xref: /openbmc/linux/net/core/filter.c (revision 89551fdd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81 #include <net/mptcp.h>
82 
83 static const struct bpf_func_proto *
84 bpf_sk_base_func_proto(enum bpf_func_id func_id);
85 
86 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
87 {
88 	if (in_compat_syscall()) {
89 		struct compat_sock_fprog f32;
90 
91 		if (len != sizeof(f32))
92 			return -EINVAL;
93 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
94 			return -EFAULT;
95 		memset(dst, 0, sizeof(*dst));
96 		dst->len = f32.len;
97 		dst->filter = compat_ptr(f32.filter);
98 	} else {
99 		if (len != sizeof(*dst))
100 			return -EINVAL;
101 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
102 			return -EFAULT;
103 	}
104 
105 	return 0;
106 }
107 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
108 
109 /**
110  *	sk_filter_trim_cap - run a packet through a socket filter
111  *	@sk: sock associated with &sk_buff
112  *	@skb: buffer to filter
113  *	@cap: limit on how short the eBPF program may trim the packet
114  *
115  * Run the eBPF program and then cut skb->data to correct size returned by
116  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
117  * than pkt_len we keep whole skb->data. This is the socket level
118  * wrapper to bpf_prog_run. It returns 0 if the packet should
119  * be accepted or -EPERM if the packet should be tossed.
120  *
121  */
122 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
123 {
124 	int err;
125 	struct sk_filter *filter;
126 
127 	/*
128 	 * If the skb was allocated from pfmemalloc reserves, only
129 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
130 	 * helping free memory
131 	 */
132 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
133 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
134 		return -ENOMEM;
135 	}
136 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
137 	if (err)
138 		return err;
139 
140 	err = security_sock_rcv_skb(sk, skb);
141 	if (err)
142 		return err;
143 
144 	rcu_read_lock();
145 	filter = rcu_dereference(sk->sk_filter);
146 	if (filter) {
147 		struct sock *save_sk = skb->sk;
148 		unsigned int pkt_len;
149 
150 		skb->sk = sk;
151 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
152 		skb->sk = save_sk;
153 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
154 	}
155 	rcu_read_unlock();
156 
157 	return err;
158 }
159 EXPORT_SYMBOL(sk_filter_trim_cap);
160 
161 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
162 {
163 	return skb_get_poff(skb);
164 }
165 
166 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
167 {
168 	struct nlattr *nla;
169 
170 	if (skb_is_nonlinear(skb))
171 		return 0;
172 
173 	if (skb->len < sizeof(struct nlattr))
174 		return 0;
175 
176 	if (a > skb->len - sizeof(struct nlattr))
177 		return 0;
178 
179 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
180 	if (nla)
181 		return (void *) nla - (void *) skb->data;
182 
183 	return 0;
184 }
185 
186 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
187 {
188 	struct nlattr *nla;
189 
190 	if (skb_is_nonlinear(skb))
191 		return 0;
192 
193 	if (skb->len < sizeof(struct nlattr))
194 		return 0;
195 
196 	if (a > skb->len - sizeof(struct nlattr))
197 		return 0;
198 
199 	nla = (struct nlattr *) &skb->data[a];
200 	if (nla->nla_len > skb->len - a)
201 		return 0;
202 
203 	nla = nla_find_nested(nla, x);
204 	if (nla)
205 		return (void *) nla - (void *) skb->data;
206 
207 	return 0;
208 }
209 
210 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
211 	   data, int, headlen, int, offset)
212 {
213 	u8 tmp, *ptr;
214 	const int len = sizeof(tmp);
215 
216 	if (offset >= 0) {
217 		if (headlen - offset >= len)
218 			return *(u8 *)(data + offset);
219 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
220 			return tmp;
221 	} else {
222 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
223 		if (likely(ptr))
224 			return *(u8 *)ptr;
225 	}
226 
227 	return -EFAULT;
228 }
229 
230 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
231 	   int, offset)
232 {
233 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
234 					 offset);
235 }
236 
237 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
238 	   data, int, headlen, int, offset)
239 {
240 	u16 tmp, *ptr;
241 	const int len = sizeof(tmp);
242 
243 	if (offset >= 0) {
244 		if (headlen - offset >= len)
245 			return get_unaligned_be16(data + offset);
246 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
247 			return be16_to_cpu(tmp);
248 	} else {
249 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
250 		if (likely(ptr))
251 			return get_unaligned_be16(ptr);
252 	}
253 
254 	return -EFAULT;
255 }
256 
257 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
258 	   int, offset)
259 {
260 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
261 					  offset);
262 }
263 
264 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
265 	   data, int, headlen, int, offset)
266 {
267 	u32 tmp, *ptr;
268 	const int len = sizeof(tmp);
269 
270 	if (likely(offset >= 0)) {
271 		if (headlen - offset >= len)
272 			return get_unaligned_be32(data + offset);
273 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
274 			return be32_to_cpu(tmp);
275 	} else {
276 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
277 		if (likely(ptr))
278 			return get_unaligned_be32(ptr);
279 	}
280 
281 	return -EFAULT;
282 }
283 
284 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
285 	   int, offset)
286 {
287 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
288 					  offset);
289 }
290 
291 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
292 			      struct bpf_insn *insn_buf)
293 {
294 	struct bpf_insn *insn = insn_buf;
295 
296 	switch (skb_field) {
297 	case SKF_AD_MARK:
298 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
299 
300 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
301 				      offsetof(struct sk_buff, mark));
302 		break;
303 
304 	case SKF_AD_PKTTYPE:
305 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
306 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
307 #ifdef __BIG_ENDIAN_BITFIELD
308 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
309 #endif
310 		break;
311 
312 	case SKF_AD_QUEUE:
313 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
314 
315 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
316 				      offsetof(struct sk_buff, queue_mapping));
317 		break;
318 
319 	case SKF_AD_VLAN_TAG:
320 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
321 
322 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
323 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
324 				      offsetof(struct sk_buff, vlan_tci));
325 		break;
326 	case SKF_AD_VLAN_TAG_PRESENT:
327 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
328 		if (PKT_VLAN_PRESENT_BIT)
329 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
330 		if (PKT_VLAN_PRESENT_BIT < 7)
331 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
332 		break;
333 	}
334 
335 	return insn - insn_buf;
336 }
337 
338 static bool convert_bpf_extensions(struct sock_filter *fp,
339 				   struct bpf_insn **insnp)
340 {
341 	struct bpf_insn *insn = *insnp;
342 	u32 cnt;
343 
344 	switch (fp->k) {
345 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
346 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
347 
348 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
349 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
350 				      offsetof(struct sk_buff, protocol));
351 		/* A = ntohs(A) [emitting a nop or swap16] */
352 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
353 		break;
354 
355 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
356 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
357 		insn += cnt - 1;
358 		break;
359 
360 	case SKF_AD_OFF + SKF_AD_IFINDEX:
361 	case SKF_AD_OFF + SKF_AD_HATYPE:
362 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
363 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
364 
365 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
366 				      BPF_REG_TMP, BPF_REG_CTX,
367 				      offsetof(struct sk_buff, dev));
368 		/* if (tmp != 0) goto pc + 1 */
369 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
370 		*insn++ = BPF_EXIT_INSN();
371 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
372 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
373 					    offsetof(struct net_device, ifindex));
374 		else
375 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
376 					    offsetof(struct net_device, type));
377 		break;
378 
379 	case SKF_AD_OFF + SKF_AD_MARK:
380 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
381 		insn += cnt - 1;
382 		break;
383 
384 	case SKF_AD_OFF + SKF_AD_RXHASH:
385 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
386 
387 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
388 				    offsetof(struct sk_buff, hash));
389 		break;
390 
391 	case SKF_AD_OFF + SKF_AD_QUEUE:
392 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
393 		insn += cnt - 1;
394 		break;
395 
396 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
397 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
398 					 BPF_REG_A, BPF_REG_CTX, insn);
399 		insn += cnt - 1;
400 		break;
401 
402 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
403 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
404 					 BPF_REG_A, BPF_REG_CTX, insn);
405 		insn += cnt - 1;
406 		break;
407 
408 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
409 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
410 
411 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
412 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
413 				      offsetof(struct sk_buff, vlan_proto));
414 		/* A = ntohs(A) [emitting a nop or swap16] */
415 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
416 		break;
417 
418 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
419 	case SKF_AD_OFF + SKF_AD_NLATTR:
420 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
421 	case SKF_AD_OFF + SKF_AD_CPU:
422 	case SKF_AD_OFF + SKF_AD_RANDOM:
423 		/* arg1 = CTX */
424 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
425 		/* arg2 = A */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
427 		/* arg3 = X */
428 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
429 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
430 		switch (fp->k) {
431 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
432 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
433 			break;
434 		case SKF_AD_OFF + SKF_AD_NLATTR:
435 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
436 			break;
437 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
438 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
439 			break;
440 		case SKF_AD_OFF + SKF_AD_CPU:
441 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
442 			break;
443 		case SKF_AD_OFF + SKF_AD_RANDOM:
444 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
445 			bpf_user_rnd_init_once();
446 			break;
447 		}
448 		break;
449 
450 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
451 		/* A ^= X */
452 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
453 		break;
454 
455 	default:
456 		/* This is just a dummy call to avoid letting the compiler
457 		 * evict __bpf_call_base() as an optimization. Placed here
458 		 * where no-one bothers.
459 		 */
460 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
461 		return false;
462 	}
463 
464 	*insnp = insn;
465 	return true;
466 }
467 
468 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
469 {
470 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
471 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
472 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
473 		      BPF_SIZE(fp->code) == BPF_W;
474 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
475 	const int ip_align = NET_IP_ALIGN;
476 	struct bpf_insn *insn = *insnp;
477 	int offset = fp->k;
478 
479 	if (!indirect &&
480 	    ((unaligned_ok && offset >= 0) ||
481 	     (!unaligned_ok && offset >= 0 &&
482 	      offset + ip_align >= 0 &&
483 	      offset + ip_align % size == 0))) {
484 		bool ldx_off_ok = offset <= S16_MAX;
485 
486 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
487 		if (offset)
488 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
489 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
490 				      size, 2 + endian + (!ldx_off_ok * 2));
491 		if (ldx_off_ok) {
492 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
493 					      BPF_REG_D, offset);
494 		} else {
495 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
496 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
497 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
498 					      BPF_REG_TMP, 0);
499 		}
500 		if (endian)
501 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
502 		*insn++ = BPF_JMP_A(8);
503 	}
504 
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
506 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
507 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
508 	if (!indirect) {
509 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
510 	} else {
511 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
512 		if (fp->k)
513 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
514 	}
515 
516 	switch (BPF_SIZE(fp->code)) {
517 	case BPF_B:
518 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
519 		break;
520 	case BPF_H:
521 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
522 		break;
523 	case BPF_W:
524 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
525 		break;
526 	default:
527 		return false;
528 	}
529 
530 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
531 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
532 	*insn   = BPF_EXIT_INSN();
533 
534 	*insnp = insn;
535 	return true;
536 }
537 
538 /**
539  *	bpf_convert_filter - convert filter program
540  *	@prog: the user passed filter program
541  *	@len: the length of the user passed filter program
542  *	@new_prog: allocated 'struct bpf_prog' or NULL
543  *	@new_len: pointer to store length of converted program
544  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
545  *
546  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
547  * style extended BPF (eBPF).
548  * Conversion workflow:
549  *
550  * 1) First pass for calculating the new program length:
551  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
552  *
553  * 2) 2nd pass to remap in two passes: 1st pass finds new
554  *    jump offsets, 2nd pass remapping:
555  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
556  */
557 static int bpf_convert_filter(struct sock_filter *prog, int len,
558 			      struct bpf_prog *new_prog, int *new_len,
559 			      bool *seen_ld_abs)
560 {
561 	int new_flen = 0, pass = 0, target, i, stack_off;
562 	struct bpf_insn *new_insn, *first_insn = NULL;
563 	struct sock_filter *fp;
564 	int *addrs = NULL;
565 	u8 bpf_src;
566 
567 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
568 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
569 
570 	if (len <= 0 || len > BPF_MAXINSNS)
571 		return -EINVAL;
572 
573 	if (new_prog) {
574 		first_insn = new_prog->insnsi;
575 		addrs = kcalloc(len, sizeof(*addrs),
576 				GFP_KERNEL | __GFP_NOWARN);
577 		if (!addrs)
578 			return -ENOMEM;
579 	}
580 
581 do_pass:
582 	new_insn = first_insn;
583 	fp = prog;
584 
585 	/* Classic BPF related prologue emission. */
586 	if (new_prog) {
587 		/* Classic BPF expects A and X to be reset first. These need
588 		 * to be guaranteed to be the first two instructions.
589 		 */
590 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
591 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
592 
593 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
594 		 * In eBPF case it's done by the compiler, here we need to
595 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
596 		 */
597 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
598 		if (*seen_ld_abs) {
599 			/* For packet access in classic BPF, cache skb->data
600 			 * in callee-saved BPF R8 and skb->len - skb->data_len
601 			 * (headlen) in BPF R9. Since classic BPF is read-only
602 			 * on CTX, we only need to cache it once.
603 			 */
604 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
605 						  BPF_REG_D, BPF_REG_CTX,
606 						  offsetof(struct sk_buff, data));
607 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, len));
609 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
610 						  offsetof(struct sk_buff, data_len));
611 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
612 		}
613 	} else {
614 		new_insn += 3;
615 	}
616 
617 	for (i = 0; i < len; fp++, i++) {
618 		struct bpf_insn tmp_insns[32] = { };
619 		struct bpf_insn *insn = tmp_insns;
620 
621 		if (addrs)
622 			addrs[i] = new_insn - first_insn;
623 
624 		switch (fp->code) {
625 		/* All arithmetic insns and skb loads map as-is. */
626 		case BPF_ALU | BPF_ADD | BPF_X:
627 		case BPF_ALU | BPF_ADD | BPF_K:
628 		case BPF_ALU | BPF_SUB | BPF_X:
629 		case BPF_ALU | BPF_SUB | BPF_K:
630 		case BPF_ALU | BPF_AND | BPF_X:
631 		case BPF_ALU | BPF_AND | BPF_K:
632 		case BPF_ALU | BPF_OR | BPF_X:
633 		case BPF_ALU | BPF_OR | BPF_K:
634 		case BPF_ALU | BPF_LSH | BPF_X:
635 		case BPF_ALU | BPF_LSH | BPF_K:
636 		case BPF_ALU | BPF_RSH | BPF_X:
637 		case BPF_ALU | BPF_RSH | BPF_K:
638 		case BPF_ALU | BPF_XOR | BPF_X:
639 		case BPF_ALU | BPF_XOR | BPF_K:
640 		case BPF_ALU | BPF_MUL | BPF_X:
641 		case BPF_ALU | BPF_MUL | BPF_K:
642 		case BPF_ALU | BPF_DIV | BPF_X:
643 		case BPF_ALU | BPF_DIV | BPF_K:
644 		case BPF_ALU | BPF_MOD | BPF_X:
645 		case BPF_ALU | BPF_MOD | BPF_K:
646 		case BPF_ALU | BPF_NEG:
647 		case BPF_LD | BPF_ABS | BPF_W:
648 		case BPF_LD | BPF_ABS | BPF_H:
649 		case BPF_LD | BPF_ABS | BPF_B:
650 		case BPF_LD | BPF_IND | BPF_W:
651 		case BPF_LD | BPF_IND | BPF_H:
652 		case BPF_LD | BPF_IND | BPF_B:
653 			/* Check for overloaded BPF extension and
654 			 * directly convert it if found, otherwise
655 			 * just move on with mapping.
656 			 */
657 			if (BPF_CLASS(fp->code) == BPF_LD &&
658 			    BPF_MODE(fp->code) == BPF_ABS &&
659 			    convert_bpf_extensions(fp, &insn))
660 				break;
661 			if (BPF_CLASS(fp->code) == BPF_LD &&
662 			    convert_bpf_ld_abs(fp, &insn)) {
663 				*seen_ld_abs = true;
664 				break;
665 			}
666 
667 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
668 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
669 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
670 				/* Error with exception code on div/mod by 0.
671 				 * For cBPF programs, this was always return 0.
672 				 */
673 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
674 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
675 				*insn++ = BPF_EXIT_INSN();
676 			}
677 
678 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
679 			break;
680 
681 		/* Jump transformation cannot use BPF block macros
682 		 * everywhere as offset calculation and target updates
683 		 * require a bit more work than the rest, i.e. jump
684 		 * opcodes map as-is, but offsets need adjustment.
685 		 */
686 
687 #define BPF_EMIT_JMP							\
688 	do {								\
689 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
690 		s32 off;						\
691 									\
692 		if (target >= len || target < 0)			\
693 			goto err;					\
694 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
695 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
696 		off -= insn - tmp_insns;				\
697 		/* Reject anything not fitting into insn->off. */	\
698 		if (off < off_min || off > off_max)			\
699 			goto err;					\
700 		insn->off = off;					\
701 	} while (0)
702 
703 		case BPF_JMP | BPF_JA:
704 			target = i + fp->k + 1;
705 			insn->code = fp->code;
706 			BPF_EMIT_JMP;
707 			break;
708 
709 		case BPF_JMP | BPF_JEQ | BPF_K:
710 		case BPF_JMP | BPF_JEQ | BPF_X:
711 		case BPF_JMP | BPF_JSET | BPF_K:
712 		case BPF_JMP | BPF_JSET | BPF_X:
713 		case BPF_JMP | BPF_JGT | BPF_K:
714 		case BPF_JMP | BPF_JGT | BPF_X:
715 		case BPF_JMP | BPF_JGE | BPF_K:
716 		case BPF_JMP | BPF_JGE | BPF_X:
717 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
718 				/* BPF immediates are signed, zero extend
719 				 * immediate into tmp register and use it
720 				 * in compare insn.
721 				 */
722 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
723 
724 				insn->dst_reg = BPF_REG_A;
725 				insn->src_reg = BPF_REG_TMP;
726 				bpf_src = BPF_X;
727 			} else {
728 				insn->dst_reg = BPF_REG_A;
729 				insn->imm = fp->k;
730 				bpf_src = BPF_SRC(fp->code);
731 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
732 			}
733 
734 			/* Common case where 'jump_false' is next insn. */
735 			if (fp->jf == 0) {
736 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
737 				target = i + fp->jt + 1;
738 				BPF_EMIT_JMP;
739 				break;
740 			}
741 
742 			/* Convert some jumps when 'jump_true' is next insn. */
743 			if (fp->jt == 0) {
744 				switch (BPF_OP(fp->code)) {
745 				case BPF_JEQ:
746 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
747 					break;
748 				case BPF_JGT:
749 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
750 					break;
751 				case BPF_JGE:
752 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
753 					break;
754 				default:
755 					goto jmp_rest;
756 				}
757 
758 				target = i + fp->jf + 1;
759 				BPF_EMIT_JMP;
760 				break;
761 			}
762 jmp_rest:
763 			/* Other jumps are mapped into two insns: Jxx and JA. */
764 			target = i + fp->jt + 1;
765 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
766 			BPF_EMIT_JMP;
767 			insn++;
768 
769 			insn->code = BPF_JMP | BPF_JA;
770 			target = i + fp->jf + 1;
771 			BPF_EMIT_JMP;
772 			break;
773 
774 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
775 		case BPF_LDX | BPF_MSH | BPF_B: {
776 			struct sock_filter tmp = {
777 				.code	= BPF_LD | BPF_ABS | BPF_B,
778 				.k	= fp->k,
779 			};
780 
781 			*seen_ld_abs = true;
782 
783 			/* X = A */
784 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
785 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
786 			convert_bpf_ld_abs(&tmp, &insn);
787 			insn++;
788 			/* A &= 0xf */
789 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
790 			/* A <<= 2 */
791 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
792 			/* tmp = X */
793 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
794 			/* X = A */
795 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
796 			/* A = tmp */
797 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
798 			break;
799 		}
800 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
801 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
802 		 */
803 		case BPF_RET | BPF_A:
804 		case BPF_RET | BPF_K:
805 			if (BPF_RVAL(fp->code) == BPF_K)
806 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
807 							0, fp->k);
808 			*insn = BPF_EXIT_INSN();
809 			break;
810 
811 		/* Store to stack. */
812 		case BPF_ST:
813 		case BPF_STX:
814 			stack_off = fp->k * 4  + 4;
815 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
816 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
817 					    -stack_off);
818 			/* check_load_and_stores() verifies that classic BPF can
819 			 * load from stack only after write, so tracking
820 			 * stack_depth for ST|STX insns is enough
821 			 */
822 			if (new_prog && new_prog->aux->stack_depth < stack_off)
823 				new_prog->aux->stack_depth = stack_off;
824 			break;
825 
826 		/* Load from stack. */
827 		case BPF_LD | BPF_MEM:
828 		case BPF_LDX | BPF_MEM:
829 			stack_off = fp->k * 4  + 4;
830 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
831 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
832 					    -stack_off);
833 			break;
834 
835 		/* A = K or X = K */
836 		case BPF_LD | BPF_IMM:
837 		case BPF_LDX | BPF_IMM:
838 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
839 					      BPF_REG_A : BPF_REG_X, fp->k);
840 			break;
841 
842 		/* X = A */
843 		case BPF_MISC | BPF_TAX:
844 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
845 			break;
846 
847 		/* A = X */
848 		case BPF_MISC | BPF_TXA:
849 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
850 			break;
851 
852 		/* A = skb->len or X = skb->len */
853 		case BPF_LD | BPF_W | BPF_LEN:
854 		case BPF_LDX | BPF_W | BPF_LEN:
855 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
856 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
857 					    offsetof(struct sk_buff, len));
858 			break;
859 
860 		/* Access seccomp_data fields. */
861 		case BPF_LDX | BPF_ABS | BPF_W:
862 			/* A = *(u32 *) (ctx + K) */
863 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
864 			break;
865 
866 		/* Unknown instruction. */
867 		default:
868 			goto err;
869 		}
870 
871 		insn++;
872 		if (new_prog)
873 			memcpy(new_insn, tmp_insns,
874 			       sizeof(*insn) * (insn - tmp_insns));
875 		new_insn += insn - tmp_insns;
876 	}
877 
878 	if (!new_prog) {
879 		/* Only calculating new length. */
880 		*new_len = new_insn - first_insn;
881 		if (*seen_ld_abs)
882 			*new_len += 4; /* Prologue bits. */
883 		return 0;
884 	}
885 
886 	pass++;
887 	if (new_flen != new_insn - first_insn) {
888 		new_flen = new_insn - first_insn;
889 		if (pass > 2)
890 			goto err;
891 		goto do_pass;
892 	}
893 
894 	kfree(addrs);
895 	BUG_ON(*new_len != new_flen);
896 	return 0;
897 err:
898 	kfree(addrs);
899 	return -EINVAL;
900 }
901 
902 /* Security:
903  *
904  * As we dont want to clear mem[] array for each packet going through
905  * __bpf_prog_run(), we check that filter loaded by user never try to read
906  * a cell if not previously written, and we check all branches to be sure
907  * a malicious user doesn't try to abuse us.
908  */
909 static int check_load_and_stores(const struct sock_filter *filter, int flen)
910 {
911 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
912 	int pc, ret = 0;
913 
914 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
915 
916 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
917 	if (!masks)
918 		return -ENOMEM;
919 
920 	memset(masks, 0xff, flen * sizeof(*masks));
921 
922 	for (pc = 0; pc < flen; pc++) {
923 		memvalid &= masks[pc];
924 
925 		switch (filter[pc].code) {
926 		case BPF_ST:
927 		case BPF_STX:
928 			memvalid |= (1 << filter[pc].k);
929 			break;
930 		case BPF_LD | BPF_MEM:
931 		case BPF_LDX | BPF_MEM:
932 			if (!(memvalid & (1 << filter[pc].k))) {
933 				ret = -EINVAL;
934 				goto error;
935 			}
936 			break;
937 		case BPF_JMP | BPF_JA:
938 			/* A jump must set masks on target */
939 			masks[pc + 1 + filter[pc].k] &= memvalid;
940 			memvalid = ~0;
941 			break;
942 		case BPF_JMP | BPF_JEQ | BPF_K:
943 		case BPF_JMP | BPF_JEQ | BPF_X:
944 		case BPF_JMP | BPF_JGE | BPF_K:
945 		case BPF_JMP | BPF_JGE | BPF_X:
946 		case BPF_JMP | BPF_JGT | BPF_K:
947 		case BPF_JMP | BPF_JGT | BPF_X:
948 		case BPF_JMP | BPF_JSET | BPF_K:
949 		case BPF_JMP | BPF_JSET | BPF_X:
950 			/* A jump must set masks on targets */
951 			masks[pc + 1 + filter[pc].jt] &= memvalid;
952 			masks[pc + 1 + filter[pc].jf] &= memvalid;
953 			memvalid = ~0;
954 			break;
955 		}
956 	}
957 error:
958 	kfree(masks);
959 	return ret;
960 }
961 
962 static bool chk_code_allowed(u16 code_to_probe)
963 {
964 	static const bool codes[] = {
965 		/* 32 bit ALU operations */
966 		[BPF_ALU | BPF_ADD | BPF_K] = true,
967 		[BPF_ALU | BPF_ADD | BPF_X] = true,
968 		[BPF_ALU | BPF_SUB | BPF_K] = true,
969 		[BPF_ALU | BPF_SUB | BPF_X] = true,
970 		[BPF_ALU | BPF_MUL | BPF_K] = true,
971 		[BPF_ALU | BPF_MUL | BPF_X] = true,
972 		[BPF_ALU | BPF_DIV | BPF_K] = true,
973 		[BPF_ALU | BPF_DIV | BPF_X] = true,
974 		[BPF_ALU | BPF_MOD | BPF_K] = true,
975 		[BPF_ALU | BPF_MOD | BPF_X] = true,
976 		[BPF_ALU | BPF_AND | BPF_K] = true,
977 		[BPF_ALU | BPF_AND | BPF_X] = true,
978 		[BPF_ALU | BPF_OR | BPF_K] = true,
979 		[BPF_ALU | BPF_OR | BPF_X] = true,
980 		[BPF_ALU | BPF_XOR | BPF_K] = true,
981 		[BPF_ALU | BPF_XOR | BPF_X] = true,
982 		[BPF_ALU | BPF_LSH | BPF_K] = true,
983 		[BPF_ALU | BPF_LSH | BPF_X] = true,
984 		[BPF_ALU | BPF_RSH | BPF_K] = true,
985 		[BPF_ALU | BPF_RSH | BPF_X] = true,
986 		[BPF_ALU | BPF_NEG] = true,
987 		/* Load instructions */
988 		[BPF_LD | BPF_W | BPF_ABS] = true,
989 		[BPF_LD | BPF_H | BPF_ABS] = true,
990 		[BPF_LD | BPF_B | BPF_ABS] = true,
991 		[BPF_LD | BPF_W | BPF_LEN] = true,
992 		[BPF_LD | BPF_W | BPF_IND] = true,
993 		[BPF_LD | BPF_H | BPF_IND] = true,
994 		[BPF_LD | BPF_B | BPF_IND] = true,
995 		[BPF_LD | BPF_IMM] = true,
996 		[BPF_LD | BPF_MEM] = true,
997 		[BPF_LDX | BPF_W | BPF_LEN] = true,
998 		[BPF_LDX | BPF_B | BPF_MSH] = true,
999 		[BPF_LDX | BPF_IMM] = true,
1000 		[BPF_LDX | BPF_MEM] = true,
1001 		/* Store instructions */
1002 		[BPF_ST] = true,
1003 		[BPF_STX] = true,
1004 		/* Misc instructions */
1005 		[BPF_MISC | BPF_TAX] = true,
1006 		[BPF_MISC | BPF_TXA] = true,
1007 		/* Return instructions */
1008 		[BPF_RET | BPF_K] = true,
1009 		[BPF_RET | BPF_A] = true,
1010 		/* Jump instructions */
1011 		[BPF_JMP | BPF_JA] = true,
1012 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1013 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1014 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1015 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1016 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1017 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1018 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1019 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1020 	};
1021 
1022 	if (code_to_probe >= ARRAY_SIZE(codes))
1023 		return false;
1024 
1025 	return codes[code_to_probe];
1026 }
1027 
1028 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1029 				unsigned int flen)
1030 {
1031 	if (filter == NULL)
1032 		return false;
1033 	if (flen == 0 || flen > BPF_MAXINSNS)
1034 		return false;
1035 
1036 	return true;
1037 }
1038 
1039 /**
1040  *	bpf_check_classic - verify socket filter code
1041  *	@filter: filter to verify
1042  *	@flen: length of filter
1043  *
1044  * Check the user's filter code. If we let some ugly
1045  * filter code slip through kaboom! The filter must contain
1046  * no references or jumps that are out of range, no illegal
1047  * instructions, and must end with a RET instruction.
1048  *
1049  * All jumps are forward as they are not signed.
1050  *
1051  * Returns 0 if the rule set is legal or -EINVAL if not.
1052  */
1053 static int bpf_check_classic(const struct sock_filter *filter,
1054 			     unsigned int flen)
1055 {
1056 	bool anc_found;
1057 	int pc;
1058 
1059 	/* Check the filter code now */
1060 	for (pc = 0; pc < flen; pc++) {
1061 		const struct sock_filter *ftest = &filter[pc];
1062 
1063 		/* May we actually operate on this code? */
1064 		if (!chk_code_allowed(ftest->code))
1065 			return -EINVAL;
1066 
1067 		/* Some instructions need special checks */
1068 		switch (ftest->code) {
1069 		case BPF_ALU | BPF_DIV | BPF_K:
1070 		case BPF_ALU | BPF_MOD | BPF_K:
1071 			/* Check for division by zero */
1072 			if (ftest->k == 0)
1073 				return -EINVAL;
1074 			break;
1075 		case BPF_ALU | BPF_LSH | BPF_K:
1076 		case BPF_ALU | BPF_RSH | BPF_K:
1077 			if (ftest->k >= 32)
1078 				return -EINVAL;
1079 			break;
1080 		case BPF_LD | BPF_MEM:
1081 		case BPF_LDX | BPF_MEM:
1082 		case BPF_ST:
1083 		case BPF_STX:
1084 			/* Check for invalid memory addresses */
1085 			if (ftest->k >= BPF_MEMWORDS)
1086 				return -EINVAL;
1087 			break;
1088 		case BPF_JMP | BPF_JA:
1089 			/* Note, the large ftest->k might cause loops.
1090 			 * Compare this with conditional jumps below,
1091 			 * where offsets are limited. --ANK (981016)
1092 			 */
1093 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1094 				return -EINVAL;
1095 			break;
1096 		case BPF_JMP | BPF_JEQ | BPF_K:
1097 		case BPF_JMP | BPF_JEQ | BPF_X:
1098 		case BPF_JMP | BPF_JGE | BPF_K:
1099 		case BPF_JMP | BPF_JGE | BPF_X:
1100 		case BPF_JMP | BPF_JGT | BPF_K:
1101 		case BPF_JMP | BPF_JGT | BPF_X:
1102 		case BPF_JMP | BPF_JSET | BPF_K:
1103 		case BPF_JMP | BPF_JSET | BPF_X:
1104 			/* Both conditionals must be safe */
1105 			if (pc + ftest->jt + 1 >= flen ||
1106 			    pc + ftest->jf + 1 >= flen)
1107 				return -EINVAL;
1108 			break;
1109 		case BPF_LD | BPF_W | BPF_ABS:
1110 		case BPF_LD | BPF_H | BPF_ABS:
1111 		case BPF_LD | BPF_B | BPF_ABS:
1112 			anc_found = false;
1113 			if (bpf_anc_helper(ftest) & BPF_ANC)
1114 				anc_found = true;
1115 			/* Ancillary operation unknown or unsupported */
1116 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1117 				return -EINVAL;
1118 		}
1119 	}
1120 
1121 	/* Last instruction must be a RET code */
1122 	switch (filter[flen - 1].code) {
1123 	case BPF_RET | BPF_K:
1124 	case BPF_RET | BPF_A:
1125 		return check_load_and_stores(filter, flen);
1126 	}
1127 
1128 	return -EINVAL;
1129 }
1130 
1131 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1132 				      const struct sock_fprog *fprog)
1133 {
1134 	unsigned int fsize = bpf_classic_proglen(fprog);
1135 	struct sock_fprog_kern *fkprog;
1136 
1137 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1138 	if (!fp->orig_prog)
1139 		return -ENOMEM;
1140 
1141 	fkprog = fp->orig_prog;
1142 	fkprog->len = fprog->len;
1143 
1144 	fkprog->filter = kmemdup(fp->insns, fsize,
1145 				 GFP_KERNEL | __GFP_NOWARN);
1146 	if (!fkprog->filter) {
1147 		kfree(fp->orig_prog);
1148 		return -ENOMEM;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 static void bpf_release_orig_filter(struct bpf_prog *fp)
1155 {
1156 	struct sock_fprog_kern *fprog = fp->orig_prog;
1157 
1158 	if (fprog) {
1159 		kfree(fprog->filter);
1160 		kfree(fprog);
1161 	}
1162 }
1163 
1164 static void __bpf_prog_release(struct bpf_prog *prog)
1165 {
1166 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1167 		bpf_prog_put(prog);
1168 	} else {
1169 		bpf_release_orig_filter(prog);
1170 		bpf_prog_free(prog);
1171 	}
1172 }
1173 
1174 static void __sk_filter_release(struct sk_filter *fp)
1175 {
1176 	__bpf_prog_release(fp->prog);
1177 	kfree(fp);
1178 }
1179 
1180 /**
1181  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1182  *	@rcu: rcu_head that contains the sk_filter to free
1183  */
1184 static void sk_filter_release_rcu(struct rcu_head *rcu)
1185 {
1186 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1187 
1188 	__sk_filter_release(fp);
1189 }
1190 
1191 /**
1192  *	sk_filter_release - release a socket filter
1193  *	@fp: filter to remove
1194  *
1195  *	Remove a filter from a socket and release its resources.
1196  */
1197 static void sk_filter_release(struct sk_filter *fp)
1198 {
1199 	if (refcount_dec_and_test(&fp->refcnt))
1200 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1201 }
1202 
1203 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1204 {
1205 	u32 filter_size = bpf_prog_size(fp->prog->len);
1206 
1207 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1208 	sk_filter_release(fp);
1209 }
1210 
1211 /* try to charge the socket memory if there is space available
1212  * return true on success
1213  */
1214 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1215 {
1216 	u32 filter_size = bpf_prog_size(fp->prog->len);
1217 
1218 	/* same check as in sock_kmalloc() */
1219 	if (filter_size <= sysctl_optmem_max &&
1220 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1221 		atomic_add(filter_size, &sk->sk_omem_alloc);
1222 		return true;
1223 	}
1224 	return false;
1225 }
1226 
1227 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1228 {
1229 	if (!refcount_inc_not_zero(&fp->refcnt))
1230 		return false;
1231 
1232 	if (!__sk_filter_charge(sk, fp)) {
1233 		sk_filter_release(fp);
1234 		return false;
1235 	}
1236 	return true;
1237 }
1238 
1239 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1240 {
1241 	struct sock_filter *old_prog;
1242 	struct bpf_prog *old_fp;
1243 	int err, new_len, old_len = fp->len;
1244 	bool seen_ld_abs = false;
1245 
1246 	/* We are free to overwrite insns et al right here as it won't be used at
1247 	 * this point in time anymore internally after the migration to the eBPF
1248 	 * instruction representation.
1249 	 */
1250 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1251 		     sizeof(struct bpf_insn));
1252 
1253 	/* Conversion cannot happen on overlapping memory areas,
1254 	 * so we need to keep the user BPF around until the 2nd
1255 	 * pass. At this time, the user BPF is stored in fp->insns.
1256 	 */
1257 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1258 			   GFP_KERNEL | __GFP_NOWARN);
1259 	if (!old_prog) {
1260 		err = -ENOMEM;
1261 		goto out_err;
1262 	}
1263 
1264 	/* 1st pass: calculate the new program length. */
1265 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1266 				 &seen_ld_abs);
1267 	if (err)
1268 		goto out_err_free;
1269 
1270 	/* Expand fp for appending the new filter representation. */
1271 	old_fp = fp;
1272 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1273 	if (!fp) {
1274 		/* The old_fp is still around in case we couldn't
1275 		 * allocate new memory, so uncharge on that one.
1276 		 */
1277 		fp = old_fp;
1278 		err = -ENOMEM;
1279 		goto out_err_free;
1280 	}
1281 
1282 	fp->len = new_len;
1283 
1284 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1285 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1286 				 &seen_ld_abs);
1287 	if (err)
1288 		/* 2nd bpf_convert_filter() can fail only if it fails
1289 		 * to allocate memory, remapping must succeed. Note,
1290 		 * that at this time old_fp has already been released
1291 		 * by krealloc().
1292 		 */
1293 		goto out_err_free;
1294 
1295 	fp = bpf_prog_select_runtime(fp, &err);
1296 	if (err)
1297 		goto out_err_free;
1298 
1299 	kfree(old_prog);
1300 	return fp;
1301 
1302 out_err_free:
1303 	kfree(old_prog);
1304 out_err:
1305 	__bpf_prog_release(fp);
1306 	return ERR_PTR(err);
1307 }
1308 
1309 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1310 					   bpf_aux_classic_check_t trans)
1311 {
1312 	int err;
1313 
1314 	fp->bpf_func = NULL;
1315 	fp->jited = 0;
1316 
1317 	err = bpf_check_classic(fp->insns, fp->len);
1318 	if (err) {
1319 		__bpf_prog_release(fp);
1320 		return ERR_PTR(err);
1321 	}
1322 
1323 	/* There might be additional checks and transformations
1324 	 * needed on classic filters, f.e. in case of seccomp.
1325 	 */
1326 	if (trans) {
1327 		err = trans(fp->insns, fp->len);
1328 		if (err) {
1329 			__bpf_prog_release(fp);
1330 			return ERR_PTR(err);
1331 		}
1332 	}
1333 
1334 	/* Probe if we can JIT compile the filter and if so, do
1335 	 * the compilation of the filter.
1336 	 */
1337 	bpf_jit_compile(fp);
1338 
1339 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1340 	 * for the optimized interpreter.
1341 	 */
1342 	if (!fp->jited)
1343 		fp = bpf_migrate_filter(fp);
1344 
1345 	return fp;
1346 }
1347 
1348 /**
1349  *	bpf_prog_create - create an unattached filter
1350  *	@pfp: the unattached filter that is created
1351  *	@fprog: the filter program
1352  *
1353  * Create a filter independent of any socket. We first run some
1354  * sanity checks on it to make sure it does not explode on us later.
1355  * If an error occurs or there is insufficient memory for the filter
1356  * a negative errno code is returned. On success the return is zero.
1357  */
1358 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1359 {
1360 	unsigned int fsize = bpf_classic_proglen(fprog);
1361 	struct bpf_prog *fp;
1362 
1363 	/* Make sure new filter is there and in the right amounts. */
1364 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1365 		return -EINVAL;
1366 
1367 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1368 	if (!fp)
1369 		return -ENOMEM;
1370 
1371 	memcpy(fp->insns, fprog->filter, fsize);
1372 
1373 	fp->len = fprog->len;
1374 	/* Since unattached filters are not copied back to user
1375 	 * space through sk_get_filter(), we do not need to hold
1376 	 * a copy here, and can spare us the work.
1377 	 */
1378 	fp->orig_prog = NULL;
1379 
1380 	/* bpf_prepare_filter() already takes care of freeing
1381 	 * memory in case something goes wrong.
1382 	 */
1383 	fp = bpf_prepare_filter(fp, NULL);
1384 	if (IS_ERR(fp))
1385 		return PTR_ERR(fp);
1386 
1387 	*pfp = fp;
1388 	return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(bpf_prog_create);
1391 
1392 /**
1393  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1394  *	@pfp: the unattached filter that is created
1395  *	@fprog: the filter program
1396  *	@trans: post-classic verifier transformation handler
1397  *	@save_orig: save classic BPF program
1398  *
1399  * This function effectively does the same as bpf_prog_create(), only
1400  * that it builds up its insns buffer from user space provided buffer.
1401  * It also allows for passing a bpf_aux_classic_check_t handler.
1402  */
1403 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1404 			      bpf_aux_classic_check_t trans, bool save_orig)
1405 {
1406 	unsigned int fsize = bpf_classic_proglen(fprog);
1407 	struct bpf_prog *fp;
1408 	int err;
1409 
1410 	/* Make sure new filter is there and in the right amounts. */
1411 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1412 		return -EINVAL;
1413 
1414 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1415 	if (!fp)
1416 		return -ENOMEM;
1417 
1418 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1419 		__bpf_prog_free(fp);
1420 		return -EFAULT;
1421 	}
1422 
1423 	fp->len = fprog->len;
1424 	fp->orig_prog = NULL;
1425 
1426 	if (save_orig) {
1427 		err = bpf_prog_store_orig_filter(fp, fprog);
1428 		if (err) {
1429 			__bpf_prog_free(fp);
1430 			return -ENOMEM;
1431 		}
1432 	}
1433 
1434 	/* bpf_prepare_filter() already takes care of freeing
1435 	 * memory in case something goes wrong.
1436 	 */
1437 	fp = bpf_prepare_filter(fp, trans);
1438 	if (IS_ERR(fp))
1439 		return PTR_ERR(fp);
1440 
1441 	*pfp = fp;
1442 	return 0;
1443 }
1444 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1445 
1446 void bpf_prog_destroy(struct bpf_prog *fp)
1447 {
1448 	__bpf_prog_release(fp);
1449 }
1450 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1451 
1452 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1453 {
1454 	struct sk_filter *fp, *old_fp;
1455 
1456 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1457 	if (!fp)
1458 		return -ENOMEM;
1459 
1460 	fp->prog = prog;
1461 
1462 	if (!__sk_filter_charge(sk, fp)) {
1463 		kfree(fp);
1464 		return -ENOMEM;
1465 	}
1466 	refcount_set(&fp->refcnt, 1);
1467 
1468 	old_fp = rcu_dereference_protected(sk->sk_filter,
1469 					   lockdep_sock_is_held(sk));
1470 	rcu_assign_pointer(sk->sk_filter, fp);
1471 
1472 	if (old_fp)
1473 		sk_filter_uncharge(sk, old_fp);
1474 
1475 	return 0;
1476 }
1477 
1478 static
1479 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1480 {
1481 	unsigned int fsize = bpf_classic_proglen(fprog);
1482 	struct bpf_prog *prog;
1483 	int err;
1484 
1485 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1486 		return ERR_PTR(-EPERM);
1487 
1488 	/* Make sure new filter is there and in the right amounts. */
1489 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1490 		return ERR_PTR(-EINVAL);
1491 
1492 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1493 	if (!prog)
1494 		return ERR_PTR(-ENOMEM);
1495 
1496 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1497 		__bpf_prog_free(prog);
1498 		return ERR_PTR(-EFAULT);
1499 	}
1500 
1501 	prog->len = fprog->len;
1502 
1503 	err = bpf_prog_store_orig_filter(prog, fprog);
1504 	if (err) {
1505 		__bpf_prog_free(prog);
1506 		return ERR_PTR(-ENOMEM);
1507 	}
1508 
1509 	/* bpf_prepare_filter() already takes care of freeing
1510 	 * memory in case something goes wrong.
1511 	 */
1512 	return bpf_prepare_filter(prog, NULL);
1513 }
1514 
1515 /**
1516  *	sk_attach_filter - attach a socket filter
1517  *	@fprog: the filter program
1518  *	@sk: the socket to use
1519  *
1520  * Attach the user's filter code. We first run some sanity checks on
1521  * it to make sure it does not explode on us later. If an error
1522  * occurs or there is insufficient memory for the filter a negative
1523  * errno code is returned. On success the return is zero.
1524  */
1525 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1526 {
1527 	struct bpf_prog *prog = __get_filter(fprog, sk);
1528 	int err;
1529 
1530 	if (IS_ERR(prog))
1531 		return PTR_ERR(prog);
1532 
1533 	err = __sk_attach_prog(prog, sk);
1534 	if (err < 0) {
1535 		__bpf_prog_release(prog);
1536 		return err;
1537 	}
1538 
1539 	return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(sk_attach_filter);
1542 
1543 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1544 {
1545 	struct bpf_prog *prog = __get_filter(fprog, sk);
1546 	int err;
1547 
1548 	if (IS_ERR(prog))
1549 		return PTR_ERR(prog);
1550 
1551 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1552 		err = -ENOMEM;
1553 	else
1554 		err = reuseport_attach_prog(sk, prog);
1555 
1556 	if (err)
1557 		__bpf_prog_release(prog);
1558 
1559 	return err;
1560 }
1561 
1562 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1563 {
1564 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1565 		return ERR_PTR(-EPERM);
1566 
1567 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 }
1569 
1570 int sk_attach_bpf(u32 ufd, struct sock *sk)
1571 {
1572 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1573 	int err;
1574 
1575 	if (IS_ERR(prog))
1576 		return PTR_ERR(prog);
1577 
1578 	err = __sk_attach_prog(prog, sk);
1579 	if (err < 0) {
1580 		bpf_prog_put(prog);
1581 		return err;
1582 	}
1583 
1584 	return 0;
1585 }
1586 
1587 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1588 {
1589 	struct bpf_prog *prog;
1590 	int err;
1591 
1592 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1593 		return -EPERM;
1594 
1595 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1596 	if (PTR_ERR(prog) == -EINVAL)
1597 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1598 	if (IS_ERR(prog))
1599 		return PTR_ERR(prog);
1600 
1601 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1602 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1603 		 * bpf prog (e.g. sockmap).  It depends on the
1604 		 * limitation imposed by bpf_prog_load().
1605 		 * Hence, sysctl_optmem_max is not checked.
1606 		 */
1607 		if ((sk->sk_type != SOCK_STREAM &&
1608 		     sk->sk_type != SOCK_DGRAM) ||
1609 		    (sk->sk_protocol != IPPROTO_UDP &&
1610 		     sk->sk_protocol != IPPROTO_TCP) ||
1611 		    (sk->sk_family != AF_INET &&
1612 		     sk->sk_family != AF_INET6)) {
1613 			err = -ENOTSUPP;
1614 			goto err_prog_put;
1615 		}
1616 	} else {
1617 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1618 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1619 			err = -ENOMEM;
1620 			goto err_prog_put;
1621 		}
1622 	}
1623 
1624 	err = reuseport_attach_prog(sk, prog);
1625 err_prog_put:
1626 	if (err)
1627 		bpf_prog_put(prog);
1628 
1629 	return err;
1630 }
1631 
1632 void sk_reuseport_prog_free(struct bpf_prog *prog)
1633 {
1634 	if (!prog)
1635 		return;
1636 
1637 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1638 		bpf_prog_put(prog);
1639 	else
1640 		bpf_prog_destroy(prog);
1641 }
1642 
1643 struct bpf_scratchpad {
1644 	union {
1645 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1646 		u8     buff[MAX_BPF_STACK];
1647 	};
1648 };
1649 
1650 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1651 
1652 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1653 					  unsigned int write_len)
1654 {
1655 	return skb_ensure_writable(skb, write_len);
1656 }
1657 
1658 static inline int bpf_try_make_writable(struct sk_buff *skb,
1659 					unsigned int write_len)
1660 {
1661 	int err = __bpf_try_make_writable(skb, write_len);
1662 
1663 	bpf_compute_data_pointers(skb);
1664 	return err;
1665 }
1666 
1667 static int bpf_try_make_head_writable(struct sk_buff *skb)
1668 {
1669 	return bpf_try_make_writable(skb, skb_headlen(skb));
1670 }
1671 
1672 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1673 {
1674 	if (skb_at_tc_ingress(skb))
1675 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1676 }
1677 
1678 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1679 {
1680 	if (skb_at_tc_ingress(skb))
1681 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1682 }
1683 
1684 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1685 	   const void *, from, u32, len, u64, flags)
1686 {
1687 	void *ptr;
1688 
1689 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1690 		return -EINVAL;
1691 	if (unlikely(offset > INT_MAX))
1692 		return -EFAULT;
1693 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1694 		return -EFAULT;
1695 
1696 	ptr = skb->data + offset;
1697 	if (flags & BPF_F_RECOMPUTE_CSUM)
1698 		__skb_postpull_rcsum(skb, ptr, len, offset);
1699 
1700 	memcpy(ptr, from, len);
1701 
1702 	if (flags & BPF_F_RECOMPUTE_CSUM)
1703 		__skb_postpush_rcsum(skb, ptr, len, offset);
1704 	if (flags & BPF_F_INVALIDATE_HASH)
1705 		skb_clear_hash(skb);
1706 
1707 	return 0;
1708 }
1709 
1710 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1711 	.func		= bpf_skb_store_bytes,
1712 	.gpl_only	= false,
1713 	.ret_type	= RET_INTEGER,
1714 	.arg1_type	= ARG_PTR_TO_CTX,
1715 	.arg2_type	= ARG_ANYTHING,
1716 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1717 	.arg4_type	= ARG_CONST_SIZE,
1718 	.arg5_type	= ARG_ANYTHING,
1719 };
1720 
1721 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1722 	   void *, to, u32, len)
1723 {
1724 	void *ptr;
1725 
1726 	if (unlikely(offset > INT_MAX))
1727 		goto err_clear;
1728 
1729 	ptr = skb_header_pointer(skb, offset, len, to);
1730 	if (unlikely(!ptr))
1731 		goto err_clear;
1732 	if (ptr != to)
1733 		memcpy(to, ptr, len);
1734 
1735 	return 0;
1736 err_clear:
1737 	memset(to, 0, len);
1738 	return -EFAULT;
1739 }
1740 
1741 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1742 	.func		= bpf_skb_load_bytes,
1743 	.gpl_only	= false,
1744 	.ret_type	= RET_INTEGER,
1745 	.arg1_type	= ARG_PTR_TO_CTX,
1746 	.arg2_type	= ARG_ANYTHING,
1747 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1748 	.arg4_type	= ARG_CONST_SIZE,
1749 };
1750 
1751 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1752 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1753 	   void *, to, u32, len)
1754 {
1755 	void *ptr;
1756 
1757 	if (unlikely(offset > 0xffff))
1758 		goto err_clear;
1759 
1760 	if (unlikely(!ctx->skb))
1761 		goto err_clear;
1762 
1763 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1764 	if (unlikely(!ptr))
1765 		goto err_clear;
1766 	if (ptr != to)
1767 		memcpy(to, ptr, len);
1768 
1769 	return 0;
1770 err_clear:
1771 	memset(to, 0, len);
1772 	return -EFAULT;
1773 }
1774 
1775 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1776 	.func		= bpf_flow_dissector_load_bytes,
1777 	.gpl_only	= false,
1778 	.ret_type	= RET_INTEGER,
1779 	.arg1_type	= ARG_PTR_TO_CTX,
1780 	.arg2_type	= ARG_ANYTHING,
1781 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1782 	.arg4_type	= ARG_CONST_SIZE,
1783 };
1784 
1785 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1786 	   u32, offset, void *, to, u32, len, u32, start_header)
1787 {
1788 	u8 *end = skb_tail_pointer(skb);
1789 	u8 *start, *ptr;
1790 
1791 	if (unlikely(offset > 0xffff))
1792 		goto err_clear;
1793 
1794 	switch (start_header) {
1795 	case BPF_HDR_START_MAC:
1796 		if (unlikely(!skb_mac_header_was_set(skb)))
1797 			goto err_clear;
1798 		start = skb_mac_header(skb);
1799 		break;
1800 	case BPF_HDR_START_NET:
1801 		start = skb_network_header(skb);
1802 		break;
1803 	default:
1804 		goto err_clear;
1805 	}
1806 
1807 	ptr = start + offset;
1808 
1809 	if (likely(ptr + len <= end)) {
1810 		memcpy(to, ptr, len);
1811 		return 0;
1812 	}
1813 
1814 err_clear:
1815 	memset(to, 0, len);
1816 	return -EFAULT;
1817 }
1818 
1819 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1820 	.func		= bpf_skb_load_bytes_relative,
1821 	.gpl_only	= false,
1822 	.ret_type	= RET_INTEGER,
1823 	.arg1_type	= ARG_PTR_TO_CTX,
1824 	.arg2_type	= ARG_ANYTHING,
1825 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1826 	.arg4_type	= ARG_CONST_SIZE,
1827 	.arg5_type	= ARG_ANYTHING,
1828 };
1829 
1830 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1831 {
1832 	/* Idea is the following: should the needed direct read/write
1833 	 * test fail during runtime, we can pull in more data and redo
1834 	 * again, since implicitly, we invalidate previous checks here.
1835 	 *
1836 	 * Or, since we know how much we need to make read/writeable,
1837 	 * this can be done once at the program beginning for direct
1838 	 * access case. By this we overcome limitations of only current
1839 	 * headroom being accessible.
1840 	 */
1841 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1842 }
1843 
1844 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1845 	.func		= bpf_skb_pull_data,
1846 	.gpl_only	= false,
1847 	.ret_type	= RET_INTEGER,
1848 	.arg1_type	= ARG_PTR_TO_CTX,
1849 	.arg2_type	= ARG_ANYTHING,
1850 };
1851 
1852 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1853 {
1854 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1855 }
1856 
1857 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1858 	.func		= bpf_sk_fullsock,
1859 	.gpl_only	= false,
1860 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1861 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1862 };
1863 
1864 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1865 					   unsigned int write_len)
1866 {
1867 	return __bpf_try_make_writable(skb, write_len);
1868 }
1869 
1870 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1871 {
1872 	/* Idea is the following: should the needed direct read/write
1873 	 * test fail during runtime, we can pull in more data and redo
1874 	 * again, since implicitly, we invalidate previous checks here.
1875 	 *
1876 	 * Or, since we know how much we need to make read/writeable,
1877 	 * this can be done once at the program beginning for direct
1878 	 * access case. By this we overcome limitations of only current
1879 	 * headroom being accessible.
1880 	 */
1881 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1882 }
1883 
1884 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1885 	.func		= sk_skb_pull_data,
1886 	.gpl_only	= false,
1887 	.ret_type	= RET_INTEGER,
1888 	.arg1_type	= ARG_PTR_TO_CTX,
1889 	.arg2_type	= ARG_ANYTHING,
1890 };
1891 
1892 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1893 	   u64, from, u64, to, u64, flags)
1894 {
1895 	__sum16 *ptr;
1896 
1897 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1898 		return -EINVAL;
1899 	if (unlikely(offset > 0xffff || offset & 1))
1900 		return -EFAULT;
1901 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1902 		return -EFAULT;
1903 
1904 	ptr = (__sum16 *)(skb->data + offset);
1905 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1906 	case 0:
1907 		if (unlikely(from != 0))
1908 			return -EINVAL;
1909 
1910 		csum_replace_by_diff(ptr, to);
1911 		break;
1912 	case 2:
1913 		csum_replace2(ptr, from, to);
1914 		break;
1915 	case 4:
1916 		csum_replace4(ptr, from, to);
1917 		break;
1918 	default:
1919 		return -EINVAL;
1920 	}
1921 
1922 	return 0;
1923 }
1924 
1925 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1926 	.func		= bpf_l3_csum_replace,
1927 	.gpl_only	= false,
1928 	.ret_type	= RET_INTEGER,
1929 	.arg1_type	= ARG_PTR_TO_CTX,
1930 	.arg2_type	= ARG_ANYTHING,
1931 	.arg3_type	= ARG_ANYTHING,
1932 	.arg4_type	= ARG_ANYTHING,
1933 	.arg5_type	= ARG_ANYTHING,
1934 };
1935 
1936 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1937 	   u64, from, u64, to, u64, flags)
1938 {
1939 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1940 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1941 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1942 	__sum16 *ptr;
1943 
1944 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1945 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1946 		return -EINVAL;
1947 	if (unlikely(offset > 0xffff || offset & 1))
1948 		return -EFAULT;
1949 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1950 		return -EFAULT;
1951 
1952 	ptr = (__sum16 *)(skb->data + offset);
1953 	if (is_mmzero && !do_mforce && !*ptr)
1954 		return 0;
1955 
1956 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1957 	case 0:
1958 		if (unlikely(from != 0))
1959 			return -EINVAL;
1960 
1961 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1962 		break;
1963 	case 2:
1964 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1965 		break;
1966 	case 4:
1967 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1968 		break;
1969 	default:
1970 		return -EINVAL;
1971 	}
1972 
1973 	if (is_mmzero && !*ptr)
1974 		*ptr = CSUM_MANGLED_0;
1975 	return 0;
1976 }
1977 
1978 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1979 	.func		= bpf_l4_csum_replace,
1980 	.gpl_only	= false,
1981 	.ret_type	= RET_INTEGER,
1982 	.arg1_type	= ARG_PTR_TO_CTX,
1983 	.arg2_type	= ARG_ANYTHING,
1984 	.arg3_type	= ARG_ANYTHING,
1985 	.arg4_type	= ARG_ANYTHING,
1986 	.arg5_type	= ARG_ANYTHING,
1987 };
1988 
1989 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1990 	   __be32 *, to, u32, to_size, __wsum, seed)
1991 {
1992 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1993 	u32 diff_size = from_size + to_size;
1994 	int i, j = 0;
1995 
1996 	/* This is quite flexible, some examples:
1997 	 *
1998 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1999 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2000 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2001 	 *
2002 	 * Even for diffing, from_size and to_size don't need to be equal.
2003 	 */
2004 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2005 		     diff_size > sizeof(sp->diff)))
2006 		return -EINVAL;
2007 
2008 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2009 		sp->diff[j] = ~from[i];
2010 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2011 		sp->diff[j] = to[i];
2012 
2013 	return csum_partial(sp->diff, diff_size, seed);
2014 }
2015 
2016 static const struct bpf_func_proto bpf_csum_diff_proto = {
2017 	.func		= bpf_csum_diff,
2018 	.gpl_only	= false,
2019 	.pkt_access	= true,
2020 	.ret_type	= RET_INTEGER,
2021 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2022 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2023 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2024 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2025 	.arg5_type	= ARG_ANYTHING,
2026 };
2027 
2028 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2029 {
2030 	/* The interface is to be used in combination with bpf_csum_diff()
2031 	 * for direct packet writes. csum rotation for alignment as well
2032 	 * as emulating csum_sub() can be done from the eBPF program.
2033 	 */
2034 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2035 		return (skb->csum = csum_add(skb->csum, csum));
2036 
2037 	return -ENOTSUPP;
2038 }
2039 
2040 static const struct bpf_func_proto bpf_csum_update_proto = {
2041 	.func		= bpf_csum_update,
2042 	.gpl_only	= false,
2043 	.ret_type	= RET_INTEGER,
2044 	.arg1_type	= ARG_PTR_TO_CTX,
2045 	.arg2_type	= ARG_ANYTHING,
2046 };
2047 
2048 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2049 {
2050 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2051 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2052 	 * is passed as flags, for example.
2053 	 */
2054 	switch (level) {
2055 	case BPF_CSUM_LEVEL_INC:
2056 		__skb_incr_checksum_unnecessary(skb);
2057 		break;
2058 	case BPF_CSUM_LEVEL_DEC:
2059 		__skb_decr_checksum_unnecessary(skb);
2060 		break;
2061 	case BPF_CSUM_LEVEL_RESET:
2062 		__skb_reset_checksum_unnecessary(skb);
2063 		break;
2064 	case BPF_CSUM_LEVEL_QUERY:
2065 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2066 		       skb->csum_level : -EACCES;
2067 	default:
2068 		return -EINVAL;
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 static const struct bpf_func_proto bpf_csum_level_proto = {
2075 	.func		= bpf_csum_level,
2076 	.gpl_only	= false,
2077 	.ret_type	= RET_INTEGER,
2078 	.arg1_type	= ARG_PTR_TO_CTX,
2079 	.arg2_type	= ARG_ANYTHING,
2080 };
2081 
2082 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2083 {
2084 	return dev_forward_skb_nomtu(dev, skb);
2085 }
2086 
2087 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2088 				      struct sk_buff *skb)
2089 {
2090 	int ret = ____dev_forward_skb(dev, skb, false);
2091 
2092 	if (likely(!ret)) {
2093 		skb->dev = dev;
2094 		ret = netif_rx(skb);
2095 	}
2096 
2097 	return ret;
2098 }
2099 
2100 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2101 {
2102 	int ret;
2103 
2104 	if (dev_xmit_recursion()) {
2105 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2106 		kfree_skb(skb);
2107 		return -ENETDOWN;
2108 	}
2109 
2110 	skb->dev = dev;
2111 	skb_clear_tstamp(skb);
2112 
2113 	dev_xmit_recursion_inc();
2114 	ret = dev_queue_xmit(skb);
2115 	dev_xmit_recursion_dec();
2116 
2117 	return ret;
2118 }
2119 
2120 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2121 				 u32 flags)
2122 {
2123 	unsigned int mlen = skb_network_offset(skb);
2124 
2125 	if (mlen) {
2126 		__skb_pull(skb, mlen);
2127 
2128 		/* At ingress, the mac header has already been pulled once.
2129 		 * At egress, skb_pospull_rcsum has to be done in case that
2130 		 * the skb is originated from ingress (i.e. a forwarded skb)
2131 		 * to ensure that rcsum starts at net header.
2132 		 */
2133 		if (!skb_at_tc_ingress(skb))
2134 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2135 	}
2136 	skb_pop_mac_header(skb);
2137 	skb_reset_mac_len(skb);
2138 	return flags & BPF_F_INGRESS ?
2139 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2140 }
2141 
2142 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2143 				 u32 flags)
2144 {
2145 	/* Verify that a link layer header is carried */
2146 	if (unlikely(skb->mac_header >= skb->network_header)) {
2147 		kfree_skb(skb);
2148 		return -ERANGE;
2149 	}
2150 
2151 	bpf_push_mac_rcsum(skb);
2152 	return flags & BPF_F_INGRESS ?
2153 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2154 }
2155 
2156 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2157 			  u32 flags)
2158 {
2159 	if (dev_is_mac_header_xmit(dev))
2160 		return __bpf_redirect_common(skb, dev, flags);
2161 	else
2162 		return __bpf_redirect_no_mac(skb, dev, flags);
2163 }
2164 
2165 #if IS_ENABLED(CONFIG_IPV6)
2166 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2167 			    struct net_device *dev, struct bpf_nh_params *nh)
2168 {
2169 	u32 hh_len = LL_RESERVED_SPACE(dev);
2170 	const struct in6_addr *nexthop;
2171 	struct dst_entry *dst = NULL;
2172 	struct neighbour *neigh;
2173 
2174 	if (dev_xmit_recursion()) {
2175 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2176 		goto out_drop;
2177 	}
2178 
2179 	skb->dev = dev;
2180 	skb_clear_tstamp(skb);
2181 
2182 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2183 		skb = skb_expand_head(skb, hh_len);
2184 		if (!skb)
2185 			return -ENOMEM;
2186 	}
2187 
2188 	rcu_read_lock_bh();
2189 	if (!nh) {
2190 		dst = skb_dst(skb);
2191 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2192 				      &ipv6_hdr(skb)->daddr);
2193 	} else {
2194 		nexthop = &nh->ipv6_nh;
2195 	}
2196 	neigh = ip_neigh_gw6(dev, nexthop);
2197 	if (likely(!IS_ERR(neigh))) {
2198 		int ret;
2199 
2200 		sock_confirm_neigh(skb, neigh);
2201 		dev_xmit_recursion_inc();
2202 		ret = neigh_output(neigh, skb, false);
2203 		dev_xmit_recursion_dec();
2204 		rcu_read_unlock_bh();
2205 		return ret;
2206 	}
2207 	rcu_read_unlock_bh();
2208 	if (dst)
2209 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2210 out_drop:
2211 	kfree_skb(skb);
2212 	return -ENETDOWN;
2213 }
2214 
2215 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2216 				   struct bpf_nh_params *nh)
2217 {
2218 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2219 	struct net *net = dev_net(dev);
2220 	int err, ret = NET_XMIT_DROP;
2221 
2222 	if (!nh) {
2223 		struct dst_entry *dst;
2224 		struct flowi6 fl6 = {
2225 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2226 			.flowi6_mark  = skb->mark,
2227 			.flowlabel    = ip6_flowinfo(ip6h),
2228 			.flowi6_oif   = dev->ifindex,
2229 			.flowi6_proto = ip6h->nexthdr,
2230 			.daddr	      = ip6h->daddr,
2231 			.saddr	      = ip6h->saddr,
2232 		};
2233 
2234 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2235 		if (IS_ERR(dst))
2236 			goto out_drop;
2237 
2238 		skb_dst_set(skb, dst);
2239 	} else if (nh->nh_family != AF_INET6) {
2240 		goto out_drop;
2241 	}
2242 
2243 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2244 	if (unlikely(net_xmit_eval(err)))
2245 		dev->stats.tx_errors++;
2246 	else
2247 		ret = NET_XMIT_SUCCESS;
2248 	goto out_xmit;
2249 out_drop:
2250 	dev->stats.tx_errors++;
2251 	kfree_skb(skb);
2252 out_xmit:
2253 	return ret;
2254 }
2255 #else
2256 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2257 				   struct bpf_nh_params *nh)
2258 {
2259 	kfree_skb(skb);
2260 	return NET_XMIT_DROP;
2261 }
2262 #endif /* CONFIG_IPV6 */
2263 
2264 #if IS_ENABLED(CONFIG_INET)
2265 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2266 			    struct net_device *dev, struct bpf_nh_params *nh)
2267 {
2268 	u32 hh_len = LL_RESERVED_SPACE(dev);
2269 	struct neighbour *neigh;
2270 	bool is_v6gw = false;
2271 
2272 	if (dev_xmit_recursion()) {
2273 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2274 		goto out_drop;
2275 	}
2276 
2277 	skb->dev = dev;
2278 	skb_clear_tstamp(skb);
2279 
2280 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2281 		skb = skb_expand_head(skb, hh_len);
2282 		if (!skb)
2283 			return -ENOMEM;
2284 	}
2285 
2286 	rcu_read_lock_bh();
2287 	if (!nh) {
2288 		struct dst_entry *dst = skb_dst(skb);
2289 		struct rtable *rt = container_of(dst, struct rtable, dst);
2290 
2291 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2292 	} else if (nh->nh_family == AF_INET6) {
2293 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2294 		is_v6gw = true;
2295 	} else if (nh->nh_family == AF_INET) {
2296 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2297 	} else {
2298 		rcu_read_unlock_bh();
2299 		goto out_drop;
2300 	}
2301 
2302 	if (likely(!IS_ERR(neigh))) {
2303 		int ret;
2304 
2305 		sock_confirm_neigh(skb, neigh);
2306 		dev_xmit_recursion_inc();
2307 		ret = neigh_output(neigh, skb, is_v6gw);
2308 		dev_xmit_recursion_dec();
2309 		rcu_read_unlock_bh();
2310 		return ret;
2311 	}
2312 	rcu_read_unlock_bh();
2313 out_drop:
2314 	kfree_skb(skb);
2315 	return -ENETDOWN;
2316 }
2317 
2318 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2319 				   struct bpf_nh_params *nh)
2320 {
2321 	const struct iphdr *ip4h = ip_hdr(skb);
2322 	struct net *net = dev_net(dev);
2323 	int err, ret = NET_XMIT_DROP;
2324 
2325 	if (!nh) {
2326 		struct flowi4 fl4 = {
2327 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2328 			.flowi4_mark  = skb->mark,
2329 			.flowi4_tos   = RT_TOS(ip4h->tos),
2330 			.flowi4_oif   = dev->ifindex,
2331 			.flowi4_proto = ip4h->protocol,
2332 			.daddr	      = ip4h->daddr,
2333 			.saddr	      = ip4h->saddr,
2334 		};
2335 		struct rtable *rt;
2336 
2337 		rt = ip_route_output_flow(net, &fl4, NULL);
2338 		if (IS_ERR(rt))
2339 			goto out_drop;
2340 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2341 			ip_rt_put(rt);
2342 			goto out_drop;
2343 		}
2344 
2345 		skb_dst_set(skb, &rt->dst);
2346 	}
2347 
2348 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2349 	if (unlikely(net_xmit_eval(err)))
2350 		dev->stats.tx_errors++;
2351 	else
2352 		ret = NET_XMIT_SUCCESS;
2353 	goto out_xmit;
2354 out_drop:
2355 	dev->stats.tx_errors++;
2356 	kfree_skb(skb);
2357 out_xmit:
2358 	return ret;
2359 }
2360 #else
2361 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2362 				   struct bpf_nh_params *nh)
2363 {
2364 	kfree_skb(skb);
2365 	return NET_XMIT_DROP;
2366 }
2367 #endif /* CONFIG_INET */
2368 
2369 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2370 				struct bpf_nh_params *nh)
2371 {
2372 	struct ethhdr *ethh = eth_hdr(skb);
2373 
2374 	if (unlikely(skb->mac_header >= skb->network_header))
2375 		goto out;
2376 	bpf_push_mac_rcsum(skb);
2377 	if (is_multicast_ether_addr(ethh->h_dest))
2378 		goto out;
2379 
2380 	skb_pull(skb, sizeof(*ethh));
2381 	skb_unset_mac_header(skb);
2382 	skb_reset_network_header(skb);
2383 
2384 	if (skb->protocol == htons(ETH_P_IP))
2385 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2386 	else if (skb->protocol == htons(ETH_P_IPV6))
2387 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2388 out:
2389 	kfree_skb(skb);
2390 	return -ENOTSUPP;
2391 }
2392 
2393 /* Internal, non-exposed redirect flags. */
2394 enum {
2395 	BPF_F_NEIGH	= (1ULL << 1),
2396 	BPF_F_PEER	= (1ULL << 2),
2397 	BPF_F_NEXTHOP	= (1ULL << 3),
2398 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2399 };
2400 
2401 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2402 {
2403 	struct net_device *dev;
2404 	struct sk_buff *clone;
2405 	int ret;
2406 
2407 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2408 		return -EINVAL;
2409 
2410 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2411 	if (unlikely(!dev))
2412 		return -EINVAL;
2413 
2414 	clone = skb_clone(skb, GFP_ATOMIC);
2415 	if (unlikely(!clone))
2416 		return -ENOMEM;
2417 
2418 	/* For direct write, we need to keep the invariant that the skbs
2419 	 * we're dealing with need to be uncloned. Should uncloning fail
2420 	 * here, we need to free the just generated clone to unclone once
2421 	 * again.
2422 	 */
2423 	ret = bpf_try_make_head_writable(skb);
2424 	if (unlikely(ret)) {
2425 		kfree_skb(clone);
2426 		return -ENOMEM;
2427 	}
2428 
2429 	return __bpf_redirect(clone, dev, flags);
2430 }
2431 
2432 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2433 	.func           = bpf_clone_redirect,
2434 	.gpl_only       = false,
2435 	.ret_type       = RET_INTEGER,
2436 	.arg1_type      = ARG_PTR_TO_CTX,
2437 	.arg2_type      = ARG_ANYTHING,
2438 	.arg3_type      = ARG_ANYTHING,
2439 };
2440 
2441 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2442 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2443 
2444 int skb_do_redirect(struct sk_buff *skb)
2445 {
2446 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2447 	struct net *net = dev_net(skb->dev);
2448 	struct net_device *dev;
2449 	u32 flags = ri->flags;
2450 
2451 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2452 	ri->tgt_index = 0;
2453 	ri->flags = 0;
2454 	if (unlikely(!dev))
2455 		goto out_drop;
2456 	if (flags & BPF_F_PEER) {
2457 		const struct net_device_ops *ops = dev->netdev_ops;
2458 
2459 		if (unlikely(!ops->ndo_get_peer_dev ||
2460 			     !skb_at_tc_ingress(skb)))
2461 			goto out_drop;
2462 		dev = ops->ndo_get_peer_dev(dev);
2463 		if (unlikely(!dev ||
2464 			     !(dev->flags & IFF_UP) ||
2465 			     net_eq(net, dev_net(dev))))
2466 			goto out_drop;
2467 		skb->dev = dev;
2468 		return -EAGAIN;
2469 	}
2470 	return flags & BPF_F_NEIGH ?
2471 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2472 				    &ri->nh : NULL) :
2473 	       __bpf_redirect(skb, dev, flags);
2474 out_drop:
2475 	kfree_skb(skb);
2476 	return -EINVAL;
2477 }
2478 
2479 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2480 {
2481 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2482 
2483 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2484 		return TC_ACT_SHOT;
2485 
2486 	ri->flags = flags;
2487 	ri->tgt_index = ifindex;
2488 
2489 	return TC_ACT_REDIRECT;
2490 }
2491 
2492 static const struct bpf_func_proto bpf_redirect_proto = {
2493 	.func           = bpf_redirect,
2494 	.gpl_only       = false,
2495 	.ret_type       = RET_INTEGER,
2496 	.arg1_type      = ARG_ANYTHING,
2497 	.arg2_type      = ARG_ANYTHING,
2498 };
2499 
2500 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2501 {
2502 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2503 
2504 	if (unlikely(flags))
2505 		return TC_ACT_SHOT;
2506 
2507 	ri->flags = BPF_F_PEER;
2508 	ri->tgt_index = ifindex;
2509 
2510 	return TC_ACT_REDIRECT;
2511 }
2512 
2513 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2514 	.func           = bpf_redirect_peer,
2515 	.gpl_only       = false,
2516 	.ret_type       = RET_INTEGER,
2517 	.arg1_type      = ARG_ANYTHING,
2518 	.arg2_type      = ARG_ANYTHING,
2519 };
2520 
2521 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2522 	   int, plen, u64, flags)
2523 {
2524 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2525 
2526 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2527 		return TC_ACT_SHOT;
2528 
2529 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2530 	ri->tgt_index = ifindex;
2531 
2532 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2533 	if (plen)
2534 		memcpy(&ri->nh, params, sizeof(ri->nh));
2535 
2536 	return TC_ACT_REDIRECT;
2537 }
2538 
2539 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2540 	.func		= bpf_redirect_neigh,
2541 	.gpl_only	= false,
2542 	.ret_type	= RET_INTEGER,
2543 	.arg1_type	= ARG_ANYTHING,
2544 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2545 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2546 	.arg4_type	= ARG_ANYTHING,
2547 };
2548 
2549 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2550 {
2551 	msg->apply_bytes = bytes;
2552 	return 0;
2553 }
2554 
2555 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2556 	.func           = bpf_msg_apply_bytes,
2557 	.gpl_only       = false,
2558 	.ret_type       = RET_INTEGER,
2559 	.arg1_type	= ARG_PTR_TO_CTX,
2560 	.arg2_type      = ARG_ANYTHING,
2561 };
2562 
2563 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2564 {
2565 	msg->cork_bytes = bytes;
2566 	return 0;
2567 }
2568 
2569 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2570 	.func           = bpf_msg_cork_bytes,
2571 	.gpl_only       = false,
2572 	.ret_type       = RET_INTEGER,
2573 	.arg1_type	= ARG_PTR_TO_CTX,
2574 	.arg2_type      = ARG_ANYTHING,
2575 };
2576 
2577 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2578 	   u32, end, u64, flags)
2579 {
2580 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2581 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2582 	struct scatterlist *sge;
2583 	u8 *raw, *to, *from;
2584 	struct page *page;
2585 
2586 	if (unlikely(flags || end <= start))
2587 		return -EINVAL;
2588 
2589 	/* First find the starting scatterlist element */
2590 	i = msg->sg.start;
2591 	do {
2592 		offset += len;
2593 		len = sk_msg_elem(msg, i)->length;
2594 		if (start < offset + len)
2595 			break;
2596 		sk_msg_iter_var_next(i);
2597 	} while (i != msg->sg.end);
2598 
2599 	if (unlikely(start >= offset + len))
2600 		return -EINVAL;
2601 
2602 	first_sge = i;
2603 	/* The start may point into the sg element so we need to also
2604 	 * account for the headroom.
2605 	 */
2606 	bytes_sg_total = start - offset + bytes;
2607 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2608 		goto out;
2609 
2610 	/* At this point we need to linearize multiple scatterlist
2611 	 * elements or a single shared page. Either way we need to
2612 	 * copy into a linear buffer exclusively owned by BPF. Then
2613 	 * place the buffer in the scatterlist and fixup the original
2614 	 * entries by removing the entries now in the linear buffer
2615 	 * and shifting the remaining entries. For now we do not try
2616 	 * to copy partial entries to avoid complexity of running out
2617 	 * of sg_entry slots. The downside is reading a single byte
2618 	 * will copy the entire sg entry.
2619 	 */
2620 	do {
2621 		copy += sk_msg_elem(msg, i)->length;
2622 		sk_msg_iter_var_next(i);
2623 		if (bytes_sg_total <= copy)
2624 			break;
2625 	} while (i != msg->sg.end);
2626 	last_sge = i;
2627 
2628 	if (unlikely(bytes_sg_total > copy))
2629 		return -EINVAL;
2630 
2631 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2632 			   get_order(copy));
2633 	if (unlikely(!page))
2634 		return -ENOMEM;
2635 
2636 	raw = page_address(page);
2637 	i = first_sge;
2638 	do {
2639 		sge = sk_msg_elem(msg, i);
2640 		from = sg_virt(sge);
2641 		len = sge->length;
2642 		to = raw + poffset;
2643 
2644 		memcpy(to, from, len);
2645 		poffset += len;
2646 		sge->length = 0;
2647 		put_page(sg_page(sge));
2648 
2649 		sk_msg_iter_var_next(i);
2650 	} while (i != last_sge);
2651 
2652 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2653 
2654 	/* To repair sg ring we need to shift entries. If we only
2655 	 * had a single entry though we can just replace it and
2656 	 * be done. Otherwise walk the ring and shift the entries.
2657 	 */
2658 	WARN_ON_ONCE(last_sge == first_sge);
2659 	shift = last_sge > first_sge ?
2660 		last_sge - first_sge - 1 :
2661 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2662 	if (!shift)
2663 		goto out;
2664 
2665 	i = first_sge;
2666 	sk_msg_iter_var_next(i);
2667 	do {
2668 		u32 move_from;
2669 
2670 		if (i + shift >= NR_MSG_FRAG_IDS)
2671 			move_from = i + shift - NR_MSG_FRAG_IDS;
2672 		else
2673 			move_from = i + shift;
2674 		if (move_from == msg->sg.end)
2675 			break;
2676 
2677 		msg->sg.data[i] = msg->sg.data[move_from];
2678 		msg->sg.data[move_from].length = 0;
2679 		msg->sg.data[move_from].page_link = 0;
2680 		msg->sg.data[move_from].offset = 0;
2681 		sk_msg_iter_var_next(i);
2682 	} while (1);
2683 
2684 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2685 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2686 		      msg->sg.end - shift;
2687 out:
2688 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2689 	msg->data_end = msg->data + bytes;
2690 	return 0;
2691 }
2692 
2693 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2694 	.func		= bpf_msg_pull_data,
2695 	.gpl_only	= false,
2696 	.ret_type	= RET_INTEGER,
2697 	.arg1_type	= ARG_PTR_TO_CTX,
2698 	.arg2_type	= ARG_ANYTHING,
2699 	.arg3_type	= ARG_ANYTHING,
2700 	.arg4_type	= ARG_ANYTHING,
2701 };
2702 
2703 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2704 	   u32, len, u64, flags)
2705 {
2706 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2707 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2708 	u8 *raw, *to, *from;
2709 	struct page *page;
2710 
2711 	if (unlikely(flags))
2712 		return -EINVAL;
2713 
2714 	if (unlikely(len == 0))
2715 		return 0;
2716 
2717 	/* First find the starting scatterlist element */
2718 	i = msg->sg.start;
2719 	do {
2720 		offset += l;
2721 		l = sk_msg_elem(msg, i)->length;
2722 
2723 		if (start < offset + l)
2724 			break;
2725 		sk_msg_iter_var_next(i);
2726 	} while (i != msg->sg.end);
2727 
2728 	if (start >= offset + l)
2729 		return -EINVAL;
2730 
2731 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2732 
2733 	/* If no space available will fallback to copy, we need at
2734 	 * least one scatterlist elem available to push data into
2735 	 * when start aligns to the beginning of an element or two
2736 	 * when it falls inside an element. We handle the start equals
2737 	 * offset case because its the common case for inserting a
2738 	 * header.
2739 	 */
2740 	if (!space || (space == 1 && start != offset))
2741 		copy = msg->sg.data[i].length;
2742 
2743 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2744 			   get_order(copy + len));
2745 	if (unlikely(!page))
2746 		return -ENOMEM;
2747 
2748 	if (copy) {
2749 		int front, back;
2750 
2751 		raw = page_address(page);
2752 
2753 		psge = sk_msg_elem(msg, i);
2754 		front = start - offset;
2755 		back = psge->length - front;
2756 		from = sg_virt(psge);
2757 
2758 		if (front)
2759 			memcpy(raw, from, front);
2760 
2761 		if (back) {
2762 			from += front;
2763 			to = raw + front + len;
2764 
2765 			memcpy(to, from, back);
2766 		}
2767 
2768 		put_page(sg_page(psge));
2769 	} else if (start - offset) {
2770 		psge = sk_msg_elem(msg, i);
2771 		rsge = sk_msg_elem_cpy(msg, i);
2772 
2773 		psge->length = start - offset;
2774 		rsge.length -= psge->length;
2775 		rsge.offset += start;
2776 
2777 		sk_msg_iter_var_next(i);
2778 		sg_unmark_end(psge);
2779 		sg_unmark_end(&rsge);
2780 		sk_msg_iter_next(msg, end);
2781 	}
2782 
2783 	/* Slot(s) to place newly allocated data */
2784 	new = i;
2785 
2786 	/* Shift one or two slots as needed */
2787 	if (!copy) {
2788 		sge = sk_msg_elem_cpy(msg, i);
2789 
2790 		sk_msg_iter_var_next(i);
2791 		sg_unmark_end(&sge);
2792 		sk_msg_iter_next(msg, end);
2793 
2794 		nsge = sk_msg_elem_cpy(msg, i);
2795 		if (rsge.length) {
2796 			sk_msg_iter_var_next(i);
2797 			nnsge = sk_msg_elem_cpy(msg, i);
2798 		}
2799 
2800 		while (i != msg->sg.end) {
2801 			msg->sg.data[i] = sge;
2802 			sge = nsge;
2803 			sk_msg_iter_var_next(i);
2804 			if (rsge.length) {
2805 				nsge = nnsge;
2806 				nnsge = sk_msg_elem_cpy(msg, i);
2807 			} else {
2808 				nsge = sk_msg_elem_cpy(msg, i);
2809 			}
2810 		}
2811 	}
2812 
2813 	/* Place newly allocated data buffer */
2814 	sk_mem_charge(msg->sk, len);
2815 	msg->sg.size += len;
2816 	__clear_bit(new, msg->sg.copy);
2817 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2818 	if (rsge.length) {
2819 		get_page(sg_page(&rsge));
2820 		sk_msg_iter_var_next(new);
2821 		msg->sg.data[new] = rsge;
2822 	}
2823 
2824 	sk_msg_compute_data_pointers(msg);
2825 	return 0;
2826 }
2827 
2828 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2829 	.func		= bpf_msg_push_data,
2830 	.gpl_only	= false,
2831 	.ret_type	= RET_INTEGER,
2832 	.arg1_type	= ARG_PTR_TO_CTX,
2833 	.arg2_type	= ARG_ANYTHING,
2834 	.arg3_type	= ARG_ANYTHING,
2835 	.arg4_type	= ARG_ANYTHING,
2836 };
2837 
2838 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2839 {
2840 	int prev;
2841 
2842 	do {
2843 		prev = i;
2844 		sk_msg_iter_var_next(i);
2845 		msg->sg.data[prev] = msg->sg.data[i];
2846 	} while (i != msg->sg.end);
2847 
2848 	sk_msg_iter_prev(msg, end);
2849 }
2850 
2851 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2852 {
2853 	struct scatterlist tmp, sge;
2854 
2855 	sk_msg_iter_next(msg, end);
2856 	sge = sk_msg_elem_cpy(msg, i);
2857 	sk_msg_iter_var_next(i);
2858 	tmp = sk_msg_elem_cpy(msg, i);
2859 
2860 	while (i != msg->sg.end) {
2861 		msg->sg.data[i] = sge;
2862 		sk_msg_iter_var_next(i);
2863 		sge = tmp;
2864 		tmp = sk_msg_elem_cpy(msg, i);
2865 	}
2866 }
2867 
2868 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2869 	   u32, len, u64, flags)
2870 {
2871 	u32 i = 0, l = 0, space, offset = 0;
2872 	u64 last = start + len;
2873 	int pop;
2874 
2875 	if (unlikely(flags))
2876 		return -EINVAL;
2877 
2878 	/* First find the starting scatterlist element */
2879 	i = msg->sg.start;
2880 	do {
2881 		offset += l;
2882 		l = sk_msg_elem(msg, i)->length;
2883 
2884 		if (start < offset + l)
2885 			break;
2886 		sk_msg_iter_var_next(i);
2887 	} while (i != msg->sg.end);
2888 
2889 	/* Bounds checks: start and pop must be inside message */
2890 	if (start >= offset + l || last >= msg->sg.size)
2891 		return -EINVAL;
2892 
2893 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2894 
2895 	pop = len;
2896 	/* --------------| offset
2897 	 * -| start      |-------- len -------|
2898 	 *
2899 	 *  |----- a ----|-------- pop -------|----- b ----|
2900 	 *  |______________________________________________| length
2901 	 *
2902 	 *
2903 	 * a:   region at front of scatter element to save
2904 	 * b:   region at back of scatter element to save when length > A + pop
2905 	 * pop: region to pop from element, same as input 'pop' here will be
2906 	 *      decremented below per iteration.
2907 	 *
2908 	 * Two top-level cases to handle when start != offset, first B is non
2909 	 * zero and second B is zero corresponding to when a pop includes more
2910 	 * than one element.
2911 	 *
2912 	 * Then if B is non-zero AND there is no space allocate space and
2913 	 * compact A, B regions into page. If there is space shift ring to
2914 	 * the rigth free'ing the next element in ring to place B, leaving
2915 	 * A untouched except to reduce length.
2916 	 */
2917 	if (start != offset) {
2918 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2919 		int a = start;
2920 		int b = sge->length - pop - a;
2921 
2922 		sk_msg_iter_var_next(i);
2923 
2924 		if (pop < sge->length - a) {
2925 			if (space) {
2926 				sge->length = a;
2927 				sk_msg_shift_right(msg, i);
2928 				nsge = sk_msg_elem(msg, i);
2929 				get_page(sg_page(sge));
2930 				sg_set_page(nsge,
2931 					    sg_page(sge),
2932 					    b, sge->offset + pop + a);
2933 			} else {
2934 				struct page *page, *orig;
2935 				u8 *to, *from;
2936 
2937 				page = alloc_pages(__GFP_NOWARN |
2938 						   __GFP_COMP   | GFP_ATOMIC,
2939 						   get_order(a + b));
2940 				if (unlikely(!page))
2941 					return -ENOMEM;
2942 
2943 				sge->length = a;
2944 				orig = sg_page(sge);
2945 				from = sg_virt(sge);
2946 				to = page_address(page);
2947 				memcpy(to, from, a);
2948 				memcpy(to + a, from + a + pop, b);
2949 				sg_set_page(sge, page, a + b, 0);
2950 				put_page(orig);
2951 			}
2952 			pop = 0;
2953 		} else if (pop >= sge->length - a) {
2954 			pop -= (sge->length - a);
2955 			sge->length = a;
2956 		}
2957 	}
2958 
2959 	/* From above the current layout _must_ be as follows,
2960 	 *
2961 	 * -| offset
2962 	 * -| start
2963 	 *
2964 	 *  |---- pop ---|---------------- b ------------|
2965 	 *  |____________________________________________| length
2966 	 *
2967 	 * Offset and start of the current msg elem are equal because in the
2968 	 * previous case we handled offset != start and either consumed the
2969 	 * entire element and advanced to the next element OR pop == 0.
2970 	 *
2971 	 * Two cases to handle here are first pop is less than the length
2972 	 * leaving some remainder b above. Simply adjust the element's layout
2973 	 * in this case. Or pop >= length of the element so that b = 0. In this
2974 	 * case advance to next element decrementing pop.
2975 	 */
2976 	while (pop) {
2977 		struct scatterlist *sge = sk_msg_elem(msg, i);
2978 
2979 		if (pop < sge->length) {
2980 			sge->length -= pop;
2981 			sge->offset += pop;
2982 			pop = 0;
2983 		} else {
2984 			pop -= sge->length;
2985 			sk_msg_shift_left(msg, i);
2986 		}
2987 		sk_msg_iter_var_next(i);
2988 	}
2989 
2990 	sk_mem_uncharge(msg->sk, len - pop);
2991 	msg->sg.size -= (len - pop);
2992 	sk_msg_compute_data_pointers(msg);
2993 	return 0;
2994 }
2995 
2996 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2997 	.func		= bpf_msg_pop_data,
2998 	.gpl_only	= false,
2999 	.ret_type	= RET_INTEGER,
3000 	.arg1_type	= ARG_PTR_TO_CTX,
3001 	.arg2_type	= ARG_ANYTHING,
3002 	.arg3_type	= ARG_ANYTHING,
3003 	.arg4_type	= ARG_ANYTHING,
3004 };
3005 
3006 #ifdef CONFIG_CGROUP_NET_CLASSID
3007 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3008 {
3009 	return __task_get_classid(current);
3010 }
3011 
3012 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3013 	.func		= bpf_get_cgroup_classid_curr,
3014 	.gpl_only	= false,
3015 	.ret_type	= RET_INTEGER,
3016 };
3017 
3018 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3019 {
3020 	struct sock *sk = skb_to_full_sk(skb);
3021 
3022 	if (!sk || !sk_fullsock(sk))
3023 		return 0;
3024 
3025 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3026 }
3027 
3028 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3029 	.func		= bpf_skb_cgroup_classid,
3030 	.gpl_only	= false,
3031 	.ret_type	= RET_INTEGER,
3032 	.arg1_type	= ARG_PTR_TO_CTX,
3033 };
3034 #endif
3035 
3036 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3037 {
3038 	return task_get_classid(skb);
3039 }
3040 
3041 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3042 	.func           = bpf_get_cgroup_classid,
3043 	.gpl_only       = false,
3044 	.ret_type       = RET_INTEGER,
3045 	.arg1_type      = ARG_PTR_TO_CTX,
3046 };
3047 
3048 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3049 {
3050 	return dst_tclassid(skb);
3051 }
3052 
3053 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3054 	.func           = bpf_get_route_realm,
3055 	.gpl_only       = false,
3056 	.ret_type       = RET_INTEGER,
3057 	.arg1_type      = ARG_PTR_TO_CTX,
3058 };
3059 
3060 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3061 {
3062 	/* If skb_clear_hash() was called due to mangling, we can
3063 	 * trigger SW recalculation here. Later access to hash
3064 	 * can then use the inline skb->hash via context directly
3065 	 * instead of calling this helper again.
3066 	 */
3067 	return skb_get_hash(skb);
3068 }
3069 
3070 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3071 	.func		= bpf_get_hash_recalc,
3072 	.gpl_only	= false,
3073 	.ret_type	= RET_INTEGER,
3074 	.arg1_type	= ARG_PTR_TO_CTX,
3075 };
3076 
3077 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3078 {
3079 	/* After all direct packet write, this can be used once for
3080 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3081 	 */
3082 	skb_clear_hash(skb);
3083 	return 0;
3084 }
3085 
3086 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3087 	.func		= bpf_set_hash_invalid,
3088 	.gpl_only	= false,
3089 	.ret_type	= RET_INTEGER,
3090 	.arg1_type	= ARG_PTR_TO_CTX,
3091 };
3092 
3093 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3094 {
3095 	/* Set user specified hash as L4(+), so that it gets returned
3096 	 * on skb_get_hash() call unless BPF prog later on triggers a
3097 	 * skb_clear_hash().
3098 	 */
3099 	__skb_set_sw_hash(skb, hash, true);
3100 	return 0;
3101 }
3102 
3103 static const struct bpf_func_proto bpf_set_hash_proto = {
3104 	.func		= bpf_set_hash,
3105 	.gpl_only	= false,
3106 	.ret_type	= RET_INTEGER,
3107 	.arg1_type	= ARG_PTR_TO_CTX,
3108 	.arg2_type	= ARG_ANYTHING,
3109 };
3110 
3111 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3112 	   u16, vlan_tci)
3113 {
3114 	int ret;
3115 
3116 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3117 		     vlan_proto != htons(ETH_P_8021AD)))
3118 		vlan_proto = htons(ETH_P_8021Q);
3119 
3120 	bpf_push_mac_rcsum(skb);
3121 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3122 	bpf_pull_mac_rcsum(skb);
3123 
3124 	bpf_compute_data_pointers(skb);
3125 	return ret;
3126 }
3127 
3128 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3129 	.func           = bpf_skb_vlan_push,
3130 	.gpl_only       = false,
3131 	.ret_type       = RET_INTEGER,
3132 	.arg1_type      = ARG_PTR_TO_CTX,
3133 	.arg2_type      = ARG_ANYTHING,
3134 	.arg3_type      = ARG_ANYTHING,
3135 };
3136 
3137 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3138 {
3139 	int ret;
3140 
3141 	bpf_push_mac_rcsum(skb);
3142 	ret = skb_vlan_pop(skb);
3143 	bpf_pull_mac_rcsum(skb);
3144 
3145 	bpf_compute_data_pointers(skb);
3146 	return ret;
3147 }
3148 
3149 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3150 	.func           = bpf_skb_vlan_pop,
3151 	.gpl_only       = false,
3152 	.ret_type       = RET_INTEGER,
3153 	.arg1_type      = ARG_PTR_TO_CTX,
3154 };
3155 
3156 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3157 {
3158 	/* Caller already did skb_cow() with len as headroom,
3159 	 * so no need to do it here.
3160 	 */
3161 	skb_push(skb, len);
3162 	memmove(skb->data, skb->data + len, off);
3163 	memset(skb->data + off, 0, len);
3164 
3165 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3166 	 * needed here as it does not change the skb->csum
3167 	 * result for checksum complete when summing over
3168 	 * zeroed blocks.
3169 	 */
3170 	return 0;
3171 }
3172 
3173 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3174 {
3175 	/* skb_ensure_writable() is not needed here, as we're
3176 	 * already working on an uncloned skb.
3177 	 */
3178 	if (unlikely(!pskb_may_pull(skb, off + len)))
3179 		return -ENOMEM;
3180 
3181 	skb_postpull_rcsum(skb, skb->data + off, len);
3182 	memmove(skb->data + len, skb->data, off);
3183 	__skb_pull(skb, len);
3184 
3185 	return 0;
3186 }
3187 
3188 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3189 {
3190 	bool trans_same = skb->transport_header == skb->network_header;
3191 	int ret;
3192 
3193 	/* There's no need for __skb_push()/__skb_pull() pair to
3194 	 * get to the start of the mac header as we're guaranteed
3195 	 * to always start from here under eBPF.
3196 	 */
3197 	ret = bpf_skb_generic_push(skb, off, len);
3198 	if (likely(!ret)) {
3199 		skb->mac_header -= len;
3200 		skb->network_header -= len;
3201 		if (trans_same)
3202 			skb->transport_header = skb->network_header;
3203 	}
3204 
3205 	return ret;
3206 }
3207 
3208 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3209 {
3210 	bool trans_same = skb->transport_header == skb->network_header;
3211 	int ret;
3212 
3213 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3214 	ret = bpf_skb_generic_pop(skb, off, len);
3215 	if (likely(!ret)) {
3216 		skb->mac_header += len;
3217 		skb->network_header += len;
3218 		if (trans_same)
3219 			skb->transport_header = skb->network_header;
3220 	}
3221 
3222 	return ret;
3223 }
3224 
3225 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3226 {
3227 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3228 	u32 off = skb_mac_header_len(skb);
3229 	int ret;
3230 
3231 	ret = skb_cow(skb, len_diff);
3232 	if (unlikely(ret < 0))
3233 		return ret;
3234 
3235 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3236 	if (unlikely(ret < 0))
3237 		return ret;
3238 
3239 	if (skb_is_gso(skb)) {
3240 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3241 
3242 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3243 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3244 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3245 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3246 		}
3247 	}
3248 
3249 	skb->protocol = htons(ETH_P_IPV6);
3250 	skb_clear_hash(skb);
3251 
3252 	return 0;
3253 }
3254 
3255 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3256 {
3257 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3258 	u32 off = skb_mac_header_len(skb);
3259 	int ret;
3260 
3261 	ret = skb_unclone(skb, GFP_ATOMIC);
3262 	if (unlikely(ret < 0))
3263 		return ret;
3264 
3265 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3266 	if (unlikely(ret < 0))
3267 		return ret;
3268 
3269 	if (skb_is_gso(skb)) {
3270 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3271 
3272 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3273 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3274 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3275 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3276 		}
3277 	}
3278 
3279 	skb->protocol = htons(ETH_P_IP);
3280 	skb_clear_hash(skb);
3281 
3282 	return 0;
3283 }
3284 
3285 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3286 {
3287 	__be16 from_proto = skb->protocol;
3288 
3289 	if (from_proto == htons(ETH_P_IP) &&
3290 	      to_proto == htons(ETH_P_IPV6))
3291 		return bpf_skb_proto_4_to_6(skb);
3292 
3293 	if (from_proto == htons(ETH_P_IPV6) &&
3294 	      to_proto == htons(ETH_P_IP))
3295 		return bpf_skb_proto_6_to_4(skb);
3296 
3297 	return -ENOTSUPP;
3298 }
3299 
3300 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3301 	   u64, flags)
3302 {
3303 	int ret;
3304 
3305 	if (unlikely(flags))
3306 		return -EINVAL;
3307 
3308 	/* General idea is that this helper does the basic groundwork
3309 	 * needed for changing the protocol, and eBPF program fills the
3310 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3311 	 * and other helpers, rather than passing a raw buffer here.
3312 	 *
3313 	 * The rationale is to keep this minimal and without a need to
3314 	 * deal with raw packet data. F.e. even if we would pass buffers
3315 	 * here, the program still needs to call the bpf_lX_csum_replace()
3316 	 * helpers anyway. Plus, this way we keep also separation of
3317 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3318 	 * care of stores.
3319 	 *
3320 	 * Currently, additional options and extension header space are
3321 	 * not supported, but flags register is reserved so we can adapt
3322 	 * that. For offloads, we mark packet as dodgy, so that headers
3323 	 * need to be verified first.
3324 	 */
3325 	ret = bpf_skb_proto_xlat(skb, proto);
3326 	bpf_compute_data_pointers(skb);
3327 	return ret;
3328 }
3329 
3330 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3331 	.func		= bpf_skb_change_proto,
3332 	.gpl_only	= false,
3333 	.ret_type	= RET_INTEGER,
3334 	.arg1_type	= ARG_PTR_TO_CTX,
3335 	.arg2_type	= ARG_ANYTHING,
3336 	.arg3_type	= ARG_ANYTHING,
3337 };
3338 
3339 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3340 {
3341 	/* We only allow a restricted subset to be changed for now. */
3342 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3343 		     !skb_pkt_type_ok(pkt_type)))
3344 		return -EINVAL;
3345 
3346 	skb->pkt_type = pkt_type;
3347 	return 0;
3348 }
3349 
3350 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3351 	.func		= bpf_skb_change_type,
3352 	.gpl_only	= false,
3353 	.ret_type	= RET_INTEGER,
3354 	.arg1_type	= ARG_PTR_TO_CTX,
3355 	.arg2_type	= ARG_ANYTHING,
3356 };
3357 
3358 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3359 {
3360 	switch (skb->protocol) {
3361 	case htons(ETH_P_IP):
3362 		return sizeof(struct iphdr);
3363 	case htons(ETH_P_IPV6):
3364 		return sizeof(struct ipv6hdr);
3365 	default:
3366 		return ~0U;
3367 	}
3368 }
3369 
3370 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3371 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3372 
3373 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3374 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3375 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3376 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3377 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3378 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3379 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3380 
3381 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3382 			    u64 flags)
3383 {
3384 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3385 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3386 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3387 	unsigned int gso_type = SKB_GSO_DODGY;
3388 	int ret;
3389 
3390 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3391 		/* udp gso_size delineates datagrams, only allow if fixed */
3392 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3393 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3394 			return -ENOTSUPP;
3395 	}
3396 
3397 	ret = skb_cow_head(skb, len_diff);
3398 	if (unlikely(ret < 0))
3399 		return ret;
3400 
3401 	if (encap) {
3402 		if (skb->protocol != htons(ETH_P_IP) &&
3403 		    skb->protocol != htons(ETH_P_IPV6))
3404 			return -ENOTSUPP;
3405 
3406 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3407 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3408 			return -EINVAL;
3409 
3410 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3411 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3412 			return -EINVAL;
3413 
3414 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3415 		    inner_mac_len < ETH_HLEN)
3416 			return -EINVAL;
3417 
3418 		if (skb->encapsulation)
3419 			return -EALREADY;
3420 
3421 		mac_len = skb->network_header - skb->mac_header;
3422 		inner_net = skb->network_header;
3423 		if (inner_mac_len > len_diff)
3424 			return -EINVAL;
3425 		inner_trans = skb->transport_header;
3426 	}
3427 
3428 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3429 	if (unlikely(ret < 0))
3430 		return ret;
3431 
3432 	if (encap) {
3433 		skb->inner_mac_header = inner_net - inner_mac_len;
3434 		skb->inner_network_header = inner_net;
3435 		skb->inner_transport_header = inner_trans;
3436 
3437 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3438 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3439 		else
3440 			skb_set_inner_protocol(skb, skb->protocol);
3441 
3442 		skb->encapsulation = 1;
3443 		skb_set_network_header(skb, mac_len);
3444 
3445 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3446 			gso_type |= SKB_GSO_UDP_TUNNEL;
3447 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3448 			gso_type |= SKB_GSO_GRE;
3449 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3450 			gso_type |= SKB_GSO_IPXIP6;
3451 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3452 			gso_type |= SKB_GSO_IPXIP4;
3453 
3454 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3455 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3456 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3457 					sizeof(struct ipv6hdr) :
3458 					sizeof(struct iphdr);
3459 
3460 			skb_set_transport_header(skb, mac_len + nh_len);
3461 		}
3462 
3463 		/* Match skb->protocol to new outer l3 protocol */
3464 		if (skb->protocol == htons(ETH_P_IP) &&
3465 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3466 			skb->protocol = htons(ETH_P_IPV6);
3467 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3468 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3469 			skb->protocol = htons(ETH_P_IP);
3470 	}
3471 
3472 	if (skb_is_gso(skb)) {
3473 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3474 
3475 		/* Due to header grow, MSS needs to be downgraded. */
3476 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3477 			skb_decrease_gso_size(shinfo, len_diff);
3478 
3479 		/* Header must be checked, and gso_segs recomputed. */
3480 		shinfo->gso_type |= gso_type;
3481 		shinfo->gso_segs = 0;
3482 	}
3483 
3484 	return 0;
3485 }
3486 
3487 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3488 			      u64 flags)
3489 {
3490 	int ret;
3491 
3492 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3493 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3494 		return -EINVAL;
3495 
3496 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3497 		/* udp gso_size delineates datagrams, only allow if fixed */
3498 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3499 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3500 			return -ENOTSUPP;
3501 	}
3502 
3503 	ret = skb_unclone(skb, GFP_ATOMIC);
3504 	if (unlikely(ret < 0))
3505 		return ret;
3506 
3507 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3508 	if (unlikely(ret < 0))
3509 		return ret;
3510 
3511 	if (skb_is_gso(skb)) {
3512 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3513 
3514 		/* Due to header shrink, MSS can be upgraded. */
3515 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3516 			skb_increase_gso_size(shinfo, len_diff);
3517 
3518 		/* Header must be checked, and gso_segs recomputed. */
3519 		shinfo->gso_type |= SKB_GSO_DODGY;
3520 		shinfo->gso_segs = 0;
3521 	}
3522 
3523 	return 0;
3524 }
3525 
3526 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3527 
3528 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3529 	   u32, mode, u64, flags)
3530 {
3531 	u32 len_diff_abs = abs(len_diff);
3532 	bool shrink = len_diff < 0;
3533 	int ret = 0;
3534 
3535 	if (unlikely(flags || mode))
3536 		return -EINVAL;
3537 	if (unlikely(len_diff_abs > 0xfffU))
3538 		return -EFAULT;
3539 
3540 	if (!shrink) {
3541 		ret = skb_cow(skb, len_diff);
3542 		if (unlikely(ret < 0))
3543 			return ret;
3544 		__skb_push(skb, len_diff_abs);
3545 		memset(skb->data, 0, len_diff_abs);
3546 	} else {
3547 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3548 			return -ENOMEM;
3549 		__skb_pull(skb, len_diff_abs);
3550 	}
3551 	if (tls_sw_has_ctx_rx(skb->sk)) {
3552 		struct strp_msg *rxm = strp_msg(skb);
3553 
3554 		rxm->full_len += len_diff;
3555 	}
3556 	return ret;
3557 }
3558 
3559 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3560 	.func		= sk_skb_adjust_room,
3561 	.gpl_only	= false,
3562 	.ret_type	= RET_INTEGER,
3563 	.arg1_type	= ARG_PTR_TO_CTX,
3564 	.arg2_type	= ARG_ANYTHING,
3565 	.arg3_type	= ARG_ANYTHING,
3566 	.arg4_type	= ARG_ANYTHING,
3567 };
3568 
3569 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3570 	   u32, mode, u64, flags)
3571 {
3572 	u32 len_cur, len_diff_abs = abs(len_diff);
3573 	u32 len_min = bpf_skb_net_base_len(skb);
3574 	u32 len_max = BPF_SKB_MAX_LEN;
3575 	__be16 proto = skb->protocol;
3576 	bool shrink = len_diff < 0;
3577 	u32 off;
3578 	int ret;
3579 
3580 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3581 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3582 		return -EINVAL;
3583 	if (unlikely(len_diff_abs > 0xfffU))
3584 		return -EFAULT;
3585 	if (unlikely(proto != htons(ETH_P_IP) &&
3586 		     proto != htons(ETH_P_IPV6)))
3587 		return -ENOTSUPP;
3588 
3589 	off = skb_mac_header_len(skb);
3590 	switch (mode) {
3591 	case BPF_ADJ_ROOM_NET:
3592 		off += bpf_skb_net_base_len(skb);
3593 		break;
3594 	case BPF_ADJ_ROOM_MAC:
3595 		break;
3596 	default:
3597 		return -ENOTSUPP;
3598 	}
3599 
3600 	len_cur = skb->len - skb_network_offset(skb);
3601 	if ((shrink && (len_diff_abs >= len_cur ||
3602 			len_cur - len_diff_abs < len_min)) ||
3603 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3604 			 !skb_is_gso(skb))))
3605 		return -ENOTSUPP;
3606 
3607 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3608 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3609 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3610 		__skb_reset_checksum_unnecessary(skb);
3611 
3612 	bpf_compute_data_pointers(skb);
3613 	return ret;
3614 }
3615 
3616 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3617 	.func		= bpf_skb_adjust_room,
3618 	.gpl_only	= false,
3619 	.ret_type	= RET_INTEGER,
3620 	.arg1_type	= ARG_PTR_TO_CTX,
3621 	.arg2_type	= ARG_ANYTHING,
3622 	.arg3_type	= ARG_ANYTHING,
3623 	.arg4_type	= ARG_ANYTHING,
3624 };
3625 
3626 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3627 {
3628 	u32 min_len = skb_network_offset(skb);
3629 
3630 	if (skb_transport_header_was_set(skb))
3631 		min_len = skb_transport_offset(skb);
3632 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3633 		min_len = skb_checksum_start_offset(skb) +
3634 			  skb->csum_offset + sizeof(__sum16);
3635 	return min_len;
3636 }
3637 
3638 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3639 {
3640 	unsigned int old_len = skb->len;
3641 	int ret;
3642 
3643 	ret = __skb_grow_rcsum(skb, new_len);
3644 	if (!ret)
3645 		memset(skb->data + old_len, 0, new_len - old_len);
3646 	return ret;
3647 }
3648 
3649 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3650 {
3651 	return __skb_trim_rcsum(skb, new_len);
3652 }
3653 
3654 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3655 					u64 flags)
3656 {
3657 	u32 max_len = BPF_SKB_MAX_LEN;
3658 	u32 min_len = __bpf_skb_min_len(skb);
3659 	int ret;
3660 
3661 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3662 		return -EINVAL;
3663 	if (skb->encapsulation)
3664 		return -ENOTSUPP;
3665 
3666 	/* The basic idea of this helper is that it's performing the
3667 	 * needed work to either grow or trim an skb, and eBPF program
3668 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3669 	 * bpf_lX_csum_replace() and others rather than passing a raw
3670 	 * buffer here. This one is a slow path helper and intended
3671 	 * for replies with control messages.
3672 	 *
3673 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3674 	 * minimal and without protocol specifics so that we are able
3675 	 * to separate concerns as in bpf_skb_store_bytes() should only
3676 	 * be the one responsible for writing buffers.
3677 	 *
3678 	 * It's really expected to be a slow path operation here for
3679 	 * control message replies, so we're implicitly linearizing,
3680 	 * uncloning and drop offloads from the skb by this.
3681 	 */
3682 	ret = __bpf_try_make_writable(skb, skb->len);
3683 	if (!ret) {
3684 		if (new_len > skb->len)
3685 			ret = bpf_skb_grow_rcsum(skb, new_len);
3686 		else if (new_len < skb->len)
3687 			ret = bpf_skb_trim_rcsum(skb, new_len);
3688 		if (!ret && skb_is_gso(skb))
3689 			skb_gso_reset(skb);
3690 	}
3691 	return ret;
3692 }
3693 
3694 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3695 	   u64, flags)
3696 {
3697 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3698 
3699 	bpf_compute_data_pointers(skb);
3700 	return ret;
3701 }
3702 
3703 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3704 	.func		= bpf_skb_change_tail,
3705 	.gpl_only	= false,
3706 	.ret_type	= RET_INTEGER,
3707 	.arg1_type	= ARG_PTR_TO_CTX,
3708 	.arg2_type	= ARG_ANYTHING,
3709 	.arg3_type	= ARG_ANYTHING,
3710 };
3711 
3712 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3713 	   u64, flags)
3714 {
3715 	return __bpf_skb_change_tail(skb, new_len, flags);
3716 }
3717 
3718 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3719 	.func		= sk_skb_change_tail,
3720 	.gpl_only	= false,
3721 	.ret_type	= RET_INTEGER,
3722 	.arg1_type	= ARG_PTR_TO_CTX,
3723 	.arg2_type	= ARG_ANYTHING,
3724 	.arg3_type	= ARG_ANYTHING,
3725 };
3726 
3727 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3728 					u64 flags)
3729 {
3730 	u32 max_len = BPF_SKB_MAX_LEN;
3731 	u32 new_len = skb->len + head_room;
3732 	int ret;
3733 
3734 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3735 		     new_len < skb->len))
3736 		return -EINVAL;
3737 
3738 	ret = skb_cow(skb, head_room);
3739 	if (likely(!ret)) {
3740 		/* Idea for this helper is that we currently only
3741 		 * allow to expand on mac header. This means that
3742 		 * skb->protocol network header, etc, stay as is.
3743 		 * Compared to bpf_skb_change_tail(), we're more
3744 		 * flexible due to not needing to linearize or
3745 		 * reset GSO. Intention for this helper is to be
3746 		 * used by an L3 skb that needs to push mac header
3747 		 * for redirection into L2 device.
3748 		 */
3749 		__skb_push(skb, head_room);
3750 		memset(skb->data, 0, head_room);
3751 		skb_reset_mac_header(skb);
3752 		skb_reset_mac_len(skb);
3753 	}
3754 
3755 	return ret;
3756 }
3757 
3758 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3759 	   u64, flags)
3760 {
3761 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3762 
3763 	bpf_compute_data_pointers(skb);
3764 	return ret;
3765 }
3766 
3767 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3768 	.func		= bpf_skb_change_head,
3769 	.gpl_only	= false,
3770 	.ret_type	= RET_INTEGER,
3771 	.arg1_type	= ARG_PTR_TO_CTX,
3772 	.arg2_type	= ARG_ANYTHING,
3773 	.arg3_type	= ARG_ANYTHING,
3774 };
3775 
3776 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3777 	   u64, flags)
3778 {
3779 	return __bpf_skb_change_head(skb, head_room, flags);
3780 }
3781 
3782 static const struct bpf_func_proto sk_skb_change_head_proto = {
3783 	.func		= sk_skb_change_head,
3784 	.gpl_only	= false,
3785 	.ret_type	= RET_INTEGER,
3786 	.arg1_type	= ARG_PTR_TO_CTX,
3787 	.arg2_type	= ARG_ANYTHING,
3788 	.arg3_type	= ARG_ANYTHING,
3789 };
3790 
3791 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3792 {
3793 	return xdp_get_buff_len(xdp);
3794 }
3795 
3796 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3797 	.func		= bpf_xdp_get_buff_len,
3798 	.gpl_only	= false,
3799 	.ret_type	= RET_INTEGER,
3800 	.arg1_type	= ARG_PTR_TO_CTX,
3801 };
3802 
3803 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3804 
3805 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3806 	.func		= bpf_xdp_get_buff_len,
3807 	.gpl_only	= false,
3808 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3809 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3810 };
3811 
3812 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3813 {
3814 	return xdp_data_meta_unsupported(xdp) ? 0 :
3815 	       xdp->data - xdp->data_meta;
3816 }
3817 
3818 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3819 {
3820 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3821 	unsigned long metalen = xdp_get_metalen(xdp);
3822 	void *data_start = xdp_frame_end + metalen;
3823 	void *data = xdp->data + offset;
3824 
3825 	if (unlikely(data < data_start ||
3826 		     data > xdp->data_end - ETH_HLEN))
3827 		return -EINVAL;
3828 
3829 	if (metalen)
3830 		memmove(xdp->data_meta + offset,
3831 			xdp->data_meta, metalen);
3832 	xdp->data_meta += offset;
3833 	xdp->data = data;
3834 
3835 	return 0;
3836 }
3837 
3838 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3839 	.func		= bpf_xdp_adjust_head,
3840 	.gpl_only	= false,
3841 	.ret_type	= RET_INTEGER,
3842 	.arg1_type	= ARG_PTR_TO_CTX,
3843 	.arg2_type	= ARG_ANYTHING,
3844 };
3845 
3846 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3847 			     void *buf, unsigned long len, bool flush)
3848 {
3849 	unsigned long ptr_len, ptr_off = 0;
3850 	skb_frag_t *next_frag, *end_frag;
3851 	struct skb_shared_info *sinfo;
3852 	void *src, *dst;
3853 	u8 *ptr_buf;
3854 
3855 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3856 		src = flush ? buf : xdp->data + off;
3857 		dst = flush ? xdp->data + off : buf;
3858 		memcpy(dst, src, len);
3859 		return;
3860 	}
3861 
3862 	sinfo = xdp_get_shared_info_from_buff(xdp);
3863 	end_frag = &sinfo->frags[sinfo->nr_frags];
3864 	next_frag = &sinfo->frags[0];
3865 
3866 	ptr_len = xdp->data_end - xdp->data;
3867 	ptr_buf = xdp->data;
3868 
3869 	while (true) {
3870 		if (off < ptr_off + ptr_len) {
3871 			unsigned long copy_off = off - ptr_off;
3872 			unsigned long copy_len = min(len, ptr_len - copy_off);
3873 
3874 			src = flush ? buf : ptr_buf + copy_off;
3875 			dst = flush ? ptr_buf + copy_off : buf;
3876 			memcpy(dst, src, copy_len);
3877 
3878 			off += copy_len;
3879 			len -= copy_len;
3880 			buf += copy_len;
3881 		}
3882 
3883 		if (!len || next_frag == end_frag)
3884 			break;
3885 
3886 		ptr_off += ptr_len;
3887 		ptr_buf = skb_frag_address(next_frag);
3888 		ptr_len = skb_frag_size(next_frag);
3889 		next_frag++;
3890 	}
3891 }
3892 
3893 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3894 {
3895 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3896 	u32 size = xdp->data_end - xdp->data;
3897 	void *addr = xdp->data;
3898 	int i;
3899 
3900 	if (unlikely(offset > 0xffff || len > 0xffff))
3901 		return ERR_PTR(-EFAULT);
3902 
3903 	if (offset + len > xdp_get_buff_len(xdp))
3904 		return ERR_PTR(-EINVAL);
3905 
3906 	if (offset < size) /* linear area */
3907 		goto out;
3908 
3909 	offset -= size;
3910 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3911 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3912 
3913 		if  (offset < frag_size) {
3914 			addr = skb_frag_address(&sinfo->frags[i]);
3915 			size = frag_size;
3916 			break;
3917 		}
3918 		offset -= frag_size;
3919 	}
3920 out:
3921 	return offset + len < size ? addr + offset : NULL;
3922 }
3923 
3924 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3925 	   void *, buf, u32, len)
3926 {
3927 	void *ptr;
3928 
3929 	ptr = bpf_xdp_pointer(xdp, offset, len);
3930 	if (IS_ERR(ptr))
3931 		return PTR_ERR(ptr);
3932 
3933 	if (!ptr)
3934 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3935 	else
3936 		memcpy(buf, ptr, len);
3937 
3938 	return 0;
3939 }
3940 
3941 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3942 	.func		= bpf_xdp_load_bytes,
3943 	.gpl_only	= false,
3944 	.ret_type	= RET_INTEGER,
3945 	.arg1_type	= ARG_PTR_TO_CTX,
3946 	.arg2_type	= ARG_ANYTHING,
3947 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3948 	.arg4_type	= ARG_CONST_SIZE,
3949 };
3950 
3951 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3952 	   void *, buf, u32, len)
3953 {
3954 	void *ptr;
3955 
3956 	ptr = bpf_xdp_pointer(xdp, offset, len);
3957 	if (IS_ERR(ptr))
3958 		return PTR_ERR(ptr);
3959 
3960 	if (!ptr)
3961 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
3962 	else
3963 		memcpy(ptr, buf, len);
3964 
3965 	return 0;
3966 }
3967 
3968 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
3969 	.func		= bpf_xdp_store_bytes,
3970 	.gpl_only	= false,
3971 	.ret_type	= RET_INTEGER,
3972 	.arg1_type	= ARG_PTR_TO_CTX,
3973 	.arg2_type	= ARG_ANYTHING,
3974 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3975 	.arg4_type	= ARG_CONST_SIZE,
3976 };
3977 
3978 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
3979 {
3980 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3981 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
3982 	struct xdp_rxq_info *rxq = xdp->rxq;
3983 	unsigned int tailroom;
3984 
3985 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
3986 		return -EOPNOTSUPP;
3987 
3988 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
3989 	if (unlikely(offset > tailroom))
3990 		return -EINVAL;
3991 
3992 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
3993 	skb_frag_size_add(frag, offset);
3994 	sinfo->xdp_frags_size += offset;
3995 
3996 	return 0;
3997 }
3998 
3999 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4000 {
4001 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4002 	int i, n_frags_free = 0, len_free = 0;
4003 
4004 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4005 		return -EINVAL;
4006 
4007 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4008 		skb_frag_t *frag = &sinfo->frags[i];
4009 		int shrink = min_t(int, offset, skb_frag_size(frag));
4010 
4011 		len_free += shrink;
4012 		offset -= shrink;
4013 
4014 		if (skb_frag_size(frag) == shrink) {
4015 			struct page *page = skb_frag_page(frag);
4016 
4017 			__xdp_return(page_address(page), &xdp->rxq->mem,
4018 				     false, NULL);
4019 			n_frags_free++;
4020 		} else {
4021 			skb_frag_size_sub(frag, shrink);
4022 			break;
4023 		}
4024 	}
4025 	sinfo->nr_frags -= n_frags_free;
4026 	sinfo->xdp_frags_size -= len_free;
4027 
4028 	if (unlikely(!sinfo->nr_frags)) {
4029 		xdp_buff_clear_frags_flag(xdp);
4030 		xdp->data_end -= offset;
4031 	}
4032 
4033 	return 0;
4034 }
4035 
4036 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4037 {
4038 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4039 	void *data_end = xdp->data_end + offset;
4040 
4041 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4042 		if (offset < 0)
4043 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4044 
4045 		return bpf_xdp_frags_increase_tail(xdp, offset);
4046 	}
4047 
4048 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4049 	if (unlikely(data_end > data_hard_end))
4050 		return -EINVAL;
4051 
4052 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
4053 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4054 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4055 		return -EINVAL;
4056 	}
4057 
4058 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4059 		return -EINVAL;
4060 
4061 	/* Clear memory area on grow, can contain uninit kernel memory */
4062 	if (offset > 0)
4063 		memset(xdp->data_end, 0, offset);
4064 
4065 	xdp->data_end = data_end;
4066 
4067 	return 0;
4068 }
4069 
4070 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4071 	.func		= bpf_xdp_adjust_tail,
4072 	.gpl_only	= false,
4073 	.ret_type	= RET_INTEGER,
4074 	.arg1_type	= ARG_PTR_TO_CTX,
4075 	.arg2_type	= ARG_ANYTHING,
4076 };
4077 
4078 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4079 {
4080 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4081 	void *meta = xdp->data_meta + offset;
4082 	unsigned long metalen = xdp->data - meta;
4083 
4084 	if (xdp_data_meta_unsupported(xdp))
4085 		return -ENOTSUPP;
4086 	if (unlikely(meta < xdp_frame_end ||
4087 		     meta > xdp->data))
4088 		return -EINVAL;
4089 	if (unlikely(xdp_metalen_invalid(metalen)))
4090 		return -EACCES;
4091 
4092 	xdp->data_meta = meta;
4093 
4094 	return 0;
4095 }
4096 
4097 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4098 	.func		= bpf_xdp_adjust_meta,
4099 	.gpl_only	= false,
4100 	.ret_type	= RET_INTEGER,
4101 	.arg1_type	= ARG_PTR_TO_CTX,
4102 	.arg2_type	= ARG_ANYTHING,
4103 };
4104 
4105 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4106  * below:
4107  *
4108  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4109  *    of the redirect and store it (along with some other metadata) in a per-CPU
4110  *    struct bpf_redirect_info.
4111  *
4112  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4113  *    call xdp_do_redirect() which will use the information in struct
4114  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4115  *    bulk queue structure.
4116  *
4117  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4118  *    which will flush all the different bulk queues, thus completing the
4119  *    redirect.
4120  *
4121  * Pointers to the map entries will be kept around for this whole sequence of
4122  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4123  * the core code; instead, the RCU protection relies on everything happening
4124  * inside a single NAPI poll sequence, which means it's between a pair of calls
4125  * to local_bh_disable()/local_bh_enable().
4126  *
4127  * The map entries are marked as __rcu and the map code makes sure to
4128  * dereference those pointers with rcu_dereference_check() in a way that works
4129  * for both sections that to hold an rcu_read_lock() and sections that are
4130  * called from NAPI without a separate rcu_read_lock(). The code below does not
4131  * use RCU annotations, but relies on those in the map code.
4132  */
4133 void xdp_do_flush(void)
4134 {
4135 	__dev_flush();
4136 	__cpu_map_flush();
4137 	__xsk_map_flush();
4138 }
4139 EXPORT_SYMBOL_GPL(xdp_do_flush);
4140 
4141 void bpf_clear_redirect_map(struct bpf_map *map)
4142 {
4143 	struct bpf_redirect_info *ri;
4144 	int cpu;
4145 
4146 	for_each_possible_cpu(cpu) {
4147 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4148 		/* Avoid polluting remote cacheline due to writes if
4149 		 * not needed. Once we pass this test, we need the
4150 		 * cmpxchg() to make sure it hasn't been changed in
4151 		 * the meantime by remote CPU.
4152 		 */
4153 		if (unlikely(READ_ONCE(ri->map) == map))
4154 			cmpxchg(&ri->map, map, NULL);
4155 	}
4156 }
4157 
4158 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4159 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4160 
4161 u32 xdp_master_redirect(struct xdp_buff *xdp)
4162 {
4163 	struct net_device *master, *slave;
4164 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4165 
4166 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4167 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4168 	if (slave && slave != xdp->rxq->dev) {
4169 		/* The target device is different from the receiving device, so
4170 		 * redirect it to the new device.
4171 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4172 		 * drivers to unmap the packet from their rx ring.
4173 		 */
4174 		ri->tgt_index = slave->ifindex;
4175 		ri->map_id = INT_MAX;
4176 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4177 		return XDP_REDIRECT;
4178 	}
4179 	return XDP_TX;
4180 }
4181 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4182 
4183 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4184 					struct net_device *dev,
4185 					struct xdp_buff *xdp,
4186 					struct bpf_prog *xdp_prog)
4187 {
4188 	enum bpf_map_type map_type = ri->map_type;
4189 	void *fwd = ri->tgt_value;
4190 	u32 map_id = ri->map_id;
4191 	int err;
4192 
4193 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4194 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4195 
4196 	err = __xsk_map_redirect(fwd, xdp);
4197 	if (unlikely(err))
4198 		goto err;
4199 
4200 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4201 	return 0;
4202 err:
4203 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4204 	return err;
4205 }
4206 
4207 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4208 						   struct net_device *dev,
4209 						   struct xdp_frame *xdpf,
4210 						   struct bpf_prog *xdp_prog)
4211 {
4212 	enum bpf_map_type map_type = ri->map_type;
4213 	void *fwd = ri->tgt_value;
4214 	u32 map_id = ri->map_id;
4215 	struct bpf_map *map;
4216 	int err;
4217 
4218 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4219 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4220 
4221 	if (unlikely(!xdpf)) {
4222 		err = -EOVERFLOW;
4223 		goto err;
4224 	}
4225 
4226 	switch (map_type) {
4227 	case BPF_MAP_TYPE_DEVMAP:
4228 		fallthrough;
4229 	case BPF_MAP_TYPE_DEVMAP_HASH:
4230 		map = READ_ONCE(ri->map);
4231 		if (unlikely(map)) {
4232 			WRITE_ONCE(ri->map, NULL);
4233 			err = dev_map_enqueue_multi(xdpf, dev, map,
4234 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4235 		} else {
4236 			err = dev_map_enqueue(fwd, xdpf, dev);
4237 		}
4238 		break;
4239 	case BPF_MAP_TYPE_CPUMAP:
4240 		err = cpu_map_enqueue(fwd, xdpf, dev);
4241 		break;
4242 	case BPF_MAP_TYPE_UNSPEC:
4243 		if (map_id == INT_MAX) {
4244 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4245 			if (unlikely(!fwd)) {
4246 				err = -EINVAL;
4247 				break;
4248 			}
4249 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4250 			break;
4251 		}
4252 		fallthrough;
4253 	default:
4254 		err = -EBADRQC;
4255 	}
4256 
4257 	if (unlikely(err))
4258 		goto err;
4259 
4260 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4261 	return 0;
4262 err:
4263 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4264 	return err;
4265 }
4266 
4267 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4268 		    struct bpf_prog *xdp_prog)
4269 {
4270 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4271 	enum bpf_map_type map_type = ri->map_type;
4272 
4273 	/* XDP_REDIRECT is not fully supported yet for xdp frags since
4274 	 * not all XDP capable drivers can map non-linear xdp_frame in
4275 	 * ndo_xdp_xmit.
4276 	 */
4277 	if (unlikely(xdp_buff_has_frags(xdp) &&
4278 		     map_type != BPF_MAP_TYPE_CPUMAP))
4279 		return -EOPNOTSUPP;
4280 
4281 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4282 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4283 
4284 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4285 				       xdp_prog);
4286 }
4287 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4288 
4289 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4290 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4291 {
4292 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4293 	enum bpf_map_type map_type = ri->map_type;
4294 
4295 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4296 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4297 
4298 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4299 }
4300 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4301 
4302 static int xdp_do_generic_redirect_map(struct net_device *dev,
4303 				       struct sk_buff *skb,
4304 				       struct xdp_buff *xdp,
4305 				       struct bpf_prog *xdp_prog,
4306 				       void *fwd,
4307 				       enum bpf_map_type map_type, u32 map_id)
4308 {
4309 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4310 	struct bpf_map *map;
4311 	int err;
4312 
4313 	switch (map_type) {
4314 	case BPF_MAP_TYPE_DEVMAP:
4315 		fallthrough;
4316 	case BPF_MAP_TYPE_DEVMAP_HASH:
4317 		map = READ_ONCE(ri->map);
4318 		if (unlikely(map)) {
4319 			WRITE_ONCE(ri->map, NULL);
4320 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4321 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4322 		} else {
4323 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4324 		}
4325 		if (unlikely(err))
4326 			goto err;
4327 		break;
4328 	case BPF_MAP_TYPE_XSKMAP:
4329 		err = xsk_generic_rcv(fwd, xdp);
4330 		if (err)
4331 			goto err;
4332 		consume_skb(skb);
4333 		break;
4334 	case BPF_MAP_TYPE_CPUMAP:
4335 		err = cpu_map_generic_redirect(fwd, skb);
4336 		if (unlikely(err))
4337 			goto err;
4338 		break;
4339 	default:
4340 		err = -EBADRQC;
4341 		goto err;
4342 	}
4343 
4344 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4345 	return 0;
4346 err:
4347 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4348 	return err;
4349 }
4350 
4351 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4352 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4353 {
4354 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4355 	enum bpf_map_type map_type = ri->map_type;
4356 	void *fwd = ri->tgt_value;
4357 	u32 map_id = ri->map_id;
4358 	int err;
4359 
4360 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4361 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4362 
4363 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4364 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4365 		if (unlikely(!fwd)) {
4366 			err = -EINVAL;
4367 			goto err;
4368 		}
4369 
4370 		err = xdp_ok_fwd_dev(fwd, skb->len);
4371 		if (unlikely(err))
4372 			goto err;
4373 
4374 		skb->dev = fwd;
4375 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4376 		generic_xdp_tx(skb, xdp_prog);
4377 		return 0;
4378 	}
4379 
4380 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4381 err:
4382 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4383 	return err;
4384 }
4385 
4386 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4387 {
4388 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4389 
4390 	if (unlikely(flags))
4391 		return XDP_ABORTED;
4392 
4393 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4394 	 * by map_idr) is used for ifindex based XDP redirect.
4395 	 */
4396 	ri->tgt_index = ifindex;
4397 	ri->map_id = INT_MAX;
4398 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4399 
4400 	return XDP_REDIRECT;
4401 }
4402 
4403 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4404 	.func           = bpf_xdp_redirect,
4405 	.gpl_only       = false,
4406 	.ret_type       = RET_INTEGER,
4407 	.arg1_type      = ARG_ANYTHING,
4408 	.arg2_type      = ARG_ANYTHING,
4409 };
4410 
4411 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4412 	   u64, flags)
4413 {
4414 	return map->ops->map_redirect(map, ifindex, flags);
4415 }
4416 
4417 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4418 	.func           = bpf_xdp_redirect_map,
4419 	.gpl_only       = false,
4420 	.ret_type       = RET_INTEGER,
4421 	.arg1_type      = ARG_CONST_MAP_PTR,
4422 	.arg2_type      = ARG_ANYTHING,
4423 	.arg3_type      = ARG_ANYTHING,
4424 };
4425 
4426 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4427 				  unsigned long off, unsigned long len)
4428 {
4429 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4430 
4431 	if (unlikely(!ptr))
4432 		return len;
4433 	if (ptr != dst_buff)
4434 		memcpy(dst_buff, ptr, len);
4435 
4436 	return 0;
4437 }
4438 
4439 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4440 	   u64, flags, void *, meta, u64, meta_size)
4441 {
4442 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4443 
4444 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4445 		return -EINVAL;
4446 	if (unlikely(!skb || skb_size > skb->len))
4447 		return -EFAULT;
4448 
4449 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4450 				bpf_skb_copy);
4451 }
4452 
4453 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4454 	.func		= bpf_skb_event_output,
4455 	.gpl_only	= true,
4456 	.ret_type	= RET_INTEGER,
4457 	.arg1_type	= ARG_PTR_TO_CTX,
4458 	.arg2_type	= ARG_CONST_MAP_PTR,
4459 	.arg3_type	= ARG_ANYTHING,
4460 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4461 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4462 };
4463 
4464 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4465 
4466 const struct bpf_func_proto bpf_skb_output_proto = {
4467 	.func		= bpf_skb_event_output,
4468 	.gpl_only	= true,
4469 	.ret_type	= RET_INTEGER,
4470 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4471 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4472 	.arg2_type	= ARG_CONST_MAP_PTR,
4473 	.arg3_type	= ARG_ANYTHING,
4474 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4475 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4476 };
4477 
4478 static unsigned short bpf_tunnel_key_af(u64 flags)
4479 {
4480 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4481 }
4482 
4483 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4484 	   u32, size, u64, flags)
4485 {
4486 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4487 	u8 compat[sizeof(struct bpf_tunnel_key)];
4488 	void *to_orig = to;
4489 	int err;
4490 
4491 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4492 		err = -EINVAL;
4493 		goto err_clear;
4494 	}
4495 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4496 		err = -EPROTO;
4497 		goto err_clear;
4498 	}
4499 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4500 		err = -EINVAL;
4501 		switch (size) {
4502 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4503 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4504 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4505 			goto set_compat;
4506 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4507 			/* Fixup deprecated structure layouts here, so we have
4508 			 * a common path later on.
4509 			 */
4510 			if (ip_tunnel_info_af(info) != AF_INET)
4511 				goto err_clear;
4512 set_compat:
4513 			to = (struct bpf_tunnel_key *)compat;
4514 			break;
4515 		default:
4516 			goto err_clear;
4517 		}
4518 	}
4519 
4520 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4521 	to->tunnel_tos = info->key.tos;
4522 	to->tunnel_ttl = info->key.ttl;
4523 	to->tunnel_ext = 0;
4524 
4525 	if (flags & BPF_F_TUNINFO_IPV6) {
4526 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4527 		       sizeof(to->remote_ipv6));
4528 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4529 		       sizeof(to->local_ipv6));
4530 		to->tunnel_label = be32_to_cpu(info->key.label);
4531 	} else {
4532 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4533 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4534 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4535 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4536 		to->tunnel_label = 0;
4537 	}
4538 
4539 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4540 		memcpy(to_orig, to, size);
4541 
4542 	return 0;
4543 err_clear:
4544 	memset(to_orig, 0, size);
4545 	return err;
4546 }
4547 
4548 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4549 	.func		= bpf_skb_get_tunnel_key,
4550 	.gpl_only	= false,
4551 	.ret_type	= RET_INTEGER,
4552 	.arg1_type	= ARG_PTR_TO_CTX,
4553 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4554 	.arg3_type	= ARG_CONST_SIZE,
4555 	.arg4_type	= ARG_ANYTHING,
4556 };
4557 
4558 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4559 {
4560 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4561 	int err;
4562 
4563 	if (unlikely(!info ||
4564 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4565 		err = -ENOENT;
4566 		goto err_clear;
4567 	}
4568 	if (unlikely(size < info->options_len)) {
4569 		err = -ENOMEM;
4570 		goto err_clear;
4571 	}
4572 
4573 	ip_tunnel_info_opts_get(to, info);
4574 	if (size > info->options_len)
4575 		memset(to + info->options_len, 0, size - info->options_len);
4576 
4577 	return info->options_len;
4578 err_clear:
4579 	memset(to, 0, size);
4580 	return err;
4581 }
4582 
4583 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4584 	.func		= bpf_skb_get_tunnel_opt,
4585 	.gpl_only	= false,
4586 	.ret_type	= RET_INTEGER,
4587 	.arg1_type	= ARG_PTR_TO_CTX,
4588 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4589 	.arg3_type	= ARG_CONST_SIZE,
4590 };
4591 
4592 static struct metadata_dst __percpu *md_dst;
4593 
4594 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4595 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4596 {
4597 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4598 	u8 compat[sizeof(struct bpf_tunnel_key)];
4599 	struct ip_tunnel_info *info;
4600 
4601 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4602 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4603 		return -EINVAL;
4604 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4605 		switch (size) {
4606 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4607 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4608 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4609 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4610 			/* Fixup deprecated structure layouts here, so we have
4611 			 * a common path later on.
4612 			 */
4613 			memcpy(compat, from, size);
4614 			memset(compat + size, 0, sizeof(compat) - size);
4615 			from = (const struct bpf_tunnel_key *) compat;
4616 			break;
4617 		default:
4618 			return -EINVAL;
4619 		}
4620 	}
4621 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4622 		     from->tunnel_ext))
4623 		return -EINVAL;
4624 
4625 	skb_dst_drop(skb);
4626 	dst_hold((struct dst_entry *) md);
4627 	skb_dst_set(skb, (struct dst_entry *) md);
4628 
4629 	info = &md->u.tun_info;
4630 	memset(info, 0, sizeof(*info));
4631 	info->mode = IP_TUNNEL_INFO_TX;
4632 
4633 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4634 	if (flags & BPF_F_DONT_FRAGMENT)
4635 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4636 	if (flags & BPF_F_ZERO_CSUM_TX)
4637 		info->key.tun_flags &= ~TUNNEL_CSUM;
4638 	if (flags & BPF_F_SEQ_NUMBER)
4639 		info->key.tun_flags |= TUNNEL_SEQ;
4640 
4641 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4642 	info->key.tos = from->tunnel_tos;
4643 	info->key.ttl = from->tunnel_ttl;
4644 
4645 	if (flags & BPF_F_TUNINFO_IPV6) {
4646 		info->mode |= IP_TUNNEL_INFO_IPV6;
4647 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4648 		       sizeof(from->remote_ipv6));
4649 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4650 		       sizeof(from->local_ipv6));
4651 		info->key.label = cpu_to_be32(from->tunnel_label) &
4652 				  IPV6_FLOWLABEL_MASK;
4653 	} else {
4654 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4655 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4656 	}
4657 
4658 	return 0;
4659 }
4660 
4661 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4662 	.func		= bpf_skb_set_tunnel_key,
4663 	.gpl_only	= false,
4664 	.ret_type	= RET_INTEGER,
4665 	.arg1_type	= ARG_PTR_TO_CTX,
4666 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4667 	.arg3_type	= ARG_CONST_SIZE,
4668 	.arg4_type	= ARG_ANYTHING,
4669 };
4670 
4671 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4672 	   const u8 *, from, u32, size)
4673 {
4674 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4675 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4676 
4677 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4678 		return -EINVAL;
4679 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4680 		return -ENOMEM;
4681 
4682 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4683 
4684 	return 0;
4685 }
4686 
4687 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4688 	.func		= bpf_skb_set_tunnel_opt,
4689 	.gpl_only	= false,
4690 	.ret_type	= RET_INTEGER,
4691 	.arg1_type	= ARG_PTR_TO_CTX,
4692 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4693 	.arg3_type	= ARG_CONST_SIZE,
4694 };
4695 
4696 static const struct bpf_func_proto *
4697 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4698 {
4699 	if (!md_dst) {
4700 		struct metadata_dst __percpu *tmp;
4701 
4702 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4703 						METADATA_IP_TUNNEL,
4704 						GFP_KERNEL);
4705 		if (!tmp)
4706 			return NULL;
4707 		if (cmpxchg(&md_dst, NULL, tmp))
4708 			metadata_dst_free_percpu(tmp);
4709 	}
4710 
4711 	switch (which) {
4712 	case BPF_FUNC_skb_set_tunnel_key:
4713 		return &bpf_skb_set_tunnel_key_proto;
4714 	case BPF_FUNC_skb_set_tunnel_opt:
4715 		return &bpf_skb_set_tunnel_opt_proto;
4716 	default:
4717 		return NULL;
4718 	}
4719 }
4720 
4721 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4722 	   u32, idx)
4723 {
4724 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4725 	struct cgroup *cgrp;
4726 	struct sock *sk;
4727 
4728 	sk = skb_to_full_sk(skb);
4729 	if (!sk || !sk_fullsock(sk))
4730 		return -ENOENT;
4731 	if (unlikely(idx >= array->map.max_entries))
4732 		return -E2BIG;
4733 
4734 	cgrp = READ_ONCE(array->ptrs[idx]);
4735 	if (unlikely(!cgrp))
4736 		return -EAGAIN;
4737 
4738 	return sk_under_cgroup_hierarchy(sk, cgrp);
4739 }
4740 
4741 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4742 	.func		= bpf_skb_under_cgroup,
4743 	.gpl_only	= false,
4744 	.ret_type	= RET_INTEGER,
4745 	.arg1_type	= ARG_PTR_TO_CTX,
4746 	.arg2_type	= ARG_CONST_MAP_PTR,
4747 	.arg3_type	= ARG_ANYTHING,
4748 };
4749 
4750 #ifdef CONFIG_SOCK_CGROUP_DATA
4751 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4752 {
4753 	struct cgroup *cgrp;
4754 
4755 	sk = sk_to_full_sk(sk);
4756 	if (!sk || !sk_fullsock(sk))
4757 		return 0;
4758 
4759 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4760 	return cgroup_id(cgrp);
4761 }
4762 
4763 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4764 {
4765 	return __bpf_sk_cgroup_id(skb->sk);
4766 }
4767 
4768 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4769 	.func           = bpf_skb_cgroup_id,
4770 	.gpl_only       = false,
4771 	.ret_type       = RET_INTEGER,
4772 	.arg1_type      = ARG_PTR_TO_CTX,
4773 };
4774 
4775 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4776 					      int ancestor_level)
4777 {
4778 	struct cgroup *ancestor;
4779 	struct cgroup *cgrp;
4780 
4781 	sk = sk_to_full_sk(sk);
4782 	if (!sk || !sk_fullsock(sk))
4783 		return 0;
4784 
4785 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4786 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4787 	if (!ancestor)
4788 		return 0;
4789 
4790 	return cgroup_id(ancestor);
4791 }
4792 
4793 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4794 	   ancestor_level)
4795 {
4796 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4797 }
4798 
4799 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4800 	.func           = bpf_skb_ancestor_cgroup_id,
4801 	.gpl_only       = false,
4802 	.ret_type       = RET_INTEGER,
4803 	.arg1_type      = ARG_PTR_TO_CTX,
4804 	.arg2_type      = ARG_ANYTHING,
4805 };
4806 
4807 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4808 {
4809 	return __bpf_sk_cgroup_id(sk);
4810 }
4811 
4812 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4813 	.func           = bpf_sk_cgroup_id,
4814 	.gpl_only       = false,
4815 	.ret_type       = RET_INTEGER,
4816 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4817 };
4818 
4819 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4820 {
4821 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4822 }
4823 
4824 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4825 	.func           = bpf_sk_ancestor_cgroup_id,
4826 	.gpl_only       = false,
4827 	.ret_type       = RET_INTEGER,
4828 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4829 	.arg2_type      = ARG_ANYTHING,
4830 };
4831 #endif
4832 
4833 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4834 				  unsigned long off, unsigned long len)
4835 {
4836 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4837 
4838 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4839 	return 0;
4840 }
4841 
4842 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4843 	   u64, flags, void *, meta, u64, meta_size)
4844 {
4845 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4846 
4847 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4848 		return -EINVAL;
4849 
4850 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4851 		return -EFAULT;
4852 
4853 	return bpf_event_output(map, flags, meta, meta_size, xdp,
4854 				xdp_size, bpf_xdp_copy);
4855 }
4856 
4857 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4858 	.func		= bpf_xdp_event_output,
4859 	.gpl_only	= true,
4860 	.ret_type	= RET_INTEGER,
4861 	.arg1_type	= ARG_PTR_TO_CTX,
4862 	.arg2_type	= ARG_CONST_MAP_PTR,
4863 	.arg3_type	= ARG_ANYTHING,
4864 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4865 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4866 };
4867 
4868 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4869 
4870 const struct bpf_func_proto bpf_xdp_output_proto = {
4871 	.func		= bpf_xdp_event_output,
4872 	.gpl_only	= true,
4873 	.ret_type	= RET_INTEGER,
4874 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4875 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4876 	.arg2_type	= ARG_CONST_MAP_PTR,
4877 	.arg3_type	= ARG_ANYTHING,
4878 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4879 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4880 };
4881 
4882 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4883 {
4884 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4885 }
4886 
4887 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4888 	.func           = bpf_get_socket_cookie,
4889 	.gpl_only       = false,
4890 	.ret_type       = RET_INTEGER,
4891 	.arg1_type      = ARG_PTR_TO_CTX,
4892 };
4893 
4894 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4895 {
4896 	return __sock_gen_cookie(ctx->sk);
4897 }
4898 
4899 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4900 	.func		= bpf_get_socket_cookie_sock_addr,
4901 	.gpl_only	= false,
4902 	.ret_type	= RET_INTEGER,
4903 	.arg1_type	= ARG_PTR_TO_CTX,
4904 };
4905 
4906 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4907 {
4908 	return __sock_gen_cookie(ctx);
4909 }
4910 
4911 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4912 	.func		= bpf_get_socket_cookie_sock,
4913 	.gpl_only	= false,
4914 	.ret_type	= RET_INTEGER,
4915 	.arg1_type	= ARG_PTR_TO_CTX,
4916 };
4917 
4918 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4919 {
4920 	return sk ? sock_gen_cookie(sk) : 0;
4921 }
4922 
4923 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4924 	.func		= bpf_get_socket_ptr_cookie,
4925 	.gpl_only	= false,
4926 	.ret_type	= RET_INTEGER,
4927 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4928 };
4929 
4930 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4931 {
4932 	return __sock_gen_cookie(ctx->sk);
4933 }
4934 
4935 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4936 	.func		= bpf_get_socket_cookie_sock_ops,
4937 	.gpl_only	= false,
4938 	.ret_type	= RET_INTEGER,
4939 	.arg1_type	= ARG_PTR_TO_CTX,
4940 };
4941 
4942 static u64 __bpf_get_netns_cookie(struct sock *sk)
4943 {
4944 	const struct net *net = sk ? sock_net(sk) : &init_net;
4945 
4946 	return net->net_cookie;
4947 }
4948 
4949 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4950 {
4951 	return __bpf_get_netns_cookie(ctx);
4952 }
4953 
4954 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4955 	.func		= bpf_get_netns_cookie_sock,
4956 	.gpl_only	= false,
4957 	.ret_type	= RET_INTEGER,
4958 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4959 };
4960 
4961 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4962 {
4963 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4964 }
4965 
4966 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4967 	.func		= bpf_get_netns_cookie_sock_addr,
4968 	.gpl_only	= false,
4969 	.ret_type	= RET_INTEGER,
4970 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4971 };
4972 
4973 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4974 {
4975 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4976 }
4977 
4978 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4979 	.func		= bpf_get_netns_cookie_sock_ops,
4980 	.gpl_only	= false,
4981 	.ret_type	= RET_INTEGER,
4982 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4983 };
4984 
4985 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4986 {
4987 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4988 }
4989 
4990 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4991 	.func		= bpf_get_netns_cookie_sk_msg,
4992 	.gpl_only	= false,
4993 	.ret_type	= RET_INTEGER,
4994 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4995 };
4996 
4997 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4998 {
4999 	struct sock *sk = sk_to_full_sk(skb->sk);
5000 	kuid_t kuid;
5001 
5002 	if (!sk || !sk_fullsock(sk))
5003 		return overflowuid;
5004 	kuid = sock_net_uid(sock_net(sk), sk);
5005 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5006 }
5007 
5008 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5009 	.func           = bpf_get_socket_uid,
5010 	.gpl_only       = false,
5011 	.ret_type       = RET_INTEGER,
5012 	.arg1_type      = ARG_PTR_TO_CTX,
5013 };
5014 
5015 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5016 			   char *optval, int optlen)
5017 {
5018 	char devname[IFNAMSIZ];
5019 	int val, valbool;
5020 	struct net *net;
5021 	int ifindex;
5022 	int ret = 0;
5023 
5024 	if (!sk_fullsock(sk))
5025 		return -EINVAL;
5026 
5027 	sock_owned_by_me(sk);
5028 
5029 	if (level == SOL_SOCKET) {
5030 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
5031 			return -EINVAL;
5032 		val = *((int *)optval);
5033 		valbool = val ? 1 : 0;
5034 
5035 		/* Only some socketops are supported */
5036 		switch (optname) {
5037 		case SO_RCVBUF:
5038 			val = min_t(u32, val, sysctl_rmem_max);
5039 			val = min_t(int, val, INT_MAX / 2);
5040 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
5041 			WRITE_ONCE(sk->sk_rcvbuf,
5042 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
5043 			break;
5044 		case SO_SNDBUF:
5045 			val = min_t(u32, val, sysctl_wmem_max);
5046 			val = min_t(int, val, INT_MAX / 2);
5047 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
5048 			WRITE_ONCE(sk->sk_sndbuf,
5049 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
5050 			break;
5051 		case SO_MAX_PACING_RATE: /* 32bit version */
5052 			if (val != ~0U)
5053 				cmpxchg(&sk->sk_pacing_status,
5054 					SK_PACING_NONE,
5055 					SK_PACING_NEEDED);
5056 			sk->sk_max_pacing_rate = (val == ~0U) ?
5057 						 ~0UL : (unsigned int)val;
5058 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
5059 						 sk->sk_max_pacing_rate);
5060 			break;
5061 		case SO_PRIORITY:
5062 			sk->sk_priority = val;
5063 			break;
5064 		case SO_RCVLOWAT:
5065 			if (val < 0)
5066 				val = INT_MAX;
5067 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
5068 			break;
5069 		case SO_MARK:
5070 			if (sk->sk_mark != val) {
5071 				sk->sk_mark = val;
5072 				sk_dst_reset(sk);
5073 			}
5074 			break;
5075 		case SO_BINDTODEVICE:
5076 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
5077 			strncpy(devname, optval, optlen);
5078 			devname[optlen] = 0;
5079 
5080 			ifindex = 0;
5081 			if (devname[0] != '\0') {
5082 				struct net_device *dev;
5083 
5084 				ret = -ENODEV;
5085 
5086 				net = sock_net(sk);
5087 				dev = dev_get_by_name(net, devname);
5088 				if (!dev)
5089 					break;
5090 				ifindex = dev->ifindex;
5091 				dev_put(dev);
5092 			}
5093 			fallthrough;
5094 		case SO_BINDTOIFINDEX:
5095 			if (optname == SO_BINDTOIFINDEX)
5096 				ifindex = val;
5097 			ret = sock_bindtoindex(sk, ifindex, false);
5098 			break;
5099 		case SO_KEEPALIVE:
5100 			if (sk->sk_prot->keepalive)
5101 				sk->sk_prot->keepalive(sk, valbool);
5102 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
5103 			break;
5104 		case SO_REUSEPORT:
5105 			sk->sk_reuseport = valbool;
5106 			break;
5107 		case SO_TXREHASH:
5108 			if (val < -1 || val > 1) {
5109 				ret = -EINVAL;
5110 				break;
5111 			}
5112 			sk->sk_txrehash = (u8)val;
5113 			break;
5114 		default:
5115 			ret = -EINVAL;
5116 		}
5117 #ifdef CONFIG_INET
5118 	} else if (level == SOL_IP) {
5119 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5120 			return -EINVAL;
5121 
5122 		val = *((int *)optval);
5123 		/* Only some options are supported */
5124 		switch (optname) {
5125 		case IP_TOS:
5126 			if (val < -1 || val > 0xff) {
5127 				ret = -EINVAL;
5128 			} else {
5129 				struct inet_sock *inet = inet_sk(sk);
5130 
5131 				if (val == -1)
5132 					val = 0;
5133 				inet->tos = val;
5134 			}
5135 			break;
5136 		default:
5137 			ret = -EINVAL;
5138 		}
5139 #if IS_ENABLED(CONFIG_IPV6)
5140 	} else if (level == SOL_IPV6) {
5141 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5142 			return -EINVAL;
5143 
5144 		val = *((int *)optval);
5145 		/* Only some options are supported */
5146 		switch (optname) {
5147 		case IPV6_TCLASS:
5148 			if (val < -1 || val > 0xff) {
5149 				ret = -EINVAL;
5150 			} else {
5151 				struct ipv6_pinfo *np = inet6_sk(sk);
5152 
5153 				if (val == -1)
5154 					val = 0;
5155 				np->tclass = val;
5156 			}
5157 			break;
5158 		default:
5159 			ret = -EINVAL;
5160 		}
5161 #endif
5162 	} else if (level == SOL_TCP &&
5163 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
5164 		if (optname == TCP_CONGESTION) {
5165 			char name[TCP_CA_NAME_MAX];
5166 
5167 			strncpy(name, optval, min_t(long, optlen,
5168 						    TCP_CA_NAME_MAX-1));
5169 			name[TCP_CA_NAME_MAX-1] = 0;
5170 			ret = tcp_set_congestion_control(sk, name, false, true);
5171 		} else {
5172 			struct inet_connection_sock *icsk = inet_csk(sk);
5173 			struct tcp_sock *tp = tcp_sk(sk);
5174 			unsigned long timeout;
5175 
5176 			if (optlen != sizeof(int))
5177 				return -EINVAL;
5178 
5179 			val = *((int *)optval);
5180 			/* Only some options are supported */
5181 			switch (optname) {
5182 			case TCP_BPF_IW:
5183 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
5184 					ret = -EINVAL;
5185 				else
5186 					tcp_snd_cwnd_set(tp, val);
5187 				break;
5188 			case TCP_BPF_SNDCWND_CLAMP:
5189 				if (val <= 0) {
5190 					ret = -EINVAL;
5191 				} else {
5192 					tp->snd_cwnd_clamp = val;
5193 					tp->snd_ssthresh = val;
5194 				}
5195 				break;
5196 			case TCP_BPF_DELACK_MAX:
5197 				timeout = usecs_to_jiffies(val);
5198 				if (timeout > TCP_DELACK_MAX ||
5199 				    timeout < TCP_TIMEOUT_MIN)
5200 					return -EINVAL;
5201 				inet_csk(sk)->icsk_delack_max = timeout;
5202 				break;
5203 			case TCP_BPF_RTO_MIN:
5204 				timeout = usecs_to_jiffies(val);
5205 				if (timeout > TCP_RTO_MIN ||
5206 				    timeout < TCP_TIMEOUT_MIN)
5207 					return -EINVAL;
5208 				inet_csk(sk)->icsk_rto_min = timeout;
5209 				break;
5210 			case TCP_SAVE_SYN:
5211 				if (val < 0 || val > 1)
5212 					ret = -EINVAL;
5213 				else
5214 					tp->save_syn = val;
5215 				break;
5216 			case TCP_KEEPIDLE:
5217 				ret = tcp_sock_set_keepidle_locked(sk, val);
5218 				break;
5219 			case TCP_KEEPINTVL:
5220 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
5221 					ret = -EINVAL;
5222 				else
5223 					tp->keepalive_intvl = val * HZ;
5224 				break;
5225 			case TCP_KEEPCNT:
5226 				if (val < 1 || val > MAX_TCP_KEEPCNT)
5227 					ret = -EINVAL;
5228 				else
5229 					tp->keepalive_probes = val;
5230 				break;
5231 			case TCP_SYNCNT:
5232 				if (val < 1 || val > MAX_TCP_SYNCNT)
5233 					ret = -EINVAL;
5234 				else
5235 					icsk->icsk_syn_retries = val;
5236 				break;
5237 			case TCP_USER_TIMEOUT:
5238 				if (val < 0)
5239 					ret = -EINVAL;
5240 				else
5241 					icsk->icsk_user_timeout = val;
5242 				break;
5243 			case TCP_NOTSENT_LOWAT:
5244 				tp->notsent_lowat = val;
5245 				sk->sk_write_space(sk);
5246 				break;
5247 			case TCP_WINDOW_CLAMP:
5248 				ret = tcp_set_window_clamp(sk, val);
5249 				break;
5250 			default:
5251 				ret = -EINVAL;
5252 			}
5253 		}
5254 #endif
5255 	} else {
5256 		ret = -EINVAL;
5257 	}
5258 	return ret;
5259 }
5260 
5261 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5262 			   char *optval, int optlen)
5263 {
5264 	if (!sk_fullsock(sk))
5265 		goto err_clear;
5266 
5267 	sock_owned_by_me(sk);
5268 
5269 	if (level == SOL_SOCKET) {
5270 		if (optlen != sizeof(int))
5271 			goto err_clear;
5272 
5273 		switch (optname) {
5274 		case SO_RCVBUF:
5275 			*((int *)optval) = sk->sk_rcvbuf;
5276 			break;
5277 		case SO_SNDBUF:
5278 			*((int *)optval) = sk->sk_sndbuf;
5279 			break;
5280 		case SO_MARK:
5281 			*((int *)optval) = sk->sk_mark;
5282 			break;
5283 		case SO_PRIORITY:
5284 			*((int *)optval) = sk->sk_priority;
5285 			break;
5286 		case SO_BINDTOIFINDEX:
5287 			*((int *)optval) = sk->sk_bound_dev_if;
5288 			break;
5289 		case SO_REUSEPORT:
5290 			*((int *)optval) = sk->sk_reuseport;
5291 			break;
5292 		case SO_TXREHASH:
5293 			*((int *)optval) = sk->sk_txrehash;
5294 			break;
5295 		default:
5296 			goto err_clear;
5297 		}
5298 #ifdef CONFIG_INET
5299 	} else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
5300 		struct inet_connection_sock *icsk;
5301 		struct tcp_sock *tp;
5302 
5303 		switch (optname) {
5304 		case TCP_CONGESTION:
5305 			icsk = inet_csk(sk);
5306 
5307 			if (!icsk->icsk_ca_ops || optlen <= 1)
5308 				goto err_clear;
5309 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
5310 			optval[optlen - 1] = 0;
5311 			break;
5312 		case TCP_SAVED_SYN:
5313 			tp = tcp_sk(sk);
5314 
5315 			if (optlen <= 0 || !tp->saved_syn ||
5316 			    optlen > tcp_saved_syn_len(tp->saved_syn))
5317 				goto err_clear;
5318 			memcpy(optval, tp->saved_syn->data, optlen);
5319 			break;
5320 		default:
5321 			goto err_clear;
5322 		}
5323 	} else if (level == SOL_IP) {
5324 		struct inet_sock *inet = inet_sk(sk);
5325 
5326 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5327 			goto err_clear;
5328 
5329 		/* Only some options are supported */
5330 		switch (optname) {
5331 		case IP_TOS:
5332 			*((int *)optval) = (int)inet->tos;
5333 			break;
5334 		default:
5335 			goto err_clear;
5336 		}
5337 #if IS_ENABLED(CONFIG_IPV6)
5338 	} else if (level == SOL_IPV6) {
5339 		struct ipv6_pinfo *np = inet6_sk(sk);
5340 
5341 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5342 			goto err_clear;
5343 
5344 		/* Only some options are supported */
5345 		switch (optname) {
5346 		case IPV6_TCLASS:
5347 			*((int *)optval) = (int)np->tclass;
5348 			break;
5349 		default:
5350 			goto err_clear;
5351 		}
5352 #endif
5353 #endif
5354 	} else {
5355 		goto err_clear;
5356 	}
5357 	return 0;
5358 err_clear:
5359 	memset(optval, 0, optlen);
5360 	return -EINVAL;
5361 }
5362 
5363 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5364 	   int, optname, char *, optval, int, optlen)
5365 {
5366 	if (level == SOL_TCP && optname == TCP_CONGESTION) {
5367 		if (optlen >= sizeof("cdg") - 1 &&
5368 		    !strncmp("cdg", optval, optlen))
5369 			return -ENOTSUPP;
5370 	}
5371 
5372 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5373 }
5374 
5375 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5376 	.func		= bpf_sk_setsockopt,
5377 	.gpl_only	= false,
5378 	.ret_type	= RET_INTEGER,
5379 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5380 	.arg2_type	= ARG_ANYTHING,
5381 	.arg3_type	= ARG_ANYTHING,
5382 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5383 	.arg5_type	= ARG_CONST_SIZE,
5384 };
5385 
5386 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5387 	   int, optname, char *, optval, int, optlen)
5388 {
5389 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5390 }
5391 
5392 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5393 	.func		= bpf_sk_getsockopt,
5394 	.gpl_only	= false,
5395 	.ret_type	= RET_INTEGER,
5396 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5397 	.arg2_type	= ARG_ANYTHING,
5398 	.arg3_type	= ARG_ANYTHING,
5399 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5400 	.arg5_type	= ARG_CONST_SIZE,
5401 };
5402 
5403 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5404 	   int, level, int, optname, char *, optval, int, optlen)
5405 {
5406 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5407 }
5408 
5409 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5410 	.func		= bpf_sock_addr_setsockopt,
5411 	.gpl_only	= false,
5412 	.ret_type	= RET_INTEGER,
5413 	.arg1_type	= ARG_PTR_TO_CTX,
5414 	.arg2_type	= ARG_ANYTHING,
5415 	.arg3_type	= ARG_ANYTHING,
5416 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5417 	.arg5_type	= ARG_CONST_SIZE,
5418 };
5419 
5420 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5421 	   int, level, int, optname, char *, optval, int, optlen)
5422 {
5423 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5424 }
5425 
5426 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5427 	.func		= bpf_sock_addr_getsockopt,
5428 	.gpl_only	= false,
5429 	.ret_type	= RET_INTEGER,
5430 	.arg1_type	= ARG_PTR_TO_CTX,
5431 	.arg2_type	= ARG_ANYTHING,
5432 	.arg3_type	= ARG_ANYTHING,
5433 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5434 	.arg5_type	= ARG_CONST_SIZE,
5435 };
5436 
5437 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5438 	   int, level, int, optname, char *, optval, int, optlen)
5439 {
5440 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5441 }
5442 
5443 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5444 	.func		= bpf_sock_ops_setsockopt,
5445 	.gpl_only	= false,
5446 	.ret_type	= RET_INTEGER,
5447 	.arg1_type	= ARG_PTR_TO_CTX,
5448 	.arg2_type	= ARG_ANYTHING,
5449 	.arg3_type	= ARG_ANYTHING,
5450 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5451 	.arg5_type	= ARG_CONST_SIZE,
5452 };
5453 
5454 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5455 				int optname, const u8 **start)
5456 {
5457 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5458 	const u8 *hdr_start;
5459 	int ret;
5460 
5461 	if (syn_skb) {
5462 		/* sk is a request_sock here */
5463 
5464 		if (optname == TCP_BPF_SYN) {
5465 			hdr_start = syn_skb->data;
5466 			ret = tcp_hdrlen(syn_skb);
5467 		} else if (optname == TCP_BPF_SYN_IP) {
5468 			hdr_start = skb_network_header(syn_skb);
5469 			ret = skb_network_header_len(syn_skb) +
5470 				tcp_hdrlen(syn_skb);
5471 		} else {
5472 			/* optname == TCP_BPF_SYN_MAC */
5473 			hdr_start = skb_mac_header(syn_skb);
5474 			ret = skb_mac_header_len(syn_skb) +
5475 				skb_network_header_len(syn_skb) +
5476 				tcp_hdrlen(syn_skb);
5477 		}
5478 	} else {
5479 		struct sock *sk = bpf_sock->sk;
5480 		struct saved_syn *saved_syn;
5481 
5482 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5483 			/* synack retransmit. bpf_sock->syn_skb will
5484 			 * not be available.  It has to resort to
5485 			 * saved_syn (if it is saved).
5486 			 */
5487 			saved_syn = inet_reqsk(sk)->saved_syn;
5488 		else
5489 			saved_syn = tcp_sk(sk)->saved_syn;
5490 
5491 		if (!saved_syn)
5492 			return -ENOENT;
5493 
5494 		if (optname == TCP_BPF_SYN) {
5495 			hdr_start = saved_syn->data +
5496 				saved_syn->mac_hdrlen +
5497 				saved_syn->network_hdrlen;
5498 			ret = saved_syn->tcp_hdrlen;
5499 		} else if (optname == TCP_BPF_SYN_IP) {
5500 			hdr_start = saved_syn->data +
5501 				saved_syn->mac_hdrlen;
5502 			ret = saved_syn->network_hdrlen +
5503 				saved_syn->tcp_hdrlen;
5504 		} else {
5505 			/* optname == TCP_BPF_SYN_MAC */
5506 
5507 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5508 			if (!saved_syn->mac_hdrlen)
5509 				return -ENOENT;
5510 
5511 			hdr_start = saved_syn->data;
5512 			ret = saved_syn->mac_hdrlen +
5513 				saved_syn->network_hdrlen +
5514 				saved_syn->tcp_hdrlen;
5515 		}
5516 	}
5517 
5518 	*start = hdr_start;
5519 	return ret;
5520 }
5521 
5522 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5523 	   int, level, int, optname, char *, optval, int, optlen)
5524 {
5525 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5526 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5527 		int ret, copy_len = 0;
5528 		const u8 *start;
5529 
5530 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5531 		if (ret > 0) {
5532 			copy_len = ret;
5533 			if (optlen < copy_len) {
5534 				copy_len = optlen;
5535 				ret = -ENOSPC;
5536 			}
5537 
5538 			memcpy(optval, start, copy_len);
5539 		}
5540 
5541 		/* Zero out unused buffer at the end */
5542 		memset(optval + copy_len, 0, optlen - copy_len);
5543 
5544 		return ret;
5545 	}
5546 
5547 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5548 }
5549 
5550 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5551 	.func		= bpf_sock_ops_getsockopt,
5552 	.gpl_only	= false,
5553 	.ret_type	= RET_INTEGER,
5554 	.arg1_type	= ARG_PTR_TO_CTX,
5555 	.arg2_type	= ARG_ANYTHING,
5556 	.arg3_type	= ARG_ANYTHING,
5557 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5558 	.arg5_type	= ARG_CONST_SIZE,
5559 };
5560 
5561 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5562 	   int, argval)
5563 {
5564 	struct sock *sk = bpf_sock->sk;
5565 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5566 
5567 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5568 		return -EINVAL;
5569 
5570 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5571 
5572 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5573 }
5574 
5575 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5576 	.func		= bpf_sock_ops_cb_flags_set,
5577 	.gpl_only	= false,
5578 	.ret_type	= RET_INTEGER,
5579 	.arg1_type	= ARG_PTR_TO_CTX,
5580 	.arg2_type	= ARG_ANYTHING,
5581 };
5582 
5583 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5584 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5585 
5586 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5587 	   int, addr_len)
5588 {
5589 #ifdef CONFIG_INET
5590 	struct sock *sk = ctx->sk;
5591 	u32 flags = BIND_FROM_BPF;
5592 	int err;
5593 
5594 	err = -EINVAL;
5595 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5596 		return err;
5597 	if (addr->sa_family == AF_INET) {
5598 		if (addr_len < sizeof(struct sockaddr_in))
5599 			return err;
5600 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5601 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5602 		return __inet_bind(sk, addr, addr_len, flags);
5603 #if IS_ENABLED(CONFIG_IPV6)
5604 	} else if (addr->sa_family == AF_INET6) {
5605 		if (addr_len < SIN6_LEN_RFC2133)
5606 			return err;
5607 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5608 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5609 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5610 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5611 		 */
5612 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5613 #endif /* CONFIG_IPV6 */
5614 	}
5615 #endif /* CONFIG_INET */
5616 
5617 	return -EAFNOSUPPORT;
5618 }
5619 
5620 static const struct bpf_func_proto bpf_bind_proto = {
5621 	.func		= bpf_bind,
5622 	.gpl_only	= false,
5623 	.ret_type	= RET_INTEGER,
5624 	.arg1_type	= ARG_PTR_TO_CTX,
5625 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5626 	.arg3_type	= ARG_CONST_SIZE,
5627 };
5628 
5629 #ifdef CONFIG_XFRM
5630 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5631 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5632 {
5633 	const struct sec_path *sp = skb_sec_path(skb);
5634 	const struct xfrm_state *x;
5635 
5636 	if (!sp || unlikely(index >= sp->len || flags))
5637 		goto err_clear;
5638 
5639 	x = sp->xvec[index];
5640 
5641 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5642 		goto err_clear;
5643 
5644 	to->reqid = x->props.reqid;
5645 	to->spi = x->id.spi;
5646 	to->family = x->props.family;
5647 	to->ext = 0;
5648 
5649 	if (to->family == AF_INET6) {
5650 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5651 		       sizeof(to->remote_ipv6));
5652 	} else {
5653 		to->remote_ipv4 = x->props.saddr.a4;
5654 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5655 	}
5656 
5657 	return 0;
5658 err_clear:
5659 	memset(to, 0, size);
5660 	return -EINVAL;
5661 }
5662 
5663 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5664 	.func		= bpf_skb_get_xfrm_state,
5665 	.gpl_only	= false,
5666 	.ret_type	= RET_INTEGER,
5667 	.arg1_type	= ARG_PTR_TO_CTX,
5668 	.arg2_type	= ARG_ANYTHING,
5669 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5670 	.arg4_type	= ARG_CONST_SIZE,
5671 	.arg5_type	= ARG_ANYTHING,
5672 };
5673 #endif
5674 
5675 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5676 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5677 				  const struct neighbour *neigh,
5678 				  const struct net_device *dev, u32 mtu)
5679 {
5680 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5681 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5682 	params->h_vlan_TCI = 0;
5683 	params->h_vlan_proto = 0;
5684 	if (mtu)
5685 		params->mtu_result = mtu; /* union with tot_len */
5686 
5687 	return 0;
5688 }
5689 #endif
5690 
5691 #if IS_ENABLED(CONFIG_INET)
5692 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5693 			       u32 flags, bool check_mtu)
5694 {
5695 	struct fib_nh_common *nhc;
5696 	struct in_device *in_dev;
5697 	struct neighbour *neigh;
5698 	struct net_device *dev;
5699 	struct fib_result res;
5700 	struct flowi4 fl4;
5701 	u32 mtu = 0;
5702 	int err;
5703 
5704 	dev = dev_get_by_index_rcu(net, params->ifindex);
5705 	if (unlikely(!dev))
5706 		return -ENODEV;
5707 
5708 	/* verify forwarding is enabled on this interface */
5709 	in_dev = __in_dev_get_rcu(dev);
5710 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5711 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5712 
5713 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5714 		fl4.flowi4_iif = 1;
5715 		fl4.flowi4_oif = params->ifindex;
5716 	} else {
5717 		fl4.flowi4_iif = params->ifindex;
5718 		fl4.flowi4_oif = 0;
5719 	}
5720 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5721 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5722 	fl4.flowi4_flags = 0;
5723 
5724 	fl4.flowi4_proto = params->l4_protocol;
5725 	fl4.daddr = params->ipv4_dst;
5726 	fl4.saddr = params->ipv4_src;
5727 	fl4.fl4_sport = params->sport;
5728 	fl4.fl4_dport = params->dport;
5729 	fl4.flowi4_multipath_hash = 0;
5730 
5731 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5732 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5733 		struct fib_table *tb;
5734 
5735 		tb = fib_get_table(net, tbid);
5736 		if (unlikely(!tb))
5737 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5738 
5739 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5740 	} else {
5741 		fl4.flowi4_mark = 0;
5742 		fl4.flowi4_secid = 0;
5743 		fl4.flowi4_tun_key.tun_id = 0;
5744 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5745 
5746 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5747 	}
5748 
5749 	if (err) {
5750 		/* map fib lookup errors to RTN_ type */
5751 		if (err == -EINVAL)
5752 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5753 		if (err == -EHOSTUNREACH)
5754 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5755 		if (err == -EACCES)
5756 			return BPF_FIB_LKUP_RET_PROHIBIT;
5757 
5758 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5759 	}
5760 
5761 	if (res.type != RTN_UNICAST)
5762 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5763 
5764 	if (fib_info_num_path(res.fi) > 1)
5765 		fib_select_path(net, &res, &fl4, NULL);
5766 
5767 	if (check_mtu) {
5768 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5769 		if (params->tot_len > mtu) {
5770 			params->mtu_result = mtu; /* union with tot_len */
5771 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5772 		}
5773 	}
5774 
5775 	nhc = res.nhc;
5776 
5777 	/* do not handle lwt encaps right now */
5778 	if (nhc->nhc_lwtstate)
5779 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5780 
5781 	dev = nhc->nhc_dev;
5782 
5783 	params->rt_metric = res.fi->fib_priority;
5784 	params->ifindex = dev->ifindex;
5785 
5786 	/* xdp and cls_bpf programs are run in RCU-bh so
5787 	 * rcu_read_lock_bh is not needed here
5788 	 */
5789 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5790 		if (nhc->nhc_gw_family)
5791 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5792 
5793 		neigh = __ipv4_neigh_lookup_noref(dev,
5794 						 (__force u32)params->ipv4_dst);
5795 	} else {
5796 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5797 
5798 		params->family = AF_INET6;
5799 		*dst = nhc->nhc_gw.ipv6;
5800 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5801 	}
5802 
5803 	if (!neigh)
5804 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5805 
5806 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5807 }
5808 #endif
5809 
5810 #if IS_ENABLED(CONFIG_IPV6)
5811 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5812 			       u32 flags, bool check_mtu)
5813 {
5814 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5815 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5816 	struct fib6_result res = {};
5817 	struct neighbour *neigh;
5818 	struct net_device *dev;
5819 	struct inet6_dev *idev;
5820 	struct flowi6 fl6;
5821 	int strict = 0;
5822 	int oif, err;
5823 	u32 mtu = 0;
5824 
5825 	/* link local addresses are never forwarded */
5826 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5827 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5828 
5829 	dev = dev_get_by_index_rcu(net, params->ifindex);
5830 	if (unlikely(!dev))
5831 		return -ENODEV;
5832 
5833 	idev = __in6_dev_get_safely(dev);
5834 	if (unlikely(!idev || !idev->cnf.forwarding))
5835 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5836 
5837 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5838 		fl6.flowi6_iif = 1;
5839 		oif = fl6.flowi6_oif = params->ifindex;
5840 	} else {
5841 		oif = fl6.flowi6_iif = params->ifindex;
5842 		fl6.flowi6_oif = 0;
5843 		strict = RT6_LOOKUP_F_HAS_SADDR;
5844 	}
5845 	fl6.flowlabel = params->flowinfo;
5846 	fl6.flowi6_scope = 0;
5847 	fl6.flowi6_flags = 0;
5848 	fl6.mp_hash = 0;
5849 
5850 	fl6.flowi6_proto = params->l4_protocol;
5851 	fl6.daddr = *dst;
5852 	fl6.saddr = *src;
5853 	fl6.fl6_sport = params->sport;
5854 	fl6.fl6_dport = params->dport;
5855 
5856 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5857 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5858 		struct fib6_table *tb;
5859 
5860 		tb = ipv6_stub->fib6_get_table(net, tbid);
5861 		if (unlikely(!tb))
5862 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5863 
5864 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5865 						   strict);
5866 	} else {
5867 		fl6.flowi6_mark = 0;
5868 		fl6.flowi6_secid = 0;
5869 		fl6.flowi6_tun_key.tun_id = 0;
5870 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5871 
5872 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5873 	}
5874 
5875 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5876 		     res.f6i == net->ipv6.fib6_null_entry))
5877 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5878 
5879 	switch (res.fib6_type) {
5880 	/* only unicast is forwarded */
5881 	case RTN_UNICAST:
5882 		break;
5883 	case RTN_BLACKHOLE:
5884 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5885 	case RTN_UNREACHABLE:
5886 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5887 	case RTN_PROHIBIT:
5888 		return BPF_FIB_LKUP_RET_PROHIBIT;
5889 	default:
5890 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5891 	}
5892 
5893 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5894 				    fl6.flowi6_oif != 0, NULL, strict);
5895 
5896 	if (check_mtu) {
5897 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5898 		if (params->tot_len > mtu) {
5899 			params->mtu_result = mtu; /* union with tot_len */
5900 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5901 		}
5902 	}
5903 
5904 	if (res.nh->fib_nh_lws)
5905 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5906 
5907 	if (res.nh->fib_nh_gw_family)
5908 		*dst = res.nh->fib_nh_gw6;
5909 
5910 	dev = res.nh->fib_nh_dev;
5911 	params->rt_metric = res.f6i->fib6_metric;
5912 	params->ifindex = dev->ifindex;
5913 
5914 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5915 	 * not needed here.
5916 	 */
5917 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5918 	if (!neigh)
5919 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5920 
5921 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5922 }
5923 #endif
5924 
5925 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5926 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5927 {
5928 	if (plen < sizeof(*params))
5929 		return -EINVAL;
5930 
5931 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5932 		return -EINVAL;
5933 
5934 	switch (params->family) {
5935 #if IS_ENABLED(CONFIG_INET)
5936 	case AF_INET:
5937 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5938 					   flags, true);
5939 #endif
5940 #if IS_ENABLED(CONFIG_IPV6)
5941 	case AF_INET6:
5942 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5943 					   flags, true);
5944 #endif
5945 	}
5946 	return -EAFNOSUPPORT;
5947 }
5948 
5949 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5950 	.func		= bpf_xdp_fib_lookup,
5951 	.gpl_only	= true,
5952 	.ret_type	= RET_INTEGER,
5953 	.arg1_type      = ARG_PTR_TO_CTX,
5954 	.arg2_type      = ARG_PTR_TO_MEM,
5955 	.arg3_type      = ARG_CONST_SIZE,
5956 	.arg4_type	= ARG_ANYTHING,
5957 };
5958 
5959 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5960 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5961 {
5962 	struct net *net = dev_net(skb->dev);
5963 	int rc = -EAFNOSUPPORT;
5964 	bool check_mtu = false;
5965 
5966 	if (plen < sizeof(*params))
5967 		return -EINVAL;
5968 
5969 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5970 		return -EINVAL;
5971 
5972 	if (params->tot_len)
5973 		check_mtu = true;
5974 
5975 	switch (params->family) {
5976 #if IS_ENABLED(CONFIG_INET)
5977 	case AF_INET:
5978 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5979 		break;
5980 #endif
5981 #if IS_ENABLED(CONFIG_IPV6)
5982 	case AF_INET6:
5983 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5984 		break;
5985 #endif
5986 	}
5987 
5988 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5989 		struct net_device *dev;
5990 
5991 		/* When tot_len isn't provided by user, check skb
5992 		 * against MTU of FIB lookup resulting net_device
5993 		 */
5994 		dev = dev_get_by_index_rcu(net, params->ifindex);
5995 		if (!is_skb_forwardable(dev, skb))
5996 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5997 
5998 		params->mtu_result = dev->mtu; /* union with tot_len */
5999 	}
6000 
6001 	return rc;
6002 }
6003 
6004 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6005 	.func		= bpf_skb_fib_lookup,
6006 	.gpl_only	= true,
6007 	.ret_type	= RET_INTEGER,
6008 	.arg1_type      = ARG_PTR_TO_CTX,
6009 	.arg2_type      = ARG_PTR_TO_MEM,
6010 	.arg3_type      = ARG_CONST_SIZE,
6011 	.arg4_type	= ARG_ANYTHING,
6012 };
6013 
6014 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6015 					    u32 ifindex)
6016 {
6017 	struct net *netns = dev_net(dev_curr);
6018 
6019 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6020 	if (ifindex == 0)
6021 		return dev_curr;
6022 
6023 	return dev_get_by_index_rcu(netns, ifindex);
6024 }
6025 
6026 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6027 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6028 {
6029 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6030 	struct net_device *dev = skb->dev;
6031 	int skb_len, dev_len;
6032 	int mtu;
6033 
6034 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6035 		return -EINVAL;
6036 
6037 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6038 		return -EINVAL;
6039 
6040 	dev = __dev_via_ifindex(dev, ifindex);
6041 	if (unlikely(!dev))
6042 		return -ENODEV;
6043 
6044 	mtu = READ_ONCE(dev->mtu);
6045 
6046 	dev_len = mtu + dev->hard_header_len;
6047 
6048 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6049 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6050 
6051 	skb_len += len_diff; /* minus result pass check */
6052 	if (skb_len <= dev_len) {
6053 		ret = BPF_MTU_CHK_RET_SUCCESS;
6054 		goto out;
6055 	}
6056 	/* At this point, skb->len exceed MTU, but as it include length of all
6057 	 * segments, it can still be below MTU.  The SKB can possibly get
6058 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6059 	 * must choose if segs are to be MTU checked.
6060 	 */
6061 	if (skb_is_gso(skb)) {
6062 		ret = BPF_MTU_CHK_RET_SUCCESS;
6063 
6064 		if (flags & BPF_MTU_CHK_SEGS &&
6065 		    !skb_gso_validate_network_len(skb, mtu))
6066 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6067 	}
6068 out:
6069 	/* BPF verifier guarantees valid pointer */
6070 	*mtu_len = mtu;
6071 
6072 	return ret;
6073 }
6074 
6075 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6076 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6077 {
6078 	struct net_device *dev = xdp->rxq->dev;
6079 	int xdp_len = xdp->data_end - xdp->data;
6080 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6081 	int mtu, dev_len;
6082 
6083 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6084 	if (unlikely(flags))
6085 		return -EINVAL;
6086 
6087 	dev = __dev_via_ifindex(dev, ifindex);
6088 	if (unlikely(!dev))
6089 		return -ENODEV;
6090 
6091 	mtu = READ_ONCE(dev->mtu);
6092 
6093 	/* Add L2-header as dev MTU is L3 size */
6094 	dev_len = mtu + dev->hard_header_len;
6095 
6096 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6097 	if (*mtu_len)
6098 		xdp_len = *mtu_len + dev->hard_header_len;
6099 
6100 	xdp_len += len_diff; /* minus result pass check */
6101 	if (xdp_len > dev_len)
6102 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6103 
6104 	/* BPF verifier guarantees valid pointer */
6105 	*mtu_len = mtu;
6106 
6107 	return ret;
6108 }
6109 
6110 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6111 	.func		= bpf_skb_check_mtu,
6112 	.gpl_only	= true,
6113 	.ret_type	= RET_INTEGER,
6114 	.arg1_type      = ARG_PTR_TO_CTX,
6115 	.arg2_type      = ARG_ANYTHING,
6116 	.arg3_type      = ARG_PTR_TO_INT,
6117 	.arg4_type      = ARG_ANYTHING,
6118 	.arg5_type      = ARG_ANYTHING,
6119 };
6120 
6121 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6122 	.func		= bpf_xdp_check_mtu,
6123 	.gpl_only	= true,
6124 	.ret_type	= RET_INTEGER,
6125 	.arg1_type      = ARG_PTR_TO_CTX,
6126 	.arg2_type      = ARG_ANYTHING,
6127 	.arg3_type      = ARG_PTR_TO_INT,
6128 	.arg4_type      = ARG_ANYTHING,
6129 	.arg5_type      = ARG_ANYTHING,
6130 };
6131 
6132 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6133 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6134 {
6135 	int err;
6136 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6137 
6138 	if (!seg6_validate_srh(srh, len, false))
6139 		return -EINVAL;
6140 
6141 	switch (type) {
6142 	case BPF_LWT_ENCAP_SEG6_INLINE:
6143 		if (skb->protocol != htons(ETH_P_IPV6))
6144 			return -EBADMSG;
6145 
6146 		err = seg6_do_srh_inline(skb, srh);
6147 		break;
6148 	case BPF_LWT_ENCAP_SEG6:
6149 		skb_reset_inner_headers(skb);
6150 		skb->encapsulation = 1;
6151 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6152 		break;
6153 	default:
6154 		return -EINVAL;
6155 	}
6156 
6157 	bpf_compute_data_pointers(skb);
6158 	if (err)
6159 		return err;
6160 
6161 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6162 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6163 
6164 	return seg6_lookup_nexthop(skb, NULL, 0);
6165 }
6166 #endif /* CONFIG_IPV6_SEG6_BPF */
6167 
6168 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6169 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6170 			     bool ingress)
6171 {
6172 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6173 }
6174 #endif
6175 
6176 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6177 	   u32, len)
6178 {
6179 	switch (type) {
6180 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6181 	case BPF_LWT_ENCAP_SEG6:
6182 	case BPF_LWT_ENCAP_SEG6_INLINE:
6183 		return bpf_push_seg6_encap(skb, type, hdr, len);
6184 #endif
6185 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6186 	case BPF_LWT_ENCAP_IP:
6187 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6188 #endif
6189 	default:
6190 		return -EINVAL;
6191 	}
6192 }
6193 
6194 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6195 	   void *, hdr, u32, len)
6196 {
6197 	switch (type) {
6198 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6199 	case BPF_LWT_ENCAP_IP:
6200 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6201 #endif
6202 	default:
6203 		return -EINVAL;
6204 	}
6205 }
6206 
6207 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6208 	.func		= bpf_lwt_in_push_encap,
6209 	.gpl_only	= false,
6210 	.ret_type	= RET_INTEGER,
6211 	.arg1_type	= ARG_PTR_TO_CTX,
6212 	.arg2_type	= ARG_ANYTHING,
6213 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6214 	.arg4_type	= ARG_CONST_SIZE
6215 };
6216 
6217 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6218 	.func		= bpf_lwt_xmit_push_encap,
6219 	.gpl_only	= false,
6220 	.ret_type	= RET_INTEGER,
6221 	.arg1_type	= ARG_PTR_TO_CTX,
6222 	.arg2_type	= ARG_ANYTHING,
6223 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6224 	.arg4_type	= ARG_CONST_SIZE
6225 };
6226 
6227 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6228 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6229 	   const void *, from, u32, len)
6230 {
6231 	struct seg6_bpf_srh_state *srh_state =
6232 		this_cpu_ptr(&seg6_bpf_srh_states);
6233 	struct ipv6_sr_hdr *srh = srh_state->srh;
6234 	void *srh_tlvs, *srh_end, *ptr;
6235 	int srhoff = 0;
6236 
6237 	if (srh == NULL)
6238 		return -EINVAL;
6239 
6240 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6241 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6242 
6243 	ptr = skb->data + offset;
6244 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6245 		srh_state->valid = false;
6246 	else if (ptr < (void *)&srh->flags ||
6247 		 ptr + len > (void *)&srh->segments)
6248 		return -EFAULT;
6249 
6250 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6251 		return -EFAULT;
6252 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6253 		return -EINVAL;
6254 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6255 
6256 	memcpy(skb->data + offset, from, len);
6257 	return 0;
6258 }
6259 
6260 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6261 	.func		= bpf_lwt_seg6_store_bytes,
6262 	.gpl_only	= false,
6263 	.ret_type	= RET_INTEGER,
6264 	.arg1_type	= ARG_PTR_TO_CTX,
6265 	.arg2_type	= ARG_ANYTHING,
6266 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6267 	.arg4_type	= ARG_CONST_SIZE
6268 };
6269 
6270 static void bpf_update_srh_state(struct sk_buff *skb)
6271 {
6272 	struct seg6_bpf_srh_state *srh_state =
6273 		this_cpu_ptr(&seg6_bpf_srh_states);
6274 	int srhoff = 0;
6275 
6276 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6277 		srh_state->srh = NULL;
6278 	} else {
6279 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6280 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6281 		srh_state->valid = true;
6282 	}
6283 }
6284 
6285 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6286 	   u32, action, void *, param, u32, param_len)
6287 {
6288 	struct seg6_bpf_srh_state *srh_state =
6289 		this_cpu_ptr(&seg6_bpf_srh_states);
6290 	int hdroff = 0;
6291 	int err;
6292 
6293 	switch (action) {
6294 	case SEG6_LOCAL_ACTION_END_X:
6295 		if (!seg6_bpf_has_valid_srh(skb))
6296 			return -EBADMSG;
6297 		if (param_len != sizeof(struct in6_addr))
6298 			return -EINVAL;
6299 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6300 	case SEG6_LOCAL_ACTION_END_T:
6301 		if (!seg6_bpf_has_valid_srh(skb))
6302 			return -EBADMSG;
6303 		if (param_len != sizeof(int))
6304 			return -EINVAL;
6305 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6306 	case SEG6_LOCAL_ACTION_END_DT6:
6307 		if (!seg6_bpf_has_valid_srh(skb))
6308 			return -EBADMSG;
6309 		if (param_len != sizeof(int))
6310 			return -EINVAL;
6311 
6312 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6313 			return -EBADMSG;
6314 		if (!pskb_pull(skb, hdroff))
6315 			return -EBADMSG;
6316 
6317 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6318 		skb_reset_network_header(skb);
6319 		skb_reset_transport_header(skb);
6320 		skb->encapsulation = 0;
6321 
6322 		bpf_compute_data_pointers(skb);
6323 		bpf_update_srh_state(skb);
6324 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6325 	case SEG6_LOCAL_ACTION_END_B6:
6326 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6327 			return -EBADMSG;
6328 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6329 					  param, param_len);
6330 		if (!err)
6331 			bpf_update_srh_state(skb);
6332 
6333 		return err;
6334 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6335 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6336 			return -EBADMSG;
6337 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6338 					  param, param_len);
6339 		if (!err)
6340 			bpf_update_srh_state(skb);
6341 
6342 		return err;
6343 	default:
6344 		return -EINVAL;
6345 	}
6346 }
6347 
6348 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6349 	.func		= bpf_lwt_seg6_action,
6350 	.gpl_only	= false,
6351 	.ret_type	= RET_INTEGER,
6352 	.arg1_type	= ARG_PTR_TO_CTX,
6353 	.arg2_type	= ARG_ANYTHING,
6354 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6355 	.arg4_type	= ARG_CONST_SIZE
6356 };
6357 
6358 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6359 	   s32, len)
6360 {
6361 	struct seg6_bpf_srh_state *srh_state =
6362 		this_cpu_ptr(&seg6_bpf_srh_states);
6363 	struct ipv6_sr_hdr *srh = srh_state->srh;
6364 	void *srh_end, *srh_tlvs, *ptr;
6365 	struct ipv6hdr *hdr;
6366 	int srhoff = 0;
6367 	int ret;
6368 
6369 	if (unlikely(srh == NULL))
6370 		return -EINVAL;
6371 
6372 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6373 			((srh->first_segment + 1) << 4));
6374 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6375 			srh_state->hdrlen);
6376 	ptr = skb->data + offset;
6377 
6378 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6379 		return -EFAULT;
6380 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6381 		return -EFAULT;
6382 
6383 	if (len > 0) {
6384 		ret = skb_cow_head(skb, len);
6385 		if (unlikely(ret < 0))
6386 			return ret;
6387 
6388 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6389 	} else {
6390 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6391 	}
6392 
6393 	bpf_compute_data_pointers(skb);
6394 	if (unlikely(ret < 0))
6395 		return ret;
6396 
6397 	hdr = (struct ipv6hdr *)skb->data;
6398 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6399 
6400 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6401 		return -EINVAL;
6402 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6403 	srh_state->hdrlen += len;
6404 	srh_state->valid = false;
6405 	return 0;
6406 }
6407 
6408 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6409 	.func		= bpf_lwt_seg6_adjust_srh,
6410 	.gpl_only	= false,
6411 	.ret_type	= RET_INTEGER,
6412 	.arg1_type	= ARG_PTR_TO_CTX,
6413 	.arg2_type	= ARG_ANYTHING,
6414 	.arg3_type	= ARG_ANYTHING,
6415 };
6416 #endif /* CONFIG_IPV6_SEG6_BPF */
6417 
6418 #ifdef CONFIG_INET
6419 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6420 			      int dif, int sdif, u8 family, u8 proto)
6421 {
6422 	bool refcounted = false;
6423 	struct sock *sk = NULL;
6424 
6425 	if (family == AF_INET) {
6426 		__be32 src4 = tuple->ipv4.saddr;
6427 		__be32 dst4 = tuple->ipv4.daddr;
6428 
6429 		if (proto == IPPROTO_TCP)
6430 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6431 					   src4, tuple->ipv4.sport,
6432 					   dst4, tuple->ipv4.dport,
6433 					   dif, sdif, &refcounted);
6434 		else
6435 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6436 					       dst4, tuple->ipv4.dport,
6437 					       dif, sdif, &udp_table, NULL);
6438 #if IS_ENABLED(CONFIG_IPV6)
6439 	} else {
6440 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6441 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6442 
6443 		if (proto == IPPROTO_TCP)
6444 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6445 					    src6, tuple->ipv6.sport,
6446 					    dst6, ntohs(tuple->ipv6.dport),
6447 					    dif, sdif, &refcounted);
6448 		else if (likely(ipv6_bpf_stub))
6449 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6450 							    src6, tuple->ipv6.sport,
6451 							    dst6, tuple->ipv6.dport,
6452 							    dif, sdif,
6453 							    &udp_table, NULL);
6454 #endif
6455 	}
6456 
6457 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6458 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6459 		sk = NULL;
6460 	}
6461 	return sk;
6462 }
6463 
6464 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6465  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6466  * Returns the socket as an 'unsigned long' to simplify the casting in the
6467  * callers to satisfy BPF_CALL declarations.
6468  */
6469 static struct sock *
6470 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6471 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6472 		 u64 flags)
6473 {
6474 	struct sock *sk = NULL;
6475 	u8 family = AF_UNSPEC;
6476 	struct net *net;
6477 	int sdif;
6478 
6479 	if (len == sizeof(tuple->ipv4))
6480 		family = AF_INET;
6481 	else if (len == sizeof(tuple->ipv6))
6482 		family = AF_INET6;
6483 	else
6484 		return NULL;
6485 
6486 	if (unlikely(family == AF_UNSPEC || flags ||
6487 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6488 		goto out;
6489 
6490 	if (family == AF_INET)
6491 		sdif = inet_sdif(skb);
6492 	else
6493 		sdif = inet6_sdif(skb);
6494 
6495 	if ((s32)netns_id < 0) {
6496 		net = caller_net;
6497 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6498 	} else {
6499 		net = get_net_ns_by_id(caller_net, netns_id);
6500 		if (unlikely(!net))
6501 			goto out;
6502 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6503 		put_net(net);
6504 	}
6505 
6506 out:
6507 	return sk;
6508 }
6509 
6510 static struct sock *
6511 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6512 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6513 		u64 flags)
6514 {
6515 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6516 					   ifindex, proto, netns_id, flags);
6517 
6518 	if (sk) {
6519 		sk = sk_to_full_sk(sk);
6520 		if (!sk_fullsock(sk)) {
6521 			sock_gen_put(sk);
6522 			return NULL;
6523 		}
6524 	}
6525 
6526 	return sk;
6527 }
6528 
6529 static struct sock *
6530 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6531 	       u8 proto, u64 netns_id, u64 flags)
6532 {
6533 	struct net *caller_net;
6534 	int ifindex;
6535 
6536 	if (skb->dev) {
6537 		caller_net = dev_net(skb->dev);
6538 		ifindex = skb->dev->ifindex;
6539 	} else {
6540 		caller_net = sock_net(skb->sk);
6541 		ifindex = 0;
6542 	}
6543 
6544 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6545 				netns_id, flags);
6546 }
6547 
6548 static struct sock *
6549 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6550 	      u8 proto, u64 netns_id, u64 flags)
6551 {
6552 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6553 					 flags);
6554 
6555 	if (sk) {
6556 		sk = sk_to_full_sk(sk);
6557 		if (!sk_fullsock(sk)) {
6558 			sock_gen_put(sk);
6559 			return NULL;
6560 		}
6561 	}
6562 
6563 	return sk;
6564 }
6565 
6566 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6567 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6568 {
6569 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6570 					     netns_id, flags);
6571 }
6572 
6573 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6574 	.func		= bpf_skc_lookup_tcp,
6575 	.gpl_only	= false,
6576 	.pkt_access	= true,
6577 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6578 	.arg1_type	= ARG_PTR_TO_CTX,
6579 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6580 	.arg3_type	= ARG_CONST_SIZE,
6581 	.arg4_type	= ARG_ANYTHING,
6582 	.arg5_type	= ARG_ANYTHING,
6583 };
6584 
6585 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6586 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6587 {
6588 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6589 					    netns_id, flags);
6590 }
6591 
6592 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6593 	.func		= bpf_sk_lookup_tcp,
6594 	.gpl_only	= false,
6595 	.pkt_access	= true,
6596 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6597 	.arg1_type	= ARG_PTR_TO_CTX,
6598 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6599 	.arg3_type	= ARG_CONST_SIZE,
6600 	.arg4_type	= ARG_ANYTHING,
6601 	.arg5_type	= ARG_ANYTHING,
6602 };
6603 
6604 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6605 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6606 {
6607 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6608 					    netns_id, flags);
6609 }
6610 
6611 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6612 	.func		= bpf_sk_lookup_udp,
6613 	.gpl_only	= false,
6614 	.pkt_access	= true,
6615 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6616 	.arg1_type	= ARG_PTR_TO_CTX,
6617 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6618 	.arg3_type	= ARG_CONST_SIZE,
6619 	.arg4_type	= ARG_ANYTHING,
6620 	.arg5_type	= ARG_ANYTHING,
6621 };
6622 
6623 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6624 {
6625 	if (sk && sk_is_refcounted(sk))
6626 		sock_gen_put(sk);
6627 	return 0;
6628 }
6629 
6630 static const struct bpf_func_proto bpf_sk_release_proto = {
6631 	.func		= bpf_sk_release,
6632 	.gpl_only	= false,
6633 	.ret_type	= RET_INTEGER,
6634 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6635 };
6636 
6637 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6638 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6639 {
6640 	struct net *caller_net = dev_net(ctx->rxq->dev);
6641 	int ifindex = ctx->rxq->dev->ifindex;
6642 
6643 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6644 					      ifindex, IPPROTO_UDP, netns_id,
6645 					      flags);
6646 }
6647 
6648 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6649 	.func           = bpf_xdp_sk_lookup_udp,
6650 	.gpl_only       = false,
6651 	.pkt_access     = true,
6652 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6653 	.arg1_type      = ARG_PTR_TO_CTX,
6654 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6655 	.arg3_type      = ARG_CONST_SIZE,
6656 	.arg4_type      = ARG_ANYTHING,
6657 	.arg5_type      = ARG_ANYTHING,
6658 };
6659 
6660 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6661 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6662 {
6663 	struct net *caller_net = dev_net(ctx->rxq->dev);
6664 	int ifindex = ctx->rxq->dev->ifindex;
6665 
6666 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6667 					       ifindex, IPPROTO_TCP, netns_id,
6668 					       flags);
6669 }
6670 
6671 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6672 	.func           = bpf_xdp_skc_lookup_tcp,
6673 	.gpl_only       = false,
6674 	.pkt_access     = true,
6675 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6676 	.arg1_type      = ARG_PTR_TO_CTX,
6677 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6678 	.arg3_type      = ARG_CONST_SIZE,
6679 	.arg4_type      = ARG_ANYTHING,
6680 	.arg5_type      = ARG_ANYTHING,
6681 };
6682 
6683 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6684 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6685 {
6686 	struct net *caller_net = dev_net(ctx->rxq->dev);
6687 	int ifindex = ctx->rxq->dev->ifindex;
6688 
6689 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6690 					      ifindex, IPPROTO_TCP, netns_id,
6691 					      flags);
6692 }
6693 
6694 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6695 	.func           = bpf_xdp_sk_lookup_tcp,
6696 	.gpl_only       = false,
6697 	.pkt_access     = true,
6698 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6699 	.arg1_type      = ARG_PTR_TO_CTX,
6700 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6701 	.arg3_type      = ARG_CONST_SIZE,
6702 	.arg4_type      = ARG_ANYTHING,
6703 	.arg5_type      = ARG_ANYTHING,
6704 };
6705 
6706 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6707 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6708 {
6709 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6710 					       sock_net(ctx->sk), 0,
6711 					       IPPROTO_TCP, netns_id, flags);
6712 }
6713 
6714 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6715 	.func		= bpf_sock_addr_skc_lookup_tcp,
6716 	.gpl_only	= false,
6717 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6718 	.arg1_type	= ARG_PTR_TO_CTX,
6719 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6720 	.arg3_type	= ARG_CONST_SIZE,
6721 	.arg4_type	= ARG_ANYTHING,
6722 	.arg5_type	= ARG_ANYTHING,
6723 };
6724 
6725 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6726 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6727 {
6728 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6729 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6730 					      netns_id, flags);
6731 }
6732 
6733 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6734 	.func		= bpf_sock_addr_sk_lookup_tcp,
6735 	.gpl_only	= false,
6736 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6737 	.arg1_type	= ARG_PTR_TO_CTX,
6738 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6739 	.arg3_type	= ARG_CONST_SIZE,
6740 	.arg4_type	= ARG_ANYTHING,
6741 	.arg5_type	= ARG_ANYTHING,
6742 };
6743 
6744 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6745 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6746 {
6747 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6748 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6749 					      netns_id, flags);
6750 }
6751 
6752 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6753 	.func		= bpf_sock_addr_sk_lookup_udp,
6754 	.gpl_only	= false,
6755 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6756 	.arg1_type	= ARG_PTR_TO_CTX,
6757 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6758 	.arg3_type	= ARG_CONST_SIZE,
6759 	.arg4_type	= ARG_ANYTHING,
6760 	.arg5_type	= ARG_ANYTHING,
6761 };
6762 
6763 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6764 				  struct bpf_insn_access_aux *info)
6765 {
6766 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6767 					  icsk_retransmits))
6768 		return false;
6769 
6770 	if (off % size != 0)
6771 		return false;
6772 
6773 	switch (off) {
6774 	case offsetof(struct bpf_tcp_sock, bytes_received):
6775 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6776 		return size == sizeof(__u64);
6777 	default:
6778 		return size == sizeof(__u32);
6779 	}
6780 }
6781 
6782 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6783 				    const struct bpf_insn *si,
6784 				    struct bpf_insn *insn_buf,
6785 				    struct bpf_prog *prog, u32 *target_size)
6786 {
6787 	struct bpf_insn *insn = insn_buf;
6788 
6789 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6790 	do {								\
6791 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6792 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6793 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6794 				      si->dst_reg, si->src_reg,		\
6795 				      offsetof(struct tcp_sock, FIELD)); \
6796 	} while (0)
6797 
6798 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6799 	do {								\
6800 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6801 					  FIELD) >			\
6802 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6803 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6804 					struct inet_connection_sock,	\
6805 					FIELD),				\
6806 				      si->dst_reg, si->src_reg,		\
6807 				      offsetof(				\
6808 					struct inet_connection_sock,	\
6809 					FIELD));			\
6810 	} while (0)
6811 
6812 	if (insn > insn_buf)
6813 		return insn - insn_buf;
6814 
6815 	switch (si->off) {
6816 	case offsetof(struct bpf_tcp_sock, rtt_min):
6817 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6818 			     sizeof(struct minmax));
6819 		BUILD_BUG_ON(sizeof(struct minmax) <
6820 			     sizeof(struct minmax_sample));
6821 
6822 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6823 				      offsetof(struct tcp_sock, rtt_min) +
6824 				      offsetof(struct minmax_sample, v));
6825 		break;
6826 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6827 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6828 		break;
6829 	case offsetof(struct bpf_tcp_sock, srtt_us):
6830 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6831 		break;
6832 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6833 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6834 		break;
6835 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6836 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6837 		break;
6838 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6839 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6840 		break;
6841 	case offsetof(struct bpf_tcp_sock, snd_una):
6842 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6843 		break;
6844 	case offsetof(struct bpf_tcp_sock, mss_cache):
6845 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6846 		break;
6847 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6848 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6849 		break;
6850 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6851 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6852 		break;
6853 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6854 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6855 		break;
6856 	case offsetof(struct bpf_tcp_sock, packets_out):
6857 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6858 		break;
6859 	case offsetof(struct bpf_tcp_sock, retrans_out):
6860 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6861 		break;
6862 	case offsetof(struct bpf_tcp_sock, total_retrans):
6863 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6864 		break;
6865 	case offsetof(struct bpf_tcp_sock, segs_in):
6866 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6867 		break;
6868 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6869 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6870 		break;
6871 	case offsetof(struct bpf_tcp_sock, segs_out):
6872 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6873 		break;
6874 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6875 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6876 		break;
6877 	case offsetof(struct bpf_tcp_sock, lost_out):
6878 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6879 		break;
6880 	case offsetof(struct bpf_tcp_sock, sacked_out):
6881 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6882 		break;
6883 	case offsetof(struct bpf_tcp_sock, bytes_received):
6884 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6885 		break;
6886 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6887 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6888 		break;
6889 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6890 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6891 		break;
6892 	case offsetof(struct bpf_tcp_sock, delivered):
6893 		BPF_TCP_SOCK_GET_COMMON(delivered);
6894 		break;
6895 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6896 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6897 		break;
6898 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6899 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6900 		break;
6901 	}
6902 
6903 	return insn - insn_buf;
6904 }
6905 
6906 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6907 {
6908 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6909 		return (unsigned long)sk;
6910 
6911 	return (unsigned long)NULL;
6912 }
6913 
6914 const struct bpf_func_proto bpf_tcp_sock_proto = {
6915 	.func		= bpf_tcp_sock,
6916 	.gpl_only	= false,
6917 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6918 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6919 };
6920 
6921 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6922 {
6923 	sk = sk_to_full_sk(sk);
6924 
6925 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6926 		return (unsigned long)sk;
6927 
6928 	return (unsigned long)NULL;
6929 }
6930 
6931 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6932 	.func		= bpf_get_listener_sock,
6933 	.gpl_only	= false,
6934 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6935 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6936 };
6937 
6938 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6939 {
6940 	unsigned int iphdr_len;
6941 
6942 	switch (skb_protocol(skb, true)) {
6943 	case cpu_to_be16(ETH_P_IP):
6944 		iphdr_len = sizeof(struct iphdr);
6945 		break;
6946 	case cpu_to_be16(ETH_P_IPV6):
6947 		iphdr_len = sizeof(struct ipv6hdr);
6948 		break;
6949 	default:
6950 		return 0;
6951 	}
6952 
6953 	if (skb_headlen(skb) < iphdr_len)
6954 		return 0;
6955 
6956 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6957 		return 0;
6958 
6959 	return INET_ECN_set_ce(skb);
6960 }
6961 
6962 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6963 				  struct bpf_insn_access_aux *info)
6964 {
6965 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6966 		return false;
6967 
6968 	if (off % size != 0)
6969 		return false;
6970 
6971 	switch (off) {
6972 	default:
6973 		return size == sizeof(__u32);
6974 	}
6975 }
6976 
6977 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6978 				    const struct bpf_insn *si,
6979 				    struct bpf_insn *insn_buf,
6980 				    struct bpf_prog *prog, u32 *target_size)
6981 {
6982 	struct bpf_insn *insn = insn_buf;
6983 
6984 #define BPF_XDP_SOCK_GET(FIELD)						\
6985 	do {								\
6986 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
6987 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
6988 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6989 				      si->dst_reg, si->src_reg,		\
6990 				      offsetof(struct xdp_sock, FIELD)); \
6991 	} while (0)
6992 
6993 	switch (si->off) {
6994 	case offsetof(struct bpf_xdp_sock, queue_id):
6995 		BPF_XDP_SOCK_GET(queue_id);
6996 		break;
6997 	}
6998 
6999 	return insn - insn_buf;
7000 }
7001 
7002 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7003 	.func           = bpf_skb_ecn_set_ce,
7004 	.gpl_only       = false,
7005 	.ret_type       = RET_INTEGER,
7006 	.arg1_type      = ARG_PTR_TO_CTX,
7007 };
7008 
7009 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7010 	   struct tcphdr *, th, u32, th_len)
7011 {
7012 #ifdef CONFIG_SYN_COOKIES
7013 	u32 cookie;
7014 	int ret;
7015 
7016 	if (unlikely(!sk || th_len < sizeof(*th)))
7017 		return -EINVAL;
7018 
7019 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7020 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7021 		return -EINVAL;
7022 
7023 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
7024 		return -EINVAL;
7025 
7026 	if (!th->ack || th->rst || th->syn)
7027 		return -ENOENT;
7028 
7029 	if (unlikely(iph_len < sizeof(struct iphdr)))
7030 		return -EINVAL;
7031 
7032 	if (tcp_synq_no_recent_overflow(sk))
7033 		return -ENOENT;
7034 
7035 	cookie = ntohl(th->ack_seq) - 1;
7036 
7037 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7038 	 * same offset so we can cast to the shorter header (struct iphdr).
7039 	 */
7040 	switch (((struct iphdr *)iph)->version) {
7041 	case 4:
7042 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7043 			return -EINVAL;
7044 
7045 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7046 		break;
7047 
7048 #if IS_BUILTIN(CONFIG_IPV6)
7049 	case 6:
7050 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7051 			return -EINVAL;
7052 
7053 		if (sk->sk_family != AF_INET6)
7054 			return -EINVAL;
7055 
7056 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7057 		break;
7058 #endif /* CONFIG_IPV6 */
7059 
7060 	default:
7061 		return -EPROTONOSUPPORT;
7062 	}
7063 
7064 	if (ret > 0)
7065 		return 0;
7066 
7067 	return -ENOENT;
7068 #else
7069 	return -ENOTSUPP;
7070 #endif
7071 }
7072 
7073 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7074 	.func		= bpf_tcp_check_syncookie,
7075 	.gpl_only	= true,
7076 	.pkt_access	= true,
7077 	.ret_type	= RET_INTEGER,
7078 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7079 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7080 	.arg3_type	= ARG_CONST_SIZE,
7081 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7082 	.arg5_type	= ARG_CONST_SIZE,
7083 };
7084 
7085 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7086 	   struct tcphdr *, th, u32, th_len)
7087 {
7088 #ifdef CONFIG_SYN_COOKIES
7089 	u32 cookie;
7090 	u16 mss;
7091 
7092 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7093 		return -EINVAL;
7094 
7095 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7096 		return -EINVAL;
7097 
7098 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
7099 		return -ENOENT;
7100 
7101 	if (!th->syn || th->ack || th->fin || th->rst)
7102 		return -EINVAL;
7103 
7104 	if (unlikely(iph_len < sizeof(struct iphdr)))
7105 		return -EINVAL;
7106 
7107 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7108 	 * same offset so we can cast to the shorter header (struct iphdr).
7109 	 */
7110 	switch (((struct iphdr *)iph)->version) {
7111 	case 4:
7112 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7113 			return -EINVAL;
7114 
7115 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7116 		break;
7117 
7118 #if IS_BUILTIN(CONFIG_IPV6)
7119 	case 6:
7120 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7121 			return -EINVAL;
7122 
7123 		if (sk->sk_family != AF_INET6)
7124 			return -EINVAL;
7125 
7126 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7127 		break;
7128 #endif /* CONFIG_IPV6 */
7129 
7130 	default:
7131 		return -EPROTONOSUPPORT;
7132 	}
7133 	if (mss == 0)
7134 		return -ENOENT;
7135 
7136 	return cookie | ((u64)mss << 32);
7137 #else
7138 	return -EOPNOTSUPP;
7139 #endif /* CONFIG_SYN_COOKIES */
7140 }
7141 
7142 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7143 	.func		= bpf_tcp_gen_syncookie,
7144 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7145 	.pkt_access	= true,
7146 	.ret_type	= RET_INTEGER,
7147 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7148 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7149 	.arg3_type	= ARG_CONST_SIZE,
7150 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7151 	.arg5_type	= ARG_CONST_SIZE,
7152 };
7153 
7154 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7155 {
7156 	if (!sk || flags != 0)
7157 		return -EINVAL;
7158 	if (!skb_at_tc_ingress(skb))
7159 		return -EOPNOTSUPP;
7160 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7161 		return -ENETUNREACH;
7162 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7163 		return -ESOCKTNOSUPPORT;
7164 	if (sk_is_refcounted(sk) &&
7165 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7166 		return -ENOENT;
7167 
7168 	skb_orphan(skb);
7169 	skb->sk = sk;
7170 	skb->destructor = sock_pfree;
7171 
7172 	return 0;
7173 }
7174 
7175 static const struct bpf_func_proto bpf_sk_assign_proto = {
7176 	.func		= bpf_sk_assign,
7177 	.gpl_only	= false,
7178 	.ret_type	= RET_INTEGER,
7179 	.arg1_type      = ARG_PTR_TO_CTX,
7180 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7181 	.arg3_type	= ARG_ANYTHING,
7182 };
7183 
7184 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7185 				    u8 search_kind, const u8 *magic,
7186 				    u8 magic_len, bool *eol)
7187 {
7188 	u8 kind, kind_len;
7189 
7190 	*eol = false;
7191 
7192 	while (op < opend) {
7193 		kind = op[0];
7194 
7195 		if (kind == TCPOPT_EOL) {
7196 			*eol = true;
7197 			return ERR_PTR(-ENOMSG);
7198 		} else if (kind == TCPOPT_NOP) {
7199 			op++;
7200 			continue;
7201 		}
7202 
7203 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7204 			/* Something is wrong in the received header.
7205 			 * Follow the TCP stack's tcp_parse_options()
7206 			 * and just bail here.
7207 			 */
7208 			return ERR_PTR(-EFAULT);
7209 
7210 		kind_len = op[1];
7211 		if (search_kind == kind) {
7212 			if (!magic_len)
7213 				return op;
7214 
7215 			if (magic_len > kind_len - 2)
7216 				return ERR_PTR(-ENOMSG);
7217 
7218 			if (!memcmp(&op[2], magic, magic_len))
7219 				return op;
7220 		}
7221 
7222 		op += kind_len;
7223 	}
7224 
7225 	return ERR_PTR(-ENOMSG);
7226 }
7227 
7228 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7229 	   void *, search_res, u32, len, u64, flags)
7230 {
7231 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7232 	const u8 *op, *opend, *magic, *search = search_res;
7233 	u8 search_kind, search_len, copy_len, magic_len;
7234 	int ret;
7235 
7236 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7237 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7238 	 * and this helper disallow loading them also.
7239 	 */
7240 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7241 		return -EINVAL;
7242 
7243 	search_kind = search[0];
7244 	search_len = search[1];
7245 
7246 	if (search_len > len || search_kind == TCPOPT_NOP ||
7247 	    search_kind == TCPOPT_EOL)
7248 		return -EINVAL;
7249 
7250 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7251 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7252 		if (search_len != 4 && search_len != 6)
7253 			return -EINVAL;
7254 		magic = &search[2];
7255 		magic_len = search_len - 2;
7256 	} else {
7257 		if (search_len)
7258 			return -EINVAL;
7259 		magic = NULL;
7260 		magic_len = 0;
7261 	}
7262 
7263 	if (load_syn) {
7264 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7265 		if (ret < 0)
7266 			return ret;
7267 
7268 		opend = op + ret;
7269 		op += sizeof(struct tcphdr);
7270 	} else {
7271 		if (!bpf_sock->skb ||
7272 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7273 			/* This bpf_sock->op cannot call this helper */
7274 			return -EPERM;
7275 
7276 		opend = bpf_sock->skb_data_end;
7277 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7278 	}
7279 
7280 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7281 				&eol);
7282 	if (IS_ERR(op))
7283 		return PTR_ERR(op);
7284 
7285 	copy_len = op[1];
7286 	ret = copy_len;
7287 	if (copy_len > len) {
7288 		ret = -ENOSPC;
7289 		copy_len = len;
7290 	}
7291 
7292 	memcpy(search_res, op, copy_len);
7293 	return ret;
7294 }
7295 
7296 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7297 	.func		= bpf_sock_ops_load_hdr_opt,
7298 	.gpl_only	= false,
7299 	.ret_type	= RET_INTEGER,
7300 	.arg1_type	= ARG_PTR_TO_CTX,
7301 	.arg2_type	= ARG_PTR_TO_MEM,
7302 	.arg3_type	= ARG_CONST_SIZE,
7303 	.arg4_type	= ARG_ANYTHING,
7304 };
7305 
7306 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7307 	   const void *, from, u32, len, u64, flags)
7308 {
7309 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7310 	const u8 *op, *new_op, *magic = NULL;
7311 	struct sk_buff *skb;
7312 	bool eol;
7313 
7314 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7315 		return -EPERM;
7316 
7317 	if (len < 2 || flags)
7318 		return -EINVAL;
7319 
7320 	new_op = from;
7321 	new_kind = new_op[0];
7322 	new_kind_len = new_op[1];
7323 
7324 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7325 	    new_kind == TCPOPT_EOL)
7326 		return -EINVAL;
7327 
7328 	if (new_kind_len > bpf_sock->remaining_opt_len)
7329 		return -ENOSPC;
7330 
7331 	/* 253 is another experimental kind */
7332 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7333 		if (new_kind_len < 4)
7334 			return -EINVAL;
7335 		/* Match for the 2 byte magic also.
7336 		 * RFC 6994: the magic could be 2 or 4 bytes.
7337 		 * Hence, matching by 2 byte only is on the
7338 		 * conservative side but it is the right
7339 		 * thing to do for the 'search-for-duplication'
7340 		 * purpose.
7341 		 */
7342 		magic = &new_op[2];
7343 		magic_len = 2;
7344 	}
7345 
7346 	/* Check for duplication */
7347 	skb = bpf_sock->skb;
7348 	op = skb->data + sizeof(struct tcphdr);
7349 	opend = bpf_sock->skb_data_end;
7350 
7351 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7352 				&eol);
7353 	if (!IS_ERR(op))
7354 		return -EEXIST;
7355 
7356 	if (PTR_ERR(op) != -ENOMSG)
7357 		return PTR_ERR(op);
7358 
7359 	if (eol)
7360 		/* The option has been ended.  Treat it as no more
7361 		 * header option can be written.
7362 		 */
7363 		return -ENOSPC;
7364 
7365 	/* No duplication found.  Store the header option. */
7366 	memcpy(opend, from, new_kind_len);
7367 
7368 	bpf_sock->remaining_opt_len -= new_kind_len;
7369 	bpf_sock->skb_data_end += new_kind_len;
7370 
7371 	return 0;
7372 }
7373 
7374 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7375 	.func		= bpf_sock_ops_store_hdr_opt,
7376 	.gpl_only	= false,
7377 	.ret_type	= RET_INTEGER,
7378 	.arg1_type	= ARG_PTR_TO_CTX,
7379 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7380 	.arg3_type	= ARG_CONST_SIZE,
7381 	.arg4_type	= ARG_ANYTHING,
7382 };
7383 
7384 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7385 	   u32, len, u64, flags)
7386 {
7387 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7388 		return -EPERM;
7389 
7390 	if (flags || len < 2)
7391 		return -EINVAL;
7392 
7393 	if (len > bpf_sock->remaining_opt_len)
7394 		return -ENOSPC;
7395 
7396 	bpf_sock->remaining_opt_len -= len;
7397 
7398 	return 0;
7399 }
7400 
7401 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7402 	.func		= bpf_sock_ops_reserve_hdr_opt,
7403 	.gpl_only	= false,
7404 	.ret_type	= RET_INTEGER,
7405 	.arg1_type	= ARG_PTR_TO_CTX,
7406 	.arg2_type	= ARG_ANYTHING,
7407 	.arg3_type	= ARG_ANYTHING,
7408 };
7409 
7410 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7411 	   u64, tstamp, u32, tstamp_type)
7412 {
7413 	/* skb_clear_delivery_time() is done for inet protocol */
7414 	if (skb->protocol != htons(ETH_P_IP) &&
7415 	    skb->protocol != htons(ETH_P_IPV6))
7416 		return -EOPNOTSUPP;
7417 
7418 	switch (tstamp_type) {
7419 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7420 		if (!tstamp)
7421 			return -EINVAL;
7422 		skb->tstamp = tstamp;
7423 		skb->mono_delivery_time = 1;
7424 		break;
7425 	case BPF_SKB_TSTAMP_UNSPEC:
7426 		if (tstamp)
7427 			return -EINVAL;
7428 		skb->tstamp = 0;
7429 		skb->mono_delivery_time = 0;
7430 		break;
7431 	default:
7432 		return -EINVAL;
7433 	}
7434 
7435 	return 0;
7436 }
7437 
7438 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7439 	.func           = bpf_skb_set_tstamp,
7440 	.gpl_only       = false,
7441 	.ret_type       = RET_INTEGER,
7442 	.arg1_type      = ARG_PTR_TO_CTX,
7443 	.arg2_type      = ARG_ANYTHING,
7444 	.arg3_type      = ARG_ANYTHING,
7445 };
7446 
7447 #endif /* CONFIG_INET */
7448 
7449 bool bpf_helper_changes_pkt_data(void *func)
7450 {
7451 	if (func == bpf_skb_vlan_push ||
7452 	    func == bpf_skb_vlan_pop ||
7453 	    func == bpf_skb_store_bytes ||
7454 	    func == bpf_skb_change_proto ||
7455 	    func == bpf_skb_change_head ||
7456 	    func == sk_skb_change_head ||
7457 	    func == bpf_skb_change_tail ||
7458 	    func == sk_skb_change_tail ||
7459 	    func == bpf_skb_adjust_room ||
7460 	    func == sk_skb_adjust_room ||
7461 	    func == bpf_skb_pull_data ||
7462 	    func == sk_skb_pull_data ||
7463 	    func == bpf_clone_redirect ||
7464 	    func == bpf_l3_csum_replace ||
7465 	    func == bpf_l4_csum_replace ||
7466 	    func == bpf_xdp_adjust_head ||
7467 	    func == bpf_xdp_adjust_meta ||
7468 	    func == bpf_msg_pull_data ||
7469 	    func == bpf_msg_push_data ||
7470 	    func == bpf_msg_pop_data ||
7471 	    func == bpf_xdp_adjust_tail ||
7472 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7473 	    func == bpf_lwt_seg6_store_bytes ||
7474 	    func == bpf_lwt_seg6_adjust_srh ||
7475 	    func == bpf_lwt_seg6_action ||
7476 #endif
7477 #ifdef CONFIG_INET
7478 	    func == bpf_sock_ops_store_hdr_opt ||
7479 #endif
7480 	    func == bpf_lwt_in_push_encap ||
7481 	    func == bpf_lwt_xmit_push_encap)
7482 		return true;
7483 
7484 	return false;
7485 }
7486 
7487 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7488 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7489 
7490 static const struct bpf_func_proto *
7491 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7492 {
7493 	switch (func_id) {
7494 	/* inet and inet6 sockets are created in a process
7495 	 * context so there is always a valid uid/gid
7496 	 */
7497 	case BPF_FUNC_get_current_uid_gid:
7498 		return &bpf_get_current_uid_gid_proto;
7499 	case BPF_FUNC_get_local_storage:
7500 		return &bpf_get_local_storage_proto;
7501 	case BPF_FUNC_get_socket_cookie:
7502 		return &bpf_get_socket_cookie_sock_proto;
7503 	case BPF_FUNC_get_netns_cookie:
7504 		return &bpf_get_netns_cookie_sock_proto;
7505 	case BPF_FUNC_perf_event_output:
7506 		return &bpf_event_output_data_proto;
7507 	case BPF_FUNC_get_current_pid_tgid:
7508 		return &bpf_get_current_pid_tgid_proto;
7509 	case BPF_FUNC_get_current_comm:
7510 		return &bpf_get_current_comm_proto;
7511 #ifdef CONFIG_CGROUPS
7512 	case BPF_FUNC_get_current_cgroup_id:
7513 		return &bpf_get_current_cgroup_id_proto;
7514 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7515 		return &bpf_get_current_ancestor_cgroup_id_proto;
7516 #endif
7517 #ifdef CONFIG_CGROUP_NET_CLASSID
7518 	case BPF_FUNC_get_cgroup_classid:
7519 		return &bpf_get_cgroup_classid_curr_proto;
7520 #endif
7521 	case BPF_FUNC_sk_storage_get:
7522 		return &bpf_sk_storage_get_cg_sock_proto;
7523 	case BPF_FUNC_ktime_get_coarse_ns:
7524 		return &bpf_ktime_get_coarse_ns_proto;
7525 	default:
7526 		return bpf_base_func_proto(func_id);
7527 	}
7528 }
7529 
7530 static const struct bpf_func_proto *
7531 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7532 {
7533 	switch (func_id) {
7534 	/* inet and inet6 sockets are created in a process
7535 	 * context so there is always a valid uid/gid
7536 	 */
7537 	case BPF_FUNC_get_current_uid_gid:
7538 		return &bpf_get_current_uid_gid_proto;
7539 	case BPF_FUNC_bind:
7540 		switch (prog->expected_attach_type) {
7541 		case BPF_CGROUP_INET4_CONNECT:
7542 		case BPF_CGROUP_INET6_CONNECT:
7543 			return &bpf_bind_proto;
7544 		default:
7545 			return NULL;
7546 		}
7547 	case BPF_FUNC_get_socket_cookie:
7548 		return &bpf_get_socket_cookie_sock_addr_proto;
7549 	case BPF_FUNC_get_netns_cookie:
7550 		return &bpf_get_netns_cookie_sock_addr_proto;
7551 	case BPF_FUNC_get_local_storage:
7552 		return &bpf_get_local_storage_proto;
7553 	case BPF_FUNC_perf_event_output:
7554 		return &bpf_event_output_data_proto;
7555 	case BPF_FUNC_get_current_pid_tgid:
7556 		return &bpf_get_current_pid_tgid_proto;
7557 	case BPF_FUNC_get_current_comm:
7558 		return &bpf_get_current_comm_proto;
7559 #ifdef CONFIG_CGROUPS
7560 	case BPF_FUNC_get_current_cgroup_id:
7561 		return &bpf_get_current_cgroup_id_proto;
7562 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7563 		return &bpf_get_current_ancestor_cgroup_id_proto;
7564 #endif
7565 #ifdef CONFIG_CGROUP_NET_CLASSID
7566 	case BPF_FUNC_get_cgroup_classid:
7567 		return &bpf_get_cgroup_classid_curr_proto;
7568 #endif
7569 #ifdef CONFIG_INET
7570 	case BPF_FUNC_sk_lookup_tcp:
7571 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7572 	case BPF_FUNC_sk_lookup_udp:
7573 		return &bpf_sock_addr_sk_lookup_udp_proto;
7574 	case BPF_FUNC_sk_release:
7575 		return &bpf_sk_release_proto;
7576 	case BPF_FUNC_skc_lookup_tcp:
7577 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7578 #endif /* CONFIG_INET */
7579 	case BPF_FUNC_sk_storage_get:
7580 		return &bpf_sk_storage_get_proto;
7581 	case BPF_FUNC_sk_storage_delete:
7582 		return &bpf_sk_storage_delete_proto;
7583 	case BPF_FUNC_setsockopt:
7584 		switch (prog->expected_attach_type) {
7585 		case BPF_CGROUP_INET4_BIND:
7586 		case BPF_CGROUP_INET6_BIND:
7587 		case BPF_CGROUP_INET4_CONNECT:
7588 		case BPF_CGROUP_INET6_CONNECT:
7589 		case BPF_CGROUP_UDP4_RECVMSG:
7590 		case BPF_CGROUP_UDP6_RECVMSG:
7591 		case BPF_CGROUP_UDP4_SENDMSG:
7592 		case BPF_CGROUP_UDP6_SENDMSG:
7593 		case BPF_CGROUP_INET4_GETPEERNAME:
7594 		case BPF_CGROUP_INET6_GETPEERNAME:
7595 		case BPF_CGROUP_INET4_GETSOCKNAME:
7596 		case BPF_CGROUP_INET6_GETSOCKNAME:
7597 			return &bpf_sock_addr_setsockopt_proto;
7598 		default:
7599 			return NULL;
7600 		}
7601 	case BPF_FUNC_getsockopt:
7602 		switch (prog->expected_attach_type) {
7603 		case BPF_CGROUP_INET4_BIND:
7604 		case BPF_CGROUP_INET6_BIND:
7605 		case BPF_CGROUP_INET4_CONNECT:
7606 		case BPF_CGROUP_INET6_CONNECT:
7607 		case BPF_CGROUP_UDP4_RECVMSG:
7608 		case BPF_CGROUP_UDP6_RECVMSG:
7609 		case BPF_CGROUP_UDP4_SENDMSG:
7610 		case BPF_CGROUP_UDP6_SENDMSG:
7611 		case BPF_CGROUP_INET4_GETPEERNAME:
7612 		case BPF_CGROUP_INET6_GETPEERNAME:
7613 		case BPF_CGROUP_INET4_GETSOCKNAME:
7614 		case BPF_CGROUP_INET6_GETSOCKNAME:
7615 			return &bpf_sock_addr_getsockopt_proto;
7616 		default:
7617 			return NULL;
7618 		}
7619 	default:
7620 		return bpf_sk_base_func_proto(func_id);
7621 	}
7622 }
7623 
7624 static const struct bpf_func_proto *
7625 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7626 {
7627 	switch (func_id) {
7628 	case BPF_FUNC_skb_load_bytes:
7629 		return &bpf_skb_load_bytes_proto;
7630 	case BPF_FUNC_skb_load_bytes_relative:
7631 		return &bpf_skb_load_bytes_relative_proto;
7632 	case BPF_FUNC_get_socket_cookie:
7633 		return &bpf_get_socket_cookie_proto;
7634 	case BPF_FUNC_get_socket_uid:
7635 		return &bpf_get_socket_uid_proto;
7636 	case BPF_FUNC_perf_event_output:
7637 		return &bpf_skb_event_output_proto;
7638 	default:
7639 		return bpf_sk_base_func_proto(func_id);
7640 	}
7641 }
7642 
7643 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7644 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7645 
7646 static const struct bpf_func_proto *
7647 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7648 {
7649 	switch (func_id) {
7650 	case BPF_FUNC_get_local_storage:
7651 		return &bpf_get_local_storage_proto;
7652 	case BPF_FUNC_sk_fullsock:
7653 		return &bpf_sk_fullsock_proto;
7654 	case BPF_FUNC_sk_storage_get:
7655 		return &bpf_sk_storage_get_proto;
7656 	case BPF_FUNC_sk_storage_delete:
7657 		return &bpf_sk_storage_delete_proto;
7658 	case BPF_FUNC_perf_event_output:
7659 		return &bpf_skb_event_output_proto;
7660 #ifdef CONFIG_SOCK_CGROUP_DATA
7661 	case BPF_FUNC_skb_cgroup_id:
7662 		return &bpf_skb_cgroup_id_proto;
7663 	case BPF_FUNC_skb_ancestor_cgroup_id:
7664 		return &bpf_skb_ancestor_cgroup_id_proto;
7665 	case BPF_FUNC_sk_cgroup_id:
7666 		return &bpf_sk_cgroup_id_proto;
7667 	case BPF_FUNC_sk_ancestor_cgroup_id:
7668 		return &bpf_sk_ancestor_cgroup_id_proto;
7669 #endif
7670 #ifdef CONFIG_INET
7671 	case BPF_FUNC_sk_lookup_tcp:
7672 		return &bpf_sk_lookup_tcp_proto;
7673 	case BPF_FUNC_sk_lookup_udp:
7674 		return &bpf_sk_lookup_udp_proto;
7675 	case BPF_FUNC_sk_release:
7676 		return &bpf_sk_release_proto;
7677 	case BPF_FUNC_skc_lookup_tcp:
7678 		return &bpf_skc_lookup_tcp_proto;
7679 	case BPF_FUNC_tcp_sock:
7680 		return &bpf_tcp_sock_proto;
7681 	case BPF_FUNC_get_listener_sock:
7682 		return &bpf_get_listener_sock_proto;
7683 	case BPF_FUNC_skb_ecn_set_ce:
7684 		return &bpf_skb_ecn_set_ce_proto;
7685 #endif
7686 	default:
7687 		return sk_filter_func_proto(func_id, prog);
7688 	}
7689 }
7690 
7691 static const struct bpf_func_proto *
7692 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7693 {
7694 	switch (func_id) {
7695 	case BPF_FUNC_skb_store_bytes:
7696 		return &bpf_skb_store_bytes_proto;
7697 	case BPF_FUNC_skb_load_bytes:
7698 		return &bpf_skb_load_bytes_proto;
7699 	case BPF_FUNC_skb_load_bytes_relative:
7700 		return &bpf_skb_load_bytes_relative_proto;
7701 	case BPF_FUNC_skb_pull_data:
7702 		return &bpf_skb_pull_data_proto;
7703 	case BPF_FUNC_csum_diff:
7704 		return &bpf_csum_diff_proto;
7705 	case BPF_FUNC_csum_update:
7706 		return &bpf_csum_update_proto;
7707 	case BPF_FUNC_csum_level:
7708 		return &bpf_csum_level_proto;
7709 	case BPF_FUNC_l3_csum_replace:
7710 		return &bpf_l3_csum_replace_proto;
7711 	case BPF_FUNC_l4_csum_replace:
7712 		return &bpf_l4_csum_replace_proto;
7713 	case BPF_FUNC_clone_redirect:
7714 		return &bpf_clone_redirect_proto;
7715 	case BPF_FUNC_get_cgroup_classid:
7716 		return &bpf_get_cgroup_classid_proto;
7717 	case BPF_FUNC_skb_vlan_push:
7718 		return &bpf_skb_vlan_push_proto;
7719 	case BPF_FUNC_skb_vlan_pop:
7720 		return &bpf_skb_vlan_pop_proto;
7721 	case BPF_FUNC_skb_change_proto:
7722 		return &bpf_skb_change_proto_proto;
7723 	case BPF_FUNC_skb_change_type:
7724 		return &bpf_skb_change_type_proto;
7725 	case BPF_FUNC_skb_adjust_room:
7726 		return &bpf_skb_adjust_room_proto;
7727 	case BPF_FUNC_skb_change_tail:
7728 		return &bpf_skb_change_tail_proto;
7729 	case BPF_FUNC_skb_change_head:
7730 		return &bpf_skb_change_head_proto;
7731 	case BPF_FUNC_skb_get_tunnel_key:
7732 		return &bpf_skb_get_tunnel_key_proto;
7733 	case BPF_FUNC_skb_set_tunnel_key:
7734 		return bpf_get_skb_set_tunnel_proto(func_id);
7735 	case BPF_FUNC_skb_get_tunnel_opt:
7736 		return &bpf_skb_get_tunnel_opt_proto;
7737 	case BPF_FUNC_skb_set_tunnel_opt:
7738 		return bpf_get_skb_set_tunnel_proto(func_id);
7739 	case BPF_FUNC_redirect:
7740 		return &bpf_redirect_proto;
7741 	case BPF_FUNC_redirect_neigh:
7742 		return &bpf_redirect_neigh_proto;
7743 	case BPF_FUNC_redirect_peer:
7744 		return &bpf_redirect_peer_proto;
7745 	case BPF_FUNC_get_route_realm:
7746 		return &bpf_get_route_realm_proto;
7747 	case BPF_FUNC_get_hash_recalc:
7748 		return &bpf_get_hash_recalc_proto;
7749 	case BPF_FUNC_set_hash_invalid:
7750 		return &bpf_set_hash_invalid_proto;
7751 	case BPF_FUNC_set_hash:
7752 		return &bpf_set_hash_proto;
7753 	case BPF_FUNC_perf_event_output:
7754 		return &bpf_skb_event_output_proto;
7755 	case BPF_FUNC_get_smp_processor_id:
7756 		return &bpf_get_smp_processor_id_proto;
7757 	case BPF_FUNC_skb_under_cgroup:
7758 		return &bpf_skb_under_cgroup_proto;
7759 	case BPF_FUNC_get_socket_cookie:
7760 		return &bpf_get_socket_cookie_proto;
7761 	case BPF_FUNC_get_socket_uid:
7762 		return &bpf_get_socket_uid_proto;
7763 	case BPF_FUNC_fib_lookup:
7764 		return &bpf_skb_fib_lookup_proto;
7765 	case BPF_FUNC_check_mtu:
7766 		return &bpf_skb_check_mtu_proto;
7767 	case BPF_FUNC_sk_fullsock:
7768 		return &bpf_sk_fullsock_proto;
7769 	case BPF_FUNC_sk_storage_get:
7770 		return &bpf_sk_storage_get_proto;
7771 	case BPF_FUNC_sk_storage_delete:
7772 		return &bpf_sk_storage_delete_proto;
7773 #ifdef CONFIG_XFRM
7774 	case BPF_FUNC_skb_get_xfrm_state:
7775 		return &bpf_skb_get_xfrm_state_proto;
7776 #endif
7777 #ifdef CONFIG_CGROUP_NET_CLASSID
7778 	case BPF_FUNC_skb_cgroup_classid:
7779 		return &bpf_skb_cgroup_classid_proto;
7780 #endif
7781 #ifdef CONFIG_SOCK_CGROUP_DATA
7782 	case BPF_FUNC_skb_cgroup_id:
7783 		return &bpf_skb_cgroup_id_proto;
7784 	case BPF_FUNC_skb_ancestor_cgroup_id:
7785 		return &bpf_skb_ancestor_cgroup_id_proto;
7786 #endif
7787 #ifdef CONFIG_INET
7788 	case BPF_FUNC_sk_lookup_tcp:
7789 		return &bpf_sk_lookup_tcp_proto;
7790 	case BPF_FUNC_sk_lookup_udp:
7791 		return &bpf_sk_lookup_udp_proto;
7792 	case BPF_FUNC_sk_release:
7793 		return &bpf_sk_release_proto;
7794 	case BPF_FUNC_tcp_sock:
7795 		return &bpf_tcp_sock_proto;
7796 	case BPF_FUNC_get_listener_sock:
7797 		return &bpf_get_listener_sock_proto;
7798 	case BPF_FUNC_skc_lookup_tcp:
7799 		return &bpf_skc_lookup_tcp_proto;
7800 	case BPF_FUNC_tcp_check_syncookie:
7801 		return &bpf_tcp_check_syncookie_proto;
7802 	case BPF_FUNC_skb_ecn_set_ce:
7803 		return &bpf_skb_ecn_set_ce_proto;
7804 	case BPF_FUNC_tcp_gen_syncookie:
7805 		return &bpf_tcp_gen_syncookie_proto;
7806 	case BPF_FUNC_sk_assign:
7807 		return &bpf_sk_assign_proto;
7808 	case BPF_FUNC_skb_set_tstamp:
7809 		return &bpf_skb_set_tstamp_proto;
7810 #endif
7811 	default:
7812 		return bpf_sk_base_func_proto(func_id);
7813 	}
7814 }
7815 
7816 static const struct bpf_func_proto *
7817 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7818 {
7819 	switch (func_id) {
7820 	case BPF_FUNC_perf_event_output:
7821 		return &bpf_xdp_event_output_proto;
7822 	case BPF_FUNC_get_smp_processor_id:
7823 		return &bpf_get_smp_processor_id_proto;
7824 	case BPF_FUNC_csum_diff:
7825 		return &bpf_csum_diff_proto;
7826 	case BPF_FUNC_xdp_adjust_head:
7827 		return &bpf_xdp_adjust_head_proto;
7828 	case BPF_FUNC_xdp_adjust_meta:
7829 		return &bpf_xdp_adjust_meta_proto;
7830 	case BPF_FUNC_redirect:
7831 		return &bpf_xdp_redirect_proto;
7832 	case BPF_FUNC_redirect_map:
7833 		return &bpf_xdp_redirect_map_proto;
7834 	case BPF_FUNC_xdp_adjust_tail:
7835 		return &bpf_xdp_adjust_tail_proto;
7836 	case BPF_FUNC_xdp_get_buff_len:
7837 		return &bpf_xdp_get_buff_len_proto;
7838 	case BPF_FUNC_xdp_load_bytes:
7839 		return &bpf_xdp_load_bytes_proto;
7840 	case BPF_FUNC_xdp_store_bytes:
7841 		return &bpf_xdp_store_bytes_proto;
7842 	case BPF_FUNC_fib_lookup:
7843 		return &bpf_xdp_fib_lookup_proto;
7844 	case BPF_FUNC_check_mtu:
7845 		return &bpf_xdp_check_mtu_proto;
7846 #ifdef CONFIG_INET
7847 	case BPF_FUNC_sk_lookup_udp:
7848 		return &bpf_xdp_sk_lookup_udp_proto;
7849 	case BPF_FUNC_sk_lookup_tcp:
7850 		return &bpf_xdp_sk_lookup_tcp_proto;
7851 	case BPF_FUNC_sk_release:
7852 		return &bpf_sk_release_proto;
7853 	case BPF_FUNC_skc_lookup_tcp:
7854 		return &bpf_xdp_skc_lookup_tcp_proto;
7855 	case BPF_FUNC_tcp_check_syncookie:
7856 		return &bpf_tcp_check_syncookie_proto;
7857 	case BPF_FUNC_tcp_gen_syncookie:
7858 		return &bpf_tcp_gen_syncookie_proto;
7859 #endif
7860 	default:
7861 		return bpf_sk_base_func_proto(func_id);
7862 	}
7863 }
7864 
7865 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7866 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7867 
7868 static const struct bpf_func_proto *
7869 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7870 {
7871 	switch (func_id) {
7872 	case BPF_FUNC_setsockopt:
7873 		return &bpf_sock_ops_setsockopt_proto;
7874 	case BPF_FUNC_getsockopt:
7875 		return &bpf_sock_ops_getsockopt_proto;
7876 	case BPF_FUNC_sock_ops_cb_flags_set:
7877 		return &bpf_sock_ops_cb_flags_set_proto;
7878 	case BPF_FUNC_sock_map_update:
7879 		return &bpf_sock_map_update_proto;
7880 	case BPF_FUNC_sock_hash_update:
7881 		return &bpf_sock_hash_update_proto;
7882 	case BPF_FUNC_get_socket_cookie:
7883 		return &bpf_get_socket_cookie_sock_ops_proto;
7884 	case BPF_FUNC_get_local_storage:
7885 		return &bpf_get_local_storage_proto;
7886 	case BPF_FUNC_perf_event_output:
7887 		return &bpf_event_output_data_proto;
7888 	case BPF_FUNC_sk_storage_get:
7889 		return &bpf_sk_storage_get_proto;
7890 	case BPF_FUNC_sk_storage_delete:
7891 		return &bpf_sk_storage_delete_proto;
7892 	case BPF_FUNC_get_netns_cookie:
7893 		return &bpf_get_netns_cookie_sock_ops_proto;
7894 #ifdef CONFIG_INET
7895 	case BPF_FUNC_load_hdr_opt:
7896 		return &bpf_sock_ops_load_hdr_opt_proto;
7897 	case BPF_FUNC_store_hdr_opt:
7898 		return &bpf_sock_ops_store_hdr_opt_proto;
7899 	case BPF_FUNC_reserve_hdr_opt:
7900 		return &bpf_sock_ops_reserve_hdr_opt_proto;
7901 	case BPF_FUNC_tcp_sock:
7902 		return &bpf_tcp_sock_proto;
7903 #endif /* CONFIG_INET */
7904 	default:
7905 		return bpf_sk_base_func_proto(func_id);
7906 	}
7907 }
7908 
7909 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7910 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7911 
7912 static const struct bpf_func_proto *
7913 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7914 {
7915 	switch (func_id) {
7916 	case BPF_FUNC_msg_redirect_map:
7917 		return &bpf_msg_redirect_map_proto;
7918 	case BPF_FUNC_msg_redirect_hash:
7919 		return &bpf_msg_redirect_hash_proto;
7920 	case BPF_FUNC_msg_apply_bytes:
7921 		return &bpf_msg_apply_bytes_proto;
7922 	case BPF_FUNC_msg_cork_bytes:
7923 		return &bpf_msg_cork_bytes_proto;
7924 	case BPF_FUNC_msg_pull_data:
7925 		return &bpf_msg_pull_data_proto;
7926 	case BPF_FUNC_msg_push_data:
7927 		return &bpf_msg_push_data_proto;
7928 	case BPF_FUNC_msg_pop_data:
7929 		return &bpf_msg_pop_data_proto;
7930 	case BPF_FUNC_perf_event_output:
7931 		return &bpf_event_output_data_proto;
7932 	case BPF_FUNC_get_current_uid_gid:
7933 		return &bpf_get_current_uid_gid_proto;
7934 	case BPF_FUNC_get_current_pid_tgid:
7935 		return &bpf_get_current_pid_tgid_proto;
7936 	case BPF_FUNC_sk_storage_get:
7937 		return &bpf_sk_storage_get_proto;
7938 	case BPF_FUNC_sk_storage_delete:
7939 		return &bpf_sk_storage_delete_proto;
7940 	case BPF_FUNC_get_netns_cookie:
7941 		return &bpf_get_netns_cookie_sk_msg_proto;
7942 #ifdef CONFIG_CGROUPS
7943 	case BPF_FUNC_get_current_cgroup_id:
7944 		return &bpf_get_current_cgroup_id_proto;
7945 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7946 		return &bpf_get_current_ancestor_cgroup_id_proto;
7947 #endif
7948 #ifdef CONFIG_CGROUP_NET_CLASSID
7949 	case BPF_FUNC_get_cgroup_classid:
7950 		return &bpf_get_cgroup_classid_curr_proto;
7951 #endif
7952 	default:
7953 		return bpf_sk_base_func_proto(func_id);
7954 	}
7955 }
7956 
7957 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7958 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7959 
7960 static const struct bpf_func_proto *
7961 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7962 {
7963 	switch (func_id) {
7964 	case BPF_FUNC_skb_store_bytes:
7965 		return &bpf_skb_store_bytes_proto;
7966 	case BPF_FUNC_skb_load_bytes:
7967 		return &bpf_skb_load_bytes_proto;
7968 	case BPF_FUNC_skb_pull_data:
7969 		return &sk_skb_pull_data_proto;
7970 	case BPF_FUNC_skb_change_tail:
7971 		return &sk_skb_change_tail_proto;
7972 	case BPF_FUNC_skb_change_head:
7973 		return &sk_skb_change_head_proto;
7974 	case BPF_FUNC_skb_adjust_room:
7975 		return &sk_skb_adjust_room_proto;
7976 	case BPF_FUNC_get_socket_cookie:
7977 		return &bpf_get_socket_cookie_proto;
7978 	case BPF_FUNC_get_socket_uid:
7979 		return &bpf_get_socket_uid_proto;
7980 	case BPF_FUNC_sk_redirect_map:
7981 		return &bpf_sk_redirect_map_proto;
7982 	case BPF_FUNC_sk_redirect_hash:
7983 		return &bpf_sk_redirect_hash_proto;
7984 	case BPF_FUNC_perf_event_output:
7985 		return &bpf_skb_event_output_proto;
7986 #ifdef CONFIG_INET
7987 	case BPF_FUNC_sk_lookup_tcp:
7988 		return &bpf_sk_lookup_tcp_proto;
7989 	case BPF_FUNC_sk_lookup_udp:
7990 		return &bpf_sk_lookup_udp_proto;
7991 	case BPF_FUNC_sk_release:
7992 		return &bpf_sk_release_proto;
7993 	case BPF_FUNC_skc_lookup_tcp:
7994 		return &bpf_skc_lookup_tcp_proto;
7995 #endif
7996 	default:
7997 		return bpf_sk_base_func_proto(func_id);
7998 	}
7999 }
8000 
8001 static const struct bpf_func_proto *
8002 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8003 {
8004 	switch (func_id) {
8005 	case BPF_FUNC_skb_load_bytes:
8006 		return &bpf_flow_dissector_load_bytes_proto;
8007 	default:
8008 		return bpf_sk_base_func_proto(func_id);
8009 	}
8010 }
8011 
8012 static const struct bpf_func_proto *
8013 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8014 {
8015 	switch (func_id) {
8016 	case BPF_FUNC_skb_load_bytes:
8017 		return &bpf_skb_load_bytes_proto;
8018 	case BPF_FUNC_skb_pull_data:
8019 		return &bpf_skb_pull_data_proto;
8020 	case BPF_FUNC_csum_diff:
8021 		return &bpf_csum_diff_proto;
8022 	case BPF_FUNC_get_cgroup_classid:
8023 		return &bpf_get_cgroup_classid_proto;
8024 	case BPF_FUNC_get_route_realm:
8025 		return &bpf_get_route_realm_proto;
8026 	case BPF_FUNC_get_hash_recalc:
8027 		return &bpf_get_hash_recalc_proto;
8028 	case BPF_FUNC_perf_event_output:
8029 		return &bpf_skb_event_output_proto;
8030 	case BPF_FUNC_get_smp_processor_id:
8031 		return &bpf_get_smp_processor_id_proto;
8032 	case BPF_FUNC_skb_under_cgroup:
8033 		return &bpf_skb_under_cgroup_proto;
8034 	default:
8035 		return bpf_sk_base_func_proto(func_id);
8036 	}
8037 }
8038 
8039 static const struct bpf_func_proto *
8040 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8041 {
8042 	switch (func_id) {
8043 	case BPF_FUNC_lwt_push_encap:
8044 		return &bpf_lwt_in_push_encap_proto;
8045 	default:
8046 		return lwt_out_func_proto(func_id, prog);
8047 	}
8048 }
8049 
8050 static const struct bpf_func_proto *
8051 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8052 {
8053 	switch (func_id) {
8054 	case BPF_FUNC_skb_get_tunnel_key:
8055 		return &bpf_skb_get_tunnel_key_proto;
8056 	case BPF_FUNC_skb_set_tunnel_key:
8057 		return bpf_get_skb_set_tunnel_proto(func_id);
8058 	case BPF_FUNC_skb_get_tunnel_opt:
8059 		return &bpf_skb_get_tunnel_opt_proto;
8060 	case BPF_FUNC_skb_set_tunnel_opt:
8061 		return bpf_get_skb_set_tunnel_proto(func_id);
8062 	case BPF_FUNC_redirect:
8063 		return &bpf_redirect_proto;
8064 	case BPF_FUNC_clone_redirect:
8065 		return &bpf_clone_redirect_proto;
8066 	case BPF_FUNC_skb_change_tail:
8067 		return &bpf_skb_change_tail_proto;
8068 	case BPF_FUNC_skb_change_head:
8069 		return &bpf_skb_change_head_proto;
8070 	case BPF_FUNC_skb_store_bytes:
8071 		return &bpf_skb_store_bytes_proto;
8072 	case BPF_FUNC_csum_update:
8073 		return &bpf_csum_update_proto;
8074 	case BPF_FUNC_csum_level:
8075 		return &bpf_csum_level_proto;
8076 	case BPF_FUNC_l3_csum_replace:
8077 		return &bpf_l3_csum_replace_proto;
8078 	case BPF_FUNC_l4_csum_replace:
8079 		return &bpf_l4_csum_replace_proto;
8080 	case BPF_FUNC_set_hash_invalid:
8081 		return &bpf_set_hash_invalid_proto;
8082 	case BPF_FUNC_lwt_push_encap:
8083 		return &bpf_lwt_xmit_push_encap_proto;
8084 	default:
8085 		return lwt_out_func_proto(func_id, prog);
8086 	}
8087 }
8088 
8089 static const struct bpf_func_proto *
8090 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8091 {
8092 	switch (func_id) {
8093 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8094 	case BPF_FUNC_lwt_seg6_store_bytes:
8095 		return &bpf_lwt_seg6_store_bytes_proto;
8096 	case BPF_FUNC_lwt_seg6_action:
8097 		return &bpf_lwt_seg6_action_proto;
8098 	case BPF_FUNC_lwt_seg6_adjust_srh:
8099 		return &bpf_lwt_seg6_adjust_srh_proto;
8100 #endif
8101 	default:
8102 		return lwt_out_func_proto(func_id, prog);
8103 	}
8104 }
8105 
8106 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8107 				    const struct bpf_prog *prog,
8108 				    struct bpf_insn_access_aux *info)
8109 {
8110 	const int size_default = sizeof(__u32);
8111 
8112 	if (off < 0 || off >= sizeof(struct __sk_buff))
8113 		return false;
8114 
8115 	/* The verifier guarantees that size > 0. */
8116 	if (off % size != 0)
8117 		return false;
8118 
8119 	switch (off) {
8120 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8121 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8122 			return false;
8123 		break;
8124 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8125 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8126 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8127 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8128 	case bpf_ctx_range(struct __sk_buff, data):
8129 	case bpf_ctx_range(struct __sk_buff, data_meta):
8130 	case bpf_ctx_range(struct __sk_buff, data_end):
8131 		if (size != size_default)
8132 			return false;
8133 		break;
8134 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8135 		return false;
8136 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8137 		if (type == BPF_WRITE || size != sizeof(__u64))
8138 			return false;
8139 		break;
8140 	case bpf_ctx_range(struct __sk_buff, tstamp):
8141 		if (size != sizeof(__u64))
8142 			return false;
8143 		break;
8144 	case offsetof(struct __sk_buff, sk):
8145 		if (type == BPF_WRITE || size != sizeof(__u64))
8146 			return false;
8147 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8148 		break;
8149 	case offsetof(struct __sk_buff, tstamp_type):
8150 		return false;
8151 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8152 		/* Explicitly prohibit access to padding in __sk_buff. */
8153 		return false;
8154 	default:
8155 		/* Only narrow read access allowed for now. */
8156 		if (type == BPF_WRITE) {
8157 			if (size != size_default)
8158 				return false;
8159 		} else {
8160 			bpf_ctx_record_field_size(info, size_default);
8161 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8162 				return false;
8163 		}
8164 	}
8165 
8166 	return true;
8167 }
8168 
8169 static bool sk_filter_is_valid_access(int off, int size,
8170 				      enum bpf_access_type type,
8171 				      const struct bpf_prog *prog,
8172 				      struct bpf_insn_access_aux *info)
8173 {
8174 	switch (off) {
8175 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8176 	case bpf_ctx_range(struct __sk_buff, data):
8177 	case bpf_ctx_range(struct __sk_buff, data_meta):
8178 	case bpf_ctx_range(struct __sk_buff, data_end):
8179 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8180 	case bpf_ctx_range(struct __sk_buff, tstamp):
8181 	case bpf_ctx_range(struct __sk_buff, wire_len):
8182 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8183 		return false;
8184 	}
8185 
8186 	if (type == BPF_WRITE) {
8187 		switch (off) {
8188 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8189 			break;
8190 		default:
8191 			return false;
8192 		}
8193 	}
8194 
8195 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8196 }
8197 
8198 static bool cg_skb_is_valid_access(int off, int size,
8199 				   enum bpf_access_type type,
8200 				   const struct bpf_prog *prog,
8201 				   struct bpf_insn_access_aux *info)
8202 {
8203 	switch (off) {
8204 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8205 	case bpf_ctx_range(struct __sk_buff, data_meta):
8206 	case bpf_ctx_range(struct __sk_buff, wire_len):
8207 		return false;
8208 	case bpf_ctx_range(struct __sk_buff, data):
8209 	case bpf_ctx_range(struct __sk_buff, data_end):
8210 		if (!bpf_capable())
8211 			return false;
8212 		break;
8213 	}
8214 
8215 	if (type == BPF_WRITE) {
8216 		switch (off) {
8217 		case bpf_ctx_range(struct __sk_buff, mark):
8218 		case bpf_ctx_range(struct __sk_buff, priority):
8219 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8220 			break;
8221 		case bpf_ctx_range(struct __sk_buff, tstamp):
8222 			if (!bpf_capable())
8223 				return false;
8224 			break;
8225 		default:
8226 			return false;
8227 		}
8228 	}
8229 
8230 	switch (off) {
8231 	case bpf_ctx_range(struct __sk_buff, data):
8232 		info->reg_type = PTR_TO_PACKET;
8233 		break;
8234 	case bpf_ctx_range(struct __sk_buff, data_end):
8235 		info->reg_type = PTR_TO_PACKET_END;
8236 		break;
8237 	}
8238 
8239 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8240 }
8241 
8242 static bool lwt_is_valid_access(int off, int size,
8243 				enum bpf_access_type type,
8244 				const struct bpf_prog *prog,
8245 				struct bpf_insn_access_aux *info)
8246 {
8247 	switch (off) {
8248 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8249 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8250 	case bpf_ctx_range(struct __sk_buff, data_meta):
8251 	case bpf_ctx_range(struct __sk_buff, tstamp):
8252 	case bpf_ctx_range(struct __sk_buff, wire_len):
8253 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8254 		return false;
8255 	}
8256 
8257 	if (type == BPF_WRITE) {
8258 		switch (off) {
8259 		case bpf_ctx_range(struct __sk_buff, mark):
8260 		case bpf_ctx_range(struct __sk_buff, priority):
8261 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8262 			break;
8263 		default:
8264 			return false;
8265 		}
8266 	}
8267 
8268 	switch (off) {
8269 	case bpf_ctx_range(struct __sk_buff, data):
8270 		info->reg_type = PTR_TO_PACKET;
8271 		break;
8272 	case bpf_ctx_range(struct __sk_buff, data_end):
8273 		info->reg_type = PTR_TO_PACKET_END;
8274 		break;
8275 	}
8276 
8277 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8278 }
8279 
8280 /* Attach type specific accesses */
8281 static bool __sock_filter_check_attach_type(int off,
8282 					    enum bpf_access_type access_type,
8283 					    enum bpf_attach_type attach_type)
8284 {
8285 	switch (off) {
8286 	case offsetof(struct bpf_sock, bound_dev_if):
8287 	case offsetof(struct bpf_sock, mark):
8288 	case offsetof(struct bpf_sock, priority):
8289 		switch (attach_type) {
8290 		case BPF_CGROUP_INET_SOCK_CREATE:
8291 		case BPF_CGROUP_INET_SOCK_RELEASE:
8292 			goto full_access;
8293 		default:
8294 			return false;
8295 		}
8296 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8297 		switch (attach_type) {
8298 		case BPF_CGROUP_INET4_POST_BIND:
8299 			goto read_only;
8300 		default:
8301 			return false;
8302 		}
8303 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8304 		switch (attach_type) {
8305 		case BPF_CGROUP_INET6_POST_BIND:
8306 			goto read_only;
8307 		default:
8308 			return false;
8309 		}
8310 	case bpf_ctx_range(struct bpf_sock, src_port):
8311 		switch (attach_type) {
8312 		case BPF_CGROUP_INET4_POST_BIND:
8313 		case BPF_CGROUP_INET6_POST_BIND:
8314 			goto read_only;
8315 		default:
8316 			return false;
8317 		}
8318 	}
8319 read_only:
8320 	return access_type == BPF_READ;
8321 full_access:
8322 	return true;
8323 }
8324 
8325 bool bpf_sock_common_is_valid_access(int off, int size,
8326 				     enum bpf_access_type type,
8327 				     struct bpf_insn_access_aux *info)
8328 {
8329 	switch (off) {
8330 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8331 		return false;
8332 	default:
8333 		return bpf_sock_is_valid_access(off, size, type, info);
8334 	}
8335 }
8336 
8337 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8338 			      struct bpf_insn_access_aux *info)
8339 {
8340 	const int size_default = sizeof(__u32);
8341 	int field_size;
8342 
8343 	if (off < 0 || off >= sizeof(struct bpf_sock))
8344 		return false;
8345 	if (off % size != 0)
8346 		return false;
8347 
8348 	switch (off) {
8349 	case offsetof(struct bpf_sock, state):
8350 	case offsetof(struct bpf_sock, family):
8351 	case offsetof(struct bpf_sock, type):
8352 	case offsetof(struct bpf_sock, protocol):
8353 	case offsetof(struct bpf_sock, src_port):
8354 	case offsetof(struct bpf_sock, rx_queue_mapping):
8355 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8356 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8357 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8358 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8359 		bpf_ctx_record_field_size(info, size_default);
8360 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8361 	case bpf_ctx_range(struct bpf_sock, dst_port):
8362 		field_size = size == size_default ?
8363 			size_default : sizeof_field(struct bpf_sock, dst_port);
8364 		bpf_ctx_record_field_size(info, field_size);
8365 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8366 	case offsetofend(struct bpf_sock, dst_port) ...
8367 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8368 		return false;
8369 	}
8370 
8371 	return size == size_default;
8372 }
8373 
8374 static bool sock_filter_is_valid_access(int off, int size,
8375 					enum bpf_access_type type,
8376 					const struct bpf_prog *prog,
8377 					struct bpf_insn_access_aux *info)
8378 {
8379 	if (!bpf_sock_is_valid_access(off, size, type, info))
8380 		return false;
8381 	return __sock_filter_check_attach_type(off, type,
8382 					       prog->expected_attach_type);
8383 }
8384 
8385 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8386 			     const struct bpf_prog *prog)
8387 {
8388 	/* Neither direct read nor direct write requires any preliminary
8389 	 * action.
8390 	 */
8391 	return 0;
8392 }
8393 
8394 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8395 				const struct bpf_prog *prog, int drop_verdict)
8396 {
8397 	struct bpf_insn *insn = insn_buf;
8398 
8399 	if (!direct_write)
8400 		return 0;
8401 
8402 	/* if (!skb->cloned)
8403 	 *       goto start;
8404 	 *
8405 	 * (Fast-path, otherwise approximation that we might be
8406 	 *  a clone, do the rest in helper.)
8407 	 */
8408 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8409 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8410 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8411 
8412 	/* ret = bpf_skb_pull_data(skb, 0); */
8413 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8414 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8415 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8416 			       BPF_FUNC_skb_pull_data);
8417 	/* if (!ret)
8418 	 *      goto restore;
8419 	 * return TC_ACT_SHOT;
8420 	 */
8421 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8422 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8423 	*insn++ = BPF_EXIT_INSN();
8424 
8425 	/* restore: */
8426 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8427 	/* start: */
8428 	*insn++ = prog->insnsi[0];
8429 
8430 	return insn - insn_buf;
8431 }
8432 
8433 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8434 			  struct bpf_insn *insn_buf)
8435 {
8436 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8437 	struct bpf_insn *insn = insn_buf;
8438 
8439 	if (!indirect) {
8440 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8441 	} else {
8442 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8443 		if (orig->imm)
8444 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8445 	}
8446 	/* We're guaranteed here that CTX is in R6. */
8447 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8448 
8449 	switch (BPF_SIZE(orig->code)) {
8450 	case BPF_B:
8451 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8452 		break;
8453 	case BPF_H:
8454 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8455 		break;
8456 	case BPF_W:
8457 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8458 		break;
8459 	}
8460 
8461 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8462 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8463 	*insn++ = BPF_EXIT_INSN();
8464 
8465 	return insn - insn_buf;
8466 }
8467 
8468 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8469 			       const struct bpf_prog *prog)
8470 {
8471 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8472 }
8473 
8474 static bool tc_cls_act_is_valid_access(int off, int size,
8475 				       enum bpf_access_type type,
8476 				       const struct bpf_prog *prog,
8477 				       struct bpf_insn_access_aux *info)
8478 {
8479 	if (type == BPF_WRITE) {
8480 		switch (off) {
8481 		case bpf_ctx_range(struct __sk_buff, mark):
8482 		case bpf_ctx_range(struct __sk_buff, tc_index):
8483 		case bpf_ctx_range(struct __sk_buff, priority):
8484 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8485 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8486 		case bpf_ctx_range(struct __sk_buff, tstamp):
8487 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8488 			break;
8489 		default:
8490 			return false;
8491 		}
8492 	}
8493 
8494 	switch (off) {
8495 	case bpf_ctx_range(struct __sk_buff, data):
8496 		info->reg_type = PTR_TO_PACKET;
8497 		break;
8498 	case bpf_ctx_range(struct __sk_buff, data_meta):
8499 		info->reg_type = PTR_TO_PACKET_META;
8500 		break;
8501 	case bpf_ctx_range(struct __sk_buff, data_end):
8502 		info->reg_type = PTR_TO_PACKET_END;
8503 		break;
8504 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8505 		return false;
8506 	case offsetof(struct __sk_buff, tstamp_type):
8507 		/* The convert_ctx_access() on reading and writing
8508 		 * __sk_buff->tstamp depends on whether the bpf prog
8509 		 * has used __sk_buff->tstamp_type or not.
8510 		 * Thus, we need to set prog->tstamp_type_access
8511 		 * earlier during is_valid_access() here.
8512 		 */
8513 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8514 		return size == sizeof(__u8);
8515 	}
8516 
8517 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8518 }
8519 
8520 static bool __is_valid_xdp_access(int off, int size)
8521 {
8522 	if (off < 0 || off >= sizeof(struct xdp_md))
8523 		return false;
8524 	if (off % size != 0)
8525 		return false;
8526 	if (size != sizeof(__u32))
8527 		return false;
8528 
8529 	return true;
8530 }
8531 
8532 static bool xdp_is_valid_access(int off, int size,
8533 				enum bpf_access_type type,
8534 				const struct bpf_prog *prog,
8535 				struct bpf_insn_access_aux *info)
8536 {
8537 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8538 		switch (off) {
8539 		case offsetof(struct xdp_md, egress_ifindex):
8540 			return false;
8541 		}
8542 	}
8543 
8544 	if (type == BPF_WRITE) {
8545 		if (bpf_prog_is_dev_bound(prog->aux)) {
8546 			switch (off) {
8547 			case offsetof(struct xdp_md, rx_queue_index):
8548 				return __is_valid_xdp_access(off, size);
8549 			}
8550 		}
8551 		return false;
8552 	}
8553 
8554 	switch (off) {
8555 	case offsetof(struct xdp_md, data):
8556 		info->reg_type = PTR_TO_PACKET;
8557 		break;
8558 	case offsetof(struct xdp_md, data_meta):
8559 		info->reg_type = PTR_TO_PACKET_META;
8560 		break;
8561 	case offsetof(struct xdp_md, data_end):
8562 		info->reg_type = PTR_TO_PACKET_END;
8563 		break;
8564 	}
8565 
8566 	return __is_valid_xdp_access(off, size);
8567 }
8568 
8569 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8570 {
8571 	const u32 act_max = XDP_REDIRECT;
8572 
8573 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8574 		     act > act_max ? "Illegal" : "Driver unsupported",
8575 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8576 }
8577 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8578 
8579 static bool sock_addr_is_valid_access(int off, int size,
8580 				      enum bpf_access_type type,
8581 				      const struct bpf_prog *prog,
8582 				      struct bpf_insn_access_aux *info)
8583 {
8584 	const int size_default = sizeof(__u32);
8585 
8586 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8587 		return false;
8588 	if (off % size != 0)
8589 		return false;
8590 
8591 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8592 	 * versa.
8593 	 */
8594 	switch (off) {
8595 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8596 		switch (prog->expected_attach_type) {
8597 		case BPF_CGROUP_INET4_BIND:
8598 		case BPF_CGROUP_INET4_CONNECT:
8599 		case BPF_CGROUP_INET4_GETPEERNAME:
8600 		case BPF_CGROUP_INET4_GETSOCKNAME:
8601 		case BPF_CGROUP_UDP4_SENDMSG:
8602 		case BPF_CGROUP_UDP4_RECVMSG:
8603 			break;
8604 		default:
8605 			return false;
8606 		}
8607 		break;
8608 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8609 		switch (prog->expected_attach_type) {
8610 		case BPF_CGROUP_INET6_BIND:
8611 		case BPF_CGROUP_INET6_CONNECT:
8612 		case BPF_CGROUP_INET6_GETPEERNAME:
8613 		case BPF_CGROUP_INET6_GETSOCKNAME:
8614 		case BPF_CGROUP_UDP6_SENDMSG:
8615 		case BPF_CGROUP_UDP6_RECVMSG:
8616 			break;
8617 		default:
8618 			return false;
8619 		}
8620 		break;
8621 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8622 		switch (prog->expected_attach_type) {
8623 		case BPF_CGROUP_UDP4_SENDMSG:
8624 			break;
8625 		default:
8626 			return false;
8627 		}
8628 		break;
8629 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8630 				msg_src_ip6[3]):
8631 		switch (prog->expected_attach_type) {
8632 		case BPF_CGROUP_UDP6_SENDMSG:
8633 			break;
8634 		default:
8635 			return false;
8636 		}
8637 		break;
8638 	}
8639 
8640 	switch (off) {
8641 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8642 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8643 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8644 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8645 				msg_src_ip6[3]):
8646 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8647 		if (type == BPF_READ) {
8648 			bpf_ctx_record_field_size(info, size_default);
8649 
8650 			if (bpf_ctx_wide_access_ok(off, size,
8651 						   struct bpf_sock_addr,
8652 						   user_ip6))
8653 				return true;
8654 
8655 			if (bpf_ctx_wide_access_ok(off, size,
8656 						   struct bpf_sock_addr,
8657 						   msg_src_ip6))
8658 				return true;
8659 
8660 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8661 				return false;
8662 		} else {
8663 			if (bpf_ctx_wide_access_ok(off, size,
8664 						   struct bpf_sock_addr,
8665 						   user_ip6))
8666 				return true;
8667 
8668 			if (bpf_ctx_wide_access_ok(off, size,
8669 						   struct bpf_sock_addr,
8670 						   msg_src_ip6))
8671 				return true;
8672 
8673 			if (size != size_default)
8674 				return false;
8675 		}
8676 		break;
8677 	case offsetof(struct bpf_sock_addr, sk):
8678 		if (type != BPF_READ)
8679 			return false;
8680 		if (size != sizeof(__u64))
8681 			return false;
8682 		info->reg_type = PTR_TO_SOCKET;
8683 		break;
8684 	default:
8685 		if (type == BPF_READ) {
8686 			if (size != size_default)
8687 				return false;
8688 		} else {
8689 			return false;
8690 		}
8691 	}
8692 
8693 	return true;
8694 }
8695 
8696 static bool sock_ops_is_valid_access(int off, int size,
8697 				     enum bpf_access_type type,
8698 				     const struct bpf_prog *prog,
8699 				     struct bpf_insn_access_aux *info)
8700 {
8701 	const int size_default = sizeof(__u32);
8702 
8703 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8704 		return false;
8705 
8706 	/* The verifier guarantees that size > 0. */
8707 	if (off % size != 0)
8708 		return false;
8709 
8710 	if (type == BPF_WRITE) {
8711 		switch (off) {
8712 		case offsetof(struct bpf_sock_ops, reply):
8713 		case offsetof(struct bpf_sock_ops, sk_txhash):
8714 			if (size != size_default)
8715 				return false;
8716 			break;
8717 		default:
8718 			return false;
8719 		}
8720 	} else {
8721 		switch (off) {
8722 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8723 					bytes_acked):
8724 			if (size != sizeof(__u64))
8725 				return false;
8726 			break;
8727 		case offsetof(struct bpf_sock_ops, sk):
8728 			if (size != sizeof(__u64))
8729 				return false;
8730 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8731 			break;
8732 		case offsetof(struct bpf_sock_ops, skb_data):
8733 			if (size != sizeof(__u64))
8734 				return false;
8735 			info->reg_type = PTR_TO_PACKET;
8736 			break;
8737 		case offsetof(struct bpf_sock_ops, skb_data_end):
8738 			if (size != sizeof(__u64))
8739 				return false;
8740 			info->reg_type = PTR_TO_PACKET_END;
8741 			break;
8742 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8743 			bpf_ctx_record_field_size(info, size_default);
8744 			return bpf_ctx_narrow_access_ok(off, size,
8745 							size_default);
8746 		default:
8747 			if (size != size_default)
8748 				return false;
8749 			break;
8750 		}
8751 	}
8752 
8753 	return true;
8754 }
8755 
8756 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8757 			   const struct bpf_prog *prog)
8758 {
8759 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8760 }
8761 
8762 static bool sk_skb_is_valid_access(int off, int size,
8763 				   enum bpf_access_type type,
8764 				   const struct bpf_prog *prog,
8765 				   struct bpf_insn_access_aux *info)
8766 {
8767 	switch (off) {
8768 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8769 	case bpf_ctx_range(struct __sk_buff, data_meta):
8770 	case bpf_ctx_range(struct __sk_buff, tstamp):
8771 	case bpf_ctx_range(struct __sk_buff, wire_len):
8772 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8773 		return false;
8774 	}
8775 
8776 	if (type == BPF_WRITE) {
8777 		switch (off) {
8778 		case bpf_ctx_range(struct __sk_buff, tc_index):
8779 		case bpf_ctx_range(struct __sk_buff, priority):
8780 			break;
8781 		default:
8782 			return false;
8783 		}
8784 	}
8785 
8786 	switch (off) {
8787 	case bpf_ctx_range(struct __sk_buff, mark):
8788 		return false;
8789 	case bpf_ctx_range(struct __sk_buff, data):
8790 		info->reg_type = PTR_TO_PACKET;
8791 		break;
8792 	case bpf_ctx_range(struct __sk_buff, data_end):
8793 		info->reg_type = PTR_TO_PACKET_END;
8794 		break;
8795 	}
8796 
8797 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8798 }
8799 
8800 static bool sk_msg_is_valid_access(int off, int size,
8801 				   enum bpf_access_type type,
8802 				   const struct bpf_prog *prog,
8803 				   struct bpf_insn_access_aux *info)
8804 {
8805 	if (type == BPF_WRITE)
8806 		return false;
8807 
8808 	if (off % size != 0)
8809 		return false;
8810 
8811 	switch (off) {
8812 	case offsetof(struct sk_msg_md, data):
8813 		info->reg_type = PTR_TO_PACKET;
8814 		if (size != sizeof(__u64))
8815 			return false;
8816 		break;
8817 	case offsetof(struct sk_msg_md, data_end):
8818 		info->reg_type = PTR_TO_PACKET_END;
8819 		if (size != sizeof(__u64))
8820 			return false;
8821 		break;
8822 	case offsetof(struct sk_msg_md, sk):
8823 		if (size != sizeof(__u64))
8824 			return false;
8825 		info->reg_type = PTR_TO_SOCKET;
8826 		break;
8827 	case bpf_ctx_range(struct sk_msg_md, family):
8828 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8829 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
8830 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8831 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8832 	case bpf_ctx_range(struct sk_msg_md, remote_port):
8833 	case bpf_ctx_range(struct sk_msg_md, local_port):
8834 	case bpf_ctx_range(struct sk_msg_md, size):
8835 		if (size != sizeof(__u32))
8836 			return false;
8837 		break;
8838 	default:
8839 		return false;
8840 	}
8841 	return true;
8842 }
8843 
8844 static bool flow_dissector_is_valid_access(int off, int size,
8845 					   enum bpf_access_type type,
8846 					   const struct bpf_prog *prog,
8847 					   struct bpf_insn_access_aux *info)
8848 {
8849 	const int size_default = sizeof(__u32);
8850 
8851 	if (off < 0 || off >= sizeof(struct __sk_buff))
8852 		return false;
8853 
8854 	if (type == BPF_WRITE)
8855 		return false;
8856 
8857 	switch (off) {
8858 	case bpf_ctx_range(struct __sk_buff, data):
8859 		if (size != size_default)
8860 			return false;
8861 		info->reg_type = PTR_TO_PACKET;
8862 		return true;
8863 	case bpf_ctx_range(struct __sk_buff, data_end):
8864 		if (size != size_default)
8865 			return false;
8866 		info->reg_type = PTR_TO_PACKET_END;
8867 		return true;
8868 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8869 		if (size != sizeof(__u64))
8870 			return false;
8871 		info->reg_type = PTR_TO_FLOW_KEYS;
8872 		return true;
8873 	default:
8874 		return false;
8875 	}
8876 }
8877 
8878 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8879 					     const struct bpf_insn *si,
8880 					     struct bpf_insn *insn_buf,
8881 					     struct bpf_prog *prog,
8882 					     u32 *target_size)
8883 
8884 {
8885 	struct bpf_insn *insn = insn_buf;
8886 
8887 	switch (si->off) {
8888 	case offsetof(struct __sk_buff, data):
8889 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8890 				      si->dst_reg, si->src_reg,
8891 				      offsetof(struct bpf_flow_dissector, data));
8892 		break;
8893 
8894 	case offsetof(struct __sk_buff, data_end):
8895 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8896 				      si->dst_reg, si->src_reg,
8897 				      offsetof(struct bpf_flow_dissector, data_end));
8898 		break;
8899 
8900 	case offsetof(struct __sk_buff, flow_keys):
8901 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8902 				      si->dst_reg, si->src_reg,
8903 				      offsetof(struct bpf_flow_dissector, flow_keys));
8904 		break;
8905 	}
8906 
8907 	return insn - insn_buf;
8908 }
8909 
8910 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
8911 						     struct bpf_insn *insn)
8912 {
8913 	__u8 value_reg = si->dst_reg;
8914 	__u8 skb_reg = si->src_reg;
8915 	/* AX is needed because src_reg and dst_reg could be the same */
8916 	__u8 tmp_reg = BPF_REG_AX;
8917 
8918 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
8919 			      PKT_VLAN_PRESENT_OFFSET);
8920 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
8921 				SKB_MONO_DELIVERY_TIME_MASK, 2);
8922 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
8923 	*insn++ = BPF_JMP_A(1);
8924 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
8925 
8926 	return insn;
8927 }
8928 
8929 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8930 						  struct bpf_insn *insn)
8931 {
8932 	/* si->dst_reg = skb_shinfo(SKB); */
8933 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8934 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8935 			      BPF_REG_AX, si->src_reg,
8936 			      offsetof(struct sk_buff, end));
8937 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8938 			      si->dst_reg, si->src_reg,
8939 			      offsetof(struct sk_buff, head));
8940 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8941 #else
8942 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8943 			      si->dst_reg, si->src_reg,
8944 			      offsetof(struct sk_buff, end));
8945 #endif
8946 
8947 	return insn;
8948 }
8949 
8950 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
8951 						const struct bpf_insn *si,
8952 						struct bpf_insn *insn)
8953 {
8954 	__u8 value_reg = si->dst_reg;
8955 	__u8 skb_reg = si->src_reg;
8956 
8957 #ifdef CONFIG_NET_CLS_ACT
8958 	/* If the tstamp_type is read,
8959 	 * the bpf prog is aware the tstamp could have delivery time.
8960 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
8961 	 */
8962 	if (!prog->tstamp_type_access) {
8963 		/* AX is needed because src_reg and dst_reg could be the same */
8964 		__u8 tmp_reg = BPF_REG_AX;
8965 
8966 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
8967 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
8968 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
8969 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
8970 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
8971 		/* skb->tc_at_ingress && skb->mono_delivery_time,
8972 		 * read 0 as the (rcv) timestamp.
8973 		 */
8974 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
8975 		*insn++ = BPF_JMP_A(1);
8976 	}
8977 #endif
8978 
8979 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
8980 			      offsetof(struct sk_buff, tstamp));
8981 	return insn;
8982 }
8983 
8984 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
8985 						 const struct bpf_insn *si,
8986 						 struct bpf_insn *insn)
8987 {
8988 	__u8 value_reg = si->src_reg;
8989 	__u8 skb_reg = si->dst_reg;
8990 
8991 #ifdef CONFIG_NET_CLS_ACT
8992 	/* If the tstamp_type is read,
8993 	 * the bpf prog is aware the tstamp could have delivery time.
8994 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
8995 	 * Otherwise, writing at ingress will have to clear the
8996 	 * mono_delivery_time bit also.
8997 	 */
8998 	if (!prog->tstamp_type_access) {
8999 		__u8 tmp_reg = BPF_REG_AX;
9000 
9001 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9002 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9003 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9004 		/* goto <store> */
9005 		*insn++ = BPF_JMP_A(2);
9006 		/* <clear>: mono_delivery_time */
9007 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9008 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9009 	}
9010 #endif
9011 
9012 	/* <store>: skb->tstamp = tstamp */
9013 	*insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9014 			      offsetof(struct sk_buff, tstamp));
9015 	return insn;
9016 }
9017 
9018 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9019 				  const struct bpf_insn *si,
9020 				  struct bpf_insn *insn_buf,
9021 				  struct bpf_prog *prog, u32 *target_size)
9022 {
9023 	struct bpf_insn *insn = insn_buf;
9024 	int off;
9025 
9026 	switch (si->off) {
9027 	case offsetof(struct __sk_buff, len):
9028 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9029 				      bpf_target_off(struct sk_buff, len, 4,
9030 						     target_size));
9031 		break;
9032 
9033 	case offsetof(struct __sk_buff, protocol):
9034 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9035 				      bpf_target_off(struct sk_buff, protocol, 2,
9036 						     target_size));
9037 		break;
9038 
9039 	case offsetof(struct __sk_buff, vlan_proto):
9040 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9041 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9042 						     target_size));
9043 		break;
9044 
9045 	case offsetof(struct __sk_buff, priority):
9046 		if (type == BPF_WRITE)
9047 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9048 					      bpf_target_off(struct sk_buff, priority, 4,
9049 							     target_size));
9050 		else
9051 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9052 					      bpf_target_off(struct sk_buff, priority, 4,
9053 							     target_size));
9054 		break;
9055 
9056 	case offsetof(struct __sk_buff, ingress_ifindex):
9057 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9058 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9059 						     target_size));
9060 		break;
9061 
9062 	case offsetof(struct __sk_buff, ifindex):
9063 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9064 				      si->dst_reg, si->src_reg,
9065 				      offsetof(struct sk_buff, dev));
9066 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9067 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9068 				      bpf_target_off(struct net_device, ifindex, 4,
9069 						     target_size));
9070 		break;
9071 
9072 	case offsetof(struct __sk_buff, hash):
9073 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9074 				      bpf_target_off(struct sk_buff, hash, 4,
9075 						     target_size));
9076 		break;
9077 
9078 	case offsetof(struct __sk_buff, mark):
9079 		if (type == BPF_WRITE)
9080 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9081 					      bpf_target_off(struct sk_buff, mark, 4,
9082 							     target_size));
9083 		else
9084 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9085 					      bpf_target_off(struct sk_buff, mark, 4,
9086 							     target_size));
9087 		break;
9088 
9089 	case offsetof(struct __sk_buff, pkt_type):
9090 		*target_size = 1;
9091 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9092 				      PKT_TYPE_OFFSET);
9093 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9094 #ifdef __BIG_ENDIAN_BITFIELD
9095 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9096 #endif
9097 		break;
9098 
9099 	case offsetof(struct __sk_buff, queue_mapping):
9100 		if (type == BPF_WRITE) {
9101 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9102 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9103 					      bpf_target_off(struct sk_buff,
9104 							     queue_mapping,
9105 							     2, target_size));
9106 		} else {
9107 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9108 					      bpf_target_off(struct sk_buff,
9109 							     queue_mapping,
9110 							     2, target_size));
9111 		}
9112 		break;
9113 
9114 	case offsetof(struct __sk_buff, vlan_present):
9115 		*target_size = 1;
9116 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9117 				      PKT_VLAN_PRESENT_OFFSET);
9118 		if (PKT_VLAN_PRESENT_BIT)
9119 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9120 		if (PKT_VLAN_PRESENT_BIT < 7)
9121 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9122 		break;
9123 
9124 	case offsetof(struct __sk_buff, vlan_tci):
9125 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9126 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9127 						     target_size));
9128 		break;
9129 
9130 	case offsetof(struct __sk_buff, cb[0]) ...
9131 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9132 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9133 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9134 			      offsetof(struct qdisc_skb_cb, data)) %
9135 			     sizeof(__u64));
9136 
9137 		prog->cb_access = 1;
9138 		off  = si->off;
9139 		off -= offsetof(struct __sk_buff, cb[0]);
9140 		off += offsetof(struct sk_buff, cb);
9141 		off += offsetof(struct qdisc_skb_cb, data);
9142 		if (type == BPF_WRITE)
9143 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9144 					      si->src_reg, off);
9145 		else
9146 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9147 					      si->src_reg, off);
9148 		break;
9149 
9150 	case offsetof(struct __sk_buff, tc_classid):
9151 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9152 
9153 		off  = si->off;
9154 		off -= offsetof(struct __sk_buff, tc_classid);
9155 		off += offsetof(struct sk_buff, cb);
9156 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9157 		*target_size = 2;
9158 		if (type == BPF_WRITE)
9159 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9160 					      si->src_reg, off);
9161 		else
9162 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9163 					      si->src_reg, off);
9164 		break;
9165 
9166 	case offsetof(struct __sk_buff, data):
9167 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9168 				      si->dst_reg, si->src_reg,
9169 				      offsetof(struct sk_buff, data));
9170 		break;
9171 
9172 	case offsetof(struct __sk_buff, data_meta):
9173 		off  = si->off;
9174 		off -= offsetof(struct __sk_buff, data_meta);
9175 		off += offsetof(struct sk_buff, cb);
9176 		off += offsetof(struct bpf_skb_data_end, data_meta);
9177 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9178 				      si->src_reg, off);
9179 		break;
9180 
9181 	case offsetof(struct __sk_buff, data_end):
9182 		off  = si->off;
9183 		off -= offsetof(struct __sk_buff, data_end);
9184 		off += offsetof(struct sk_buff, cb);
9185 		off += offsetof(struct bpf_skb_data_end, data_end);
9186 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9187 				      si->src_reg, off);
9188 		break;
9189 
9190 	case offsetof(struct __sk_buff, tc_index):
9191 #ifdef CONFIG_NET_SCHED
9192 		if (type == BPF_WRITE)
9193 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9194 					      bpf_target_off(struct sk_buff, tc_index, 2,
9195 							     target_size));
9196 		else
9197 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9198 					      bpf_target_off(struct sk_buff, tc_index, 2,
9199 							     target_size));
9200 #else
9201 		*target_size = 2;
9202 		if (type == BPF_WRITE)
9203 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9204 		else
9205 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9206 #endif
9207 		break;
9208 
9209 	case offsetof(struct __sk_buff, napi_id):
9210 #if defined(CONFIG_NET_RX_BUSY_POLL)
9211 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9212 				      bpf_target_off(struct sk_buff, napi_id, 4,
9213 						     target_size));
9214 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9215 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9216 #else
9217 		*target_size = 4;
9218 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9219 #endif
9220 		break;
9221 	case offsetof(struct __sk_buff, family):
9222 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9223 
9224 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9225 				      si->dst_reg, si->src_reg,
9226 				      offsetof(struct sk_buff, sk));
9227 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9228 				      bpf_target_off(struct sock_common,
9229 						     skc_family,
9230 						     2, target_size));
9231 		break;
9232 	case offsetof(struct __sk_buff, remote_ip4):
9233 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9234 
9235 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9236 				      si->dst_reg, si->src_reg,
9237 				      offsetof(struct sk_buff, sk));
9238 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9239 				      bpf_target_off(struct sock_common,
9240 						     skc_daddr,
9241 						     4, target_size));
9242 		break;
9243 	case offsetof(struct __sk_buff, local_ip4):
9244 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9245 					  skc_rcv_saddr) != 4);
9246 
9247 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9248 				      si->dst_reg, si->src_reg,
9249 				      offsetof(struct sk_buff, sk));
9250 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9251 				      bpf_target_off(struct sock_common,
9252 						     skc_rcv_saddr,
9253 						     4, target_size));
9254 		break;
9255 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9256 	     offsetof(struct __sk_buff, remote_ip6[3]):
9257 #if IS_ENABLED(CONFIG_IPV6)
9258 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9259 					  skc_v6_daddr.s6_addr32[0]) != 4);
9260 
9261 		off = si->off;
9262 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9263 
9264 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9265 				      si->dst_reg, si->src_reg,
9266 				      offsetof(struct sk_buff, sk));
9267 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9268 				      offsetof(struct sock_common,
9269 					       skc_v6_daddr.s6_addr32[0]) +
9270 				      off);
9271 #else
9272 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9273 #endif
9274 		break;
9275 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9276 	     offsetof(struct __sk_buff, local_ip6[3]):
9277 #if IS_ENABLED(CONFIG_IPV6)
9278 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9279 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9280 
9281 		off = si->off;
9282 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9283 
9284 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9285 				      si->dst_reg, si->src_reg,
9286 				      offsetof(struct sk_buff, sk));
9287 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9288 				      offsetof(struct sock_common,
9289 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9290 				      off);
9291 #else
9292 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9293 #endif
9294 		break;
9295 
9296 	case offsetof(struct __sk_buff, remote_port):
9297 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9298 
9299 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9300 				      si->dst_reg, si->src_reg,
9301 				      offsetof(struct sk_buff, sk));
9302 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9303 				      bpf_target_off(struct sock_common,
9304 						     skc_dport,
9305 						     2, target_size));
9306 #ifndef __BIG_ENDIAN_BITFIELD
9307 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9308 #endif
9309 		break;
9310 
9311 	case offsetof(struct __sk_buff, local_port):
9312 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9313 
9314 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9315 				      si->dst_reg, si->src_reg,
9316 				      offsetof(struct sk_buff, sk));
9317 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9318 				      bpf_target_off(struct sock_common,
9319 						     skc_num, 2, target_size));
9320 		break;
9321 
9322 	case offsetof(struct __sk_buff, tstamp):
9323 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9324 
9325 		if (type == BPF_WRITE)
9326 			insn = bpf_convert_tstamp_write(prog, si, insn);
9327 		else
9328 			insn = bpf_convert_tstamp_read(prog, si, insn);
9329 		break;
9330 
9331 	case offsetof(struct __sk_buff, tstamp_type):
9332 		insn = bpf_convert_tstamp_type_read(si, insn);
9333 		break;
9334 
9335 	case offsetof(struct __sk_buff, gso_segs):
9336 		insn = bpf_convert_shinfo_access(si, insn);
9337 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9338 				      si->dst_reg, si->dst_reg,
9339 				      bpf_target_off(struct skb_shared_info,
9340 						     gso_segs, 2,
9341 						     target_size));
9342 		break;
9343 	case offsetof(struct __sk_buff, gso_size):
9344 		insn = bpf_convert_shinfo_access(si, insn);
9345 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9346 				      si->dst_reg, si->dst_reg,
9347 				      bpf_target_off(struct skb_shared_info,
9348 						     gso_size, 2,
9349 						     target_size));
9350 		break;
9351 	case offsetof(struct __sk_buff, wire_len):
9352 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9353 
9354 		off = si->off;
9355 		off -= offsetof(struct __sk_buff, wire_len);
9356 		off += offsetof(struct sk_buff, cb);
9357 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9358 		*target_size = 4;
9359 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9360 		break;
9361 
9362 	case offsetof(struct __sk_buff, sk):
9363 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9364 				      si->dst_reg, si->src_reg,
9365 				      offsetof(struct sk_buff, sk));
9366 		break;
9367 	case offsetof(struct __sk_buff, hwtstamp):
9368 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9369 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9370 
9371 		insn = bpf_convert_shinfo_access(si, insn);
9372 		*insn++ = BPF_LDX_MEM(BPF_DW,
9373 				      si->dst_reg, si->dst_reg,
9374 				      bpf_target_off(struct skb_shared_info,
9375 						     hwtstamps, 8,
9376 						     target_size));
9377 		break;
9378 	}
9379 
9380 	return insn - insn_buf;
9381 }
9382 
9383 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9384 				const struct bpf_insn *si,
9385 				struct bpf_insn *insn_buf,
9386 				struct bpf_prog *prog, u32 *target_size)
9387 {
9388 	struct bpf_insn *insn = insn_buf;
9389 	int off;
9390 
9391 	switch (si->off) {
9392 	case offsetof(struct bpf_sock, bound_dev_if):
9393 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9394 
9395 		if (type == BPF_WRITE)
9396 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9397 					offsetof(struct sock, sk_bound_dev_if));
9398 		else
9399 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9400 				      offsetof(struct sock, sk_bound_dev_if));
9401 		break;
9402 
9403 	case offsetof(struct bpf_sock, mark):
9404 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9405 
9406 		if (type == BPF_WRITE)
9407 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9408 					offsetof(struct sock, sk_mark));
9409 		else
9410 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9411 				      offsetof(struct sock, sk_mark));
9412 		break;
9413 
9414 	case offsetof(struct bpf_sock, priority):
9415 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9416 
9417 		if (type == BPF_WRITE)
9418 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9419 					offsetof(struct sock, sk_priority));
9420 		else
9421 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9422 				      offsetof(struct sock, sk_priority));
9423 		break;
9424 
9425 	case offsetof(struct bpf_sock, family):
9426 		*insn++ = BPF_LDX_MEM(
9427 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9428 			si->dst_reg, si->src_reg,
9429 			bpf_target_off(struct sock_common,
9430 				       skc_family,
9431 				       sizeof_field(struct sock_common,
9432 						    skc_family),
9433 				       target_size));
9434 		break;
9435 
9436 	case offsetof(struct bpf_sock, type):
9437 		*insn++ = BPF_LDX_MEM(
9438 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9439 			si->dst_reg, si->src_reg,
9440 			bpf_target_off(struct sock, sk_type,
9441 				       sizeof_field(struct sock, sk_type),
9442 				       target_size));
9443 		break;
9444 
9445 	case offsetof(struct bpf_sock, protocol):
9446 		*insn++ = BPF_LDX_MEM(
9447 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9448 			si->dst_reg, si->src_reg,
9449 			bpf_target_off(struct sock, sk_protocol,
9450 				       sizeof_field(struct sock, sk_protocol),
9451 				       target_size));
9452 		break;
9453 
9454 	case offsetof(struct bpf_sock, src_ip4):
9455 		*insn++ = BPF_LDX_MEM(
9456 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9457 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9458 				       sizeof_field(struct sock_common,
9459 						    skc_rcv_saddr),
9460 				       target_size));
9461 		break;
9462 
9463 	case offsetof(struct bpf_sock, dst_ip4):
9464 		*insn++ = BPF_LDX_MEM(
9465 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9466 			bpf_target_off(struct sock_common, skc_daddr,
9467 				       sizeof_field(struct sock_common,
9468 						    skc_daddr),
9469 				       target_size));
9470 		break;
9471 
9472 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9473 #if IS_ENABLED(CONFIG_IPV6)
9474 		off = si->off;
9475 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9476 		*insn++ = BPF_LDX_MEM(
9477 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9478 			bpf_target_off(
9479 				struct sock_common,
9480 				skc_v6_rcv_saddr.s6_addr32[0],
9481 				sizeof_field(struct sock_common,
9482 					     skc_v6_rcv_saddr.s6_addr32[0]),
9483 				target_size) + off);
9484 #else
9485 		(void)off;
9486 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9487 #endif
9488 		break;
9489 
9490 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9491 #if IS_ENABLED(CONFIG_IPV6)
9492 		off = si->off;
9493 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9494 		*insn++ = BPF_LDX_MEM(
9495 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9496 			bpf_target_off(struct sock_common,
9497 				       skc_v6_daddr.s6_addr32[0],
9498 				       sizeof_field(struct sock_common,
9499 						    skc_v6_daddr.s6_addr32[0]),
9500 				       target_size) + off);
9501 #else
9502 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9503 		*target_size = 4;
9504 #endif
9505 		break;
9506 
9507 	case offsetof(struct bpf_sock, src_port):
9508 		*insn++ = BPF_LDX_MEM(
9509 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9510 			si->dst_reg, si->src_reg,
9511 			bpf_target_off(struct sock_common, skc_num,
9512 				       sizeof_field(struct sock_common,
9513 						    skc_num),
9514 				       target_size));
9515 		break;
9516 
9517 	case offsetof(struct bpf_sock, dst_port):
9518 		*insn++ = BPF_LDX_MEM(
9519 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9520 			si->dst_reg, si->src_reg,
9521 			bpf_target_off(struct sock_common, skc_dport,
9522 				       sizeof_field(struct sock_common,
9523 						    skc_dport),
9524 				       target_size));
9525 		break;
9526 
9527 	case offsetof(struct bpf_sock, state):
9528 		*insn++ = BPF_LDX_MEM(
9529 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9530 			si->dst_reg, si->src_reg,
9531 			bpf_target_off(struct sock_common, skc_state,
9532 				       sizeof_field(struct sock_common,
9533 						    skc_state),
9534 				       target_size));
9535 		break;
9536 	case offsetof(struct bpf_sock, rx_queue_mapping):
9537 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9538 		*insn++ = BPF_LDX_MEM(
9539 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9540 			si->dst_reg, si->src_reg,
9541 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9542 				       sizeof_field(struct sock,
9543 						    sk_rx_queue_mapping),
9544 				       target_size));
9545 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9546 				      1);
9547 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9548 #else
9549 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9550 		*target_size = 2;
9551 #endif
9552 		break;
9553 	}
9554 
9555 	return insn - insn_buf;
9556 }
9557 
9558 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9559 					 const struct bpf_insn *si,
9560 					 struct bpf_insn *insn_buf,
9561 					 struct bpf_prog *prog, u32 *target_size)
9562 {
9563 	struct bpf_insn *insn = insn_buf;
9564 
9565 	switch (si->off) {
9566 	case offsetof(struct __sk_buff, ifindex):
9567 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9568 				      si->dst_reg, si->src_reg,
9569 				      offsetof(struct sk_buff, dev));
9570 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9571 				      bpf_target_off(struct net_device, ifindex, 4,
9572 						     target_size));
9573 		break;
9574 	default:
9575 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9576 					      target_size);
9577 	}
9578 
9579 	return insn - insn_buf;
9580 }
9581 
9582 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9583 				  const struct bpf_insn *si,
9584 				  struct bpf_insn *insn_buf,
9585 				  struct bpf_prog *prog, u32 *target_size)
9586 {
9587 	struct bpf_insn *insn = insn_buf;
9588 
9589 	switch (si->off) {
9590 	case offsetof(struct xdp_md, data):
9591 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9592 				      si->dst_reg, si->src_reg,
9593 				      offsetof(struct xdp_buff, data));
9594 		break;
9595 	case offsetof(struct xdp_md, data_meta):
9596 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9597 				      si->dst_reg, si->src_reg,
9598 				      offsetof(struct xdp_buff, data_meta));
9599 		break;
9600 	case offsetof(struct xdp_md, data_end):
9601 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9602 				      si->dst_reg, si->src_reg,
9603 				      offsetof(struct xdp_buff, data_end));
9604 		break;
9605 	case offsetof(struct xdp_md, ingress_ifindex):
9606 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9607 				      si->dst_reg, si->src_reg,
9608 				      offsetof(struct xdp_buff, rxq));
9609 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9610 				      si->dst_reg, si->dst_reg,
9611 				      offsetof(struct xdp_rxq_info, dev));
9612 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9613 				      offsetof(struct net_device, ifindex));
9614 		break;
9615 	case offsetof(struct xdp_md, rx_queue_index):
9616 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9617 				      si->dst_reg, si->src_reg,
9618 				      offsetof(struct xdp_buff, rxq));
9619 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9620 				      offsetof(struct xdp_rxq_info,
9621 					       queue_index));
9622 		break;
9623 	case offsetof(struct xdp_md, egress_ifindex):
9624 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9625 				      si->dst_reg, si->src_reg,
9626 				      offsetof(struct xdp_buff, txq));
9627 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9628 				      si->dst_reg, si->dst_reg,
9629 				      offsetof(struct xdp_txq_info, dev));
9630 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9631 				      offsetof(struct net_device, ifindex));
9632 		break;
9633 	}
9634 
9635 	return insn - insn_buf;
9636 }
9637 
9638 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9639  * context Structure, F is Field in context structure that contains a pointer
9640  * to Nested Structure of type NS that has the field NF.
9641  *
9642  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9643  * sure that SIZE is not greater than actual size of S.F.NF.
9644  *
9645  * If offset OFF is provided, the load happens from that offset relative to
9646  * offset of NF.
9647  */
9648 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9649 	do {								       \
9650 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9651 				      si->src_reg, offsetof(S, F));	       \
9652 		*insn++ = BPF_LDX_MEM(					       \
9653 			SIZE, si->dst_reg, si->dst_reg,			       \
9654 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9655 				       target_size)			       \
9656 				+ OFF);					       \
9657 	} while (0)
9658 
9659 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9660 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9661 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9662 
9663 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9664  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9665  *
9666  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9667  * "register" since two registers available in convert_ctx_access are not
9668  * enough: we can't override neither SRC, since it contains value to store, nor
9669  * DST since it contains pointer to context that may be used by later
9670  * instructions. But we need a temporary place to save pointer to nested
9671  * structure whose field we want to store to.
9672  */
9673 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9674 	do {								       \
9675 		int tmp_reg = BPF_REG_9;				       \
9676 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9677 			--tmp_reg;					       \
9678 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9679 			--tmp_reg;					       \
9680 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9681 				      offsetof(S, TF));			       \
9682 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9683 				      si->dst_reg, offsetof(S, F));	       \
9684 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
9685 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9686 				       target_size)			       \
9687 				+ OFF);					       \
9688 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9689 				      offsetof(S, TF));			       \
9690 	} while (0)
9691 
9692 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9693 						      TF)		       \
9694 	do {								       \
9695 		if (type == BPF_WRITE) {				       \
9696 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9697 							 OFF, TF);	       \
9698 		} else {						       \
9699 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9700 				S, NS, F, NF, SIZE, OFF);  \
9701 		}							       \
9702 	} while (0)
9703 
9704 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9705 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9706 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9707 
9708 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9709 					const struct bpf_insn *si,
9710 					struct bpf_insn *insn_buf,
9711 					struct bpf_prog *prog, u32 *target_size)
9712 {
9713 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9714 	struct bpf_insn *insn = insn_buf;
9715 
9716 	switch (si->off) {
9717 	case offsetof(struct bpf_sock_addr, user_family):
9718 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9719 					    struct sockaddr, uaddr, sa_family);
9720 		break;
9721 
9722 	case offsetof(struct bpf_sock_addr, user_ip4):
9723 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9724 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9725 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9726 		break;
9727 
9728 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9729 		off = si->off;
9730 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9731 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9732 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9733 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9734 			tmp_reg);
9735 		break;
9736 
9737 	case offsetof(struct bpf_sock_addr, user_port):
9738 		/* To get port we need to know sa_family first and then treat
9739 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9740 		 * Though we can simplify since port field has same offset and
9741 		 * size in both structures.
9742 		 * Here we check this invariant and use just one of the
9743 		 * structures if it's true.
9744 		 */
9745 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9746 			     offsetof(struct sockaddr_in6, sin6_port));
9747 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9748 			     sizeof_field(struct sockaddr_in6, sin6_port));
9749 		/* Account for sin6_port being smaller than user_port. */
9750 		port_size = min(port_size, BPF_LDST_BYTES(si));
9751 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9752 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9753 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9754 		break;
9755 
9756 	case offsetof(struct bpf_sock_addr, family):
9757 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9758 					    struct sock, sk, sk_family);
9759 		break;
9760 
9761 	case offsetof(struct bpf_sock_addr, type):
9762 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9763 					    struct sock, sk, sk_type);
9764 		break;
9765 
9766 	case offsetof(struct bpf_sock_addr, protocol):
9767 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9768 					    struct sock, sk, sk_protocol);
9769 		break;
9770 
9771 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9772 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9773 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9774 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9775 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9776 		break;
9777 
9778 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9779 				msg_src_ip6[3]):
9780 		off = si->off;
9781 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9782 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9783 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9784 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9785 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9786 		break;
9787 	case offsetof(struct bpf_sock_addr, sk):
9788 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9789 				      si->dst_reg, si->src_reg,
9790 				      offsetof(struct bpf_sock_addr_kern, sk));
9791 		break;
9792 	}
9793 
9794 	return insn - insn_buf;
9795 }
9796 
9797 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9798 				       const struct bpf_insn *si,
9799 				       struct bpf_insn *insn_buf,
9800 				       struct bpf_prog *prog,
9801 				       u32 *target_size)
9802 {
9803 	struct bpf_insn *insn = insn_buf;
9804 	int off;
9805 
9806 /* Helper macro for adding read access to tcp_sock or sock fields. */
9807 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9808 	do {								      \
9809 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9810 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9811 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9812 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9813 			reg--;						      \
9814 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9815 			reg--;						      \
9816 		if (si->dst_reg == si->src_reg) {			      \
9817 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9818 					  offsetof(struct bpf_sock_ops_kern,  \
9819 					  temp));			      \
9820 			fullsock_reg = reg;				      \
9821 			jmp += 2;					      \
9822 		}							      \
9823 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9824 						struct bpf_sock_ops_kern,     \
9825 						is_fullsock),		      \
9826 				      fullsock_reg, si->src_reg,	      \
9827 				      offsetof(struct bpf_sock_ops_kern,      \
9828 					       is_fullsock));		      \
9829 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9830 		if (si->dst_reg == si->src_reg)				      \
9831 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9832 				      offsetof(struct bpf_sock_ops_kern,      \
9833 				      temp));				      \
9834 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9835 						struct bpf_sock_ops_kern, sk),\
9836 				      si->dst_reg, si->src_reg,		      \
9837 				      offsetof(struct bpf_sock_ops_kern, sk));\
9838 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
9839 						       OBJ_FIELD),	      \
9840 				      si->dst_reg, si->dst_reg,		      \
9841 				      offsetof(OBJ, OBJ_FIELD));	      \
9842 		if (si->dst_reg == si->src_reg)	{			      \
9843 			*insn++ = BPF_JMP_A(1);				      \
9844 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9845 				      offsetof(struct bpf_sock_ops_kern,      \
9846 				      temp));				      \
9847 		}							      \
9848 	} while (0)
9849 
9850 #define SOCK_OPS_GET_SK()							      \
9851 	do {								      \
9852 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9853 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9854 			reg--;						      \
9855 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9856 			reg--;						      \
9857 		if (si->dst_reg == si->src_reg) {			      \
9858 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9859 					  offsetof(struct bpf_sock_ops_kern,  \
9860 					  temp));			      \
9861 			fullsock_reg = reg;				      \
9862 			jmp += 2;					      \
9863 		}							      \
9864 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9865 						struct bpf_sock_ops_kern,     \
9866 						is_fullsock),		      \
9867 				      fullsock_reg, si->src_reg,	      \
9868 				      offsetof(struct bpf_sock_ops_kern,      \
9869 					       is_fullsock));		      \
9870 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9871 		if (si->dst_reg == si->src_reg)				      \
9872 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9873 				      offsetof(struct bpf_sock_ops_kern,      \
9874 				      temp));				      \
9875 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9876 						struct bpf_sock_ops_kern, sk),\
9877 				      si->dst_reg, si->src_reg,		      \
9878 				      offsetof(struct bpf_sock_ops_kern, sk));\
9879 		if (si->dst_reg == si->src_reg)	{			      \
9880 			*insn++ = BPF_JMP_A(1);				      \
9881 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9882 				      offsetof(struct bpf_sock_ops_kern,      \
9883 				      temp));				      \
9884 		}							      \
9885 	} while (0)
9886 
9887 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9888 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9889 
9890 /* Helper macro for adding write access to tcp_sock or sock fields.
9891  * The macro is called with two registers, dst_reg which contains a pointer
9892  * to ctx (context) and src_reg which contains the value that should be
9893  * stored. However, we need an additional register since we cannot overwrite
9894  * dst_reg because it may be used later in the program.
9895  * Instead we "borrow" one of the other register. We first save its value
9896  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9897  * it at the end of the macro.
9898  */
9899 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9900 	do {								      \
9901 		int reg = BPF_REG_9;					      \
9902 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9903 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9904 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9905 			reg--;						      \
9906 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9907 			reg--;						      \
9908 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
9909 				      offsetof(struct bpf_sock_ops_kern,      \
9910 					       temp));			      \
9911 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9912 						struct bpf_sock_ops_kern,     \
9913 						is_fullsock),		      \
9914 				      reg, si->dst_reg,			      \
9915 				      offsetof(struct bpf_sock_ops_kern,      \
9916 					       is_fullsock));		      \
9917 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
9918 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9919 						struct bpf_sock_ops_kern, sk),\
9920 				      reg, si->dst_reg,			      \
9921 				      offsetof(struct bpf_sock_ops_kern, sk));\
9922 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
9923 				      reg, si->src_reg,			      \
9924 				      offsetof(OBJ, OBJ_FIELD));	      \
9925 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
9926 				      offsetof(struct bpf_sock_ops_kern,      \
9927 					       temp));			      \
9928 	} while (0)
9929 
9930 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
9931 	do {								      \
9932 		if (TYPE == BPF_WRITE)					      \
9933 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9934 		else							      \
9935 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9936 	} while (0)
9937 
9938 	if (insn > insn_buf)
9939 		return insn - insn_buf;
9940 
9941 	switch (si->off) {
9942 	case offsetof(struct bpf_sock_ops, op):
9943 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9944 						       op),
9945 				      si->dst_reg, si->src_reg,
9946 				      offsetof(struct bpf_sock_ops_kern, op));
9947 		break;
9948 
9949 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
9950 	     offsetof(struct bpf_sock_ops, replylong[3]):
9951 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9952 			     sizeof_field(struct bpf_sock_ops_kern, reply));
9953 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9954 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
9955 		off = si->off;
9956 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
9957 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9958 		if (type == BPF_WRITE)
9959 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9960 					      off);
9961 		else
9962 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9963 					      off);
9964 		break;
9965 
9966 	case offsetof(struct bpf_sock_ops, family):
9967 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9968 
9969 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9970 					      struct bpf_sock_ops_kern, sk),
9971 				      si->dst_reg, si->src_reg,
9972 				      offsetof(struct bpf_sock_ops_kern, sk));
9973 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9974 				      offsetof(struct sock_common, skc_family));
9975 		break;
9976 
9977 	case offsetof(struct bpf_sock_ops, remote_ip4):
9978 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9979 
9980 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9981 						struct bpf_sock_ops_kern, sk),
9982 				      si->dst_reg, si->src_reg,
9983 				      offsetof(struct bpf_sock_ops_kern, sk));
9984 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9985 				      offsetof(struct sock_common, skc_daddr));
9986 		break;
9987 
9988 	case offsetof(struct bpf_sock_ops, local_ip4):
9989 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9990 					  skc_rcv_saddr) != 4);
9991 
9992 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9993 					      struct bpf_sock_ops_kern, sk),
9994 				      si->dst_reg, si->src_reg,
9995 				      offsetof(struct bpf_sock_ops_kern, sk));
9996 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9997 				      offsetof(struct sock_common,
9998 					       skc_rcv_saddr));
9999 		break;
10000 
10001 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10002 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10003 #if IS_ENABLED(CONFIG_IPV6)
10004 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10005 					  skc_v6_daddr.s6_addr32[0]) != 4);
10006 
10007 		off = si->off;
10008 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10009 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10010 						struct bpf_sock_ops_kern, sk),
10011 				      si->dst_reg, si->src_reg,
10012 				      offsetof(struct bpf_sock_ops_kern, sk));
10013 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10014 				      offsetof(struct sock_common,
10015 					       skc_v6_daddr.s6_addr32[0]) +
10016 				      off);
10017 #else
10018 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10019 #endif
10020 		break;
10021 
10022 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10023 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10024 #if IS_ENABLED(CONFIG_IPV6)
10025 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10026 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10027 
10028 		off = si->off;
10029 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10030 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10031 						struct bpf_sock_ops_kern, sk),
10032 				      si->dst_reg, si->src_reg,
10033 				      offsetof(struct bpf_sock_ops_kern, sk));
10034 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10035 				      offsetof(struct sock_common,
10036 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10037 				      off);
10038 #else
10039 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10040 #endif
10041 		break;
10042 
10043 	case offsetof(struct bpf_sock_ops, remote_port):
10044 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10045 
10046 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10047 						struct bpf_sock_ops_kern, sk),
10048 				      si->dst_reg, si->src_reg,
10049 				      offsetof(struct bpf_sock_ops_kern, sk));
10050 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10051 				      offsetof(struct sock_common, skc_dport));
10052 #ifndef __BIG_ENDIAN_BITFIELD
10053 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10054 #endif
10055 		break;
10056 
10057 	case offsetof(struct bpf_sock_ops, local_port):
10058 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10059 
10060 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10061 						struct bpf_sock_ops_kern, sk),
10062 				      si->dst_reg, si->src_reg,
10063 				      offsetof(struct bpf_sock_ops_kern, sk));
10064 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10065 				      offsetof(struct sock_common, skc_num));
10066 		break;
10067 
10068 	case offsetof(struct bpf_sock_ops, is_fullsock):
10069 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10070 						struct bpf_sock_ops_kern,
10071 						is_fullsock),
10072 				      si->dst_reg, si->src_reg,
10073 				      offsetof(struct bpf_sock_ops_kern,
10074 					       is_fullsock));
10075 		break;
10076 
10077 	case offsetof(struct bpf_sock_ops, state):
10078 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10079 
10080 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10081 						struct bpf_sock_ops_kern, sk),
10082 				      si->dst_reg, si->src_reg,
10083 				      offsetof(struct bpf_sock_ops_kern, sk));
10084 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10085 				      offsetof(struct sock_common, skc_state));
10086 		break;
10087 
10088 	case offsetof(struct bpf_sock_ops, rtt_min):
10089 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10090 			     sizeof(struct minmax));
10091 		BUILD_BUG_ON(sizeof(struct minmax) <
10092 			     sizeof(struct minmax_sample));
10093 
10094 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10095 						struct bpf_sock_ops_kern, sk),
10096 				      si->dst_reg, si->src_reg,
10097 				      offsetof(struct bpf_sock_ops_kern, sk));
10098 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10099 				      offsetof(struct tcp_sock, rtt_min) +
10100 				      sizeof_field(struct minmax_sample, t));
10101 		break;
10102 
10103 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10104 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10105 				   struct tcp_sock);
10106 		break;
10107 
10108 	case offsetof(struct bpf_sock_ops, sk_txhash):
10109 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10110 					  struct sock, type);
10111 		break;
10112 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10113 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10114 		break;
10115 	case offsetof(struct bpf_sock_ops, srtt_us):
10116 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10117 		break;
10118 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10119 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10120 		break;
10121 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10122 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10123 		break;
10124 	case offsetof(struct bpf_sock_ops, snd_nxt):
10125 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10126 		break;
10127 	case offsetof(struct bpf_sock_ops, snd_una):
10128 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10129 		break;
10130 	case offsetof(struct bpf_sock_ops, mss_cache):
10131 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10132 		break;
10133 	case offsetof(struct bpf_sock_ops, ecn_flags):
10134 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10135 		break;
10136 	case offsetof(struct bpf_sock_ops, rate_delivered):
10137 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10138 		break;
10139 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10140 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10141 		break;
10142 	case offsetof(struct bpf_sock_ops, packets_out):
10143 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10144 		break;
10145 	case offsetof(struct bpf_sock_ops, retrans_out):
10146 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10147 		break;
10148 	case offsetof(struct bpf_sock_ops, total_retrans):
10149 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10150 		break;
10151 	case offsetof(struct bpf_sock_ops, segs_in):
10152 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10153 		break;
10154 	case offsetof(struct bpf_sock_ops, data_segs_in):
10155 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10156 		break;
10157 	case offsetof(struct bpf_sock_ops, segs_out):
10158 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10159 		break;
10160 	case offsetof(struct bpf_sock_ops, data_segs_out):
10161 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10162 		break;
10163 	case offsetof(struct bpf_sock_ops, lost_out):
10164 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10165 		break;
10166 	case offsetof(struct bpf_sock_ops, sacked_out):
10167 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10168 		break;
10169 	case offsetof(struct bpf_sock_ops, bytes_received):
10170 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10171 		break;
10172 	case offsetof(struct bpf_sock_ops, bytes_acked):
10173 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10174 		break;
10175 	case offsetof(struct bpf_sock_ops, sk):
10176 		SOCK_OPS_GET_SK();
10177 		break;
10178 	case offsetof(struct bpf_sock_ops, skb_data_end):
10179 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10180 						       skb_data_end),
10181 				      si->dst_reg, si->src_reg,
10182 				      offsetof(struct bpf_sock_ops_kern,
10183 					       skb_data_end));
10184 		break;
10185 	case offsetof(struct bpf_sock_ops, skb_data):
10186 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10187 						       skb),
10188 				      si->dst_reg, si->src_reg,
10189 				      offsetof(struct bpf_sock_ops_kern,
10190 					       skb));
10191 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10192 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10193 				      si->dst_reg, si->dst_reg,
10194 				      offsetof(struct sk_buff, data));
10195 		break;
10196 	case offsetof(struct bpf_sock_ops, skb_len):
10197 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10198 						       skb),
10199 				      si->dst_reg, si->src_reg,
10200 				      offsetof(struct bpf_sock_ops_kern,
10201 					       skb));
10202 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10203 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10204 				      si->dst_reg, si->dst_reg,
10205 				      offsetof(struct sk_buff, len));
10206 		break;
10207 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10208 		off = offsetof(struct sk_buff, cb);
10209 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10210 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10211 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10212 						       skb),
10213 				      si->dst_reg, si->src_reg,
10214 				      offsetof(struct bpf_sock_ops_kern,
10215 					       skb));
10216 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10217 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10218 						       tcp_flags),
10219 				      si->dst_reg, si->dst_reg, off);
10220 		break;
10221 	}
10222 	return insn - insn_buf;
10223 }
10224 
10225 /* data_end = skb->data + skb_headlen() */
10226 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10227 						    struct bpf_insn *insn)
10228 {
10229 	int reg;
10230 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10231 			   offsetof(struct sk_skb_cb, temp_reg);
10232 
10233 	if (si->src_reg == si->dst_reg) {
10234 		/* We need an extra register, choose and save a register. */
10235 		reg = BPF_REG_9;
10236 		if (si->src_reg == reg || si->dst_reg == reg)
10237 			reg--;
10238 		if (si->src_reg == reg || si->dst_reg == reg)
10239 			reg--;
10240 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10241 	} else {
10242 		reg = si->dst_reg;
10243 	}
10244 
10245 	/* reg = skb->data */
10246 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10247 			      reg, si->src_reg,
10248 			      offsetof(struct sk_buff, data));
10249 	/* AX = skb->len */
10250 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10251 			      BPF_REG_AX, si->src_reg,
10252 			      offsetof(struct sk_buff, len));
10253 	/* reg = skb->data + skb->len */
10254 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10255 	/* AX = skb->data_len */
10256 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10257 			      BPF_REG_AX, si->src_reg,
10258 			      offsetof(struct sk_buff, data_len));
10259 
10260 	/* reg = skb->data + skb->len - skb->data_len */
10261 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10262 
10263 	if (si->src_reg == si->dst_reg) {
10264 		/* Restore the saved register */
10265 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10266 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10267 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10268 	}
10269 
10270 	return insn;
10271 }
10272 
10273 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10274 				     const struct bpf_insn *si,
10275 				     struct bpf_insn *insn_buf,
10276 				     struct bpf_prog *prog, u32 *target_size)
10277 {
10278 	struct bpf_insn *insn = insn_buf;
10279 	int off;
10280 
10281 	switch (si->off) {
10282 	case offsetof(struct __sk_buff, data_end):
10283 		insn = bpf_convert_data_end_access(si, insn);
10284 		break;
10285 	case offsetof(struct __sk_buff, cb[0]) ...
10286 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10287 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10288 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10289 			      offsetof(struct sk_skb_cb, data)) %
10290 			     sizeof(__u64));
10291 
10292 		prog->cb_access = 1;
10293 		off  = si->off;
10294 		off -= offsetof(struct __sk_buff, cb[0]);
10295 		off += offsetof(struct sk_buff, cb);
10296 		off += offsetof(struct sk_skb_cb, data);
10297 		if (type == BPF_WRITE)
10298 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10299 					      si->src_reg, off);
10300 		else
10301 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10302 					      si->src_reg, off);
10303 		break;
10304 
10305 
10306 	default:
10307 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10308 					      target_size);
10309 	}
10310 
10311 	return insn - insn_buf;
10312 }
10313 
10314 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10315 				     const struct bpf_insn *si,
10316 				     struct bpf_insn *insn_buf,
10317 				     struct bpf_prog *prog, u32 *target_size)
10318 {
10319 	struct bpf_insn *insn = insn_buf;
10320 #if IS_ENABLED(CONFIG_IPV6)
10321 	int off;
10322 #endif
10323 
10324 	/* convert ctx uses the fact sg element is first in struct */
10325 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10326 
10327 	switch (si->off) {
10328 	case offsetof(struct sk_msg_md, data):
10329 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10330 				      si->dst_reg, si->src_reg,
10331 				      offsetof(struct sk_msg, data));
10332 		break;
10333 	case offsetof(struct sk_msg_md, data_end):
10334 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10335 				      si->dst_reg, si->src_reg,
10336 				      offsetof(struct sk_msg, data_end));
10337 		break;
10338 	case offsetof(struct sk_msg_md, family):
10339 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10340 
10341 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10342 					      struct sk_msg, sk),
10343 				      si->dst_reg, si->src_reg,
10344 				      offsetof(struct sk_msg, sk));
10345 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10346 				      offsetof(struct sock_common, skc_family));
10347 		break;
10348 
10349 	case offsetof(struct sk_msg_md, remote_ip4):
10350 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10351 
10352 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10353 						struct sk_msg, sk),
10354 				      si->dst_reg, si->src_reg,
10355 				      offsetof(struct sk_msg, sk));
10356 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10357 				      offsetof(struct sock_common, skc_daddr));
10358 		break;
10359 
10360 	case offsetof(struct sk_msg_md, local_ip4):
10361 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10362 					  skc_rcv_saddr) != 4);
10363 
10364 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10365 					      struct sk_msg, sk),
10366 				      si->dst_reg, si->src_reg,
10367 				      offsetof(struct sk_msg, sk));
10368 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10369 				      offsetof(struct sock_common,
10370 					       skc_rcv_saddr));
10371 		break;
10372 
10373 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10374 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10375 #if IS_ENABLED(CONFIG_IPV6)
10376 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10377 					  skc_v6_daddr.s6_addr32[0]) != 4);
10378 
10379 		off = si->off;
10380 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10381 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10382 						struct sk_msg, sk),
10383 				      si->dst_reg, si->src_reg,
10384 				      offsetof(struct sk_msg, sk));
10385 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10386 				      offsetof(struct sock_common,
10387 					       skc_v6_daddr.s6_addr32[0]) +
10388 				      off);
10389 #else
10390 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10391 #endif
10392 		break;
10393 
10394 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10395 	     offsetof(struct sk_msg_md, local_ip6[3]):
10396 #if IS_ENABLED(CONFIG_IPV6)
10397 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10398 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10399 
10400 		off = si->off;
10401 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10402 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10403 						struct sk_msg, sk),
10404 				      si->dst_reg, si->src_reg,
10405 				      offsetof(struct sk_msg, sk));
10406 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10407 				      offsetof(struct sock_common,
10408 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10409 				      off);
10410 #else
10411 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10412 #endif
10413 		break;
10414 
10415 	case offsetof(struct sk_msg_md, remote_port):
10416 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10417 
10418 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10419 						struct sk_msg, sk),
10420 				      si->dst_reg, si->src_reg,
10421 				      offsetof(struct sk_msg, sk));
10422 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10423 				      offsetof(struct sock_common, skc_dport));
10424 #ifndef __BIG_ENDIAN_BITFIELD
10425 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10426 #endif
10427 		break;
10428 
10429 	case offsetof(struct sk_msg_md, local_port):
10430 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10431 
10432 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10433 						struct sk_msg, sk),
10434 				      si->dst_reg, si->src_reg,
10435 				      offsetof(struct sk_msg, sk));
10436 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10437 				      offsetof(struct sock_common, skc_num));
10438 		break;
10439 
10440 	case offsetof(struct sk_msg_md, size):
10441 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10442 				      si->dst_reg, si->src_reg,
10443 				      offsetof(struct sk_msg_sg, size));
10444 		break;
10445 
10446 	case offsetof(struct sk_msg_md, sk):
10447 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10448 				      si->dst_reg, si->src_reg,
10449 				      offsetof(struct sk_msg, sk));
10450 		break;
10451 	}
10452 
10453 	return insn - insn_buf;
10454 }
10455 
10456 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10457 	.get_func_proto		= sk_filter_func_proto,
10458 	.is_valid_access	= sk_filter_is_valid_access,
10459 	.convert_ctx_access	= bpf_convert_ctx_access,
10460 	.gen_ld_abs		= bpf_gen_ld_abs,
10461 };
10462 
10463 const struct bpf_prog_ops sk_filter_prog_ops = {
10464 	.test_run		= bpf_prog_test_run_skb,
10465 };
10466 
10467 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10468 	.get_func_proto		= tc_cls_act_func_proto,
10469 	.is_valid_access	= tc_cls_act_is_valid_access,
10470 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10471 	.gen_prologue		= tc_cls_act_prologue,
10472 	.gen_ld_abs		= bpf_gen_ld_abs,
10473 };
10474 
10475 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10476 	.test_run		= bpf_prog_test_run_skb,
10477 };
10478 
10479 const struct bpf_verifier_ops xdp_verifier_ops = {
10480 	.get_func_proto		= xdp_func_proto,
10481 	.is_valid_access	= xdp_is_valid_access,
10482 	.convert_ctx_access	= xdp_convert_ctx_access,
10483 	.gen_prologue		= bpf_noop_prologue,
10484 };
10485 
10486 const struct bpf_prog_ops xdp_prog_ops = {
10487 	.test_run		= bpf_prog_test_run_xdp,
10488 };
10489 
10490 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10491 	.get_func_proto		= cg_skb_func_proto,
10492 	.is_valid_access	= cg_skb_is_valid_access,
10493 	.convert_ctx_access	= bpf_convert_ctx_access,
10494 };
10495 
10496 const struct bpf_prog_ops cg_skb_prog_ops = {
10497 	.test_run		= bpf_prog_test_run_skb,
10498 };
10499 
10500 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10501 	.get_func_proto		= lwt_in_func_proto,
10502 	.is_valid_access	= lwt_is_valid_access,
10503 	.convert_ctx_access	= bpf_convert_ctx_access,
10504 };
10505 
10506 const struct bpf_prog_ops lwt_in_prog_ops = {
10507 	.test_run		= bpf_prog_test_run_skb,
10508 };
10509 
10510 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10511 	.get_func_proto		= lwt_out_func_proto,
10512 	.is_valid_access	= lwt_is_valid_access,
10513 	.convert_ctx_access	= bpf_convert_ctx_access,
10514 };
10515 
10516 const struct bpf_prog_ops lwt_out_prog_ops = {
10517 	.test_run		= bpf_prog_test_run_skb,
10518 };
10519 
10520 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10521 	.get_func_proto		= lwt_xmit_func_proto,
10522 	.is_valid_access	= lwt_is_valid_access,
10523 	.convert_ctx_access	= bpf_convert_ctx_access,
10524 	.gen_prologue		= tc_cls_act_prologue,
10525 };
10526 
10527 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10528 	.test_run		= bpf_prog_test_run_skb,
10529 };
10530 
10531 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10532 	.get_func_proto		= lwt_seg6local_func_proto,
10533 	.is_valid_access	= lwt_is_valid_access,
10534 	.convert_ctx_access	= bpf_convert_ctx_access,
10535 };
10536 
10537 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10538 	.test_run		= bpf_prog_test_run_skb,
10539 };
10540 
10541 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10542 	.get_func_proto		= sock_filter_func_proto,
10543 	.is_valid_access	= sock_filter_is_valid_access,
10544 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10545 };
10546 
10547 const struct bpf_prog_ops cg_sock_prog_ops = {
10548 };
10549 
10550 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10551 	.get_func_proto		= sock_addr_func_proto,
10552 	.is_valid_access	= sock_addr_is_valid_access,
10553 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10554 };
10555 
10556 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10557 };
10558 
10559 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10560 	.get_func_proto		= sock_ops_func_proto,
10561 	.is_valid_access	= sock_ops_is_valid_access,
10562 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10563 };
10564 
10565 const struct bpf_prog_ops sock_ops_prog_ops = {
10566 };
10567 
10568 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10569 	.get_func_proto		= sk_skb_func_proto,
10570 	.is_valid_access	= sk_skb_is_valid_access,
10571 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10572 	.gen_prologue		= sk_skb_prologue,
10573 };
10574 
10575 const struct bpf_prog_ops sk_skb_prog_ops = {
10576 };
10577 
10578 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10579 	.get_func_proto		= sk_msg_func_proto,
10580 	.is_valid_access	= sk_msg_is_valid_access,
10581 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10582 	.gen_prologue		= bpf_noop_prologue,
10583 };
10584 
10585 const struct bpf_prog_ops sk_msg_prog_ops = {
10586 };
10587 
10588 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10589 	.get_func_proto		= flow_dissector_func_proto,
10590 	.is_valid_access	= flow_dissector_is_valid_access,
10591 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10592 };
10593 
10594 const struct bpf_prog_ops flow_dissector_prog_ops = {
10595 	.test_run		= bpf_prog_test_run_flow_dissector,
10596 };
10597 
10598 int sk_detach_filter(struct sock *sk)
10599 {
10600 	int ret = -ENOENT;
10601 	struct sk_filter *filter;
10602 
10603 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10604 		return -EPERM;
10605 
10606 	filter = rcu_dereference_protected(sk->sk_filter,
10607 					   lockdep_sock_is_held(sk));
10608 	if (filter) {
10609 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10610 		sk_filter_uncharge(sk, filter);
10611 		ret = 0;
10612 	}
10613 
10614 	return ret;
10615 }
10616 EXPORT_SYMBOL_GPL(sk_detach_filter);
10617 
10618 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10619 		  unsigned int len)
10620 {
10621 	struct sock_fprog_kern *fprog;
10622 	struct sk_filter *filter;
10623 	int ret = 0;
10624 
10625 	lock_sock(sk);
10626 	filter = rcu_dereference_protected(sk->sk_filter,
10627 					   lockdep_sock_is_held(sk));
10628 	if (!filter)
10629 		goto out;
10630 
10631 	/* We're copying the filter that has been originally attached,
10632 	 * so no conversion/decode needed anymore. eBPF programs that
10633 	 * have no original program cannot be dumped through this.
10634 	 */
10635 	ret = -EACCES;
10636 	fprog = filter->prog->orig_prog;
10637 	if (!fprog)
10638 		goto out;
10639 
10640 	ret = fprog->len;
10641 	if (!len)
10642 		/* User space only enquires number of filter blocks. */
10643 		goto out;
10644 
10645 	ret = -EINVAL;
10646 	if (len < fprog->len)
10647 		goto out;
10648 
10649 	ret = -EFAULT;
10650 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10651 		goto out;
10652 
10653 	/* Instead of bytes, the API requests to return the number
10654 	 * of filter blocks.
10655 	 */
10656 	ret = fprog->len;
10657 out:
10658 	release_sock(sk);
10659 	return ret;
10660 }
10661 
10662 #ifdef CONFIG_INET
10663 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10664 				    struct sock_reuseport *reuse,
10665 				    struct sock *sk, struct sk_buff *skb,
10666 				    struct sock *migrating_sk,
10667 				    u32 hash)
10668 {
10669 	reuse_kern->skb = skb;
10670 	reuse_kern->sk = sk;
10671 	reuse_kern->selected_sk = NULL;
10672 	reuse_kern->migrating_sk = migrating_sk;
10673 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10674 	reuse_kern->hash = hash;
10675 	reuse_kern->reuseport_id = reuse->reuseport_id;
10676 	reuse_kern->bind_inany = reuse->bind_inany;
10677 }
10678 
10679 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10680 				  struct bpf_prog *prog, struct sk_buff *skb,
10681 				  struct sock *migrating_sk,
10682 				  u32 hash)
10683 {
10684 	struct sk_reuseport_kern reuse_kern;
10685 	enum sk_action action;
10686 
10687 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10688 	action = bpf_prog_run(prog, &reuse_kern);
10689 
10690 	if (action == SK_PASS)
10691 		return reuse_kern.selected_sk;
10692 	else
10693 		return ERR_PTR(-ECONNREFUSED);
10694 }
10695 
10696 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10697 	   struct bpf_map *, map, void *, key, u32, flags)
10698 {
10699 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10700 	struct sock_reuseport *reuse;
10701 	struct sock *selected_sk;
10702 
10703 	selected_sk = map->ops->map_lookup_elem(map, key);
10704 	if (!selected_sk)
10705 		return -ENOENT;
10706 
10707 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10708 	if (!reuse) {
10709 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10710 		if (sk_is_refcounted(selected_sk))
10711 			sock_put(selected_sk);
10712 
10713 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
10714 		 * The only (!reuse) case here is - the sk has already been
10715 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
10716 		 *
10717 		 * Other maps (e.g. sock_map) do not provide this guarantee and
10718 		 * the sk may never be in the reuseport group to begin with.
10719 		 */
10720 		return is_sockarray ? -ENOENT : -EINVAL;
10721 	}
10722 
10723 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10724 		struct sock *sk = reuse_kern->sk;
10725 
10726 		if (sk->sk_protocol != selected_sk->sk_protocol)
10727 			return -EPROTOTYPE;
10728 		else if (sk->sk_family != selected_sk->sk_family)
10729 			return -EAFNOSUPPORT;
10730 
10731 		/* Catch all. Likely bound to a different sockaddr. */
10732 		return -EBADFD;
10733 	}
10734 
10735 	reuse_kern->selected_sk = selected_sk;
10736 
10737 	return 0;
10738 }
10739 
10740 static const struct bpf_func_proto sk_select_reuseport_proto = {
10741 	.func           = sk_select_reuseport,
10742 	.gpl_only       = false,
10743 	.ret_type       = RET_INTEGER,
10744 	.arg1_type	= ARG_PTR_TO_CTX,
10745 	.arg2_type      = ARG_CONST_MAP_PTR,
10746 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
10747 	.arg4_type	= ARG_ANYTHING,
10748 };
10749 
10750 BPF_CALL_4(sk_reuseport_load_bytes,
10751 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10752 	   void *, to, u32, len)
10753 {
10754 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10755 }
10756 
10757 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10758 	.func		= sk_reuseport_load_bytes,
10759 	.gpl_only	= false,
10760 	.ret_type	= RET_INTEGER,
10761 	.arg1_type	= ARG_PTR_TO_CTX,
10762 	.arg2_type	= ARG_ANYTHING,
10763 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10764 	.arg4_type	= ARG_CONST_SIZE,
10765 };
10766 
10767 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10768 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10769 	   void *, to, u32, len, u32, start_header)
10770 {
10771 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10772 					       len, start_header);
10773 }
10774 
10775 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10776 	.func		= sk_reuseport_load_bytes_relative,
10777 	.gpl_only	= false,
10778 	.ret_type	= RET_INTEGER,
10779 	.arg1_type	= ARG_PTR_TO_CTX,
10780 	.arg2_type	= ARG_ANYTHING,
10781 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10782 	.arg4_type	= ARG_CONST_SIZE,
10783 	.arg5_type	= ARG_ANYTHING,
10784 };
10785 
10786 static const struct bpf_func_proto *
10787 sk_reuseport_func_proto(enum bpf_func_id func_id,
10788 			const struct bpf_prog *prog)
10789 {
10790 	switch (func_id) {
10791 	case BPF_FUNC_sk_select_reuseport:
10792 		return &sk_select_reuseport_proto;
10793 	case BPF_FUNC_skb_load_bytes:
10794 		return &sk_reuseport_load_bytes_proto;
10795 	case BPF_FUNC_skb_load_bytes_relative:
10796 		return &sk_reuseport_load_bytes_relative_proto;
10797 	case BPF_FUNC_get_socket_cookie:
10798 		return &bpf_get_socket_ptr_cookie_proto;
10799 	case BPF_FUNC_ktime_get_coarse_ns:
10800 		return &bpf_ktime_get_coarse_ns_proto;
10801 	default:
10802 		return bpf_base_func_proto(func_id);
10803 	}
10804 }
10805 
10806 static bool
10807 sk_reuseport_is_valid_access(int off, int size,
10808 			     enum bpf_access_type type,
10809 			     const struct bpf_prog *prog,
10810 			     struct bpf_insn_access_aux *info)
10811 {
10812 	const u32 size_default = sizeof(__u32);
10813 
10814 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10815 	    off % size || type != BPF_READ)
10816 		return false;
10817 
10818 	switch (off) {
10819 	case offsetof(struct sk_reuseport_md, data):
10820 		info->reg_type = PTR_TO_PACKET;
10821 		return size == sizeof(__u64);
10822 
10823 	case offsetof(struct sk_reuseport_md, data_end):
10824 		info->reg_type = PTR_TO_PACKET_END;
10825 		return size == sizeof(__u64);
10826 
10827 	case offsetof(struct sk_reuseport_md, hash):
10828 		return size == size_default;
10829 
10830 	case offsetof(struct sk_reuseport_md, sk):
10831 		info->reg_type = PTR_TO_SOCKET;
10832 		return size == sizeof(__u64);
10833 
10834 	case offsetof(struct sk_reuseport_md, migrating_sk):
10835 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10836 		return size == sizeof(__u64);
10837 
10838 	/* Fields that allow narrowing */
10839 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10840 		if (size < sizeof_field(struct sk_buff, protocol))
10841 			return false;
10842 		fallthrough;
10843 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10844 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10845 	case bpf_ctx_range(struct sk_reuseport_md, len):
10846 		bpf_ctx_record_field_size(info, size_default);
10847 		return bpf_ctx_narrow_access_ok(off, size, size_default);
10848 
10849 	default:
10850 		return false;
10851 	}
10852 }
10853 
10854 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
10855 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10856 			      si->dst_reg, si->src_reg,			\
10857 			      bpf_target_off(struct sk_reuseport_kern, F, \
10858 					     sizeof_field(struct sk_reuseport_kern, F), \
10859 					     target_size));		\
10860 	})
10861 
10862 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
10863 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10864 				    struct sk_buff,			\
10865 				    skb,				\
10866 				    SKB_FIELD)
10867 
10868 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
10869 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10870 				    struct sock,			\
10871 				    sk,					\
10872 				    SK_FIELD)
10873 
10874 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10875 					   const struct bpf_insn *si,
10876 					   struct bpf_insn *insn_buf,
10877 					   struct bpf_prog *prog,
10878 					   u32 *target_size)
10879 {
10880 	struct bpf_insn *insn = insn_buf;
10881 
10882 	switch (si->off) {
10883 	case offsetof(struct sk_reuseport_md, data):
10884 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
10885 		break;
10886 
10887 	case offsetof(struct sk_reuseport_md, len):
10888 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
10889 		break;
10890 
10891 	case offsetof(struct sk_reuseport_md, eth_protocol):
10892 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10893 		break;
10894 
10895 	case offsetof(struct sk_reuseport_md, ip_protocol):
10896 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10897 		break;
10898 
10899 	case offsetof(struct sk_reuseport_md, data_end):
10900 		SK_REUSEPORT_LOAD_FIELD(data_end);
10901 		break;
10902 
10903 	case offsetof(struct sk_reuseport_md, hash):
10904 		SK_REUSEPORT_LOAD_FIELD(hash);
10905 		break;
10906 
10907 	case offsetof(struct sk_reuseport_md, bind_inany):
10908 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
10909 		break;
10910 
10911 	case offsetof(struct sk_reuseport_md, sk):
10912 		SK_REUSEPORT_LOAD_FIELD(sk);
10913 		break;
10914 
10915 	case offsetof(struct sk_reuseport_md, migrating_sk):
10916 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
10917 		break;
10918 	}
10919 
10920 	return insn - insn_buf;
10921 }
10922 
10923 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10924 	.get_func_proto		= sk_reuseport_func_proto,
10925 	.is_valid_access	= sk_reuseport_is_valid_access,
10926 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
10927 };
10928 
10929 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10930 };
10931 
10932 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10933 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10934 
10935 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10936 	   struct sock *, sk, u64, flags)
10937 {
10938 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10939 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10940 		return -EINVAL;
10941 	if (unlikely(sk && sk_is_refcounted(sk)))
10942 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10943 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
10944 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
10945 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
10946 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
10947 
10948 	/* Check if socket is suitable for packet L3/L4 protocol */
10949 	if (sk && sk->sk_protocol != ctx->protocol)
10950 		return -EPROTOTYPE;
10951 	if (sk && sk->sk_family != ctx->family &&
10952 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10953 		return -EAFNOSUPPORT;
10954 
10955 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10956 		return -EEXIST;
10957 
10958 	/* Select socket as lookup result */
10959 	ctx->selected_sk = sk;
10960 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10961 	return 0;
10962 }
10963 
10964 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10965 	.func		= bpf_sk_lookup_assign,
10966 	.gpl_only	= false,
10967 	.ret_type	= RET_INTEGER,
10968 	.arg1_type	= ARG_PTR_TO_CTX,
10969 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
10970 	.arg3_type	= ARG_ANYTHING,
10971 };
10972 
10973 static const struct bpf_func_proto *
10974 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10975 {
10976 	switch (func_id) {
10977 	case BPF_FUNC_perf_event_output:
10978 		return &bpf_event_output_data_proto;
10979 	case BPF_FUNC_sk_assign:
10980 		return &bpf_sk_lookup_assign_proto;
10981 	case BPF_FUNC_sk_release:
10982 		return &bpf_sk_release_proto;
10983 	default:
10984 		return bpf_sk_base_func_proto(func_id);
10985 	}
10986 }
10987 
10988 static bool sk_lookup_is_valid_access(int off, int size,
10989 				      enum bpf_access_type type,
10990 				      const struct bpf_prog *prog,
10991 				      struct bpf_insn_access_aux *info)
10992 {
10993 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10994 		return false;
10995 	if (off % size != 0)
10996 		return false;
10997 	if (type != BPF_READ)
10998 		return false;
10999 
11000 	switch (off) {
11001 	case offsetof(struct bpf_sk_lookup, sk):
11002 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11003 		return size == sizeof(__u64);
11004 
11005 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11006 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11007 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11008 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11009 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11010 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11011 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11012 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11013 		bpf_ctx_record_field_size(info, sizeof(__u32));
11014 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11015 
11016 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11017 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11018 		if (size == sizeof(__u32))
11019 			return true;
11020 		bpf_ctx_record_field_size(info, sizeof(__be16));
11021 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11022 
11023 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11024 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11025 		/* Allow access to zero padding for backward compatibility */
11026 		bpf_ctx_record_field_size(info, sizeof(__u16));
11027 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11028 
11029 	default:
11030 		return false;
11031 	}
11032 }
11033 
11034 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11035 					const struct bpf_insn *si,
11036 					struct bpf_insn *insn_buf,
11037 					struct bpf_prog *prog,
11038 					u32 *target_size)
11039 {
11040 	struct bpf_insn *insn = insn_buf;
11041 
11042 	switch (si->off) {
11043 	case offsetof(struct bpf_sk_lookup, sk):
11044 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11045 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11046 		break;
11047 
11048 	case offsetof(struct bpf_sk_lookup, family):
11049 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11050 				      bpf_target_off(struct bpf_sk_lookup_kern,
11051 						     family, 2, target_size));
11052 		break;
11053 
11054 	case offsetof(struct bpf_sk_lookup, protocol):
11055 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11056 				      bpf_target_off(struct bpf_sk_lookup_kern,
11057 						     protocol, 2, target_size));
11058 		break;
11059 
11060 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11061 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11062 				      bpf_target_off(struct bpf_sk_lookup_kern,
11063 						     v4.saddr, 4, target_size));
11064 		break;
11065 
11066 	case offsetof(struct bpf_sk_lookup, local_ip4):
11067 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11068 				      bpf_target_off(struct bpf_sk_lookup_kern,
11069 						     v4.daddr, 4, target_size));
11070 		break;
11071 
11072 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11073 				remote_ip6[0], remote_ip6[3]): {
11074 #if IS_ENABLED(CONFIG_IPV6)
11075 		int off = si->off;
11076 
11077 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11078 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11079 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11080 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11081 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11082 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11083 #else
11084 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11085 #endif
11086 		break;
11087 	}
11088 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11089 				local_ip6[0], local_ip6[3]): {
11090 #if IS_ENABLED(CONFIG_IPV6)
11091 		int off = si->off;
11092 
11093 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11094 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11095 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11096 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11097 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11098 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11099 #else
11100 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11101 #endif
11102 		break;
11103 	}
11104 	case offsetof(struct bpf_sk_lookup, remote_port):
11105 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11106 				      bpf_target_off(struct bpf_sk_lookup_kern,
11107 						     sport, 2, target_size));
11108 		break;
11109 
11110 	case offsetofend(struct bpf_sk_lookup, remote_port):
11111 		*target_size = 2;
11112 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11113 		break;
11114 
11115 	case offsetof(struct bpf_sk_lookup, local_port):
11116 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11117 				      bpf_target_off(struct bpf_sk_lookup_kern,
11118 						     dport, 2, target_size));
11119 		break;
11120 
11121 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11122 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11123 				      bpf_target_off(struct bpf_sk_lookup_kern,
11124 						     ingress_ifindex, 4, target_size));
11125 		break;
11126 	}
11127 
11128 	return insn - insn_buf;
11129 }
11130 
11131 const struct bpf_prog_ops sk_lookup_prog_ops = {
11132 	.test_run = bpf_prog_test_run_sk_lookup,
11133 };
11134 
11135 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11136 	.get_func_proto		= sk_lookup_func_proto,
11137 	.is_valid_access	= sk_lookup_is_valid_access,
11138 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11139 };
11140 
11141 #endif /* CONFIG_INET */
11142 
11143 DEFINE_BPF_DISPATCHER(xdp)
11144 
11145 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11146 {
11147 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11148 }
11149 
11150 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11151 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11152 BTF_SOCK_TYPE_xxx
11153 #undef BTF_SOCK_TYPE
11154 
11155 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11156 {
11157 	/* tcp6_sock type is not generated in dwarf and hence btf,
11158 	 * trigger an explicit type generation here.
11159 	 */
11160 	BTF_TYPE_EMIT(struct tcp6_sock);
11161 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11162 	    sk->sk_family == AF_INET6)
11163 		return (unsigned long)sk;
11164 
11165 	return (unsigned long)NULL;
11166 }
11167 
11168 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11169 	.func			= bpf_skc_to_tcp6_sock,
11170 	.gpl_only		= false,
11171 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11172 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11173 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11174 };
11175 
11176 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11177 {
11178 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11179 		return (unsigned long)sk;
11180 
11181 	return (unsigned long)NULL;
11182 }
11183 
11184 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11185 	.func			= bpf_skc_to_tcp_sock,
11186 	.gpl_only		= false,
11187 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11188 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11189 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11190 };
11191 
11192 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11193 {
11194 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11195 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11196 	 */
11197 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11198 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11199 
11200 #ifdef CONFIG_INET
11201 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11202 		return (unsigned long)sk;
11203 #endif
11204 
11205 #if IS_BUILTIN(CONFIG_IPV6)
11206 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11207 		return (unsigned long)sk;
11208 #endif
11209 
11210 	return (unsigned long)NULL;
11211 }
11212 
11213 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11214 	.func			= bpf_skc_to_tcp_timewait_sock,
11215 	.gpl_only		= false,
11216 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11217 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11218 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11219 };
11220 
11221 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11222 {
11223 #ifdef CONFIG_INET
11224 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11225 		return (unsigned long)sk;
11226 #endif
11227 
11228 #if IS_BUILTIN(CONFIG_IPV6)
11229 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11230 		return (unsigned long)sk;
11231 #endif
11232 
11233 	return (unsigned long)NULL;
11234 }
11235 
11236 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11237 	.func			= bpf_skc_to_tcp_request_sock,
11238 	.gpl_only		= false,
11239 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11240 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11241 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11242 };
11243 
11244 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11245 {
11246 	/* udp6_sock type is not generated in dwarf and hence btf,
11247 	 * trigger an explicit type generation here.
11248 	 */
11249 	BTF_TYPE_EMIT(struct udp6_sock);
11250 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11251 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11252 		return (unsigned long)sk;
11253 
11254 	return (unsigned long)NULL;
11255 }
11256 
11257 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11258 	.func			= bpf_skc_to_udp6_sock,
11259 	.gpl_only		= false,
11260 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11261 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11262 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11263 };
11264 
11265 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11266 {
11267 	/* unix_sock type is not generated in dwarf and hence btf,
11268 	 * trigger an explicit type generation here.
11269 	 */
11270 	BTF_TYPE_EMIT(struct unix_sock);
11271 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11272 		return (unsigned long)sk;
11273 
11274 	return (unsigned long)NULL;
11275 }
11276 
11277 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11278 	.func			= bpf_skc_to_unix_sock,
11279 	.gpl_only		= false,
11280 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11281 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11282 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11283 };
11284 
11285 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11286 {
11287 	BTF_TYPE_EMIT(struct mptcp_sock);
11288 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11289 }
11290 
11291 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11292 	.func		= bpf_skc_to_mptcp_sock,
11293 	.gpl_only	= false,
11294 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11295 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11296 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11297 };
11298 
11299 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11300 {
11301 	return (unsigned long)sock_from_file(file);
11302 }
11303 
11304 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11305 BTF_ID(struct, socket)
11306 BTF_ID(struct, file)
11307 
11308 const struct bpf_func_proto bpf_sock_from_file_proto = {
11309 	.func		= bpf_sock_from_file,
11310 	.gpl_only	= false,
11311 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11312 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11313 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11314 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11315 };
11316 
11317 static const struct bpf_func_proto *
11318 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11319 {
11320 	const struct bpf_func_proto *func;
11321 
11322 	switch (func_id) {
11323 	case BPF_FUNC_skc_to_tcp6_sock:
11324 		func = &bpf_skc_to_tcp6_sock_proto;
11325 		break;
11326 	case BPF_FUNC_skc_to_tcp_sock:
11327 		func = &bpf_skc_to_tcp_sock_proto;
11328 		break;
11329 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11330 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11331 		break;
11332 	case BPF_FUNC_skc_to_tcp_request_sock:
11333 		func = &bpf_skc_to_tcp_request_sock_proto;
11334 		break;
11335 	case BPF_FUNC_skc_to_udp6_sock:
11336 		func = &bpf_skc_to_udp6_sock_proto;
11337 		break;
11338 	case BPF_FUNC_skc_to_unix_sock:
11339 		func = &bpf_skc_to_unix_sock_proto;
11340 		break;
11341 	case BPF_FUNC_skc_to_mptcp_sock:
11342 		func = &bpf_skc_to_mptcp_sock_proto;
11343 		break;
11344 	case BPF_FUNC_ktime_get_coarse_ns:
11345 		return &bpf_ktime_get_coarse_ns_proto;
11346 	default:
11347 		return bpf_base_func_proto(func_id);
11348 	}
11349 
11350 	if (!perfmon_capable())
11351 		return NULL;
11352 
11353 	return func;
11354 }
11355