter_var_next(i);
2786 		sg_unmark_end(psge);
2787 		sg_unmark_end(&rsge);
2788 		sk_msg_iter_next(msg, end);
2789 	}
2790 
2791 	/* Slot(s) to place newly allocated data */
2792 	new = i;
2793 
2794 	/* Shift one or two slots as needed */
2795 	if (!copy) {
2796 		sge = sk_msg_elem_cpy(msg, i);
2797 
2798 		sk_msg_iter_var_next(i);
2799 		sg_unmark_end(&sge);
2800 		sk_msg_iter_next(msg, end);
2801 
2802 		nsge = sk_msg_elem_cpy(msg, i);
2803 		if (rsge.length) {
2804 			sk_msg_iter_var_next(i);
2805 			nnsge = sk_msg_elem_cpy(msg, i);
2806 		}
2807 
2808 		while (i != msg->sg.end) {
2809 			msg->sg.data[i] = sge;
2810 			sge = nsge;
2811 			sk_msg_iter_var_next(i);
2812 			if (rsge.length) {
2813 				nsge = nnsge;
2814 				nnsge = sk_msg_elem_cpy(msg, i);
2815 			} else {
2816 				nsge = sk_msg_elem_cpy(msg, i);
2817 			}
2818 		}
2819 	}
2820 
2821 	/* Place newly allocated data buffer */
2822 	sk_mem_charge(msg->sk, len);
2823 	msg->sg.size += len;
2824 	__clear_bit(new, msg->sg.copy);
2825 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2826 	if (rsge.length) {
2827 		get_page(sg_page(&rsge));
2828 		sk_msg_iter_var_next(new);
2829 		msg->sg.data[new] = rsge;
2830 	}
2831 
2832 	sk_msg_compute_data_pointers(msg);
2833 	return 0;
2834 }
2835 
2836 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2837 	.func		= bpf_msg_push_data,
2838 	.gpl_only	= false,
2839 	.ret_type	= RET_INTEGER,
2840 	.arg1_type	= ARG_PTR_TO_CTX,
2841 	.arg2_type	= ARG_ANYTHING,
2842 	.arg3_type	= ARG_ANYTHING,
2843 	.arg4_type	= ARG_ANYTHING,
2844 };
2845 
2846 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2847 {
2848 	int prev;
2849 
2850 	do {
2851 		prev = i;
2852 		sk_msg_iter_var_next(i);
2853 		msg->sg.data[prev] = msg->sg.data[i];
2854 	} while (i != msg->sg.end);
2855 
2856 	sk_msg_iter_prev(msg, end);
2857 }
2858 
2859 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2860 {
2861 	struct scatterlist tmp, sge;
2862 
2863 	sk_msg_iter_next(msg, end);
2864 	sge = sk_msg_elem_cpy(msg, i);
2865 	sk_msg_iter_var_next(i);
2866 	tmp = sk_msg_elem_cpy(msg, i);
2867 
2868 	while (i != msg->sg.end) {
2869 		msg->sg.data[i] = sge;
2870 		sk_msg_iter_var_next(i);
2871 		sge = tmp;
2872 		tmp = sk_msg_elem_cpy(msg, i);
2873 	}
2874 }
2875 
2876 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2877 	   u32, len, u64, flags)
2878 {
2879 	u32 i = 0, l = 0, space, offset = 0;
2880 	u64 last = start + len;
2881 	int pop;
2882 
2883 	if (unlikely(flags))
2884 		return -EINVAL;
2885 
2886 	/* First find the starting scatterlist element */
2887 	i = msg->sg.start;
2888 	do {
2889 		offset += l;
2890 		l = sk_msg_elem(msg, i)->length;
2891 
2892 		if (start < offset + l)
2893 			break;
2894 		sk_msg_iter_var_next(i);
2895 	} while (i != msg->sg.end);
2896 
2897 	/* Bounds checks: start and pop must be inside message */
2898 	if (start >= offset + l || last >= msg->sg.size)
2899 		return -EINVAL;
2900 
2901 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2902 
2903 	pop = len;
2904 	/* --------------| offset
2905 	 * -| start      |-------- len -------|
2906 	 *
2907 	 *  |----- a ----|-------- pop -------|----- b ----|
2908 	 *  |______________________________________________| length
2909 	 *
2910 	 *
2911 	 * a:   region at front of scatter element to save
2912 	 * b:   region at back of scatter element to save when length > A + pop
2913 	 * pop: region to pop from element, same as input 'pop' here will be
2914 	 *      decremented below per iteration.
2915 	 *
2916 	 * Two top-level cases to handle when start != offset, first B is non
2917 	 * zero and second B is zero corresponding to when a pop includes more
2918 	 * than one element.
2919 	 *
2920 	 * Then if B is non-zero AND there is no space allocate space and
2921 	 * compact A, B regions into page. If there is space shift ring to
2922 	 * the rigth free'ing the next element in ring to place B, leaving
2923 	 * A untouched except to reduce length.
2924 	 */
2925 	if (start != offset) {
2926 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2927 		int a = start;
2928 		int b = sge->length - pop - a;
2929 
2930 		sk_msg_iter_var_next(i);
2931 
2932 		if (pop < sge->length - a) {
2933 			if (space) {
2934 				sge->length = a;
2935 				sk_msg_shift_right(msg, i);
2936 				nsge = sk_msg_elem(msg, i);
2937 				get_page(sg_page(sge));
2938 				sg_set_page(nsge,
2939 					    sg_page(sge),
2940 					    b, sge->offset + pop + a);
2941 			} else {
2942 				struct page *page, *orig;
2943 				u8 *to, *from;
2944 
2945 				page = alloc_pages(__GFP_NOWARN |
2946 						   __GFP_COMP   | GFP_ATOMIC,
2947 						   get_order(a + b));
2948 				if (unlikely(!page))
2949 					return -ENOMEM;
2950 
2951 				sge->length = a;
2952 				orig = sg_page(sge);
2953 				from = sg_virt(sge);
2954 				to = page_address(page);
2955 				memcpy(to, from, a);
2956 				memcpy(to + a, from + a + pop, b);
2957 				sg_set_page(sge, page, a + b, 0);
2958 				put_page(orig);
2959 			}
2960 			pop = 0;
2961 		} else if (pop >= sge->length - a) {
2962 			pop -= (sge->length - a);
2963 			sge->length = a;
2964 		}
2965 	}
2966 
2967 	/* From above the current layout _must_ be as follows,
2968 	 *
2969 	 * -| offset
2970 	 * -| start
2971 	 *
2972 	 *  |---- pop ---|---------------- b ------------|
2973 	 *  |____________________________________________| length
2974 	 *
2975 	 * Offset and start of the current msg elem are equal because in the
2976 	 * previous case we handled offset != start and either consumed the
2977 	 * entire element and advanced to the next element OR pop == 0.
2978 	 *
2979 	 * Two cases to handle here are first pop is less than the length
2980 	 * leaving some remainder b above. Simply adjust the element's layout
2981 	 * in this case. Or pop >= length of the element so that b = 0. In this
2982 	 * case advance to next element decrementing pop.
2983 	 */
2984 	while (pop) {
2985 		struct scatterlist *sge = sk_msg_elem(msg, i);
2986 
2987 		if (pop < sge->length) {
2988 			sge->length -= pop;
2989 			sge->offset += pop;
2990 			pop = 0;
2991 		} else {
2992 			pop -= sge->length;
2993 			sk_msg_shift_left(msg, i);
2994 		}
2995 		sk_msg_iter_var_next(i);
2996 	}
2997 
2998 	sk_mem_uncharge(msg->sk, len - pop);
2999 	msg->sg.size -= (len - pop);
3000 	sk_msg_compute_data_pointers(msg);
3001 	return 0;
3002 }
3003 
3004 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3005 	.func		= bpf_msg_pop_data,
3006 	.gpl_only	= false,
3007 	.ret_type	= RET_INTEGER,
3008 	.arg1_type	= ARG_PTR_TO_CTX,
3009 	.arg2_type	= ARG_ANYTHING,
3010 	.arg3_type	= ARG_ANYTHING,
3011 	.arg4_type	= ARG_ANYTHING,
3012 };
3013 
3014 #ifdef CONFIG_CGROUP_NET_CLASSID
3015 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3016 {
3017 	return __task_get_classid(current);
3018 }
3019 
3020 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3021 	.func		= bpf_get_cgroup_classid_curr,
3022 	.gpl_only	= false,
3023 	.ret_type	= RET_INTEGER,
3024 };
3025 
3026 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3027 {
3028 	struct sock *sk = skb_to_full_sk(skb);
3029 
3030 	if (!sk || !sk_fullsock(sk))
3031 		return 0;
3032 
3033 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3034 }
3035 
3036 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3037 	.func		= bpf_skb_cgroup_classid,
3038 	.gpl_only	= false,
3039 	.ret_type	= RET_INTEGER,
3040 	.arg1_type	= ARG_PTR_TO_CTX,
3041 };
3042 #endif
3043 
3044 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3045 {
3046 	return task_get_classid(skb);
3047 }
3048 
3049 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3050 	.func           = bpf_get_cgroup_classid,
3051 	.gpl_only       = false,
3052 	.ret_type       = RET_INTEGER,
3053 	.arg1_type      = ARG_PTR_TO_CTX,
3054 };
3055 
3056 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3057 {
3058 	return dst_tclassid(skb);
3059 }
3060 
3061 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3062 	.func           = bpf_get_route_realm,
3063 	.gpl_only       = false,
3064 	.ret_type       = RET_INTEGER,
3065 	.arg1_type      = ARG_PTR_TO_CTX,
3066 };
3067 
3068 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3069 {
3070 	/* If skb_clear_hash() was called due to mangling, we can
3071 	 * trigger SW recalculation here. Later access to hash
3072 	 * can then use the inline skb->hash via context directly
3073 	 * instead of calling this helper again.
3074 	 */
3075 	return skb_get_hash(skb);
3076 }
3077 
3078 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3079 	.func		= bpf_get_hash_recalc,
3080 	.gpl_only	= false,
3081 	.ret_type	= RET_INTEGER,
3082 	.arg1_type	= ARG_PTR_TO_CTX,
3083 };
3084 
3085 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3086 {
3087 	/* After all direct packet write, this can be used once for
3088 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3089 	 */
3090 	skb_clear_hash(skb);
3091 	return 0;
3092 }
3093 
3094 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3095 	.func		= bpf_set_hash_invalid,
3096 	.gpl_only	= false,
3097 	.ret_type	= RET_INTEGER,
3098 	.arg1_type	= ARG_PTR_TO_CTX,
3099 };
3100 
3101 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3102 {
3103 	/* Set user specified hash as L4(+), so that it gets returned
3104 	 * on skb_get_hash() call unless BPF prog later on triggers a
3105 	 * skb_clear_hash().
3106 	 */
3107 	__skb_set_sw_hash(skb, hash, true);
3108 	return 0;
3109 }
3110 
3111 static const struct bpf_func_proto bpf_set_hash_proto = {
3112 	.func		= bpf_set_hash,
3113 	.gpl_only	= false,
3114 	.ret_type	= RET_INTEGER,
3115 	.arg1_type	= ARG_PTR_TO_CTX,
3116 	.arg2_type	= ARG_ANYTHING,
3117 };
3118 
3119 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3120 	   u16, vlan_tci)
3121 {
3122 	int ret;
3123 
3124 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3125 		     vlan_proto != htons(ETH_P_8021AD)))
3126 		vlan_proto = htons(ETH_P_8021Q);
3127 
3128 	bpf_push_mac_rcsum(skb);
3129 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3130 	bpf_pull_mac_rcsum(skb);
3131 
3132 	bpf_compute_data_pointers(skb);
3133 	return ret;
3134 }
3135 
3136 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3137 	.func           = bpf_skb_vlan_push,
3138 	.gpl_only       = false,
3139 	.ret_type       = RET_INTEGER,
3140 	.arg1_type      = ARG_PTR_TO_CTX,
3141 	.arg2_type      = ARG_ANYTHING,
3142 	.arg3_type      = ARG_ANYTHING,
3143 };
3144 
3145 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3146 {
3147 	int ret;
3148 
3149 	bpf_push_mac_rcsum(skb);
3150 	ret = skb_vlan_pop(skb);
3151 	bpf_pull_mac_rcsum(skb);
3152 
3153 	bpf_compute_data_pointers(skb);
3154 	return ret;
3155 }
3156 
3157 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3158 	.func           = bpf_skb_vlan_pop,
3159 	.gpl_only       = false,
3160 	.ret_type       = RET_INTEGER,
3161 	.arg1_type      = ARG_PTR_TO_CTX,
3162 };
3163 
3164 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3165 {
3166 	/* Caller already did skb_cow() with len as headroom,
3167 	 * so no need to do it here.
3168 	 */
3169 	skb_push(skb, len);
3170 	memmove(skb->data, skb->data + len, off);
3171 	memset(skb->data + off, 0, len);
3172 
3173 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3174 	 * needed here as it does not change the skb->csum
3175 	 * result for checksum complete when summing over
3176 	 * zeroed blocks.
3177 	 */
3178 	return 0;
3179 }
3180 
3181 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3182 {
3183 	void *old_data;
3184 
3185 	/* skb_ensure_writable() is not needed here, as we're
3186 	 * already working on an uncloned skb.
3187 	 */
3188 	if (unlikely(!pskb_may_pull(skb, off + len)))
3189 		return -ENOMEM;
3190 
3191 	old_data = skb->data;
3192 	__skb_pull(skb, len);
3193 	skb_postpull_rcsum(skb, old_data + off, len);
3194 	memmove(skb->data, old_data, off);
3195 
3196 	return 0;
3197 }
3198 
3199 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3200 {
3201 	bool trans_same = skb->transport_header == skb->network_header;
3202 	int ret;
3203 
3204 	/* There's no need for __skb_push()/__skb_pull() pair to
3205 	 * get to the start of the mac header as we're guaranteed
3206 	 * to always start from here under eBPF.
3207 	 */
3208 	ret = bpf_skb_generic_push(skb, off, len);
3209 	if (likely(!ret)) {
3210 		skb->mac_header -= len;
3211 		skb->network_header -= len;
3212 		if (trans_same)
3213 			skb->transport_header = skb->network_header;
3214 	}
3215 
3216 	return ret;
3217 }
3218 
3219 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3220 {
3221 	bool trans_same = skb->transport_header == skb->network_header;
3222 	int ret;
3223 
3224 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3225 	ret = bpf_skb_generic_pop(skb, off, len);
3226 	if (likely(!ret)) {
3227 		skb->mac_header += len;
3228 		skb->network_header += len;
3229 		if (trans_same)
3230 			skb->transport_header = skb->network_header;
3231 	}
3232 
3233 	return ret;
3234 }
3235 
3236 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3237 {
3238 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3239 	u32 off = skb_mac_header_len(skb);
3240 	int ret;
3241 
3242 	ret = skb_cow(skb, len_diff);
3243 	if (unlikely(ret < 0))
3244 		return ret;
3245 
3246 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3247 	if (unlikely(ret < 0))
3248 		return ret;
3249 
3250 	if (skb_is_gso(skb)) {
3251 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3252 
3253 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3254 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3255 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3256 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3257 		}
3258 	}
3259 
3260 	skb->protocol = htons(ETH_P_IPV6);
3261 	skb_clear_hash(skb);
3262 
3263 	return 0;
3264 }
3265 
3266 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3267 {
3268 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3269 	u32 off = skb_mac_header_len(skb);
3270 	int ret;
3271 
3272 	ret = skb_unclone(skb, GFP_ATOMIC);
3273 	if (unlikely(ret < 0))
3274 		return ret;
3275 
3276 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3277 	if (unlikely(ret < 0))
3278 		return ret;
3279 
3280 	if (skb_is_gso(skb)) {
3281 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3282 
3283 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3284 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3285 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3286 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3287 		}
3288 	}
3289 
3290 	skb->protocol = htons(ETH_P_IP);
3291 	skb_clear_hash(skb);
3292 
3293 	return 0;
3294 }
3295 
3296 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3297 {
3298 	__be16 from_proto = skb->protocol;
3299 
3300 	if (from_proto == htons(ETH_P_IP) &&
3301 	      to_proto == htons(ETH_P_IPV6))
3302 		return bpf_skb_proto_4_to_6(skb);
3303 
3304 	if (from_proto == htons(ETH_P_IPV6) &&
3305 	      to_proto == htons(ETH_P_IP))
3306 		return bpf_skb_proto_6_to_4(skb);
3307 
3308 	return -ENOTSUPP;
3309 }
3310 
3311 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3312 	   u64, flags)
3313 {
3314 	int ret;
3315 
3316 	if (unlikely(flags))
3317 		return -EINVAL;
3318 
3319 	/* General idea is that this helper does the basic groundwork
3320 	 * needed for changing the protocol, and eBPF program fills the
3321 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3322 	 * and other helpers, rather than passing a raw buffer here.
3323 	 *
3324 	 * The rationale is to keep this minimal and without a need to
3325 	 * deal with raw packet data. F.e. even if we would pass buffers
3326 	 * here, the program still needs to call the bpf_lX_csum_replace()
3327 	 * helpers anyway. Plus, this way we keep also separation of
3328 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3329 	 * care of stores.
3330 	 *
3331 	 * Currently, additional options and extension header space are
3332 	 * not supported, but flags register is reserved so we can adapt
3333 	 * that. For offloads, we mark packet as dodgy, so that headers
3334 	 * need to be verified first.
3335 	 */
3336 	ret = bpf_skb_proto_xlat(skb, proto);
3337 	bpf_compute_data_pointers(skb);
3338 	return ret;
3339 }
3340 
3341 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3342 	.func		= bpf_skb_change_proto,
3343 	.gpl_only	= false,
3344 	.ret_type	= RET_INTEGER,
3345 	.arg1_type	= ARG_PTR_TO_CTX,
3346 	.arg2_type	= ARG_ANYTHING,
3347 	.arg3_type	= ARG_ANYTHING,
3348 };
3349 
3350 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3351 {
3352 	/* We only allow a restricted subset to be changed for now. */
3353 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3354 		     !skb_pkt_type_ok(pkt_type)))
3355 		return -EINVAL;
3356 
3357 	skb->pkt_type = pkt_type;
3358 	return 0;
3359 }
3360 
3361 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3362 	.func		= bpf_skb_change_type,
3363 	.gpl_only	= false,
3364 	.ret_type	= RET_INTEGER,
3365 	.arg1_type	= ARG_PTR_TO_CTX,
3366 	.arg2_type	= ARG_ANYTHING,
3367 };
3368 
3369 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3370 {
3371 	switch (skb->protocol) {
3372 	case htons(ETH_P_IP):
3373 		return sizeof(struct iphdr);
3374 	case htons(ETH_P_IPV6):
3375 		return sizeof(struct ipv6hdr);
3376 	default:
3377 		return ~0U;
3378 	}
3379 }
3380 
3381 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3382 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3383 
3384 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3385 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3386 
3387 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3388 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3389 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3390 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3391 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3392 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3393 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3394 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3395 
3396 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3397 			    u64 flags)
3398 {
3399 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3400 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3401 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3402 	unsigned int gso_type = SKB_GSO_DODGY;
3403 	int ret;
3404 
3405 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3406 		/* udp gso_size delineates datagrams, only allow if fixed */
3407 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3408 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3409 			return -ENOTSUPP;
3410 	}
3411 
3412 	ret = skb_cow_head(skb, len_diff);
3413 	if (unlikely(ret < 0))
3414 		return ret;
3415 
3416 	if (encap) {
3417 		if (skb->protocol != htons(ETH_P_IP) &&
3418 		    skb->protocol != htons(ETH_P_IPV6))
3419 			return -ENOTSUPP;
3420 
3421 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3422 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3423 			return -EINVAL;
3424 
3425 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3426 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3427 			return -EINVAL;
3428 
3429 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3430 		    inner_mac_len < ETH_HLEN)
3431 			return -EINVAL;
3432 
3433 		if (skb->encapsulation)
3434 			return -EALREADY;
3435 
3436 		mac_len = skb->network_header - skb->mac_header;
3437 		inner_net = skb->network_header;
3438 		if (inner_mac_len > len_diff)
3439 			return -EINVAL;
3440 		inner_trans = skb->transport_header;
3441 	}
3442 
3443 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3444 	if (unlikely(ret < 0))
3445 		return ret;
3446 
3447 	if (encap) {
3448 		skb->inner_mac_header = inner_net - inner_mac_len;
3449 		skb->inner_network_header = inner_net;
3450 		skb->inner_transport_header = inner_trans;
3451 
3452 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3453 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3454 		else
3455 			skb_set_inner_protocol(skb, skb->protocol);
3456 
3457 		skb->encapsulation = 1;
3458 		skb_set_network_header(skb, mac_len);
3459 
3460 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3461 			gso_type |= SKB_GSO_UDP_TUNNEL;
3462 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3463 			gso_type |= SKB_GSO_GRE;
3464 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3465 			gso_type |= SKB_GSO_IPXIP6;
3466 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3467 			gso_type |= SKB_GSO_IPXIP4;
3468 
3469 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3470 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3471 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3472 					sizeof(struct ipv6hdr) :
3473 					sizeof(struct iphdr);
3474 
3475 			skb_set_transport_header(skb, mac_len + nh_len);
3476 		}
3477 
3478 		/* Match skb->protocol to new outer l3 protocol */
3479 		if (skb->protocol == htons(ETH_P_IP) &&
3480 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3481 			skb->protocol = htons(ETH_P_IPV6);
3482 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3483 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3484 			skb->protocol = htons(ETH_P_IP);
3485 	}
3486 
3487 	if (skb_is_gso(skb)) {
3488 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3489 
3490 		/* Due to header grow, MSS needs to be downgraded. */
3491 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3492 			skb_decrease_gso_size(shinfo, len_diff);
3493 
3494 		/* Header must be checked, and gso_segs recomputed. */
3495 		shinfo->gso_type |= gso_type;
3496 		shinfo->gso_segs = 0;
3497 	}
3498 
3499 	return 0;
3500 }
3501 
3502 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3503 			      u64 flags)
3504 {
3505 	int ret;
3506 
3507 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3508 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3509 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3510 		return -EINVAL;
3511 
3512 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3513 		/* udp gso_size delineates datagrams, only allow if fixed */
3514 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3515 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3516 			return -ENOTSUPP;
3517 	}
3518 
3519 	ret = skb_unclone(skb, GFP_ATOMIC);
3520 	if (unlikely(ret < 0))
3521 		return ret;
3522 
3523 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3524 	if (unlikely(ret < 0))
3525 		return ret;
3526 
3527 	/* Match skb->protocol to new outer l3 protocol */
3528 	if (skb->protocol == htons(ETH_P_IP) &&
3529 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3530 		skb->protocol = htons(ETH_P_IPV6);
3531 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3532 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3533 		skb->protocol = htons(ETH_P_IP);
3534 
3535 	if (skb_is_gso(skb)) {
3536 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3537 
3538 		/* Due to header shrink, MSS can be upgraded. */
3539 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3540 			skb_increase_gso_size(shinfo, len_diff);
3541 
3542 		/* Header must be checked, and gso_segs recomputed. */
3543 		shinfo->gso_type |= SKB_GSO_DODGY;
3544 		shinfo->gso_segs = 0;
3545 	}
3546 
3547 	return 0;
3548 }
3549 
3550 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3551 
3552 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3553 	   u32, mode, u64, flags)
3554 {
3555 	u32 len_diff_abs = abs(len_diff);
3556 	bool shrink = len_diff < 0;
3557 	int ret = 0;
3558 
3559 	if (unlikely(flags || mode))
3560 		return -EINVAL;
3561 	if (unlikely(len_diff_abs > 0xfffU))
3562 		return -EFAULT;
3563 
3564 	if (!shrink) {
3565 		ret = skb_cow(skb, len_diff);
3566 		if (unlikely(ret < 0))
3567 			return ret;
3568 		__skb_push(skb, len_diff_abs);
3569 		memset(skb->data, 0, len_diff_abs);
3570 	} else {
3571 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3572 			return -ENOMEM;
3573 		__skb_pull(skb, len_diff_abs);
3574 	}
3575 	if (tls_sw_has_ctx_rx(skb->sk)) {
3576 		struct strp_msg *rxm = strp_msg(skb);
3577 
3578 		rxm->full_len += len_diff;
3579 	}
3580 	return ret;
3581 }
3582 
3583 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3584 	.func		= sk_skb_adjust_room,
3585 	.gpl_only	= false,
3586 	.ret_type	= RET_INTEGER,
3587 	.arg1_type	= ARG_PTR_TO_CTX,
3588 	.arg2_type	= ARG_ANYTHING,
3589 	.arg3_type	= ARG_ANYTHING,
3590 	.arg4_type	= ARG_ANYTHING,
3591 };
3592 
3593 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3594 	   u32, mode, u64, flags)
3595 {
3596 	u32 len_cur, len_diff_abs = abs(len_diff);
3597 	u32 len_min = bpf_skb_net_base_len(skb);
3598 	u32 len_max = BPF_SKB_MAX_LEN;
3599 	__be16 proto = skb->protocol;
3600 	bool shrink = len_diff < 0;
3601 	u32 off;
3602 	int ret;
3603 
3604 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3605 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3606 		return -EINVAL;
3607 	if (unlikely(len_diff_abs > 0xfffU))
3608 		return -EFAULT;
3609 	if (unlikely(proto != htons(ETH_P_IP) &&
3610 		     proto != htons(ETH_P_IPV6)))
3611 		return -ENOTSUPP;
3612 
3613 	off = skb_mac_header_len(skb);
3614 	switch (mode) {
3615 	case BPF_ADJ_ROOM_NET:
3616 		off += bpf_skb_net_base_len(skb);
3617 		break;
3618 	case BPF_ADJ_ROOM_MAC:
3619 		break;
3620 	default:
3621 		return -ENOTSUPP;
3622 	}
3623 
3624 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3625 		if (!shrink)
3626 			return -EINVAL;
3627 
3628 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3629 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3630 			len_min = sizeof(struct iphdr);
3631 			break;
3632 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3633 			len_min = sizeof(struct ipv6hdr);
3634 			break;
3635 		default:
3636 			return -EINVAL;
3637 		}
3638 	}
3639 
3640 	len_cur = skb->len - skb_network_offset(skb);
3641 	if ((shrink && (len_diff_abs >= len_cur ||
3642 			len_cur - len_diff_abs < len_min)) ||
3643 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3644 			 !skb_is_gso(skb))))
3645 		return -ENOTSUPP;
3646 
3647 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3648 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3649 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3650 		__skb_reset_checksum_unnecessary(skb);
3651 
3652 	bpf_compute_data_pointers(skb);
3653 	return ret;
3654 }
3655 
3656 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3657 	.func		= bpf_skb_adjust_room,
3658 	.gpl_only	= false,
3659 	.ret_type	= RET_INTEGER,
3660 	.arg1_type	= ARG_PTR_TO_CTX,
3661 	.arg2_type	= ARG_ANYTHING,
3662 	.arg3_type	= ARG_ANYTHING,
3663 	.arg4_type	= ARG_ANYTHING,
3664 };
3665 
3666 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3667 {
3668 	u32 min_len = skb_network_offset(skb);
3669 
3670 	if (skb_transport_header_was_set(skb))
3671 		min_len = skb_transport_offset(skb);
3672 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3673 		min_len = skb_checksum_start_offset(skb) +
3674 			  skb->csum_offset + sizeof(__sum16);
3675 	return min_len;
3676 }
3677 
3678 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3679 {
3680 	unsigned int old_len = skb->len;
3681 	int ret;
3682 
3683 	ret = __skb_grow_rcsum(skb, new_len);
3684 	if (!ret)
3685 		memset(skb->data + old_len, 0, new_len - old_len);
3686 	return ret;
3687 }
3688 
3689 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3690 {
3691 	return __skb_trim_rcsum(skb, new_len);
3692 }
3693 
3694 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3695 					u64 flags)
3696 {
3697 	u32 max_len = BPF_SKB_MAX_LEN;
3698 	u32 min_len = __bpf_skb_min_len(skb);
3699 	int ret;
3700 
3701 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3702 		return -EINVAL;
3703 	if (skb->encapsulation)
3704 		return -ENOTSUPP;
3705 
3706 	/* The basic idea of this helper is that it's performing the
3707 	 * needed work to either grow or trim an skb, and eBPF program
3708 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3709 	 * bpf_lX_csum_replace() and others rather than passing a raw
3710 	 * buffer here. This one is a slow path helper and intended
3711 	 * for replies with control messages.
3712 	 *
3713 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3714 	 * minimal and without protocol specifics so that we are able
3715 	 * to separate concerns as in bpf_skb_store_bytes() should only
3716 	 * be the one responsible for writing buffers.
3717 	 *
3718 	 * It's really expected to be a slow path operation here for
3719 	 * control message replies, so we're implicitly linearizing,
3720 	 * uncloning and drop offloads from the skb by this.
3721 	 */
3722 	ret = __bpf_try_make_writable(skb, skb->len);
3723 	if (!ret) {
3724 		if (new_len > skb->len)
3725 			ret = bpf_skb_grow_rcsum(skb, new_len);
3726 		else if (new_len < skb->len)
3727 			ret = bpf_skb_trim_rcsum(skb, new_len);
3728 		if (!ret && skb_is_gso(skb))
3729 			skb_gso_reset(skb);
3730 	}
3731 	return ret;
3732 }
3733 
3734 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3735 	   u64, flags)
3736 {
3737 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3738 
3739 	bpf_compute_data_pointers(skb);
3740 	return ret;
3741 }
3742 
3743 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3744 	.func		= bpf_skb_change_tail,
3745 	.gpl_only	= false,
3746 	.ret_type	= RET_INTEGER,
3747 	.arg1_type	= ARG_PTR_TO_CTX,
3748 	.arg2_type	= ARG_ANYTHING,
3749 	.arg3_type	= ARG_ANYTHING,
3750 };
3751 
3752 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3753 	   u64, flags)
3754 {
3755 	return __bpf_skb_change_tail(skb, new_len, flags);
3756 }
3757 
3758 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3759 	.func		= sk_skb_change_tail,
3760 	.gpl_only	= false,
3761 	.ret_type	= RET_INTEGER,
3762 	.arg1_type	= ARG_PTR_TO_CTX,
3763 	.arg2_type	= ARG_ANYTHING,
3764 	.arg3_type	= ARG_ANYTHING,
3765 };
3766 
3767 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3768 					u64 flags)
3769 {
3770 	u32 max_len = BPF_SKB_MAX_LEN;
3771 	u32 new_len = skb->len + head_room;
3772 	int ret;
3773 
3774 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3775 		     new_len < skb->len))
3776 		return -EINVAL;
3777 
3778 	ret = skb_cow(skb, head_room);
3779 	if (likely(!ret)) {
3780 		/* Idea for this helper is that we currently only
3781 		 * allow to expand on mac header. This means that
3782 		 * skb->protocol network header, etc, stay as is.
3783 		 * Compared to bpf_skb_change_tail(), we're more
3784 		 * flexible due to not needing to linearize or
3785 		 * reset GSO. Intention for this helper is to be
3786 		 * used by an L3 skb that needs to push mac header
3787 		 * for redirection into L2 device.
3788 		 */
3789 		__skb_push(skb, head_room);
3790 		memset(skb->data, 0, head_room);
3791 		skb_reset_mac_header(skb);
3792 		skb_reset_mac_len(skb);
3793 	}
3794 
3795 	return ret;
3796 }
3797 
3798 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3799 	   u64, flags)
3800 {
3801 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3802 
3803 	bpf_compute_data_pointers(skb);
3804 	return ret;
3805 }
3806 
3807 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3808 	.func		= bpf_skb_change_head,
3809 	.gpl_only	= false,
3810 	.ret_type	= RET_INTEGER,
3811 	.arg1_type	= ARG_PTR_TO_CTX,
3812 	.arg2_type	= ARG_ANYTHING,
3813 	.arg3_type	= ARG_ANYTHING,
3814 };
3815 
3816 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3817 	   u64, flags)
3818 {
3819 	return __bpf_skb_change_head(skb, head_room, flags);
3820 }
3821 
3822 static const struct bpf_func_proto sk_skb_change_head_proto = {
3823 	.func		= sk_skb_change_head,
3824 	.gpl_only	= false,
3825 	.ret_type	= RET_INTEGER,
3826 	.arg1_type	= ARG_PTR_TO_CTX,
3827 	.arg2_type	= ARG_ANYTHING,
3828 	.arg3_type	= ARG_ANYTHING,
3829 };
3830 
3831 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3832 {
3833 	return xdp_get_buff_len(xdp);
3834 }
3835 
3836 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3837 	.func		= bpf_xdp_get_buff_len,
3838 	.gpl_only	= false,
3839 	.ret_type	= RET_INTEGER,
3840 	.arg1_type	= ARG_PTR_TO_CTX,
3841 };
3842 
3843 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3844 
3845 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3846 	.func		= bpf_xdp_get_buff_len,
3847 	.gpl_only	= false,
3848 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3849 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3850 };
3851 
3852 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3853 {
3854 	return xdp_data_meta_unsupported(xdp) ? 0 :
3855 	       xdp->data - xdp->data_meta;
3856 }
3857 
3858 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3859 {
3860 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3861 	unsigned long metalen = xdp_get_metalen(xdp);
3862 	void *data_start = xdp_frame_end + metalen;
3863 	void *data = xdp->data + offset;
3864 
3865 	if (unlikely(data < data_start ||
3866 		     data > xdp->data_end - ETH_HLEN))
3867 		return -EINVAL;
3868 
3869 	if (metalen)
3870 		memmove(xdp->data_meta + offset,
3871 			xdp->data_meta, metalen);
3872 	xdp->data_meta += offset;
3873 	xdp->data = data;
3874 
3875 	return 0;
3876 }
3877 
3878 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3879 	.func		= bpf_xdp_adjust_head,
3880 	.gpl_only	= false,
3881 	.ret_type	= RET_INTEGER,
3882 	.arg1_type	= ARG_PTR_TO_CTX,
3883 	.arg2_type	= ARG_ANYTHING,
3884 };
3885 
3886 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3887 			     void *buf, unsigned long len, bool flush)
3888 {
3889 	unsigned long ptr_len, ptr_off = 0;
3890 	skb_frag_t *next_frag, *end_frag;
3891 	struct skb_shared_info *sinfo;
3892 	void *src, *dst;
3893 	u8 *ptr_buf;
3894 
3895 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3896 		src = flush ? buf : xdp->data + off;
3897 		dst = flush ? xdp->data + off : buf;
3898 		memcpy(dst, src, len);
3899 		return;
3900 	}
3901 
3902 	sinfo = xdp_get_shared_info_from_buff(xdp);
3903 	end_frag = &sinfo->frags[sinfo->nr_frags];
3904 	next_frag = &sinfo->frags[0];
3905 
3906 	ptr_len = xdp->data_end - xdp->data;
3907 	ptr_buf = xdp->data;
3908 
3909 	while (true) {
3910 		if (off < ptr_off + ptr_len) {
3911 			unsigned long copy_off = off - ptr_off;
3912 			unsigned long copy_len = min(len, ptr_len - copy_off);
3913 
3914 			src = flush ? buf : ptr_buf + copy_off;
3915 			dst = flush ? ptr_buf + copy_off : buf;
3916 			memcpy(dst, src, copy_len);
3917 
3918 			off += copy_len;
3919 			len -= copy_len;
3920 			buf += copy_len;
3921 		}
3922 
3923 		if (!len || next_frag == end_frag)
3924 			break;
3925 
3926 		ptr_off += ptr_len;
3927 		ptr_buf = skb_frag_address(next_frag);
3928 		ptr_len = skb_frag_size(next_frag);
3929 		next_frag++;
3930 	}
3931 }
3932 
3933 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3934 {
3935 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3936 	u32 size = xdp->data_end - xdp->data;
3937 	void *addr = xdp->data;
3938 	int i;
3939 
3940 	if (unlikely(offset > 0xffff || len > 0xffff))
3941 		return ERR_PTR(-EFAULT);
3942 
3943 	if (offset + len > xdp_get_buff_len(xdp))
3944 		return ERR_PTR(-EINVAL);
3945 
3946 	if (offset < size) /* linear area */
3947 		goto out;
3948 
3949 	offset -= size;
3950 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3951 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3952 
3953 		if  (offset < frag_size) {
3954 			addr = skb_frag_address(&sinfo->frags[i]);
3955 			size = frag_size;
3956 			break;
3957 		}
3958 		offset -= frag_size;
3959 	}
3960 out:
3961 	return offset + len <= size ? addr + offset : NULL;
3962 }
3963 
3964 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3965 	   void *, buf, u32, len)
3966 {
3967 	void *ptr;
3968 
3969 	ptr = bpf_xdp_pointer(xdp, offset, len);
3970 	if (IS_ERR(ptr))
3971 		return PTR_ERR(ptr);
3972 
3973 	if (!ptr)
3974 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3975 	else
3976 		memcpy(buf, ptr, len);
3977 
3978 	return 0;
3979 }
3980 
3981 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3982 	.func		= bpf_xdp_load_bytes,
3983 	.gpl_only	= false,
3984 	.ret_type	= RET_INTEGER,
3985 	.arg1_type	= ARG_PTR_TO_CTX,
3986 	.arg2_type	= ARG_ANYTHING,
3987 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3988 	.arg4_type	= ARG_CONST_SIZE,
3989 };
3990 
3991 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3992 	   void *, buf, u32, len)
3993 {
3994 	void *ptr;
3995 
3996 	ptr = bpf_xdp_pointer(xdp, offset, len);
3997 	if (IS_ERR(ptr))
3998 		return PTR_ERR(ptr);
3999 
4000 	if (!ptr)
4001 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4002 	else
4003 		memcpy(ptr, buf, len);
4004 
4005 	return 0;
4006 }
4007 
4008 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4009 	.func		= bpf_xdp_store_bytes,
4010 	.gpl_only	= false,
4011 	.ret_type	= RET_INTEGER,
4012 	.arg1_type	= ARG_PTR_TO_CTX,
4013 	.arg2_type	= ARG_ANYTHING,
4014 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4015 	.arg4_type	= ARG_CONST_SIZE,
4016 };
4017 
4018 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4019 {
4020 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4021 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4022 	struct xdp_rxq_info *rxq = xdp->rxq;
4023 	unsigned int tailroom;
4024 
4025 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4026 		return -EOPNOTSUPP;
4027 
4028 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4029 	if (unlikely(offset > tailroom))
4030 		return -EINVAL;
4031 
4032 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4033 	skb_frag_size_add(frag, offset);
4034 	sinfo->xdp_frags_size += offset;
4035 
4036 	return 0;
4037 }
4038 
4039 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4040 {
4041 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4042 	int i, n_frags_free = 0, len_free = 0;
4043 
4044 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4045 		return -EINVAL;
4046 
4047 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4048 		skb_frag_t *frag = &sinfo->frags[i];
4049 		int shrink = min_t(int, offset, skb_frag_size(frag));
4050 
4051 		len_free += shrink;
4052 		offset -= shrink;
4053 
4054 		if (skb_frag_size(frag) == shrink) {
4055 			struct page *page = skb_frag_page(frag);
4056 
4057 			__xdp_return(page_address(page), &xdp->rxq->mem,
4058 				     false, NULL);
4059 			n_frags_free++;
4060 		} else {
4061 			skb_frag_size_sub(frag, shrink);
4062 			break;
4063 		}
4064 	}
4065 	sinfo->nr_frags -= n_frags_free;
4066 	sinfo->xdp_frags_size -= len_free;
4067 
4068 	if (unlikely(!sinfo->nr_frags)) {
4069 		xdp_buff_clear_frags_flag(xdp);
4070 		xdp->data_end -= offset;
4071 	}
4072 
4073 	return 0;
4074 }
4075 
4076 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4077 {
4078 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4079 	void *data_end = xdp->data_end + offset;
4080 
4081 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4082 		if (offset < 0)
4083 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4084 
4085 		return bpf_xdp_frags_increase_tail(xdp, offset);
4086 	}
4087 
4088 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4089 	if (unlikely(data_end > data_hard_end))
4090 		return -EINVAL;
4091 
4092 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
4093 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4094 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4095 		return -EINVAL;
4096 	}
4097 
4098 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4099 		return -EINVAL;
4100 
4101 	/* Clear memory area on grow, can contain uninit kernel memory */
4102 	if (offset > 0)
4103 		memset(xdp->data_end, 0, offset);
4104 
4105 	xdp->data_end = data_end;
4106 
4107 	return 0;
4108 }
4109 
4110 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4111 	.func		= bpf_xdp_adjust_tail,
4112 	.gpl_only	= false,
4113 	.ret_type	= RET_INTEGER,
4114 	.arg1_type	= ARG_PTR_TO_CTX,
4115 	.arg2_type	= ARG_ANYTHING,
4116 };
4117 
4118 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4119 {
4120 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4121 	void *meta = xdp->data_meta + offset;
4122 	unsigned long metalen = xdp->data - meta;
4123 
4124 	if (xdp_data_meta_unsupported(xdp))
4125 		return -ENOTSUPP;
4126 	if (unlikely(meta < xdp_frame_end ||
4127 		     meta > xdp->data))
4128 		return -EINVAL;
4129 	if (unlikely(xdp_metalen_invalid(metalen)))
4130 		return -EACCES;
4131 
4132 	xdp->data_meta = meta;
4133 
4134 	return 0;
4135 }
4136 
4137 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4138 	.func		= bpf_xdp_adjust_meta,
4139 	.gpl_only	= false,
4140 	.ret_type	= RET_INTEGER,
4141 	.arg1_type	= ARG_PTR_TO_CTX,
4142 	.arg2_type	= ARG_ANYTHING,
4143 };
4144 
4145 /**
4146  * DOC: xdp redirect
4147  *
4148  * XDP_REDIRECT works by a three-step process, implemented in the functions
4149  * below:
4150  *
4151  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4152  *    of the redirect and store it (along with some other metadata) in a per-CPU
4153  *    struct bpf_redirect_info.
4154  *
4155  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4156  *    call xdp_do_redirect() which will use the information in struct
4157  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4158  *    bulk queue structure.
4159  *
4160  * 3. Before exiting its NAPI poll loop, the driver will call
4161  *    xdp_do_flush(), which will flush all the different bulk queues,
4162  *    thus completing the redirect. Note that xdp_do_flush() must be
4163  *    called before napi_complete_done() in the driver, as the
4164  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4165  *    through to the xdp_do_flush() call for RCU protection of all
4166  *    in-kernel data structures.
4167  */
4168 /*
4169  * Pointers to the map entries will be kept around for this whole sequence of
4170  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4171  * the core code; instead, the RCU protection relies on everything happening
4172  * inside a single NAPI poll sequence, which means it's between a pair of calls
4173  * to local_bh_disable()/local_bh_enable().
4174  *
4175  * The map entries are marked as __rcu and the map code makes sure to
4176  * dereference those pointers with rcu_dereference_check() in a way that works
4177  * for both sections that to hold an rcu_read_lock() and sections that are
4178  * called from NAPI without a separate rcu_read_lock(). The code below does not
4179  * use RCU annotations, but relies on those in the map code.
4180  */
4181 void xdp_do_flush(void)
4182 {
4183 	__dev_flush();
4184 	__cpu_map_flush();
4185 	__xsk_map_flush();
4186 }
4187 EXPORT_SYMBOL_GPL(xdp_do_flush);
4188 
4189 void bpf_clear_redirect_map(struct bpf_map *map)
4190 {
4191 	struct bpf_redirect_info *ri;
4192 	int cpu;
4193 
4194 	for_each_possible_cpu(cpu) {
4195 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4196 		/* Avoid polluting remote cacheline due to writes if
4197 		 * not needed. Once we pass this test, we need the
4198 		 * cmpxchg() to make sure it hasn't been changed in
4199 		 * the meantime by remote CPU.
4200 		 */
4201 		if (unlikely(READ_ONCE(ri->map) == map))
4202 			cmpxchg(&ri->map, map, NULL);
4203 	}
4204 }
4205 
4206 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4207 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4208 
4209 u32 xdp_master_redirect(struct xdp_buff *xdp)
4210 {
4211 	struct net_device *master, *slave;
4212 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4213 
4214 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4215 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4216 	if (slave && slave != xdp->rxq->dev) {
4217 		/* The target device is different from the receiving device, so
4218 		 * redirect it to the new device.
4219 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4220 		 * drivers to unmap the packet from their rx ring.
4221 		 */
4222 		ri->tgt_index = slave->ifindex;
4223 		ri->map_id = INT_MAX;
4224 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4225 		return XDP_REDIRECT;
4226 	}
4227 	return XDP_TX;
4228 }
4229 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4230 
4231 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4232 					struct net_device *dev,
4233 					struct xdp_buff *xdp,
4234 					struct bpf_prog *xdp_prog)
4235 {
4236 	enum bpf_map_type map_type = ri->map_type;
4237 	void *fwd = ri->tgt_value;
4238 	u32 map_id = ri->map_id;
4239 	int err;
4240 
4241 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4242 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4243 
4244 	err = __xsk_map_redirect(fwd, xdp);
4245 	if (unlikely(err))
4246 		goto err;
4247 
4248 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4249 	return 0;
4250 err:
4251 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4252 	return err;
4253 }
4254 
4255 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4256 						   struct net_device *dev,
4257 						   struct xdp_frame *xdpf,
4258 						   struct bpf_prog *xdp_prog)
4259 {
4260 	enum bpf_map_type map_type = ri->map_type;
4261 	void *fwd = ri->tgt_value;
4262 	u32 map_id = ri->map_id;
4263 	struct bpf_map *map;
4264 	int err;
4265 
4266 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4267 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4268 
4269 	if (unlikely(!xdpf)) {
4270 		err = -EOVERFLOW;
4271 		goto err;
4272 	}
4273 
4274 	switch (map_type) {
4275 	case BPF_MAP_TYPE_DEVMAP:
4276 		fallthrough;
4277 	case BPF_MAP_TYPE_DEVMAP_HASH:
4278 		map = READ_ONCE(ri->map);
4279 		if (unlikely(map)) {
4280 			WRITE_ONCE(ri->map, NULL);
4281 			err = dev_map_enqueue_multi(xdpf, dev, map,
4282 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4283 		} else {
4284 			err = dev_map_enqueue(fwd, xdpf, dev);
4285 		}
4286 		break;
4287 	case BPF_MAP_TYPE_CPUMAP:
4288 		err = cpu_map_enqueue(fwd, xdpf, dev);
4289 		break;
4290 	case BPF_MAP_TYPE_UNSPEC:
4291 		if (map_id == INT_MAX) {
4292 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4293 			if (unlikely(!fwd)) {
4294 				err = -EINVAL;
4295 				break;
4296 			}
4297 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4298 			break;
4299 		}
4300 		fallthrough;
4301 	default:
4302 		err = -EBADRQC;
4303 	}
4304 
4305 	if (unlikely(err))
4306 		goto err;
4307 
4308 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4309 	return 0;
4310 err:
4311 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4312 	return err;
4313 }
4314 
4315 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4316 		    struct bpf_prog *xdp_prog)
4317 {
4318 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4319 	enum bpf_map_type map_type = ri->map_type;
4320 
4321 	if (map_type == BPF_MAP_TYPE_XSKMAP) {
4322 		/* XDP_REDIRECT is not supported AF_XDP yet. */
4323 		if (unlikely(xdp_buff_has_frags(xdp)))
4324 			return -EOPNOTSUPP;
4325 
4326 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4327 	}
4328 
4329 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4330 				       xdp_prog);
4331 }
4332 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4333 
4334 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4335 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4336 {
4337 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4338 	enum bpf_map_type map_type = ri->map_type;
4339 
4340 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4341 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4342 
4343 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4344 }
4345 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4346 
4347 static int xdp_do_generic_redirect_map(struct net_device *dev,
4348 				       struct sk_buff *skb,
4349 				       struct xdp_buff *xdp,
4350 				       struct bpf_prog *xdp_prog,
4351 				       void *fwd,
4352 				       enum bpf_map_type map_type, u32 map_id)
4353 {
4354 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4355 	struct bpf_map *map;
4356 	int err;
4357 
4358 	switch (map_type) {
4359 	case BPF_MAP_TYPE_DEVMAP:
4360 		fallthrough;
4361 	case BPF_MAP_TYPE_DEVMAP_HASH:
4362 		map = READ_ONCE(ri->map);
4363 		if (unlikely(map)) {
4364 			WRITE_ONCE(ri->map, NULL);
4365 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4366 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4367 		} else {
4368 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4369 		}
4370 		if (unlikely(err))
4371 			goto err;
4372 		break;
4373 	case BPF_MAP_TYPE_XSKMAP:
4374 		err = xsk_generic_rcv(fwd, xdp);
4375 		if (err)
4376 			goto err;
4377 		consume_skb(skb);
4378 		break;
4379 	case BPF_MAP_TYPE_CPUMAP:
4380 		err = cpu_map_generic_redirect(fwd, skb);
4381 		if (unlikely(err))
4382 			goto err;
4383 		break;
4384 	default:
4385 		err = -EBADRQC;
4386 		goto err;
4387 	}
4388 
4389 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4390 	return 0;
4391 err:
4392 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4393 	return err;
4394 }
4395 
4396 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4397 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4398 {
4399 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4400 	enum bpf_map_type map_type = ri->map_type;
4401 	void *fwd = ri->tgt_value;
4402 	u32 map_id = ri->map_id;
4403 	int err;
4404 
4405 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4406 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4407 
4408 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4409 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4410 		if (unlikely(!fwd)) {
4411 			err = -EINVAL;
4412 			goto err;
4413 		}
4414 
4415 		err = xdp_ok_fwd_dev(fwd, skb->len);
4416 		if (unlikely(err))
4417 			goto err;
4418 
4419 		skb->dev = fwd;
4420 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4421 		generic_xdp_tx(skb, xdp_prog);
4422 		return 0;
4423 	}
4424 
4425 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4426 err:
4427 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4428 	return err;
4429 }
4430 
4431 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4432 {
4433 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4434 
4435 	if (unlikely(flags))
4436 		return XDP_ABORTED;
4437 
4438 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4439 	 * by map_idr) is used for ifindex based XDP redirect.
4440 	 */
4441 	ri->tgt_index = ifindex;
4442 	ri->map_id = INT_MAX;
4443 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4444 
4445 	return XDP_REDIRECT;
4446 }
4447 
4448 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4449 	.func           = bpf_xdp_redirect,
4450 	.gpl_only       = false,
4451 	.ret_type       = RET_INTEGER,
4452 	.arg1_type      = ARG_ANYTHING,
4453 	.arg2_type      = ARG_ANYTHING,
4454 };
4455 
4456 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4457 	   u64, flags)
4458 {
4459 	return map->ops->map_redirect(map, key, flags);
4460 }
4461 
4462 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4463 	.func           = bpf_xdp_redirect_map,
4464 	.gpl_only       = false,
4465 	.ret_type       = RET_INTEGER,
4466 	.arg1_type      = ARG_CONST_MAP_PTR,
4467 	.arg2_type      = ARG_ANYTHING,
4468 	.arg3_type      = ARG_ANYTHING,
4469 };
4470 
4471 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4472 				  unsigned long off, unsigned long len)
4473 {
4474 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4475 
4476 	if (unlikely(!ptr))
4477 		return len;
4478 	if (ptr != dst_buff)
4479 		memcpy(dst_buff, ptr, len);
4480 
4481 	return 0;
4482 }
4483 
4484 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4485 	   u64, flags, void *, meta, u64, meta_size)
4486 {
4487 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4488 
4489 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4490 		return -EINVAL;
4491 	if (unlikely(!skb || skb_size > skb->len))
4492 		return -EFAULT;
4493 
4494 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4495 				bpf_skb_copy);
4496 }
4497 
4498 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4499 	.func		= bpf_skb_event_output,
4500 	.gpl_only	= true,
4501 	.ret_type	= RET_INTEGER,
4502 	.arg1_type	= ARG_PTR_TO_CTX,
4503 	.arg2_type	= ARG_CONST_MAP_PTR,
4504 	.arg3_type	= ARG_ANYTHING,
4505 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4506 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4507 };
4508 
4509 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4510 
4511 const struct bpf_func_proto bpf_skb_output_proto = {
4512 	.func		= bpf_skb_event_output,
4513 	.gpl_only	= true,
4514 	.ret_type	= RET_INTEGER,
4515 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4516 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4517 	.arg2_type	= ARG_CONST_MAP_PTR,
4518 	.arg3_type	= ARG_ANYTHING,
4519 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4520 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4521 };
4522 
4523 static unsigned short bpf_tunnel_key_af(u64 flags)
4524 {
4525 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4526 }
4527 
4528 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4529 	   u32, size, u64, flags)
4530 {
4531 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4532 	u8 compat[sizeof(struct bpf_tunnel_key)];
4533 	void *to_orig = to;
4534 	int err;
4535 
4536 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4537 					 BPF_F_TUNINFO_FLAGS)))) {
4538 		err = -EINVAL;
4539 		goto err_clear;
4540 	}
4541 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4542 		err = -EPROTO;
4543 		goto err_clear;
4544 	}
4545 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4546 		err = -EINVAL;
4547 		switch (size) {
4548 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4549 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4550 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4551 			goto set_compat;
4552 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4553 			/* Fixup deprecated structure layouts here, so we have
4554 			 * a common path later on.
4555 			 */
4556 			if (ip_tunnel_info_af(info) != AF_INET)
4557 				goto err_clear;
4558 set_compat:
4559 			to = (struct bpf_tunnel_key *)compat;
4560 			break;
4561 		default:
4562 			goto err_clear;
4563 		}
4564 	}
4565 
4566 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4567 	to->tunnel_tos = info->key.tos;
4568 	to->tunnel_ttl = info->key.ttl;
4569 	if (flags & BPF_F_TUNINFO_FLAGS)
4570 		to->tunnel_flags = info->key.tun_flags;
4571 	else
4572 		to->tunnel_ext = 0;
4573 
4574 	if (flags & BPF_F_TUNINFO_IPV6) {
4575 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4576 		       sizeof(to->remote_ipv6));
4577 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4578 		       sizeof(to->local_ipv6));
4579 		to->tunnel_label = be32_to_cpu(info->key.label);
4580 	} else {
4581 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4582 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4583 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4584 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4585 		to->tunnel_label = 0;
4586 	}
4587 
4588 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4589 		memcpy(to_orig, to, size);
4590 
4591 	return 0;
4592 err_clear:
4593 	memset(to_orig, 0, size);
4594 	return err;
4595 }
4596 
4597 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4598 	.func		= bpf_skb_get_tunnel_key,
4599 	.gpl_only	= false,
4600 	.ret_type	= RET_INTEGER,
4601 	.arg1_type	= ARG_PTR_TO_CTX,
4602 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4603 	.arg3_type	= ARG_CONST_SIZE,
4604 	.arg4_type	= ARG_ANYTHING,
4605 };
4606 
4607 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4608 {
4609 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4610 	int err;
4611 
4612 	if (unlikely(!info ||
4613 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4614 		err = -ENOENT;
4615 		goto err_clear;
4616 	}
4617 	if (unlikely(size < info->options_len)) {
4618 		err = -ENOMEM;
4619 		goto err_clear;
4620 	}
4621 
4622 	ip_tunnel_info_opts_get(to, info);
4623 	if (size > info->options_len)
4624 		memset(to + info->options_len, 0, size - info->options_len);
4625 
4626 	return info->options_len;
4627 err_clear:
4628 	memset(to, 0, size);
4629 	return err;
4630 }
4631 
4632 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4633 	.func		= bpf_skb_get_tunnel_opt,
4634 	.gpl_only	= false,
4635 	.ret_type	= RET_INTEGER,
4636 	.arg1_type	= ARG_PTR_TO_CTX,
4637 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4638 	.arg3_type	= ARG_CONST_SIZE,
4639 };
4640 
4641 static struct metadata_dst __percpu *md_dst;
4642 
4643 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4644 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4645 {
4646 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4647 	u8 compat[sizeof(struct bpf_tunnel_key)];
4648 	struct ip_tunnel_info *info;
4649 
4650 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4651 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4652 			       BPF_F_NO_TUNNEL_KEY)))
4653 		return -EINVAL;
4654 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4655 		switch (size) {
4656 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4657 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4658 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4659 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4660 			/* Fixup deprecated structure layouts here, so we have
4661 			 * a common path later on.
4662 			 */
4663 			memcpy(compat, from, size);
4664 			memset(compat + size, 0, sizeof(compat) - size);
4665 			from = (const struct bpf_tunnel_key *) compat;
4666 			break;
4667 		default:
4668 			return -EINVAL;
4669 		}
4670 	}
4671 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4672 		     from->tunnel_ext))
4673 		return -EINVAL;
4674 
4675 	skb_dst_drop(skb);
4676 	dst_hold((struct dst_entry *) md);
4677 	skb_dst_set(skb, (struct dst_entry *) md);
4678 
4679 	info = &md->u.tun_info;
4680 	memset(info, 0, sizeof(*info));
4681 	info->mode = IP_TUNNEL_INFO_TX;
4682 
4683 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4684 	if (flags & BPF_F_DONT_FRAGMENT)
4685 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4686 	if (flags & BPF_F_ZERO_CSUM_TX)
4687 		info->key.tun_flags &= ~TUNNEL_CSUM;
4688 	if (flags & BPF_F_SEQ_NUMBER)
4689 		info->key.tun_flags |= TUNNEL_SEQ;
4690 	if (flags & BPF_F_NO_TUNNEL_KEY)
4691 		info->key.tun_flags &= ~TUNNEL_KEY;
4692 
4693 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4694 	info->key.tos = from->tunnel_tos;
4695 	info->key.ttl = from->tunnel_ttl;
4696 
4697 	if (flags & BPF_F_TUNINFO_IPV6) {
4698 		info->mode |= IP_TUNNEL_INFO_IPV6;
4699 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4700 		       sizeof(from->remote_ipv6));
4701 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4702 		       sizeof(from->local_ipv6));
4703 		info->key.label = cpu_to_be32(from->tunnel_label) &
4704 				  IPV6_FLOWLABEL_MASK;
4705 	} else {
4706 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4707 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4708 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4709 	}
4710 
4711 	return 0;
4712 }
4713 
4714 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4715 	.func		= bpf_skb_set_tunnel_key,
4716 	.gpl_only	= false,
4717 	.ret_type	= RET_INTEGER,
4718 	.arg1_type	= ARG_PTR_TO_CTX,
4719 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4720 	.arg3_type	= ARG_CONST_SIZE,
4721 	.arg4_type	= ARG_ANYTHING,
4722 };
4723 
4724 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4725 	   const u8 *, from, u32, size)
4726 {
4727 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4728 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4729 
4730 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4731 		return -EINVAL;
4732 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4733 		return -ENOMEM;
4734 
4735 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4736 
4737 	return 0;
4738 }
4739 
4740 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4741 	.func		= bpf_skb_set_tunnel_opt,
4742 	.gpl_only	= false,
4743 	.ret_type	= RET_INTEGER,
4744 	.arg1_type	= ARG_PTR_TO_CTX,
4745 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4746 	.arg3_type	= ARG_CONST_SIZE,
4747 };
4748 
4749 static const struct bpf_func_proto *
4750 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4751 {
4752 	if (!md_dst) {
4753 		struct metadata_dst __percpu *tmp;
4754 
4755 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4756 						METADATA_IP_TUNNEL,
4757 						GFP_KERNEL);
4758 		if (!tmp)
4759 			return NULL;
4760 		if (cmpxchg(&md_dst, NULL, tmp))
4761 			metadata_dst_free_percpu(tmp);
4762 	}
4763 
4764 	switch (which) {
4765 	case BPF_FUNC_skb_set_tunnel_key:
4766 		return &bpf_skb_set_tunnel_key_proto;
4767 	case BPF_FUNC_skb_set_tunnel_opt:
4768 		return &bpf_skb_set_tunnel_opt_proto;
4769 	default:
4770 		return NULL;
4771 	}
4772 }
4773 
4774 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4775 	   u32, idx)
4776 {
4777 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4778 	struct cgroup *cgrp;
4779 	struct sock *sk;
4780 
4781 	sk = skb_to_full_sk(skb);
4782 	if (!sk || !sk_fullsock(sk))
4783 		return -ENOENT;
4784 	if (unlikely(idx >= array->map.max_entries))
4785 		return -E2BIG;
4786 
4787 	cgrp = READ_ONCE(array->ptrs[idx]);
4788 	if (unlikely(!cgrp))
4789 		return -EAGAIN;
4790 
4791 	return sk_under_cgroup_hierarchy(sk, cgrp);
4792 }
4793 
4794 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4795 	.func		= bpf_skb_under_cgroup,
4796 	.gpl_only	= false,
4797 	.ret_type	= RET_INTEGER,
4798 	.arg1_type	= ARG_PTR_TO_CTX,
4799 	.arg2_type	= ARG_CONST_MAP_PTR,
4800 	.arg3_type	= ARG_ANYTHING,
4801 };
4802 
4803 #ifdef CONFIG_SOCK_CGROUP_DATA
4804 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4805 {
4806 	struct cgroup *cgrp;
4807 
4808 	sk = sk_to_full_sk(sk);
4809 	if (!sk || !sk_fullsock(sk))
4810 		return 0;
4811 
4812 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4813 	return cgroup_id(cgrp);
4814 }
4815 
4816 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4817 {
4818 	return __bpf_sk_cgroup_id(skb->sk);
4819 }
4820 
4821 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4822 	.func           = bpf_skb_cgroup_id,
4823 	.gpl_only       = false,
4824 	.ret_type       = RET_INTEGER,
4825 	.arg1_type      = ARG_PTR_TO_CTX,
4826 };
4827 
4828 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4829 					      int ancestor_level)
4830 {
4831 	struct cgroup *ancestor;
4832 	struct cgroup *cgrp;
4833 
4834 	sk = sk_to_full_sk(sk);
4835 	if (!sk || !sk_fullsock(sk))
4836 		return 0;
4837 
4838 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4839 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4840 	if (!ancestor)
4841 		return 0;
4842 
4843 	return cgroup_id(ancestor);
4844 }
4845 
4846 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4847 	   ancestor_level)
4848 {
4849 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4850 }
4851 
4852 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4853 	.func           = bpf_skb_ancestor_cgroup_id,
4854 	.gpl_only       = false,
4855 	.ret_type       = RET_INTEGER,
4856 	.arg1_type      = ARG_PTR_TO_CTX,
4857 	.arg2_type      = ARG_ANYTHING,
4858 };
4859 
4860 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4861 {
4862 	return __bpf_sk_cgroup_id(sk);
4863 }
4864 
4865 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4866 	.func           = bpf_sk_cgroup_id,
4867 	.gpl_only       = false,
4868 	.ret_type       = RET_INTEGER,
4869 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4870 };
4871 
4872 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4873 {
4874 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4875 }
4876 
4877 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4878 	.func           = bpf_sk_ancestor_cgroup_id,
4879 	.gpl_only       = false,
4880 	.ret_type       = RET_INTEGER,
4881 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4882 	.arg2_type      = ARG_ANYTHING,
4883 };
4884 #endif
4885 
4886 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4887 				  unsigned long off, unsigned long len)
4888 {
4889 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4890 
4891 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4892 	return 0;
4893 }
4894 
4895 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4896 	   u64, flags, void *, meta, u64, meta_size)
4897 {
4898 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4899 
4900 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4901 		return -EINVAL;
4902 
4903 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4904 		return -EFAULT;
4905 
4906 	return bpf_event_output(map, flags, meta, meta_size, xdp,
4907 				xdp_size, bpf_xdp_copy);
4908 }
4909 
4910 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4911 	.func		= bpf_xdp_event_output,
4912 	.gpl_only	= true,
4913 	.ret_type	= RET_INTEGER,
4914 	.arg1_type	= ARG_PTR_TO_CTX,
4915 	.arg2_type	= ARG_CONST_MAP_PTR,
4916 	.arg3_type	= ARG_ANYTHING,
4917 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4918 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4919 };
4920 
4921 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4922 
4923 const struct bpf_func_proto bpf_xdp_output_proto = {
4924 	.func		= bpf_xdp_event_output,
4925 	.gpl_only	= true,
4926 	.ret_type	= RET_INTEGER,
4927 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4928 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4929 	.arg2_type	= ARG_CONST_MAP_PTR,
4930 	.arg3_type	= ARG_ANYTHING,
4931 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4932 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4933 };
4934 
4935 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4936 {
4937 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4938 }
4939 
4940 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4941 	.func           = bpf_get_socket_cookie,
4942 	.gpl_only       = false,
4943 	.ret_type       = RET_INTEGER,
4944 	.arg1_type      = ARG_PTR_TO_CTX,
4945 };
4946 
4947 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4948 {
4949 	return __sock_gen_cookie(ctx->sk);
4950 }
4951 
4952 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4953 	.func		= bpf_get_socket_cookie_sock_addr,
4954 	.gpl_only	= false,
4955 	.ret_type	= RET_INTEGER,
4956 	.arg1_type	= ARG_PTR_TO_CTX,
4957 };
4958 
4959 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4960 {
4961 	return __sock_gen_cookie(ctx);
4962 }
4963 
4964 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4965 	.func		= bpf_get_socket_cookie_sock,
4966 	.gpl_only	= false,
4967 	.ret_type	= RET_INTEGER,
4968 	.arg1_type	= ARG_PTR_TO_CTX,
4969 };
4970 
4971 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4972 {
4973 	return sk ? sock_gen_cookie(sk) : 0;
4974 }
4975 
4976 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4977 	.func		= bpf_get_socket_ptr_cookie,
4978 	.gpl_only	= false,
4979 	.ret_type	= RET_INTEGER,
4980 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4981 };
4982 
4983 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4984 {
4985 	return __sock_gen_cookie(ctx->sk);
4986 }
4987 
4988 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4989 	.func		= bpf_get_socket_cookie_sock_ops,
4990 	.gpl_only	= false,
4991 	.ret_type	= RET_INTEGER,
4992 	.arg1_type	= ARG_PTR_TO_CTX,
4993 };
4994 
4995 static u64 __bpf_get_netns_cookie(struct sock *sk)
4996 {
4997 	const struct net *net = sk ? sock_net(sk) : &init_net;
4998 
4999 	return net->net_cookie;
5000 }
5001 
5002 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5003 {
5004 	return __bpf_get_netns_cookie(ctx);
5005 }
5006 
5007 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5008 	.func		= bpf_get_netns_cookie_sock,
5009 	.gpl_only	= false,
5010 	.ret_type	= RET_INTEGER,
5011 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5012 };
5013 
5014 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5015 {
5016 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5017 }
5018 
5019 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5020 	.func		= bpf_get_netns_cookie_sock_addr,
5021 	.gpl_only	= false,
5022 	.ret_type	= RET_INTEGER,
5023 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5024 };
5025 
5026 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5027 {
5028 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5029 }
5030 
5031 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5032 	.func		= bpf_get_netns_cookie_sock_ops,
5033 	.gpl_only	= false,
5034 	.ret_type	= RET_INTEGER,
5035 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5036 };
5037 
5038 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5039 {
5040 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5041 }
5042 
5043 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5044 	.func		= bpf_get_netns_cookie_sk_msg,
5045 	.gpl_only	= false,
5046 	.ret_type	= RET_INTEGER,
5047 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5048 };
5049 
5050 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5051 {
5052 	struct sock *sk = sk_to_full_sk(skb->sk);
5053 	kuid_t kuid;
5054 
5055 	if (!sk || !sk_fullsock(sk))
5056 		return overflowuid;
5057 	kuid = sock_net_uid(sock_net(sk), sk);
5058 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5059 }
5060 
5061 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5062 	.func           = bpf_get_socket_uid,
5063 	.gpl_only       = false,
5064 	.ret_type       = RET_INTEGER,
5065 	.arg1_type      = ARG_PTR_TO_CTX,
5066 };
5067 
5068 static int sol_socket_sockopt(struct sock *sk, int optname,
5069 			      char *optval, int *optlen,
5070 			      bool getopt)
5071 {
5072 	switch (optname) {
5073 	case SO_REUSEADDR:
5074 	case SO_SNDBUF:
5075 	case SO_RCVBUF:
5076 	case SO_KEEPALIVE:
5077 	case SO_PRIORITY:
5078 	case SO_REUSEPORT:
5079 	case SO_RCVLOWAT:
5080 	case SO_MARK:
5081 	case SO_MAX_PACING_RATE:
5082 	case SO_BINDTOIFINDEX:
5083 	case SO_TXREHASH:
5084 		if (*optlen != sizeof(int))
5085 			return -EINVAL;
5086 		break;
5087 	case SO_BINDTODEVICE:
5088 		break;
5089 	default:
5090 		return -EINVAL;
5091 	}
5092 
5093 	if (getopt) {
5094 		if (optname == SO_BINDTODEVICE)
5095 			return -EINVAL;
5096 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5097 				     KERNEL_SOCKPTR(optval),
5098 				     KERNEL_SOCKPTR(optlen));
5099 	}
5100 
5101 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5102 			     KERNEL_SOCKPTR(optval), *optlen);
5103 }
5104 
5105 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5106 				  char *optval, int optlen)
5107 {
5108 	struct tcp_sock *tp = tcp_sk(sk);
5109 	unsigned long timeout;
5110 	int val;
5111 
5112 	if (optlen != sizeof(int))
5113 		return -EINVAL;
5114 
5115 	val = *(int *)optval;
5116 
5117 	/* Only some options are supported */
5118 	switch (optname) {
5119 	case TCP_BPF_IW:
5120 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5121 			return -EINVAL;
5122 		tcp_snd_cwnd_set(tp, val);
5123 		break;
5124 	case TCP_BPF_SNDCWND_CLAMP:
5125 		if (val <= 0)
5126 			return -EINVAL;
5127 		tp->snd_cwnd_clamp = val;
5128 		tp->snd_ssthresh = val;
5129 		break;
5130 	case TCP_BPF_DELACK_MAX:
5131 		timeout = usecs_to_jiffies(val);
5132 		if (timeout > TCP_DELACK_MAX ||
5133 		    timeout < TCP_TIMEOUT_MIN)
5134 			return -EINVAL;
5135 		inet_csk(sk)->icsk_delack_max = timeout;
5136 		break;
5137 	case TCP_BPF_RTO_MIN:
5138 		timeout = usecs_to_jiffies(val);
5139 		if (timeout > TCP_RTO_MIN ||
5140 		    timeout < TCP_TIMEOUT_MIN)
5141 			return -EINVAL;
5142 		inet_csk(sk)->icsk_rto_min = timeout;
5143 		break;
5144 	default:
5145 		return -EINVAL;
5146 	}
5147 
5148 	return 0;
5149 }
5150 
5151 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5152 				      int *optlen, bool getopt)
5153 {
5154 	struct tcp_sock *tp;
5155 	int ret;
5156 
5157 	if (*optlen < 2)
5158 		return -EINVAL;
5159 
5160 	if (getopt) {
5161 		if (!inet_csk(sk)->icsk_ca_ops)
5162 			return -EINVAL;
5163 		/* BPF expects NULL-terminated tcp-cc string */
5164 		optval[--(*optlen)] = '\0';
5165 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5166 					 KERNEL_SOCKPTR(optval),
5167 					 KERNEL_SOCKPTR(optlen));
5168 	}
5169 
5170 	/* "cdg" is the only cc that alloc a ptr
5171 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5172 	 * overwrite this ptr after switching to cdg.
5173 	 */
5174 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5175 		return -ENOTSUPP;
5176 
5177 	/* It stops this looping
5178 	 *
5179 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5180 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5181 	 *
5182 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5183 	 * in order to break the loop when both .init
5184 	 * are the same bpf prog.
5185 	 *
5186 	 * This applies even the second bpf_setsockopt(tcp_cc)
5187 	 * does not cause a loop.  This limits only the first
5188 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5189 	 * pick a fallback cc (eg. peer does not support ECN)
5190 	 * and the second '.init' cannot fallback to
5191 	 * another.
5192 	 */
5193 	tp = tcp_sk(sk);
5194 	if (tp->bpf_chg_cc_inprogress)
5195 		return -EBUSY;
5196 
5197 	tp->bpf_chg_cc_inprogress = 1;
5198 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5199 				KERNEL_SOCKPTR(optval), *optlen);
5200 	tp->bpf_chg_cc_inprogress = 0;
5201 	return ret;
5202 }
5203 
5204 static int sol_tcp_sockopt(struct sock *sk, int optname,
5205 			   char *optval, int *optlen,
5206 			   bool getopt)
5207 {
5208 	if (sk->sk_protocol != IPPROTO_TCP)
5209 		return -EINVAL;
5210 
5211 	switch (optname) {
5212 	case TCP_NODELAY:
5213 	case TCP_MAXSEG:
5214 	case TCP_KEEPIDLE:
5215 	case TCP_KEEPINTVL:
5216 	case TCP_KEEPCNT:
5217 	case TCP_SYNCNT:
5218 	case TCP_WINDOW_CLAMP:
5219 	case TCP_THIN_LINEAR_TIMEOUTS:
5220 	case TCP_USER_TIMEOUT:
5221 	case TCP_NOTSENT_LOWAT:
5222 	case TCP_SAVE_SYN:
5223 		if (*optlen != sizeof(int))
5224 			return -EINVAL;
5225 		break;
5226 	case TCP_CONGESTION:
5227 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5228 	case TCP_SAVED_SYN:
5229 		if (*optlen < 1)
5230 			return -EINVAL;
5231 		break;
5232 	default:
5233 		if (getopt)
5234 			return -EINVAL;
5235 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5236 	}
5237 
5238 	if (getopt) {
5239 		if (optname == TCP_SAVED_SYN) {
5240 			struct tcp_sock *tp = tcp_sk(sk);
5241 
5242 			if (!tp->saved_syn ||
5243 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5244 				return -EINVAL;
5245 			memcpy(optval, tp->saved_syn->data, *optlen);
5246 			/* It cannot free tp->saved_syn here because it
5247 			 * does not know if the user space still needs it.
5248 			 */
5249 			return 0;
5250 		}
5251 
5252 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5253 					 KERNEL_SOCKPTR(optval),
5254 					 KERNEL_SOCKPTR(optlen));
5255 	}
5256 
5257 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5258 				 KERNEL_SOCKPTR(optval), *optlen);
5259 }
5260 
5261 static int sol_ip_sockopt(struct sock *sk, int optname,
5262 			  char *optval, int *optlen,
5263 			  bool getopt)
5264 {
5265 	if (sk->sk_family != AF_INET)
5266 		return -EINVAL;
5267 
5268 	switch (optname) {
5269 	case IP_TOS:
5270 		if (*optlen != sizeof(int))
5271 			return -EINVAL;
5272 		break;
5273 	default:
5274 		return -EINVAL;
5275 	}
5276 
5277 	if (getopt)
5278 		return do_ip_getsockopt(sk, SOL_IP, optname,
5279 					KERNEL_SOCKPTR(optval),
5280 					KERNEL_SOCKPTR(optlen));
5281 
5282 	return do_ip_setsockopt(sk, SOL_IP, optname,
5283 				KERNEL_SOCKPTR(optval), *optlen);
5284 }
5285 
5286 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5287 			    char *optval, int *optlen,
5288 			    bool getopt)
5289 {
5290 	if (sk->sk_family != AF_INET6)
5291 		return -EINVAL;
5292 
5293 	switch (optname) {
5294 	case IPV6_TCLASS:
5295 	case IPV6_AUTOFLOWLABEL:
5296 		if (*optlen != sizeof(int))
5297 			return -EINVAL;
5298 		break;
5299 	default:
5300 		return -EINVAL;
5301 	}
5302 
5303 	if (getopt)
5304 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5305 						      KERNEL_SOCKPTR(optval),
5306 						      KERNEL_SOCKPTR(optlen));
5307 
5308 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5309 					      KERNEL_SOCKPTR(optval), *optlen);
5310 }
5311 
5312 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5313 			    char *optval, int optlen)
5314 {
5315 	if (!sk_fullsock(sk))
5316 		return -EINVAL;
5317 
5318 	if (level == SOL_SOCKET)
5319 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5320 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5321 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5322 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5323 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5324 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5325 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5326 
5327 	return -EINVAL;
5328 }
5329 
5330 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5331 			   char *optval, int optlen)
5332 {
5333 	if (sk_fullsock(sk))
5334 		sock_owned_by_me(sk);
5335 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5336 }
5337 
5338 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5339 			    char *optval, int optlen)
5340 {
5341 	int err, saved_optlen = optlen;
5342 
5343 	if (!sk_fullsock(sk)) {
5344 		err = -EINVAL;
5345 		goto done;
5346 	}
5347 
5348 	if (level == SOL_SOCKET)
5349 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5350 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5351 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5352 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5353 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5354 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5355 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5356 	else
5357 		err = -EINVAL;
5358 
5359 done:
5360 	if (err)
5361 		optlen = 0;
5362 	if (optlen < saved_optlen)
5363 		memset(optval + optlen, 0, saved_optlen - optlen);
5364 	return err;
5365 }
5366 
5367 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5368 			   char *optval, int optlen)
5369 {
5370 	if (sk_fullsock(sk))
5371 		sock_owned_by_me(sk);
5372 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5373 }
5374 
5375 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5376 	   int, optname, char *, optval, int, optlen)
5377 {
5378 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5379 }
5380 
5381 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5382 	.func		= bpf_sk_setsockopt,
5383 	.gpl_only	= false,
5384 	.ret_type	= RET_INTEGER,
5385 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5386 	.arg2_type	= ARG_ANYTHING,
5387 	.arg3_type	= ARG_ANYTHING,
5388 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5389 	.arg5_type	= ARG_CONST_SIZE,
5390 };
5391 
5392 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5393 	   int, optname, char *, optval, int, optlen)
5394 {
5395 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5396 }
5397 
5398 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5399 	.func		= bpf_sk_getsockopt,
5400 	.gpl_only	= false,
5401 	.ret_type	= RET_INTEGER,
5402 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5403 	.arg2_type	= ARG_ANYTHING,
5404 	.arg3_type	= ARG_ANYTHING,
5405 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5406 	.arg5_type	= ARG_CONST_SIZE,
5407 };
5408 
5409 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5410 	   int, optname, char *, optval, int, optlen)
5411 {
5412 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5413 }
5414 
5415 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5416 	.func		= bpf_unlocked_sk_setsockopt,
5417 	.gpl_only	= false,
5418 	.ret_type	= RET_INTEGER,
5419 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5420 	.arg2_type	= ARG_ANYTHING,
5421 	.arg3_type	= ARG_ANYTHING,
5422 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5423 	.arg5_type	= ARG_CONST_SIZE,
5424 };
5425 
5426 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5427 	   int, optname, char *, optval, int, optlen)
5428 {
5429 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5430 }
5431 
5432 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5433 	.func		= bpf_unlocked_sk_getsockopt,
5434 	.gpl_only	= false,
5435 	.ret_type	= RET_INTEGER,
5436 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5437 	.arg2_type	= ARG_ANYTHING,
5438 	.arg3_type	= ARG_ANYTHING,
5439 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5440 	.arg5_type	= ARG_CONST_SIZE,
5441 };
5442 
5443 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5444 	   int, level, int, optname, char *, optval, int, optlen)
5445 {
5446 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5447 }
5448 
5449 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5450 	.func		= bpf_sock_addr_setsockopt,
5451 	.gpl_only	= false,
5452 	.ret_type	= RET_INTEGER,
5453 	.arg1_type	= ARG_PTR_TO_CTX,
5454 	.arg2_type	= ARG_ANYTHING,
5455 	.arg3_type	= ARG_ANYTHING,
5456 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5457 	.arg5_type	= ARG_CONST_SIZE,
5458 };
5459 
5460 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5461 	   int, level, int, optname, char *, optval, int, optlen)
5462 {
5463 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5464 }
5465 
5466 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5467 	.func		= bpf_sock_addr_getsockopt,
5468 	.gpl_only	= false,
5469 	.ret_type	= RET_INTEGER,
5470 	.arg1_type	= ARG_PTR_TO_CTX,
5471 	.arg2_type	= ARG_ANYTHING,
5472 	.arg3_type	= ARG_ANYTHING,
5473 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5474 	.arg5_type	= ARG_CONST_SIZE,
5475 };
5476 
5477 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5478 	   int, level, int, optname, char *, optval, int, optlen)
5479 {
5480 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5481 }
5482 
5483 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5484 	.func		= bpf_sock_ops_setsockopt,
5485 	.gpl_only	= false,
5486 	.ret_type	= RET_INTEGER,
5487 	.arg1_type	= ARG_PTR_TO_CTX,
5488 	.arg2_type	= ARG_ANYTHING,
5489 	.arg3_type	= ARG_ANYTHING,
5490 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5491 	.arg5_type	= ARG_CONST_SIZE,
5492 };
5493 
5494 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5495 				int optname, const u8 **start)
5496 {
5497 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5498 	const u8 *hdr_start;
5499 	int ret;
5500 
5501 	if (syn_skb) {
5502 		/* sk is a request_sock here */
5503 
5504 		if (optname == TCP_BPF_SYN) {
5505 			hdr_start = syn_skb->data;
5506 			ret = tcp_hdrlen(syn_skb);
5507 		} else if (optname == TCP_BPF_SYN_IP) {
5508 			hdr_start = skb_network_header(syn_skb);
5509 			ret = skb_network_header_len(syn_skb) +
5510 				tcp_hdrlen(syn_skb);
5511 		} else {
5512 			/* optname == TCP_BPF_SYN_MAC */
5513 			hdr_start = skb_mac_header(syn_skb);
5514 			ret = skb_mac_header_len(syn_skb) +
5515 				skb_network_header_len(syn_skb) +
5516 				tcp_hdrlen(syn_skb);
5517 		}
5518 	} else {
5519 		struct sock *sk = bpf_sock->sk;
5520 		struct saved_syn *saved_syn;
5521 
5522 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5523 			/* synack retransmit. bpf_sock->syn_skb will
5524 			 * not be available.  It has to resort to
5525 			 * saved_syn (if it is saved).
5526 			 */
5527 			saved_syn = inet_reqsk(sk)->saved_syn;
5528 		else
5529 			saved_syn = tcp_sk(sk)->saved_syn;
5530 
5531 		if (!saved_syn)
5532 			return -ENOENT;
5533 
5534 		if (optname == TCP_BPF_SYN) {
5535 			hdr_start = saved_syn->data +
5536 				saved_syn->mac_hdrlen +
5537 				saved_syn->network_hdrlen;
5538 			ret = saved_syn->tcp_hdrlen;
5539 		} else if (optname == TCP_BPF_SYN_IP) {
5540 			hdr_start = saved_syn->data +
5541 				saved_syn->mac_hdrlen;
5542 			ret = saved_syn->network_hdrlen +
5543 				saved_syn->tcp_hdrlen;
5544 		} else {
5545 			/* optname == TCP_BPF_SYN_MAC */
5546 
5547 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5548 			if (!saved_syn->mac_hdrlen)
5549 				return -ENOENT;
5550 
5551 			hdr_start = saved_syn->data;
5552 			ret = saved_syn->mac_hdrlen +
5553 				saved_syn->network_hdrlen +
5554 				saved_syn->tcp_hdrlen;
5555 		}
5556 	}
5557 
5558 	*start = hdr_start;
5559 	return ret;
5560 }
5561 
5562 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5563 	   int, level, int, optname, char *, optval, int, optlen)
5564 {
5565 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5566 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5567 		int ret, copy_len = 0;
5568 		const u8 *start;
5569 
5570 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5571 		if (ret > 0) {
5572 			copy_len = ret;
5573 			if (optlen < copy_len) {
5574 				copy_len = optlen;
5575 				ret = -ENOSPC;
5576 			}
5577 
5578 			memcpy(optval, start, copy_len);
5579 		}
5580 
5581 		/* Zero out unused buffer at the end */
5582 		memset(optval + copy_len, 0, optlen - copy_len);
5583 
5584 		return ret;
5585 	}
5586 
5587 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5588 }
5589 
5590 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5591 	.func		= bpf_sock_ops_getsockopt,
5592 	.gpl_only	= false,
5593 	.ret_type	= RET_INTEGER,
5594 	.arg1_type	= ARG_PTR_TO_CTX,
5595 	.arg2_type	= ARG_ANYTHING,
5596 	.arg3_type	= ARG_ANYTHING,
5597 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5598 	.arg5_type	= ARG_CONST_SIZE,
5599 };
5600 
5601 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5602 	   int, argval)
5603 {
5604 	struct sock *sk = bpf_sock->sk;
5605 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5606 
5607 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5608 		return -EINVAL;
5609 
5610 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5611 
5612 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5613 }
5614 
5615 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5616 	.func		= bpf_sock_ops_cb_flags_set,
5617 	.gpl_only	= false,
5618 	.ret_type	= RET_INTEGER,
5619 	.arg1_type	= ARG_PTR_TO_CTX,
5620 	.arg2_type	= ARG_ANYTHING,
5621 };
5622 
5623 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5624 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5625 
5626 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5627 	   int, addr_len)
5628 {
5629 #ifdef CONFIG_INET
5630 	struct sock *sk = ctx->sk;
5631 	u32 flags = BIND_FROM_BPF;
5632 	int err;
5633 
5634 	err = -EINVAL;
5635 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5636 		return err;
5637 	if (addr->sa_family == AF_INET) {
5638 		if (addr_len < sizeof(struct sockaddr_in))
5639 			return err;
5640 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5641 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5642 		return __inet_bind(sk, addr, addr_len, flags);
5643 #if IS_ENABLED(CONFIG_IPV6)
5644 	} else if (addr->sa_family == AF_INET6) {
5645 		if (addr_len < SIN6_LEN_RFC2133)
5646 			return err;
5647 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5648 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5649 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5650 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5651 		 */
5652 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5653 #endif /* CONFIG_IPV6 */
5654 	}
5655 #endif /* CONFIG_INET */
5656 
5657 	return -EAFNOSUPPORT;
5658 }
5659 
5660 static const struct bpf_func_proto bpf_bind_proto = {
5661 	.func		= bpf_bind,
5662 	.gpl_only	= false,
5663 	.ret_type	= RET_INTEGER,
5664 	.arg1_type	= ARG_PTR_TO_CTX,
5665 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5666 	.arg3_type	= ARG_CONST_SIZE,
5667 };
5668 
5669 #ifdef CONFIG_XFRM
5670 
5671 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5672     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5673 
5674 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5675 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5676 
5677 #endif
5678 
5679 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5680 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5681 {
5682 	const struct sec_path *sp = skb_sec_path(skb);
5683 	const struct xfrm_state *x;
5684 
5685 	if (!sp || unlikely(index >= sp->len || flags))
5686 		goto err_clear;
5687 
5688 	x = sp->xvec[index];
5689 
5690 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5691 		goto err_clear;
5692 
5693 	to->reqid = x->props.reqid;
5694 	to->spi = x->id.spi;
5695 	to->family = x->props.family;
5696 	to->ext = 0;
5697 
5698 	if (to->family == AF_INET6) {
5699 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5700 		       sizeof(to->remote_ipv6));
5701 	} else {
5702 		to->remote_ipv4 = x->props.saddr.a4;
5703 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5704 	}
5705 
5706 	return 0;
5707 err_clear:
5708 	memset(to, 0, size);
5709 	return -EINVAL;
5710 }
5711 
5712 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5713 	.func		= bpf_skb_get_xfrm_state,
5714 	.gpl_only	= false,
5715 	.ret_type	= RET_INTEGER,
5716 	.arg1_type	= ARG_PTR_TO_CTX,
5717 	.arg2_type	= ARG_ANYTHING,
5718 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5719 	.arg4_type	= ARG_CONST_SIZE,
5720 	.arg5_type	= ARG_ANYTHING,
5721 };
5722 #endif
5723 
5724 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5725 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5726 {
5727 	params->h_vlan_TCI = 0;
5728 	params->h_vlan_proto = 0;
5729 	if (mtu)
5730 		params->mtu_result = mtu; /* union with tot_len */
5731 
5732 	return 0;
5733 }
5734 #endif
5735 
5736 #if IS_ENABLED(CONFIG_INET)
5737 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5738 			       u32 flags, bool check_mtu)
5739 {
5740 	struct fib_nh_common *nhc;
5741 	struct in_device *in_dev;
5742 	struct neighbour *neigh;
5743 	struct net_device *dev;
5744 	struct fib_result res;
5745 	struct flowi4 fl4;
5746 	u32 mtu = 0;
5747 	int err;
5748 
5749 	dev = dev_get_by_index_rcu(net, params->ifindex);
5750 	if (unlikely(!dev))
5751 		return -ENODEV;
5752 
5753 	/* verify forwarding is enabled on this interface */
5754 	in_dev = __in_dev_get_rcu(dev);
5755 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5756 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5757 
5758 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5759 		fl4.flowi4_iif = 1;
5760 		fl4.flowi4_oif = params->ifindex;
5761 	} else {
5762 		fl4.flowi4_iif = params->ifindex;
5763 		fl4.flowi4_oif = 0;
5764 	}
5765 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5766 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5767 	fl4.flowi4_flags = 0;
5768 
5769 	fl4.flowi4_proto = params->l4_protocol;
5770 	fl4.daddr = params->ipv4_dst;
5771 	fl4.saddr = params->ipv4_src;
5772 	fl4.fl4_sport = params->sport;
5773 	fl4.fl4_dport = params->dport;
5774 	fl4.flowi4_multipath_hash = 0;
5775 
5776 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5777 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5778 		struct fib_table *tb;
5779 
5780 		tb = fib_get_table(net, tbid);
5781 		if (unlikely(!tb))
5782 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5783 
5784 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5785 	} else {
5786 		fl4.flowi4_mark = 0;
5787 		fl4.flowi4_secid = 0;
5788 		fl4.flowi4_tun_key.tun_id = 0;
5789 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5790 
5791 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5792 	}
5793 
5794 	if (err) {
5795 		/* map fib lookup errors to RTN_ type */
5796 		if (err == -EINVAL)
5797 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5798 		if (err == -EHOSTUNREACH)
5799 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5800 		if (err == -EACCES)
5801 			return BPF_FIB_LKUP_RET_PROHIBIT;
5802 
5803 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5804 	}
5805 
5806 	if (res.type != RTN_UNICAST)
5807 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5808 
5809 	if (fib_info_num_path(res.fi) > 1)
5810 		fib_select_path(net, &res, &fl4, NULL);
5811 
5812 	if (check_mtu) {
5813 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5814 		if (params->tot_len > mtu) {
5815 			params->mtu_result = mtu; /* union with tot_len */
5816 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5817 		}
5818 	}
5819 
5820 	nhc = res.nhc;
5821 
5822 	/* do not handle lwt encaps right now */
5823 	if (nhc->nhc_lwtstate)
5824 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5825 
5826 	dev = nhc->nhc_dev;
5827 
5828 	params->rt_metric = res.fi->fib_priority;
5829 	params->ifindex = dev->ifindex;
5830 
5831 	/* xdp and cls_bpf programs are run in RCU-bh so
5832 	 * rcu_read_lock_bh is not needed here
5833 	 */
5834 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5835 		if (nhc->nhc_gw_family)
5836 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5837 	} else {
5838 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5839 
5840 		params->family = AF_INET6;
5841 		*dst = nhc->nhc_gw.ipv6;
5842 	}
5843 
5844 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5845 		goto set_fwd_params;
5846 
5847 	if (likely(nhc->nhc_gw_family != AF_INET6))
5848 		neigh = __ipv4_neigh_lookup_noref(dev,
5849 						  (__force u32)params->ipv4_dst);
5850 	else
5851 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5852 
5853 	if (!neigh || !(neigh->nud_state & NUD_VALID))
5854 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5855 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5856 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5857 
5858 set_fwd_params:
5859 	return bpf_fib_set_fwd_params(params, mtu);
5860 }
5861 #endif
5862 
5863 #if IS_ENABLED(CONFIG_IPV6)
5864 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5865 			       u32 flags, bool check_mtu)
5866 {
5867 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5868 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5869 	struct fib6_result res = {};
5870 	struct neighbour *neigh;
5871 	struct net_device *dev;
5872 	struct inet6_dev *idev;
5873 	struct flowi6 fl6;
5874 	int strict = 0;
5875 	int oif, err;
5876 	u32 mtu = 0;
5877 
5878 	/* link local addresses are never forwarded */
5879 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5880 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5881 
5882 	dev = dev_get_by_index_rcu(net, params->ifindex);
5883 	if (unlikely(!dev))
5884 		return -ENODEV;
5885 
5886 	idev = __in6_dev_get_safely(dev);
5887 	if (unlikely(!idev || !idev->cnf.forwarding))
5888 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5889 
5890 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5891 		fl6.flowi6_iif = 1;
5892 		oif = fl6.flowi6_oif = params->ifindex;
5893 	} else {
5894 		oif = fl6.flowi6_iif = params->ifindex;
5895 		fl6.flowi6_oif = 0;
5896 		strict = RT6_LOOKUP_F_HAS_SADDR;
5897 	}
5898 	fl6.flowlabel = params->flowinfo;
5899 	fl6.flowi6_scope = 0;
5900 	fl6.flowi6_flags = 0;
5901 	fl6.mp_hash = 0;
5902 
5903 	fl6.flowi6_proto = params->l4_protocol;
5904 	fl6.daddr = *dst;
5905 	fl6.saddr = *src;
5906 	fl6.fl6_sport = params->sport;
5907 	fl6.fl6_dport = params->dport;
5908 
5909 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5910 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5911 		struct fib6_table *tb;
5912 
5913 		tb = ipv6_stub->fib6_get_table(net, tbid);
5914 		if (unlikely(!tb))
5915 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5916 
5917 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5918 						   strict);
5919 	} else {
5920 		fl6.flowi6_mark = 0;
5921 		fl6.flowi6_secid = 0;
5922 		fl6.flowi6_tun_key.tun_id = 0;
5923 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5924 
5925 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5926 	}
5927 
5928 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5929 		     res.f6i == net->ipv6.fib6_null_entry))
5930 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5931 
5932 	switch (res.fib6_type) {
5933 	/* only unicast is forwarded */
5934 	case RTN_UNICAST:
5935 		break;
5936 	case RTN_BLACKHOLE:
5937 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5938 	case RTN_UNREACHABLE:
5939 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5940 	case RTN_PROHIBIT:
5941 		return BPF_FIB_LKUP_RET_PROHIBIT;
5942 	default:
5943 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5944 	}
5945 
5946 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5947 				    fl6.flowi6_oif != 0, NULL, strict);
5948 
5949 	if (check_mtu) {
5950 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5951 		if (params->tot_len > mtu) {
5952 			params->mtu_result = mtu; /* union with tot_len */
5953 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5954 		}
5955 	}
5956 
5957 	if (res.nh->fib_nh_lws)
5958 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5959 
5960 	if (res.nh->fib_nh_gw_family)
5961 		*dst = res.nh->fib_nh_gw6;
5962 
5963 	dev = res.nh->fib_nh_dev;
5964 	params->rt_metric = res.f6i->fib6_metric;
5965 	params->ifindex = dev->ifindex;
5966 
5967 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5968 		goto set_fwd_params;
5969 
5970 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5971 	 * not needed here.
5972 	 */
5973 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5974 	if (!neigh || !(neigh->nud_state & NUD_VALID))
5975 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5976 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5977 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5978 
5979 set_fwd_params:
5980 	return bpf_fib_set_fwd_params(params, mtu);
5981 }
5982 #endif
5983 
5984 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
5985 			     BPF_FIB_LOOKUP_SKIP_NEIGH)
5986 
5987 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5988 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5989 {
5990 	if (plen < sizeof(*params))
5991 		return -EINVAL;
5992 
5993 	if (flags & ~BPF_FIB_LOOKUP_MASK)
5994 		return -EINVAL;
5995 
5996 	switch (params->family) {
5997 #if IS_ENABLED(CONFIG_INET)
5998 	case AF_INET:
5999 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6000 					   flags, true);
6001 #endif
6002 #if IS_ENABLED(CONFIG_IPV6)
6003 	case AF_INET6:
6004 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6005 					   flags, true);
6006 #endif
6007 	}
6008 	return -EAFNOSUPPORT;
6009 }
6010 
6011 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6012 	.func		= bpf_xdp_fib_lookup,
6013 	.gpl_only	= true,
6014 	.ret_type	= RET_INTEGER,
6015 	.arg1_type      = ARG_PTR_TO_CTX,
6016 	.arg2_type      = ARG_PTR_TO_MEM,
6017 	.arg3_type      = ARG_CONST_SIZE,
6018 	.arg4_type	= ARG_ANYTHING,
6019 };
6020 
6021 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6022 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6023 {
6024 	struct net *net = dev_net(skb->dev);
6025 	int rc = -EAFNOSUPPORT;
6026 	bool check_mtu = false;
6027 
6028 	if (plen < sizeof(*params))
6029 		return -EINVAL;
6030 
6031 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6032 		return -EINVAL;
6033 
6034 	if (params->tot_len)
6035 		check_mtu = true;
6036 
6037 	switch (params->family) {
6038 #if IS_ENABLED(CONFIG_INET)
6039 	case AF_INET:
6040 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6041 		break;
6042 #endif
6043 #if IS_ENABLED(CONFIG_IPV6)
6044 	case AF_INET6:
6045 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6046 		break;
6047 #endif
6048 	}
6049 
6050 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6051 		struct net_device *dev;
6052 
6053 		/* When tot_len isn't provided by user, check skb
6054 		 * against MTU of FIB lookup resulting net_device
6055 		 */
6056 		dev = dev_get_by_index_rcu(net, params->ifindex);
6057 		if (!is_skb_forwardable(dev, skb))
6058 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6059 
6060 		params->mtu_result = dev->mtu; /* union with tot_len */
6061 	}
6062 
6063 	return rc;
6064 }
6065 
6066 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6067 	.func		= bpf_skb_fib_lookup,
6068 	.gpl_only	= true,
6069 	.ret_type	= RET_INTEGER,
6070 	.arg1_type      = ARG_PTR_TO_CTX,
6071 	.arg2_type      = ARG_PTR_TO_MEM,
6072 	.arg3_type      = ARG_CONST_SIZE,
6073 	.arg4_type	= ARG_ANYTHING,
6074 };
6075 
6076 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6077 					    u32 ifindex)
6078 {
6079 	struct net *netns = dev_net(dev_curr);
6080 
6081 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6082 	if (ifindex == 0)
6083 		return dev_curr;
6084 
6085 	return dev_get_by_index_rcu(netns, ifindex);
6086 }
6087 
6088 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6089 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6090 {
6091 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6092 	struct net_device *dev = skb->dev;
6093 	int skb_len, dev_len;
6094 	int mtu;
6095 
6096 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6097 		return -EINVAL;
6098 
6099 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6100 		return -EINVAL;
6101 
6102 	dev = __dev_via_ifindex(dev, ifindex);
6103 	if (unlikely(!dev))
6104 		return -ENODEV;
6105 
6106 	mtu = READ_ONCE(dev->mtu);
6107 
6108 	dev_len = mtu + dev->hard_header_len;
6109 
6110 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6111 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6112 
6113 	skb_len += len_diff; /* minus result pass check */
6114 	if (skb_len <= dev_len) {
6115 		ret = BPF_MTU_CHK_RET_SUCCESS;
6116 		goto out;
6117 	}
6118 	/* At this point, skb->len exceed MTU, but as it include length of all
6119 	 * segments, it can still be below MTU.  The SKB can possibly get
6120 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6121 	 * must choose if segs are to be MTU checked.
6122 	 */
6123 	if (skb_is_gso(skb)) {
6124 		ret = BPF_MTU_CHK_RET_SUCCESS;
6125 
6126 		if (flags & BPF_MTU_CHK_SEGS &&
6127 		    !skb_gso_validate_network_len(skb, mtu))
6128 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6129 	}
6130 out:
6131 	/* BPF verifier guarantees valid pointer */
6132 	*mtu_len = mtu;
6133 
6134 	return ret;
6135 }
6136 
6137 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6138 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6139 {
6140 	struct net_device *dev = xdp->rxq->dev;
6141 	int xdp_len = xdp->data_end - xdp->data;
6142 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6143 	int mtu, dev_len;
6144 
6145 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6146 	if (unlikely(flags))
6147 		return -EINVAL;
6148 
6149 	dev = __dev_via_ifindex(dev, ifindex);
6150 	if (unlikely(!dev))
6151 		return -ENODEV;
6152 
6153 	mtu = READ_ONCE(dev->mtu);
6154 
6155 	/* Add L2-header as dev MTU is L3 size */
6156 	dev_len = mtu + dev->hard_header_len;
6157 
6158 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6159 	if (*mtu_len)
6160 		xdp_len = *mtu_len + dev->hard_header_len;
6161 
6162 	xdp_len += len_diff; /* minus result pass check */
6163 	if (xdp_len > dev_len)
6164 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6165 
6166 	/* BPF verifier guarantees valid pointer */
6167 	*mtu_len = mtu;
6168 
6169 	return ret;
6170 }
6171 
6172 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6173 	.func		= bpf_skb_check_mtu,
6174 	.gpl_only	= true,
6175 	.ret_type	= RET_INTEGER,
6176 	.arg1_type      = ARG_PTR_TO_CTX,
6177 	.arg2_type      = ARG_ANYTHING,
6178 	.arg3_type      = ARG_PTR_TO_INT,
6179 	.arg4_type      = ARG_ANYTHING,
6180 	.arg5_type      = ARG_ANYTHING,
6181 };
6182 
6183 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6184 	.func		= bpf_xdp_check_mtu,
6185 	.gpl_only	= true,
6186 	.ret_type	= RET_INTEGER,
6187 	.arg1_type      = ARG_PTR_TO_CTX,
6188 	.arg2_type      = ARG_ANYTHING,
6189 	.arg3_type      = ARG_PTR_TO_INT,
6190 	.arg4_type      = ARG_ANYTHING,
6191 	.arg5_type      = ARG_ANYTHING,
6192 };
6193 
6194 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6195 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6196 {
6197 	int err;
6198 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6199 
6200 	if (!seg6_validate_srh(srh, len, false))
6201 		return -EINVAL;
6202 
6203 	switch (type) {
6204 	case BPF_LWT_ENCAP_SEG6_INLINE:
6205 		if (skb->protocol != htons(ETH_P_IPV6))
6206 			return -EBADMSG;
6207 
6208 		err = seg6_do_srh_inline(skb, srh);
6209 		break;
6210 	case BPF_LWT_ENCAP_SEG6:
6211 		skb_reset_inner_headers(skb);
6212 		skb->encapsulation = 1;
6213 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6214 		break;
6215 	default:
6216 		return -EINVAL;
6217 	}
6218 
6219 	bpf_compute_data_pointers(skb);
6220 	if (err)
6221 		return err;
6222 
6223 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6224 
6225 	return seg6_lookup_nexthop(skb, NULL, 0);
6226 }
6227 #endif /* CONFIG_IPV6_SEG6_BPF */
6228 
6229 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6230 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6231 			     bool ingress)
6232 {
6233 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6234 }
6235 #endif
6236 
6237 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6238 	   u32, len)
6239 {
6240 	switch (type) {
6241 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6242 	case BPF_LWT_ENCAP_SEG6:
6243 	case BPF_LWT_ENCAP_SEG6_INLINE:
6244 		return bpf_push_seg6_encap(skb, type, hdr, len);
6245 #endif
6246 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6247 	case BPF_LWT_ENCAP_IP:
6248 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6249 #endif
6250 	default:
6251 		return -EINVAL;
6252 	}
6253 }
6254 
6255 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6256 	   void *, hdr, u32, len)
6257 {
6258 	switch (type) {
6259 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6260 	case BPF_LWT_ENCAP_IP:
6261 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6262 #endif
6263 	default:
6264 		return -EINVAL;
6265 	}
6266 }
6267 
6268 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6269 	.func		= bpf_lwt_in_push_encap,
6270 	.gpl_only	= false,
6271 	.ret_type	= RET_INTEGER,
6272 	.arg1_type	= ARG_PTR_TO_CTX,
6273 	.arg2_type	= ARG_ANYTHING,
6274 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6275 	.arg4_type	= ARG_CONST_SIZE
6276 };
6277 
6278 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6279 	.func		= bpf_lwt_xmit_push_encap,
6280 	.gpl_only	= false,
6281 	.ret_type	= RET_INTEGER,
6282 	.arg1_type	= ARG_PTR_TO_CTX,
6283 	.arg2_type	= ARG_ANYTHING,
6284 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6285 	.arg4_type	= ARG_CONST_SIZE
6286 };
6287 
6288 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6289 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6290 	   const void *, from, u32, len)
6291 {
6292 	struct seg6_bpf_srh_state *srh_state =
6293 		this_cpu_ptr(&seg6_bpf_srh_states);
6294 	struct ipv6_sr_hdr *srh = srh_state->srh;
6295 	void *srh_tlvs, *srh_end, *ptr;
6296 	int srhoff = 0;
6297 
6298 	if (srh == NULL)
6299 		return -EINVAL;
6300 
6301 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6302 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6303 
6304 	ptr = skb->data + offset;
6305 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6306 		srh_state->valid = false;
6307 	else if (ptr < (void *)&srh->flags ||
6308 		 ptr + len > (void *)&srh->segments)
6309 		return -EFAULT;
6310 
6311 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6312 		return -EFAULT;
6313 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6314 		return -EINVAL;
6315 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6316 
6317 	memcpy(skb->data + offset, from, len);
6318 	return 0;
6319 }
6320 
6321 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6322 	.func		= bpf_lwt_seg6_store_bytes,
6323 	.gpl_only	= false,
6324 	.ret_type	= RET_INTEGER,
6325 	.arg1_type	= ARG_PTR_TO_CTX,
6326 	.arg2_type	= ARG_ANYTHING,
6327 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6328 	.arg4_type	= ARG_CONST_SIZE
6329 };
6330 
6331 static void bpf_update_srh_state(struct sk_buff *skb)
6332 {
6333 	struct seg6_bpf_srh_state *srh_state =
6334 		this_cpu_ptr(&seg6_bpf_srh_states);
6335 	int srhoff = 0;
6336 
6337 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6338 		srh_state->srh = NULL;
6339 	} else {
6340 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6341 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6342 		srh_state->valid = true;
6343 	}
6344 }
6345 
6346 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6347 	   u32, action, void *, param, u32, param_len)
6348 {
6349 	struct seg6_bpf_srh_state *srh_state =
6350 		this_cpu_ptr(&seg6_bpf_srh_states);
6351 	int hdroff = 0;
6352 	int err;
6353 
6354 	switch (action) {
6355 	case SEG6_LOCAL_ACTION_END_X:
6356 		if (!seg6_bpf_has_valid_srh(skb))
6357 			return -EBADMSG;
6358 		if (param_len != sizeof(struct in6_addr))
6359 			return -EINVAL;
6360 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6361 	case SEG6_LOCAL_ACTION_END_T:
6362 		if (!seg6_bpf_has_valid_srh(skb))
6363 			return -EBADMSG;
6364 		if (param_len != sizeof(int))
6365 			return -EINVAL;
6366 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6367 	case SEG6_LOCAL_ACTION_END_DT6:
6368 		if (!seg6_bpf_has_valid_srh(skb))
6369 			return -EBADMSG;
6370 		if (param_len != sizeof(int))
6371 			return -EINVAL;
6372 
6373 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6374 			return -EBADMSG;
6375 		if (!pskb_pull(skb, hdroff))
6376 			return -EBADMSG;
6377 
6378 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6379 		skb_reset_network_header(skb);
6380 		skb_reset_transport_header(skb);
6381 		skb->encapsulation = 0;
6382 
6383 		bpf_compute_data_pointers(skb);
6384 		bpf_update_srh_state(skb);
6385 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6386 	case SEG6_LOCAL_ACTION_END_B6:
6387 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6388 			return -EBADMSG;
6389 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6390 					  param, param_len);
6391 		if (!err)
6392 			bpf_update_srh_state(skb);
6393 
6394 		return err;
6395 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6396 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6397 			return -EBADMSG;
6398 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6399 					  param, param_len);
6400 		if (!err)
6401 			bpf_update_srh_state(skb);
6402 
6403 		return err;
6404 	default:
6405 		return -EINVAL;
6406 	}
6407 }
6408 
6409 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6410 	.func		= bpf_lwt_seg6_action,
6411 	.gpl_only	= false,
6412 	.ret_type	= RET_INTEGER,
6413 	.arg1_type	= ARG_PTR_TO_CTX,
6414 	.arg2_type	= ARG_ANYTHING,
6415 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6416 	.arg4_type	= ARG_CONST_SIZE
6417 };
6418 
6419 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6420 	   s32, len)
6421 {
6422 	struct seg6_bpf_srh_state *srh_state =
6423 		this_cpu_ptr(&seg6_bpf_srh_states);
6424 	struct ipv6_sr_hdr *srh = srh_state->srh;
6425 	void *srh_end, *srh_tlvs, *ptr;
6426 	struct ipv6hdr *hdr;
6427 	int srhoff = 0;
6428 	int ret;
6429 
6430 	if (unlikely(srh == NULL))
6431 		return -EINVAL;
6432 
6433 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6434 			((srh->first_segment + 1) << 4));
6435 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6436 			srh_state->hdrlen);
6437 	ptr = skb->data + offset;
6438 
6439 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6440 		return -EFAULT;
6441 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6442 		return -EFAULT;
6443 
6444 	if (len > 0) {
6445 		ret = skb_cow_head(skb, len);
6446 		if (unlikely(ret < 0))
6447 			return ret;
6448 
6449 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6450 	} else {
6451 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6452 	}
6453 
6454 	bpf_compute_data_pointers(skb);
6455 	if (unlikely(ret < 0))
6456 		return ret;
6457 
6458 	hdr = (struct ipv6hdr *)skb->data;
6459 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6460 
6461 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6462 		return -EINVAL;
6463 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6464 	srh_state->hdrlen += len;
6465 	srh_state->valid = false;
6466 	return 0;
6467 }
6468 
6469 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6470 	.func		= bpf_lwt_seg6_adjust_srh,
6471 	.gpl_only	= false,
6472 	.ret_type	= RET_INTEGER,
6473 	.arg1_type	= ARG_PTR_TO_CTX,
6474 	.arg2_type	= ARG_ANYTHING,
6475 	.arg3_type	= ARG_ANYTHING,
6476 };
6477 #endif /* CONFIG_IPV6_SEG6_BPF */
6478 
6479 #ifdef CONFIG_INET
6480 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6481 			      int dif, int sdif, u8 family, u8 proto)
6482 {
6483 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6484 	bool refcounted = false;
6485 	struct sock *sk = NULL;
6486 
6487 	if (family == AF_INET) {
6488 		__be32 src4 = tuple->ipv4.saddr;
6489 		__be32 dst4 = tuple->ipv4.daddr;
6490 
6491 		if (proto == IPPROTO_TCP)
6492 			sk = __inet_lookup(net, hinfo, NULL, 0,
6493 					   src4, tuple->ipv4.sport,
6494 					   dst4, tuple->ipv4.dport,
6495 					   dif, sdif, &refcounted);
6496 		else
6497 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6498 					       dst4, tuple->ipv4.dport,
6499 					       dif, sdif, net->ipv4.udp_table, NULL);
6500 #if IS_ENABLED(CONFIG_IPV6)
6501 	} else {
6502 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6503 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6504 
6505 		if (proto == IPPROTO_TCP)
6506 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6507 					    src6, tuple->ipv6.sport,
6508 					    dst6, ntohs(tuple->ipv6.dport),
6509 					    dif, sdif, &refcounted);
6510 		else if (likely(ipv6_bpf_stub))
6511 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6512 							    src6, tuple->ipv6.sport,
6513 							    dst6, tuple->ipv6.dport,
6514 							    dif, sdif,
6515 							    net->ipv4.udp_table, NULL);
6516 #endif
6517 	}
6518 
6519 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6520 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6521 		sk = NULL;
6522 	}
6523 	return sk;
6524 }
6525 
6526 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6527  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6528  */
6529 static struct sock *
6530 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6531 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6532 		 u64 flags)
6533 {
6534 	struct sock *sk = NULL;
6535 	struct net *net;
6536 	u8 family;
6537 	int sdif;
6538 
6539 	if (len == sizeof(tuple->ipv4))
6540 		family = AF_INET;
6541 	else if (len == sizeof(tuple->ipv6))
6542 		family = AF_INET6;
6543 	else
6544 		return NULL;
6545 
6546 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6547 		goto out;
6548 
6549 	if (family == AF_INET)
6550 		sdif = inet_sdif(skb);
6551 	else
6552 		sdif = inet6_sdif(skb);
6553 
6554 	if ((s32)netns_id < 0) {
6555 		net = caller_net;
6556 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6557 	} else {
6558 		net = get_net_ns_by_id(caller_net, netns_id);
6559 		if (unlikely(!net))
6560 			goto out;
6561 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6562 		put_net(net);
6563 	}
6564 
6565 out:
6566 	return sk;
6567 }
6568 
6569 static struct sock *
6570 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6571 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6572 		u64 flags)
6573 {
6574 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6575 					   ifindex, proto, netns_id, flags);
6576 
6577 	if (sk) {
6578 		struct sock *sk2 = sk_to_full_sk(sk);
6579 
6580 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6581 		 * sock refcnt is decremented to prevent a request_sock leak.
6582 		 */
6583 		if (!sk_fullsock(sk2))
6584 			sk2 = NULL;
6585 		if (sk2 != sk) {
6586 			sock_gen_put(sk);
6587 			/* Ensure there is no need to bump sk2 refcnt */
6588 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6589 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6590 				return NULL;
6591 			}
6592 			sk = sk2;
6593 		}
6594 	}
6595 
6596 	return sk;
6597 }
6598 
6599 static struct sock *
6600 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6601 	       u8 proto, u64 netns_id, u64 flags)
6602 {
6603 	struct net *caller_net;
6604 	int ifindex;
6605 
6606 	if (skb->dev) {
6607 		caller_net = dev_net(skb->dev);
6608 		ifindex = skb->dev->ifindex;
6609 	} else {
6610 		caller_net = sock_net(skb->sk);
6611 		ifindex = 0;
6612 	}
6613 
6614 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6615 				netns_id, flags);
6616 }
6617 
6618 static struct sock *
6619 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6620 	      u8 proto, u64 netns_id, u64 flags)
6621 {
6622 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6623 					 flags);
6624 
6625 	if (sk) {
6626 		struct sock *sk2 = sk_to_full_sk(sk);
6627 
6628 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6629 		 * sock refcnt is decremented to prevent a request_sock leak.
6630 		 */
6631 		if (!sk_fullsock(sk2))
6632 			sk2 = NULL;
6633 		if (sk2 != sk) {
6634 			sock_gen_put(sk);
6635 			/* Ensure there is no need to bump sk2 refcnt */
6636 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6637 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6638 				return NULL;
6639 			}
6640 			sk = sk2;
6641 		}
6642 	}
6643 
6644 	return sk;
6645 }
6646 
6647 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6648 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6649 {
6650 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6651 					     netns_id, flags);
6652 }
6653 
6654 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6655 	.func		= bpf_skc_lookup_tcp,
6656 	.gpl_only	= false,
6657 	.pkt_access	= true,
6658 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6659 	.arg1_type	= ARG_PTR_TO_CTX,
6660 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6661 	.arg3_type	= ARG_CONST_SIZE,
6662 	.arg4_type	= ARG_ANYTHING,
6663 	.arg5_type	= ARG_ANYTHING,
6664 };
6665 
6666 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6667 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6668 {
6669 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6670 					    netns_id, flags);
6671 }
6672 
6673 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6674 	.func		= bpf_sk_lookup_tcp,
6675 	.gpl_only	= false,
6676 	.pkt_access	= true,
6677 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6678 	.arg1_type	= ARG_PTR_TO_CTX,
6679 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6680 	.arg3_type	= ARG_CONST_SIZE,
6681 	.arg4_type	= ARG_ANYTHING,
6682 	.arg5_type	= ARG_ANYTHING,
6683 };
6684 
6685 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6686 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6687 {
6688 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6689 					    netns_id, flags);
6690 }
6691 
6692 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6693 	.func		= bpf_sk_lookup_udp,
6694 	.gpl_only	= false,
6695 	.pkt_access	= true,
6696 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6697 	.arg1_type	= ARG_PTR_TO_CTX,
6698 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6699 	.arg3_type	= ARG_CONST_SIZE,
6700 	.arg4_type	= ARG_ANYTHING,
6701 	.arg5_type	= ARG_ANYTHING,
6702 };
6703 
6704 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6705 {
6706 	if (sk && sk_is_refcounted(sk))
6707 		sock_gen_put(sk);
6708 	return 0;
6709 }
6710 
6711 static const struct bpf_func_proto bpf_sk_release_proto = {
6712 	.func		= bpf_sk_release,
6713 	.gpl_only	= false,
6714 	.ret_type	= RET_INTEGER,
6715 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6716 };
6717 
6718 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6719 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6720 {
6721 	struct net *caller_net = dev_net(ctx->rxq->dev);
6722 	int ifindex = ctx->rxq->dev->ifindex;
6723 
6724 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6725 					      ifindex, IPPROTO_UDP, netns_id,
6726 					      flags);
6727 }
6728 
6729 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6730 	.func           = bpf_xdp_sk_lookup_udp,
6731 	.gpl_only       = false,
6732 	.pkt_access     = true,
6733 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6734 	.arg1_type      = ARG_PTR_TO_CTX,
6735 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6736 	.arg3_type      = ARG_CONST_SIZE,
6737 	.arg4_type      = ARG_ANYTHING,
6738 	.arg5_type      = ARG_ANYTHING,
6739 };
6740 
6741 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6742 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6743 {
6744 	struct net *caller_net = dev_net(ctx->rxq->dev);
6745 	int ifindex = ctx->rxq->dev->ifindex;
6746 
6747 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6748 					       ifindex, IPPROTO_TCP, netns_id,
6749 					       flags);
6750 }
6751 
6752 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6753 	.func           = bpf_xdp_skc_lookup_tcp,
6754 	.gpl_only       = false,
6755 	.pkt_access     = true,
6756 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6757 	.arg1_type      = ARG_PTR_TO_CTX,
6758 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6759 	.arg3_type      = ARG_CONST_SIZE,
6760 	.arg4_type      = ARG_ANYTHING,
6761 	.arg5_type      = ARG_ANYTHING,
6762 };
6763 
6764 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6765 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6766 {
6767 	struct net *caller_net = dev_net(ctx->rxq->dev);
6768 	int ifindex = ctx->rxq->dev->ifindex;
6769 
6770 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6771 					      ifindex, IPPROTO_TCP, netns_id,
6772 					      flags);
6773 }
6774 
6775 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6776 	.func           = bpf_xdp_sk_lookup_tcp,
6777 	.gpl_only       = false,
6778 	.pkt_access     = true,
6779 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6780 	.arg1_type      = ARG_PTR_TO_CTX,
6781 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6782 	.arg3_type      = ARG_CONST_SIZE,
6783 	.arg4_type      = ARG_ANYTHING,
6784 	.arg5_type      = ARG_ANYTHING,
6785 };
6786 
6787 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6788 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6789 {
6790 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6791 					       sock_net(ctx->sk), 0,
6792 					       IPPROTO_TCP, netns_id, flags);
6793 }
6794 
6795 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6796 	.func		= bpf_sock_addr_skc_lookup_tcp,
6797 	.gpl_only	= false,
6798 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6799 	.arg1_type	= ARG_PTR_TO_CTX,
6800 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6801 	.arg3_type	= ARG_CONST_SIZE,
6802 	.arg4_type	= ARG_ANYTHING,
6803 	.arg5_type	= ARG_ANYTHING,
6804 };
6805 
6806 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6807 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6808 {
6809 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6810 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6811 					      netns_id, flags);
6812 }
6813 
6814 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6815 	.func		= bpf_sock_addr_sk_lookup_tcp,
6816 	.gpl_only	= false,
6817 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6818 	.arg1_type	= ARG_PTR_TO_CTX,
6819 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6820 	.arg3_type	= ARG_CONST_SIZE,
6821 	.arg4_type	= ARG_ANYTHING,
6822 	.arg5_type	= ARG_ANYTHING,
6823 };
6824 
6825 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6826 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6827 {
6828 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6829 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6830 					      netns_id, flags);
6831 }
6832 
6833 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6834 	.func		= bpf_sock_addr_sk_lookup_udp,
6835 	.gpl_only	= false,
6836 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6837 	.arg1_type	= ARG_PTR_TO_CTX,
6838 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6839 	.arg3_type	= ARG_CONST_SIZE,
6840 	.arg4_type	= ARG_ANYTHING,
6841 	.arg5_type	= ARG_ANYTHING,
6842 };
6843 
6844 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6845 				  struct bpf_insn_access_aux *info)
6846 {
6847 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6848 					  icsk_retransmits))
6849 		return false;
6850 
6851 	if (off % size != 0)
6852 		return false;
6853 
6854 	switch (off) {
6855 	case offsetof(struct bpf_tcp_sock, bytes_received):
6856 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6857 		return size == sizeof(__u64);
6858 	default:
6859 		return size == sizeof(__u32);
6860 	}
6861 }
6862 
6863 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6864 				    const struct bpf_insn *si,
6865 				    struct bpf_insn *insn_buf,
6866 				    struct bpf_prog *prog, u32 *target_size)
6867 {
6868 	struct bpf_insn *insn = insn_buf;
6869 
6870 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6871 	do {								\
6872 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6873 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6874 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6875 				      si->dst_reg, si->src_reg,		\
6876 				      offsetof(struct tcp_sock, FIELD)); \
6877 	} while (0)
6878 
6879 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6880 	do {								\
6881 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6882 					  FIELD) >			\
6883 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6884 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6885 					struct inet_connection_sock,	\
6886 					FIELD),				\
6887 				      si->dst_reg, si->src_reg,		\
6888 				      offsetof(				\
6889 					struct inet_connection_sock,	\
6890 					FIELD));			\
6891 	} while (0)
6892 
6893 	switch (si->off) {
6894 	case offsetof(struct bpf_tcp_sock, rtt_min):
6895 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6896 			     sizeof(struct minmax));
6897 		BUILD_BUG_ON(sizeof(struct minmax) <
6898 			     sizeof(struct minmax_sample));
6899 
6900 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6901 				      offsetof(struct tcp_sock, rtt_min) +
6902 				      offsetof(struct minmax_sample, v));
6903 		break;
6904 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6905 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6906 		break;
6907 	case offsetof(struct bpf_tcp_sock, srtt_us):
6908 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6909 		break;
6910 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6911 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6912 		break;
6913 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6914 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6915 		break;
6916 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6917 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6918 		break;
6919 	case offsetof(struct bpf_tcp_sock, snd_una):
6920 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6921 		break;
6922 	case offsetof(struct bpf_tcp_sock, mss_cache):
6923 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6924 		break;
6925 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6926 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6927 		break;
6928 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6929 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6930 		break;
6931 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6932 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6933 		break;
6934 	case offsetof(struct bpf_tcp_sock, packets_out):
6935 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6936 		break;
6937 	case offsetof(struct bpf_tcp_sock, retrans_out):
6938 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6939 		break;
6940 	case offsetof(struct bpf_tcp_sock, total_retrans):
6941 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6942 		break;
6943 	case offsetof(struct bpf_tcp_sock, segs_in):
6944 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6945 		break;
6946 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6947 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6948 		break;
6949 	case offsetof(struct bpf_tcp_sock, segs_out):
6950 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6951 		break;
6952 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6953 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6954 		break;
6955 	case offsetof(struct bpf_tcp_sock, lost_out):
6956 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6957 		break;
6958 	case offsetof(struct bpf_tcp_sock, sacked_out):
6959 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6960 		break;
6961 	case offsetof(struct bpf_tcp_sock, bytes_received):
6962 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6963 		break;
6964 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6965 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6966 		break;
6967 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6968 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6969 		break;
6970 	case offsetof(struct bpf_tcp_sock, delivered):
6971 		BPF_TCP_SOCK_GET_COMMON(delivered);
6972 		break;
6973 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6974 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6975 		break;
6976 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6977 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6978 		break;
6979 	}
6980 
6981 	return insn - insn_buf;
6982 }
6983 
6984 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6985 {
6986 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6987 		return (unsigned long)sk;
6988 
6989 	return (unsigned long)NULL;
6990 }
6991 
6992 const struct bpf_func_proto bpf_tcp_sock_proto = {
6993 	.func		= bpf_tcp_sock,
6994 	.gpl_only	= false,
6995 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6996 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6997 };
6998 
6999 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7000 {
7001 	sk = sk_to_full_sk(sk);
7002 
7003 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7004 		return (unsigned long)sk;
7005 
7006 	return (unsigned long)NULL;
7007 }
7008 
7009 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7010 	.func		= bpf_get_listener_sock,
7011 	.gpl_only	= false,
7012 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7013 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7014 };
7015 
7016 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7017 {
7018 	unsigned int iphdr_len;
7019 
7020 	switch (skb_protocol(skb, true)) {
7021 	case cpu_to_be16(ETH_P_IP):
7022 		iphdr_len = sizeof(struct iphdr);
7023 		break;
7024 	case cpu_to_be16(ETH_P_IPV6):
7025 		iphdr_len = sizeof(struct ipv6hdr);
7026 		break;
7027 	default:
7028 		return 0;
7029 	}
7030 
7031 	if (skb_headlen(skb) < iphdr_len)
7032 		return 0;
7033 
7034 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7035 		return 0;
7036 
7037 	return INET_ECN_set_ce(skb);
7038 }
7039 
7040 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7041 				  struct bpf_insn_access_aux *info)
7042 {
7043 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7044 		return false;
7045 
7046 	if (off % size != 0)
7047 		return false;
7048 
7049 	switch (off) {
7050 	default:
7051 		return size == sizeof(__u32);
7052 	}
7053 }
7054 
7055 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7056 				    const struct bpf_insn *si,
7057 				    struct bpf_insn *insn_buf,
7058 				    struct bpf_prog *prog, u32 *target_size)
7059 {
7060 	struct bpf_insn *insn = insn_buf;
7061 
7062 #define BPF_XDP_SOCK_GET(FIELD)						\
7063 	do {								\
7064 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7065 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7066 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7067 				      si->dst_reg, si->src_reg,		\
7068 				      offsetof(struct xdp_sock, FIELD)); \
7069 	} while (0)
7070 
7071 	switch (si->off) {
7072 	case offsetof(struct bpf_xdp_sock, queue_id):
7073 		BPF_XDP_SOCK_GET(queue_id);
7074 		break;
7075 	}
7076 
7077 	return insn - insn_buf;
7078 }
7079 
7080 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7081 	.func           = bpf_skb_ecn_set_ce,
7082 	.gpl_only       = false,
7083 	.ret_type       = RET_INTEGER,
7084 	.arg1_type      = ARG_PTR_TO_CTX,
7085 };
7086 
7087 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7088 	   struct tcphdr *, th, u32, th_len)
7089 {
7090 #ifdef CONFIG_SYN_COOKIES
7091 	u32 cookie;
7092 	int ret;
7093 
7094 	if (unlikely(!sk || th_len < sizeof(*th)))
7095 		return -EINVAL;
7096 
7097 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7098 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7099 		return -EINVAL;
7100 
7101 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7102 		return -EINVAL;
7103 
7104 	if (!th->ack || th->rst || th->syn)
7105 		return -ENOENT;
7106 
7107 	if (unlikely(iph_len < sizeof(struct iphdr)))
7108 		return -EINVAL;
7109 
7110 	if (tcp_synq_no_recent_overflow(sk))
7111 		return -ENOENT;
7112 
7113 	cookie = ntohl(th->ack_seq) - 1;
7114 
7115 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7116 	 * same offset so we can cast to the shorter header (struct iphdr).
7117 	 */
7118 	switch (((struct iphdr *)iph)->version) {
7119 	case 4:
7120 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7121 			return -EINVAL;
7122 
7123 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7124 		break;
7125 
7126 #if IS_BUILTIN(CONFIG_IPV6)
7127 	case 6:
7128 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7129 			return -EINVAL;
7130 
7131 		if (sk->sk_family != AF_INET6)
7132 			return -EINVAL;
7133 
7134 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7135 		break;
7136 #endif /* CONFIG_IPV6 */
7137 
7138 	default:
7139 		return -EPROTONOSUPPORT;
7140 	}
7141 
7142 	if (ret > 0)
7143 		return 0;
7144 
7145 	return -ENOENT;
7146 #else
7147 	return -ENOTSUPP;
7148 #endif
7149 }
7150 
7151 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7152 	.func		= bpf_tcp_check_syncookie,
7153 	.gpl_only	= true,
7154 	.pkt_access	= true,
7155 	.ret_type	= RET_INTEGER,
7156 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7157 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7158 	.arg3_type	= ARG_CONST_SIZE,
7159 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7160 	.arg5_type	= ARG_CONST_SIZE,
7161 };
7162 
7163 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7164 	   struct tcphdr *, th, u32, th_len)
7165 {
7166 #ifdef CONFIG_SYN_COOKIES
7167 	u32 cookie;
7168 	u16 mss;
7169 
7170 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7171 		return -EINVAL;
7172 
7173 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7174 		return -EINVAL;
7175 
7176 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7177 		return -ENOENT;
7178 
7179 	if (!th->syn || th->ack || th->fin || th->rst)
7180 		return -EINVAL;
7181 
7182 	if (unlikely(iph_len < sizeof(struct iphdr)))
7183 		return -EINVAL;
7184 
7185 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7186 	 * same offset so we can cast to the shorter header (struct iphdr).
7187 	 */
7188 	switch (((struct iphdr *)iph)->version) {
7189 	case 4:
7190 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7191 			return -EINVAL;
7192 
7193 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7194 		break;
7195 
7196 #if IS_BUILTIN(CONFIG_IPV6)
7197 	case 6:
7198 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7199 			return -EINVAL;
7200 
7201 		if (sk->sk_family != AF_INET6)
7202 			return -EINVAL;
7203 
7204 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7205 		break;
7206 #endif /* CONFIG_IPV6 */
7207 
7208 	default:
7209 		return -EPROTONOSUPPORT;
7210 	}
7211 	if (mss == 0)
7212 		return -ENOENT;
7213 
7214 	return cookie | ((u64)mss << 32);
7215 #else
7216 	return -EOPNOTSUPP;
7217 #endif /* CONFIG_SYN_COOKIES */
7218 }
7219 
7220 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7221 	.func		= bpf_tcp_gen_syncookie,
7222 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7223 	.pkt_access	= true,
7224 	.ret_type	= RET_INTEGER,
7225 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7226 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7227 	.arg3_type	= ARG_CONST_SIZE,
7228 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7229 	.arg5_type	= ARG_CONST_SIZE,
7230 };
7231 
7232 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7233 {
7234 	if (!sk || flags != 0)
7235 		return -EINVAL;
7236 	if (!skb_at_tc_ingress(skb))
7237 		return -EOPNOTSUPP;
7238 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7239 		return -ENETUNREACH;
7240 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7241 		return -ESOCKTNOSUPPORT;
7242 	if (sk_is_refcounted(sk) &&
7243 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7244 		return -ENOENT;
7245 
7246 	skb_orphan(skb);
7247 	skb->sk = sk;
7248 	skb->destructor = sock_pfree;
7249 
7250 	return 0;
7251 }
7252 
7253 static const struct bpf_func_proto bpf_sk_assign_proto = {
7254 	.func		= bpf_sk_assign,
7255 	.gpl_only	= false,
7256 	.ret_type	= RET_INTEGER,
7257 	.arg1_type      = ARG_PTR_TO_CTX,
7258 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7259 	.arg3_type	= ARG_ANYTHING,
7260 };
7261 
7262 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7263 				    u8 search_kind, const u8 *magic,
7264 				    u8 magic_len, bool *eol)
7265 {
7266 	u8 kind, kind_len;
7267 
7268 	*eol = false;
7269 
7270 	while (op < opend) {
7271 		kind = op[0];
7272 
7273 		if (kind == TCPOPT_EOL) {
7274 			*eol = true;
7275 			return ERR_PTR(-ENOMSG);
7276 		} else if (kind == TCPOPT_NOP) {
7277 			op++;
7278 			continue;
7279 		}
7280 
7281 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7282 			/* Something is wrong in the received header.
7283 			 * Follow the TCP stack's tcp_parse_options()
7284 			 * and just bail here.
7285 			 */
7286 			return ERR_PTR(-EFAULT);
7287 
7288 		kind_len = op[1];
7289 		if (search_kind == kind) {
7290 			if (!magic_len)
7291 				return op;
7292 
7293 			if (magic_len > kind_len - 2)
7294 				return ERR_PTR(-ENOMSG);
7295 
7296 			if (!memcmp(&op[2], magic, magic_len))
7297 				return op;
7298 		}
7299 
7300 		op += kind_len;
7301 	}
7302 
7303 	return ERR_PTR(-ENOMSG);
7304 }
7305 
7306 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7307 	   void *, search_res, u32, len, u64, flags)
7308 {
7309 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7310 	const u8 *op, *opend, *magic, *search = search_res;
7311 	u8 search_kind, search_len, copy_len, magic_len;
7312 	int ret;
7313 
7314 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7315 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7316 	 * and this helper disallow loading them also.
7317 	 */
7318 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7319 		return -EINVAL;
7320 
7321 	search_kind = search[0];
7322 	search_len = search[1];
7323 
7324 	if (search_len > len || search_kind == TCPOPT_NOP ||
7325 	    search_kind == TCPOPT_EOL)
7326 		return -EINVAL;
7327 
7328 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7329 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7330 		if (search_len != 4 && search_len != 6)
7331 			return -EINVAL;
7332 		magic = &search[2];
7333 		magic_len = search_len - 2;
7334 	} else {
7335 		if (search_len)
7336 			return -EINVAL;
7337 		magic = NULL;
7338 		magic_len = 0;
7339 	}
7340 
7341 	if (load_syn) {
7342 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7343 		if (ret < 0)
7344 			return ret;
7345 
7346 		opend = op + ret;
7347 		op += sizeof(struct tcphdr);
7348 	} else {
7349 		if (!bpf_sock->skb ||
7350 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7351 			/* This bpf_sock->op cannot call this helper */
7352 			return -EPERM;
7353 
7354 		opend = bpf_sock->skb_data_end;
7355 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7356 	}
7357 
7358 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7359 				&eol);
7360 	if (IS_ERR(op))
7361 		return PTR_ERR(op);
7362 
7363 	copy_len = op[1];
7364 	ret = copy_len;
7365 	if (copy_len > len) {
7366 		ret = -ENOSPC;
7367 		copy_len = len;
7368 	}
7369 
7370 	memcpy(search_res, op, copy_len);
7371 	return ret;
7372 }
7373 
7374 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7375 	.func		= bpf_sock_ops_load_hdr_opt,
7376 	.gpl_only	= false,
7377 	.ret_type	= RET_INTEGER,
7378 	.arg1_type	= ARG_PTR_TO_CTX,
7379 	.arg2_type	= ARG_PTR_TO_MEM,
7380 	.arg3_type	= ARG_CONST_SIZE,
7381 	.arg4_type	= ARG_ANYTHING,
7382 };
7383 
7384 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7385 	   const void *, from, u32, len, u64, flags)
7386 {
7387 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7388 	const u8 *op, *new_op, *magic = NULL;
7389 	struct sk_buff *skb;
7390 	bool eol;
7391 
7392 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7393 		return -EPERM;
7394 
7395 	if (len < 2 || flags)
7396 		return -EINVAL;
7397 
7398 	new_op = from;
7399 	new_kind = new_op[0];
7400 	new_kind_len = new_op[1];
7401 
7402 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7403 	    new_kind == TCPOPT_EOL)
7404 		return -EINVAL;
7405 
7406 	if (new_kind_len > bpf_sock->remaining_opt_len)
7407 		return -ENOSPC;
7408 
7409 	/* 253 is another experimental kind */
7410 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7411 		if (new_kind_len < 4)
7412 			return -EINVAL;
7413 		/* Match for the 2 byte magic also.
7414 		 * RFC 6994: the magic could be 2 or 4 bytes.
7415 		 * Hence, matching by 2 byte only is on the
7416 		 * conservative side but it is the right
7417 		 * thing to do for the 'search-for-duplication'
7418 		 * purpose.
7419 		 */
7420 		magic = &new_op[2];
7421 		magic_len = 2;
7422 	}
7423 
7424 	/* Check for duplication */
7425 	skb = bpf_sock->skb;
7426 	op = skb->data + sizeof(struct tcphdr);
7427 	opend = bpf_sock->skb_data_end;
7428 
7429 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7430 				&eol);
7431 	if (!IS_ERR(op))
7432 		return -EEXIST;
7433 
7434 	if (PTR_ERR(op) != -ENOMSG)
7435 		return PTR_ERR(op);
7436 
7437 	if (eol)
7438 		/* The option has been ended.  Treat it as no more
7439 		 * header option can be written.
7440 		 */
7441 		return -ENOSPC;
7442 
7443 	/* No duplication found.  Store the header option. */
7444 	memcpy(opend, from, new_kind_len);
7445 
7446 	bpf_sock->remaining_opt_len -= new_kind_len;
7447 	bpf_sock->skb_data_end += new_kind_len;
7448 
7449 	return 0;
7450 }
7451 
7452 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7453 	.func		= bpf_sock_ops_store_hdr_opt,
7454 	.gpl_only	= false,
7455 	.ret_type	= RET_INTEGER,
7456 	.arg1_type	= ARG_PTR_TO_CTX,
7457 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7458 	.arg3_type	= ARG_CONST_SIZE,
7459 	.arg4_type	= ARG_ANYTHING,
7460 };
7461 
7462 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7463 	   u32, len, u64, flags)
7464 {
7465 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7466 		return -EPERM;
7467 
7468 	if (flags || len < 2)
7469 		return -EINVAL;
7470 
7471 	if (len > bpf_sock->remaining_opt_len)
7472 		return -ENOSPC;
7473 
7474 	bpf_sock->remaining_opt_len -= len;
7475 
7476 	return 0;
7477 }
7478 
7479 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7480 	.func		= bpf_sock_ops_reserve_hdr_opt,
7481 	.gpl_only	= false,
7482 	.ret_type	= RET_INTEGER,
7483 	.arg1_type	= ARG_PTR_TO_CTX,
7484 	.arg2_type	= ARG_ANYTHING,
7485 	.arg3_type	= ARG_ANYTHING,
7486 };
7487 
7488 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7489 	   u64, tstamp, u32, tstamp_type)
7490 {
7491 	/* skb_clear_delivery_time() is done for inet protocol */
7492 	if (skb->protocol != htons(ETH_P_IP) &&
7493 	    skb->protocol != htons(ETH_P_IPV6))
7494 		return -EOPNOTSUPP;
7495 
7496 	switch (tstamp_type) {
7497 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7498 		if (!tstamp)
7499 			return -EINVAL;
7500 		skb->tstamp = tstamp;
7501 		skb->mono_delivery_time = 1;
7502 		break;
7503 	case BPF_SKB_TSTAMP_UNSPEC:
7504 		if (tstamp)
7505 			return -EINVAL;
7506 		skb->tstamp = 0;
7507 		skb->mono_delivery_time = 0;
7508 		break;
7509 	default:
7510 		return -EINVAL;
7511 	}
7512 
7513 	return 0;
7514 }
7515 
7516 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7517 	.func           = bpf_skb_set_tstamp,
7518 	.gpl_only       = false,
7519 	.ret_type       = RET_INTEGER,
7520 	.arg1_type      = ARG_PTR_TO_CTX,
7521 	.arg2_type      = ARG_ANYTHING,
7522 	.arg3_type      = ARG_ANYTHING,
7523 };
7524 
7525 #ifdef CONFIG_SYN_COOKIES
7526 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7527 	   struct tcphdr *, th, u32, th_len)
7528 {
7529 	u32 cookie;
7530 	u16 mss;
7531 
7532 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7533 		return -EINVAL;
7534 
7535 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7536 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7537 
7538 	return cookie | ((u64)mss << 32);
7539 }
7540 
7541 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7542 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7543 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7544 	.pkt_access	= true,
7545 	.ret_type	= RET_INTEGER,
7546 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7547 	.arg1_size	= sizeof(struct iphdr),
7548 	.arg2_type	= ARG_PTR_TO_MEM,
7549 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7550 };
7551 
7552 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7553 	   struct tcphdr *, th, u32, th_len)
7554 {
7555 #if IS_BUILTIN(CONFIG_IPV6)
7556 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7557 		sizeof(struct ipv6hdr);
7558 	u32 cookie;
7559 	u16 mss;
7560 
7561 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7562 		return -EINVAL;
7563 
7564 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7565 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7566 
7567 	return cookie | ((u64)mss << 32);
7568 #else
7569 	return -EPROTONOSUPPORT;
7570 #endif
7571 }
7572 
7573 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7574 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7575 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7576 	.pkt_access	= true,
7577 	.ret_type	= RET_INTEGER,
7578 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7579 	.arg1_size	= sizeof(struct ipv6hdr),
7580 	.arg2_type	= ARG_PTR_TO_MEM,
7581 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7582 };
7583 
7584 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7585 	   struct tcphdr *, th)
7586 {
7587 	u32 cookie = ntohl(th->ack_seq) - 1;
7588 
7589 	if (__cookie_v4_check(iph, th, cookie) > 0)
7590 		return 0;
7591 
7592 	return -EACCES;
7593 }
7594 
7595 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7596 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7597 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7598 	.pkt_access	= true,
7599 	.ret_type	= RET_INTEGER,
7600 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7601 	.arg1_size	= sizeof(struct iphdr),
7602 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7603 	.arg2_size	= sizeof(struct tcphdr),
7604 };
7605 
7606 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7607 	   struct tcphdr *, th)
7608 {
7609 #if IS_BUILTIN(CONFIG_IPV6)
7610 	u32 cookie = ntohl(th->ack_seq) - 1;
7611 
7612 	if (__cookie_v6_check(iph, th, cookie) > 0)
7613 		return 0;
7614 
7615 	return -EACCES;
7616 #else
7617 	return -EPROTONOSUPPORT;
7618 #endif
7619 }
7620 
7621 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7622 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7623 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7624 	.pkt_access	= true,
7625 	.ret_type	= RET_INTEGER,
7626 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7627 	.arg1_size	= sizeof(struct ipv6hdr),
7628 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7629 	.arg2_size	= sizeof(struct tcphdr),
7630 };
7631 #endif /* CONFIG_SYN_COOKIES */
7632 
7633 #endif /* CONFIG_INET */
7634 
7635 bool bpf_helper_changes_pkt_data(void *func)
7636 {
7637 	if (func == bpf_skb_vlan_push ||
7638 	    func == bpf_skb_vlan_pop ||
7639 	    func == bpf_skb_store_bytes ||
7640 	    func == bpf_skb_change_proto ||
7641 	    func == bpf_skb_change_head ||
7642 	    func == sk_skb_change_head ||
7643 	    func == bpf_skb_change_tail ||
7644 	    func == sk_skb_change_tail ||
7645 	    func == bpf_skb_adjust_room ||
7646 	    func == sk_skb_adjust_room ||
7647 	    func == bpf_skb_pull_data ||
7648 	    func == sk_skb_pull_data ||
7649 	    func == bpf_clone_redirect ||
7650 	    func == bpf_l3_csum_replace ||
7651 	    func == bpf_l4_csum_replace ||
7652 	    func == bpf_xdp_adjust_head ||
7653 	    func == bpf_xdp_adjust_meta ||
7654 	    func == bpf_msg_pull_data ||
7655 	    func == bpf_msg_push_data ||
7656 	    func == bpf_msg_pop_data ||
7657 	    func == bpf_xdp_adjust_tail ||
7658 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7659 	    func == bpf_lwt_seg6_store_bytes ||
7660 	    func == bpf_lwt_seg6_adjust_srh ||
7661 	    func == bpf_lwt_seg6_action ||
7662 #endif
7663 #ifdef CONFIG_INET
7664 	    func == bpf_sock_ops_store_hdr_opt ||
7665 #endif
7666 	    func == bpf_lwt_in_push_encap ||
7667 	    func == bpf_lwt_xmit_push_encap)
7668 		return true;
7669 
7670 	return false;
7671 }
7672 
7673 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7674 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7675 
7676 static const struct bpf_func_proto *
7677 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7678 {
7679 	const struct bpf_func_proto *func_proto;
7680 
7681 	func_proto = cgroup_common_func_proto(func_id, prog);
7682 	if (func_proto)
7683 		return func_proto;
7684 
7685 	func_proto = cgroup_current_func_proto(func_id, prog);
7686 	if (func_proto)
7687 		return func_proto;
7688 
7689 	switch (func_id) {
7690 	case BPF_FUNC_get_socket_cookie:
7691 		return &bpf_get_socket_cookie_sock_proto;
7692 	case BPF_FUNC_get_netns_cookie:
7693 		return &bpf_get_netns_cookie_sock_proto;
7694 	case BPF_FUNC_perf_event_output:
7695 		return &bpf_event_output_data_proto;
7696 	case BPF_FUNC_sk_storage_get:
7697 		return &bpf_sk_storage_get_cg_sock_proto;
7698 	case BPF_FUNC_ktime_get_coarse_ns:
7699 		return &bpf_ktime_get_coarse_ns_proto;
7700 	default:
7701 		return bpf_base_func_proto(func_id);
7702 	}
7703 }
7704 
7705 static const struct bpf_func_proto *
7706 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7707 {
7708 	const struct bpf_func_proto *func_proto;
7709 
7710 	func_proto = cgroup_common_func_proto(func_id, prog);
7711 	if (func_proto)
7712 		return func_proto;
7713 
7714 	func_proto = cgroup_current_func_proto(func_id, prog);
7715 	if (func_proto)
7716 		return func_proto;
7717 
7718 	switch (func_id) {
7719 	case BPF_FUNC_bind:
7720 		switch (prog->expected_attach_type) {
7721 		case BPF_CGROUP_INET4_CONNECT:
7722 		case BPF_CGROUP_INET6_CONNECT:
7723 			return &bpf_bind_proto;
7724 		default:
7725 			return NULL;
7726 		}
7727 	case BPF_FUNC_get_socket_cookie:
7728 		return &bpf_get_socket_cookie_sock_addr_proto;
7729 	case BPF_FUNC_get_netns_cookie:
7730 		return &bpf_get_netns_cookie_sock_addr_proto;
7731 	case BPF_FUNC_perf_event_output:
7732 		return &bpf_event_output_data_proto;
7733 #ifdef CONFIG_INET
7734 	case BPF_FUNC_sk_lookup_tcp:
7735 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7736 	case BPF_FUNC_sk_lookup_udp:
7737 		return &bpf_sock_addr_sk_lookup_udp_proto;
7738 	case BPF_FUNC_sk_release:
7739 		return &bpf_sk_release_proto;
7740 	case BPF_FUNC_skc_lookup_tcp:
7741 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7742 #endif /* CONFIG_INET */
7743 	case BPF_FUNC_sk_storage_get:
7744 		return &bpf_sk_storage_get_proto;
7745 	case BPF_FUNC_sk_storage_delete:
7746 		return &bpf_sk_storage_delete_proto;
7747 	case BPF_FUNC_setsockopt:
7748 		switch (prog->expected_attach_type) {
7749 		case BPF_CGROUP_INET4_BIND:
7750 		case BPF_CGROUP_INET6_BIND:
7751 		case BPF_CGROUP_INET4_CONNECT:
7752 		case BPF_CGROUP_INET6_CONNECT:
7753 		case BPF_CGROUP_UDP4_RECVMSG:
7754 		case BPF_CGROUP_UDP6_RECVMSG:
7755 		case BPF_CGROUP_UDP4_SENDMSG:
7756 		case BPF_CGROUP_UDP6_SENDMSG:
7757 		case BPF_CGROUP_INET4_GETPEERNAME:
7758 		case BPF_CGROUP_INET6_GETPEERNAME:
7759 		case BPF_CGROUP_INET4_GETSOCKNAME:
7760 		case BPF_CGROUP_INET6_GETSOCKNAME:
7761 			return &bpf_sock_addr_setsockopt_proto;
7762 		default:
7763 			return NULL;
7764 		}
7765 	case BPF_FUNC_getsockopt:
7766 		switch (prog->expected_attach_type) {
7767 		case BPF_CGROUP_INET4_BIND:
7768 		case BPF_CGROUP_INET6_BIND:
7769 		case BPF_CGROUP_INET4_CONNECT:
7770 		case BPF_CGROUP_INET6_CONNECT:
7771 		case BPF_CGROUP_UDP4_RECVMSG:
7772 		case BPF_CGROUP_UDP6_RECVMSG:
7773 		case BPF_CGROUP_UDP4_SENDMSG:
7774 		case BPF_CGROUP_UDP6_SENDMSG:
7775 		case BPF_CGROUP_INET4_GETPEERNAME:
7776 		case BPF_CGROUP_INET6_GETPEERNAME:
7777 		case BPF_CGROUP_INET4_GETSOCKNAME:
7778 		case BPF_CGROUP_INET6_GETSOCKNAME:
7779 			return &bpf_sock_addr_getsockopt_proto;
7780 		default:
7781 			return NULL;
7782 		}
7783 	default:
7784 		return bpf_sk_base_func_proto(func_id);
7785 	}
7786 }
7787 
7788 static const struct bpf_func_proto *
7789 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7790 {
7791 	switch (func_id) {
7792 	case BPF_FUNC_skb_load_bytes:
7793 		return &bpf_skb_load_bytes_proto;
7794 	case BPF_FUNC_skb_load_bytes_relative:
7795 		return &bpf_skb_load_bytes_relative_proto;
7796 	case BPF_FUNC_get_socket_cookie:
7797 		return &bpf_get_socket_cookie_proto;
7798 	case BPF_FUNC_get_socket_uid:
7799 		return &bpf_get_socket_uid_proto;
7800 	case BPF_FUNC_perf_event_output:
7801 		return &bpf_skb_event_output_proto;
7802 	default:
7803 		return bpf_sk_base_func_proto(func_id);
7804 	}
7805 }
7806 
7807 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7808 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7809 
7810 static const struct bpf_func_proto *
7811 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7812 {
7813 	const struct bpf_func_proto *func_proto;
7814 
7815 	func_proto = cgroup_common_func_proto(func_id, prog);
7816 	if (func_proto)
7817 		return func_proto;
7818 
7819 	switch (func_id) {
7820 	case BPF_FUNC_sk_fullsock:
7821 		return &bpf_sk_fullsock_proto;
7822 	case BPF_FUNC_sk_storage_get:
7823 		return &bpf_sk_storage_get_proto;
7824 	case BPF_FUNC_sk_storage_delete:
7825 		return &bpf_sk_storage_delete_proto;
7826 	case BPF_FUNC_perf_event_output:
7827 		return &bpf_skb_event_output_proto;
7828 #ifdef CONFIG_SOCK_CGROUP_DATA
7829 	case BPF_FUNC_skb_cgroup_id:
7830 		return &bpf_skb_cgroup_id_proto;
7831 	case BPF_FUNC_skb_ancestor_cgroup_id:
7832 		return &bpf_skb_ancestor_cgroup_id_proto;
7833 	case BPF_FUNC_sk_cgroup_id:
7834 		return &bpf_sk_cgroup_id_proto;
7835 	case BPF_FUNC_sk_ancestor_cgroup_id:
7836 		return &bpf_sk_ancestor_cgroup_id_proto;
7837 #endif
7838 #ifdef CONFIG_INET
7839 	case BPF_FUNC_sk_lookup_tcp:
7840 		return &bpf_sk_lookup_tcp_proto;
7841 	case BPF_FUNC_sk_lookup_udp:
7842 		return &bpf_sk_lookup_udp_proto;
7843 	case BPF_FUNC_sk_release:
7844 		return &bpf_sk_release_proto;
7845 	case BPF_FUNC_skc_lookup_tcp:
7846 		return &bpf_skc_lookup_tcp_proto;
7847 	case BPF_FUNC_tcp_sock:
7848 		return &bpf_tcp_sock_proto;
7849 	case BPF_FUNC_get_listener_sock:
7850 		return &bpf_get_listener_sock_proto;
7851 	case BPF_FUNC_skb_ecn_set_ce:
7852 		return &bpf_skb_ecn_set_ce_proto;
7853 #endif
7854 	default:
7855 		return sk_filter_func_proto(func_id, prog);
7856 	}
7857 }
7858 
7859 static const struct bpf_func_proto *
7860 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7861 {
7862 	switch (func_id) {
7863 	case BPF_FUNC_skb_store_bytes:
7864 		return &bpf_skb_store_bytes_proto;
7865 	case BPF_FUNC_skb_load_bytes:
7866 		return &bpf_skb_load_bytes_proto;
7867 	case BPF_FUNC_skb_load_bytes_relative:
7868 		return &bpf_skb_load_bytes_relative_proto;
7869 	case BPF_FUNC_skb_pull_data:
7870 		return &bpf_skb_pull_data_proto;
7871 	case BPF_FUNC_csum_diff:
7872 		return &bpf_csum_diff_proto;
7873 	case BPF_FUNC_csum_update:
7874 		return &bpf_csum_update_proto;
7875 	case BPF_FUNC_csum_level:
7876 		return &bpf_csum_level_proto;
7877 	case BPF_FUNC_l3_csum_replace:
7878 		return &bpf_l3_csum_replace_proto;
7879 	case BPF_FUNC_l4_csum_replace:
7880 		return &bpf_l4_csum_replace_proto;
7881 	case BPF_FUNC_clone_redirect:
7882 		return &bpf_clone_redirect_proto;
7883 	case BPF_FUNC_get_cgroup_classid:
7884 		return &bpf_get_cgroup_classid_proto;
7885 	case BPF_FUNC_skb_vlan_push:
7886 		return &bpf_skb_vlan_push_proto;
7887 	case BPF_FUNC_skb_vlan_pop:
7888 		return &bpf_skb_vlan_pop_proto;
7889 	case BPF_FUNC_skb_change_proto:
7890 		return &bpf_skb_change_proto_proto;
7891 	case BPF_FUNC_skb_change_type:
7892 		return &bpf_skb_change_type_proto;
7893 	case BPF_FUNC_skb_adjust_room:
7894 		return &bpf_skb_adjust_room_proto;
7895 	case BPF_FUNC_skb_change_tail:
7896 		return &bpf_skb_change_tail_proto;
7897 	case BPF_FUNC_skb_change_head:
7898 		return &bpf_skb_change_head_proto;
7899 	case BPF_FUNC_skb_get_tunnel_key:
7900 		return &bpf_skb_get_tunnel_key_proto;
7901 	case BPF_FUNC_skb_set_tunnel_key:
7902 		return bpf_get_skb_set_tunnel_proto(func_id);
7903 	case BPF_FUNC_skb_get_tunnel_opt:
7904 		return &bpf_skb_get_tunnel_opt_proto;
7905 	case BPF_FUNC_skb_set_tunnel_opt:
7906 		return bpf_get_skb_set_tunnel_proto(func_id);
7907 	case BPF_FUNC_redirect:
7908 		return &bpf_redirect_proto;
7909 	case BPF_FUNC_redirect_neigh:
7910 		return &bpf_redirect_neigh_proto;
7911 	case BPF_FUNC_redirect_peer:
7912 		return &bpf_redirect_peer_proto;
7913 	case BPF_FUNC_get_route_realm:
7914 		return &bpf_get_route_realm_proto;
7915 	case BPF_FUNC_get_hash_recalc:
7916 		return &bpf_get_hash_recalc_proto;
7917 	case BPF_FUNC_set_hash_invalid:
7918 		return &bpf_set_hash_invalid_proto;
7919 	case BPF_FUNC_set_hash:
7920 		return &bpf_set_hash_proto;
7921 	case BPF_FUNC_perf_event_output:
7922 		return &bpf_skb_event_output_proto;
7923 	case BPF_FUNC_get_smp_processor_id:
7924 		return &bpf_get_smp_processor_id_proto;
7925 	case BPF_FUNC_skb_under_cgroup:
7926 		return &bpf_skb_under_cgroup_proto;
7927 	case BPF_FUNC_get_socket_cookie:
7928 		return &bpf_get_socket_cookie_proto;
7929 	case BPF_FUNC_get_socket_uid:
7930 		return &bpf_get_socket_uid_proto;
7931 	case BPF_FUNC_fib_lookup:
7932 		return &bpf_skb_fib_lookup_proto;
7933 	case BPF_FUNC_check_mtu:
7934 		return &bpf_skb_check_mtu_proto;
7935 	case BPF_FUNC_sk_fullsock:
7936 		return &bpf_sk_fullsock_proto;
7937 	case BPF_FUNC_sk_storage_get:
7938 		return &bpf_sk_storage_get_proto;
7939 	case BPF_FUNC_sk_storage_delete:
7940 		return &bpf_sk_storage_delete_proto;
7941 #ifdef CONFIG_XFRM
7942 	case BPF_FUNC_skb_get_xfrm_state:
7943 		return &bpf_skb_get_xfrm_state_proto;
7944 #endif
7945 #ifdef CONFIG_CGROUP_NET_CLASSID
7946 	case BPF_FUNC_skb_cgroup_classid:
7947 		return &bpf_skb_cgroup_classid_proto;
7948 #endif
7949 #ifdef CONFIG_SOCK_CGROUP_DATA
7950 	case BPF_FUNC_skb_cgroup_id:
7951 		return &bpf_skb_cgroup_id_proto;
7952 	case BPF_FUNC_skb_ancestor_cgroup_id:
7953 		return &bpf_skb_ancestor_cgroup_id_proto;
7954 #endif
7955 #ifdef CONFIG_INET
7956 	case BPF_FUNC_sk_lookup_tcp:
7957 		return &bpf_sk_lookup_tcp_proto;
7958 	case BPF_FUNC_sk_lookup_udp:
7959 		return &bpf_sk_lookup_udp_proto;
7960 	case BPF_FUNC_sk_release:
7961 		return &bpf_sk_release_proto;
7962 	case BPF_FUNC_tcp_sock:
7963 		return &bpf_tcp_sock_proto;
7964 	case BPF_FUNC_get_listener_sock:
7965 		return &bpf_get_listener_sock_proto;
7966 	case BPF_FUNC_skc_lookup_tcp:
7967 		return &bpf_skc_lookup_tcp_proto;
7968 	case BPF_FUNC_tcp_check_syncookie:
7969 		return &bpf_tcp_check_syncookie_proto;
7970 	case BPF_FUNC_skb_ecn_set_ce:
7971 		return &bpf_skb_ecn_set_ce_proto;
7972 	case BPF_FUNC_tcp_gen_syncookie:
7973 		return &bpf_tcp_gen_syncookie_proto;
7974 	case BPF_FUNC_sk_assign:
7975 		return &bpf_sk_assign_proto;
7976 	case BPF_FUNC_skb_set_tstamp:
7977 		return &bpf_skb_set_tstamp_proto;
7978 #ifdef CONFIG_SYN_COOKIES
7979 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7980 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7981 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7982 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7983 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7984 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7985 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7986 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7987 #endif
7988 #endif
7989 	default:
7990 		return bpf_sk_base_func_proto(func_id);
7991 	}
7992 }
7993 
7994 static const struct bpf_func_proto *
7995 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7996 {
7997 	switch (func_id) {
7998 	case BPF_FUNC_perf_event_output:
7999 		return &bpf_xdp_event_output_proto;
8000 	case BPF_FUNC_get_smp_processor_id:
8001 		return &bpf_get_smp_processor_id_proto;
8002 	case BPF_FUNC_csum_diff:
8003 		return &bpf_csum_diff_proto;
8004 	case BPF_FUNC_xdp_adjust_head:
8005 		return &bpf_xdp_adjust_head_proto;
8006 	case BPF_FUNC_xdp_adjust_meta:
8007 		return &bpf_xdp_adjust_meta_proto;
8008 	case BPF_FUNC_redirect:
8009 		return &bpf_xdp_redirect_proto;
8010 	case BPF_FUNC_redirect_map:
8011 		return &bpf_xdp_redirect_map_proto;
8012 	case BPF_FUNC_xdp_adjust_tail:
8013 		return &bpf_xdp_adjust_tail_proto;
8014 	case BPF_FUNC_xdp_get_buff_len:
8015 		return &bpf_xdp_get_buff_len_proto;
8016 	case BPF_FUNC_xdp_load_bytes:
8017 		return &bpf_xdp_load_bytes_proto;
8018 	case BPF_FUNC_xdp_store_bytes:
8019 		return &bpf_xdp_store_bytes_proto;
8020 	case BPF_FUNC_fib_lookup:
8021 		return &bpf_xdp_fib_lookup_proto;
8022 	case BPF_FUNC_check_mtu:
8023 		return &bpf_xdp_check_mtu_proto;
8024 #ifdef CONFIG_INET
8025 	case BPF_FUNC_sk_lookup_udp:
8026 		return &bpf_xdp_sk_lookup_udp_proto;
8027 	case BPF_FUNC_sk_lookup_tcp:
8028 		return &bpf_xdp_sk_lookup_tcp_proto;
8029 	case BPF_FUNC_sk_release:
8030 		return &bpf_sk_release_proto;
8031 	case BPF_FUNC_skc_lookup_tcp:
8032 		return &bpf_xdp_skc_lookup_tcp_proto;
8033 	case BPF_FUNC_tcp_check_syncookie:
8034 		return &bpf_tcp_check_syncookie_proto;
8035 	case BPF_FUNC_tcp_gen_syncookie:
8036 		return &bpf_tcp_gen_syncookie_proto;
8037 #ifdef CONFIG_SYN_COOKIES
8038 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8039 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8040 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8041 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8042 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8043 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8044 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8045 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8046 #endif
8047 #endif
8048 	default:
8049 		return bpf_sk_base_func_proto(func_id);
8050 	}
8051 
8052 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8053 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8054 	 * kfuncs are defined in two different modules, and we want to be able
8055 	 * to use them interchangably with the same BTF type ID. Because modules
8056 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8057 	 * referenced in the vmlinux BTF or the verifier will get confused about
8058 	 * the different types. So we add this dummy type reference which will
8059 	 * be included in vmlinux BTF, allowing both modules to refer to the
8060 	 * same type ID.
8061 	 */
8062 	BTF_TYPE_EMIT(struct nf_conn___init);
8063 #endif
8064 }
8065 
8066 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8067 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8068 
8069 static const struct bpf_func_proto *
8070 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8071 {
8072 	const struct bpf_func_proto *func_proto;
8073 
8074 	func_proto = cgroup_common_func_proto(func_id, prog);
8075 	if (func_proto)
8076 		return func_proto;
8077 
8078 	switch (func_id) {
8079 	case BPF_FUNC_setsockopt:
8080 		return &bpf_sock_ops_setsockopt_proto;
8081 	case BPF_FUNC_getsockopt:
8082 		return &bpf_sock_ops_getsockopt_proto;
8083 	case BPF_FUNC_sock_ops_cb_flags_set:
8084 		return &bpf_sock_ops_cb_flags_set_proto;
8085 	case BPF_FUNC_sock_map_update:
8086 		return &bpf_sock_map_update_proto;
8087 	case BPF_FUNC_sock_hash_update:
8088 		return &bpf_sock_hash_update_proto;
8089 	case BPF_FUNC_get_socket_cookie:
8090 		return &bpf_get_socket_cookie_sock_ops_proto;
8091 	case BPF_FUNC_perf_event_output:
8092 		return &bpf_event_output_data_proto;
8093 	case BPF_FUNC_sk_storage_get:
8094 		return &bpf_sk_storage_get_proto;
8095 	case BPF_FUNC_sk_storage_delete:
8096 		return &bpf_sk_storage_delete_proto;
8097 	case BPF_FUNC_get_netns_cookie:
8098 		return &bpf_get_netns_cookie_sock_ops_proto;
8099 #ifdef CONFIG_INET
8100 	case BPF_FUNC_load_hdr_opt:
8101 		return &bpf_sock_ops_load_hdr_opt_proto;
8102 	case BPF_FUNC_store_hdr_opt:
8103 		return &bpf_sock_ops_store_hdr_opt_proto;
8104 	case BPF_FUNC_reserve_hdr_opt:
8105 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8106 	case BPF_FUNC_tcp_sock:
8107 		return &bpf_tcp_sock_proto;
8108 #endif /* CONFIG_INET */
8109 	default:
8110 		return bpf_sk_base_func_proto(func_id);
8111 	}
8112 }
8113 
8114 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8115 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8116 
8117 static const struct bpf_func_proto *
8118 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8119 {
8120 	switch (func_id) {
8121 	case BPF_FUNC_msg_redirect_map:
8122 		return &bpf_msg_redirect_map_proto;
8123 	case BPF_FUNC_msg_redirect_hash:
8124 		return &bpf_msg_redirect_hash_proto;
8125 	case BPF_FUNC_msg_apply_bytes:
8126 		return &bpf_msg_apply_bytes_proto;
8127 	case BPF_FUNC_msg_cork_bytes:
8128 		return &bpf_msg_cork_bytes_proto;
8129 	case BPF_FUNC_msg_pull_data:
8130 		return &bpf_msg_pull_data_proto;
8131 	case BPF_FUNC_msg_push_data:
8132 		return &bpf_msg_push_data_proto;
8133 	case BPF_FUNC_msg_pop_data:
8134 		return &bpf_msg_pop_data_proto;
8135 	case BPF_FUNC_perf_event_output:
8136 		return &bpf_event_output_data_proto;
8137 	case BPF_FUNC_get_current_uid_gid:
8138 		return &bpf_get_current_uid_gid_proto;
8139 	case BPF_FUNC_get_current_pid_tgid:
8140 		return &bpf_get_current_pid_tgid_proto;
8141 	case BPF_FUNC_sk_storage_get:
8142 		return &bpf_sk_storage_get_proto;
8143 	case BPF_FUNC_sk_storage_delete:
8144 		return &bpf_sk_storage_delete_proto;
8145 	case BPF_FUNC_get_netns_cookie:
8146 		return &bpf_get_netns_cookie_sk_msg_proto;
8147 #ifdef CONFIG_CGROUPS
8148 	case BPF_FUNC_get_current_cgroup_id:
8149 		return &bpf_get_current_cgroup_id_proto;
8150 	case BPF_FUNC_get_current_ancestor_cgroup_id:
8151 		return &bpf_get_current_ancestor_cgroup_id_proto;
8152 #endif
8153 #ifdef CONFIG_CGROUP_NET_CLASSID
8154 	case BPF_FUNC_get_cgroup_classid:
8155 		return &bpf_get_cgroup_classid_curr_proto;
8156 #endif
8157 	default:
8158 		return bpf_sk_base_func_proto(func_id);
8159 	}
8160 }
8161 
8162 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8163 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8164 
8165 static const struct bpf_func_proto *
8166 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8167 {
8168 	switch (func_id) {
8169 	case BPF_FUNC_skb_store_bytes:
8170 		return &bpf_skb_store_bytes_proto;
8171 	case BPF_FUNC_skb_load_bytes:
8172 		return &bpf_skb_load_bytes_proto;
8173 	case BPF_FUNC_skb_pull_data:
8174 		return &sk_skb_pull_data_proto;
8175 	case BPF_FUNC_skb_change_tail:
8176 		return &sk_skb_change_tail_proto;
8177 	case BPF_FUNC_skb_change_head:
8178 		return &sk_skb_change_head_proto;
8179 	case BPF_FUNC_skb_adjust_room:
8180 		return &sk_skb_adjust_room_proto;
8181 	case BPF_FUNC_get_socket_cookie:
8182 		return &bpf_get_socket_cookie_proto;
8183 	case BPF_FUNC_get_socket_uid:
8184 		return &bpf_get_socket_uid_proto;
8185 	case BPF_FUNC_sk_redirect_map:
8186 		return &bpf_sk_redirect_map_proto;
8187 	case BPF_FUNC_sk_redirect_hash:
8188 		return &bpf_sk_redirect_hash_proto;
8189 	case BPF_FUNC_perf_event_output:
8190 		return &bpf_skb_event_output_proto;
8191 #ifdef CONFIG_INET
8192 	case BPF_FUNC_sk_lookup_tcp:
8193 		return &bpf_sk_lookup_tcp_proto;
8194 	case BPF_FUNC_sk_lookup_udp:
8195 		return &bpf_sk_lookup_udp_proto;
8196 	case BPF_FUNC_sk_release:
8197 		return &bpf_sk_release_proto;
8198 	case BPF_FUNC_skc_lookup_tcp:
8199 		return &bpf_skc_lookup_tcp_proto;
8200 #endif
8201 	default:
8202 		return bpf_sk_base_func_proto(func_id);
8203 	}
8204 }
8205 
8206 static const struct bpf_func_proto *
8207 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8208 {
8209 	switch (func_id) {
8210 	case BPF_FUNC_skb_load_bytes:
8211 		return &bpf_flow_dissector_load_bytes_proto;
8212 	default:
8213 		return bpf_sk_base_func_proto(func_id);
8214 	}
8215 }
8216 
8217 static const struct bpf_func_proto *
8218 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8219 {
8220 	switch (func_id) {
8221 	case BPF_FUNC_skb_load_bytes:
8222 		return &bpf_skb_load_bytes_proto;
8223 	case BPF_FUNC_skb_pull_data:
8224 		return &bpf_skb_pull_data_proto;
8225 	case BPF_FUNC_csum_diff:
8226 		return &bpf_csum_diff_proto;
8227 	case BPF_FUNC_get_cgroup_classid:
8228 		return &bpf_get_cgroup_classid_proto;
8229 	case BPF_FUNC_get_route_realm:
8230 		return &bpf_get_route_realm_proto;
8231 	case BPF_FUNC_get_hash_recalc:
8232 		return &bpf_get_hash_recalc_proto;
8233 	case BPF_FUNC_perf_event_output:
8234 		return &bpf_skb_event_output_proto;
8235 	case BPF_FUNC_get_smp_processor_id:
8236 		return &bpf_get_smp_processor_id_proto;
8237 	case BPF_FUNC_skb_under_cgroup:
8238 		return &bpf_skb_under_cgroup_proto;
8239 	default:
8240 		return bpf_sk_base_func_proto(func_id);
8241 	}
8242 }
8243 
8244 static const struct bpf_func_proto *
8245 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8246 {
8247 	switch (func_id) {
8248 	case BPF_FUNC_lwt_push_encap:
8249 		return &bpf_lwt_in_push_encap_proto;
8250 	default:
8251 		return lwt_out_func_proto(func_id, prog);
8252 	}
8253 }
8254 
8255 static const struct bpf_func_proto *
8256 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8257 {
8258 	switch (func_id) {
8259 	case BPF_FUNC_skb_get_tunnel_key:
8260 		return &bpf_skb_get_tunnel_key_proto;
8261 	case BPF_FUNC_skb_set_tunnel_key:
8262 		return bpf_get_skb_set_tunnel_proto(func_id);
8263 	case BPF_FUNC_skb_get_tunnel_opt:
8264 		return &bpf_skb_get_tunnel_opt_proto;
8265 	case BPF_FUNC_skb_set_tunnel_opt:
8266 		return bpf_get_skb_set_tunnel_proto(func_id);
8267 	case BPF_FUNC_redirect:
8268 		return &bpf_redirect_proto;
8269 	case BPF_FUNC_clone_redirect:
8270 		return &bpf_clone_redirect_proto;
8271 	case BPF_FUNC_skb_change_tail:
8272 		return &bpf_skb_change_tail_proto;
8273 	case BPF_FUNC_skb_change_head:
8274 		return &bpf_skb_change_head_proto;
8275 	case BPF_FUNC_skb_store_bytes:
8276 		return &bpf_skb_store_bytes_proto;
8277 	case BPF_FUNC_csum_update:
8278 		return &bpf_csum_update_proto;
8279 	case BPF_FUNC_csum_level:
8280 		return &bpf_csum_level_proto;
8281 	case BPF_FUNC_l3_csum_replace:
8282 		return &bpf_l3_csum_replace_proto;
8283 	case BPF_FUNC_l4_csum_replace:
8284 		return &bpf_l4_csum_replace_proto;
8285 	case BPF_FUNC_set_hash_invalid:
8286 		return &bpf_set_hash_invalid_proto;
8287 	case BPF_FUNC_lwt_push_encap:
8288 		return &bpf_lwt_xmit_push_encap_proto;
8289 	default:
8290 		return lwt_out_func_proto(func_id, prog);
8291 	}
8292 }
8293 
8294 static const struct bpf_func_proto *
8295 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8296 {
8297 	switch (func_id) {
8298 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8299 	case BPF_FUNC_lwt_seg6_store_bytes:
8300 		return &bpf_lwt_seg6_store_bytes_proto;
8301 	case BPF_FUNC_lwt_seg6_action:
8302 		return &bpf_lwt_seg6_action_proto;
8303 	case BPF_FUNC_lwt_seg6_adjust_srh:
8304 		return &bpf_lwt_seg6_adjust_srh_proto;
8305 #endif
8306 	default:
8307 		return lwt_out_func_proto(func_id, prog);
8308 	}
8309 }
8310 
8311 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8312 				    const struct bpf_prog *prog,
8313 				    struct bpf_insn_access_aux *info)
8314 {
8315 	const int size_default = sizeof(__u32);
8316 
8317 	if (off < 0 || off >= sizeof(struct __sk_buff))
8318 		return false;
8319 
8320 	/* The verifier guarantees that size > 0. */
8321 	if (off % size != 0)
8322 		return false;
8323 
8324 	switch (off) {
8325 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8326 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8327 			return false;
8328 		break;
8329 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8330 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8331 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8332 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8333 	case bpf_ctx_range(struct __sk_buff, data):
8334 	case bpf_ctx_range(struct __sk_buff, data_meta):
8335 	case bpf_ctx_range(struct __sk_buff, data_end):
8336 		if (size != size_default)
8337 			return false;
8338 		break;
8339 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8340 		return false;
8341 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8342 		if (type == BPF_WRITE || size != sizeof(__u64))
8343 			return false;
8344 		break;
8345 	case bpf_ctx_range(struct __sk_buff, tstamp):
8346 		if (size != sizeof(__u64))
8347 			return false;
8348 		break;
8349 	case offsetof(struct __sk_buff, sk):
8350 		if (type == BPF_WRITE || size != sizeof(__u64))
8351 			return false;
8352 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8353 		break;
8354 	case offsetof(struct __sk_buff, tstamp_type):
8355 		return false;
8356 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8357 		/* Explicitly prohibit access to padding in __sk_buff. */
8358 		return false;
8359 	default:
8360 		/* Only narrow read access allowed for now. */
8361 		if (type == BPF_WRITE) {
8362 			if (size != size_default)
8363 				return false;
8364 		} else {
8365 			bpf_ctx_record_field_size(info, size_default);
8366 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8367 				return false;
8368 		}
8369 	}
8370 
8371 	return true;
8372 }
8373 
8374 static bool sk_filter_is_valid_access(int off, int size,
8375 				      enum bpf_access_type type,
8376 				      const struct bpf_prog *prog,
8377 				      struct bpf_insn_access_aux *info)
8378 {
8379 	switch (off) {
8380 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8381 	case bpf_ctx_range(struct __sk_buff, data):
8382 	case bpf_ctx_range(struct __sk_buff, data_meta):
8383 	case bpf_ctx_range(struct __sk_buff, data_end):
8384 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8385 	case bpf_ctx_range(struct __sk_buff, tstamp):
8386 	case bpf_ctx_range(struct __sk_buff, wire_len):
8387 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8388 		return false;
8389 	}
8390 
8391 	if (type == BPF_WRITE) {
8392 		switch (off) {
8393 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8394 			break;
8395 		default:
8396 			return false;
8397 		}
8398 	}
8399 
8400 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8401 }
8402 
8403 static bool cg_skb_is_valid_access(int off, int size,
8404 				   enum bpf_access_type type,
8405 				   const struct bpf_prog *prog,
8406 				   struct bpf_insn_access_aux *info)
8407 {
8408 	switch (off) {
8409 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8410 	case bpf_ctx_range(struct __sk_buff, data_meta):
8411 	case bpf_ctx_range(struct __sk_buff, wire_len):
8412 		return false;
8413 	case bpf_ctx_range(struct __sk_buff, data):
8414 	case bpf_ctx_range(struct __sk_buff, data_end):
8415 		if (!bpf_capable())
8416 			return false;
8417 		break;
8418 	}
8419 
8420 	if (type == BPF_WRITE) {
8421 		switch (off) {
8422 		case bpf_ctx_range(struct __sk_buff, mark):
8423 		case bpf_ctx_range(struct __sk_buff, priority):
8424 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8425 			break;
8426 		case bpf_ctx_range(struct __sk_buff, tstamp):
8427 			if (!bpf_capable())
8428 				return false;
8429 			break;
8430 		default:
8431 			return false;
8432 		}
8433 	}
8434 
8435 	switch (off) {
8436 	case bpf_ctx_range(struct __sk_buff, data):
8437 		info->reg_type = PTR_TO_PACKET;
8438 		break;
8439 	case bpf_ctx_range(struct __sk_buff, data_end):
8440 		info->reg_type = PTR_TO_PACKET_END;
8441 		break;
8442 	}
8443 
8444 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8445 }
8446 
8447 static bool lwt_is_valid_access(int off, int size,
8448 				enum bpf_access_type type,
8449 				const struct bpf_prog *prog,
8450 				struct bpf_insn_access_aux *info)
8451 {
8452 	switch (off) {
8453 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8454 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8455 	case bpf_ctx_range(struct __sk_buff, data_meta):
8456 	case bpf_ctx_range(struct __sk_buff, tstamp):
8457 	case bpf_ctx_range(struct __sk_buff, wire_len):
8458 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8459 		return false;
8460 	}
8461 
8462 	if (type == BPF_WRITE) {
8463 		switch (off) {
8464 		case bpf_ctx_range(struct __sk_buff, mark):
8465 		case bpf_ctx_range(struct __sk_buff, priority):
8466 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8467 			break;
8468 		default:
8469 			return false;
8470 		}
8471 	}
8472 
8473 	switch (off) {
8474 	case bpf_ctx_range(struct __sk_buff, data):
8475 		info->reg_type = PTR_TO_PACKET;
8476 		break;
8477 	case bpf_ctx_range(struct __sk_buff, data_end):
8478 		info->reg_type = PTR_TO_PACKET_END;
8479 		break;
8480 	}
8481 
8482 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8483 }
8484 
8485 /* Attach type specific accesses */
8486 static bool __sock_filter_check_attach_type(int off,
8487 					    enum bpf_access_type access_type,
8488 					    enum bpf_attach_type attach_type)
8489 {
8490 	switch (off) {
8491 	case offsetof(struct bpf_sock, bound_dev_if):
8492 	case offsetof(struct bpf_sock, mark):
8493 	case offsetof(struct bpf_sock, priority):
8494 		switch (attach_type) {
8495 		case BPF_CGROUP_INET_SOCK_CREATE:
8496 		case BPF_CGROUP_INET_SOCK_RELEASE:
8497 			goto full_access;
8498 		default:
8499 			return false;
8500 		}
8501 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8502 		switch (attach_type) {
8503 		case BPF_CGROUP_INET4_POST_BIND:
8504 			goto read_only;
8505 		default:
8506 			return false;
8507 		}
8508 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8509 		switch (attach_type) {
8510 		case BPF_CGROUP_INET6_POST_BIND:
8511 			goto read_only;
8512 		default:
8513 			return false;
8514 		}
8515 	case bpf_ctx_range(struct bpf_sock, src_port):
8516 		switch (attach_type) {
8517 		case BPF_CGROUP_INET4_POST_BIND:
8518 		case BPF_CGROUP_INET6_POST_BIND:
8519 			goto read_only;
8520 		default:
8521 			return false;
8522 		}
8523 	}
8524 read_only:
8525 	return access_type == BPF_READ;
8526 full_access:
8527 	return true;
8528 }
8529 
8530 bool bpf_sock_common_is_valid_access(int off, int size,
8531 				     enum bpf_access_type type,
8532 				     struct bpf_insn_access_aux *info)
8533 {
8534 	switch (off) {
8535 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8536 		return false;
8537 	default:
8538 		return bpf_sock_is_valid_access(off, size, type, info);
8539 	}
8540 }
8541 
8542 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8543 			      struct bpf_insn_access_aux *info)
8544 {
8545 	const int size_default = sizeof(__u32);
8546 	int field_size;
8547 
8548 	if (off < 0 || off >= sizeof(struct bpf_sock))
8549 		return false;
8550 	if (off % size != 0)
8551 		return false;
8552 
8553 	switch (off) {
8554 	case offsetof(struct bpf_sock, state):
8555 	case offsetof(struct bpf_sock, family):
8556 	case offsetof(struct bpf_sock, type):
8557 	case offsetof(struct bpf_sock, protocol):
8558 	case offsetof(struct bpf_sock, src_port):
8559 	case offsetof(struct bpf_sock, rx_queue_mapping):
8560 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8561 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8562 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8563 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8564 		bpf_ctx_record_field_size(info, size_default);
8565 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8566 	case bpf_ctx_range(struct bpf_sock, dst_port):
8567 		field_size = size == size_default ?
8568 			size_default : sizeof_field(struct bpf_sock, dst_port);
8569 		bpf_ctx_record_field_size(info, field_size);
8570 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8571 	case offsetofend(struct bpf_sock, dst_port) ...
8572 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8573 		return false;
8574 	}
8575 
8576 	return size == size_default;
8577 }
8578 
8579 static bool sock_filter_is_valid_access(int off, int size,
8580 					enum bpf_access_type type,
8581 					const struct bpf_prog *prog,
8582 					struct bpf_insn_access_aux *info)
8583 {
8584 	if (!bpf_sock_is_valid_access(off, size, type, info))
8585 		return false;
8586 	return __sock_filter_check_attach_type(off, type,
8587 					       prog->expected_attach_type);
8588 }
8589 
8590 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8591 			     const struct bpf_prog *prog)
8592 {
8593 	/* Neither direct read nor direct write requires any preliminary
8594 	 * action.
8595 	 */
8596 	return 0;
8597 }
8598 
8599 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8600 				const struct bpf_prog *prog, int drop_verdict)
8601 {
8602 	struct bpf_insn *insn = insn_buf;
8603 
8604 	if (!direct_write)
8605 		return 0;
8606 
8607 	/* if (!skb->cloned)
8608 	 *       goto start;
8609 	 *
8610 	 * (Fast-path, otherwise approximation that we might be
8611 	 *  a clone, do the rest in helper.)
8612 	 */
8613 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8614 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8615 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8616 
8617 	/* ret = bpf_skb_pull_data(skb, 0); */
8618 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8619 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8620 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8621 			       BPF_FUNC_skb_pull_data);
8622 	/* if (!ret)
8623 	 *      goto restore;
8624 	 * return TC_ACT_SHOT;
8625 	 */
8626 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8627 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8628 	*insn++ = BPF_EXIT_INSN();
8629 
8630 	/* restore: */
8631 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8632 	/* start: */
8633 	*insn++ = prog->insnsi[0];
8634 
8635 	return insn - insn_buf;
8636 }
8637 
8638 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8639 			  struct bpf_insn *insn_buf)
8640 {
8641 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8642 	struct bpf_insn *insn = insn_buf;
8643 
8644 	if (!indirect) {
8645 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8646 	} else {
8647 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8648 		if (orig->imm)
8649 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8650 	}
8651 	/* We're guaranteed here that CTX is in R6. */
8652 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8653 
8654 	switch (BPF_SIZE(orig->code)) {
8655 	case BPF_B:
8656 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8657 		break;
8658 	case BPF_H:
8659 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8660 		break;
8661 	case BPF_W:
8662 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8663 		break;
8664 	}
8665 
8666 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8667 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8668 	*insn++ = BPF_EXIT_INSN();
8669 
8670 	return insn - insn_buf;
8671 }
8672 
8673 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8674 			       const struct bpf_prog *prog)
8675 {
8676 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8677 }
8678 
8679 static bool tc_cls_act_is_valid_access(int off, int size,
8680 				       enum bpf_access_type type,
8681 				       const struct bpf_prog *prog,
8682 				       struct bpf_insn_access_aux *info)
8683 {
8684 	if (type == BPF_WRITE) {
8685 		switch (off) {
8686 		case bpf_ctx_range(struct __sk_buff, mark):
8687 		case bpf_ctx_range(struct __sk_buff, tc_index):
8688 		case bpf_ctx_range(struct __sk_buff, priority):
8689 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8690 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8691 		case bpf_ctx_range(struct __sk_buff, tstamp):
8692 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8693 			break;
8694 		default:
8695 			return false;
8696 		}
8697 	}
8698 
8699 	switch (off) {
8700 	case bpf_ctx_range(struct __sk_buff, data):
8701 		info->reg_type = PTR_TO_PACKET;
8702 		break;
8703 	case bpf_ctx_range(struct __sk_buff, data_meta):
8704 		info->reg_type = PTR_TO_PACKET_META;
8705 		break;
8706 	case bpf_ctx_range(struct __sk_buff, data_end):
8707 		info->reg_type = PTR_TO_PACKET_END;
8708 		break;
8709 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8710 		return false;
8711 	case offsetof(struct __sk_buff, tstamp_type):
8712 		/* The convert_ctx_access() on reading and writing
8713 		 * __sk_buff->tstamp depends on whether the bpf prog
8714 		 * has used __sk_buff->tstamp_type or not.
8715 		 * Thus, we need to set prog->tstamp_type_access
8716 		 * earlier during is_valid_access() here.
8717 		 */
8718 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8719 		return size == sizeof(__u8);
8720 	}
8721 
8722 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8723 }
8724 
8725 DEFINE_MUTEX(nf_conn_btf_access_lock);
8726 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8727 
8728 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8729 			      const struct bpf_reg_state *reg,
8730 			      int off, int size, enum bpf_access_type atype,
8731 			      u32 *next_btf_id, enum bpf_type_flag *flag);
8732 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8733 
8734 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8735 					const struct bpf_reg_state *reg,
8736 					int off, int size, enum bpf_access_type atype,
8737 					u32 *next_btf_id, enum bpf_type_flag *flag)
8738 {
8739 	int ret = -EACCES;
8740 
8741 	if (atype == BPF_READ)
8742 		return btf_struct_access(log, reg, off, size, atype, next_btf_id, flag);
8743 
8744 	mutex_lock(&nf_conn_btf_access_lock);
8745 	if (nfct_btf_struct_access)
8746 		ret = nfct_btf_struct_access(log, reg, off, size, atype, next_btf_id, flag);
8747 	mutex_unlock(&nf_conn_btf_access_lock);
8748 
8749 	return ret;
8750 }
8751 
8752 static bool __is_valid_xdp_access(int off, int size)
8753 {
8754 	if (off < 0 || off >= sizeof(struct xdp_md))
8755 		return false;
8756 	if (off % size != 0)
8757 		return false;
8758 	if (size != sizeof(__u32))
8759 		return false;
8760 
8761 	return true;
8762 }
8763 
8764 static bool xdp_is_valid_access(int off, int size,
8765 				enum bpf_access_type type,
8766 				const struct bpf_prog *prog,
8767 				struct bpf_insn_access_aux *info)
8768 {
8769 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8770 		switch (off) {
8771 		case offsetof(struct xdp_md, egress_ifindex):
8772 			return false;
8773 		}
8774 	}
8775 
8776 	if (type == BPF_WRITE) {
8777 		if (bpf_prog_is_offloaded(prog->aux)) {
8778 			switch (off) {
8779 			case offsetof(struct xdp_md, rx_queue_index):
8780 				return __is_valid_xdp_access(off, size);
8781 			}
8782 		}
8783 		return false;
8784 	}
8785 
8786 	switch (off) {
8787 	case offsetof(struct xdp_md, data):
8788 		info->reg_type = PTR_TO_PACKET;
8789 		break;
8790 	case offsetof(struct xdp_md, data_meta):
8791 		info->reg_type = PTR_TO_PACKET_META;
8792 		break;
8793 	case offsetof(struct xdp_md, data_end):
8794 		info->reg_type = PTR_TO_PACKET_END;
8795 		break;
8796 	}
8797 
8798 	return __is_valid_xdp_access(off, size);
8799 }
8800 
8801 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8802 {
8803 	const u32 act_max = XDP_REDIRECT;
8804 
8805 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8806 		     act > act_max ? "Illegal" : "Driver unsupported",
8807 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8808 }
8809 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8810 
8811 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8812 				 const struct bpf_reg_state *reg,
8813 				 int off, int size, enum bpf_access_type atype,
8814 				 u32 *next_btf_id, enum bpf_type_flag *flag)
8815 {
8816 	int ret = -EACCES;
8817 
8818 	if (atype == BPF_READ)
8819 		return btf_struct_access(log, reg, off, size, atype, next_btf_id, flag);
8820 
8821 	mutex_lock(&nf_conn_btf_access_lock);
8822 	if (nfct_btf_struct_access)
8823 		ret = nfct_btf_struct_access(log, reg, off, size, atype, next_btf_id, flag);
8824 	mutex_unlock(&nf_conn_btf_access_lock);
8825 
8826 	return ret;
8827 }
8828 
8829 static bool sock_addr_is_valid_access(int off, int size,
8830 				      enum bpf_access_type type,
8831 				      const struct bpf_prog *prog,
8832 				      struct bpf_insn_access_aux *info)
8833 {
8834 	const int size_default = sizeof(__u32);
8835 
8836 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8837 		return false;
8838 	if (off % size != 0)
8839 		return false;
8840 
8841 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8842 	 * versa.
8843 	 */
8844 	switch (off) {
8845 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8846 		switch (prog->expected_attach_type) {
8847 		case BPF_CGROUP_INET4_BIND:
8848 		case BPF_CGROUP_INET4_CONNECT:
8849 		case BPF_CGROUP_INET4_GETPEERNAME:
8850 		case BPF_CGROUP_INET4_GETSOCKNAME:
8851 		case BPF_CGROUP_UDP4_SENDMSG:
8852 		case BPF_CGROUP_UDP4_RECVMSG:
8853 			break;
8854 		default:
8855 			return false;
8856 		}
8857 		break;
8858 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8859 		switch (prog->expected_attach_type) {
8860 		case BPF_CGROUP_INET6_BIND:
8861 		case BPF_CGROUP_INET6_CONNECT:
8862 		case BPF_CGROUP_INET6_GETPEERNAME:
8863 		case BPF_CGROUP_INET6_GETSOCKNAME:
8864 		case BPF_CGROUP_UDP6_SENDMSG:
8865 		case BPF_CGROUP_UDP6_RECVMSG:
8866 			break;
8867 		default:
8868 			return false;
8869 		}
8870 		break;
8871 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8872 		switch (prog->expected_attach_type) {
8873 		case BPF_CGROUP_UDP4_SENDMSG:
8874 			break;
8875 		default:
8876 			return false;
8877 		}
8878 		break;
8879 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8880 				msg_src_ip6[3]):
8881 		switch (prog->expected_attach_type) {
8882 		case BPF_CGROUP_UDP6_SENDMSG:
8883 			break;
8884 		default:
8885 			return false;
8886 		}
8887 		break;
8888 	}
8889 
8890 	switch (off) {
8891 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8892 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8893 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8894 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8895 				msg_src_ip6[3]):
8896 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8897 		if (type == BPF_READ) {
8898 			bpf_ctx_record_field_size(info, size_default);
8899 
8900 			if (bpf_ctx_wide_access_ok(off, size,
8901 						   struct bpf_sock_addr,
8902 						   user_ip6))
8903 				return true;
8904 
8905 			if (bpf_ctx_wide_access_ok(off, size,
8906 						   struct bpf_sock_addr,
8907 						   msg_src_ip6))
8908 				return true;
8909 
8910 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8911 				return false;
8912 		} else {
8913 			if (bpf_ctx_wide_access_ok(off, size,
8914 						   struct bpf_sock_addr,
8915 						   user_ip6))
8916 				return true;
8917 
8918 			if (bpf_ctx_wide_access_ok(off, size,
8919 						   struct bpf_sock_addr,
8920 						   msg_src_ip6))
8921 				return true;
8922 
8923 			if (size != size_default)
8924 				return false;
8925 		}
8926 		break;
8927 	case offsetof(struct bpf_sock_addr, sk):
8928 		if (type != BPF_READ)
8929 			return false;
8930 		if (size != sizeof(__u64))
8931 			return false;
8932 		info->reg_type = PTR_TO_SOCKET;
8933 		break;
8934 	default:
8935 		if (type == BPF_READ) {
8936 			if (size != size_default)
8937 				return false;
8938 		} else {
8939 			return false;
8940 		}
8941 	}
8942 
8943 	return true;
8944 }
8945 
8946 static bool sock_ops_is_valid_access(int off, int size,
8947 				     enum bpf_access_type type,
8948 				     const struct bpf_prog *prog,
8949 				     struct bpf_insn_access_aux *info)
8950 {
8951 	const int size_default = sizeof(__u32);
8952 
8953 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8954 		return false;
8955 
8956 	/* The verifier guarantees that size > 0. */
8957 	if (off % size != 0)
8958 		return false;
8959 
8960 	if (type == BPF_WRITE) {
8961 		switch (off) {
8962 		case offsetof(struct bpf_sock_ops, reply):
8963 		case offsetof(struct bpf_sock_ops, sk_txhash):
8964 			if (size != size_default)
8965 				return false;
8966 			break;
8967 		default:
8968 			return false;
8969 		}
8970 	} else {
8971 		switch (off) {
8972 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8973 					bytes_acked):
8974 			if (size != sizeof(__u64))
8975 				return false;
8976 			break;
8977 		case offsetof(struct bpf_sock_ops, sk):
8978 			if (size != sizeof(__u64))
8979 				return false;
8980 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8981 			break;
8982 		case offsetof(struct bpf_sock_ops, skb_data):
8983 			if (size != sizeof(__u64))
8984 				return false;
8985 			info->reg_type = PTR_TO_PACKET;
8986 			break;
8987 		case offsetof(struct bpf_sock_ops, skb_data_end):
8988 			if (size != sizeof(__u64))
8989 				return false;
8990 			info->reg_type = PTR_TO_PACKET_END;
8991 			break;
8992 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8993 			bpf_ctx_record_field_size(info, size_default);
8994 			return bpf_ctx_narrow_access_ok(off, size,
8995 							size_default);
8996 		case offsetof(struct bpf_sock_ops, skb_hwtstamp):
8997 			if (size != sizeof(__u64))
8998 				return false;
8999 			break;
9000 		default:
9001 			if (size != size_default)
9002 				return false;
9003 			break;
9004 		}
9005 	}
9006 
9007 	return true;
9008 }
9009 
9010 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9011 			   const struct bpf_prog *prog)
9012 {
9013 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9014 }
9015 
9016 static bool sk_skb_is_valid_access(int off, int size,
9017 				   enum bpf_access_type type,
9018 				   const struct bpf_prog *prog,
9019 				   struct bpf_insn_access_aux *info)
9020 {
9021 	switch (off) {
9022 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9023 	case bpf_ctx_range(struct __sk_buff, data_meta):
9024 	case bpf_ctx_range(struct __sk_buff, tstamp):
9025 	case bpf_ctx_range(struct __sk_buff, wire_len):
9026 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9027 		return false;
9028 	}
9029 
9030 	if (type == BPF_WRITE) {
9031 		switch (off) {
9032 		case bpf_ctx_range(struct __sk_buff, tc_index):
9033 		case bpf_ctx_range(struct __sk_buff, priority):
9034 			break;
9035 		default:
9036 			return false;
9037 		}
9038 	}
9039 
9040 	switch (off) {
9041 	case bpf_ctx_range(struct __sk_buff, mark):
9042 		return false;
9043 	case bpf_ctx_range(struct __sk_buff, data):
9044 		info->reg_type = PTR_TO_PACKET;
9045 		break;
9046 	case bpf_ctx_range(struct __sk_buff, data_end):
9047 		info->reg_type = PTR_TO_PACKET_END;
9048 		break;
9049 	}
9050 
9051 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9052 }
9053 
9054 static bool sk_msg_is_valid_access(int off, int size,
9055 				   enum bpf_access_type type,
9056 				   const struct bpf_prog *prog,
9057 				   struct bpf_insn_access_aux *info)
9058 {
9059 	if (type == BPF_WRITE)
9060 		return false;
9061 
9062 	if (off % size != 0)
9063 		return false;
9064 
9065 	switch (off) {
9066 	case offsetof(struct sk_msg_md, data):
9067 		info->reg_type = PTR_TO_PACKET;
9068 		if (size != sizeof(__u64))
9069 			return false;
9070 		break;
9071 	case offsetof(struct sk_msg_md, data_end):
9072 		info->reg_type = PTR_TO_PACKET_END;
9073 		if (size != sizeof(__u64))
9074 			return false;
9075 		break;
9076 	case offsetof(struct sk_msg_md, sk):
9077 		if (size != sizeof(__u64))
9078 			return false;
9079 		info->reg_type = PTR_TO_SOCKET;
9080 		break;
9081 	case bpf_ctx_range(struct sk_msg_md, family):
9082 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9083 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9084 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9085 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9086 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9087 	case bpf_ctx_range(struct sk_msg_md, local_port):
9088 	case bpf_ctx_range(struct sk_msg_md, size):
9089 		if (size != sizeof(__u32))
9090 			return false;
9091 		break;
9092 	default:
9093 		return false;
9094 	}
9095 	return true;
9096 }
9097 
9098 static bool flow_dissector_is_valid_access(int off, int size,
9099 					   enum bpf_access_type type,
9100 					   const struct bpf_prog *prog,
9101 					   struct bpf_insn_access_aux *info)
9102 {
9103 	const int size_default = sizeof(__u32);
9104 
9105 	if (off < 0 || off >= sizeof(struct __sk_buff))
9106 		return false;
9107 
9108 	if (type == BPF_WRITE)
9109 		return false;
9110 
9111 	switch (off) {
9112 	case bpf_ctx_range(struct __sk_buff, data):
9113 		if (size != size_default)
9114 			return false;
9115 		info->reg_type = PTR_TO_PACKET;
9116 		return true;
9117 	case bpf_ctx_range(struct __sk_buff, data_end):
9118 		if (size != size_default)
9119 			return false;
9120 		info->reg_type = PTR_TO_PACKET_END;
9121 		return true;
9122 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9123 		if (size != sizeof(__u64))
9124 			return false;
9125 		info->reg_type = PTR_TO_FLOW_KEYS;
9126 		return true;
9127 	default:
9128 		return false;
9129 	}
9130 }
9131 
9132 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9133 					     const struct bpf_insn *si,
9134 					     struct bpf_insn *insn_buf,
9135 					     struct bpf_prog *prog,
9136 					     u32 *target_size)
9137 
9138 {
9139 	struct bpf_insn *insn = insn_buf;
9140 
9141 	switch (si->off) {
9142 	case offsetof(struct __sk_buff, data):
9143 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9144 				      si->dst_reg, si->src_reg,
9145 				      offsetof(struct bpf_flow_dissector, data));
9146 		break;
9147 
9148 	case offsetof(struct __sk_buff, data_end):
9149 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9150 				      si->dst_reg, si->src_reg,
9151 				      offsetof(struct bpf_flow_dissector, data_end));
9152 		break;
9153 
9154 	case offsetof(struct __sk_buff, flow_keys):
9155 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9156 				      si->dst_reg, si->src_reg,
9157 				      offsetof(struct bpf_flow_dissector, flow_keys));
9158 		break;
9159 	}
9160 
9161 	return insn - insn_buf;
9162 }
9163 
9164 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9165 						     struct bpf_insn *insn)
9166 {
9167 	__u8 value_reg = si->dst_reg;
9168 	__u8 skb_reg = si->src_reg;
9169 	/* AX is needed because src_reg and dst_reg could be the same */
9170 	__u8 tmp_reg = BPF_REG_AX;
9171 
9172 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9173 			      PKT_VLAN_PRESENT_OFFSET);
9174 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9175 				SKB_MONO_DELIVERY_TIME_MASK, 2);
9176 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9177 	*insn++ = BPF_JMP_A(1);
9178 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9179 
9180 	return insn;
9181 }
9182 
9183 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9184 						  struct bpf_insn *insn)
9185 {
9186 	/* si->dst_reg = skb_shinfo(SKB); */
9187 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9188 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9189 			      BPF_REG_AX, skb_reg,
9190 			      offsetof(struct sk_buff, end));
9191 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9192 			      dst_reg, skb_reg,
9193 			      offsetof(struct sk_buff, head));
9194 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9195 #else
9196 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9197 			      dst_reg, skb_reg,
9198 			      offsetof(struct sk_buff, end));
9199 #endif
9200 
9201 	return insn;
9202 }
9203 
9204 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9205 						const struct bpf_insn *si,
9206 						struct bpf_insn *insn)
9207 {
9208 	__u8 value_reg = si->dst_reg;
9209 	__u8 skb_reg = si->src_reg;
9210 
9211 #ifdef CONFIG_NET_CLS_ACT
9212 	/* If the tstamp_type is read,
9213 	 * the bpf prog is aware the tstamp could have delivery time.
9214 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9215 	 */
9216 	if (!prog->tstamp_type_access) {
9217 		/* AX is needed because src_reg and dst_reg could be the same */
9218 		__u8 tmp_reg = BPF_REG_AX;
9219 
9220 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9221 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9222 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9223 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9224 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9225 		/* skb->tc_at_ingress && skb->mono_delivery_time,
9226 		 * read 0 as the (rcv) timestamp.
9227 		 */
9228 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9229 		*insn++ = BPF_JMP_A(1);
9230 	}
9231 #endif
9232 
9233 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9234 			      offsetof(struct sk_buff, tstamp));
9235 	return insn;
9236 }
9237 
9238 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9239 						 const struct bpf_insn *si,
9240 						 struct bpf_insn *insn)
9241 {
9242 	__u8 value_reg = si->src_reg;
9243 	__u8 skb_reg = si->dst_reg;
9244 
9245 #ifdef CONFIG_NET_CLS_ACT
9246 	/* If the tstamp_type is read,
9247 	 * the bpf prog is aware the tstamp could have delivery time.
9248 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9249 	 * Otherwise, writing at ingress will have to clear the
9250 	 * mono_delivery_time bit also.
9251 	 */
9252 	if (!prog->tstamp_type_access) {
9253 		__u8 tmp_reg = BPF_REG_AX;
9254 
9255 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9256 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9257 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9258 		/* goto <store> */
9259 		*insn++ = BPF_JMP_A(2);
9260 		/* <clear>: mono_delivery_time */
9261 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9262 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9263 	}
9264 #endif
9265 
9266 	/* <store>: skb->tstamp = tstamp */
9267 	*insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9268 			      offsetof(struct sk_buff, tstamp));
9269 	return insn;
9270 }
9271 
9272 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9273 				  const struct bpf_insn *si,
9274 				  struct bpf_insn *insn_buf,
9275 				  struct bpf_prog *prog, u32 *target_size)
9276 {
9277 	struct bpf_insn *insn = insn_buf;
9278 	int off;
9279 
9280 	switch (si->off) {
9281 	case offsetof(struct __sk_buff, len):
9282 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9283 				      bpf_target_off(struct sk_buff, len, 4,
9284 						     target_size));
9285 		break;
9286 
9287 	case offsetof(struct __sk_buff, protocol):
9288 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9289 				      bpf_target_off(struct sk_buff, protocol, 2,
9290 						     target_size));
9291 		break;
9292 
9293 	case offsetof(struct __sk_buff, vlan_proto):
9294 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9295 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9296 						     target_size));
9297 		break;
9298 
9299 	case offsetof(struct __sk_buff, priority):
9300 		if (type == BPF_WRITE)
9301 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9302 					      bpf_target_off(struct sk_buff, priority, 4,
9303 							     target_size));
9304 		else
9305 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9306 					      bpf_target_off(struct sk_buff, priority, 4,
9307 							     target_size));
9308 		break;
9309 
9310 	case offsetof(struct __sk_buff, ingress_ifindex):
9311 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9312 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9313 						     target_size));
9314 		break;
9315 
9316 	case offsetof(struct __sk_buff, ifindex):
9317 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9318 				      si->dst_reg, si->src_reg,
9319 				      offsetof(struct sk_buff, dev));
9320 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9321 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9322 				      bpf_target_off(struct net_device, ifindex, 4,
9323 						     target_size));
9324 		break;
9325 
9326 	case offsetof(struct __sk_buff, hash):
9327 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9328 				      bpf_target_off(struct sk_buff, hash, 4,
9329 						     target_size));
9330 		break;
9331 
9332 	case offsetof(struct __sk_buff, mark):
9333 		if (type == BPF_WRITE)
9334 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9335 					      bpf_target_off(struct sk_buff, mark, 4,
9336 							     target_size));
9337 		else
9338 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9339 					      bpf_target_off(struct sk_buff, mark, 4,
9340 							     target_size));
9341 		break;
9342 
9343 	case offsetof(struct __sk_buff, pkt_type):
9344 		*target_size = 1;
9345 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9346 				      PKT_TYPE_OFFSET);
9347 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9348 #ifdef __BIG_ENDIAN_BITFIELD
9349 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9350 #endif
9351 		break;
9352 
9353 	case offsetof(struct __sk_buff, queue_mapping):
9354 		if (type == BPF_WRITE) {
9355 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9356 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9357 					      bpf_target_off(struct sk_buff,
9358 							     queue_mapping,
9359 							     2, target_size));
9360 		} else {
9361 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9362 					      bpf_target_off(struct sk_buff,
9363 							     queue_mapping,
9364 							     2, target_size));
9365 		}
9366 		break;
9367 
9368 	case offsetof(struct __sk_buff, vlan_present):
9369 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9370 				      bpf_target_off(struct sk_buff,
9371 						     vlan_all, 4, target_size));
9372 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9373 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9374 		break;
9375 
9376 	case offsetof(struct __sk_buff, vlan_tci):
9377 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9378 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9379 						     target_size));
9380 		break;
9381 
9382 	case offsetof(struct __sk_buff, cb[0]) ...
9383 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9384 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9385 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9386 			      offsetof(struct qdisc_skb_cb, data)) %
9387 			     sizeof(__u64));
9388 
9389 		prog->cb_access = 1;
9390 		off  = si->off;
9391 		off -= offsetof(struct __sk_buff, cb[0]);
9392 		off += offsetof(struct sk_buff, cb);
9393 		off += offsetof(struct qdisc_skb_cb, data);
9394 		if (type == BPF_WRITE)
9395 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9396 					      si->src_reg, off);
9397 		else
9398 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9399 					      si->src_reg, off);
9400 		break;
9401 
9402 	case offsetof(struct __sk_buff, tc_classid):
9403 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9404 
9405 		off  = si->off;
9406 		off -= offsetof(struct __sk_buff, tc_classid);
9407 		off += offsetof(struct sk_buff, cb);
9408 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9409 		*target_size = 2;
9410 		if (type == BPF_WRITE)
9411 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9412 					      si->src_reg, off);
9413 		else
9414 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9415 					      si->src_reg, off);
9416 		break;
9417 
9418 	case offsetof(struct __sk_buff, data):
9419 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9420 				      si->dst_reg, si->src_reg,
9421 				      offsetof(struct sk_buff, data));
9422 		break;
9423 
9424 	case offsetof(struct __sk_buff, data_meta):
9425 		off  = si->off;
9426 		off -= offsetof(struct __sk_buff, data_meta);
9427 		off += offsetof(struct sk_buff, cb);
9428 		off += offsetof(struct bpf_skb_data_end, data_meta);
9429 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9430 				      si->src_reg, off);
9431 		break;
9432 
9433 	case offsetof(struct __sk_buff, data_end):
9434 		off  = si->off;
9435 		off -= offsetof(struct __sk_buff, data_end);
9436 		off += offsetof(struct sk_buff, cb);
9437 		off += offsetof(struct bpf_skb_data_end, data_end);
9438 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9439 				      si->src_reg, off);
9440 		break;
9441 
9442 	case offsetof(struct __sk_buff, tc_index):
9443 #ifdef CONFIG_NET_SCHED
9444 		if (type == BPF_WRITE)
9445 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9446 					      bpf_target_off(struct sk_buff, tc_index, 2,
9447 							     target_size));
9448 		else
9449 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9450 					      bpf_target_off(struct sk_buff, tc_index, 2,
9451 							     target_size));
9452 #else
9453 		*target_size = 2;
9454 		if (type == BPF_WRITE)
9455 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9456 		else
9457 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9458 #endif
9459 		break;
9460 
9461 	case offsetof(struct __sk_buff, napi_id):
9462 #if defined(CONFIG_NET_RX_BUSY_POLL)
9463 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9464 				      bpf_target_off(struct sk_buff, napi_id, 4,
9465 						     target_size));
9466 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9467 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9468 #else
9469 		*target_size = 4;
9470 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9471 #endif
9472 		break;
9473 	case offsetof(struct __sk_buff, family):
9474 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9475 
9476 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9477 				      si->dst_reg, si->src_reg,
9478 				      offsetof(struct sk_buff, sk));
9479 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9480 				      bpf_target_off(struct sock_common,
9481 						     skc_family,
9482 						     2, target_size));
9483 		break;
9484 	case offsetof(struct __sk_buff, remote_ip4):
9485 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9486 
9487 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9488 				      si->dst_reg, si->src_reg,
9489 				      offsetof(struct sk_buff, sk));
9490 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9491 				      bpf_target_off(struct sock_common,
9492 						     skc_daddr,
9493 						     4, target_size));
9494 		break;
9495 	case offsetof(struct __sk_buff, local_ip4):
9496 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9497 					  skc_rcv_saddr) != 4);
9498 
9499 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9500 				      si->dst_reg, si->src_reg,
9501 				      offsetof(struct sk_buff, sk));
9502 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9503 				      bpf_target_off(struct sock_common,
9504 						     skc_rcv_saddr,
9505 						     4, target_size));
9506 		break;
9507 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9508 	     offsetof(struct __sk_buff, remote_ip6[3]):
9509 #if IS_ENABLED(CONFIG_IPV6)
9510 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9511 					  skc_v6_daddr.s6_addr32[0]) != 4);
9512 
9513 		off = si->off;
9514 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9515 
9516 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9517 				      si->dst_reg, si->src_reg,
9518 				      offsetof(struct sk_buff, sk));
9519 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9520 				      offsetof(struct sock_common,
9521 					       skc_v6_daddr.s6_addr32[0]) +
9522 				      off);
9523 #else
9524 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9525 #endif
9526 		break;
9527 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9528 	     offsetof(struct __sk_buff, local_ip6[3]):
9529 #if IS_ENABLED(CONFIG_IPV6)
9530 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9531 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9532 
9533 		off = si->off;
9534 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9535 
9536 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9537 				      si->dst_reg, si->src_reg,
9538 				      offsetof(struct sk_buff, sk));
9539 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9540 				      offsetof(struct sock_common,
9541 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9542 				      off);
9543 #else
9544 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9545 #endif
9546 		break;
9547 
9548 	case offsetof(struct __sk_buff, remote_port):
9549 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9550 
9551 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9552 				      si->dst_reg, si->src_reg,
9553 				      offsetof(struct sk_buff, sk));
9554 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9555 				      bpf_target_off(struct sock_common,
9556 						     skc_dport,
9557 						     2, target_size));
9558 #ifndef __BIG_ENDIAN_BITFIELD
9559 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9560 #endif
9561 		break;
9562 
9563 	case offsetof(struct __sk_buff, local_port):
9564 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9565 
9566 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9567 				      si->dst_reg, si->src_reg,
9568 				      offsetof(struct sk_buff, sk));
9569 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9570 				      bpf_target_off(struct sock_common,
9571 						     skc_num, 2, target_size));
9572 		break;
9573 
9574 	case offsetof(struct __sk_buff, tstamp):
9575 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9576 
9577 		if (type == BPF_WRITE)
9578 			insn = bpf_convert_tstamp_write(prog, si, insn);
9579 		else
9580 			insn = bpf_convert_tstamp_read(prog, si, insn);
9581 		break;
9582 
9583 	case offsetof(struct __sk_buff, tstamp_type):
9584 		insn = bpf_convert_tstamp_type_read(si, insn);
9585 		break;
9586 
9587 	case offsetof(struct __sk_buff, gso_segs):
9588 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9589 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9590 				      si->dst_reg, si->dst_reg,
9591 				      bpf_target_off(struct skb_shared_info,
9592 						     gso_segs, 2,
9593 						     target_size));
9594 		break;
9595 	case offsetof(struct __sk_buff, gso_size):
9596 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9597 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9598 				      si->dst_reg, si->dst_reg,
9599 				      bpf_target_off(struct skb_shared_info,
9600 						     gso_size, 2,
9601 						     target_size));
9602 		break;
9603 	case offsetof(struct __sk_buff, wire_len):
9604 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9605 
9606 		off = si->off;
9607 		off -= offsetof(struct __sk_buff, wire_len);
9608 		off += offsetof(struct sk_buff, cb);
9609 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9610 		*target_size = 4;
9611 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9612 		break;
9613 
9614 	case offsetof(struct __sk_buff, sk):
9615 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9616 				      si->dst_reg, si->src_reg,
9617 				      offsetof(struct sk_buff, sk));
9618 		break;
9619 	case offsetof(struct __sk_buff, hwtstamp):
9620 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9621 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9622 
9623 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9624 		*insn++ = BPF_LDX_MEM(BPF_DW,
9625 				      si->dst_reg, si->dst_reg,
9626 				      bpf_target_off(struct skb_shared_info,
9627 						     hwtstamps, 8,
9628 						     target_size));
9629 		break;
9630 	}
9631 
9632 	return insn - insn_buf;
9633 }
9634 
9635 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9636 				const struct bpf_insn *si,
9637 				struct bpf_insn *insn_buf,
9638 				struct bpf_prog *prog, u32 *target_size)
9639 {
9640 	struct bpf_insn *insn = insn_buf;
9641 	int off;
9642 
9643 	switch (si->off) {
9644 	case offsetof(struct bpf_sock, bound_dev_if):
9645 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9646 
9647 		if (type == BPF_WRITE)
9648 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9649 					offsetof(struct sock, sk_bound_dev_if));
9650 		else
9651 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9652 				      offsetof(struct sock, sk_bound_dev_if));
9653 		break;
9654 
9655 	case offsetof(struct bpf_sock, mark):
9656 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9657 
9658 		if (type == BPF_WRITE)
9659 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9660 					offsetof(struct sock, sk_mark));
9661 		else
9662 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9663 				      offsetof(struct sock, sk_mark));
9664 		break;
9665 
9666 	case offsetof(struct bpf_sock, priority):
9667 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9668 
9669 		if (type == BPF_WRITE)
9670 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9671 					offsetof(struct sock, sk_priority));
9672 		else
9673 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9674 				      offsetof(struct sock, sk_priority));
9675 		break;
9676 
9677 	case offsetof(struct bpf_sock, family):
9678 		*insn++ = BPF_LDX_MEM(
9679 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9680 			si->dst_reg, si->src_reg,
9681 			bpf_target_off(struct sock_common,
9682 				       skc_family,
9683 				       sizeof_field(struct sock_common,
9684 						    skc_family),
9685 				       target_size));
9686 		break;
9687 
9688 	case offsetof(struct bpf_sock, type):
9689 		*insn++ = BPF_LDX_MEM(
9690 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9691 			si->dst_reg, si->src_reg,
9692 			bpf_target_off(struct sock, sk_type,
9693 				       sizeof_field(struct sock, sk_type),
9694 				       target_size));
9695 		break;
9696 
9697 	case offsetof(struct bpf_sock, protocol):
9698 		*insn++ = BPF_LDX_MEM(
9699 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9700 			si->dst_reg, si->src_reg,
9701 			bpf_target_off(struct sock, sk_protocol,
9702 				       sizeof_field(struct sock, sk_protocol),
9703 				       target_size));
9704 		break;
9705 
9706 	case offsetof(struct bpf_sock, src_ip4):
9707 		*insn++ = BPF_LDX_MEM(
9708 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9709 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9710 				       sizeof_field(struct sock_common,
9711 						    skc_rcv_saddr),
9712 				       target_size));
9713 		break;
9714 
9715 	case offsetof(struct bpf_sock, dst_ip4):
9716 		*insn++ = BPF_LDX_MEM(
9717 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9718 			bpf_target_off(struct sock_common, skc_daddr,
9719 				       sizeof_field(struct sock_common,
9720 						    skc_daddr),
9721 				       target_size));
9722 		break;
9723 
9724 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9725 #if IS_ENABLED(CONFIG_IPV6)
9726 		off = si->off;
9727 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9728 		*insn++ = BPF_LDX_MEM(
9729 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9730 			bpf_target_off(
9731 				struct sock_common,
9732 				skc_v6_rcv_saddr.s6_addr32[0],
9733 				sizeof_field(struct sock_common,
9734 					     skc_v6_rcv_saddr.s6_addr32[0]),
9735 				target_size) + off);
9736 #else
9737 		(void)off;
9738 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9739 #endif
9740 		break;
9741 
9742 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9743 #if IS_ENABLED(CONFIG_IPV6)
9744 		off = si->off;
9745 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9746 		*insn++ = BPF_LDX_MEM(
9747 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9748 			bpf_target_off(struct sock_common,
9749 				       skc_v6_daddr.s6_addr32[0],
9750 				       sizeof_field(struct sock_common,
9751 						    skc_v6_daddr.s6_addr32[0]),
9752 				       target_size) + off);
9753 #else
9754 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9755 		*target_size = 4;
9756 #endif
9757 		break;
9758 
9759 	case offsetof(struct bpf_sock, src_port):
9760 		*insn++ = BPF_LDX_MEM(
9761 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9762 			si->dst_reg, si->src_reg,
9763 			bpf_target_off(struct sock_common, skc_num,
9764 				       sizeof_field(struct sock_common,
9765 						    skc_num),
9766 				       target_size));
9767 		break;
9768 
9769 	case offsetof(struct bpf_sock, dst_port):
9770 		*insn++ = BPF_LDX_MEM(
9771 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9772 			si->dst_reg, si->src_reg,
9773 			bpf_target_off(struct sock_common, skc_dport,
9774 				       sizeof_field(struct sock_common,
9775 						    skc_dport),
9776 				       target_size));
9777 		break;
9778 
9779 	case offsetof(struct bpf_sock, state):
9780 		*insn++ = BPF_LDX_MEM(
9781 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9782 			si->dst_reg, si->src_reg,
9783 			bpf_target_off(struct sock_common, skc_state,
9784 				       sizeof_field(struct sock_common,
9785 						    skc_state),
9786 				       target_size));
9787 		break;
9788 	case offsetof(struct bpf_sock, rx_queue_mapping):
9789 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9790 		*insn++ = BPF_LDX_MEM(
9791 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9792 			si->dst_reg, si->src_reg,
9793 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9794 				       sizeof_field(struct sock,
9795 						    sk_rx_queue_mapping),
9796 				       target_size));
9797 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9798 				      1);
9799 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9800 #else
9801 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9802 		*target_size = 2;
9803 #endif
9804 		break;
9805 	}
9806 
9807 	return insn - insn_buf;
9808 }
9809 
9810 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9811 					 const struct bpf_insn *si,
9812 					 struct bpf_insn *insn_buf,
9813 					 struct bpf_prog *prog, u32 *target_size)
9814 {
9815 	struct bpf_insn *insn = insn_buf;
9816 
9817 	switch (si->off) {
9818 	case offsetof(struct __sk_buff, ifindex):
9819 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9820 				      si->dst_reg, si->src_reg,
9821 				      offsetof(struct sk_buff, dev));
9822 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9823 				      bpf_target_off(struct net_device, ifindex, 4,
9824 						     target_size));
9825 		break;
9826 	default:
9827 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9828 					      target_size);
9829 	}
9830 
9831 	return insn - insn_buf;
9832 }
9833 
9834 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9835 				  const struct bpf_insn *si,
9836 				  struct bpf_insn *insn_buf,
9837 				  struct bpf_prog *prog, u32 *target_size)
9838 {
9839 	struct bpf_insn *insn = insn_buf;
9840 
9841 	switch (si->off) {
9842 	case offsetof(struct xdp_md, data):
9843 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9844 				      si->dst_reg, si->src_reg,
9845 				      offsetof(struct xdp_buff, data));
9846 		break;
9847 	case offsetof(struct xdp_md, data_meta):
9848 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9849 				      si->dst_reg, si->src_reg,
9850 				      offsetof(struct xdp_buff, data_meta));
9851 		break;
9852 	case offsetof(struct xdp_md, data_end):
9853 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9854 				      si->dst_reg, si->src_reg,
9855 				      offsetof(struct xdp_buff, data_end));
9856 		break;
9857 	case offsetof(struct xdp_md, ingress_ifindex):
9858 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9859 				      si->dst_reg, si->src_reg,
9860 				      offsetof(struct xdp_buff, rxq));
9861 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9862 				      si->dst_reg, si->dst_reg,
9863 				      offsetof(struct xdp_rxq_info, dev));
9864 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9865 				      offsetof(struct net_device, ifindex));
9866 		break;
9867 	case offsetof(struct xdp_md, rx_queue_index):
9868 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9869 				      si->dst_reg, si->src_reg,
9870 				      offsetof(struct xdp_buff, rxq));
9871 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9872 				      offsetof(struct xdp_rxq_info,
9873 					       queue_index));
9874 		break;
9875 	case offsetof(struct xdp_md, egress_ifindex):
9876 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9877 				      si->dst_reg, si->src_reg,
9878 				      offsetof(struct xdp_buff, txq));
9879 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9880 				      si->dst_reg, si->dst_reg,
9881 				      offsetof(struct xdp_txq_info, dev));
9882 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9883 				      offsetof(struct net_device, ifindex));
9884 		break;
9885 	}
9886 
9887 	return insn - insn_buf;
9888 }
9889 
9890 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9891  * context Structure, F is Field in context structure that contains a pointer
9892  * to Nested Structure of type NS that has the field NF.
9893  *
9894  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9895  * sure that SIZE is not greater than actual size of S.F.NF.
9896  *
9897  * If offset OFF is provided, the load happens from that offset relative to
9898  * offset of NF.
9899  */
9900 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9901 	do {								       \
9902 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9903 				      si->src_reg, offsetof(S, F));	       \
9904 		*insn++ = BPF_LDX_MEM(					       \
9905 			SIZE, si->dst_reg, si->dst_reg,			       \
9906 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9907 				       target_size)			       \
9908 				+ OFF);					       \
9909 	} while (0)
9910 
9911 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9912 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9913 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9914 
9915 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9916  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9917  *
9918  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9919  * "register" since two registers available in convert_ctx_access are not
9920  * enough: we can't override neither SRC, since it contains value to store, nor
9921  * DST since it contains pointer to context that may be used by later
9922  * instructions. But we need a temporary place to save pointer to nested
9923  * structure whose field we want to store to.
9924  */
9925 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9926 	do {								       \
9927 		int tmp_reg = BPF_REG_9;				       \
9928 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9929 			--tmp_reg;					       \
9930 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9931 			--tmp_reg;					       \
9932 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9933 				      offsetof(S, TF));			       \
9934 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9935 				      si->dst_reg, offsetof(S, F));	       \
9936 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
9937 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9938 				       target_size)			       \
9939 				+ OFF);					       \
9940 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9941 				      offsetof(S, TF));			       \
9942 	} while (0)
9943 
9944 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9945 						      TF)		       \
9946 	do {								       \
9947 		if (type == BPF_WRITE) {				       \
9948 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9949 							 OFF, TF);	       \
9950 		} else {						       \
9951 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9952 				S, NS, F, NF, SIZE, OFF);  \
9953 		}							       \
9954 	} while (0)
9955 
9956 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9957 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9958 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9959 
9960 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9961 					const struct bpf_insn *si,
9962 					struct bpf_insn *insn_buf,
9963 					struct bpf_prog *prog, u32 *target_size)
9964 {
9965 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9966 	struct bpf_insn *insn = insn_buf;
9967 
9968 	switch (si->off) {
9969 	case offsetof(struct bpf_sock_addr, user_family):
9970 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9971 					    struct sockaddr, uaddr, sa_family);
9972 		break;
9973 
9974 	case offsetof(struct bpf_sock_addr, user_ip4):
9975 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9976 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9977 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9978 		break;
9979 
9980 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9981 		off = si->off;
9982 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9983 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9984 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9985 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9986 			tmp_reg);
9987 		break;
9988 
9989 	case offsetof(struct bpf_sock_addr, user_port):
9990 		/* To get port we need to know sa_family first and then treat
9991 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9992 		 * Though we can simplify since port field has same offset and
9993 		 * size in both structures.
9994 		 * Here we check this invariant and use just one of the
9995 		 * structures if it's true.
9996 		 */
9997 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9998 			     offsetof(struct sockaddr_in6, sin6_port));
9999 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10000 			     sizeof_field(struct sockaddr_in6, sin6_port));
10001 		/* Account for sin6_port being smaller than user_port. */
10002 		port_size = min(port_size, BPF_LDST_BYTES(si));
10003 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10004 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10005 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10006 		break;
10007 
10008 	case offsetof(struct bpf_sock_addr, family):
10009 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10010 					    struct sock, sk, sk_family);
10011 		break;
10012 
10013 	case offsetof(struct bpf_sock_addr, type):
10014 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10015 					    struct sock, sk, sk_type);
10016 		break;
10017 
10018 	case offsetof(struct bpf_sock_addr, protocol):
10019 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10020 					    struct sock, sk, sk_protocol);
10021 		break;
10022 
10023 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10024 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10025 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10026 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10027 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10028 		break;
10029 
10030 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10031 				msg_src_ip6[3]):
10032 		off = si->off;
10033 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10034 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10035 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10036 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10037 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10038 		break;
10039 	case offsetof(struct bpf_sock_addr, sk):
10040 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10041 				      si->dst_reg, si->src_reg,
10042 				      offsetof(struct bpf_sock_addr_kern, sk));
10043 		break;
10044 	}
10045 
10046 	return insn - insn_buf;
10047 }
10048 
10049 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10050 				       const struct bpf_insn *si,
10051 				       struct bpf_insn *insn_buf,
10052 				       struct bpf_prog *prog,
10053 				       u32 *target_size)
10054 {
10055 	struct bpf_insn *insn = insn_buf;
10056 	int off;
10057 
10058 /* Helper macro for adding read access to tcp_sock or sock fields. */
10059 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10060 	do {								      \
10061 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10062 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10063 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10064 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10065 			reg--;						      \
10066 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10067 			reg--;						      \
10068 		if (si->dst_reg == si->src_reg) {			      \
10069 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10070 					  offsetof(struct bpf_sock_ops_kern,  \
10071 					  temp));			      \
10072 			fullsock_reg = reg;				      \
10073 			jmp += 2;					      \
10074 		}							      \
10075 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10076 						struct bpf_sock_ops_kern,     \
10077 						is_fullsock),		      \
10078 				      fullsock_reg, si->src_reg,	      \
10079 				      offsetof(struct bpf_sock_ops_kern,      \
10080 					       is_fullsock));		      \
10081 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10082 		if (si->dst_reg == si->src_reg)				      \
10083 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10084 				      offsetof(struct bpf_sock_ops_kern,      \
10085 				      temp));				      \
10086 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10087 						struct bpf_sock_ops_kern, sk),\
10088 				      si->dst_reg, si->src_reg,		      \
10089 				      offsetof(struct bpf_sock_ops_kern, sk));\
10090 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10091 						       OBJ_FIELD),	      \
10092 				      si->dst_reg, si->dst_reg,		      \
10093 				      offsetof(OBJ, OBJ_FIELD));	      \
10094 		if (si->dst_reg == si->src_reg)	{			      \
10095 			*insn++ = BPF_JMP_A(1);				      \
10096 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10097 				      offsetof(struct bpf_sock_ops_kern,      \
10098 				      temp));				      \
10099 		}							      \
10100 	} while (0)
10101 
10102 #define SOCK_OPS_GET_SK()							      \
10103 	do {								      \
10104 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10105 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10106 			reg--;						      \
10107 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10108 			reg--;						      \
10109 		if (si->dst_reg == si->src_reg) {			      \
10110 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10111 					  offsetof(struct bpf_sock_ops_kern,  \
10112 					  temp));			      \
10113 			fullsock_reg = reg;				      \
10114 			jmp += 2;					      \
10115 		}							      \
10116 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10117 						struct bpf_sock_ops_kern,     \
10118 						is_fullsock),		      \
10119 				      fullsock_reg, si->src_reg,	      \
10120 				      offsetof(struct bpf_sock_ops_kern,      \
10121 					       is_fullsock));		      \
10122 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10123 		if (si->dst_reg == si->src_reg)				      \
10124 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10125 				      offsetof(struct bpf_sock_ops_kern,      \
10126 				      temp));				      \
10127 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10128 						struct bpf_sock_ops_kern, sk),\
10129 				      si->dst_reg, si->src_reg,		      \
10130 				      offsetof(struct bpf_sock_ops_kern, sk));\
10131 		if (si->dst_reg == si->src_reg)	{			      \
10132 			*insn++ = BPF_JMP_A(1);				      \
10133 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10134 				      offsetof(struct bpf_sock_ops_kern,      \
10135 				      temp));				      \
10136 		}							      \
10137 	} while (0)
10138 
10139 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10140 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10141 
10142 /* Helper macro for adding write access to tcp_sock or sock fields.
10143  * The macro is called with two registers, dst_reg which contains a pointer
10144  * to ctx (context) and src_reg which contains the value that should be
10145  * stored. However, we need an additional register since we cannot overwrite
10146  * dst_reg because it may be used later in the program.
10147  * Instead we "borrow" one of the other register. We first save its value
10148  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10149  * it at the end of the macro.
10150  */
10151 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10152 	do {								      \
10153 		int reg = BPF_REG_9;					      \
10154 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10155 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10156 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10157 			reg--;						      \
10158 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10159 			reg--;						      \
10160 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10161 				      offsetof(struct bpf_sock_ops_kern,      \
10162 					       temp));			      \
10163 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10164 						struct bpf_sock_ops_kern,     \
10165 						is_fullsock),		      \
10166 				      reg, si->dst_reg,			      \
10167 				      offsetof(struct bpf_sock_ops_kern,      \
10168 					       is_fullsock));		      \
10169 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10170 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10171 						struct bpf_sock_ops_kern, sk),\
10172 				      reg, si->dst_reg,			      \
10173 				      offsetof(struct bpf_sock_ops_kern, sk));\
10174 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
10175 				      reg, si->src_reg,			      \
10176 				      offsetof(OBJ, OBJ_FIELD));	      \
10177 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10178 				      offsetof(struct bpf_sock_ops_kern,      \
10179 					       temp));			      \
10180 	} while (0)
10181 
10182 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10183 	do {								      \
10184 		if (TYPE == BPF_WRITE)					      \
10185 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10186 		else							      \
10187 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10188 	} while (0)
10189 
10190 	switch (si->off) {
10191 	case offsetof(struct bpf_sock_ops, op):
10192 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10193 						       op),
10194 				      si->dst_reg, si->src_reg,
10195 				      offsetof(struct bpf_sock_ops_kern, op));
10196 		break;
10197 
10198 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10199 	     offsetof(struct bpf_sock_ops, replylong[3]):
10200 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10201 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10202 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10203 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10204 		off = si->off;
10205 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10206 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10207 		if (type == BPF_WRITE)
10208 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10209 					      off);
10210 		else
10211 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10212 					      off);
10213 		break;
10214 
10215 	case offsetof(struct bpf_sock_ops, family):
10216 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10217 
10218 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10219 					      struct bpf_sock_ops_kern, sk),
10220 				      si->dst_reg, si->src_reg,
10221 				      offsetof(struct bpf_sock_ops_kern, sk));
10222 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10223 				      offsetof(struct sock_common, skc_family));
10224 		break;
10225 
10226 	case offsetof(struct bpf_sock_ops, remote_ip4):
10227 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10228 
10229 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10230 						struct bpf_sock_ops_kern, sk),
10231 				      si->dst_reg, si->src_reg,
10232 				      offsetof(struct bpf_sock_ops_kern, sk));
10233 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10234 				      offsetof(struct sock_common, skc_daddr));
10235 		break;
10236 
10237 	case offsetof(struct bpf_sock_ops, local_ip4):
10238 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10239 					  skc_rcv_saddr) != 4);
10240 
10241 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10242 					      struct bpf_sock_ops_kern, sk),
10243 				      si->dst_reg, si->src_reg,
10244 				      offsetof(struct bpf_sock_ops_kern, sk));
10245 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10246 				      offsetof(struct sock_common,
10247 					       skc_rcv_saddr));
10248 		break;
10249 
10250 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10251 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10252 #if IS_ENABLED(CONFIG_IPV6)
10253 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10254 					  skc_v6_daddr.s6_addr32[0]) != 4);
10255 
10256 		off = si->off;
10257 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10258 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10259 						struct bpf_sock_ops_kern, sk),
10260 				      si->dst_reg, si->src_reg,
10261 				      offsetof(struct bpf_sock_ops_kern, sk));
10262 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10263 				      offsetof(struct sock_common,
10264 					       skc_v6_daddr.s6_addr32[0]) +
10265 				      off);
10266 #else
10267 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10268 #endif
10269 		break;
10270 
10271 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10272 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10273 #if IS_ENABLED(CONFIG_IPV6)
10274 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10275 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10276 
10277 		off = si->off;
10278 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10279 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10280 						struct bpf_sock_ops_kern, sk),
10281 				      si->dst_reg, si->src_reg,
10282 				      offsetof(struct bpf_sock_ops_kern, sk));
10283 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10284 				      offsetof(struct sock_common,
10285 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10286 				      off);
10287 #else
10288 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10289 #endif
10290 		break;
10291 
10292 	case offsetof(struct bpf_sock_ops, remote_port):
10293 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10294 
10295 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10296 						struct bpf_sock_ops_kern, sk),
10297 				      si->dst_reg, si->src_reg,
10298 				      offsetof(struct bpf_sock_ops_kern, sk));
10299 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10300 				      offsetof(struct sock_common, skc_dport));
10301 #ifndef __BIG_ENDIAN_BITFIELD
10302 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10303 #endif
10304 		break;
10305 
10306 	case offsetof(struct bpf_sock_ops, local_port):
10307 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10308 
10309 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10310 						struct bpf_sock_ops_kern, sk),
10311 				      si->dst_reg, si->src_reg,
10312 				      offsetof(struct bpf_sock_ops_kern, sk));
10313 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10314 				      offsetof(struct sock_common, skc_num));
10315 		break;
10316 
10317 	case offsetof(struct bpf_sock_ops, is_fullsock):
10318 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10319 						struct bpf_sock_ops_kern,
10320 						is_fullsock),
10321 				      si->dst_reg, si->src_reg,
10322 				      offsetof(struct bpf_sock_ops_kern,
10323 					       is_fullsock));
10324 		break;
10325 
10326 	case offsetof(struct bpf_sock_ops, state):
10327 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10328 
10329 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10330 						struct bpf_sock_ops_kern, sk),
10331 				      si->dst_reg, si->src_reg,
10332 				      offsetof(struct bpf_sock_ops_kern, sk));
10333 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10334 				      offsetof(struct sock_common, skc_state));
10335 		break;
10336 
10337 	case offsetof(struct bpf_sock_ops, rtt_min):
10338 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10339 			     sizeof(struct minmax));
10340 		BUILD_BUG_ON(sizeof(struct minmax) <
10341 			     sizeof(struct minmax_sample));
10342 
10343 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10344 						struct bpf_sock_ops_kern, sk),
10345 				      si->dst_reg, si->src_reg,
10346 				      offsetof(struct bpf_sock_ops_kern, sk));
10347 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10348 				      offsetof(struct tcp_sock, rtt_min) +
10349 				      sizeof_field(struct minmax_sample, t));
10350 		break;
10351 
10352 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10353 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10354 				   struct tcp_sock);
10355 		break;
10356 
10357 	case offsetof(struct bpf_sock_ops, sk_txhash):
10358 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10359 					  struct sock, type);
10360 		break;
10361 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10362 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10363 		break;
10364 	case offsetof(struct bpf_sock_ops, srtt_us):
10365 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10366 		break;
10367 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10368 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10369 		break;
10370 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10371 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10372 		break;
10373 	case offsetof(struct bpf_sock_ops, snd_nxt):
10374 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10375 		break;
10376 	case offsetof(struct bpf_sock_ops, snd_una):
10377 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10378 		break;
10379 	case offsetof(struct bpf_sock_ops, mss_cache):
10380 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10381 		break;
10382 	case offsetof(struct bpf_sock_ops, ecn_flags):
10383 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10384 		break;
10385 	case offsetof(struct bpf_sock_ops, rate_delivered):
10386 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10387 		break;
10388 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10389 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10390 		break;
10391 	case offsetof(struct bpf_sock_ops, packets_out):
10392 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10393 		break;
10394 	case offsetof(struct bpf_sock_ops, retrans_out):
10395 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10396 		break;
10397 	case offsetof(struct bpf_sock_ops, total_retrans):
10398 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10399 		break;
10400 	case offsetof(struct bpf_sock_ops, segs_in):
10401 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10402 		break;
10403 	case offsetof(struct bpf_sock_ops, data_segs_in):
10404 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10405 		break;
10406 	case offsetof(struct bpf_sock_ops, segs_out):
10407 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10408 		break;
10409 	case offsetof(struct bpf_sock_ops, data_segs_out):
10410 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10411 		break;
10412 	case offsetof(struct bpf_sock_ops, lost_out):
10413 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10414 		break;
10415 	case offsetof(struct bpf_sock_ops, sacked_out):
10416 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10417 		break;
10418 	case offsetof(struct bpf_sock_ops, bytes_received):
10419 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10420 		break;
10421 	case offsetof(struct bpf_sock_ops, bytes_acked):
10422 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10423 		break;
10424 	case offsetof(struct bpf_sock_ops, sk):
10425 		SOCK_OPS_GET_SK();
10426 		break;
10427 	case offsetof(struct bpf_sock_ops, skb_data_end):
10428 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10429 						       skb_data_end),
10430 				      si->dst_reg, si->src_reg,
10431 				      offsetof(struct bpf_sock_ops_kern,
10432 					       skb_data_end));
10433 		break;
10434 	case offsetof(struct bpf_sock_ops, skb_data):
10435 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10436 						       skb),
10437 				      si->dst_reg, si->src_reg,
10438 				      offsetof(struct bpf_sock_ops_kern,
10439 					       skb));
10440 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10441 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10442 				      si->dst_reg, si->dst_reg,
10443 				      offsetof(struct sk_buff, data));
10444 		break;
10445 	case offsetof(struct bpf_sock_ops, skb_len):
10446 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10447 						       skb),
10448 				      si->dst_reg, si->src_reg,
10449 				      offsetof(struct bpf_sock_ops_kern,
10450 					       skb));
10451 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10452 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10453 				      si->dst_reg, si->dst_reg,
10454 				      offsetof(struct sk_buff, len));
10455 		break;
10456 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10457 		off = offsetof(struct sk_buff, cb);
10458 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10459 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10460 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10461 						       skb),
10462 				      si->dst_reg, si->src_reg,
10463 				      offsetof(struct bpf_sock_ops_kern,
10464 					       skb));
10465 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10466 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10467 						       tcp_flags),
10468 				      si->dst_reg, si->dst_reg, off);
10469 		break;
10470 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10471 		struct bpf_insn *jmp_on_null_skb;
10472 
10473 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10474 						       skb),
10475 				      si->dst_reg, si->src_reg,
10476 				      offsetof(struct bpf_sock_ops_kern,
10477 					       skb));
10478 		/* Reserve one insn to test skb == NULL */
10479 		jmp_on_null_skb = insn++;
10480 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10481 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10482 				      bpf_target_off(struct skb_shared_info,
10483 						     hwtstamps, 8,
10484 						     target_size));
10485 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10486 					       insn - jmp_on_null_skb - 1);
10487 		break;
10488 	}
10489 	}
10490 	return insn - insn_buf;
10491 }
10492 
10493 /* data_end = skb->data + skb_headlen() */
10494 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10495 						    struct bpf_insn *insn)
10496 {
10497 	int reg;
10498 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10499 			   offsetof(struct sk_skb_cb, temp_reg);
10500 
10501 	if (si->src_reg == si->dst_reg) {
10502 		/* We need an extra register, choose and save a register. */
10503 		reg = BPF_REG_9;
10504 		if (si->src_reg == reg || si->dst_reg == reg)
10505 			reg--;
10506 		if (si->src_reg == reg || si->dst_reg == reg)
10507 			reg--;
10508 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10509 	} else {
10510 		reg = si->dst_reg;
10511 	}
10512 
10513 	/* reg = skb->data */
10514 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10515 			      reg, si->src_reg,
10516 			      offsetof(struct sk_buff, data));
10517 	/* AX = skb->len */
10518 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10519 			      BPF_REG_AX, si->src_reg,
10520 			      offsetof(struct sk_buff, len));
10521 	/* reg = skb->data + skb->len */
10522 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10523 	/* AX = skb->data_len */
10524 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10525 			      BPF_REG_AX, si->src_reg,
10526 			      offsetof(struct sk_buff, data_len));
10527 
10528 	/* reg = skb->data + skb->len - skb->data_len */
10529 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10530 
10531 	if (si->src_reg == si->dst_reg) {
10532 		/* Restore the saved register */
10533 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10534 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10535 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10536 	}
10537 
10538 	return insn;
10539 }
10540 
10541 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10542 				     const struct bpf_insn *si,
10543 				     struct bpf_insn *insn_buf,
10544 				     struct bpf_prog *prog, u32 *target_size)
10545 {
10546 	struct bpf_insn *insn = insn_buf;
10547 	int off;
10548 
10549 	switch (si->off) {
10550 	case offsetof(struct __sk_buff, data_end):
10551 		insn = bpf_convert_data_end_access(si, insn);
10552 		break;
10553 	case offsetof(struct __sk_buff, cb[0]) ...
10554 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10555 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10556 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10557 			      offsetof(struct sk_skb_cb, data)) %
10558 			     sizeof(__u64));
10559 
10560 		prog->cb_access = 1;
10561 		off  = si->off;
10562 		off -= offsetof(struct __sk_buff, cb[0]);
10563 		off += offsetof(struct sk_buff, cb);
10564 		off += offsetof(struct sk_skb_cb, data);
10565 		if (type == BPF_WRITE)
10566 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10567 					      si->src_reg, off);
10568 		else
10569 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10570 					      si->src_reg, off);
10571 		break;
10572 
10573 
10574 	default:
10575 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10576 					      target_size);
10577 	}
10578 
10579 	return insn - insn_buf;
10580 }
10581 
10582 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10583 				     const struct bpf_insn *si,
10584 				     struct bpf_insn *insn_buf,
10585 				     struct bpf_prog *prog, u32 *target_size)
10586 {
10587 	struct bpf_insn *insn = insn_buf;
10588 #if IS_ENABLED(CONFIG_IPV6)
10589 	int off;
10590 #endif
10591 
10592 	/* convert ctx uses the fact sg element is first in struct */
10593 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10594 
10595 	switch (si->off) {
10596 	case offsetof(struct sk_msg_md, data):
10597 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10598 				      si->dst_reg, si->src_reg,
10599 				      offsetof(struct sk_msg, data));
10600 		break;
10601 	case offsetof(struct sk_msg_md, data_end):
10602 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10603 				      si->dst_reg, si->src_reg,
10604 				      offsetof(struct sk_msg, data_end));
10605 		break;
10606 	case offsetof(struct sk_msg_md, family):
10607 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10608 
10609 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10610 					      struct sk_msg, sk),
10611 				      si->dst_reg, si->src_reg,
10612 				      offsetof(struct sk_msg, sk));
10613 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10614 				      offsetof(struct sock_common, skc_family));
10615 		break;
10616 
10617 	case offsetof(struct sk_msg_md, remote_ip4):
10618 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10619 
10620 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10621 						struct sk_msg, sk),
10622 				      si->dst_reg, si->src_reg,
10623 				      offsetof(struct sk_msg, sk));
10624 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10625 				      offsetof(struct sock_common, skc_daddr));
10626 		break;
10627 
10628 	case offsetof(struct sk_msg_md, local_ip4):
10629 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10630 					  skc_rcv_saddr) != 4);
10631 
10632 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10633 					      struct sk_msg, sk),
10634 				      si->dst_reg, si->src_reg,
10635 				      offsetof(struct sk_msg, sk));
10636 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10637 				      offsetof(struct sock_common,
10638 					       skc_rcv_saddr));
10639 		break;
10640 
10641 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10642 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10643 #if IS_ENABLED(CONFIG_IPV6)
10644 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10645 					  skc_v6_daddr.s6_addr32[0]) != 4);
10646 
10647 		off = si->off;
10648 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10649 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10650 						struct sk_msg, sk),
10651 				      si->dst_reg, si->src_reg,
10652 				      offsetof(struct sk_msg, sk));
10653 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10654 				      offsetof(struct sock_common,
10655 					       skc_v6_daddr.s6_addr32[0]) +
10656 				      off);
10657 #else
10658 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10659 #endif
10660 		break;
10661 
10662 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10663 	     offsetof(struct sk_msg_md, local_ip6[3]):
10664 #if IS_ENABLED(CONFIG_IPV6)
10665 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10666 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10667 
10668 		off = si->off;
10669 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10670 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10671 						struct sk_msg, sk),
10672 				      si->dst_reg, si->src_reg,
10673 				      offsetof(struct sk_msg, sk));
10674 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10675 				      offsetof(struct sock_common,
10676 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10677 				      off);
10678 #else
10679 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10680 #endif
10681 		break;
10682 
10683 	case offsetof(struct sk_msg_md, remote_port):
10684 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10685 
10686 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10687 						struct sk_msg, sk),
10688 				      si->dst_reg, si->src_reg,
10689 				      offsetof(struct sk_msg, sk));
10690 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10691 				      offsetof(struct sock_common, skc_dport));
10692 #ifndef __BIG_ENDIAN_BITFIELD
10693 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10694 #endif
10695 		break;
10696 
10697 	case offsetof(struct sk_msg_md, local_port):
10698 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10699 
10700 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10701 						struct sk_msg, sk),
10702 				      si->dst_reg, si->src_reg,
10703 				      offsetof(struct sk_msg, sk));
10704 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10705 				      offsetof(struct sock_common, skc_num));
10706 		break;
10707 
10708 	case offsetof(struct sk_msg_md, size):
10709 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10710 				      si->dst_reg, si->src_reg,
10711 				      offsetof(struct sk_msg_sg, size));
10712 		break;
10713 
10714 	case offsetof(struct sk_msg_md, sk):
10715 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10716 				      si->dst_reg, si->src_reg,
10717 				      offsetof(struct sk_msg, sk));
10718 		break;
10719 	}
10720 
10721 	return insn - insn_buf;
10722 }
10723 
10724 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10725 	.get_func_proto		= sk_filter_func_proto,
10726 	.is_valid_access	= sk_filter_is_valid_access,
10727 	.convert_ctx_access	= bpf_convert_ctx_access,
10728 	.gen_ld_abs		= bpf_gen_ld_abs,
10729 };
10730 
10731 const struct bpf_prog_ops sk_filter_prog_ops = {
10732 	.test_run		= bpf_prog_test_run_skb,
10733 };
10734 
10735 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10736 	.get_func_proto		= tc_cls_act_func_proto,
10737 	.is_valid_access	= tc_cls_act_is_valid_access,
10738 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10739 	.gen_prologue		= tc_cls_act_prologue,
10740 	.gen_ld_abs		= bpf_gen_ld_abs,
10741 	.btf_struct_access	= tc_cls_act_btf_struct_access,
10742 };
10743 
10744 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10745 	.test_run		= bpf_prog_test_run_skb,
10746 };
10747 
10748 const struct bpf_verifier_ops xdp_verifier_ops = {
10749 	.get_func_proto		= xdp_func_proto,
10750 	.is_valid_access	= xdp_is_valid_access,
10751 	.convert_ctx_access	= xdp_convert_ctx_access,
10752 	.gen_prologue		= bpf_noop_prologue,
10753 	.btf_struct_access	= xdp_btf_struct_access,
10754 };
10755 
10756 const struct bpf_prog_ops xdp_prog_ops = {
10757 	.test_run		= bpf_prog_test_run_xdp,
10758 };
10759 
10760 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10761 	.get_func_proto		= cg_skb_func_proto,
10762 	.is_valid_access	= cg_skb_is_valid_access,
10763 	.convert_ctx_access	= bpf_convert_ctx_access,
10764 };
10765 
10766 const struct bpf_prog_ops cg_skb_prog_ops = {
10767 	.test_run		= bpf_prog_test_run_skb,
10768 };
10769 
10770 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10771 	.get_func_proto		= lwt_in_func_proto,
10772 	.is_valid_access	= lwt_is_valid_access,
10773 	.convert_ctx_access	= bpf_convert_ctx_access,
10774 };
10775 
10776 const struct bpf_prog_ops lwt_in_prog_ops = {
10777 	.test_run		= bpf_prog_test_run_skb,
10778 };
10779 
10780 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10781 	.get_func_proto		= lwt_out_func_proto,
10782 	.is_valid_access	= lwt_is_valid_access,
10783 	.convert_ctx_access	= bpf_convert_ctx_access,
10784 };
10785 
10786 const struct bpf_prog_ops lwt_out_prog_ops = {
10787 	.test_run		= bpf_prog_test_run_skb,
10788 };
10789 
10790 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10791 	.get_func_proto		= lwt_xmit_func_proto,
10792 	.is_valid_access	= lwt_is_valid_access,
10793 	.convert_ctx_access	= bpf_convert_ctx_access,
10794 	.gen_prologue		= tc_cls_act_prologue,
10795 };
10796 
10797 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10798 	.test_run		= bpf_prog_test_run_skb,
10799 };
10800 
10801 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10802 	.get_func_proto		= lwt_seg6local_func_proto,
10803 	.is_valid_access	= lwt_is_valid_access,
10804 	.convert_ctx_access	= bpf_convert_ctx_access,
10805 };
10806 
10807 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10808 	.test_run		= bpf_prog_test_run_skb,
10809 };
10810 
10811 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10812 	.get_func_proto		= sock_filter_func_proto,
10813 	.is_valid_access	= sock_filter_is_valid_access,
10814 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10815 };
10816 
10817 const struct bpf_prog_ops cg_sock_prog_ops = {
10818 };
10819 
10820 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10821 	.get_func_proto		= sock_addr_func_proto,
10822 	.is_valid_access	= sock_addr_is_valid_access,
10823 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10824 };
10825 
10826 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10827 };
10828 
10829 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10830 	.get_func_proto		= sock_ops_func_proto,
10831 	.is_valid_access	= sock_ops_is_valid_access,
10832 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10833 };
10834 
10835 const struct bpf_prog_ops sock_ops_prog_ops = {
10836 };
10837 
10838 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10839 	.get_func_proto		= sk_skb_func_proto,
10840 	.is_valid_access	= sk_skb_is_valid_access,
10841 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10842 	.gen_prologue		= sk_skb_prologue,
10843 };
10844 
10845 const struct bpf_prog_ops sk_skb_prog_ops = {
10846 };
10847 
10848 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10849 	.get_func_proto		= sk_msg_func_proto,
10850 	.is_valid_access	= sk_msg_is_valid_access,
10851 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10852 	.gen_prologue		= bpf_noop_prologue,
10853 };
10854 
10855 const struct bpf_prog_ops sk_msg_prog_ops = {
10856 };
10857 
10858 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10859 	.get_func_proto		= flow_dissector_func_proto,
10860 	.is_valid_access	= flow_dissector_is_valid_access,
10861 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10862 };
10863 
10864 const struct bpf_prog_ops flow_dissector_prog_ops = {
10865 	.test_run		= bpf_prog_test_run_flow_dissector,
10866 };
10867 
10868 int sk_detach_filter(struct sock *sk)
10869 {
10870 	int ret = -ENOENT;
10871 	struct sk_filter *filter;
10872 
10873 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10874 		return -EPERM;
10875 
10876 	filter = rcu_dereference_protected(sk->sk_filter,
10877 					   lockdep_sock_is_held(sk));
10878 	if (filter) {
10879 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10880 		sk_filter_uncharge(sk, filter);
10881 		ret = 0;
10882 	}
10883 
10884 	return ret;
10885 }
10886 EXPORT_SYMBOL_GPL(sk_detach_filter);
10887 
10888 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10889 {
10890 	struct sock_fprog_kern *fprog;
10891 	struct sk_filter *filter;
10892 	int ret = 0;
10893 
10894 	sockopt_lock_sock(sk);
10895 	filter = rcu_dereference_protected(sk->sk_filter,
10896 					   lockdep_sock_is_held(sk));
10897 	if (!filter)
10898 		goto out;
10899 
10900 	/* We're copying the filter that has been originally attached,
10901 	 * so no conversion/decode needed anymore. eBPF programs that
10902 	 * have no original program cannot be dumped through this.
10903 	 */
10904 	ret = -EACCES;
10905 	fprog = filter->prog->orig_prog;
10906 	if (!fprog)
10907 		goto out;
10908 
10909 	ret = fprog->len;
10910 	if (!len)
10911 		/* User space only enquires number of filter blocks. */
10912 		goto out;
10913 
10914 	ret = -EINVAL;
10915 	if (len < fprog->len)
10916 		goto out;
10917 
10918 	ret = -EFAULT;
10919 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
10920 		goto out;
10921 
10922 	/* Instead of bytes, the API requests to return the number
10923 	 * of filter blocks.
10924 	 */
10925 	ret = fprog->len;
10926 out:
10927 	sockopt_release_sock(sk);
10928 	return ret;
10929 }
10930 
10931 #ifdef CONFIG_INET
10932 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10933 				    struct sock_reuseport *reuse,
10934 				    struct sock *sk, struct sk_buff *skb,
10935 				    struct sock *migrating_sk,
10936 				    u32 hash)
10937 {
10938 	reuse_kern->skb = skb;
10939 	reuse_kern->sk = sk;
10940 	reuse_kern->selected_sk = NULL;
10941 	reuse_kern->migrating_sk = migrating_sk;
10942 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10943 	reuse_kern->hash = hash;
10944 	reuse_kern->reuseport_id = reuse->reuseport_id;
10945 	reuse_kern->bind_inany = reuse->bind_inany;
10946 }
10947 
10948 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10949 				  struct bpf_prog *prog, struct sk_buff *skb,
10950 				  struct sock *migrating_sk,
10951 				  u32 hash)
10952 {
10953 	struct sk_reuseport_kern reuse_kern;
10954 	enum sk_action action;
10955 
10956 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10957 	action = bpf_prog_run(prog, &reuse_kern);
10958 
10959 	if (action == SK_PASS)
10960 		return reuse_kern.selected_sk;
10961 	else
10962 		return ERR_PTR(-ECONNREFUSED);
10963 }
10964 
10965 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10966 	   struct bpf_map *, map, void *, key, u32, flags)
10967 {
10968 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10969 	struct sock_reuseport *reuse;
10970 	struct sock *selected_sk;
10971 
10972 	selected_sk = map->ops->map_lookup_elem(map, key);
10973 	if (!selected_sk)
10974 		return -ENOENT;
10975 
10976 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10977 	if (!reuse) {
10978 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10979 		if (sk_is_refcounted(selected_sk))
10980 			sock_put(selected_sk);
10981 
10982 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
10983 		 * The only (!reuse) case here is - the sk has already been
10984 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
10985 		 *
10986 		 * Other maps (e.g. sock_map) do not provide this guarantee and
10987 		 * the sk may never be in the reuseport group to begin with.
10988 		 */
10989 		return is_sockarray ? -ENOENT : -EINVAL;
10990 	}
10991 
10992 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10993 		struct sock *sk = reuse_kern->sk;
10994 
10995 		if (sk->sk_protocol != selected_sk->sk_protocol)
10996 			return -EPROTOTYPE;
10997 		else if (sk->sk_family != selected_sk->sk_family)
10998 			return -EAFNOSUPPORT;
10999 
11000 		/* Catch all. Likely bound to a different sockaddr. */
11001 		return -EBADFD;
11002 	}
11003 
11004 	reuse_kern->selected_sk = selected_sk;
11005 
11006 	return 0;
11007 }
11008 
11009 static const struct bpf_func_proto sk_select_reuseport_proto = {
11010 	.func           = sk_select_reuseport,
11011 	.gpl_only       = false,
11012 	.ret_type       = RET_INTEGER,
11013 	.arg1_type	= ARG_PTR_TO_CTX,
11014 	.arg2_type      = ARG_CONST_MAP_PTR,
11015 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11016 	.arg4_type	= ARG_ANYTHING,
11017 };
11018 
11019 BPF_CALL_4(sk_reuseport_load_bytes,
11020 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11021 	   void *, to, u32, len)
11022 {
11023 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11024 }
11025 
11026 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11027 	.func		= sk_reuseport_load_bytes,
11028 	.gpl_only	= false,
11029 	.ret_type	= RET_INTEGER,
11030 	.arg1_type	= ARG_PTR_TO_CTX,
11031 	.arg2_type	= ARG_ANYTHING,
11032 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11033 	.arg4_type	= ARG_CONST_SIZE,
11034 };
11035 
11036 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11037 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11038 	   void *, to, u32, len, u32, start_header)
11039 {
11040 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11041 					       len, start_header);
11042 }
11043 
11044 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11045 	.func		= sk_reuseport_load_bytes_relative,
11046 	.gpl_only	= false,
11047 	.ret_type	= RET_INTEGER,
11048 	.arg1_type	= ARG_PTR_TO_CTX,
11049 	.arg2_type	= ARG_ANYTHING,
11050 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11051 	.arg4_type	= ARG_CONST_SIZE,
11052 	.arg5_type	= ARG_ANYTHING,
11053 };
11054 
11055 static const struct bpf_func_proto *
11056 sk_reuseport_func_proto(enum bpf_func_id func_id,
11057 			const struct bpf_prog *prog)
11058 {
11059 	switch (func_id) {
11060 	case BPF_FUNC_sk_select_reuseport:
11061 		return &sk_select_reuseport_proto;
11062 	case BPF_FUNC_skb_load_bytes:
11063 		return &sk_reuseport_load_bytes_proto;
11064 	case BPF_FUNC_skb_load_bytes_relative:
11065 		return &sk_reuseport_load_bytes_relative_proto;
11066 	case BPF_FUNC_get_socket_cookie:
11067 		return &bpf_get_socket_ptr_cookie_proto;
11068 	case BPF_FUNC_ktime_get_coarse_ns:
11069 		return &bpf_ktime_get_coarse_ns_proto;
11070 	default:
11071 		return bpf_base_func_proto(func_id);
11072 	}
11073 }
11074 
11075 static bool
11076 sk_reuseport_is_valid_access(int off, int size,
11077 			     enum bpf_access_type type,
11078 			     const struct bpf_prog *prog,
11079 			     struct bpf_insn_access_aux *info)
11080 {
11081 	const u32 size_default = sizeof(__u32);
11082 
11083 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11084 	    off % size || type != BPF_READ)
11085 		return false;
11086 
11087 	switch (off) {
11088 	case offsetof(struct sk_reuseport_md, data):
11089 		info->reg_type = PTR_TO_PACKET;
11090 		return size == sizeof(__u64);
11091 
11092 	case offsetof(struct sk_reuseport_md, data_end):
11093 		info->reg_type = PTR_TO_PACKET_END;
11094 		return size == sizeof(__u64);
11095 
11096 	case offsetof(struct sk_reuseport_md, hash):
11097 		return size == size_default;
11098 
11099 	case offsetof(struct sk_reuseport_md, sk):
11100 		info->reg_type = PTR_TO_SOCKET;
11101 		return size == sizeof(__u64);
11102 
11103 	case offsetof(struct sk_reuseport_md, migrating_sk):
11104 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11105 		return size == sizeof(__u64);
11106 
11107 	/* Fields that allow narrowing */
11108 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11109 		if (size < sizeof_field(struct sk_buff, protocol))
11110 			return false;
11111 		fallthrough;
11112 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11113 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11114 	case bpf_ctx_range(struct sk_reuseport_md, len):
11115 		bpf_ctx_record_field_size(info, size_default);
11116 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11117 
11118 	default:
11119 		return false;
11120 	}
11121 }
11122 
11123 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11124 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11125 			      si->dst_reg, si->src_reg,			\
11126 			      bpf_target_off(struct sk_reuseport_kern, F, \
11127 					     sizeof_field(struct sk_reuseport_kern, F), \
11128 					     target_size));		\
11129 	})
11130 
11131 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11132 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11133 				    struct sk_buff,			\
11134 				    skb,				\
11135 				    SKB_FIELD)
11136 
11137 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11138 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11139 				    struct sock,			\
11140 				    sk,					\
11141 				    SK_FIELD)
11142 
11143 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11144 					   const struct bpf_insn *si,
11145 					   struct bpf_insn *insn_buf,
11146 					   struct bpf_prog *prog,
11147 					   u32 *target_size)
11148 {
11149 	struct bpf_insn *insn = insn_buf;
11150 
11151 	switch (si->off) {
11152 	case offsetof(struct sk_reuseport_md, data):
11153 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11154 		break;
11155 
11156 	case offsetof(struct sk_reuseport_md, len):
11157 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11158 		break;
11159 
11160 	case offsetof(struct sk_reuseport_md, eth_protocol):
11161 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11162 		break;
11163 
11164 	case offsetof(struct sk_reuseport_md, ip_protocol):
11165 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11166 		break;
11167 
11168 	case offsetof(struct sk_reuseport_md, data_end):
11169 		SK_REUSEPORT_LOAD_FIELD(data_end);
11170 		break;
11171 
11172 	case offsetof(struct sk_reuseport_md, hash):
11173 		SK_REUSEPORT_LOAD_FIELD(hash);
11174 		break;
11175 
11176 	case offsetof(struct sk_reuseport_md, bind_inany):
11177 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11178 		break;
11179 
11180 	case offsetof(struct sk_reuseport_md, sk):
11181 		SK_REUSEPORT_LOAD_FIELD(sk);
11182 		break;
11183 
11184 	case offsetof(struct sk_reuseport_md, migrating_sk):
11185 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11186 		break;
11187 	}
11188 
11189 	return insn - insn_buf;
11190 }
11191 
11192 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11193 	.get_func_proto		= sk_reuseport_func_proto,
11194 	.is_valid_access	= sk_reuseport_is_valid_access,
11195 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11196 };
11197 
11198 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11199 };
11200 
11201 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11202 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11203 
11204 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11205 	   struct sock *, sk, u64, flags)
11206 {
11207 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11208 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11209 		return -EINVAL;
11210 	if (unlikely(sk && sk_is_refcounted(sk)))
11211 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11212 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11213 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11214 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11215 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11216 
11217 	/* Check if socket is suitable for packet L3/L4 protocol */
11218 	if (sk && sk->sk_protocol != ctx->protocol)
11219 		return -EPROTOTYPE;
11220 	if (sk && sk->sk_family != ctx->family &&
11221 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11222 		return -EAFNOSUPPORT;
11223 
11224 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11225 		return -EEXIST;
11226 
11227 	/* Select socket as lookup result */
11228 	ctx->selected_sk = sk;
11229 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11230 	return 0;
11231 }
11232 
11233 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11234 	.func		= bpf_sk_lookup_assign,
11235 	.gpl_only	= false,
11236 	.ret_type	= RET_INTEGER,
11237 	.arg1_type	= ARG_PTR_TO_CTX,
11238 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11239 	.arg3_type	= ARG_ANYTHING,
11240 };
11241 
11242 static const struct bpf_func_proto *
11243 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11244 {
11245 	switch (func_id) {
11246 	case BPF_FUNC_perf_event_output:
11247 		return &bpf_event_output_data_proto;
11248 	case BPF_FUNC_sk_assign:
11249 		return &bpf_sk_lookup_assign_proto;
11250 	case BPF_FUNC_sk_release:
11251 		return &bpf_sk_release_proto;
11252 	default:
11253 		return bpf_sk_base_func_proto(func_id);
11254 	}
11255 }
11256 
11257 static bool sk_lookup_is_valid_access(int off, int size,
11258 				      enum bpf_access_type type,
11259 				      const struct bpf_prog *prog,
11260 				      struct bpf_insn_access_aux *info)
11261 {
11262 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11263 		return false;
11264 	if (off % size != 0)
11265 		return false;
11266 	if (type != BPF_READ)
11267 		return false;
11268 
11269 	switch (off) {
11270 	case offsetof(struct bpf_sk_lookup, sk):
11271 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11272 		return size == sizeof(__u64);
11273 
11274 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11275 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11276 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11277 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11278 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11279 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11280 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11281 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11282 		bpf_ctx_record_field_size(info, sizeof(__u32));
11283 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11284 
11285 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11286 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11287 		if (size == sizeof(__u32))
11288 			return true;
11289 		bpf_ctx_record_field_size(info, sizeof(__be16));
11290 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11291 
11292 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11293 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11294 		/* Allow access to zero padding for backward compatibility */
11295 		bpf_ctx_record_field_size(info, sizeof(__u16));
11296 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11297 
11298 	default:
11299 		return false;
11300 	}
11301 }
11302 
11303 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11304 					const struct bpf_insn *si,
11305 					struct bpf_insn *insn_buf,
11306 					struct bpf_prog *prog,
11307 					u32 *target_size)
11308 {
11309 	struct bpf_insn *insn = insn_buf;
11310 
11311 	switch (si->off) {
11312 	case offsetof(struct bpf_sk_lookup, sk):
11313 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11314 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11315 		break;
11316 
11317 	case offsetof(struct bpf_sk_lookup, family):
11318 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11319 				      bpf_target_off(struct bpf_sk_lookup_kern,
11320 						     family, 2, target_size));
11321 		break;
11322 
11323 	case offsetof(struct bpf_sk_lookup, protocol):
11324 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11325 				      bpf_target_off(struct bpf_sk_lookup_kern,
11326 						     protocol, 2, target_size));
11327 		break;
11328 
11329 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11330 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11331 				      bpf_target_off(struct bpf_sk_lookup_kern,
11332 						     v4.saddr, 4, target_size));
11333 		break;
11334 
11335 	case offsetof(struct bpf_sk_lookup, local_ip4):
11336 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11337 				      bpf_target_off(struct bpf_sk_lookup_kern,
11338 						     v4.daddr, 4, target_size));
11339 		break;
11340 
11341 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11342 				remote_ip6[0], remote_ip6[3]): {
11343 #if IS_ENABLED(CONFIG_IPV6)
11344 		int off = si->off;
11345 
11346 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11347 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11348 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11349 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11350 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11351 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11352 #else
11353 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11354 #endif
11355 		break;
11356 	}
11357 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11358 				local_ip6[0], local_ip6[3]): {
11359 #if IS_ENABLED(CONFIG_IPV6)
11360 		int off = si->off;
11361 
11362 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11363 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11364 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11365 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11366 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11367 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11368 #else
11369 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11370 #endif
11371 		break;
11372 	}
11373 	case offsetof(struct bpf_sk_lookup, remote_port):
11374 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11375 				      bpf_target_off(struct bpf_sk_lookup_kern,
11376 						     sport, 2, target_size));
11377 		break;
11378 
11379 	case offsetofend(struct bpf_sk_lookup, remote_port):
11380 		*target_size = 2;
11381 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11382 		break;
11383 
11384 	case offsetof(struct bpf_sk_lookup, local_port):
11385 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11386 				      bpf_target_off(struct bpf_sk_lookup_kern,
11387 						     dport, 2, target_size));
11388 		break;
11389 
11390 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11391 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11392 				      bpf_target_off(struct bpf_sk_lookup_kern,
11393 						     ingress_ifindex, 4, target_size));
11394 		break;
11395 	}
11396 
11397 	return insn - insn_buf;
11398 }
11399 
11400 const struct bpf_prog_ops sk_lookup_prog_ops = {
11401 	.test_run = bpf_prog_test_run_sk_lookup,
11402 };
11403 
11404 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11405 	.get_func_proto		= sk_lookup_func_proto,
11406 	.is_valid_access	= sk_lookup_is_valid_access,
11407 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11408 };
11409 
11410 #endif /* CONFIG_INET */
11411 
11412 DEFINE_BPF_DISPATCHER(xdp)
11413 
11414 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11415 {
11416 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11417 }
11418 
11419 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11420 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11421 BTF_SOCK_TYPE_xxx
11422 #undef BTF_SOCK_TYPE
11423 
11424 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11425 {
11426 	/* tcp6_sock type is not generated in dwarf and hence btf,
11427 	 * trigger an explicit type generation here.
11428 	 */
11429 	BTF_TYPE_EMIT(struct tcp6_sock);
11430 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11431 	    sk->sk_family == AF_INET6)
11432 		return (unsigned long)sk;
11433 
11434 	return (unsigned long)NULL;
11435 }
11436 
11437 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11438 	.func			= bpf_skc_to_tcp6_sock,
11439 	.gpl_only		= false,
11440 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11441 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11442 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11443 };
11444 
11445 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11446 {
11447 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11448 		return (unsigned long)sk;
11449 
11450 	return (unsigned long)NULL;
11451 }
11452 
11453 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11454 	.func			= bpf_skc_to_tcp_sock,
11455 	.gpl_only		= false,
11456 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11457 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11458 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11459 };
11460 
11461 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11462 {
11463 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11464 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11465 	 */
11466 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11467 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11468 
11469 #ifdef CONFIG_INET
11470 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11471 		return (unsigned long)sk;
11472 #endif
11473 
11474 #if IS_BUILTIN(CONFIG_IPV6)
11475 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11476 		return (unsigned long)sk;
11477 #endif
11478 
11479 	return (unsigned long)NULL;
11480 }
11481 
11482 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11483 	.func			= bpf_skc_to_tcp_timewait_sock,
11484 	.gpl_only		= false,
11485 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11486 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11487 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11488 };
11489 
11490 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11491 {
11492 #ifdef CONFIG_INET
11493 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11494 		return (unsigned long)sk;
11495 #endif
11496 
11497 #if IS_BUILTIN(CONFIG_IPV6)
11498 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11499 		return (unsigned long)sk;
11500 #endif
11501 
11502 	return (unsigned long)NULL;
11503 }
11504 
11505 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11506 	.func			= bpf_skc_to_tcp_request_sock,
11507 	.gpl_only		= false,
11508 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11509 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11510 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11511 };
11512 
11513 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11514 {
11515 	/* udp6_sock type is not generated in dwarf and hence btf,
11516 	 * trigger an explicit type generation here.
11517 	 */
11518 	BTF_TYPE_EMIT(struct udp6_sock);
11519 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11520 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11521 		return (unsigned long)sk;
11522 
11523 	return (unsigned long)NULL;
11524 }
11525 
11526 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11527 	.func			= bpf_skc_to_udp6_sock,
11528 	.gpl_only		= false,
11529 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11530 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11531 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11532 };
11533 
11534 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11535 {
11536 	/* unix_sock type is not generated in dwarf and hence btf,
11537 	 * trigger an explicit type generation here.
11538 	 */
11539 	BTF_TYPE_EMIT(struct unix_sock);
11540 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11541 		return (unsigned long)sk;
11542 
11543 	return (unsigned long)NULL;
11544 }
11545 
11546 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11547 	.func			= bpf_skc_to_unix_sock,
11548 	.gpl_only		= false,
11549 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11550 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11551 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11552 };
11553 
11554 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11555 {
11556 	BTF_TYPE_EMIT(struct mptcp_sock);
11557 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11558 }
11559 
11560 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11561 	.func		= bpf_skc_to_mptcp_sock,
11562 	.gpl_only	= false,
11563 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11564 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11565 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11566 };
11567 
11568 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11569 {
11570 	return (unsigned long)sock_from_file(file);
11571 }
11572 
11573 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11574 BTF_ID(struct, socket)
11575 BTF_ID(struct, file)
11576 
11577 const struct bpf_func_proto bpf_sock_from_file_proto = {
11578 	.func		= bpf_sock_from_file,
11579 	.gpl_only	= false,
11580 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11581 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11582 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11583 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11584 };
11585 
11586 static const struct bpf_func_proto *
11587 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11588 {
11589 	const struct bpf_func_proto *func;
11590 
11591 	switch (func_id) {
11592 	case BPF_FUNC_skc_to_tcp6_sock:
11593 		func = &bpf_skc_to_tcp6_sock_proto;
11594 		break;
11595 	case BPF_FUNC_skc_to_tcp_sock:
11596 		func = &bpf_skc_to_tcp_sock_proto;
11597 		break;
11598 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11599 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11600 		break;
11601 	case BPF_FUNC_skc_to_tcp_request_sock:
11602 		func = &bpf_skc_to_tcp_request_sock_proto;
11603 		break;
11604 	case BPF_FUNC_skc_to_udp6_sock:
11605 		func = &bpf_skc_to_udp6_sock_proto;
11606 		break;
11607 	case BPF_FUNC_skc_to_unix_sock:
11608 		func = &bpf_skc_to_unix_sock_proto;
11609 		break;
11610 	case BPF_FUNC_skc_to_mptcp_sock:
11611 		func = &bpf_skc_to_mptcp_sock_proto;
11612 		break;
11613 	case BPF_FUNC_ktime_get_coarse_ns:
11614 		return &bpf_ktime_get_coarse_ns_proto;
11615 	default:
11616 		return bpf_base_func_proto(func_id);
11617 	}
11618 
11619 	if (!perfmon_capable())
11620 		return NULL;
11621 
11622 	return func;
11623 }
11624