xref: /openbmc/linux/net/core/filter.c (revision 5ae75a1a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81 #include <net/mptcp.h>
82 
83 static const struct bpf_func_proto *
84 bpf_sk_base_func_proto(enum bpf_func_id func_id);
85 
86 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
87 {
88 	if (in_compat_syscall()) {
89 		struct compat_sock_fprog f32;
90 
91 		if (len != sizeof(f32))
92 			return -EINVAL;
93 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
94 			return -EFAULT;
95 		memset(dst, 0, sizeof(*dst));
96 		dst->len = f32.len;
97 		dst->filter = compat_ptr(f32.filter);
98 	} else {
99 		if (len != sizeof(*dst))
100 			return -EINVAL;
101 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
102 			return -EFAULT;
103 	}
104 
105 	return 0;
106 }
107 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
108 
109 /**
110  *	sk_filter_trim_cap - run a packet through a socket filter
111  *	@sk: sock associated with &sk_buff
112  *	@skb: buffer to filter
113  *	@cap: limit on how short the eBPF program may trim the packet
114  *
115  * Run the eBPF program and then cut skb->data to correct size returned by
116  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
117  * than pkt_len we keep whole skb->data. This is the socket level
118  * wrapper to bpf_prog_run. It returns 0 if the packet should
119  * be accepted or -EPERM if the packet should be tossed.
120  *
121  */
122 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
123 {
124 	int err;
125 	struct sk_filter *filter;
126 
127 	/*
128 	 * If the skb was allocated from pfmemalloc reserves, only
129 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
130 	 * helping free memory
131 	 */
132 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
133 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
134 		return -ENOMEM;
135 	}
136 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
137 	if (err)
138 		return err;
139 
140 	err = security_sock_rcv_skb(sk, skb);
141 	if (err)
142 		return err;
143 
144 	rcu_read_lock();
145 	filter = rcu_dereference(sk->sk_filter);
146 	if (filter) {
147 		struct sock *save_sk = skb->sk;
148 		unsigned int pkt_len;
149 
150 		skb->sk = sk;
151 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
152 		skb->sk = save_sk;
153 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
154 	}
155 	rcu_read_unlock();
156 
157 	return err;
158 }
159 EXPORT_SYMBOL(sk_filter_trim_cap);
160 
161 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
162 {
163 	return skb_get_poff(skb);
164 }
165 
166 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
167 {
168 	struct nlattr *nla;
169 
170 	if (skb_is_nonlinear(skb))
171 		return 0;
172 
173 	if (skb->len < sizeof(struct nlattr))
174 		return 0;
175 
176 	if (a > skb->len - sizeof(struct nlattr))
177 		return 0;
178 
179 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
180 	if (nla)
181 		return (void *) nla - (void *) skb->data;
182 
183 	return 0;
184 }
185 
186 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
187 {
188 	struct nlattr *nla;
189 
190 	if (skb_is_nonlinear(skb))
191 		return 0;
192 
193 	if (skb->len < sizeof(struct nlattr))
194 		return 0;
195 
196 	if (a > skb->len - sizeof(struct nlattr))
197 		return 0;
198 
199 	nla = (struct nlattr *) &skb->data[a];
200 	if (nla->nla_len > skb->len - a)
201 		return 0;
202 
203 	nla = nla_find_nested(nla, x);
204 	if (nla)
205 		return (void *) nla - (void *) skb->data;
206 
207 	return 0;
208 }
209 
210 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
211 	   data, int, headlen, int, offset)
212 {
213 	u8 tmp, *ptr;
214 	const int len = sizeof(tmp);
215 
216 	if (offset >= 0) {
217 		if (headlen - offset >= len)
218 			return *(u8 *)(data + offset);
219 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
220 			return tmp;
221 	} else {
222 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
223 		if (likely(ptr))
224 			return *(u8 *)ptr;
225 	}
226 
227 	return -EFAULT;
228 }
229 
230 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
231 	   int, offset)
232 {
233 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
234 					 offset);
235 }
236 
237 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
238 	   data, int, headlen, int, offset)
239 {
240 	__be16 tmp, *ptr;
241 	const int len = sizeof(tmp);
242 
243 	if (offset >= 0) {
244 		if (headlen - offset >= len)
245 			return get_unaligned_be16(data + offset);
246 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
247 			return be16_to_cpu(tmp);
248 	} else {
249 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
250 		if (likely(ptr))
251 			return get_unaligned_be16(ptr);
252 	}
253 
254 	return -EFAULT;
255 }
256 
257 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
258 	   int, offset)
259 {
260 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
261 					  offset);
262 }
263 
264 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
265 	   data, int, headlen, int, offset)
266 {
267 	__be32 tmp, *ptr;
268 	const int len = sizeof(tmp);
269 
270 	if (likely(offset >= 0)) {
271 		if (headlen - offset >= len)
272 			return get_unaligned_be32(data + offset);
273 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
274 			return be32_to_cpu(tmp);
275 	} else {
276 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
277 		if (likely(ptr))
278 			return get_unaligned_be32(ptr);
279 	}
280 
281 	return -EFAULT;
282 }
283 
284 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
285 	   int, offset)
286 {
287 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
288 					  offset);
289 }
290 
291 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
292 			      struct bpf_insn *insn_buf)
293 {
294 	struct bpf_insn *insn = insn_buf;
295 
296 	switch (skb_field) {
297 	case SKF_AD_MARK:
298 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
299 
300 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
301 				      offsetof(struct sk_buff, mark));
302 		break;
303 
304 	case SKF_AD_PKTTYPE:
305 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
306 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
307 #ifdef __BIG_ENDIAN_BITFIELD
308 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
309 #endif
310 		break;
311 
312 	case SKF_AD_QUEUE:
313 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
314 
315 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
316 				      offsetof(struct sk_buff, queue_mapping));
317 		break;
318 
319 	case SKF_AD_VLAN_TAG:
320 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
321 
322 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
323 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
324 				      offsetof(struct sk_buff, vlan_tci));
325 		break;
326 	case SKF_AD_VLAN_TAG_PRESENT:
327 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
328 		if (PKT_VLAN_PRESENT_BIT)
329 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
330 		if (PKT_VLAN_PRESENT_BIT < 7)
331 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
332 		break;
333 	}
334 
335 	return insn - insn_buf;
336 }
337 
338 static bool convert_bpf_extensions(struct sock_filter *fp,
339 				   struct bpf_insn **insnp)
340 {
341 	struct bpf_insn *insn = *insnp;
342 	u32 cnt;
343 
344 	switch (fp->k) {
345 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
346 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
347 
348 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
349 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
350 				      offsetof(struct sk_buff, protocol));
351 		/* A = ntohs(A) [emitting a nop or swap16] */
352 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
353 		break;
354 
355 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
356 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
357 		insn += cnt - 1;
358 		break;
359 
360 	case SKF_AD_OFF + SKF_AD_IFINDEX:
361 	case SKF_AD_OFF + SKF_AD_HATYPE:
362 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
363 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
364 
365 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
366 				      BPF_REG_TMP, BPF_REG_CTX,
367 				      offsetof(struct sk_buff, dev));
368 		/* if (tmp != 0) goto pc + 1 */
369 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
370 		*insn++ = BPF_EXIT_INSN();
371 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
372 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
373 					    offsetof(struct net_device, ifindex));
374 		else
375 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
376 					    offsetof(struct net_device, type));
377 		break;
378 
379 	case SKF_AD_OFF + SKF_AD_MARK:
380 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
381 		insn += cnt - 1;
382 		break;
383 
384 	case SKF_AD_OFF + SKF_AD_RXHASH:
385 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
386 
387 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
388 				    offsetof(struct sk_buff, hash));
389 		break;
390 
391 	case SKF_AD_OFF + SKF_AD_QUEUE:
392 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
393 		insn += cnt - 1;
394 		break;
395 
396 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
397 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
398 					 BPF_REG_A, BPF_REG_CTX, insn);
399 		insn += cnt - 1;
400 		break;
401 
402 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
403 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
404 					 BPF_REG_A, BPF_REG_CTX, insn);
405 		insn += cnt - 1;
406 		break;
407 
408 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
409 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
410 
411 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
412 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
413 				      offsetof(struct sk_buff, vlan_proto));
414 		/* A = ntohs(A) [emitting a nop or swap16] */
415 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
416 		break;
417 
418 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
419 	case SKF_AD_OFF + SKF_AD_NLATTR:
420 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
421 	case SKF_AD_OFF + SKF_AD_CPU:
422 	case SKF_AD_OFF + SKF_AD_RANDOM:
423 		/* arg1 = CTX */
424 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
425 		/* arg2 = A */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
427 		/* arg3 = X */
428 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
429 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
430 		switch (fp->k) {
431 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
432 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
433 			break;
434 		case SKF_AD_OFF + SKF_AD_NLATTR:
435 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
436 			break;
437 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
438 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
439 			break;
440 		case SKF_AD_OFF + SKF_AD_CPU:
441 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
442 			break;
443 		case SKF_AD_OFF + SKF_AD_RANDOM:
444 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
445 			bpf_user_rnd_init_once();
446 			break;
447 		}
448 		break;
449 
450 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
451 		/* A ^= X */
452 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
453 		break;
454 
455 	default:
456 		/* This is just a dummy call to avoid letting the compiler
457 		 * evict __bpf_call_base() as an optimization. Placed here
458 		 * where no-one bothers.
459 		 */
460 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
461 		return false;
462 	}
463 
464 	*insnp = insn;
465 	return true;
466 }
467 
468 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
469 {
470 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
471 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
472 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
473 		      BPF_SIZE(fp->code) == BPF_W;
474 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
475 	const int ip_align = NET_IP_ALIGN;
476 	struct bpf_insn *insn = *insnp;
477 	int offset = fp->k;
478 
479 	if (!indirect &&
480 	    ((unaligned_ok && offset >= 0) ||
481 	     (!unaligned_ok && offset >= 0 &&
482 	      offset + ip_align >= 0 &&
483 	      offset + ip_align % size == 0))) {
484 		bool ldx_off_ok = offset <= S16_MAX;
485 
486 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
487 		if (offset)
488 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
489 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
490 				      size, 2 + endian + (!ldx_off_ok * 2));
491 		if (ldx_off_ok) {
492 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
493 					      BPF_REG_D, offset);
494 		} else {
495 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
496 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
497 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
498 					      BPF_REG_TMP, 0);
499 		}
500 		if (endian)
501 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
502 		*insn++ = BPF_JMP_A(8);
503 	}
504 
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
506 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
507 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
508 	if (!indirect) {
509 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
510 	} else {
511 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
512 		if (fp->k)
513 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
514 	}
515 
516 	switch (BPF_SIZE(fp->code)) {
517 	case BPF_B:
518 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
519 		break;
520 	case BPF_H:
521 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
522 		break;
523 	case BPF_W:
524 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
525 		break;
526 	default:
527 		return false;
528 	}
529 
530 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
531 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
532 	*insn   = BPF_EXIT_INSN();
533 
534 	*insnp = insn;
535 	return true;
536 }
537 
538 /**
539  *	bpf_convert_filter - convert filter program
540  *	@prog: the user passed filter program
541  *	@len: the length of the user passed filter program
542  *	@new_prog: allocated 'struct bpf_prog' or NULL
543  *	@new_len: pointer to store length of converted program
544  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
545  *
546  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
547  * style extended BPF (eBPF).
548  * Conversion workflow:
549  *
550  * 1) First pass for calculating the new program length:
551  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
552  *
553  * 2) 2nd pass to remap in two passes: 1st pass finds new
554  *    jump offsets, 2nd pass remapping:
555  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
556  */
557 static int bpf_convert_filter(struct sock_filter *prog, int len,
558 			      struct bpf_prog *new_prog, int *new_len,
559 			      bool *seen_ld_abs)
560 {
561 	int new_flen = 0, pass = 0, target, i, stack_off;
562 	struct bpf_insn *new_insn, *first_insn = NULL;
563 	struct sock_filter *fp;
564 	int *addrs = NULL;
565 	u8 bpf_src;
566 
567 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
568 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
569 
570 	if (len <= 0 || len > BPF_MAXINSNS)
571 		return -EINVAL;
572 
573 	if (new_prog) {
574 		first_insn = new_prog->insnsi;
575 		addrs = kcalloc(len, sizeof(*addrs),
576 				GFP_KERNEL | __GFP_NOWARN);
577 		if (!addrs)
578 			return -ENOMEM;
579 	}
580 
581 do_pass:
582 	new_insn = first_insn;
583 	fp = prog;
584 
585 	/* Classic BPF related prologue emission. */
586 	if (new_prog) {
587 		/* Classic BPF expects A and X to be reset first. These need
588 		 * to be guaranteed to be the first two instructions.
589 		 */
590 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
591 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
592 
593 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
594 		 * In eBPF case it's done by the compiler, here we need to
595 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
596 		 */
597 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
598 		if (*seen_ld_abs) {
599 			/* For packet access in classic BPF, cache skb->data
600 			 * in callee-saved BPF R8 and skb->len - skb->data_len
601 			 * (headlen) in BPF R9. Since classic BPF is read-only
602 			 * on CTX, we only need to cache it once.
603 			 */
604 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
605 						  BPF_REG_D, BPF_REG_CTX,
606 						  offsetof(struct sk_buff, data));
607 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, len));
609 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
610 						  offsetof(struct sk_buff, data_len));
611 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
612 		}
613 	} else {
614 		new_insn += 3;
615 	}
616 
617 	for (i = 0; i < len; fp++, i++) {
618 		struct bpf_insn tmp_insns[32] = { };
619 		struct bpf_insn *insn = tmp_insns;
620 
621 		if (addrs)
622 			addrs[i] = new_insn - first_insn;
623 
624 		switch (fp->code) {
625 		/* All arithmetic insns and skb loads map as-is. */
626 		case BPF_ALU | BPF_ADD | BPF_X:
627 		case BPF_ALU | BPF_ADD | BPF_K:
628 		case BPF_ALU | BPF_SUB | BPF_X:
629 		case BPF_ALU | BPF_SUB | BPF_K:
630 		case BPF_ALU | BPF_AND | BPF_X:
631 		case BPF_ALU | BPF_AND | BPF_K:
632 		case BPF_ALU | BPF_OR | BPF_X:
633 		case BPF_ALU | BPF_OR | BPF_K:
634 		case BPF_ALU | BPF_LSH | BPF_X:
635 		case BPF_ALU | BPF_LSH | BPF_K:
636 		case BPF_ALU | BPF_RSH | BPF_X:
637 		case BPF_ALU | BPF_RSH | BPF_K:
638 		case BPF_ALU | BPF_XOR | BPF_X:
639 		case BPF_ALU | BPF_XOR | BPF_K:
640 		case BPF_ALU | BPF_MUL | BPF_X:
641 		case BPF_ALU | BPF_MUL | BPF_K:
642 		case BPF_ALU | BPF_DIV | BPF_X:
643 		case BPF_ALU | BPF_DIV | BPF_K:
644 		case BPF_ALU | BPF_MOD | BPF_X:
645 		case BPF_ALU | BPF_MOD | BPF_K:
646 		case BPF_ALU | BPF_NEG:
647 		case BPF_LD | BPF_ABS | BPF_W:
648 		case BPF_LD | BPF_ABS | BPF_H:
649 		case BPF_LD | BPF_ABS | BPF_B:
650 		case BPF_LD | BPF_IND | BPF_W:
651 		case BPF_LD | BPF_IND | BPF_H:
652 		case BPF_LD | BPF_IND | BPF_B:
653 			/* Check for overloaded BPF extension and
654 			 * directly convert it if found, otherwise
655 			 * just move on with mapping.
656 			 */
657 			if (BPF_CLASS(fp->code) == BPF_LD &&
658 			    BPF_MODE(fp->code) == BPF_ABS &&
659 			    convert_bpf_extensions(fp, &insn))
660 				break;
661 			if (BPF_CLASS(fp->code) == BPF_LD &&
662 			    convert_bpf_ld_abs(fp, &insn)) {
663 				*seen_ld_abs = true;
664 				break;
665 			}
666 
667 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
668 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
669 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
670 				/* Error with exception code on div/mod by 0.
671 				 * For cBPF programs, this was always return 0.
672 				 */
673 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
674 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
675 				*insn++ = BPF_EXIT_INSN();
676 			}
677 
678 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
679 			break;
680 
681 		/* Jump transformation cannot use BPF block macros
682 		 * everywhere as offset calculation and target updates
683 		 * require a bit more work than the rest, i.e. jump
684 		 * opcodes map as-is, but offsets need adjustment.
685 		 */
686 
687 #define BPF_EMIT_JMP							\
688 	do {								\
689 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
690 		s32 off;						\
691 									\
692 		if (target >= len || target < 0)			\
693 			goto err;					\
694 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
695 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
696 		off -= insn - tmp_insns;				\
697 		/* Reject anything not fitting into insn->off. */	\
698 		if (off < off_min || off > off_max)			\
699 			goto err;					\
700 		insn->off = off;					\
701 	} while (0)
702 
703 		case BPF_JMP | BPF_JA:
704 			target = i + fp->k + 1;
705 			insn->code = fp->code;
706 			BPF_EMIT_JMP;
707 			break;
708 
709 		case BPF_JMP | BPF_JEQ | BPF_K:
710 		case BPF_JMP | BPF_JEQ | BPF_X:
711 		case BPF_JMP | BPF_JSET | BPF_K:
712 		case BPF_JMP | BPF_JSET | BPF_X:
713 		case BPF_JMP | BPF_JGT | BPF_K:
714 		case BPF_JMP | BPF_JGT | BPF_X:
715 		case BPF_JMP | BPF_JGE | BPF_K:
716 		case BPF_JMP | BPF_JGE | BPF_X:
717 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
718 				/* BPF immediates are signed, zero extend
719 				 * immediate into tmp register and use it
720 				 * in compare insn.
721 				 */
722 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
723 
724 				insn->dst_reg = BPF_REG_A;
725 				insn->src_reg = BPF_REG_TMP;
726 				bpf_src = BPF_X;
727 			} else {
728 				insn->dst_reg = BPF_REG_A;
729 				insn->imm = fp->k;
730 				bpf_src = BPF_SRC(fp->code);
731 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
732 			}
733 
734 			/* Common case where 'jump_false' is next insn. */
735 			if (fp->jf == 0) {
736 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
737 				target = i + fp->jt + 1;
738 				BPF_EMIT_JMP;
739 				break;
740 			}
741 
742 			/* Convert some jumps when 'jump_true' is next insn. */
743 			if (fp->jt == 0) {
744 				switch (BPF_OP(fp->code)) {
745 				case BPF_JEQ:
746 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
747 					break;
748 				case BPF_JGT:
749 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
750 					break;
751 				case BPF_JGE:
752 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
753 					break;
754 				default:
755 					goto jmp_rest;
756 				}
757 
758 				target = i + fp->jf + 1;
759 				BPF_EMIT_JMP;
760 				break;
761 			}
762 jmp_rest:
763 			/* Other jumps are mapped into two insns: Jxx and JA. */
764 			target = i + fp->jt + 1;
765 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
766 			BPF_EMIT_JMP;
767 			insn++;
768 
769 			insn->code = BPF_JMP | BPF_JA;
770 			target = i + fp->jf + 1;
771 			BPF_EMIT_JMP;
772 			break;
773 
774 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
775 		case BPF_LDX | BPF_MSH | BPF_B: {
776 			struct sock_filter tmp = {
777 				.code	= BPF_LD | BPF_ABS | BPF_B,
778 				.k	= fp->k,
779 			};
780 
781 			*seen_ld_abs = true;
782 
783 			/* X = A */
784 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
785 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
786 			convert_bpf_ld_abs(&tmp, &insn);
787 			insn++;
788 			/* A &= 0xf */
789 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
790 			/* A <<= 2 */
791 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
792 			/* tmp = X */
793 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
794 			/* X = A */
795 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
796 			/* A = tmp */
797 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
798 			break;
799 		}
800 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
801 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
802 		 */
803 		case BPF_RET | BPF_A:
804 		case BPF_RET | BPF_K:
805 			if (BPF_RVAL(fp->code) == BPF_K)
806 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
807 							0, fp->k);
808 			*insn = BPF_EXIT_INSN();
809 			break;
810 
811 		/* Store to stack. */
812 		case BPF_ST:
813 		case BPF_STX:
814 			stack_off = fp->k * 4  + 4;
815 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
816 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
817 					    -stack_off);
818 			/* check_load_and_stores() verifies that classic BPF can
819 			 * load from stack only after write, so tracking
820 			 * stack_depth for ST|STX insns is enough
821 			 */
822 			if (new_prog && new_prog->aux->stack_depth < stack_off)
823 				new_prog->aux->stack_depth = stack_off;
824 			break;
825 
826 		/* Load from stack. */
827 		case BPF_LD | BPF_MEM:
828 		case BPF_LDX | BPF_MEM:
829 			stack_off = fp->k * 4  + 4;
830 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
831 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
832 					    -stack_off);
833 			break;
834 
835 		/* A = K or X = K */
836 		case BPF_LD | BPF_IMM:
837 		case BPF_LDX | BPF_IMM:
838 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
839 					      BPF_REG_A : BPF_REG_X, fp->k);
840 			break;
841 
842 		/* X = A */
843 		case BPF_MISC | BPF_TAX:
844 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
845 			break;
846 
847 		/* A = X */
848 		case BPF_MISC | BPF_TXA:
849 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
850 			break;
851 
852 		/* A = skb->len or X = skb->len */
853 		case BPF_LD | BPF_W | BPF_LEN:
854 		case BPF_LDX | BPF_W | BPF_LEN:
855 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
856 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
857 					    offsetof(struct sk_buff, len));
858 			break;
859 
860 		/* Access seccomp_data fields. */
861 		case BPF_LDX | BPF_ABS | BPF_W:
862 			/* A = *(u32 *) (ctx + K) */
863 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
864 			break;
865 
866 		/* Unknown instruction. */
867 		default:
868 			goto err;
869 		}
870 
871 		insn++;
872 		if (new_prog)
873 			memcpy(new_insn, tmp_insns,
874 			       sizeof(*insn) * (insn - tmp_insns));
875 		new_insn += insn - tmp_insns;
876 	}
877 
878 	if (!new_prog) {
879 		/* Only calculating new length. */
880 		*new_len = new_insn - first_insn;
881 		if (*seen_ld_abs)
882 			*new_len += 4; /* Prologue bits. */
883 		return 0;
884 	}
885 
886 	pass++;
887 	if (new_flen != new_insn - first_insn) {
888 		new_flen = new_insn - first_insn;
889 		if (pass > 2)
890 			goto err;
891 		goto do_pass;
892 	}
893 
894 	kfree(addrs);
895 	BUG_ON(*new_len != new_flen);
896 	return 0;
897 err:
898 	kfree(addrs);
899 	return -EINVAL;
900 }
901 
902 /* Security:
903  *
904  * As we dont want to clear mem[] array for each packet going through
905  * __bpf_prog_run(), we check that filter loaded by user never try to read
906  * a cell if not previously written, and we check all branches to be sure
907  * a malicious user doesn't try to abuse us.
908  */
909 static int check_load_and_stores(const struct sock_filter *filter, int flen)
910 {
911 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
912 	int pc, ret = 0;
913 
914 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
915 
916 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
917 	if (!masks)
918 		return -ENOMEM;
919 
920 	memset(masks, 0xff, flen * sizeof(*masks));
921 
922 	for (pc = 0; pc < flen; pc++) {
923 		memvalid &= masks[pc];
924 
925 		switch (filter[pc].code) {
926 		case BPF_ST:
927 		case BPF_STX:
928 			memvalid |= (1 << filter[pc].k);
929 			break;
930 		case BPF_LD | BPF_MEM:
931 		case BPF_LDX | BPF_MEM:
932 			if (!(memvalid & (1 << filter[pc].k))) {
933 				ret = -EINVAL;
934 				goto error;
935 			}
936 			break;
937 		case BPF_JMP | BPF_JA:
938 			/* A jump must set masks on target */
939 			masks[pc + 1 + filter[pc].k] &= memvalid;
940 			memvalid = ~0;
941 			break;
942 		case BPF_JMP | BPF_JEQ | BPF_K:
943 		case BPF_JMP | BPF_JEQ | BPF_X:
944 		case BPF_JMP | BPF_JGE | BPF_K:
945 		case BPF_JMP | BPF_JGE | BPF_X:
946 		case BPF_JMP | BPF_JGT | BPF_K:
947 		case BPF_JMP | BPF_JGT | BPF_X:
948 		case BPF_JMP | BPF_JSET | BPF_K:
949 		case BPF_JMP | BPF_JSET | BPF_X:
950 			/* A jump must set masks on targets */
951 			masks[pc + 1 + filter[pc].jt] &= memvalid;
952 			masks[pc + 1 + filter[pc].jf] &= memvalid;
953 			memvalid = ~0;
954 			break;
955 		}
956 	}
957 error:
958 	kfree(masks);
959 	return ret;
960 }
961 
962 static bool chk_code_allowed(u16 code_to_probe)
963 {
964 	static const bool codes[] = {
965 		/* 32 bit ALU operations */
966 		[BPF_ALU | BPF_ADD | BPF_K] = true,
967 		[BPF_ALU | BPF_ADD | BPF_X] = true,
968 		[BPF_ALU | BPF_SUB | BPF_K] = true,
969 		[BPF_ALU | BPF_SUB | BPF_X] = true,
970 		[BPF_ALU | BPF_MUL | BPF_K] = true,
971 		[BPF_ALU | BPF_MUL | BPF_X] = true,
972 		[BPF_ALU | BPF_DIV | BPF_K] = true,
973 		[BPF_ALU | BPF_DIV | BPF_X] = true,
974 		[BPF_ALU | BPF_MOD | BPF_K] = true,
975 		[BPF_ALU | BPF_MOD | BPF_X] = true,
976 		[BPF_ALU | BPF_AND | BPF_K] = true,
977 		[BPF_ALU | BPF_AND | BPF_X] = true,
978 		[BPF_ALU | BPF_OR | BPF_K] = true,
979 		[BPF_ALU | BPF_OR | BPF_X] = true,
980 		[BPF_ALU | BPF_XOR | BPF_K] = true,
981 		[BPF_ALU | BPF_XOR | BPF_X] = true,
982 		[BPF_ALU | BPF_LSH | BPF_K] = true,
983 		[BPF_ALU | BPF_LSH | BPF_X] = true,
984 		[BPF_ALU | BPF_RSH | BPF_K] = true,
985 		[BPF_ALU | BPF_RSH | BPF_X] = true,
986 		[BPF_ALU | BPF_NEG] = true,
987 		/* Load instructions */
988 		[BPF_LD | BPF_W | BPF_ABS] = true,
989 		[BPF_LD | BPF_H | BPF_ABS] = true,
990 		[BPF_LD | BPF_B | BPF_ABS] = true,
991 		[BPF_LD | BPF_W | BPF_LEN] = true,
992 		[BPF_LD | BPF_W | BPF_IND] = true,
993 		[BPF_LD | BPF_H | BPF_IND] = true,
994 		[BPF_LD | BPF_B | BPF_IND] = true,
995 		[BPF_LD | BPF_IMM] = true,
996 		[BPF_LD | BPF_MEM] = true,
997 		[BPF_LDX | BPF_W | BPF_LEN] = true,
998 		[BPF_LDX | BPF_B | BPF_MSH] = true,
999 		[BPF_LDX | BPF_IMM] = true,
1000 		[BPF_LDX | BPF_MEM] = true,
1001 		/* Store instructions */
1002 		[BPF_ST] = true,
1003 		[BPF_STX] = true,
1004 		/* Misc instructions */
1005 		[BPF_MISC | BPF_TAX] = true,
1006 		[BPF_MISC | BPF_TXA] = true,
1007 		/* Return instructions */
1008 		[BPF_RET | BPF_K] = true,
1009 		[BPF_RET | BPF_A] = true,
1010 		/* Jump instructions */
1011 		[BPF_JMP | BPF_JA] = true,
1012 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1013 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1014 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1015 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1016 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1017 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1018 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1019 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1020 	};
1021 
1022 	if (code_to_probe >= ARRAY_SIZE(codes))
1023 		return false;
1024 
1025 	return codes[code_to_probe];
1026 }
1027 
1028 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1029 				unsigned int flen)
1030 {
1031 	if (filter == NULL)
1032 		return false;
1033 	if (flen == 0 || flen > BPF_MAXINSNS)
1034 		return false;
1035 
1036 	return true;
1037 }
1038 
1039 /**
1040  *	bpf_check_classic - verify socket filter code
1041  *	@filter: filter to verify
1042  *	@flen: length of filter
1043  *
1044  * Check the user's filter code. If we let some ugly
1045  * filter code slip through kaboom! The filter must contain
1046  * no references or jumps that are out of range, no illegal
1047  * instructions, and must end with a RET instruction.
1048  *
1049  * All jumps are forward as they are not signed.
1050  *
1051  * Returns 0 if the rule set is legal or -EINVAL if not.
1052  */
1053 static int bpf_check_classic(const struct sock_filter *filter,
1054 			     unsigned int flen)
1055 {
1056 	bool anc_found;
1057 	int pc;
1058 
1059 	/* Check the filter code now */
1060 	for (pc = 0; pc < flen; pc++) {
1061 		const struct sock_filter *ftest = &filter[pc];
1062 
1063 		/* May we actually operate on this code? */
1064 		if (!chk_code_allowed(ftest->code))
1065 			return -EINVAL;
1066 
1067 		/* Some instructions need special checks */
1068 		switch (ftest->code) {
1069 		case BPF_ALU | BPF_DIV | BPF_K:
1070 		case BPF_ALU | BPF_MOD | BPF_K:
1071 			/* Check for division by zero */
1072 			if (ftest->k == 0)
1073 				return -EINVAL;
1074 			break;
1075 		case BPF_ALU | BPF_LSH | BPF_K:
1076 		case BPF_ALU | BPF_RSH | BPF_K:
1077 			if (ftest->k >= 32)
1078 				return -EINVAL;
1079 			break;
1080 		case BPF_LD | BPF_MEM:
1081 		case BPF_LDX | BPF_MEM:
1082 		case BPF_ST:
1083 		case BPF_STX:
1084 			/* Check for invalid memory addresses */
1085 			if (ftest->k >= BPF_MEMWORDS)
1086 				return -EINVAL;
1087 			break;
1088 		case BPF_JMP | BPF_JA:
1089 			/* Note, the large ftest->k might cause loops.
1090 			 * Compare this with conditional jumps below,
1091 			 * where offsets are limited. --ANK (981016)
1092 			 */
1093 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1094 				return -EINVAL;
1095 			break;
1096 		case BPF_JMP | BPF_JEQ | BPF_K:
1097 		case BPF_JMP | BPF_JEQ | BPF_X:
1098 		case BPF_JMP | BPF_JGE | BPF_K:
1099 		case BPF_JMP | BPF_JGE | BPF_X:
1100 		case BPF_JMP | BPF_JGT | BPF_K:
1101 		case BPF_JMP | BPF_JGT | BPF_X:
1102 		case BPF_JMP | BPF_JSET | BPF_K:
1103 		case BPF_JMP | BPF_JSET | BPF_X:
1104 			/* Both conditionals must be safe */
1105 			if (pc + ftest->jt + 1 >= flen ||
1106 			    pc + ftest->jf + 1 >= flen)
1107 				return -EINVAL;
1108 			break;
1109 		case BPF_LD | BPF_W | BPF_ABS:
1110 		case BPF_LD | BPF_H | BPF_ABS:
1111 		case BPF_LD | BPF_B | BPF_ABS:
1112 			anc_found = false;
1113 			if (bpf_anc_helper(ftest) & BPF_ANC)
1114 				anc_found = true;
1115 			/* Ancillary operation unknown or unsupported */
1116 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1117 				return -EINVAL;
1118 		}
1119 	}
1120 
1121 	/* Last instruction must be a RET code */
1122 	switch (filter[flen - 1].code) {
1123 	case BPF_RET | BPF_K:
1124 	case BPF_RET | BPF_A:
1125 		return check_load_and_stores(filter, flen);
1126 	}
1127 
1128 	return -EINVAL;
1129 }
1130 
1131 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1132 				      const struct sock_fprog *fprog)
1133 {
1134 	unsigned int fsize = bpf_classic_proglen(fprog);
1135 	struct sock_fprog_kern *fkprog;
1136 
1137 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1138 	if (!fp->orig_prog)
1139 		return -ENOMEM;
1140 
1141 	fkprog = fp->orig_prog;
1142 	fkprog->len = fprog->len;
1143 
1144 	fkprog->filter = kmemdup(fp->insns, fsize,
1145 				 GFP_KERNEL | __GFP_NOWARN);
1146 	if (!fkprog->filter) {
1147 		kfree(fp->orig_prog);
1148 		return -ENOMEM;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 static void bpf_release_orig_filter(struct bpf_prog *fp)
1155 {
1156 	struct sock_fprog_kern *fprog = fp->orig_prog;
1157 
1158 	if (fprog) {
1159 		kfree(fprog->filter);
1160 		kfree(fprog);
1161 	}
1162 }
1163 
1164 static void __bpf_prog_release(struct bpf_prog *prog)
1165 {
1166 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1167 		bpf_prog_put(prog);
1168 	} else {
1169 		bpf_release_orig_filter(prog);
1170 		bpf_prog_free(prog);
1171 	}
1172 }
1173 
1174 static void __sk_filter_release(struct sk_filter *fp)
1175 {
1176 	__bpf_prog_release(fp->prog);
1177 	kfree(fp);
1178 }
1179 
1180 /**
1181  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1182  *	@rcu: rcu_head that contains the sk_filter to free
1183  */
1184 static void sk_filter_release_rcu(struct rcu_head *rcu)
1185 {
1186 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1187 
1188 	__sk_filter_release(fp);
1189 }
1190 
1191 /**
1192  *	sk_filter_release - release a socket filter
1193  *	@fp: filter to remove
1194  *
1195  *	Remove a filter from a socket and release its resources.
1196  */
1197 static void sk_filter_release(struct sk_filter *fp)
1198 {
1199 	if (refcount_dec_and_test(&fp->refcnt))
1200 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1201 }
1202 
1203 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1204 {
1205 	u32 filter_size = bpf_prog_size(fp->prog->len);
1206 
1207 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1208 	sk_filter_release(fp);
1209 }
1210 
1211 /* try to charge the socket memory if there is space available
1212  * return true on success
1213  */
1214 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1215 {
1216 	u32 filter_size = bpf_prog_size(fp->prog->len);
1217 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1218 
1219 	/* same check as in sock_kmalloc() */
1220 	if (filter_size <= optmem_max &&
1221 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1222 		atomic_add(filter_size, &sk->sk_omem_alloc);
1223 		return true;
1224 	}
1225 	return false;
1226 }
1227 
1228 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1229 {
1230 	if (!refcount_inc_not_zero(&fp->refcnt))
1231 		return false;
1232 
1233 	if (!__sk_filter_charge(sk, fp)) {
1234 		sk_filter_release(fp);
1235 		return false;
1236 	}
1237 	return true;
1238 }
1239 
1240 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1241 {
1242 	struct sock_filter *old_prog;
1243 	struct bpf_prog *old_fp;
1244 	int err, new_len, old_len = fp->len;
1245 	bool seen_ld_abs = false;
1246 
1247 	/* We are free to overwrite insns et al right here as it won't be used at
1248 	 * this point in time anymore internally after the migration to the eBPF
1249 	 * instruction representation.
1250 	 */
1251 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1252 		     sizeof(struct bpf_insn));
1253 
1254 	/* Conversion cannot happen on overlapping memory areas,
1255 	 * so we need to keep the user BPF around until the 2nd
1256 	 * pass. At this time, the user BPF is stored in fp->insns.
1257 	 */
1258 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1259 			   GFP_KERNEL | __GFP_NOWARN);
1260 	if (!old_prog) {
1261 		err = -ENOMEM;
1262 		goto out_err;
1263 	}
1264 
1265 	/* 1st pass: calculate the new program length. */
1266 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1267 				 &seen_ld_abs);
1268 	if (err)
1269 		goto out_err_free;
1270 
1271 	/* Expand fp for appending the new filter representation. */
1272 	old_fp = fp;
1273 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1274 	if (!fp) {
1275 		/* The old_fp is still around in case we couldn't
1276 		 * allocate new memory, so uncharge on that one.
1277 		 */
1278 		fp = old_fp;
1279 		err = -ENOMEM;
1280 		goto out_err_free;
1281 	}
1282 
1283 	fp->len = new_len;
1284 
1285 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1286 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1287 				 &seen_ld_abs);
1288 	if (err)
1289 		/* 2nd bpf_convert_filter() can fail only if it fails
1290 		 * to allocate memory, remapping must succeed. Note,
1291 		 * that at this time old_fp has already been released
1292 		 * by krealloc().
1293 		 */
1294 		goto out_err_free;
1295 
1296 	fp = bpf_prog_select_runtime(fp, &err);
1297 	if (err)
1298 		goto out_err_free;
1299 
1300 	kfree(old_prog);
1301 	return fp;
1302 
1303 out_err_free:
1304 	kfree(old_prog);
1305 out_err:
1306 	__bpf_prog_release(fp);
1307 	return ERR_PTR(err);
1308 }
1309 
1310 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1311 					   bpf_aux_classic_check_t trans)
1312 {
1313 	int err;
1314 
1315 	fp->bpf_func = NULL;
1316 	fp->jited = 0;
1317 
1318 	err = bpf_check_classic(fp->insns, fp->len);
1319 	if (err) {
1320 		__bpf_prog_release(fp);
1321 		return ERR_PTR(err);
1322 	}
1323 
1324 	/* There might be additional checks and transformations
1325 	 * needed on classic filters, f.e. in case of seccomp.
1326 	 */
1327 	if (trans) {
1328 		err = trans(fp->insns, fp->len);
1329 		if (err) {
1330 			__bpf_prog_release(fp);
1331 			return ERR_PTR(err);
1332 		}
1333 	}
1334 
1335 	/* Probe if we can JIT compile the filter and if so, do
1336 	 * the compilation of the filter.
1337 	 */
1338 	bpf_jit_compile(fp);
1339 
1340 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1341 	 * for the optimized interpreter.
1342 	 */
1343 	if (!fp->jited)
1344 		fp = bpf_migrate_filter(fp);
1345 
1346 	return fp;
1347 }
1348 
1349 /**
1350  *	bpf_prog_create - create an unattached filter
1351  *	@pfp: the unattached filter that is created
1352  *	@fprog: the filter program
1353  *
1354  * Create a filter independent of any socket. We first run some
1355  * sanity checks on it to make sure it does not explode on us later.
1356  * If an error occurs or there is insufficient memory for the filter
1357  * a negative errno code is returned. On success the return is zero.
1358  */
1359 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1360 {
1361 	unsigned int fsize = bpf_classic_proglen(fprog);
1362 	struct bpf_prog *fp;
1363 
1364 	/* Make sure new filter is there and in the right amounts. */
1365 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1366 		return -EINVAL;
1367 
1368 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1369 	if (!fp)
1370 		return -ENOMEM;
1371 
1372 	memcpy(fp->insns, fprog->filter, fsize);
1373 
1374 	fp->len = fprog->len;
1375 	/* Since unattached filters are not copied back to user
1376 	 * space through sk_get_filter(), we do not need to hold
1377 	 * a copy here, and can spare us the work.
1378 	 */
1379 	fp->orig_prog = NULL;
1380 
1381 	/* bpf_prepare_filter() already takes care of freeing
1382 	 * memory in case something goes wrong.
1383 	 */
1384 	fp = bpf_prepare_filter(fp, NULL);
1385 	if (IS_ERR(fp))
1386 		return PTR_ERR(fp);
1387 
1388 	*pfp = fp;
1389 	return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(bpf_prog_create);
1392 
1393 /**
1394  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1395  *	@pfp: the unattached filter that is created
1396  *	@fprog: the filter program
1397  *	@trans: post-classic verifier transformation handler
1398  *	@save_orig: save classic BPF program
1399  *
1400  * This function effectively does the same as bpf_prog_create(), only
1401  * that it builds up its insns buffer from user space provided buffer.
1402  * It also allows for passing a bpf_aux_classic_check_t handler.
1403  */
1404 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1405 			      bpf_aux_classic_check_t trans, bool save_orig)
1406 {
1407 	unsigned int fsize = bpf_classic_proglen(fprog);
1408 	struct bpf_prog *fp;
1409 	int err;
1410 
1411 	/* Make sure new filter is there and in the right amounts. */
1412 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1413 		return -EINVAL;
1414 
1415 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1416 	if (!fp)
1417 		return -ENOMEM;
1418 
1419 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1420 		__bpf_prog_free(fp);
1421 		return -EFAULT;
1422 	}
1423 
1424 	fp->len = fprog->len;
1425 	fp->orig_prog = NULL;
1426 
1427 	if (save_orig) {
1428 		err = bpf_prog_store_orig_filter(fp, fprog);
1429 		if (err) {
1430 			__bpf_prog_free(fp);
1431 			return -ENOMEM;
1432 		}
1433 	}
1434 
1435 	/* bpf_prepare_filter() already takes care of freeing
1436 	 * memory in case something goes wrong.
1437 	 */
1438 	fp = bpf_prepare_filter(fp, trans);
1439 	if (IS_ERR(fp))
1440 		return PTR_ERR(fp);
1441 
1442 	*pfp = fp;
1443 	return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1446 
1447 void bpf_prog_destroy(struct bpf_prog *fp)
1448 {
1449 	__bpf_prog_release(fp);
1450 }
1451 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1452 
1453 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1454 {
1455 	struct sk_filter *fp, *old_fp;
1456 
1457 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1458 	if (!fp)
1459 		return -ENOMEM;
1460 
1461 	fp->prog = prog;
1462 
1463 	if (!__sk_filter_charge(sk, fp)) {
1464 		kfree(fp);
1465 		return -ENOMEM;
1466 	}
1467 	refcount_set(&fp->refcnt, 1);
1468 
1469 	old_fp = rcu_dereference_protected(sk->sk_filter,
1470 					   lockdep_sock_is_held(sk));
1471 	rcu_assign_pointer(sk->sk_filter, fp);
1472 
1473 	if (old_fp)
1474 		sk_filter_uncharge(sk, old_fp);
1475 
1476 	return 0;
1477 }
1478 
1479 static
1480 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1481 {
1482 	unsigned int fsize = bpf_classic_proglen(fprog);
1483 	struct bpf_prog *prog;
1484 	int err;
1485 
1486 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1487 		return ERR_PTR(-EPERM);
1488 
1489 	/* Make sure new filter is there and in the right amounts. */
1490 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1491 		return ERR_PTR(-EINVAL);
1492 
1493 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1494 	if (!prog)
1495 		return ERR_PTR(-ENOMEM);
1496 
1497 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1498 		__bpf_prog_free(prog);
1499 		return ERR_PTR(-EFAULT);
1500 	}
1501 
1502 	prog->len = fprog->len;
1503 
1504 	err = bpf_prog_store_orig_filter(prog, fprog);
1505 	if (err) {
1506 		__bpf_prog_free(prog);
1507 		return ERR_PTR(-ENOMEM);
1508 	}
1509 
1510 	/* bpf_prepare_filter() already takes care of freeing
1511 	 * memory in case something goes wrong.
1512 	 */
1513 	return bpf_prepare_filter(prog, NULL);
1514 }
1515 
1516 /**
1517  *	sk_attach_filter - attach a socket filter
1518  *	@fprog: the filter program
1519  *	@sk: the socket to use
1520  *
1521  * Attach the user's filter code. We first run some sanity checks on
1522  * it to make sure it does not explode on us later. If an error
1523  * occurs or there is insufficient memory for the filter a negative
1524  * errno code is returned. On success the return is zero.
1525  */
1526 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1527 {
1528 	struct bpf_prog *prog = __get_filter(fprog, sk);
1529 	int err;
1530 
1531 	if (IS_ERR(prog))
1532 		return PTR_ERR(prog);
1533 
1534 	err = __sk_attach_prog(prog, sk);
1535 	if (err < 0) {
1536 		__bpf_prog_release(prog);
1537 		return err;
1538 	}
1539 
1540 	return 0;
1541 }
1542 EXPORT_SYMBOL_GPL(sk_attach_filter);
1543 
1544 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1545 {
1546 	struct bpf_prog *prog = __get_filter(fprog, sk);
1547 	int err;
1548 
1549 	if (IS_ERR(prog))
1550 		return PTR_ERR(prog);
1551 
1552 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1553 		err = -ENOMEM;
1554 	else
1555 		err = reuseport_attach_prog(sk, prog);
1556 
1557 	if (err)
1558 		__bpf_prog_release(prog);
1559 
1560 	return err;
1561 }
1562 
1563 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1564 {
1565 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1566 		return ERR_PTR(-EPERM);
1567 
1568 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1569 }
1570 
1571 int sk_attach_bpf(u32 ufd, struct sock *sk)
1572 {
1573 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1574 	int err;
1575 
1576 	if (IS_ERR(prog))
1577 		return PTR_ERR(prog);
1578 
1579 	err = __sk_attach_prog(prog, sk);
1580 	if (err < 0) {
1581 		bpf_prog_put(prog);
1582 		return err;
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1589 {
1590 	struct bpf_prog *prog;
1591 	int err;
1592 
1593 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1594 		return -EPERM;
1595 
1596 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1597 	if (PTR_ERR(prog) == -EINVAL)
1598 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1599 	if (IS_ERR(prog))
1600 		return PTR_ERR(prog);
1601 
1602 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1603 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1604 		 * bpf prog (e.g. sockmap).  It depends on the
1605 		 * limitation imposed by bpf_prog_load().
1606 		 * Hence, sysctl_optmem_max is not checked.
1607 		 */
1608 		if ((sk->sk_type != SOCK_STREAM &&
1609 		     sk->sk_type != SOCK_DGRAM) ||
1610 		    (sk->sk_protocol != IPPROTO_UDP &&
1611 		     sk->sk_protocol != IPPROTO_TCP) ||
1612 		    (sk->sk_family != AF_INET &&
1613 		     sk->sk_family != AF_INET6)) {
1614 			err = -ENOTSUPP;
1615 			goto err_prog_put;
1616 		}
1617 	} else {
1618 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1619 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1620 			err = -ENOMEM;
1621 			goto err_prog_put;
1622 		}
1623 	}
1624 
1625 	err = reuseport_attach_prog(sk, prog);
1626 err_prog_put:
1627 	if (err)
1628 		bpf_prog_put(prog);
1629 
1630 	return err;
1631 }
1632 
1633 void sk_reuseport_prog_free(struct bpf_prog *prog)
1634 {
1635 	if (!prog)
1636 		return;
1637 
1638 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1639 		bpf_prog_put(prog);
1640 	else
1641 		bpf_prog_destroy(prog);
1642 }
1643 
1644 struct bpf_scratchpad {
1645 	union {
1646 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1647 		u8     buff[MAX_BPF_STACK];
1648 	};
1649 };
1650 
1651 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1652 
1653 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1654 					  unsigned int write_len)
1655 {
1656 	return skb_ensure_writable(skb, write_len);
1657 }
1658 
1659 static inline int bpf_try_make_writable(struct sk_buff *skb,
1660 					unsigned int write_len)
1661 {
1662 	int err = __bpf_try_make_writable(skb, write_len);
1663 
1664 	bpf_compute_data_pointers(skb);
1665 	return err;
1666 }
1667 
1668 static int bpf_try_make_head_writable(struct sk_buff *skb)
1669 {
1670 	return bpf_try_make_writable(skb, skb_headlen(skb));
1671 }
1672 
1673 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1674 {
1675 	if (skb_at_tc_ingress(skb))
1676 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1677 }
1678 
1679 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1680 {
1681 	if (skb_at_tc_ingress(skb))
1682 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1683 }
1684 
1685 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1686 	   const void *, from, u32, len, u64, flags)
1687 {
1688 	void *ptr;
1689 
1690 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1691 		return -EINVAL;
1692 	if (unlikely(offset > INT_MAX))
1693 		return -EFAULT;
1694 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1695 		return -EFAULT;
1696 
1697 	ptr = skb->data + offset;
1698 	if (flags & BPF_F_RECOMPUTE_CSUM)
1699 		__skb_postpull_rcsum(skb, ptr, len, offset);
1700 
1701 	memcpy(ptr, from, len);
1702 
1703 	if (flags & BPF_F_RECOMPUTE_CSUM)
1704 		__skb_postpush_rcsum(skb, ptr, len, offset);
1705 	if (flags & BPF_F_INVALIDATE_HASH)
1706 		skb_clear_hash(skb);
1707 
1708 	return 0;
1709 }
1710 
1711 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1712 	.func		= bpf_skb_store_bytes,
1713 	.gpl_only	= false,
1714 	.ret_type	= RET_INTEGER,
1715 	.arg1_type	= ARG_PTR_TO_CTX,
1716 	.arg2_type	= ARG_ANYTHING,
1717 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1718 	.arg4_type	= ARG_CONST_SIZE,
1719 	.arg5_type	= ARG_ANYTHING,
1720 };
1721 
1722 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1723 	   void *, to, u32, len)
1724 {
1725 	void *ptr;
1726 
1727 	if (unlikely(offset > INT_MAX))
1728 		goto err_clear;
1729 
1730 	ptr = skb_header_pointer(skb, offset, len, to);
1731 	if (unlikely(!ptr))
1732 		goto err_clear;
1733 	if (ptr != to)
1734 		memcpy(to, ptr, len);
1735 
1736 	return 0;
1737 err_clear:
1738 	memset(to, 0, len);
1739 	return -EFAULT;
1740 }
1741 
1742 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1743 	.func		= bpf_skb_load_bytes,
1744 	.gpl_only	= false,
1745 	.ret_type	= RET_INTEGER,
1746 	.arg1_type	= ARG_PTR_TO_CTX,
1747 	.arg2_type	= ARG_ANYTHING,
1748 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1749 	.arg4_type	= ARG_CONST_SIZE,
1750 };
1751 
1752 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1753 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1754 	   void *, to, u32, len)
1755 {
1756 	void *ptr;
1757 
1758 	if (unlikely(offset > 0xffff))
1759 		goto err_clear;
1760 
1761 	if (unlikely(!ctx->skb))
1762 		goto err_clear;
1763 
1764 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1765 	if (unlikely(!ptr))
1766 		goto err_clear;
1767 	if (ptr != to)
1768 		memcpy(to, ptr, len);
1769 
1770 	return 0;
1771 err_clear:
1772 	memset(to, 0, len);
1773 	return -EFAULT;
1774 }
1775 
1776 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1777 	.func		= bpf_flow_dissector_load_bytes,
1778 	.gpl_only	= false,
1779 	.ret_type	= RET_INTEGER,
1780 	.arg1_type	= ARG_PTR_TO_CTX,
1781 	.arg2_type	= ARG_ANYTHING,
1782 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1783 	.arg4_type	= ARG_CONST_SIZE,
1784 };
1785 
1786 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1787 	   u32, offset, void *, to, u32, len, u32, start_header)
1788 {
1789 	u8 *end = skb_tail_pointer(skb);
1790 	u8 *start, *ptr;
1791 
1792 	if (unlikely(offset > 0xffff))
1793 		goto err_clear;
1794 
1795 	switch (start_header) {
1796 	case BPF_HDR_START_MAC:
1797 		if (unlikely(!skb_mac_header_was_set(skb)))
1798 			goto err_clear;
1799 		start = skb_mac_header(skb);
1800 		break;
1801 	case BPF_HDR_START_NET:
1802 		start = skb_network_header(skb);
1803 		break;
1804 	default:
1805 		goto err_clear;
1806 	}
1807 
1808 	ptr = start + offset;
1809 
1810 	if (likely(ptr + len <= end)) {
1811 		memcpy(to, ptr, len);
1812 		return 0;
1813 	}
1814 
1815 err_clear:
1816 	memset(to, 0, len);
1817 	return -EFAULT;
1818 }
1819 
1820 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1821 	.func		= bpf_skb_load_bytes_relative,
1822 	.gpl_only	= false,
1823 	.ret_type	= RET_INTEGER,
1824 	.arg1_type	= ARG_PTR_TO_CTX,
1825 	.arg2_type	= ARG_ANYTHING,
1826 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1827 	.arg4_type	= ARG_CONST_SIZE,
1828 	.arg5_type	= ARG_ANYTHING,
1829 };
1830 
1831 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1832 {
1833 	/* Idea is the following: should the needed direct read/write
1834 	 * test fail during runtime, we can pull in more data and redo
1835 	 * again, since implicitly, we invalidate previous checks here.
1836 	 *
1837 	 * Or, since we know how much we need to make read/writeable,
1838 	 * this can be done once at the program beginning for direct
1839 	 * access case. By this we overcome limitations of only current
1840 	 * headroom being accessible.
1841 	 */
1842 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1843 }
1844 
1845 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1846 	.func		= bpf_skb_pull_data,
1847 	.gpl_only	= false,
1848 	.ret_type	= RET_INTEGER,
1849 	.arg1_type	= ARG_PTR_TO_CTX,
1850 	.arg2_type	= ARG_ANYTHING,
1851 };
1852 
1853 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1854 {
1855 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1856 }
1857 
1858 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1859 	.func		= bpf_sk_fullsock,
1860 	.gpl_only	= false,
1861 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1862 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1863 };
1864 
1865 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1866 					   unsigned int write_len)
1867 {
1868 	return __bpf_try_make_writable(skb, write_len);
1869 }
1870 
1871 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1872 {
1873 	/* Idea is the following: should the needed direct read/write
1874 	 * test fail during runtime, we can pull in more data and redo
1875 	 * again, since implicitly, we invalidate previous checks here.
1876 	 *
1877 	 * Or, since we know how much we need to make read/writeable,
1878 	 * this can be done once at the program beginning for direct
1879 	 * access case. By this we overcome limitations of only current
1880 	 * headroom being accessible.
1881 	 */
1882 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1883 }
1884 
1885 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1886 	.func		= sk_skb_pull_data,
1887 	.gpl_only	= false,
1888 	.ret_type	= RET_INTEGER,
1889 	.arg1_type	= ARG_PTR_TO_CTX,
1890 	.arg2_type	= ARG_ANYTHING,
1891 };
1892 
1893 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1894 	   u64, from, u64, to, u64, flags)
1895 {
1896 	__sum16 *ptr;
1897 
1898 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1899 		return -EINVAL;
1900 	if (unlikely(offset > 0xffff || offset & 1))
1901 		return -EFAULT;
1902 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1903 		return -EFAULT;
1904 
1905 	ptr = (__sum16 *)(skb->data + offset);
1906 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1907 	case 0:
1908 		if (unlikely(from != 0))
1909 			return -EINVAL;
1910 
1911 		csum_replace_by_diff(ptr, to);
1912 		break;
1913 	case 2:
1914 		csum_replace2(ptr, from, to);
1915 		break;
1916 	case 4:
1917 		csum_replace4(ptr, from, to);
1918 		break;
1919 	default:
1920 		return -EINVAL;
1921 	}
1922 
1923 	return 0;
1924 }
1925 
1926 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1927 	.func		= bpf_l3_csum_replace,
1928 	.gpl_only	= false,
1929 	.ret_type	= RET_INTEGER,
1930 	.arg1_type	= ARG_PTR_TO_CTX,
1931 	.arg2_type	= ARG_ANYTHING,
1932 	.arg3_type	= ARG_ANYTHING,
1933 	.arg4_type	= ARG_ANYTHING,
1934 	.arg5_type	= ARG_ANYTHING,
1935 };
1936 
1937 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1938 	   u64, from, u64, to, u64, flags)
1939 {
1940 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1941 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1942 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1943 	__sum16 *ptr;
1944 
1945 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1946 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1947 		return -EINVAL;
1948 	if (unlikely(offset > 0xffff || offset & 1))
1949 		return -EFAULT;
1950 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1951 		return -EFAULT;
1952 
1953 	ptr = (__sum16 *)(skb->data + offset);
1954 	if (is_mmzero && !do_mforce && !*ptr)
1955 		return 0;
1956 
1957 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1958 	case 0:
1959 		if (unlikely(from != 0))
1960 			return -EINVAL;
1961 
1962 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1963 		break;
1964 	case 2:
1965 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1966 		break;
1967 	case 4:
1968 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1969 		break;
1970 	default:
1971 		return -EINVAL;
1972 	}
1973 
1974 	if (is_mmzero && !*ptr)
1975 		*ptr = CSUM_MANGLED_0;
1976 	return 0;
1977 }
1978 
1979 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1980 	.func		= bpf_l4_csum_replace,
1981 	.gpl_only	= false,
1982 	.ret_type	= RET_INTEGER,
1983 	.arg1_type	= ARG_PTR_TO_CTX,
1984 	.arg2_type	= ARG_ANYTHING,
1985 	.arg3_type	= ARG_ANYTHING,
1986 	.arg4_type	= ARG_ANYTHING,
1987 	.arg5_type	= ARG_ANYTHING,
1988 };
1989 
1990 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1991 	   __be32 *, to, u32, to_size, __wsum, seed)
1992 {
1993 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1994 	u32 diff_size = from_size + to_size;
1995 	int i, j = 0;
1996 
1997 	/* This is quite flexible, some examples:
1998 	 *
1999 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2000 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2001 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2002 	 *
2003 	 * Even for diffing, from_size and to_size don't need to be equal.
2004 	 */
2005 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2006 		     diff_size > sizeof(sp->diff)))
2007 		return -EINVAL;
2008 
2009 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2010 		sp->diff[j] = ~from[i];
2011 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2012 		sp->diff[j] = to[i];
2013 
2014 	return csum_partial(sp->diff, diff_size, seed);
2015 }
2016 
2017 static const struct bpf_func_proto bpf_csum_diff_proto = {
2018 	.func		= bpf_csum_diff,
2019 	.gpl_only	= false,
2020 	.pkt_access	= true,
2021 	.ret_type	= RET_INTEGER,
2022 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2023 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2024 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2026 	.arg5_type	= ARG_ANYTHING,
2027 };
2028 
2029 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2030 {
2031 	/* The interface is to be used in combination with bpf_csum_diff()
2032 	 * for direct packet writes. csum rotation for alignment as well
2033 	 * as emulating csum_sub() can be done from the eBPF program.
2034 	 */
2035 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2036 		return (skb->csum = csum_add(skb->csum, csum));
2037 
2038 	return -ENOTSUPP;
2039 }
2040 
2041 static const struct bpf_func_proto bpf_csum_update_proto = {
2042 	.func		= bpf_csum_update,
2043 	.gpl_only	= false,
2044 	.ret_type	= RET_INTEGER,
2045 	.arg1_type	= ARG_PTR_TO_CTX,
2046 	.arg2_type	= ARG_ANYTHING,
2047 };
2048 
2049 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2050 {
2051 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2052 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2053 	 * is passed as flags, for example.
2054 	 */
2055 	switch (level) {
2056 	case BPF_CSUM_LEVEL_INC:
2057 		__skb_incr_checksum_unnecessary(skb);
2058 		break;
2059 	case BPF_CSUM_LEVEL_DEC:
2060 		__skb_decr_checksum_unnecessary(skb);
2061 		break;
2062 	case BPF_CSUM_LEVEL_RESET:
2063 		__skb_reset_checksum_unnecessary(skb);
2064 		break;
2065 	case BPF_CSUM_LEVEL_QUERY:
2066 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2067 		       skb->csum_level : -EACCES;
2068 	default:
2069 		return -EINVAL;
2070 	}
2071 
2072 	return 0;
2073 }
2074 
2075 static const struct bpf_func_proto bpf_csum_level_proto = {
2076 	.func		= bpf_csum_level,
2077 	.gpl_only	= false,
2078 	.ret_type	= RET_INTEGER,
2079 	.arg1_type	= ARG_PTR_TO_CTX,
2080 	.arg2_type	= ARG_ANYTHING,
2081 };
2082 
2083 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2084 {
2085 	return dev_forward_skb_nomtu(dev, skb);
2086 }
2087 
2088 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2089 				      struct sk_buff *skb)
2090 {
2091 	int ret = ____dev_forward_skb(dev, skb, false);
2092 
2093 	if (likely(!ret)) {
2094 		skb->dev = dev;
2095 		ret = netif_rx(skb);
2096 	}
2097 
2098 	return ret;
2099 }
2100 
2101 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2102 {
2103 	int ret;
2104 
2105 	if (dev_xmit_recursion()) {
2106 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2107 		kfree_skb(skb);
2108 		return -ENETDOWN;
2109 	}
2110 
2111 	skb->dev = dev;
2112 	skb_clear_tstamp(skb);
2113 
2114 	dev_xmit_recursion_inc();
2115 	ret = dev_queue_xmit(skb);
2116 	dev_xmit_recursion_dec();
2117 
2118 	return ret;
2119 }
2120 
2121 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2122 				 u32 flags)
2123 {
2124 	unsigned int mlen = skb_network_offset(skb);
2125 
2126 	if (mlen) {
2127 		__skb_pull(skb, mlen);
2128 
2129 		/* At ingress, the mac header has already been pulled once.
2130 		 * At egress, skb_pospull_rcsum has to be done in case that
2131 		 * the skb is originated from ingress (i.e. a forwarded skb)
2132 		 * to ensure that rcsum starts at net header.
2133 		 */
2134 		if (!skb_at_tc_ingress(skb))
2135 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2136 	}
2137 	skb_pop_mac_header(skb);
2138 	skb_reset_mac_len(skb);
2139 	return flags & BPF_F_INGRESS ?
2140 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2141 }
2142 
2143 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2144 				 u32 flags)
2145 {
2146 	/* Verify that a link layer header is carried */
2147 	if (unlikely(skb->mac_header >= skb->network_header)) {
2148 		kfree_skb(skb);
2149 		return -ERANGE;
2150 	}
2151 
2152 	bpf_push_mac_rcsum(skb);
2153 	return flags & BPF_F_INGRESS ?
2154 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2155 }
2156 
2157 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2158 			  u32 flags)
2159 {
2160 	if (dev_is_mac_header_xmit(dev))
2161 		return __bpf_redirect_common(skb, dev, flags);
2162 	else
2163 		return __bpf_redirect_no_mac(skb, dev, flags);
2164 }
2165 
2166 #if IS_ENABLED(CONFIG_IPV6)
2167 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2168 			    struct net_device *dev, struct bpf_nh_params *nh)
2169 {
2170 	u32 hh_len = LL_RESERVED_SPACE(dev);
2171 	const struct in6_addr *nexthop;
2172 	struct dst_entry *dst = NULL;
2173 	struct neighbour *neigh;
2174 
2175 	if (dev_xmit_recursion()) {
2176 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2177 		goto out_drop;
2178 	}
2179 
2180 	skb->dev = dev;
2181 	skb_clear_tstamp(skb);
2182 
2183 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2184 		skb = skb_expand_head(skb, hh_len);
2185 		if (!skb)
2186 			return -ENOMEM;
2187 	}
2188 
2189 	rcu_read_lock_bh();
2190 	if (!nh) {
2191 		dst = skb_dst(skb);
2192 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2193 				      &ipv6_hdr(skb)->daddr);
2194 	} else {
2195 		nexthop = &nh->ipv6_nh;
2196 	}
2197 	neigh = ip_neigh_gw6(dev, nexthop);
2198 	if (likely(!IS_ERR(neigh))) {
2199 		int ret;
2200 
2201 		sock_confirm_neigh(skb, neigh);
2202 		dev_xmit_recursion_inc();
2203 		ret = neigh_output(neigh, skb, false);
2204 		dev_xmit_recursion_dec();
2205 		rcu_read_unlock_bh();
2206 		return ret;
2207 	}
2208 	rcu_read_unlock_bh();
2209 	if (dst)
2210 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2211 out_drop:
2212 	kfree_skb(skb);
2213 	return -ENETDOWN;
2214 }
2215 
2216 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2217 				   struct bpf_nh_params *nh)
2218 {
2219 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2220 	struct net *net = dev_net(dev);
2221 	int err, ret = NET_XMIT_DROP;
2222 
2223 	if (!nh) {
2224 		struct dst_entry *dst;
2225 		struct flowi6 fl6 = {
2226 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2227 			.flowi6_mark  = skb->mark,
2228 			.flowlabel    = ip6_flowinfo(ip6h),
2229 			.flowi6_oif   = dev->ifindex,
2230 			.flowi6_proto = ip6h->nexthdr,
2231 			.daddr	      = ip6h->daddr,
2232 			.saddr	      = ip6h->saddr,
2233 		};
2234 
2235 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2236 		if (IS_ERR(dst))
2237 			goto out_drop;
2238 
2239 		skb_dst_set(skb, dst);
2240 	} else if (nh->nh_family != AF_INET6) {
2241 		goto out_drop;
2242 	}
2243 
2244 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2245 	if (unlikely(net_xmit_eval(err)))
2246 		dev->stats.tx_errors++;
2247 	else
2248 		ret = NET_XMIT_SUCCESS;
2249 	goto out_xmit;
2250 out_drop:
2251 	dev->stats.tx_errors++;
2252 	kfree_skb(skb);
2253 out_xmit:
2254 	return ret;
2255 }
2256 #else
2257 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2258 				   struct bpf_nh_params *nh)
2259 {
2260 	kfree_skb(skb);
2261 	return NET_XMIT_DROP;
2262 }
2263 #endif /* CONFIG_IPV6 */
2264 
2265 #if IS_ENABLED(CONFIG_INET)
2266 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2267 			    struct net_device *dev, struct bpf_nh_params *nh)
2268 {
2269 	u32 hh_len = LL_RESERVED_SPACE(dev);
2270 	struct neighbour *neigh;
2271 	bool is_v6gw = false;
2272 
2273 	if (dev_xmit_recursion()) {
2274 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2275 		goto out_drop;
2276 	}
2277 
2278 	skb->dev = dev;
2279 	skb_clear_tstamp(skb);
2280 
2281 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2282 		skb = skb_expand_head(skb, hh_len);
2283 		if (!skb)
2284 			return -ENOMEM;
2285 	}
2286 
2287 	rcu_read_lock_bh();
2288 	if (!nh) {
2289 		struct dst_entry *dst = skb_dst(skb);
2290 		struct rtable *rt = container_of(dst, struct rtable, dst);
2291 
2292 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2293 	} else if (nh->nh_family == AF_INET6) {
2294 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2295 		is_v6gw = true;
2296 	} else if (nh->nh_family == AF_INET) {
2297 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2298 	} else {
2299 		rcu_read_unlock_bh();
2300 		goto out_drop;
2301 	}
2302 
2303 	if (likely(!IS_ERR(neigh))) {
2304 		int ret;
2305 
2306 		sock_confirm_neigh(skb, neigh);
2307 		dev_xmit_recursion_inc();
2308 		ret = neigh_output(neigh, skb, is_v6gw);
2309 		dev_xmit_recursion_dec();
2310 		rcu_read_unlock_bh();
2311 		return ret;
2312 	}
2313 	rcu_read_unlock_bh();
2314 out_drop:
2315 	kfree_skb(skb);
2316 	return -ENETDOWN;
2317 }
2318 
2319 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2320 				   struct bpf_nh_params *nh)
2321 {
2322 	const struct iphdr *ip4h = ip_hdr(skb);
2323 	struct net *net = dev_net(dev);
2324 	int err, ret = NET_XMIT_DROP;
2325 
2326 	if (!nh) {
2327 		struct flowi4 fl4 = {
2328 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2329 			.flowi4_mark  = skb->mark,
2330 			.flowi4_tos   = RT_TOS(ip4h->tos),
2331 			.flowi4_oif   = dev->ifindex,
2332 			.flowi4_proto = ip4h->protocol,
2333 			.daddr	      = ip4h->daddr,
2334 			.saddr	      = ip4h->saddr,
2335 		};
2336 		struct rtable *rt;
2337 
2338 		rt = ip_route_output_flow(net, &fl4, NULL);
2339 		if (IS_ERR(rt))
2340 			goto out_drop;
2341 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2342 			ip_rt_put(rt);
2343 			goto out_drop;
2344 		}
2345 
2346 		skb_dst_set(skb, &rt->dst);
2347 	}
2348 
2349 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2350 	if (unlikely(net_xmit_eval(err)))
2351 		dev->stats.tx_errors++;
2352 	else
2353 		ret = NET_XMIT_SUCCESS;
2354 	goto out_xmit;
2355 out_drop:
2356 	dev->stats.tx_errors++;
2357 	kfree_skb(skb);
2358 out_xmit:
2359 	return ret;
2360 }
2361 #else
2362 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2363 				   struct bpf_nh_params *nh)
2364 {
2365 	kfree_skb(skb);
2366 	return NET_XMIT_DROP;
2367 }
2368 #endif /* CONFIG_INET */
2369 
2370 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2371 				struct bpf_nh_params *nh)
2372 {
2373 	struct ethhdr *ethh = eth_hdr(skb);
2374 
2375 	if (unlikely(skb->mac_header >= skb->network_header))
2376 		goto out;
2377 	bpf_push_mac_rcsum(skb);
2378 	if (is_multicast_ether_addr(ethh->h_dest))
2379 		goto out;
2380 
2381 	skb_pull(skb, sizeof(*ethh));
2382 	skb_unset_mac_header(skb);
2383 	skb_reset_network_header(skb);
2384 
2385 	if (skb->protocol == htons(ETH_P_IP))
2386 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2387 	else if (skb->protocol == htons(ETH_P_IPV6))
2388 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2389 out:
2390 	kfree_skb(skb);
2391 	return -ENOTSUPP;
2392 }
2393 
2394 /* Internal, non-exposed redirect flags. */
2395 enum {
2396 	BPF_F_NEIGH	= (1ULL << 1),
2397 	BPF_F_PEER	= (1ULL << 2),
2398 	BPF_F_NEXTHOP	= (1ULL << 3),
2399 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2400 };
2401 
2402 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2403 {
2404 	struct net_device *dev;
2405 	struct sk_buff *clone;
2406 	int ret;
2407 
2408 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2409 		return -EINVAL;
2410 
2411 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2412 	if (unlikely(!dev))
2413 		return -EINVAL;
2414 
2415 	clone = skb_clone(skb, GFP_ATOMIC);
2416 	if (unlikely(!clone))
2417 		return -ENOMEM;
2418 
2419 	/* For direct write, we need to keep the invariant that the skbs
2420 	 * we're dealing with need to be uncloned. Should uncloning fail
2421 	 * here, we need to free the just generated clone to unclone once
2422 	 * again.
2423 	 */
2424 	ret = bpf_try_make_head_writable(skb);
2425 	if (unlikely(ret)) {
2426 		kfree_skb(clone);
2427 		return -ENOMEM;
2428 	}
2429 
2430 	return __bpf_redirect(clone, dev, flags);
2431 }
2432 
2433 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2434 	.func           = bpf_clone_redirect,
2435 	.gpl_only       = false,
2436 	.ret_type       = RET_INTEGER,
2437 	.arg1_type      = ARG_PTR_TO_CTX,
2438 	.arg2_type      = ARG_ANYTHING,
2439 	.arg3_type      = ARG_ANYTHING,
2440 };
2441 
2442 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2443 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2444 
2445 int skb_do_redirect(struct sk_buff *skb)
2446 {
2447 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2448 	struct net *net = dev_net(skb->dev);
2449 	struct net_device *dev;
2450 	u32 flags = ri->flags;
2451 
2452 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2453 	ri->tgt_index = 0;
2454 	ri->flags = 0;
2455 	if (unlikely(!dev))
2456 		goto out_drop;
2457 	if (flags & BPF_F_PEER) {
2458 		const struct net_device_ops *ops = dev->netdev_ops;
2459 
2460 		if (unlikely(!ops->ndo_get_peer_dev ||
2461 			     !skb_at_tc_ingress(skb)))
2462 			goto out_drop;
2463 		dev = ops->ndo_get_peer_dev(dev);
2464 		if (unlikely(!dev ||
2465 			     !(dev->flags & IFF_UP) ||
2466 			     net_eq(net, dev_net(dev))))
2467 			goto out_drop;
2468 		skb->dev = dev;
2469 		return -EAGAIN;
2470 	}
2471 	return flags & BPF_F_NEIGH ?
2472 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2473 				    &ri->nh : NULL) :
2474 	       __bpf_redirect(skb, dev, flags);
2475 out_drop:
2476 	kfree_skb(skb);
2477 	return -EINVAL;
2478 }
2479 
2480 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2481 {
2482 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2483 
2484 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2485 		return TC_ACT_SHOT;
2486 
2487 	ri->flags = flags;
2488 	ri->tgt_index = ifindex;
2489 
2490 	return TC_ACT_REDIRECT;
2491 }
2492 
2493 static const struct bpf_func_proto bpf_redirect_proto = {
2494 	.func           = bpf_redirect,
2495 	.gpl_only       = false,
2496 	.ret_type       = RET_INTEGER,
2497 	.arg1_type      = ARG_ANYTHING,
2498 	.arg2_type      = ARG_ANYTHING,
2499 };
2500 
2501 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2502 {
2503 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2504 
2505 	if (unlikely(flags))
2506 		return TC_ACT_SHOT;
2507 
2508 	ri->flags = BPF_F_PEER;
2509 	ri->tgt_index = ifindex;
2510 
2511 	return TC_ACT_REDIRECT;
2512 }
2513 
2514 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2515 	.func           = bpf_redirect_peer,
2516 	.gpl_only       = false,
2517 	.ret_type       = RET_INTEGER,
2518 	.arg1_type      = ARG_ANYTHING,
2519 	.arg2_type      = ARG_ANYTHING,
2520 };
2521 
2522 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2523 	   int, plen, u64, flags)
2524 {
2525 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2526 
2527 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2528 		return TC_ACT_SHOT;
2529 
2530 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2531 	ri->tgt_index = ifindex;
2532 
2533 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2534 	if (plen)
2535 		memcpy(&ri->nh, params, sizeof(ri->nh));
2536 
2537 	return TC_ACT_REDIRECT;
2538 }
2539 
2540 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2541 	.func		= bpf_redirect_neigh,
2542 	.gpl_only	= false,
2543 	.ret_type	= RET_INTEGER,
2544 	.arg1_type	= ARG_ANYTHING,
2545 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2546 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2547 	.arg4_type	= ARG_ANYTHING,
2548 };
2549 
2550 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2551 {
2552 	msg->apply_bytes = bytes;
2553 	return 0;
2554 }
2555 
2556 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2557 	.func           = bpf_msg_apply_bytes,
2558 	.gpl_only       = false,
2559 	.ret_type       = RET_INTEGER,
2560 	.arg1_type	= ARG_PTR_TO_CTX,
2561 	.arg2_type      = ARG_ANYTHING,
2562 };
2563 
2564 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2565 {
2566 	msg->cork_bytes = bytes;
2567 	return 0;
2568 }
2569 
2570 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2571 	.func           = bpf_msg_cork_bytes,
2572 	.gpl_only       = false,
2573 	.ret_type       = RET_INTEGER,
2574 	.arg1_type	= ARG_PTR_TO_CTX,
2575 	.arg2_type      = ARG_ANYTHING,
2576 };
2577 
2578 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2579 	   u32, end, u64, flags)
2580 {
2581 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2582 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2583 	struct scatterlist *sge;
2584 	u8 *raw, *to, *from;
2585 	struct page *page;
2586 
2587 	if (unlikely(flags || end <= start))
2588 		return -EINVAL;
2589 
2590 	/* First find the starting scatterlist element */
2591 	i = msg->sg.start;
2592 	do {
2593 		offset += len;
2594 		len = sk_msg_elem(msg, i)->length;
2595 		if (start < offset + len)
2596 			break;
2597 		sk_msg_iter_var_next(i);
2598 	} while (i != msg->sg.end);
2599 
2600 	if (unlikely(start >= offset + len))
2601 		return -EINVAL;
2602 
2603 	first_sge = i;
2604 	/* The start may point into the sg element so we need to also
2605 	 * account for the headroom.
2606 	 */
2607 	bytes_sg_total = start - offset + bytes;
2608 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2609 		goto out;
2610 
2611 	/* At this point we need to linearize multiple scatterlist
2612 	 * elements or a single shared page. Either way we need to
2613 	 * copy into a linear buffer exclusively owned by BPF. Then
2614 	 * place the buffer in the scatterlist and fixup the original
2615 	 * entries by removing the entries now in the linear buffer
2616 	 * and shifting the remaining entries. For now we do not try
2617 	 * to copy partial entries to avoid complexity of running out
2618 	 * of sg_entry slots. The downside is reading a single byte
2619 	 * will copy the entire sg entry.
2620 	 */
2621 	do {
2622 		copy += sk_msg_elem(msg, i)->length;
2623 		sk_msg_iter_var_next(i);
2624 		if (bytes_sg_total <= copy)
2625 			break;
2626 	} while (i != msg->sg.end);
2627 	last_sge = i;
2628 
2629 	if (unlikely(bytes_sg_total > copy))
2630 		return -EINVAL;
2631 
2632 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2633 			   get_order(copy));
2634 	if (unlikely(!page))
2635 		return -ENOMEM;
2636 
2637 	raw = page_address(page);
2638 	i = first_sge;
2639 	do {
2640 		sge = sk_msg_elem(msg, i);
2641 		from = sg_virt(sge);
2642 		len = sge->length;
2643 		to = raw + poffset;
2644 
2645 		memcpy(to, from, len);
2646 		poffset += len;
2647 		sge->length = 0;
2648 		put_page(sg_page(sge));
2649 
2650 		sk_msg_iter_var_next(i);
2651 	} while (i != last_sge);
2652 
2653 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2654 
2655 	/* To repair sg ring we need to shift entries. If we only
2656 	 * had a single entry though we can just replace it and
2657 	 * be done. Otherwise walk the ring and shift the entries.
2658 	 */
2659 	WARN_ON_ONCE(last_sge == first_sge);
2660 	shift = last_sge > first_sge ?
2661 		last_sge - first_sge - 1 :
2662 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2663 	if (!shift)
2664 		goto out;
2665 
2666 	i = first_sge;
2667 	sk_msg_iter_var_next(i);
2668 	do {
2669 		u32 move_from;
2670 
2671 		if (i + shift >= NR_MSG_FRAG_IDS)
2672 			move_from = i + shift - NR_MSG_FRAG_IDS;
2673 		else
2674 			move_from = i + shift;
2675 		if (move_from == msg->sg.end)
2676 			break;
2677 
2678 		msg->sg.data[i] = msg->sg.data[move_from];
2679 		msg->sg.data[move_from].length = 0;
2680 		msg->sg.data[move_from].page_link = 0;
2681 		msg->sg.data[move_from].offset = 0;
2682 		sk_msg_iter_var_next(i);
2683 	} while (1);
2684 
2685 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2686 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2687 		      msg->sg.end - shift;
2688 out:
2689 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2690 	msg->data_end = msg->data + bytes;
2691 	return 0;
2692 }
2693 
2694 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2695 	.func		= bpf_msg_pull_data,
2696 	.gpl_only	= false,
2697 	.ret_type	= RET_INTEGER,
2698 	.arg1_type	= ARG_PTR_TO_CTX,
2699 	.arg2_type	= ARG_ANYTHING,
2700 	.arg3_type	= ARG_ANYTHING,
2701 	.arg4_type	= ARG_ANYTHING,
2702 };
2703 
2704 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2705 	   u32, len, u64, flags)
2706 {
2707 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2708 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2709 	u8 *raw, *to, *from;
2710 	struct page *page;
2711 
2712 	if (unlikely(flags))
2713 		return -EINVAL;
2714 
2715 	if (unlikely(len == 0))
2716 		return 0;
2717 
2718 	/* First find the starting scatterlist element */
2719 	i = msg->sg.start;
2720 	do {
2721 		offset += l;
2722 		l = sk_msg_elem(msg, i)->length;
2723 
2724 		if (start < offset + l)
2725 			break;
2726 		sk_msg_iter_var_next(i);
2727 	} while (i != msg->sg.end);
2728 
2729 	if (start >= offset + l)
2730 		return -EINVAL;
2731 
2732 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2733 
2734 	/* If no space available will fallback to copy, we need at
2735 	 * least one scatterlist elem available to push data into
2736 	 * when start aligns to the beginning of an element or two
2737 	 * when it falls inside an element. We handle the start equals
2738 	 * offset case because its the common case for inserting a
2739 	 * header.
2740 	 */
2741 	if (!space || (space == 1 && start != offset))
2742 		copy = msg->sg.data[i].length;
2743 
2744 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2745 			   get_order(copy + len));
2746 	if (unlikely(!page))
2747 		return -ENOMEM;
2748 
2749 	if (copy) {
2750 		int front, back;
2751 
2752 		raw = page_address(page);
2753 
2754 		psge = sk_msg_elem(msg, i);
2755 		front = start - offset;
2756 		back = psge->length - front;
2757 		from = sg_virt(psge);
2758 
2759 		if (front)
2760 			memcpy(raw, from, front);
2761 
2762 		if (back) {
2763 			from += front;
2764 			to = raw + front + len;
2765 
2766 			memcpy(to, from, back);
2767 		}
2768 
2769 		put_page(sg_page(psge));
2770 	} else if (start - offset) {
2771 		psge = sk_msg_elem(msg, i);
2772 		rsge = sk_msg_elem_cpy(msg, i);
2773 
2774 		psge->length = start - offset;
2775 		rsge.length -= psge->length;
2776 		rsge.offset += start;
2777 
2778 		sk_msg_iter_var_next(i);
2779 		sg_unmark_end(psge);
2780 		sg_unmark_end(&rsge);
2781 		sk_msg_iter_next(msg, end);
2782 	}
2783 
2784 	/* Slot(s) to place newly allocated data */
2785 	new = i;
2786 
2787 	/* Shift one or two slots as needed */
2788 	if (!copy) {
2789 		sge = sk_msg_elem_cpy(msg, i);
2790 
2791 		sk_msg_iter_var_next(i);
2792 		sg_unmark_end(&sge);
2793 		sk_msg_iter_next(msg, end);
2794 
2795 		nsge = sk_msg_elem_cpy(msg, i);
2796 		if (rsge.length) {
2797 			sk_msg_iter_var_next(i);
2798 			nnsge = sk_msg_elem_cpy(msg, i);
2799 		}
2800 
2801 		while (i != msg->sg.end) {
2802 			msg->sg.data[i] = sge;
2803 			sge = nsge;
2804 			sk_msg_iter_var_next(i);
2805 			if (rsge.length) {
2806 				nsge = nnsge;
2807 				nnsge = sk_msg_elem_cpy(msg, i);
2808 			} else {
2809 				nsge = sk_msg_elem_cpy(msg, i);
2810 			}
2811 		}
2812 	}
2813 
2814 	/* Place newly allocated data buffer */
2815 	sk_mem_charge(msg->sk, len);
2816 	msg->sg.size += len;
2817 	__clear_bit(new, msg->sg.copy);
2818 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2819 	if (rsge.length) {
2820 		get_page(sg_page(&rsge));
2821 		sk_msg_iter_var_next(new);
2822 		msg->sg.data[new] = rsge;
2823 	}
2824 
2825 	sk_msg_compute_data_pointers(msg);
2826 	return 0;
2827 }
2828 
2829 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2830 	.func		= bpf_msg_push_data,
2831 	.gpl_only	= false,
2832 	.ret_type	= RET_INTEGER,
2833 	.arg1_type	= ARG_PTR_TO_CTX,
2834 	.arg2_type	= ARG_ANYTHING,
2835 	.arg3_type	= ARG_ANYTHING,
2836 	.arg4_type	= ARG_ANYTHING,
2837 };
2838 
2839 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2840 {
2841 	int prev;
2842 
2843 	do {
2844 		prev = i;
2845 		sk_msg_iter_var_next(i);
2846 		msg->sg.data[prev] = msg->sg.data[i];
2847 	} while (i != msg->sg.end);
2848 
2849 	sk_msg_iter_prev(msg, end);
2850 }
2851 
2852 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2853 {
2854 	struct scatterlist tmp, sge;
2855 
2856 	sk_msg_iter_next(msg, end);
2857 	sge = sk_msg_elem_cpy(msg, i);
2858 	sk_msg_iter_var_next(i);
2859 	tmp = sk_msg_elem_cpy(msg, i);
2860 
2861 	while (i != msg->sg.end) {
2862 		msg->sg.data[i] = sge;
2863 		sk_msg_iter_var_next(i);
2864 		sge = tmp;
2865 		tmp = sk_msg_elem_cpy(msg, i);
2866 	}
2867 }
2868 
2869 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2870 	   u32, len, u64, flags)
2871 {
2872 	u32 i = 0, l = 0, space, offset = 0;
2873 	u64 last = start + len;
2874 	int pop;
2875 
2876 	if (unlikely(flags))
2877 		return -EINVAL;
2878 
2879 	/* First find the starting scatterlist element */
2880 	i = msg->sg.start;
2881 	do {
2882 		offset += l;
2883 		l = sk_msg_elem(msg, i)->length;
2884 
2885 		if (start < offset + l)
2886 			break;
2887 		sk_msg_iter_var_next(i);
2888 	} while (i != msg->sg.end);
2889 
2890 	/* Bounds checks: start and pop must be inside message */
2891 	if (start >= offset + l || last >= msg->sg.size)
2892 		return -EINVAL;
2893 
2894 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2895 
2896 	pop = len;
2897 	/* --------------| offset
2898 	 * -| start      |-------- len -------|
2899 	 *
2900 	 *  |----- a ----|-------- pop -------|----- b ----|
2901 	 *  |______________________________________________| length
2902 	 *
2903 	 *
2904 	 * a:   region at front of scatter element to save
2905 	 * b:   region at back of scatter element to save when length > A + pop
2906 	 * pop: region to pop from element, same as input 'pop' here will be
2907 	 *      decremented below per iteration.
2908 	 *
2909 	 * Two top-level cases to handle when start != offset, first B is non
2910 	 * zero and second B is zero corresponding to when a pop includes more
2911 	 * than one element.
2912 	 *
2913 	 * Then if B is non-zero AND there is no space allocate space and
2914 	 * compact A, B regions into page. If there is space shift ring to
2915 	 * the rigth free'ing the next element in ring to place B, leaving
2916 	 * A untouched except to reduce length.
2917 	 */
2918 	if (start != offset) {
2919 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2920 		int a = start;
2921 		int b = sge->length - pop - a;
2922 
2923 		sk_msg_iter_var_next(i);
2924 
2925 		if (pop < sge->length - a) {
2926 			if (space) {
2927 				sge->length = a;
2928 				sk_msg_shift_right(msg, i);
2929 				nsge = sk_msg_elem(msg, i);
2930 				get_page(sg_page(sge));
2931 				sg_set_page(nsge,
2932 					    sg_page(sge),
2933 					    b, sge->offset + pop + a);
2934 			} else {
2935 				struct page *page, *orig;
2936 				u8 *to, *from;
2937 
2938 				page = alloc_pages(__GFP_NOWARN |
2939 						   __GFP_COMP   | GFP_ATOMIC,
2940 						   get_order(a + b));
2941 				if (unlikely(!page))
2942 					return -ENOMEM;
2943 
2944 				sge->length = a;
2945 				orig = sg_page(sge);
2946 				from = sg_virt(sge);
2947 				to = page_address(page);
2948 				memcpy(to, from, a);
2949 				memcpy(to + a, from + a + pop, b);
2950 				sg_set_page(sge, page, a + b, 0);
2951 				put_page(orig);
2952 			}
2953 			pop = 0;
2954 		} else if (pop >= sge->length - a) {
2955 			pop -= (sge->length - a);
2956 			sge->length = a;
2957 		}
2958 	}
2959 
2960 	/* From above the current layout _must_ be as follows,
2961 	 *
2962 	 * -| offset
2963 	 * -| start
2964 	 *
2965 	 *  |---- pop ---|---------------- b ------------|
2966 	 *  |____________________________________________| length
2967 	 *
2968 	 * Offset and start of the current msg elem are equal because in the
2969 	 * previous case we handled offset != start and either consumed the
2970 	 * entire element and advanced to the next element OR pop == 0.
2971 	 *
2972 	 * Two cases to handle here are first pop is less than the length
2973 	 * leaving some remainder b above. Simply adjust the element's layout
2974 	 * in this case. Or pop >= length of the element so that b = 0. In this
2975 	 * case advance to next element decrementing pop.
2976 	 */
2977 	while (pop) {
2978 		struct scatterlist *sge = sk_msg_elem(msg, i);
2979 
2980 		if (pop < sge->length) {
2981 			sge->length -= pop;
2982 			sge->offset += pop;
2983 			pop = 0;
2984 		} else {
2985 			pop -= sge->length;
2986 			sk_msg_shift_left(msg, i);
2987 		}
2988 		sk_msg_iter_var_next(i);
2989 	}
2990 
2991 	sk_mem_uncharge(msg->sk, len - pop);
2992 	msg->sg.size -= (len - pop);
2993 	sk_msg_compute_data_pointers(msg);
2994 	return 0;
2995 }
2996 
2997 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2998 	.func		= bpf_msg_pop_data,
2999 	.gpl_only	= false,
3000 	.ret_type	= RET_INTEGER,
3001 	.arg1_type	= ARG_PTR_TO_CTX,
3002 	.arg2_type	= ARG_ANYTHING,
3003 	.arg3_type	= ARG_ANYTHING,
3004 	.arg4_type	= ARG_ANYTHING,
3005 };
3006 
3007 #ifdef CONFIG_CGROUP_NET_CLASSID
3008 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3009 {
3010 	return __task_get_classid(current);
3011 }
3012 
3013 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3014 	.func		= bpf_get_cgroup_classid_curr,
3015 	.gpl_only	= false,
3016 	.ret_type	= RET_INTEGER,
3017 };
3018 
3019 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3020 {
3021 	struct sock *sk = skb_to_full_sk(skb);
3022 
3023 	if (!sk || !sk_fullsock(sk))
3024 		return 0;
3025 
3026 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3027 }
3028 
3029 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3030 	.func		= bpf_skb_cgroup_classid,
3031 	.gpl_only	= false,
3032 	.ret_type	= RET_INTEGER,
3033 	.arg1_type	= ARG_PTR_TO_CTX,
3034 };
3035 #endif
3036 
3037 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3038 {
3039 	return task_get_classid(skb);
3040 }
3041 
3042 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3043 	.func           = bpf_get_cgroup_classid,
3044 	.gpl_only       = false,
3045 	.ret_type       = RET_INTEGER,
3046 	.arg1_type      = ARG_PTR_TO_CTX,
3047 };
3048 
3049 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3050 {
3051 	return dst_tclassid(skb);
3052 }
3053 
3054 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3055 	.func           = bpf_get_route_realm,
3056 	.gpl_only       = false,
3057 	.ret_type       = RET_INTEGER,
3058 	.arg1_type      = ARG_PTR_TO_CTX,
3059 };
3060 
3061 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3062 {
3063 	/* If skb_clear_hash() was called due to mangling, we can
3064 	 * trigger SW recalculation here. Later access to hash
3065 	 * can then use the inline skb->hash via context directly
3066 	 * instead of calling this helper again.
3067 	 */
3068 	return skb_get_hash(skb);
3069 }
3070 
3071 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3072 	.func		= bpf_get_hash_recalc,
3073 	.gpl_only	= false,
3074 	.ret_type	= RET_INTEGER,
3075 	.arg1_type	= ARG_PTR_TO_CTX,
3076 };
3077 
3078 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3079 {
3080 	/* After all direct packet write, this can be used once for
3081 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3082 	 */
3083 	skb_clear_hash(skb);
3084 	return 0;
3085 }
3086 
3087 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3088 	.func		= bpf_set_hash_invalid,
3089 	.gpl_only	= false,
3090 	.ret_type	= RET_INTEGER,
3091 	.arg1_type	= ARG_PTR_TO_CTX,
3092 };
3093 
3094 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3095 {
3096 	/* Set user specified hash as L4(+), so that it gets returned
3097 	 * on skb_get_hash() call unless BPF prog later on triggers a
3098 	 * skb_clear_hash().
3099 	 */
3100 	__skb_set_sw_hash(skb, hash, true);
3101 	return 0;
3102 }
3103 
3104 static const struct bpf_func_proto bpf_set_hash_proto = {
3105 	.func		= bpf_set_hash,
3106 	.gpl_only	= false,
3107 	.ret_type	= RET_INTEGER,
3108 	.arg1_type	= ARG_PTR_TO_CTX,
3109 	.arg2_type	= ARG_ANYTHING,
3110 };
3111 
3112 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3113 	   u16, vlan_tci)
3114 {
3115 	int ret;
3116 
3117 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3118 		     vlan_proto != htons(ETH_P_8021AD)))
3119 		vlan_proto = htons(ETH_P_8021Q);
3120 
3121 	bpf_push_mac_rcsum(skb);
3122 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3123 	bpf_pull_mac_rcsum(skb);
3124 
3125 	bpf_compute_data_pointers(skb);
3126 	return ret;
3127 }
3128 
3129 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3130 	.func           = bpf_skb_vlan_push,
3131 	.gpl_only       = false,
3132 	.ret_type       = RET_INTEGER,
3133 	.arg1_type      = ARG_PTR_TO_CTX,
3134 	.arg2_type      = ARG_ANYTHING,
3135 	.arg3_type      = ARG_ANYTHING,
3136 };
3137 
3138 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3139 {
3140 	int ret;
3141 
3142 	bpf_push_mac_rcsum(skb);
3143 	ret = skb_vlan_pop(skb);
3144 	bpf_pull_mac_rcsum(skb);
3145 
3146 	bpf_compute_data_pointers(skb);
3147 	return ret;
3148 }
3149 
3150 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3151 	.func           = bpf_skb_vlan_pop,
3152 	.gpl_only       = false,
3153 	.ret_type       = RET_INTEGER,
3154 	.arg1_type      = ARG_PTR_TO_CTX,
3155 };
3156 
3157 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3158 {
3159 	/* Caller already did skb_cow() with len as headroom,
3160 	 * so no need to do it here.
3161 	 */
3162 	skb_push(skb, len);
3163 	memmove(skb->data, skb->data + len, off);
3164 	memset(skb->data + off, 0, len);
3165 
3166 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3167 	 * needed here as it does not change the skb->csum
3168 	 * result for checksum complete when summing over
3169 	 * zeroed blocks.
3170 	 */
3171 	return 0;
3172 }
3173 
3174 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3175 {
3176 	/* skb_ensure_writable() is not needed here, as we're
3177 	 * already working on an uncloned skb.
3178 	 */
3179 	if (unlikely(!pskb_may_pull(skb, off + len)))
3180 		return -ENOMEM;
3181 
3182 	skb_postpull_rcsum(skb, skb->data + off, len);
3183 	memmove(skb->data + len, skb->data, off);
3184 	__skb_pull(skb, len);
3185 
3186 	return 0;
3187 }
3188 
3189 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3190 {
3191 	bool trans_same = skb->transport_header == skb->network_header;
3192 	int ret;
3193 
3194 	/* There's no need for __skb_push()/__skb_pull() pair to
3195 	 * get to the start of the mac header as we're guaranteed
3196 	 * to always start from here under eBPF.
3197 	 */
3198 	ret = bpf_skb_generic_push(skb, off, len);
3199 	if (likely(!ret)) {
3200 		skb->mac_header -= len;
3201 		skb->network_header -= len;
3202 		if (trans_same)
3203 			skb->transport_header = skb->network_header;
3204 	}
3205 
3206 	return ret;
3207 }
3208 
3209 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3210 {
3211 	bool trans_same = skb->transport_header == skb->network_header;
3212 	int ret;
3213 
3214 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3215 	ret = bpf_skb_generic_pop(skb, off, len);
3216 	if (likely(!ret)) {
3217 		skb->mac_header += len;
3218 		skb->network_header += len;
3219 		if (trans_same)
3220 			skb->transport_header = skb->network_header;
3221 	}
3222 
3223 	return ret;
3224 }
3225 
3226 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3227 {
3228 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3229 	u32 off = skb_mac_header_len(skb);
3230 	int ret;
3231 
3232 	ret = skb_cow(skb, len_diff);
3233 	if (unlikely(ret < 0))
3234 		return ret;
3235 
3236 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3237 	if (unlikely(ret < 0))
3238 		return ret;
3239 
3240 	if (skb_is_gso(skb)) {
3241 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3242 
3243 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3244 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3245 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3246 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3247 		}
3248 	}
3249 
3250 	skb->protocol = htons(ETH_P_IPV6);
3251 	skb_clear_hash(skb);
3252 
3253 	return 0;
3254 }
3255 
3256 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3257 {
3258 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3259 	u32 off = skb_mac_header_len(skb);
3260 	int ret;
3261 
3262 	ret = skb_unclone(skb, GFP_ATOMIC);
3263 	if (unlikely(ret < 0))
3264 		return ret;
3265 
3266 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3267 	if (unlikely(ret < 0))
3268 		return ret;
3269 
3270 	if (skb_is_gso(skb)) {
3271 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3272 
3273 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3274 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3275 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3276 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3277 		}
3278 	}
3279 
3280 	skb->protocol = htons(ETH_P_IP);
3281 	skb_clear_hash(skb);
3282 
3283 	return 0;
3284 }
3285 
3286 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3287 {
3288 	__be16 from_proto = skb->protocol;
3289 
3290 	if (from_proto == htons(ETH_P_IP) &&
3291 	      to_proto == htons(ETH_P_IPV6))
3292 		return bpf_skb_proto_4_to_6(skb);
3293 
3294 	if (from_proto == htons(ETH_P_IPV6) &&
3295 	      to_proto == htons(ETH_P_IP))
3296 		return bpf_skb_proto_6_to_4(skb);
3297 
3298 	return -ENOTSUPP;
3299 }
3300 
3301 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3302 	   u64, flags)
3303 {
3304 	int ret;
3305 
3306 	if (unlikely(flags))
3307 		return -EINVAL;
3308 
3309 	/* General idea is that this helper does the basic groundwork
3310 	 * needed for changing the protocol, and eBPF program fills the
3311 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3312 	 * and other helpers, rather than passing a raw buffer here.
3313 	 *
3314 	 * The rationale is to keep this minimal and without a need to
3315 	 * deal with raw packet data. F.e. even if we would pass buffers
3316 	 * here, the program still needs to call the bpf_lX_csum_replace()
3317 	 * helpers anyway. Plus, this way we keep also separation of
3318 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3319 	 * care of stores.
3320 	 *
3321 	 * Currently, additional options and extension header space are
3322 	 * not supported, but flags register is reserved so we can adapt
3323 	 * that. For offloads, we mark packet as dodgy, so that headers
3324 	 * need to be verified first.
3325 	 */
3326 	ret = bpf_skb_proto_xlat(skb, proto);
3327 	bpf_compute_data_pointers(skb);
3328 	return ret;
3329 }
3330 
3331 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3332 	.func		= bpf_skb_change_proto,
3333 	.gpl_only	= false,
3334 	.ret_type	= RET_INTEGER,
3335 	.arg1_type	= ARG_PTR_TO_CTX,
3336 	.arg2_type	= ARG_ANYTHING,
3337 	.arg3_type	= ARG_ANYTHING,
3338 };
3339 
3340 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3341 {
3342 	/* We only allow a restricted subset to be changed for now. */
3343 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3344 		     !skb_pkt_type_ok(pkt_type)))
3345 		return -EINVAL;
3346 
3347 	skb->pkt_type = pkt_type;
3348 	return 0;
3349 }
3350 
3351 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3352 	.func		= bpf_skb_change_type,
3353 	.gpl_only	= false,
3354 	.ret_type	= RET_INTEGER,
3355 	.arg1_type	= ARG_PTR_TO_CTX,
3356 	.arg2_type	= ARG_ANYTHING,
3357 };
3358 
3359 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3360 {
3361 	switch (skb->protocol) {
3362 	case htons(ETH_P_IP):
3363 		return sizeof(struct iphdr);
3364 	case htons(ETH_P_IPV6):
3365 		return sizeof(struct ipv6hdr);
3366 	default:
3367 		return ~0U;
3368 	}
3369 }
3370 
3371 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3372 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3373 
3374 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3375 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3376 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3377 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3378 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3379 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3380 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3381 
3382 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3383 			    u64 flags)
3384 {
3385 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3386 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3387 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3388 	unsigned int gso_type = SKB_GSO_DODGY;
3389 	int ret;
3390 
3391 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3392 		/* udp gso_size delineates datagrams, only allow if fixed */
3393 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3394 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3395 			return -ENOTSUPP;
3396 	}
3397 
3398 	ret = skb_cow_head(skb, len_diff);
3399 	if (unlikely(ret < 0))
3400 		return ret;
3401 
3402 	if (encap) {
3403 		if (skb->protocol != htons(ETH_P_IP) &&
3404 		    skb->protocol != htons(ETH_P_IPV6))
3405 			return -ENOTSUPP;
3406 
3407 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3408 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3409 			return -EINVAL;
3410 
3411 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3412 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3413 			return -EINVAL;
3414 
3415 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3416 		    inner_mac_len < ETH_HLEN)
3417 			return -EINVAL;
3418 
3419 		if (skb->encapsulation)
3420 			return -EALREADY;
3421 
3422 		mac_len = skb->network_header - skb->mac_header;
3423 		inner_net = skb->network_header;
3424 		if (inner_mac_len > len_diff)
3425 			return -EINVAL;
3426 		inner_trans = skb->transport_header;
3427 	}
3428 
3429 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3430 	if (unlikely(ret < 0))
3431 		return ret;
3432 
3433 	if (encap) {
3434 		skb->inner_mac_header = inner_net - inner_mac_len;
3435 		skb->inner_network_header = inner_net;
3436 		skb->inner_transport_header = inner_trans;
3437 
3438 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3439 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3440 		else
3441 			skb_set_inner_protocol(skb, skb->protocol);
3442 
3443 		skb->encapsulation = 1;
3444 		skb_set_network_header(skb, mac_len);
3445 
3446 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3447 			gso_type |= SKB_GSO_UDP_TUNNEL;
3448 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3449 			gso_type |= SKB_GSO_GRE;
3450 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3451 			gso_type |= SKB_GSO_IPXIP6;
3452 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3453 			gso_type |= SKB_GSO_IPXIP4;
3454 
3455 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3456 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3457 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3458 					sizeof(struct ipv6hdr) :
3459 					sizeof(struct iphdr);
3460 
3461 			skb_set_transport_header(skb, mac_len + nh_len);
3462 		}
3463 
3464 		/* Match skb->protocol to new outer l3 protocol */
3465 		if (skb->protocol == htons(ETH_P_IP) &&
3466 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3467 			skb->protocol = htons(ETH_P_IPV6);
3468 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3469 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3470 			skb->protocol = htons(ETH_P_IP);
3471 	}
3472 
3473 	if (skb_is_gso(skb)) {
3474 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3475 
3476 		/* Due to header grow, MSS needs to be downgraded. */
3477 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3478 			skb_decrease_gso_size(shinfo, len_diff);
3479 
3480 		/* Header must be checked, and gso_segs recomputed. */
3481 		shinfo->gso_type |= gso_type;
3482 		shinfo->gso_segs = 0;
3483 	}
3484 
3485 	return 0;
3486 }
3487 
3488 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3489 			      u64 flags)
3490 {
3491 	int ret;
3492 
3493 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3494 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3495 		return -EINVAL;
3496 
3497 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3498 		/* udp gso_size delineates datagrams, only allow if fixed */
3499 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3500 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3501 			return -ENOTSUPP;
3502 	}
3503 
3504 	ret = skb_unclone(skb, GFP_ATOMIC);
3505 	if (unlikely(ret < 0))
3506 		return ret;
3507 
3508 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3509 	if (unlikely(ret < 0))
3510 		return ret;
3511 
3512 	if (skb_is_gso(skb)) {
3513 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3514 
3515 		/* Due to header shrink, MSS can be upgraded. */
3516 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3517 			skb_increase_gso_size(shinfo, len_diff);
3518 
3519 		/* Header must be checked, and gso_segs recomputed. */
3520 		shinfo->gso_type |= SKB_GSO_DODGY;
3521 		shinfo->gso_segs = 0;
3522 	}
3523 
3524 	return 0;
3525 }
3526 
3527 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3528 
3529 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3530 	   u32, mode, u64, flags)
3531 {
3532 	u32 len_diff_abs = abs(len_diff);
3533 	bool shrink = len_diff < 0;
3534 	int ret = 0;
3535 
3536 	if (unlikely(flags || mode))
3537 		return -EINVAL;
3538 	if (unlikely(len_diff_abs > 0xfffU))
3539 		return -EFAULT;
3540 
3541 	if (!shrink) {
3542 		ret = skb_cow(skb, len_diff);
3543 		if (unlikely(ret < 0))
3544 			return ret;
3545 		__skb_push(skb, len_diff_abs);
3546 		memset(skb->data, 0, len_diff_abs);
3547 	} else {
3548 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3549 			return -ENOMEM;
3550 		__skb_pull(skb, len_diff_abs);
3551 	}
3552 	if (tls_sw_has_ctx_rx(skb->sk)) {
3553 		struct strp_msg *rxm = strp_msg(skb);
3554 
3555 		rxm->full_len += len_diff;
3556 	}
3557 	return ret;
3558 }
3559 
3560 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3561 	.func		= sk_skb_adjust_room,
3562 	.gpl_only	= false,
3563 	.ret_type	= RET_INTEGER,
3564 	.arg1_type	= ARG_PTR_TO_CTX,
3565 	.arg2_type	= ARG_ANYTHING,
3566 	.arg3_type	= ARG_ANYTHING,
3567 	.arg4_type	= ARG_ANYTHING,
3568 };
3569 
3570 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3571 	   u32, mode, u64, flags)
3572 {
3573 	u32 len_cur, len_diff_abs = abs(len_diff);
3574 	u32 len_min = bpf_skb_net_base_len(skb);
3575 	u32 len_max = BPF_SKB_MAX_LEN;
3576 	__be16 proto = skb->protocol;
3577 	bool shrink = len_diff < 0;
3578 	u32 off;
3579 	int ret;
3580 
3581 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3582 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3583 		return -EINVAL;
3584 	if (unlikely(len_diff_abs > 0xfffU))
3585 		return -EFAULT;
3586 	if (unlikely(proto != htons(ETH_P_IP) &&
3587 		     proto != htons(ETH_P_IPV6)))
3588 		return -ENOTSUPP;
3589 
3590 	off = skb_mac_header_len(skb);
3591 	switch (mode) {
3592 	case BPF_ADJ_ROOM_NET:
3593 		off += bpf_skb_net_base_len(skb);
3594 		break;
3595 	case BPF_ADJ_ROOM_MAC:
3596 		break;
3597 	default:
3598 		return -ENOTSUPP;
3599 	}
3600 
3601 	len_cur = skb->len - skb_network_offset(skb);
3602 	if ((shrink && (len_diff_abs >= len_cur ||
3603 			len_cur - len_diff_abs < len_min)) ||
3604 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3605 			 !skb_is_gso(skb))))
3606 		return -ENOTSUPP;
3607 
3608 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3609 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3610 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3611 		__skb_reset_checksum_unnecessary(skb);
3612 
3613 	bpf_compute_data_pointers(skb);
3614 	return ret;
3615 }
3616 
3617 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3618 	.func		= bpf_skb_adjust_room,
3619 	.gpl_only	= false,
3620 	.ret_type	= RET_INTEGER,
3621 	.arg1_type	= ARG_PTR_TO_CTX,
3622 	.arg2_type	= ARG_ANYTHING,
3623 	.arg3_type	= ARG_ANYTHING,
3624 	.arg4_type	= ARG_ANYTHING,
3625 };
3626 
3627 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3628 {
3629 	u32 min_len = skb_network_offset(skb);
3630 
3631 	if (skb_transport_header_was_set(skb))
3632 		min_len = skb_transport_offset(skb);
3633 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3634 		min_len = skb_checksum_start_offset(skb) +
3635 			  skb->csum_offset + sizeof(__sum16);
3636 	return min_len;
3637 }
3638 
3639 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3640 {
3641 	unsigned int old_len = skb->len;
3642 	int ret;
3643 
3644 	ret = __skb_grow_rcsum(skb, new_len);
3645 	if (!ret)
3646 		memset(skb->data + old_len, 0, new_len - old_len);
3647 	return ret;
3648 }
3649 
3650 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3651 {
3652 	return __skb_trim_rcsum(skb, new_len);
3653 }
3654 
3655 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3656 					u64 flags)
3657 {
3658 	u32 max_len = BPF_SKB_MAX_LEN;
3659 	u32 min_len = __bpf_skb_min_len(skb);
3660 	int ret;
3661 
3662 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3663 		return -EINVAL;
3664 	if (skb->encapsulation)
3665 		return -ENOTSUPP;
3666 
3667 	/* The basic idea of this helper is that it's performing the
3668 	 * needed work to either grow or trim an skb, and eBPF program
3669 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3670 	 * bpf_lX_csum_replace() and others rather than passing a raw
3671 	 * buffer here. This one is a slow path helper and intended
3672 	 * for replies with control messages.
3673 	 *
3674 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3675 	 * minimal and without protocol specifics so that we are able
3676 	 * to separate concerns as in bpf_skb_store_bytes() should only
3677 	 * be the one responsible for writing buffers.
3678 	 *
3679 	 * It's really expected to be a slow path operation here for
3680 	 * control message replies, so we're implicitly linearizing,
3681 	 * uncloning and drop offloads from the skb by this.
3682 	 */
3683 	ret = __bpf_try_make_writable(skb, skb->len);
3684 	if (!ret) {
3685 		if (new_len > skb->len)
3686 			ret = bpf_skb_grow_rcsum(skb, new_len);
3687 		else if (new_len < skb->len)
3688 			ret = bpf_skb_trim_rcsum(skb, new_len);
3689 		if (!ret && skb_is_gso(skb))
3690 			skb_gso_reset(skb);
3691 	}
3692 	return ret;
3693 }
3694 
3695 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3696 	   u64, flags)
3697 {
3698 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3699 
3700 	bpf_compute_data_pointers(skb);
3701 	return ret;
3702 }
3703 
3704 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3705 	.func		= bpf_skb_change_tail,
3706 	.gpl_only	= false,
3707 	.ret_type	= RET_INTEGER,
3708 	.arg1_type	= ARG_PTR_TO_CTX,
3709 	.arg2_type	= ARG_ANYTHING,
3710 	.arg3_type	= ARG_ANYTHING,
3711 };
3712 
3713 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3714 	   u64, flags)
3715 {
3716 	return __bpf_skb_change_tail(skb, new_len, flags);
3717 }
3718 
3719 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3720 	.func		= sk_skb_change_tail,
3721 	.gpl_only	= false,
3722 	.ret_type	= RET_INTEGER,
3723 	.arg1_type	= ARG_PTR_TO_CTX,
3724 	.arg2_type	= ARG_ANYTHING,
3725 	.arg3_type	= ARG_ANYTHING,
3726 };
3727 
3728 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3729 					u64 flags)
3730 {
3731 	u32 max_len = BPF_SKB_MAX_LEN;
3732 	u32 new_len = skb->len + head_room;
3733 	int ret;
3734 
3735 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3736 		     new_len < skb->len))
3737 		return -EINVAL;
3738 
3739 	ret = skb_cow(skb, head_room);
3740 	if (likely(!ret)) {
3741 		/* Idea for this helper is that we currently only
3742 		 * allow to expand on mac header. This means that
3743 		 * skb->protocol network header, etc, stay as is.
3744 		 * Compared to bpf_skb_change_tail(), we're more
3745 		 * flexible due to not needing to linearize or
3746 		 * reset GSO. Intention for this helper is to be
3747 		 * used by an L3 skb that needs to push mac header
3748 		 * for redirection into L2 device.
3749 		 */
3750 		__skb_push(skb, head_room);
3751 		memset(skb->data, 0, head_room);
3752 		skb_reset_mac_header(skb);
3753 		skb_reset_mac_len(skb);
3754 	}
3755 
3756 	return ret;
3757 }
3758 
3759 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3760 	   u64, flags)
3761 {
3762 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3763 
3764 	bpf_compute_data_pointers(skb);
3765 	return ret;
3766 }
3767 
3768 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3769 	.func		= bpf_skb_change_head,
3770 	.gpl_only	= false,
3771 	.ret_type	= RET_INTEGER,
3772 	.arg1_type	= ARG_PTR_TO_CTX,
3773 	.arg2_type	= ARG_ANYTHING,
3774 	.arg3_type	= ARG_ANYTHING,
3775 };
3776 
3777 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3778 	   u64, flags)
3779 {
3780 	return __bpf_skb_change_head(skb, head_room, flags);
3781 }
3782 
3783 static const struct bpf_func_proto sk_skb_change_head_proto = {
3784 	.func		= sk_skb_change_head,
3785 	.gpl_only	= false,
3786 	.ret_type	= RET_INTEGER,
3787 	.arg1_type	= ARG_PTR_TO_CTX,
3788 	.arg2_type	= ARG_ANYTHING,
3789 	.arg3_type	= ARG_ANYTHING,
3790 };
3791 
3792 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3793 {
3794 	return xdp_get_buff_len(xdp);
3795 }
3796 
3797 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3798 	.func		= bpf_xdp_get_buff_len,
3799 	.gpl_only	= false,
3800 	.ret_type	= RET_INTEGER,
3801 	.arg1_type	= ARG_PTR_TO_CTX,
3802 };
3803 
3804 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3805 
3806 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3807 	.func		= bpf_xdp_get_buff_len,
3808 	.gpl_only	= false,
3809 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3810 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3811 };
3812 
3813 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3814 {
3815 	return xdp_data_meta_unsupported(xdp) ? 0 :
3816 	       xdp->data - xdp->data_meta;
3817 }
3818 
3819 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3820 {
3821 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3822 	unsigned long metalen = xdp_get_metalen(xdp);
3823 	void *data_start = xdp_frame_end + metalen;
3824 	void *data = xdp->data + offset;
3825 
3826 	if (unlikely(data < data_start ||
3827 		     data > xdp->data_end - ETH_HLEN))
3828 		return -EINVAL;
3829 
3830 	if (metalen)
3831 		memmove(xdp->data_meta + offset,
3832 			xdp->data_meta, metalen);
3833 	xdp->data_meta += offset;
3834 	xdp->data = data;
3835 
3836 	return 0;
3837 }
3838 
3839 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3840 	.func		= bpf_xdp_adjust_head,
3841 	.gpl_only	= false,
3842 	.ret_type	= RET_INTEGER,
3843 	.arg1_type	= ARG_PTR_TO_CTX,
3844 	.arg2_type	= ARG_ANYTHING,
3845 };
3846 
3847 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3848 			     void *buf, unsigned long len, bool flush)
3849 {
3850 	unsigned long ptr_len, ptr_off = 0;
3851 	skb_frag_t *next_frag, *end_frag;
3852 	struct skb_shared_info *sinfo;
3853 	void *src, *dst;
3854 	u8 *ptr_buf;
3855 
3856 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3857 		src = flush ? buf : xdp->data + off;
3858 		dst = flush ? xdp->data + off : buf;
3859 		memcpy(dst, src, len);
3860 		return;
3861 	}
3862 
3863 	sinfo = xdp_get_shared_info_from_buff(xdp);
3864 	end_frag = &sinfo->frags[sinfo->nr_frags];
3865 	next_frag = &sinfo->frags[0];
3866 
3867 	ptr_len = xdp->data_end - xdp->data;
3868 	ptr_buf = xdp->data;
3869 
3870 	while (true) {
3871 		if (off < ptr_off + ptr_len) {
3872 			unsigned long copy_off = off - ptr_off;
3873 			unsigned long copy_len = min(len, ptr_len - copy_off);
3874 
3875 			src = flush ? buf : ptr_buf + copy_off;
3876 			dst = flush ? ptr_buf + copy_off : buf;
3877 			memcpy(dst, src, copy_len);
3878 
3879 			off += copy_len;
3880 			len -= copy_len;
3881 			buf += copy_len;
3882 		}
3883 
3884 		if (!len || next_frag == end_frag)
3885 			break;
3886 
3887 		ptr_off += ptr_len;
3888 		ptr_buf = skb_frag_address(next_frag);
3889 		ptr_len = skb_frag_size(next_frag);
3890 		next_frag++;
3891 	}
3892 }
3893 
3894 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3895 {
3896 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3897 	u32 size = xdp->data_end - xdp->data;
3898 	void *addr = xdp->data;
3899 	int i;
3900 
3901 	if (unlikely(offset > 0xffff || len > 0xffff))
3902 		return ERR_PTR(-EFAULT);
3903 
3904 	if (offset + len > xdp_get_buff_len(xdp))
3905 		return ERR_PTR(-EINVAL);
3906 
3907 	if (offset < size) /* linear area */
3908 		goto out;
3909 
3910 	offset -= size;
3911 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3912 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3913 
3914 		if  (offset < frag_size) {
3915 			addr = skb_frag_address(&sinfo->frags[i]);
3916 			size = frag_size;
3917 			break;
3918 		}
3919 		offset -= frag_size;
3920 	}
3921 out:
3922 	return offset + len <= size ? addr + offset : NULL;
3923 }
3924 
3925 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3926 	   void *, buf, u32, len)
3927 {
3928 	void *ptr;
3929 
3930 	ptr = bpf_xdp_pointer(xdp, offset, len);
3931 	if (IS_ERR(ptr))
3932 		return PTR_ERR(ptr);
3933 
3934 	if (!ptr)
3935 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3936 	else
3937 		memcpy(buf, ptr, len);
3938 
3939 	return 0;
3940 }
3941 
3942 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3943 	.func		= bpf_xdp_load_bytes,
3944 	.gpl_only	= false,
3945 	.ret_type	= RET_INTEGER,
3946 	.arg1_type	= ARG_PTR_TO_CTX,
3947 	.arg2_type	= ARG_ANYTHING,
3948 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3949 	.arg4_type	= ARG_CONST_SIZE,
3950 };
3951 
3952 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3953 	   void *, buf, u32, len)
3954 {
3955 	void *ptr;
3956 
3957 	ptr = bpf_xdp_pointer(xdp, offset, len);
3958 	if (IS_ERR(ptr))
3959 		return PTR_ERR(ptr);
3960 
3961 	if (!ptr)
3962 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
3963 	else
3964 		memcpy(ptr, buf, len);
3965 
3966 	return 0;
3967 }
3968 
3969 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
3970 	.func		= bpf_xdp_store_bytes,
3971 	.gpl_only	= false,
3972 	.ret_type	= RET_INTEGER,
3973 	.arg1_type	= ARG_PTR_TO_CTX,
3974 	.arg2_type	= ARG_ANYTHING,
3975 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3976 	.arg4_type	= ARG_CONST_SIZE,
3977 };
3978 
3979 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
3980 {
3981 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3982 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
3983 	struct xdp_rxq_info *rxq = xdp->rxq;
3984 	unsigned int tailroom;
3985 
3986 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
3987 		return -EOPNOTSUPP;
3988 
3989 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
3990 	if (unlikely(offset > tailroom))
3991 		return -EINVAL;
3992 
3993 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
3994 	skb_frag_size_add(frag, offset);
3995 	sinfo->xdp_frags_size += offset;
3996 
3997 	return 0;
3998 }
3999 
4000 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4001 {
4002 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4003 	int i, n_frags_free = 0, len_free = 0;
4004 
4005 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4006 		return -EINVAL;
4007 
4008 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4009 		skb_frag_t *frag = &sinfo->frags[i];
4010 		int shrink = min_t(int, offset, skb_frag_size(frag));
4011 
4012 		len_free += shrink;
4013 		offset -= shrink;
4014 
4015 		if (skb_frag_size(frag) == shrink) {
4016 			struct page *page = skb_frag_page(frag);
4017 
4018 			__xdp_return(page_address(page), &xdp->rxq->mem,
4019 				     false, NULL);
4020 			n_frags_free++;
4021 		} else {
4022 			skb_frag_size_sub(frag, shrink);
4023 			break;
4024 		}
4025 	}
4026 	sinfo->nr_frags -= n_frags_free;
4027 	sinfo->xdp_frags_size -= len_free;
4028 
4029 	if (unlikely(!sinfo->nr_frags)) {
4030 		xdp_buff_clear_frags_flag(xdp);
4031 		xdp->data_end -= offset;
4032 	}
4033 
4034 	return 0;
4035 }
4036 
4037 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4038 {
4039 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4040 	void *data_end = xdp->data_end + offset;
4041 
4042 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4043 		if (offset < 0)
4044 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4045 
4046 		return bpf_xdp_frags_increase_tail(xdp, offset);
4047 	}
4048 
4049 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4050 	if (unlikely(data_end > data_hard_end))
4051 		return -EINVAL;
4052 
4053 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
4054 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4055 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4056 		return -EINVAL;
4057 	}
4058 
4059 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4060 		return -EINVAL;
4061 
4062 	/* Clear memory area on grow, can contain uninit kernel memory */
4063 	if (offset > 0)
4064 		memset(xdp->data_end, 0, offset);
4065 
4066 	xdp->data_end = data_end;
4067 
4068 	return 0;
4069 }
4070 
4071 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4072 	.func		= bpf_xdp_adjust_tail,
4073 	.gpl_only	= false,
4074 	.ret_type	= RET_INTEGER,
4075 	.arg1_type	= ARG_PTR_TO_CTX,
4076 	.arg2_type	= ARG_ANYTHING,
4077 };
4078 
4079 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4080 {
4081 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4082 	void *meta = xdp->data_meta + offset;
4083 	unsigned long metalen = xdp->data - meta;
4084 
4085 	if (xdp_data_meta_unsupported(xdp))
4086 		return -ENOTSUPP;
4087 	if (unlikely(meta < xdp_frame_end ||
4088 		     meta > xdp->data))
4089 		return -EINVAL;
4090 	if (unlikely(xdp_metalen_invalid(metalen)))
4091 		return -EACCES;
4092 
4093 	xdp->data_meta = meta;
4094 
4095 	return 0;
4096 }
4097 
4098 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4099 	.func		= bpf_xdp_adjust_meta,
4100 	.gpl_only	= false,
4101 	.ret_type	= RET_INTEGER,
4102 	.arg1_type	= ARG_PTR_TO_CTX,
4103 	.arg2_type	= ARG_ANYTHING,
4104 };
4105 
4106 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4107  * below:
4108  *
4109  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4110  *    of the redirect and store it (along with some other metadata) in a per-CPU
4111  *    struct bpf_redirect_info.
4112  *
4113  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4114  *    call xdp_do_redirect() which will use the information in struct
4115  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4116  *    bulk queue structure.
4117  *
4118  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4119  *    which will flush all the different bulk queues, thus completing the
4120  *    redirect.
4121  *
4122  * Pointers to the map entries will be kept around for this whole sequence of
4123  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4124  * the core code; instead, the RCU protection relies on everything happening
4125  * inside a single NAPI poll sequence, which means it's between a pair of calls
4126  * to local_bh_disable()/local_bh_enable().
4127  *
4128  * The map entries are marked as __rcu and the map code makes sure to
4129  * dereference those pointers with rcu_dereference_check() in a way that works
4130  * for both sections that to hold an rcu_read_lock() and sections that are
4131  * called from NAPI without a separate rcu_read_lock(). The code below does not
4132  * use RCU annotations, but relies on those in the map code.
4133  */
4134 void xdp_do_flush(void)
4135 {
4136 	__dev_flush();
4137 	__cpu_map_flush();
4138 	__xsk_map_flush();
4139 }
4140 EXPORT_SYMBOL_GPL(xdp_do_flush);
4141 
4142 void bpf_clear_redirect_map(struct bpf_map *map)
4143 {
4144 	struct bpf_redirect_info *ri;
4145 	int cpu;
4146 
4147 	for_each_possible_cpu(cpu) {
4148 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4149 		/* Avoid polluting remote cacheline due to writes if
4150 		 * not needed. Once we pass this test, we need the
4151 		 * cmpxchg() to make sure it hasn't been changed in
4152 		 * the meantime by remote CPU.
4153 		 */
4154 		if (unlikely(READ_ONCE(ri->map) == map))
4155 			cmpxchg(&ri->map, map, NULL);
4156 	}
4157 }
4158 
4159 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4160 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4161 
4162 u32 xdp_master_redirect(struct xdp_buff *xdp)
4163 {
4164 	struct net_device *master, *slave;
4165 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4166 
4167 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4168 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4169 	if (slave && slave != xdp->rxq->dev) {
4170 		/* The target device is different from the receiving device, so
4171 		 * redirect it to the new device.
4172 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4173 		 * drivers to unmap the packet from their rx ring.
4174 		 */
4175 		ri->tgt_index = slave->ifindex;
4176 		ri->map_id = INT_MAX;
4177 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4178 		return XDP_REDIRECT;
4179 	}
4180 	return XDP_TX;
4181 }
4182 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4183 
4184 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4185 					struct net_device *dev,
4186 					struct xdp_buff *xdp,
4187 					struct bpf_prog *xdp_prog)
4188 {
4189 	enum bpf_map_type map_type = ri->map_type;
4190 	void *fwd = ri->tgt_value;
4191 	u32 map_id = ri->map_id;
4192 	int err;
4193 
4194 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4195 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4196 
4197 	err = __xsk_map_redirect(fwd, xdp);
4198 	if (unlikely(err))
4199 		goto err;
4200 
4201 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4202 	return 0;
4203 err:
4204 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4205 	return err;
4206 }
4207 
4208 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4209 						   struct net_device *dev,
4210 						   struct xdp_frame *xdpf,
4211 						   struct bpf_prog *xdp_prog)
4212 {
4213 	enum bpf_map_type map_type = ri->map_type;
4214 	void *fwd = ri->tgt_value;
4215 	u32 map_id = ri->map_id;
4216 	struct bpf_map *map;
4217 	int err;
4218 
4219 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4220 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4221 
4222 	if (unlikely(!xdpf)) {
4223 		err = -EOVERFLOW;
4224 		goto err;
4225 	}
4226 
4227 	switch (map_type) {
4228 	case BPF_MAP_TYPE_DEVMAP:
4229 		fallthrough;
4230 	case BPF_MAP_TYPE_DEVMAP_HASH:
4231 		map = READ_ONCE(ri->map);
4232 		if (unlikely(map)) {
4233 			WRITE_ONCE(ri->map, NULL);
4234 			err = dev_map_enqueue_multi(xdpf, dev, map,
4235 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4236 		} else {
4237 			err = dev_map_enqueue(fwd, xdpf, dev);
4238 		}
4239 		break;
4240 	case BPF_MAP_TYPE_CPUMAP:
4241 		err = cpu_map_enqueue(fwd, xdpf, dev);
4242 		break;
4243 	case BPF_MAP_TYPE_UNSPEC:
4244 		if (map_id == INT_MAX) {
4245 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4246 			if (unlikely(!fwd)) {
4247 				err = -EINVAL;
4248 				break;
4249 			}
4250 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4251 			break;
4252 		}
4253 		fallthrough;
4254 	default:
4255 		err = -EBADRQC;
4256 	}
4257 
4258 	if (unlikely(err))
4259 		goto err;
4260 
4261 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4262 	return 0;
4263 err:
4264 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4265 	return err;
4266 }
4267 
4268 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4269 		    struct bpf_prog *xdp_prog)
4270 {
4271 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4272 	enum bpf_map_type map_type = ri->map_type;
4273 
4274 	/* XDP_REDIRECT is not fully supported yet for xdp frags since
4275 	 * not all XDP capable drivers can map non-linear xdp_frame in
4276 	 * ndo_xdp_xmit.
4277 	 */
4278 	if (unlikely(xdp_buff_has_frags(xdp) &&
4279 		     map_type != BPF_MAP_TYPE_CPUMAP))
4280 		return -EOPNOTSUPP;
4281 
4282 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4283 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4284 
4285 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4286 				       xdp_prog);
4287 }
4288 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4289 
4290 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4291 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4292 {
4293 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4294 	enum bpf_map_type map_type = ri->map_type;
4295 
4296 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4297 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4298 
4299 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4300 }
4301 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4302 
4303 static int xdp_do_generic_redirect_map(struct net_device *dev,
4304 				       struct sk_buff *skb,
4305 				       struct xdp_buff *xdp,
4306 				       struct bpf_prog *xdp_prog,
4307 				       void *fwd,
4308 				       enum bpf_map_type map_type, u32 map_id)
4309 {
4310 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4311 	struct bpf_map *map;
4312 	int err;
4313 
4314 	switch (map_type) {
4315 	case BPF_MAP_TYPE_DEVMAP:
4316 		fallthrough;
4317 	case BPF_MAP_TYPE_DEVMAP_HASH:
4318 		map = READ_ONCE(ri->map);
4319 		if (unlikely(map)) {
4320 			WRITE_ONCE(ri->map, NULL);
4321 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4322 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4323 		} else {
4324 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4325 		}
4326 		if (unlikely(err))
4327 			goto err;
4328 		break;
4329 	case BPF_MAP_TYPE_XSKMAP:
4330 		err = xsk_generic_rcv(fwd, xdp);
4331 		if (err)
4332 			goto err;
4333 		consume_skb(skb);
4334 		break;
4335 	case BPF_MAP_TYPE_CPUMAP:
4336 		err = cpu_map_generic_redirect(fwd, skb);
4337 		if (unlikely(err))
4338 			goto err;
4339 		break;
4340 	default:
4341 		err = -EBADRQC;
4342 		goto err;
4343 	}
4344 
4345 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4346 	return 0;
4347 err:
4348 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4349 	return err;
4350 }
4351 
4352 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4353 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4354 {
4355 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4356 	enum bpf_map_type map_type = ri->map_type;
4357 	void *fwd = ri->tgt_value;
4358 	u32 map_id = ri->map_id;
4359 	int err;
4360 
4361 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4362 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4363 
4364 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4365 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4366 		if (unlikely(!fwd)) {
4367 			err = -EINVAL;
4368 			goto err;
4369 		}
4370 
4371 		err = xdp_ok_fwd_dev(fwd, skb->len);
4372 		if (unlikely(err))
4373 			goto err;
4374 
4375 		skb->dev = fwd;
4376 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4377 		generic_xdp_tx(skb, xdp_prog);
4378 		return 0;
4379 	}
4380 
4381 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4382 err:
4383 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4384 	return err;
4385 }
4386 
4387 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4388 {
4389 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4390 
4391 	if (unlikely(flags))
4392 		return XDP_ABORTED;
4393 
4394 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4395 	 * by map_idr) is used for ifindex based XDP redirect.
4396 	 */
4397 	ri->tgt_index = ifindex;
4398 	ri->map_id = INT_MAX;
4399 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4400 
4401 	return XDP_REDIRECT;
4402 }
4403 
4404 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4405 	.func           = bpf_xdp_redirect,
4406 	.gpl_only       = false,
4407 	.ret_type       = RET_INTEGER,
4408 	.arg1_type      = ARG_ANYTHING,
4409 	.arg2_type      = ARG_ANYTHING,
4410 };
4411 
4412 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4413 	   u64, flags)
4414 {
4415 	return map->ops->map_redirect(map, ifindex, flags);
4416 }
4417 
4418 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4419 	.func           = bpf_xdp_redirect_map,
4420 	.gpl_only       = false,
4421 	.ret_type       = RET_INTEGER,
4422 	.arg1_type      = ARG_CONST_MAP_PTR,
4423 	.arg2_type      = ARG_ANYTHING,
4424 	.arg3_type      = ARG_ANYTHING,
4425 };
4426 
4427 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4428 				  unsigned long off, unsigned long len)
4429 {
4430 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4431 
4432 	if (unlikely(!ptr))
4433 		return len;
4434 	if (ptr != dst_buff)
4435 		memcpy(dst_buff, ptr, len);
4436 
4437 	return 0;
4438 }
4439 
4440 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4441 	   u64, flags, void *, meta, u64, meta_size)
4442 {
4443 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4444 
4445 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4446 		return -EINVAL;
4447 	if (unlikely(!skb || skb_size > skb->len))
4448 		return -EFAULT;
4449 
4450 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4451 				bpf_skb_copy);
4452 }
4453 
4454 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4455 	.func		= bpf_skb_event_output,
4456 	.gpl_only	= true,
4457 	.ret_type	= RET_INTEGER,
4458 	.arg1_type	= ARG_PTR_TO_CTX,
4459 	.arg2_type	= ARG_CONST_MAP_PTR,
4460 	.arg3_type	= ARG_ANYTHING,
4461 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4462 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4463 };
4464 
4465 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4466 
4467 const struct bpf_func_proto bpf_skb_output_proto = {
4468 	.func		= bpf_skb_event_output,
4469 	.gpl_only	= true,
4470 	.ret_type	= RET_INTEGER,
4471 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4472 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4473 	.arg2_type	= ARG_CONST_MAP_PTR,
4474 	.arg3_type	= ARG_ANYTHING,
4475 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4476 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4477 };
4478 
4479 static unsigned short bpf_tunnel_key_af(u64 flags)
4480 {
4481 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4482 }
4483 
4484 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4485 	   u32, size, u64, flags)
4486 {
4487 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4488 	u8 compat[sizeof(struct bpf_tunnel_key)];
4489 	void *to_orig = to;
4490 	int err;
4491 
4492 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4493 					 BPF_F_TUNINFO_FLAGS)))) {
4494 		err = -EINVAL;
4495 		goto err_clear;
4496 	}
4497 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4498 		err = -EPROTO;
4499 		goto err_clear;
4500 	}
4501 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4502 		err = -EINVAL;
4503 		switch (size) {
4504 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4505 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4506 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4507 			goto set_compat;
4508 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4509 			/* Fixup deprecated structure layouts here, so we have
4510 			 * a common path later on.
4511 			 */
4512 			if (ip_tunnel_info_af(info) != AF_INET)
4513 				goto err_clear;
4514 set_compat:
4515 			to = (struct bpf_tunnel_key *)compat;
4516 			break;
4517 		default:
4518 			goto err_clear;
4519 		}
4520 	}
4521 
4522 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4523 	to->tunnel_tos = info->key.tos;
4524 	to->tunnel_ttl = info->key.ttl;
4525 	if (flags & BPF_F_TUNINFO_FLAGS)
4526 		to->tunnel_flags = info->key.tun_flags;
4527 	else
4528 		to->tunnel_ext = 0;
4529 
4530 	if (flags & BPF_F_TUNINFO_IPV6) {
4531 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4532 		       sizeof(to->remote_ipv6));
4533 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4534 		       sizeof(to->local_ipv6));
4535 		to->tunnel_label = be32_to_cpu(info->key.label);
4536 	} else {
4537 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4538 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4539 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4540 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4541 		to->tunnel_label = 0;
4542 	}
4543 
4544 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4545 		memcpy(to_orig, to, size);
4546 
4547 	return 0;
4548 err_clear:
4549 	memset(to_orig, 0, size);
4550 	return err;
4551 }
4552 
4553 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4554 	.func		= bpf_skb_get_tunnel_key,
4555 	.gpl_only	= false,
4556 	.ret_type	= RET_INTEGER,
4557 	.arg1_type	= ARG_PTR_TO_CTX,
4558 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4559 	.arg3_type	= ARG_CONST_SIZE,
4560 	.arg4_type	= ARG_ANYTHING,
4561 };
4562 
4563 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4564 {
4565 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4566 	int err;
4567 
4568 	if (unlikely(!info ||
4569 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4570 		err = -ENOENT;
4571 		goto err_clear;
4572 	}
4573 	if (unlikely(size < info->options_len)) {
4574 		err = -ENOMEM;
4575 		goto err_clear;
4576 	}
4577 
4578 	ip_tunnel_info_opts_get(to, info);
4579 	if (size > info->options_len)
4580 		memset(to + info->options_len, 0, size - info->options_len);
4581 
4582 	return info->options_len;
4583 err_clear:
4584 	memset(to, 0, size);
4585 	return err;
4586 }
4587 
4588 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4589 	.func		= bpf_skb_get_tunnel_opt,
4590 	.gpl_only	= false,
4591 	.ret_type	= RET_INTEGER,
4592 	.arg1_type	= ARG_PTR_TO_CTX,
4593 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4594 	.arg3_type	= ARG_CONST_SIZE,
4595 };
4596 
4597 static struct metadata_dst __percpu *md_dst;
4598 
4599 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4600 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4601 {
4602 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4603 	u8 compat[sizeof(struct bpf_tunnel_key)];
4604 	struct ip_tunnel_info *info;
4605 
4606 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4607 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4608 		return -EINVAL;
4609 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4610 		switch (size) {
4611 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4612 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4613 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4614 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4615 			/* Fixup deprecated structure layouts here, so we have
4616 			 * a common path later on.
4617 			 */
4618 			memcpy(compat, from, size);
4619 			memset(compat + size, 0, sizeof(compat) - size);
4620 			from = (const struct bpf_tunnel_key *) compat;
4621 			break;
4622 		default:
4623 			return -EINVAL;
4624 		}
4625 	}
4626 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4627 		     from->tunnel_ext))
4628 		return -EINVAL;
4629 
4630 	skb_dst_drop(skb);
4631 	dst_hold((struct dst_entry *) md);
4632 	skb_dst_set(skb, (struct dst_entry *) md);
4633 
4634 	info = &md->u.tun_info;
4635 	memset(info, 0, sizeof(*info));
4636 	info->mode = IP_TUNNEL_INFO_TX;
4637 
4638 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4639 	if (flags & BPF_F_DONT_FRAGMENT)
4640 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4641 	if (flags & BPF_F_ZERO_CSUM_TX)
4642 		info->key.tun_flags &= ~TUNNEL_CSUM;
4643 	if (flags & BPF_F_SEQ_NUMBER)
4644 		info->key.tun_flags |= TUNNEL_SEQ;
4645 
4646 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4647 	info->key.tos = from->tunnel_tos;
4648 	info->key.ttl = from->tunnel_ttl;
4649 
4650 	if (flags & BPF_F_TUNINFO_IPV6) {
4651 		info->mode |= IP_TUNNEL_INFO_IPV6;
4652 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4653 		       sizeof(from->remote_ipv6));
4654 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4655 		       sizeof(from->local_ipv6));
4656 		info->key.label = cpu_to_be32(from->tunnel_label) &
4657 				  IPV6_FLOWLABEL_MASK;
4658 	} else {
4659 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4660 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4661 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4662 	}
4663 
4664 	return 0;
4665 }
4666 
4667 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4668 	.func		= bpf_skb_set_tunnel_key,
4669 	.gpl_only	= false,
4670 	.ret_type	= RET_INTEGER,
4671 	.arg1_type	= ARG_PTR_TO_CTX,
4672 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4673 	.arg3_type	= ARG_CONST_SIZE,
4674 	.arg4_type	= ARG_ANYTHING,
4675 };
4676 
4677 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4678 	   const u8 *, from, u32, size)
4679 {
4680 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4681 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4682 
4683 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4684 		return -EINVAL;
4685 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4686 		return -ENOMEM;
4687 
4688 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4689 
4690 	return 0;
4691 }
4692 
4693 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4694 	.func		= bpf_skb_set_tunnel_opt,
4695 	.gpl_only	= false,
4696 	.ret_type	= RET_INTEGER,
4697 	.arg1_type	= ARG_PTR_TO_CTX,
4698 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4699 	.arg3_type	= ARG_CONST_SIZE,
4700 };
4701 
4702 static const struct bpf_func_proto *
4703 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4704 {
4705 	if (!md_dst) {
4706 		struct metadata_dst __percpu *tmp;
4707 
4708 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4709 						METADATA_IP_TUNNEL,
4710 						GFP_KERNEL);
4711 		if (!tmp)
4712 			return NULL;
4713 		if (cmpxchg(&md_dst, NULL, tmp))
4714 			metadata_dst_free_percpu(tmp);
4715 	}
4716 
4717 	switch (which) {
4718 	case BPF_FUNC_skb_set_tunnel_key:
4719 		return &bpf_skb_set_tunnel_key_proto;
4720 	case BPF_FUNC_skb_set_tunnel_opt:
4721 		return &bpf_skb_set_tunnel_opt_proto;
4722 	default:
4723 		return NULL;
4724 	}
4725 }
4726 
4727 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4728 	   u32, idx)
4729 {
4730 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4731 	struct cgroup *cgrp;
4732 	struct sock *sk;
4733 
4734 	sk = skb_to_full_sk(skb);
4735 	if (!sk || !sk_fullsock(sk))
4736 		return -ENOENT;
4737 	if (unlikely(idx >= array->map.max_entries))
4738 		return -E2BIG;
4739 
4740 	cgrp = READ_ONCE(array->ptrs[idx]);
4741 	if (unlikely(!cgrp))
4742 		return -EAGAIN;
4743 
4744 	return sk_under_cgroup_hierarchy(sk, cgrp);
4745 }
4746 
4747 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4748 	.func		= bpf_skb_under_cgroup,
4749 	.gpl_only	= false,
4750 	.ret_type	= RET_INTEGER,
4751 	.arg1_type	= ARG_PTR_TO_CTX,
4752 	.arg2_type	= ARG_CONST_MAP_PTR,
4753 	.arg3_type	= ARG_ANYTHING,
4754 };
4755 
4756 #ifdef CONFIG_SOCK_CGROUP_DATA
4757 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4758 {
4759 	struct cgroup *cgrp;
4760 
4761 	sk = sk_to_full_sk(sk);
4762 	if (!sk || !sk_fullsock(sk))
4763 		return 0;
4764 
4765 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4766 	return cgroup_id(cgrp);
4767 }
4768 
4769 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4770 {
4771 	return __bpf_sk_cgroup_id(skb->sk);
4772 }
4773 
4774 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4775 	.func           = bpf_skb_cgroup_id,
4776 	.gpl_only       = false,
4777 	.ret_type       = RET_INTEGER,
4778 	.arg1_type      = ARG_PTR_TO_CTX,
4779 };
4780 
4781 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4782 					      int ancestor_level)
4783 {
4784 	struct cgroup *ancestor;
4785 	struct cgroup *cgrp;
4786 
4787 	sk = sk_to_full_sk(sk);
4788 	if (!sk || !sk_fullsock(sk))
4789 		return 0;
4790 
4791 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4792 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4793 	if (!ancestor)
4794 		return 0;
4795 
4796 	return cgroup_id(ancestor);
4797 }
4798 
4799 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4800 	   ancestor_level)
4801 {
4802 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4803 }
4804 
4805 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4806 	.func           = bpf_skb_ancestor_cgroup_id,
4807 	.gpl_only       = false,
4808 	.ret_type       = RET_INTEGER,
4809 	.arg1_type      = ARG_PTR_TO_CTX,
4810 	.arg2_type      = ARG_ANYTHING,
4811 };
4812 
4813 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4814 {
4815 	return __bpf_sk_cgroup_id(sk);
4816 }
4817 
4818 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4819 	.func           = bpf_sk_cgroup_id,
4820 	.gpl_only       = false,
4821 	.ret_type       = RET_INTEGER,
4822 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4823 };
4824 
4825 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4826 {
4827 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4828 }
4829 
4830 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4831 	.func           = bpf_sk_ancestor_cgroup_id,
4832 	.gpl_only       = false,
4833 	.ret_type       = RET_INTEGER,
4834 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4835 	.arg2_type      = ARG_ANYTHING,
4836 };
4837 #endif
4838 
4839 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4840 				  unsigned long off, unsigned long len)
4841 {
4842 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4843 
4844 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4845 	return 0;
4846 }
4847 
4848 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4849 	   u64, flags, void *, meta, u64, meta_size)
4850 {
4851 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4852 
4853 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4854 		return -EINVAL;
4855 
4856 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4857 		return -EFAULT;
4858 
4859 	return bpf_event_output(map, flags, meta, meta_size, xdp,
4860 				xdp_size, bpf_xdp_copy);
4861 }
4862 
4863 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4864 	.func		= bpf_xdp_event_output,
4865 	.gpl_only	= true,
4866 	.ret_type	= RET_INTEGER,
4867 	.arg1_type	= ARG_PTR_TO_CTX,
4868 	.arg2_type	= ARG_CONST_MAP_PTR,
4869 	.arg3_type	= ARG_ANYTHING,
4870 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4871 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4872 };
4873 
4874 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4875 
4876 const struct bpf_func_proto bpf_xdp_output_proto = {
4877 	.func		= bpf_xdp_event_output,
4878 	.gpl_only	= true,
4879 	.ret_type	= RET_INTEGER,
4880 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4881 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4882 	.arg2_type	= ARG_CONST_MAP_PTR,
4883 	.arg3_type	= ARG_ANYTHING,
4884 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4885 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4886 };
4887 
4888 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4889 {
4890 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4891 }
4892 
4893 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4894 	.func           = bpf_get_socket_cookie,
4895 	.gpl_only       = false,
4896 	.ret_type       = RET_INTEGER,
4897 	.arg1_type      = ARG_PTR_TO_CTX,
4898 };
4899 
4900 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4901 {
4902 	return __sock_gen_cookie(ctx->sk);
4903 }
4904 
4905 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4906 	.func		= bpf_get_socket_cookie_sock_addr,
4907 	.gpl_only	= false,
4908 	.ret_type	= RET_INTEGER,
4909 	.arg1_type	= ARG_PTR_TO_CTX,
4910 };
4911 
4912 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4913 {
4914 	return __sock_gen_cookie(ctx);
4915 }
4916 
4917 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4918 	.func		= bpf_get_socket_cookie_sock,
4919 	.gpl_only	= false,
4920 	.ret_type	= RET_INTEGER,
4921 	.arg1_type	= ARG_PTR_TO_CTX,
4922 };
4923 
4924 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4925 {
4926 	return sk ? sock_gen_cookie(sk) : 0;
4927 }
4928 
4929 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4930 	.func		= bpf_get_socket_ptr_cookie,
4931 	.gpl_only	= false,
4932 	.ret_type	= RET_INTEGER,
4933 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4934 };
4935 
4936 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4937 {
4938 	return __sock_gen_cookie(ctx->sk);
4939 }
4940 
4941 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4942 	.func		= bpf_get_socket_cookie_sock_ops,
4943 	.gpl_only	= false,
4944 	.ret_type	= RET_INTEGER,
4945 	.arg1_type	= ARG_PTR_TO_CTX,
4946 };
4947 
4948 static u64 __bpf_get_netns_cookie(struct sock *sk)
4949 {
4950 	const struct net *net = sk ? sock_net(sk) : &init_net;
4951 
4952 	return net->net_cookie;
4953 }
4954 
4955 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4956 {
4957 	return __bpf_get_netns_cookie(ctx);
4958 }
4959 
4960 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4961 	.func		= bpf_get_netns_cookie_sock,
4962 	.gpl_only	= false,
4963 	.ret_type	= RET_INTEGER,
4964 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4965 };
4966 
4967 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4968 {
4969 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4970 }
4971 
4972 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4973 	.func		= bpf_get_netns_cookie_sock_addr,
4974 	.gpl_only	= false,
4975 	.ret_type	= RET_INTEGER,
4976 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4977 };
4978 
4979 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4980 {
4981 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4982 }
4983 
4984 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4985 	.func		= bpf_get_netns_cookie_sock_ops,
4986 	.gpl_only	= false,
4987 	.ret_type	= RET_INTEGER,
4988 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4989 };
4990 
4991 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4992 {
4993 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4994 }
4995 
4996 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4997 	.func		= bpf_get_netns_cookie_sk_msg,
4998 	.gpl_only	= false,
4999 	.ret_type	= RET_INTEGER,
5000 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5001 };
5002 
5003 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5004 {
5005 	struct sock *sk = sk_to_full_sk(skb->sk);
5006 	kuid_t kuid;
5007 
5008 	if (!sk || !sk_fullsock(sk))
5009 		return overflowuid;
5010 	kuid = sock_net_uid(sock_net(sk), sk);
5011 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5012 }
5013 
5014 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5015 	.func           = bpf_get_socket_uid,
5016 	.gpl_only       = false,
5017 	.ret_type       = RET_INTEGER,
5018 	.arg1_type      = ARG_PTR_TO_CTX,
5019 };
5020 
5021 static int sol_socket_sockopt(struct sock *sk, int optname,
5022 			      char *optval, int *optlen,
5023 			      bool getopt)
5024 {
5025 	switch (optname) {
5026 	case SO_REUSEADDR:
5027 	case SO_SNDBUF:
5028 	case SO_RCVBUF:
5029 	case SO_KEEPALIVE:
5030 	case SO_PRIORITY:
5031 	case SO_REUSEPORT:
5032 	case SO_RCVLOWAT:
5033 	case SO_MARK:
5034 	case SO_MAX_PACING_RATE:
5035 	case SO_BINDTOIFINDEX:
5036 	case SO_TXREHASH:
5037 		if (*optlen != sizeof(int))
5038 			return -EINVAL;
5039 		break;
5040 	case SO_BINDTODEVICE:
5041 		break;
5042 	default:
5043 		return -EINVAL;
5044 	}
5045 
5046 	if (getopt) {
5047 		if (optname == SO_BINDTODEVICE)
5048 			return -EINVAL;
5049 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5050 				     KERNEL_SOCKPTR(optval),
5051 				     KERNEL_SOCKPTR(optlen));
5052 	}
5053 
5054 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5055 			     KERNEL_SOCKPTR(optval), *optlen);
5056 }
5057 
5058 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5059 				  char *optval, int optlen)
5060 {
5061 	struct tcp_sock *tp = tcp_sk(sk);
5062 	unsigned long timeout;
5063 	int val;
5064 
5065 	if (optlen != sizeof(int))
5066 		return -EINVAL;
5067 
5068 	val = *(int *)optval;
5069 
5070 	/* Only some options are supported */
5071 	switch (optname) {
5072 	case TCP_BPF_IW:
5073 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5074 			return -EINVAL;
5075 		tcp_snd_cwnd_set(tp, val);
5076 		break;
5077 	case TCP_BPF_SNDCWND_CLAMP:
5078 		if (val <= 0)
5079 			return -EINVAL;
5080 		tp->snd_cwnd_clamp = val;
5081 		tp->snd_ssthresh = val;
5082 		break;
5083 	case TCP_BPF_DELACK_MAX:
5084 		timeout = usecs_to_jiffies(val);
5085 		if (timeout > TCP_DELACK_MAX ||
5086 		    timeout < TCP_TIMEOUT_MIN)
5087 			return -EINVAL;
5088 		inet_csk(sk)->icsk_delack_max = timeout;
5089 		break;
5090 	case TCP_BPF_RTO_MIN:
5091 		timeout = usecs_to_jiffies(val);
5092 		if (timeout > TCP_RTO_MIN ||
5093 		    timeout < TCP_TIMEOUT_MIN)
5094 			return -EINVAL;
5095 		inet_csk(sk)->icsk_rto_min = timeout;
5096 		break;
5097 	default:
5098 		return -EINVAL;
5099 	}
5100 
5101 	return 0;
5102 }
5103 
5104 static int sol_tcp_sockopt(struct sock *sk, int optname,
5105 			   char *optval, int *optlen,
5106 			   bool getopt)
5107 {
5108 	if (sk->sk_prot->setsockopt != tcp_setsockopt)
5109 		return -EINVAL;
5110 
5111 	switch (optname) {
5112 	case TCP_NODELAY:
5113 	case TCP_MAXSEG:
5114 	case TCP_KEEPIDLE:
5115 	case TCP_KEEPINTVL:
5116 	case TCP_KEEPCNT:
5117 	case TCP_SYNCNT:
5118 	case TCP_WINDOW_CLAMP:
5119 	case TCP_THIN_LINEAR_TIMEOUTS:
5120 	case TCP_USER_TIMEOUT:
5121 	case TCP_NOTSENT_LOWAT:
5122 	case TCP_SAVE_SYN:
5123 		if (*optlen != sizeof(int))
5124 			return -EINVAL;
5125 		break;
5126 	case TCP_CONGESTION:
5127 		if (*optlen < 2)
5128 			return -EINVAL;
5129 		break;
5130 	case TCP_SAVED_SYN:
5131 		if (*optlen < 1)
5132 			return -EINVAL;
5133 		break;
5134 	default:
5135 		if (getopt)
5136 			return -EINVAL;
5137 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5138 	}
5139 
5140 	if (getopt) {
5141 		if (optname == TCP_SAVED_SYN) {
5142 			struct tcp_sock *tp = tcp_sk(sk);
5143 
5144 			if (!tp->saved_syn ||
5145 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5146 				return -EINVAL;
5147 			memcpy(optval, tp->saved_syn->data, *optlen);
5148 			/* It cannot free tp->saved_syn here because it
5149 			 * does not know if the user space still needs it.
5150 			 */
5151 			return 0;
5152 		}
5153 
5154 		if (optname == TCP_CONGESTION) {
5155 			if (!inet_csk(sk)->icsk_ca_ops)
5156 				return -EINVAL;
5157 			/* BPF expects NULL-terminated tcp-cc string */
5158 			optval[--(*optlen)] = '\0';
5159 		}
5160 
5161 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5162 					 KERNEL_SOCKPTR(optval),
5163 					 KERNEL_SOCKPTR(optlen));
5164 	}
5165 
5166 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5167 				 KERNEL_SOCKPTR(optval), *optlen);
5168 }
5169 
5170 static int sol_ip_sockopt(struct sock *sk, int optname,
5171 			  char *optval, int *optlen,
5172 			  bool getopt)
5173 {
5174 	if (sk->sk_family != AF_INET)
5175 		return -EINVAL;
5176 
5177 	switch (optname) {
5178 	case IP_TOS:
5179 		if (*optlen != sizeof(int))
5180 			return -EINVAL;
5181 		break;
5182 	default:
5183 		return -EINVAL;
5184 	}
5185 
5186 	if (getopt)
5187 		return do_ip_getsockopt(sk, SOL_IP, optname,
5188 					KERNEL_SOCKPTR(optval),
5189 					KERNEL_SOCKPTR(optlen));
5190 
5191 	return do_ip_setsockopt(sk, SOL_IP, optname,
5192 				KERNEL_SOCKPTR(optval), *optlen);
5193 }
5194 
5195 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5196 			    char *optval, int *optlen,
5197 			    bool getopt)
5198 {
5199 	if (sk->sk_family != AF_INET6)
5200 		return -EINVAL;
5201 
5202 	switch (optname) {
5203 	case IPV6_TCLASS:
5204 	case IPV6_AUTOFLOWLABEL:
5205 		if (*optlen != sizeof(int))
5206 			return -EINVAL;
5207 		break;
5208 	default:
5209 		return -EINVAL;
5210 	}
5211 
5212 	if (getopt)
5213 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5214 						      KERNEL_SOCKPTR(optval),
5215 						      KERNEL_SOCKPTR(optlen));
5216 
5217 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5218 					      KERNEL_SOCKPTR(optval), *optlen);
5219 }
5220 
5221 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5222 			    char *optval, int optlen)
5223 {
5224 	if (!sk_fullsock(sk))
5225 		return -EINVAL;
5226 
5227 	if (level == SOL_SOCKET)
5228 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5229 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5230 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5231 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5232 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5233 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5234 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5235 
5236 	return -EINVAL;
5237 }
5238 
5239 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5240 			   char *optval, int optlen)
5241 {
5242 	if (sk_fullsock(sk))
5243 		sock_owned_by_me(sk);
5244 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5245 }
5246 
5247 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5248 			    char *optval, int optlen)
5249 {
5250 	int err, saved_optlen = optlen;
5251 
5252 	if (!sk_fullsock(sk)) {
5253 		err = -EINVAL;
5254 		goto done;
5255 	}
5256 
5257 	if (level == SOL_SOCKET)
5258 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5259 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5260 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5261 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5262 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5263 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5264 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5265 	else
5266 		err = -EINVAL;
5267 
5268 done:
5269 	if (err)
5270 		optlen = 0;
5271 	if (optlen < saved_optlen)
5272 		memset(optval + optlen, 0, saved_optlen - optlen);
5273 	return err;
5274 }
5275 
5276 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5277 			   char *optval, int optlen)
5278 {
5279 	if (sk_fullsock(sk))
5280 		sock_owned_by_me(sk);
5281 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5282 }
5283 
5284 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5285 	   int, optname, char *, optval, int, optlen)
5286 {
5287 	if (level == SOL_TCP && optname == TCP_CONGESTION) {
5288 		if (optlen >= sizeof("cdg") - 1 &&
5289 		    !strncmp("cdg", optval, optlen))
5290 			return -ENOTSUPP;
5291 	}
5292 
5293 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5294 }
5295 
5296 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5297 	.func		= bpf_sk_setsockopt,
5298 	.gpl_only	= false,
5299 	.ret_type	= RET_INTEGER,
5300 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5301 	.arg2_type	= ARG_ANYTHING,
5302 	.arg3_type	= ARG_ANYTHING,
5303 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5304 	.arg5_type	= ARG_CONST_SIZE,
5305 };
5306 
5307 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5308 	   int, optname, char *, optval, int, optlen)
5309 {
5310 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5311 }
5312 
5313 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5314 	.func		= bpf_sk_getsockopt,
5315 	.gpl_only	= false,
5316 	.ret_type	= RET_INTEGER,
5317 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5318 	.arg2_type	= ARG_ANYTHING,
5319 	.arg3_type	= ARG_ANYTHING,
5320 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5321 	.arg5_type	= ARG_CONST_SIZE,
5322 };
5323 
5324 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5325 	   int, optname, char *, optval, int, optlen)
5326 {
5327 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5328 }
5329 
5330 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5331 	.func		= bpf_unlocked_sk_setsockopt,
5332 	.gpl_only	= false,
5333 	.ret_type	= RET_INTEGER,
5334 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5335 	.arg2_type	= ARG_ANYTHING,
5336 	.arg3_type	= ARG_ANYTHING,
5337 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5338 	.arg5_type	= ARG_CONST_SIZE,
5339 };
5340 
5341 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5342 	   int, optname, char *, optval, int, optlen)
5343 {
5344 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5345 }
5346 
5347 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5348 	.func		= bpf_unlocked_sk_getsockopt,
5349 	.gpl_only	= false,
5350 	.ret_type	= RET_INTEGER,
5351 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5352 	.arg2_type	= ARG_ANYTHING,
5353 	.arg3_type	= ARG_ANYTHING,
5354 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5355 	.arg5_type	= ARG_CONST_SIZE,
5356 };
5357 
5358 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5359 	   int, level, int, optname, char *, optval, int, optlen)
5360 {
5361 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5362 }
5363 
5364 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5365 	.func		= bpf_sock_addr_setsockopt,
5366 	.gpl_only	= false,
5367 	.ret_type	= RET_INTEGER,
5368 	.arg1_type	= ARG_PTR_TO_CTX,
5369 	.arg2_type	= ARG_ANYTHING,
5370 	.arg3_type	= ARG_ANYTHING,
5371 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5372 	.arg5_type	= ARG_CONST_SIZE,
5373 };
5374 
5375 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5376 	   int, level, int, optname, char *, optval, int, optlen)
5377 {
5378 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5379 }
5380 
5381 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5382 	.func		= bpf_sock_addr_getsockopt,
5383 	.gpl_only	= false,
5384 	.ret_type	= RET_INTEGER,
5385 	.arg1_type	= ARG_PTR_TO_CTX,
5386 	.arg2_type	= ARG_ANYTHING,
5387 	.arg3_type	= ARG_ANYTHING,
5388 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5389 	.arg5_type	= ARG_CONST_SIZE,
5390 };
5391 
5392 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5393 	   int, level, int, optname, char *, optval, int, optlen)
5394 {
5395 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5396 }
5397 
5398 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5399 	.func		= bpf_sock_ops_setsockopt,
5400 	.gpl_only	= false,
5401 	.ret_type	= RET_INTEGER,
5402 	.arg1_type	= ARG_PTR_TO_CTX,
5403 	.arg2_type	= ARG_ANYTHING,
5404 	.arg3_type	= ARG_ANYTHING,
5405 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5406 	.arg5_type	= ARG_CONST_SIZE,
5407 };
5408 
5409 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5410 				int optname, const u8 **start)
5411 {
5412 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5413 	const u8 *hdr_start;
5414 	int ret;
5415 
5416 	if (syn_skb) {
5417 		/* sk is a request_sock here */
5418 
5419 		if (optname == TCP_BPF_SYN) {
5420 			hdr_start = syn_skb->data;
5421 			ret = tcp_hdrlen(syn_skb);
5422 		} else if (optname == TCP_BPF_SYN_IP) {
5423 			hdr_start = skb_network_header(syn_skb);
5424 			ret = skb_network_header_len(syn_skb) +
5425 				tcp_hdrlen(syn_skb);
5426 		} else {
5427 			/* optname == TCP_BPF_SYN_MAC */
5428 			hdr_start = skb_mac_header(syn_skb);
5429 			ret = skb_mac_header_len(syn_skb) +
5430 				skb_network_header_len(syn_skb) +
5431 				tcp_hdrlen(syn_skb);
5432 		}
5433 	} else {
5434 		struct sock *sk = bpf_sock->sk;
5435 		struct saved_syn *saved_syn;
5436 
5437 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5438 			/* synack retransmit. bpf_sock->syn_skb will
5439 			 * not be available.  It has to resort to
5440 			 * saved_syn (if it is saved).
5441 			 */
5442 			saved_syn = inet_reqsk(sk)->saved_syn;
5443 		else
5444 			saved_syn = tcp_sk(sk)->saved_syn;
5445 
5446 		if (!saved_syn)
5447 			return -ENOENT;
5448 
5449 		if (optname == TCP_BPF_SYN) {
5450 			hdr_start = saved_syn->data +
5451 				saved_syn->mac_hdrlen +
5452 				saved_syn->network_hdrlen;
5453 			ret = saved_syn->tcp_hdrlen;
5454 		} else if (optname == TCP_BPF_SYN_IP) {
5455 			hdr_start = saved_syn->data +
5456 				saved_syn->mac_hdrlen;
5457 			ret = saved_syn->network_hdrlen +
5458 				saved_syn->tcp_hdrlen;
5459 		} else {
5460 			/* optname == TCP_BPF_SYN_MAC */
5461 
5462 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5463 			if (!saved_syn->mac_hdrlen)
5464 				return -ENOENT;
5465 
5466 			hdr_start = saved_syn->data;
5467 			ret = saved_syn->mac_hdrlen +
5468 				saved_syn->network_hdrlen +
5469 				saved_syn->tcp_hdrlen;
5470 		}
5471 	}
5472 
5473 	*start = hdr_start;
5474 	return ret;
5475 }
5476 
5477 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5478 	   int, level, int, optname, char *, optval, int, optlen)
5479 {
5480 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5481 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5482 		int ret, copy_len = 0;
5483 		const u8 *start;
5484 
5485 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5486 		if (ret > 0) {
5487 			copy_len = ret;
5488 			if (optlen < copy_len) {
5489 				copy_len = optlen;
5490 				ret = -ENOSPC;
5491 			}
5492 
5493 			memcpy(optval, start, copy_len);
5494 		}
5495 
5496 		/* Zero out unused buffer at the end */
5497 		memset(optval + copy_len, 0, optlen - copy_len);
5498 
5499 		return ret;
5500 	}
5501 
5502 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5503 }
5504 
5505 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5506 	.func		= bpf_sock_ops_getsockopt,
5507 	.gpl_only	= false,
5508 	.ret_type	= RET_INTEGER,
5509 	.arg1_type	= ARG_PTR_TO_CTX,
5510 	.arg2_type	= ARG_ANYTHING,
5511 	.arg3_type	= ARG_ANYTHING,
5512 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5513 	.arg5_type	= ARG_CONST_SIZE,
5514 };
5515 
5516 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5517 	   int, argval)
5518 {
5519 	struct sock *sk = bpf_sock->sk;
5520 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5521 
5522 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5523 		return -EINVAL;
5524 
5525 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5526 
5527 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5528 }
5529 
5530 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5531 	.func		= bpf_sock_ops_cb_flags_set,
5532 	.gpl_only	= false,
5533 	.ret_type	= RET_INTEGER,
5534 	.arg1_type	= ARG_PTR_TO_CTX,
5535 	.arg2_type	= ARG_ANYTHING,
5536 };
5537 
5538 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5539 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5540 
5541 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5542 	   int, addr_len)
5543 {
5544 #ifdef CONFIG_INET
5545 	struct sock *sk = ctx->sk;
5546 	u32 flags = BIND_FROM_BPF;
5547 	int err;
5548 
5549 	err = -EINVAL;
5550 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5551 		return err;
5552 	if (addr->sa_family == AF_INET) {
5553 		if (addr_len < sizeof(struct sockaddr_in))
5554 			return err;
5555 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5556 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5557 		return __inet_bind(sk, addr, addr_len, flags);
5558 #if IS_ENABLED(CONFIG_IPV6)
5559 	} else if (addr->sa_family == AF_INET6) {
5560 		if (addr_len < SIN6_LEN_RFC2133)
5561 			return err;
5562 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5563 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5564 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5565 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5566 		 */
5567 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5568 #endif /* CONFIG_IPV6 */
5569 	}
5570 #endif /* CONFIG_INET */
5571 
5572 	return -EAFNOSUPPORT;
5573 }
5574 
5575 static const struct bpf_func_proto bpf_bind_proto = {
5576 	.func		= bpf_bind,
5577 	.gpl_only	= false,
5578 	.ret_type	= RET_INTEGER,
5579 	.arg1_type	= ARG_PTR_TO_CTX,
5580 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5581 	.arg3_type	= ARG_CONST_SIZE,
5582 };
5583 
5584 #ifdef CONFIG_XFRM
5585 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5586 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5587 {
5588 	const struct sec_path *sp = skb_sec_path(skb);
5589 	const struct xfrm_state *x;
5590 
5591 	if (!sp || unlikely(index >= sp->len || flags))
5592 		goto err_clear;
5593 
5594 	x = sp->xvec[index];
5595 
5596 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5597 		goto err_clear;
5598 
5599 	to->reqid = x->props.reqid;
5600 	to->spi = x->id.spi;
5601 	to->family = x->props.family;
5602 	to->ext = 0;
5603 
5604 	if (to->family == AF_INET6) {
5605 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5606 		       sizeof(to->remote_ipv6));
5607 	} else {
5608 		to->remote_ipv4 = x->props.saddr.a4;
5609 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5610 	}
5611 
5612 	return 0;
5613 err_clear:
5614 	memset(to, 0, size);
5615 	return -EINVAL;
5616 }
5617 
5618 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5619 	.func		= bpf_skb_get_xfrm_state,
5620 	.gpl_only	= false,
5621 	.ret_type	= RET_INTEGER,
5622 	.arg1_type	= ARG_PTR_TO_CTX,
5623 	.arg2_type	= ARG_ANYTHING,
5624 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5625 	.arg4_type	= ARG_CONST_SIZE,
5626 	.arg5_type	= ARG_ANYTHING,
5627 };
5628 #endif
5629 
5630 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5631 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5632 				  const struct neighbour *neigh,
5633 				  const struct net_device *dev, u32 mtu)
5634 {
5635 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5636 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5637 	params->h_vlan_TCI = 0;
5638 	params->h_vlan_proto = 0;
5639 	if (mtu)
5640 		params->mtu_result = mtu; /* union with tot_len */
5641 
5642 	return 0;
5643 }
5644 #endif
5645 
5646 #if IS_ENABLED(CONFIG_INET)
5647 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5648 			       u32 flags, bool check_mtu)
5649 {
5650 	struct fib_nh_common *nhc;
5651 	struct in_device *in_dev;
5652 	struct neighbour *neigh;
5653 	struct net_device *dev;
5654 	struct fib_result res;
5655 	struct flowi4 fl4;
5656 	u32 mtu = 0;
5657 	int err;
5658 
5659 	dev = dev_get_by_index_rcu(net, params->ifindex);
5660 	if (unlikely(!dev))
5661 		return -ENODEV;
5662 
5663 	/* verify forwarding is enabled on this interface */
5664 	in_dev = __in_dev_get_rcu(dev);
5665 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5666 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5667 
5668 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5669 		fl4.flowi4_iif = 1;
5670 		fl4.flowi4_oif = params->ifindex;
5671 	} else {
5672 		fl4.flowi4_iif = params->ifindex;
5673 		fl4.flowi4_oif = 0;
5674 	}
5675 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5676 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5677 	fl4.flowi4_flags = 0;
5678 
5679 	fl4.flowi4_proto = params->l4_protocol;
5680 	fl4.daddr = params->ipv4_dst;
5681 	fl4.saddr = params->ipv4_src;
5682 	fl4.fl4_sport = params->sport;
5683 	fl4.fl4_dport = params->dport;
5684 	fl4.flowi4_multipath_hash = 0;
5685 
5686 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5687 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5688 		struct fib_table *tb;
5689 
5690 		tb = fib_get_table(net, tbid);
5691 		if (unlikely(!tb))
5692 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5693 
5694 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5695 	} else {
5696 		fl4.flowi4_mark = 0;
5697 		fl4.flowi4_secid = 0;
5698 		fl4.flowi4_tun_key.tun_id = 0;
5699 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5700 
5701 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5702 	}
5703 
5704 	if (err) {
5705 		/* map fib lookup errors to RTN_ type */
5706 		if (err == -EINVAL)
5707 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5708 		if (err == -EHOSTUNREACH)
5709 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5710 		if (err == -EACCES)
5711 			return BPF_FIB_LKUP_RET_PROHIBIT;
5712 
5713 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5714 	}
5715 
5716 	if (res.type != RTN_UNICAST)
5717 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5718 
5719 	if (fib_info_num_path(res.fi) > 1)
5720 		fib_select_path(net, &res, &fl4, NULL);
5721 
5722 	if (check_mtu) {
5723 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5724 		if (params->tot_len > mtu) {
5725 			params->mtu_result = mtu; /* union with tot_len */
5726 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5727 		}
5728 	}
5729 
5730 	nhc = res.nhc;
5731 
5732 	/* do not handle lwt encaps right now */
5733 	if (nhc->nhc_lwtstate)
5734 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5735 
5736 	dev = nhc->nhc_dev;
5737 
5738 	params->rt_metric = res.fi->fib_priority;
5739 	params->ifindex = dev->ifindex;
5740 
5741 	/* xdp and cls_bpf programs are run in RCU-bh so
5742 	 * rcu_read_lock_bh is not needed here
5743 	 */
5744 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5745 		if (nhc->nhc_gw_family)
5746 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5747 
5748 		neigh = __ipv4_neigh_lookup_noref(dev,
5749 						 (__force u32)params->ipv4_dst);
5750 	} else {
5751 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5752 
5753 		params->family = AF_INET6;
5754 		*dst = nhc->nhc_gw.ipv6;
5755 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5756 	}
5757 
5758 	if (!neigh)
5759 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5760 
5761 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5762 }
5763 #endif
5764 
5765 #if IS_ENABLED(CONFIG_IPV6)
5766 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5767 			       u32 flags, bool check_mtu)
5768 {
5769 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5770 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5771 	struct fib6_result res = {};
5772 	struct neighbour *neigh;
5773 	struct net_device *dev;
5774 	struct inet6_dev *idev;
5775 	struct flowi6 fl6;
5776 	int strict = 0;
5777 	int oif, err;
5778 	u32 mtu = 0;
5779 
5780 	/* link local addresses are never forwarded */
5781 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5782 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5783 
5784 	dev = dev_get_by_index_rcu(net, params->ifindex);
5785 	if (unlikely(!dev))
5786 		return -ENODEV;
5787 
5788 	idev = __in6_dev_get_safely(dev);
5789 	if (unlikely(!idev || !idev->cnf.forwarding))
5790 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5791 
5792 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5793 		fl6.flowi6_iif = 1;
5794 		oif = fl6.flowi6_oif = params->ifindex;
5795 	} else {
5796 		oif = fl6.flowi6_iif = params->ifindex;
5797 		fl6.flowi6_oif = 0;
5798 		strict = RT6_LOOKUP_F_HAS_SADDR;
5799 	}
5800 	fl6.flowlabel = params->flowinfo;
5801 	fl6.flowi6_scope = 0;
5802 	fl6.flowi6_flags = 0;
5803 	fl6.mp_hash = 0;
5804 
5805 	fl6.flowi6_proto = params->l4_protocol;
5806 	fl6.daddr = *dst;
5807 	fl6.saddr = *src;
5808 	fl6.fl6_sport = params->sport;
5809 	fl6.fl6_dport = params->dport;
5810 
5811 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5812 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5813 		struct fib6_table *tb;
5814 
5815 		tb = ipv6_stub->fib6_get_table(net, tbid);
5816 		if (unlikely(!tb))
5817 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5818 
5819 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5820 						   strict);
5821 	} else {
5822 		fl6.flowi6_mark = 0;
5823 		fl6.flowi6_secid = 0;
5824 		fl6.flowi6_tun_key.tun_id = 0;
5825 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5826 
5827 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5828 	}
5829 
5830 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5831 		     res.f6i == net->ipv6.fib6_null_entry))
5832 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5833 
5834 	switch (res.fib6_type) {
5835 	/* only unicast is forwarded */
5836 	case RTN_UNICAST:
5837 		break;
5838 	case RTN_BLACKHOLE:
5839 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5840 	case RTN_UNREACHABLE:
5841 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5842 	case RTN_PROHIBIT:
5843 		return BPF_FIB_LKUP_RET_PROHIBIT;
5844 	default:
5845 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5846 	}
5847 
5848 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5849 				    fl6.flowi6_oif != 0, NULL, strict);
5850 
5851 	if (check_mtu) {
5852 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5853 		if (params->tot_len > mtu) {
5854 			params->mtu_result = mtu; /* union with tot_len */
5855 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5856 		}
5857 	}
5858 
5859 	if (res.nh->fib_nh_lws)
5860 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5861 
5862 	if (res.nh->fib_nh_gw_family)
5863 		*dst = res.nh->fib_nh_gw6;
5864 
5865 	dev = res.nh->fib_nh_dev;
5866 	params->rt_metric = res.f6i->fib6_metric;
5867 	params->ifindex = dev->ifindex;
5868 
5869 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5870 	 * not needed here.
5871 	 */
5872 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5873 	if (!neigh)
5874 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5875 
5876 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5877 }
5878 #endif
5879 
5880 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5881 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5882 {
5883 	if (plen < sizeof(*params))
5884 		return -EINVAL;
5885 
5886 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5887 		return -EINVAL;
5888 
5889 	switch (params->family) {
5890 #if IS_ENABLED(CONFIG_INET)
5891 	case AF_INET:
5892 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5893 					   flags, true);
5894 #endif
5895 #if IS_ENABLED(CONFIG_IPV6)
5896 	case AF_INET6:
5897 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5898 					   flags, true);
5899 #endif
5900 	}
5901 	return -EAFNOSUPPORT;
5902 }
5903 
5904 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5905 	.func		= bpf_xdp_fib_lookup,
5906 	.gpl_only	= true,
5907 	.ret_type	= RET_INTEGER,
5908 	.arg1_type      = ARG_PTR_TO_CTX,
5909 	.arg2_type      = ARG_PTR_TO_MEM,
5910 	.arg3_type      = ARG_CONST_SIZE,
5911 	.arg4_type	= ARG_ANYTHING,
5912 };
5913 
5914 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5915 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5916 {
5917 	struct net *net = dev_net(skb->dev);
5918 	int rc = -EAFNOSUPPORT;
5919 	bool check_mtu = false;
5920 
5921 	if (plen < sizeof(*params))
5922 		return -EINVAL;
5923 
5924 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5925 		return -EINVAL;
5926 
5927 	if (params->tot_len)
5928 		check_mtu = true;
5929 
5930 	switch (params->family) {
5931 #if IS_ENABLED(CONFIG_INET)
5932 	case AF_INET:
5933 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5934 		break;
5935 #endif
5936 #if IS_ENABLED(CONFIG_IPV6)
5937 	case AF_INET6:
5938 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5939 		break;
5940 #endif
5941 	}
5942 
5943 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5944 		struct net_device *dev;
5945 
5946 		/* When tot_len isn't provided by user, check skb
5947 		 * against MTU of FIB lookup resulting net_device
5948 		 */
5949 		dev = dev_get_by_index_rcu(net, params->ifindex);
5950 		if (!is_skb_forwardable(dev, skb))
5951 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5952 
5953 		params->mtu_result = dev->mtu; /* union with tot_len */
5954 	}
5955 
5956 	return rc;
5957 }
5958 
5959 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5960 	.func		= bpf_skb_fib_lookup,
5961 	.gpl_only	= true,
5962 	.ret_type	= RET_INTEGER,
5963 	.arg1_type      = ARG_PTR_TO_CTX,
5964 	.arg2_type      = ARG_PTR_TO_MEM,
5965 	.arg3_type      = ARG_CONST_SIZE,
5966 	.arg4_type	= ARG_ANYTHING,
5967 };
5968 
5969 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
5970 					    u32 ifindex)
5971 {
5972 	struct net *netns = dev_net(dev_curr);
5973 
5974 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
5975 	if (ifindex == 0)
5976 		return dev_curr;
5977 
5978 	return dev_get_by_index_rcu(netns, ifindex);
5979 }
5980 
5981 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
5982 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5983 {
5984 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5985 	struct net_device *dev = skb->dev;
5986 	int skb_len, dev_len;
5987 	int mtu;
5988 
5989 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
5990 		return -EINVAL;
5991 
5992 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
5993 		return -EINVAL;
5994 
5995 	dev = __dev_via_ifindex(dev, ifindex);
5996 	if (unlikely(!dev))
5997 		return -ENODEV;
5998 
5999 	mtu = READ_ONCE(dev->mtu);
6000 
6001 	dev_len = mtu + dev->hard_header_len;
6002 
6003 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6004 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6005 
6006 	skb_len += len_diff; /* minus result pass check */
6007 	if (skb_len <= dev_len) {
6008 		ret = BPF_MTU_CHK_RET_SUCCESS;
6009 		goto out;
6010 	}
6011 	/* At this point, skb->len exceed MTU, but as it include length of all
6012 	 * segments, it can still be below MTU.  The SKB can possibly get
6013 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6014 	 * must choose if segs are to be MTU checked.
6015 	 */
6016 	if (skb_is_gso(skb)) {
6017 		ret = BPF_MTU_CHK_RET_SUCCESS;
6018 
6019 		if (flags & BPF_MTU_CHK_SEGS &&
6020 		    !skb_gso_validate_network_len(skb, mtu))
6021 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6022 	}
6023 out:
6024 	/* BPF verifier guarantees valid pointer */
6025 	*mtu_len = mtu;
6026 
6027 	return ret;
6028 }
6029 
6030 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6031 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6032 {
6033 	struct net_device *dev = xdp->rxq->dev;
6034 	int xdp_len = xdp->data_end - xdp->data;
6035 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6036 	int mtu, dev_len;
6037 
6038 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6039 	if (unlikely(flags))
6040 		return -EINVAL;
6041 
6042 	dev = __dev_via_ifindex(dev, ifindex);
6043 	if (unlikely(!dev))
6044 		return -ENODEV;
6045 
6046 	mtu = READ_ONCE(dev->mtu);
6047 
6048 	/* Add L2-header as dev MTU is L3 size */
6049 	dev_len = mtu + dev->hard_header_len;
6050 
6051 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6052 	if (*mtu_len)
6053 		xdp_len = *mtu_len + dev->hard_header_len;
6054 
6055 	xdp_len += len_diff; /* minus result pass check */
6056 	if (xdp_len > dev_len)
6057 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6058 
6059 	/* BPF verifier guarantees valid pointer */
6060 	*mtu_len = mtu;
6061 
6062 	return ret;
6063 }
6064 
6065 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6066 	.func		= bpf_skb_check_mtu,
6067 	.gpl_only	= true,
6068 	.ret_type	= RET_INTEGER,
6069 	.arg1_type      = ARG_PTR_TO_CTX,
6070 	.arg2_type      = ARG_ANYTHING,
6071 	.arg3_type      = ARG_PTR_TO_INT,
6072 	.arg4_type      = ARG_ANYTHING,
6073 	.arg5_type      = ARG_ANYTHING,
6074 };
6075 
6076 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6077 	.func		= bpf_xdp_check_mtu,
6078 	.gpl_only	= true,
6079 	.ret_type	= RET_INTEGER,
6080 	.arg1_type      = ARG_PTR_TO_CTX,
6081 	.arg2_type      = ARG_ANYTHING,
6082 	.arg3_type      = ARG_PTR_TO_INT,
6083 	.arg4_type      = ARG_ANYTHING,
6084 	.arg5_type      = ARG_ANYTHING,
6085 };
6086 
6087 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6088 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6089 {
6090 	int err;
6091 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6092 
6093 	if (!seg6_validate_srh(srh, len, false))
6094 		return -EINVAL;
6095 
6096 	switch (type) {
6097 	case BPF_LWT_ENCAP_SEG6_INLINE:
6098 		if (skb->protocol != htons(ETH_P_IPV6))
6099 			return -EBADMSG;
6100 
6101 		err = seg6_do_srh_inline(skb, srh);
6102 		break;
6103 	case BPF_LWT_ENCAP_SEG6:
6104 		skb_reset_inner_headers(skb);
6105 		skb->encapsulation = 1;
6106 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6107 		break;
6108 	default:
6109 		return -EINVAL;
6110 	}
6111 
6112 	bpf_compute_data_pointers(skb);
6113 	if (err)
6114 		return err;
6115 
6116 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6117 
6118 	return seg6_lookup_nexthop(skb, NULL, 0);
6119 }
6120 #endif /* CONFIG_IPV6_SEG6_BPF */
6121 
6122 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6123 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6124 			     bool ingress)
6125 {
6126 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6127 }
6128 #endif
6129 
6130 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6131 	   u32, len)
6132 {
6133 	switch (type) {
6134 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6135 	case BPF_LWT_ENCAP_SEG6:
6136 	case BPF_LWT_ENCAP_SEG6_INLINE:
6137 		return bpf_push_seg6_encap(skb, type, hdr, len);
6138 #endif
6139 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6140 	case BPF_LWT_ENCAP_IP:
6141 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6142 #endif
6143 	default:
6144 		return -EINVAL;
6145 	}
6146 }
6147 
6148 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6149 	   void *, hdr, u32, len)
6150 {
6151 	switch (type) {
6152 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6153 	case BPF_LWT_ENCAP_IP:
6154 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6155 #endif
6156 	default:
6157 		return -EINVAL;
6158 	}
6159 }
6160 
6161 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6162 	.func		= bpf_lwt_in_push_encap,
6163 	.gpl_only	= false,
6164 	.ret_type	= RET_INTEGER,
6165 	.arg1_type	= ARG_PTR_TO_CTX,
6166 	.arg2_type	= ARG_ANYTHING,
6167 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6168 	.arg4_type	= ARG_CONST_SIZE
6169 };
6170 
6171 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6172 	.func		= bpf_lwt_xmit_push_encap,
6173 	.gpl_only	= false,
6174 	.ret_type	= RET_INTEGER,
6175 	.arg1_type	= ARG_PTR_TO_CTX,
6176 	.arg2_type	= ARG_ANYTHING,
6177 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6178 	.arg4_type	= ARG_CONST_SIZE
6179 };
6180 
6181 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6182 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6183 	   const void *, from, u32, len)
6184 {
6185 	struct seg6_bpf_srh_state *srh_state =
6186 		this_cpu_ptr(&seg6_bpf_srh_states);
6187 	struct ipv6_sr_hdr *srh = srh_state->srh;
6188 	void *srh_tlvs, *srh_end, *ptr;
6189 	int srhoff = 0;
6190 
6191 	if (srh == NULL)
6192 		return -EINVAL;
6193 
6194 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6195 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6196 
6197 	ptr = skb->data + offset;
6198 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6199 		srh_state->valid = false;
6200 	else if (ptr < (void *)&srh->flags ||
6201 		 ptr + len > (void *)&srh->segments)
6202 		return -EFAULT;
6203 
6204 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6205 		return -EFAULT;
6206 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6207 		return -EINVAL;
6208 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6209 
6210 	memcpy(skb->data + offset, from, len);
6211 	return 0;
6212 }
6213 
6214 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6215 	.func		= bpf_lwt_seg6_store_bytes,
6216 	.gpl_only	= false,
6217 	.ret_type	= RET_INTEGER,
6218 	.arg1_type	= ARG_PTR_TO_CTX,
6219 	.arg2_type	= ARG_ANYTHING,
6220 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6221 	.arg4_type	= ARG_CONST_SIZE
6222 };
6223 
6224 static void bpf_update_srh_state(struct sk_buff *skb)
6225 {
6226 	struct seg6_bpf_srh_state *srh_state =
6227 		this_cpu_ptr(&seg6_bpf_srh_states);
6228 	int srhoff = 0;
6229 
6230 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6231 		srh_state->srh = NULL;
6232 	} else {
6233 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6234 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6235 		srh_state->valid = true;
6236 	}
6237 }
6238 
6239 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6240 	   u32, action, void *, param, u32, param_len)
6241 {
6242 	struct seg6_bpf_srh_state *srh_state =
6243 		this_cpu_ptr(&seg6_bpf_srh_states);
6244 	int hdroff = 0;
6245 	int err;
6246 
6247 	switch (action) {
6248 	case SEG6_LOCAL_ACTION_END_X:
6249 		if (!seg6_bpf_has_valid_srh(skb))
6250 			return -EBADMSG;
6251 		if (param_len != sizeof(struct in6_addr))
6252 			return -EINVAL;
6253 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6254 	case SEG6_LOCAL_ACTION_END_T:
6255 		if (!seg6_bpf_has_valid_srh(skb))
6256 			return -EBADMSG;
6257 		if (param_len != sizeof(int))
6258 			return -EINVAL;
6259 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6260 	case SEG6_LOCAL_ACTION_END_DT6:
6261 		if (!seg6_bpf_has_valid_srh(skb))
6262 			return -EBADMSG;
6263 		if (param_len != sizeof(int))
6264 			return -EINVAL;
6265 
6266 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6267 			return -EBADMSG;
6268 		if (!pskb_pull(skb, hdroff))
6269 			return -EBADMSG;
6270 
6271 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6272 		skb_reset_network_header(skb);
6273 		skb_reset_transport_header(skb);
6274 		skb->encapsulation = 0;
6275 
6276 		bpf_compute_data_pointers(skb);
6277 		bpf_update_srh_state(skb);
6278 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6279 	case SEG6_LOCAL_ACTION_END_B6:
6280 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6281 			return -EBADMSG;
6282 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6283 					  param, param_len);
6284 		if (!err)
6285 			bpf_update_srh_state(skb);
6286 
6287 		return err;
6288 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6289 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6290 			return -EBADMSG;
6291 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6292 					  param, param_len);
6293 		if (!err)
6294 			bpf_update_srh_state(skb);
6295 
6296 		return err;
6297 	default:
6298 		return -EINVAL;
6299 	}
6300 }
6301 
6302 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6303 	.func		= bpf_lwt_seg6_action,
6304 	.gpl_only	= false,
6305 	.ret_type	= RET_INTEGER,
6306 	.arg1_type	= ARG_PTR_TO_CTX,
6307 	.arg2_type	= ARG_ANYTHING,
6308 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6309 	.arg4_type	= ARG_CONST_SIZE
6310 };
6311 
6312 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6313 	   s32, len)
6314 {
6315 	struct seg6_bpf_srh_state *srh_state =
6316 		this_cpu_ptr(&seg6_bpf_srh_states);
6317 	struct ipv6_sr_hdr *srh = srh_state->srh;
6318 	void *srh_end, *srh_tlvs, *ptr;
6319 	struct ipv6hdr *hdr;
6320 	int srhoff = 0;
6321 	int ret;
6322 
6323 	if (unlikely(srh == NULL))
6324 		return -EINVAL;
6325 
6326 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6327 			((srh->first_segment + 1) << 4));
6328 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6329 			srh_state->hdrlen);
6330 	ptr = skb->data + offset;
6331 
6332 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6333 		return -EFAULT;
6334 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6335 		return -EFAULT;
6336 
6337 	if (len > 0) {
6338 		ret = skb_cow_head(skb, len);
6339 		if (unlikely(ret < 0))
6340 			return ret;
6341 
6342 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6343 	} else {
6344 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6345 	}
6346 
6347 	bpf_compute_data_pointers(skb);
6348 	if (unlikely(ret < 0))
6349 		return ret;
6350 
6351 	hdr = (struct ipv6hdr *)skb->data;
6352 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6353 
6354 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6355 		return -EINVAL;
6356 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6357 	srh_state->hdrlen += len;
6358 	srh_state->valid = false;
6359 	return 0;
6360 }
6361 
6362 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6363 	.func		= bpf_lwt_seg6_adjust_srh,
6364 	.gpl_only	= false,
6365 	.ret_type	= RET_INTEGER,
6366 	.arg1_type	= ARG_PTR_TO_CTX,
6367 	.arg2_type	= ARG_ANYTHING,
6368 	.arg3_type	= ARG_ANYTHING,
6369 };
6370 #endif /* CONFIG_IPV6_SEG6_BPF */
6371 
6372 #ifdef CONFIG_INET
6373 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6374 			      int dif, int sdif, u8 family, u8 proto)
6375 {
6376 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6377 	bool refcounted = false;
6378 	struct sock *sk = NULL;
6379 
6380 	if (family == AF_INET) {
6381 		__be32 src4 = tuple->ipv4.saddr;
6382 		__be32 dst4 = tuple->ipv4.daddr;
6383 
6384 		if (proto == IPPROTO_TCP)
6385 			sk = __inet_lookup(net, hinfo, NULL, 0,
6386 					   src4, tuple->ipv4.sport,
6387 					   dst4, tuple->ipv4.dport,
6388 					   dif, sdif, &refcounted);
6389 		else
6390 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6391 					       dst4, tuple->ipv4.dport,
6392 					       dif, sdif, &udp_table, NULL);
6393 #if IS_ENABLED(CONFIG_IPV6)
6394 	} else {
6395 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6396 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6397 
6398 		if (proto == IPPROTO_TCP)
6399 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6400 					    src6, tuple->ipv6.sport,
6401 					    dst6, ntohs(tuple->ipv6.dport),
6402 					    dif, sdif, &refcounted);
6403 		else if (likely(ipv6_bpf_stub))
6404 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6405 							    src6, tuple->ipv6.sport,
6406 							    dst6, tuple->ipv6.dport,
6407 							    dif, sdif,
6408 							    &udp_table, NULL);
6409 #endif
6410 	}
6411 
6412 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6413 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6414 		sk = NULL;
6415 	}
6416 	return sk;
6417 }
6418 
6419 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6420  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6421  */
6422 static struct sock *
6423 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6424 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6425 		 u64 flags)
6426 {
6427 	struct sock *sk = NULL;
6428 	struct net *net;
6429 	u8 family;
6430 	int sdif;
6431 
6432 	if (len == sizeof(tuple->ipv4))
6433 		family = AF_INET;
6434 	else if (len == sizeof(tuple->ipv6))
6435 		family = AF_INET6;
6436 	else
6437 		return NULL;
6438 
6439 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6440 		goto out;
6441 
6442 	if (family == AF_INET)
6443 		sdif = inet_sdif(skb);
6444 	else
6445 		sdif = inet6_sdif(skb);
6446 
6447 	if ((s32)netns_id < 0) {
6448 		net = caller_net;
6449 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6450 	} else {
6451 		net = get_net_ns_by_id(caller_net, netns_id);
6452 		if (unlikely(!net))
6453 			goto out;
6454 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6455 		put_net(net);
6456 	}
6457 
6458 out:
6459 	return sk;
6460 }
6461 
6462 static struct sock *
6463 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6464 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6465 		u64 flags)
6466 {
6467 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6468 					   ifindex, proto, netns_id, flags);
6469 
6470 	if (sk) {
6471 		struct sock *sk2 = sk_to_full_sk(sk);
6472 
6473 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6474 		 * sock refcnt is decremented to prevent a request_sock leak.
6475 		 */
6476 		if (!sk_fullsock(sk2))
6477 			sk2 = NULL;
6478 		if (sk2 != sk) {
6479 			sock_gen_put(sk);
6480 			/* Ensure there is no need to bump sk2 refcnt */
6481 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6482 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6483 				return NULL;
6484 			}
6485 			sk = sk2;
6486 		}
6487 	}
6488 
6489 	return sk;
6490 }
6491 
6492 static struct sock *
6493 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6494 	       u8 proto, u64 netns_id, u64 flags)
6495 {
6496 	struct net *caller_net;
6497 	int ifindex;
6498 
6499 	if (skb->dev) {
6500 		caller_net = dev_net(skb->dev);
6501 		ifindex = skb->dev->ifindex;
6502 	} else {
6503 		caller_net = sock_net(skb->sk);
6504 		ifindex = 0;
6505 	}
6506 
6507 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6508 				netns_id, flags);
6509 }
6510 
6511 static struct sock *
6512 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6513 	      u8 proto, u64 netns_id, u64 flags)
6514 {
6515 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6516 					 flags);
6517 
6518 	if (sk) {
6519 		struct sock *sk2 = sk_to_full_sk(sk);
6520 
6521 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6522 		 * sock refcnt is decremented to prevent a request_sock leak.
6523 		 */
6524 		if (!sk_fullsock(sk2))
6525 			sk2 = NULL;
6526 		if (sk2 != sk) {
6527 			sock_gen_put(sk);
6528 			/* Ensure there is no need to bump sk2 refcnt */
6529 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6530 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6531 				return NULL;
6532 			}
6533 			sk = sk2;
6534 		}
6535 	}
6536 
6537 	return sk;
6538 }
6539 
6540 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6541 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6542 {
6543 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6544 					     netns_id, flags);
6545 }
6546 
6547 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6548 	.func		= bpf_skc_lookup_tcp,
6549 	.gpl_only	= false,
6550 	.pkt_access	= true,
6551 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6552 	.arg1_type	= ARG_PTR_TO_CTX,
6553 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6554 	.arg3_type	= ARG_CONST_SIZE,
6555 	.arg4_type	= ARG_ANYTHING,
6556 	.arg5_type	= ARG_ANYTHING,
6557 };
6558 
6559 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6560 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6561 {
6562 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6563 					    netns_id, flags);
6564 }
6565 
6566 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6567 	.func		= bpf_sk_lookup_tcp,
6568 	.gpl_only	= false,
6569 	.pkt_access	= true,
6570 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6571 	.arg1_type	= ARG_PTR_TO_CTX,
6572 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6573 	.arg3_type	= ARG_CONST_SIZE,
6574 	.arg4_type	= ARG_ANYTHING,
6575 	.arg5_type	= ARG_ANYTHING,
6576 };
6577 
6578 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6579 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6580 {
6581 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6582 					    netns_id, flags);
6583 }
6584 
6585 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6586 	.func		= bpf_sk_lookup_udp,
6587 	.gpl_only	= false,
6588 	.pkt_access	= true,
6589 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6590 	.arg1_type	= ARG_PTR_TO_CTX,
6591 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6592 	.arg3_type	= ARG_CONST_SIZE,
6593 	.arg4_type	= ARG_ANYTHING,
6594 	.arg5_type	= ARG_ANYTHING,
6595 };
6596 
6597 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6598 {
6599 	if (sk && sk_is_refcounted(sk))
6600 		sock_gen_put(sk);
6601 	return 0;
6602 }
6603 
6604 static const struct bpf_func_proto bpf_sk_release_proto = {
6605 	.func		= bpf_sk_release,
6606 	.gpl_only	= false,
6607 	.ret_type	= RET_INTEGER,
6608 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6609 };
6610 
6611 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6612 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6613 {
6614 	struct net *caller_net = dev_net(ctx->rxq->dev);
6615 	int ifindex = ctx->rxq->dev->ifindex;
6616 
6617 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6618 					      ifindex, IPPROTO_UDP, netns_id,
6619 					      flags);
6620 }
6621 
6622 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6623 	.func           = bpf_xdp_sk_lookup_udp,
6624 	.gpl_only       = false,
6625 	.pkt_access     = true,
6626 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6627 	.arg1_type      = ARG_PTR_TO_CTX,
6628 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6629 	.arg3_type      = ARG_CONST_SIZE,
6630 	.arg4_type      = ARG_ANYTHING,
6631 	.arg5_type      = ARG_ANYTHING,
6632 };
6633 
6634 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6635 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6636 {
6637 	struct net *caller_net = dev_net(ctx->rxq->dev);
6638 	int ifindex = ctx->rxq->dev->ifindex;
6639 
6640 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6641 					       ifindex, IPPROTO_TCP, netns_id,
6642 					       flags);
6643 }
6644 
6645 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6646 	.func           = bpf_xdp_skc_lookup_tcp,
6647 	.gpl_only       = false,
6648 	.pkt_access     = true,
6649 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6650 	.arg1_type      = ARG_PTR_TO_CTX,
6651 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6652 	.arg3_type      = ARG_CONST_SIZE,
6653 	.arg4_type      = ARG_ANYTHING,
6654 	.arg5_type      = ARG_ANYTHING,
6655 };
6656 
6657 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6658 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6659 {
6660 	struct net *caller_net = dev_net(ctx->rxq->dev);
6661 	int ifindex = ctx->rxq->dev->ifindex;
6662 
6663 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6664 					      ifindex, IPPROTO_TCP, netns_id,
6665 					      flags);
6666 }
6667 
6668 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6669 	.func           = bpf_xdp_sk_lookup_tcp,
6670 	.gpl_only       = false,
6671 	.pkt_access     = true,
6672 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6673 	.arg1_type      = ARG_PTR_TO_CTX,
6674 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6675 	.arg3_type      = ARG_CONST_SIZE,
6676 	.arg4_type      = ARG_ANYTHING,
6677 	.arg5_type      = ARG_ANYTHING,
6678 };
6679 
6680 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6681 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6682 {
6683 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6684 					       sock_net(ctx->sk), 0,
6685 					       IPPROTO_TCP, netns_id, flags);
6686 }
6687 
6688 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6689 	.func		= bpf_sock_addr_skc_lookup_tcp,
6690 	.gpl_only	= false,
6691 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6692 	.arg1_type	= ARG_PTR_TO_CTX,
6693 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6694 	.arg3_type	= ARG_CONST_SIZE,
6695 	.arg4_type	= ARG_ANYTHING,
6696 	.arg5_type	= ARG_ANYTHING,
6697 };
6698 
6699 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6700 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6701 {
6702 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6703 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6704 					      netns_id, flags);
6705 }
6706 
6707 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6708 	.func		= bpf_sock_addr_sk_lookup_tcp,
6709 	.gpl_only	= false,
6710 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6711 	.arg1_type	= ARG_PTR_TO_CTX,
6712 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6713 	.arg3_type	= ARG_CONST_SIZE,
6714 	.arg4_type	= ARG_ANYTHING,
6715 	.arg5_type	= ARG_ANYTHING,
6716 };
6717 
6718 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6719 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6720 {
6721 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6722 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6723 					      netns_id, flags);
6724 }
6725 
6726 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6727 	.func		= bpf_sock_addr_sk_lookup_udp,
6728 	.gpl_only	= false,
6729 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6730 	.arg1_type	= ARG_PTR_TO_CTX,
6731 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6732 	.arg3_type	= ARG_CONST_SIZE,
6733 	.arg4_type	= ARG_ANYTHING,
6734 	.arg5_type	= ARG_ANYTHING,
6735 };
6736 
6737 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6738 				  struct bpf_insn_access_aux *info)
6739 {
6740 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6741 					  icsk_retransmits))
6742 		return false;
6743 
6744 	if (off % size != 0)
6745 		return false;
6746 
6747 	switch (off) {
6748 	case offsetof(struct bpf_tcp_sock, bytes_received):
6749 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6750 		return size == sizeof(__u64);
6751 	default:
6752 		return size == sizeof(__u32);
6753 	}
6754 }
6755 
6756 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6757 				    const struct bpf_insn *si,
6758 				    struct bpf_insn *insn_buf,
6759 				    struct bpf_prog *prog, u32 *target_size)
6760 {
6761 	struct bpf_insn *insn = insn_buf;
6762 
6763 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6764 	do {								\
6765 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6766 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6767 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6768 				      si->dst_reg, si->src_reg,		\
6769 				      offsetof(struct tcp_sock, FIELD)); \
6770 	} while (0)
6771 
6772 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6773 	do {								\
6774 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6775 					  FIELD) >			\
6776 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6777 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6778 					struct inet_connection_sock,	\
6779 					FIELD),				\
6780 				      si->dst_reg, si->src_reg,		\
6781 				      offsetof(				\
6782 					struct inet_connection_sock,	\
6783 					FIELD));			\
6784 	} while (0)
6785 
6786 	if (insn > insn_buf)
6787 		return insn - insn_buf;
6788 
6789 	switch (si->off) {
6790 	case offsetof(struct bpf_tcp_sock, rtt_min):
6791 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6792 			     sizeof(struct minmax));
6793 		BUILD_BUG_ON(sizeof(struct minmax) <
6794 			     sizeof(struct minmax_sample));
6795 
6796 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6797 				      offsetof(struct tcp_sock, rtt_min) +
6798 				      offsetof(struct minmax_sample, v));
6799 		break;
6800 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6801 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6802 		break;
6803 	case offsetof(struct bpf_tcp_sock, srtt_us):
6804 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6805 		break;
6806 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6807 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6808 		break;
6809 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6810 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6811 		break;
6812 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6813 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6814 		break;
6815 	case offsetof(struct bpf_tcp_sock, snd_una):
6816 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6817 		break;
6818 	case offsetof(struct bpf_tcp_sock, mss_cache):
6819 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6820 		break;
6821 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6822 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6823 		break;
6824 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6825 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6826 		break;
6827 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6828 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6829 		break;
6830 	case offsetof(struct bpf_tcp_sock, packets_out):
6831 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6832 		break;
6833 	case offsetof(struct bpf_tcp_sock, retrans_out):
6834 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6835 		break;
6836 	case offsetof(struct bpf_tcp_sock, total_retrans):
6837 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6838 		break;
6839 	case offsetof(struct bpf_tcp_sock, segs_in):
6840 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6841 		break;
6842 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6843 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6844 		break;
6845 	case offsetof(struct bpf_tcp_sock, segs_out):
6846 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6847 		break;
6848 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6849 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6850 		break;
6851 	case offsetof(struct bpf_tcp_sock, lost_out):
6852 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6853 		break;
6854 	case offsetof(struct bpf_tcp_sock, sacked_out):
6855 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6856 		break;
6857 	case offsetof(struct bpf_tcp_sock, bytes_received):
6858 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6859 		break;
6860 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6861 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6862 		break;
6863 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6864 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6865 		break;
6866 	case offsetof(struct bpf_tcp_sock, delivered):
6867 		BPF_TCP_SOCK_GET_COMMON(delivered);
6868 		break;
6869 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6870 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6871 		break;
6872 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6873 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6874 		break;
6875 	}
6876 
6877 	return insn - insn_buf;
6878 }
6879 
6880 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6881 {
6882 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6883 		return (unsigned long)sk;
6884 
6885 	return (unsigned long)NULL;
6886 }
6887 
6888 const struct bpf_func_proto bpf_tcp_sock_proto = {
6889 	.func		= bpf_tcp_sock,
6890 	.gpl_only	= false,
6891 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6892 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6893 };
6894 
6895 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6896 {
6897 	sk = sk_to_full_sk(sk);
6898 
6899 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6900 		return (unsigned long)sk;
6901 
6902 	return (unsigned long)NULL;
6903 }
6904 
6905 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6906 	.func		= bpf_get_listener_sock,
6907 	.gpl_only	= false,
6908 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6909 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6910 };
6911 
6912 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6913 {
6914 	unsigned int iphdr_len;
6915 
6916 	switch (skb_protocol(skb, true)) {
6917 	case cpu_to_be16(ETH_P_IP):
6918 		iphdr_len = sizeof(struct iphdr);
6919 		break;
6920 	case cpu_to_be16(ETH_P_IPV6):
6921 		iphdr_len = sizeof(struct ipv6hdr);
6922 		break;
6923 	default:
6924 		return 0;
6925 	}
6926 
6927 	if (skb_headlen(skb) < iphdr_len)
6928 		return 0;
6929 
6930 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6931 		return 0;
6932 
6933 	return INET_ECN_set_ce(skb);
6934 }
6935 
6936 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6937 				  struct bpf_insn_access_aux *info)
6938 {
6939 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6940 		return false;
6941 
6942 	if (off % size != 0)
6943 		return false;
6944 
6945 	switch (off) {
6946 	default:
6947 		return size == sizeof(__u32);
6948 	}
6949 }
6950 
6951 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6952 				    const struct bpf_insn *si,
6953 				    struct bpf_insn *insn_buf,
6954 				    struct bpf_prog *prog, u32 *target_size)
6955 {
6956 	struct bpf_insn *insn = insn_buf;
6957 
6958 #define BPF_XDP_SOCK_GET(FIELD)						\
6959 	do {								\
6960 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
6961 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
6962 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6963 				      si->dst_reg, si->src_reg,		\
6964 				      offsetof(struct xdp_sock, FIELD)); \
6965 	} while (0)
6966 
6967 	switch (si->off) {
6968 	case offsetof(struct bpf_xdp_sock, queue_id):
6969 		BPF_XDP_SOCK_GET(queue_id);
6970 		break;
6971 	}
6972 
6973 	return insn - insn_buf;
6974 }
6975 
6976 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6977 	.func           = bpf_skb_ecn_set_ce,
6978 	.gpl_only       = false,
6979 	.ret_type       = RET_INTEGER,
6980 	.arg1_type      = ARG_PTR_TO_CTX,
6981 };
6982 
6983 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6984 	   struct tcphdr *, th, u32, th_len)
6985 {
6986 #ifdef CONFIG_SYN_COOKIES
6987 	u32 cookie;
6988 	int ret;
6989 
6990 	if (unlikely(!sk || th_len < sizeof(*th)))
6991 		return -EINVAL;
6992 
6993 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6994 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6995 		return -EINVAL;
6996 
6997 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6998 		return -EINVAL;
6999 
7000 	if (!th->ack || th->rst || th->syn)
7001 		return -ENOENT;
7002 
7003 	if (unlikely(iph_len < sizeof(struct iphdr)))
7004 		return -EINVAL;
7005 
7006 	if (tcp_synq_no_recent_overflow(sk))
7007 		return -ENOENT;
7008 
7009 	cookie = ntohl(th->ack_seq) - 1;
7010 
7011 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7012 	 * same offset so we can cast to the shorter header (struct iphdr).
7013 	 */
7014 	switch (((struct iphdr *)iph)->version) {
7015 	case 4:
7016 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7017 			return -EINVAL;
7018 
7019 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7020 		break;
7021 
7022 #if IS_BUILTIN(CONFIG_IPV6)
7023 	case 6:
7024 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7025 			return -EINVAL;
7026 
7027 		if (sk->sk_family != AF_INET6)
7028 			return -EINVAL;
7029 
7030 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7031 		break;
7032 #endif /* CONFIG_IPV6 */
7033 
7034 	default:
7035 		return -EPROTONOSUPPORT;
7036 	}
7037 
7038 	if (ret > 0)
7039 		return 0;
7040 
7041 	return -ENOENT;
7042 #else
7043 	return -ENOTSUPP;
7044 #endif
7045 }
7046 
7047 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7048 	.func		= bpf_tcp_check_syncookie,
7049 	.gpl_only	= true,
7050 	.pkt_access	= true,
7051 	.ret_type	= RET_INTEGER,
7052 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7053 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7054 	.arg3_type	= ARG_CONST_SIZE,
7055 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7056 	.arg5_type	= ARG_CONST_SIZE,
7057 };
7058 
7059 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7060 	   struct tcphdr *, th, u32, th_len)
7061 {
7062 #ifdef CONFIG_SYN_COOKIES
7063 	u32 cookie;
7064 	u16 mss;
7065 
7066 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7067 		return -EINVAL;
7068 
7069 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7070 		return -EINVAL;
7071 
7072 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7073 		return -ENOENT;
7074 
7075 	if (!th->syn || th->ack || th->fin || th->rst)
7076 		return -EINVAL;
7077 
7078 	if (unlikely(iph_len < sizeof(struct iphdr)))
7079 		return -EINVAL;
7080 
7081 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7082 	 * same offset so we can cast to the shorter header (struct iphdr).
7083 	 */
7084 	switch (((struct iphdr *)iph)->version) {
7085 	case 4:
7086 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7087 			return -EINVAL;
7088 
7089 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7090 		break;
7091 
7092 #if IS_BUILTIN(CONFIG_IPV6)
7093 	case 6:
7094 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7095 			return -EINVAL;
7096 
7097 		if (sk->sk_family != AF_INET6)
7098 			return -EINVAL;
7099 
7100 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7101 		break;
7102 #endif /* CONFIG_IPV6 */
7103 
7104 	default:
7105 		return -EPROTONOSUPPORT;
7106 	}
7107 	if (mss == 0)
7108 		return -ENOENT;
7109 
7110 	return cookie | ((u64)mss << 32);
7111 #else
7112 	return -EOPNOTSUPP;
7113 #endif /* CONFIG_SYN_COOKIES */
7114 }
7115 
7116 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7117 	.func		= bpf_tcp_gen_syncookie,
7118 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7119 	.pkt_access	= true,
7120 	.ret_type	= RET_INTEGER,
7121 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7122 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7123 	.arg3_type	= ARG_CONST_SIZE,
7124 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7125 	.arg5_type	= ARG_CONST_SIZE,
7126 };
7127 
7128 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7129 {
7130 	if (!sk || flags != 0)
7131 		return -EINVAL;
7132 	if (!skb_at_tc_ingress(skb))
7133 		return -EOPNOTSUPP;
7134 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7135 		return -ENETUNREACH;
7136 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7137 		return -ESOCKTNOSUPPORT;
7138 	if (sk_is_refcounted(sk) &&
7139 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7140 		return -ENOENT;
7141 
7142 	skb_orphan(skb);
7143 	skb->sk = sk;
7144 	skb->destructor = sock_pfree;
7145 
7146 	return 0;
7147 }
7148 
7149 static const struct bpf_func_proto bpf_sk_assign_proto = {
7150 	.func		= bpf_sk_assign,
7151 	.gpl_only	= false,
7152 	.ret_type	= RET_INTEGER,
7153 	.arg1_type      = ARG_PTR_TO_CTX,
7154 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7155 	.arg3_type	= ARG_ANYTHING,
7156 };
7157 
7158 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7159 				    u8 search_kind, const u8 *magic,
7160 				    u8 magic_len, bool *eol)
7161 {
7162 	u8 kind, kind_len;
7163 
7164 	*eol = false;
7165 
7166 	while (op < opend) {
7167 		kind = op[0];
7168 
7169 		if (kind == TCPOPT_EOL) {
7170 			*eol = true;
7171 			return ERR_PTR(-ENOMSG);
7172 		} else if (kind == TCPOPT_NOP) {
7173 			op++;
7174 			continue;
7175 		}
7176 
7177 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7178 			/* Something is wrong in the received header.
7179 			 * Follow the TCP stack's tcp_parse_options()
7180 			 * and just bail here.
7181 			 */
7182 			return ERR_PTR(-EFAULT);
7183 
7184 		kind_len = op[1];
7185 		if (search_kind == kind) {
7186 			if (!magic_len)
7187 				return op;
7188 
7189 			if (magic_len > kind_len - 2)
7190 				return ERR_PTR(-ENOMSG);
7191 
7192 			if (!memcmp(&op[2], magic, magic_len))
7193 				return op;
7194 		}
7195 
7196 		op += kind_len;
7197 	}
7198 
7199 	return ERR_PTR(-ENOMSG);
7200 }
7201 
7202 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7203 	   void *, search_res, u32, len, u64, flags)
7204 {
7205 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7206 	const u8 *op, *opend, *magic, *search = search_res;
7207 	u8 search_kind, search_len, copy_len, magic_len;
7208 	int ret;
7209 
7210 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7211 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7212 	 * and this helper disallow loading them also.
7213 	 */
7214 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7215 		return -EINVAL;
7216 
7217 	search_kind = search[0];
7218 	search_len = search[1];
7219 
7220 	if (search_len > len || search_kind == TCPOPT_NOP ||
7221 	    search_kind == TCPOPT_EOL)
7222 		return -EINVAL;
7223 
7224 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7225 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7226 		if (search_len != 4 && search_len != 6)
7227 			return -EINVAL;
7228 		magic = &search[2];
7229 		magic_len = search_len - 2;
7230 	} else {
7231 		if (search_len)
7232 			return -EINVAL;
7233 		magic = NULL;
7234 		magic_len = 0;
7235 	}
7236 
7237 	if (load_syn) {
7238 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7239 		if (ret < 0)
7240 			return ret;
7241 
7242 		opend = op + ret;
7243 		op += sizeof(struct tcphdr);
7244 	} else {
7245 		if (!bpf_sock->skb ||
7246 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7247 			/* This bpf_sock->op cannot call this helper */
7248 			return -EPERM;
7249 
7250 		opend = bpf_sock->skb_data_end;
7251 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7252 	}
7253 
7254 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7255 				&eol);
7256 	if (IS_ERR(op))
7257 		return PTR_ERR(op);
7258 
7259 	copy_len = op[1];
7260 	ret = copy_len;
7261 	if (copy_len > len) {
7262 		ret = -ENOSPC;
7263 		copy_len = len;
7264 	}
7265 
7266 	memcpy(search_res, op, copy_len);
7267 	return ret;
7268 }
7269 
7270 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7271 	.func		= bpf_sock_ops_load_hdr_opt,
7272 	.gpl_only	= false,
7273 	.ret_type	= RET_INTEGER,
7274 	.arg1_type	= ARG_PTR_TO_CTX,
7275 	.arg2_type	= ARG_PTR_TO_MEM,
7276 	.arg3_type	= ARG_CONST_SIZE,
7277 	.arg4_type	= ARG_ANYTHING,
7278 };
7279 
7280 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7281 	   const void *, from, u32, len, u64, flags)
7282 {
7283 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7284 	const u8 *op, *new_op, *magic = NULL;
7285 	struct sk_buff *skb;
7286 	bool eol;
7287 
7288 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7289 		return -EPERM;
7290 
7291 	if (len < 2 || flags)
7292 		return -EINVAL;
7293 
7294 	new_op = from;
7295 	new_kind = new_op[0];
7296 	new_kind_len = new_op[1];
7297 
7298 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7299 	    new_kind == TCPOPT_EOL)
7300 		return -EINVAL;
7301 
7302 	if (new_kind_len > bpf_sock->remaining_opt_len)
7303 		return -ENOSPC;
7304 
7305 	/* 253 is another experimental kind */
7306 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7307 		if (new_kind_len < 4)
7308 			return -EINVAL;
7309 		/* Match for the 2 byte magic also.
7310 		 * RFC 6994: the magic could be 2 or 4 bytes.
7311 		 * Hence, matching by 2 byte only is on the
7312 		 * conservative side but it is the right
7313 		 * thing to do for the 'search-for-duplication'
7314 		 * purpose.
7315 		 */
7316 		magic = &new_op[2];
7317 		magic_len = 2;
7318 	}
7319 
7320 	/* Check for duplication */
7321 	skb = bpf_sock->skb;
7322 	op = skb->data + sizeof(struct tcphdr);
7323 	opend = bpf_sock->skb_data_end;
7324 
7325 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7326 				&eol);
7327 	if (!IS_ERR(op))
7328 		return -EEXIST;
7329 
7330 	if (PTR_ERR(op) != -ENOMSG)
7331 		return PTR_ERR(op);
7332 
7333 	if (eol)
7334 		/* The option has been ended.  Treat it as no more
7335 		 * header option can be written.
7336 		 */
7337 		return -ENOSPC;
7338 
7339 	/* No duplication found.  Store the header option. */
7340 	memcpy(opend, from, new_kind_len);
7341 
7342 	bpf_sock->remaining_opt_len -= new_kind_len;
7343 	bpf_sock->skb_data_end += new_kind_len;
7344 
7345 	return 0;
7346 }
7347 
7348 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7349 	.func		= bpf_sock_ops_store_hdr_opt,
7350 	.gpl_only	= false,
7351 	.ret_type	= RET_INTEGER,
7352 	.arg1_type	= ARG_PTR_TO_CTX,
7353 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7354 	.arg3_type	= ARG_CONST_SIZE,
7355 	.arg4_type	= ARG_ANYTHING,
7356 };
7357 
7358 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7359 	   u32, len, u64, flags)
7360 {
7361 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7362 		return -EPERM;
7363 
7364 	if (flags || len < 2)
7365 		return -EINVAL;
7366 
7367 	if (len > bpf_sock->remaining_opt_len)
7368 		return -ENOSPC;
7369 
7370 	bpf_sock->remaining_opt_len -= len;
7371 
7372 	return 0;
7373 }
7374 
7375 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7376 	.func		= bpf_sock_ops_reserve_hdr_opt,
7377 	.gpl_only	= false,
7378 	.ret_type	= RET_INTEGER,
7379 	.arg1_type	= ARG_PTR_TO_CTX,
7380 	.arg2_type	= ARG_ANYTHING,
7381 	.arg3_type	= ARG_ANYTHING,
7382 };
7383 
7384 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7385 	   u64, tstamp, u32, tstamp_type)
7386 {
7387 	/* skb_clear_delivery_time() is done for inet protocol */
7388 	if (skb->protocol != htons(ETH_P_IP) &&
7389 	    skb->protocol != htons(ETH_P_IPV6))
7390 		return -EOPNOTSUPP;
7391 
7392 	switch (tstamp_type) {
7393 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7394 		if (!tstamp)
7395 			return -EINVAL;
7396 		skb->tstamp = tstamp;
7397 		skb->mono_delivery_time = 1;
7398 		break;
7399 	case BPF_SKB_TSTAMP_UNSPEC:
7400 		if (tstamp)
7401 			return -EINVAL;
7402 		skb->tstamp = 0;
7403 		skb->mono_delivery_time = 0;
7404 		break;
7405 	default:
7406 		return -EINVAL;
7407 	}
7408 
7409 	return 0;
7410 }
7411 
7412 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7413 	.func           = bpf_skb_set_tstamp,
7414 	.gpl_only       = false,
7415 	.ret_type       = RET_INTEGER,
7416 	.arg1_type      = ARG_PTR_TO_CTX,
7417 	.arg2_type      = ARG_ANYTHING,
7418 	.arg3_type      = ARG_ANYTHING,
7419 };
7420 
7421 #ifdef CONFIG_SYN_COOKIES
7422 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7423 	   struct tcphdr *, th, u32, th_len)
7424 {
7425 	u32 cookie;
7426 	u16 mss;
7427 
7428 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7429 		return -EINVAL;
7430 
7431 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7432 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7433 
7434 	return cookie | ((u64)mss << 32);
7435 }
7436 
7437 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7438 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7439 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7440 	.pkt_access	= true,
7441 	.ret_type	= RET_INTEGER,
7442 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7443 	.arg1_size	= sizeof(struct iphdr),
7444 	.arg2_type	= ARG_PTR_TO_MEM,
7445 	.arg3_type	= ARG_CONST_SIZE,
7446 };
7447 
7448 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7449 	   struct tcphdr *, th, u32, th_len)
7450 {
7451 #if IS_BUILTIN(CONFIG_IPV6)
7452 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7453 		sizeof(struct ipv6hdr);
7454 	u32 cookie;
7455 	u16 mss;
7456 
7457 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7458 		return -EINVAL;
7459 
7460 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7461 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7462 
7463 	return cookie | ((u64)mss << 32);
7464 #else
7465 	return -EPROTONOSUPPORT;
7466 #endif
7467 }
7468 
7469 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7470 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7471 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7472 	.pkt_access	= true,
7473 	.ret_type	= RET_INTEGER,
7474 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7475 	.arg1_size	= sizeof(struct ipv6hdr),
7476 	.arg2_type	= ARG_PTR_TO_MEM,
7477 	.arg3_type	= ARG_CONST_SIZE,
7478 };
7479 
7480 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7481 	   struct tcphdr *, th)
7482 {
7483 	u32 cookie = ntohl(th->ack_seq) - 1;
7484 
7485 	if (__cookie_v4_check(iph, th, cookie) > 0)
7486 		return 0;
7487 
7488 	return -EACCES;
7489 }
7490 
7491 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7492 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7493 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7494 	.pkt_access	= true,
7495 	.ret_type	= RET_INTEGER,
7496 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7497 	.arg1_size	= sizeof(struct iphdr),
7498 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7499 	.arg2_size	= sizeof(struct tcphdr),
7500 };
7501 
7502 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7503 	   struct tcphdr *, th)
7504 {
7505 #if IS_BUILTIN(CONFIG_IPV6)
7506 	u32 cookie = ntohl(th->ack_seq) - 1;
7507 
7508 	if (__cookie_v6_check(iph, th, cookie) > 0)
7509 		return 0;
7510 
7511 	return -EACCES;
7512 #else
7513 	return -EPROTONOSUPPORT;
7514 #endif
7515 }
7516 
7517 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7518 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7519 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7520 	.pkt_access	= true,
7521 	.ret_type	= RET_INTEGER,
7522 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7523 	.arg1_size	= sizeof(struct ipv6hdr),
7524 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7525 	.arg2_size	= sizeof(struct tcphdr),
7526 };
7527 #endif /* CONFIG_SYN_COOKIES */
7528 
7529 #endif /* CONFIG_INET */
7530 
7531 bool bpf_helper_changes_pkt_data(void *func)
7532 {
7533 	if (func == bpf_skb_vlan_push ||
7534 	    func == bpf_skb_vlan_pop ||
7535 	    func == bpf_skb_store_bytes ||
7536 	    func == bpf_skb_change_proto ||
7537 	    func == bpf_skb_change_head ||
7538 	    func == sk_skb_change_head ||
7539 	    func == bpf_skb_change_tail ||
7540 	    func == sk_skb_change_tail ||
7541 	    func == bpf_skb_adjust_room ||
7542 	    func == sk_skb_adjust_room ||
7543 	    func == bpf_skb_pull_data ||
7544 	    func == sk_skb_pull_data ||
7545 	    func == bpf_clone_redirect ||
7546 	    func == bpf_l3_csum_replace ||
7547 	    func == bpf_l4_csum_replace ||
7548 	    func == bpf_xdp_adjust_head ||
7549 	    func == bpf_xdp_adjust_meta ||
7550 	    func == bpf_msg_pull_data ||
7551 	    func == bpf_msg_push_data ||
7552 	    func == bpf_msg_pop_data ||
7553 	    func == bpf_xdp_adjust_tail ||
7554 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7555 	    func == bpf_lwt_seg6_store_bytes ||
7556 	    func == bpf_lwt_seg6_adjust_srh ||
7557 	    func == bpf_lwt_seg6_action ||
7558 #endif
7559 #ifdef CONFIG_INET
7560 	    func == bpf_sock_ops_store_hdr_opt ||
7561 #endif
7562 	    func == bpf_lwt_in_push_encap ||
7563 	    func == bpf_lwt_xmit_push_encap)
7564 		return true;
7565 
7566 	return false;
7567 }
7568 
7569 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7570 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7571 
7572 static const struct bpf_func_proto *
7573 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7574 {
7575 	const struct bpf_func_proto *func_proto;
7576 
7577 	func_proto = cgroup_common_func_proto(func_id, prog);
7578 	if (func_proto)
7579 		return func_proto;
7580 
7581 	func_proto = cgroup_current_func_proto(func_id, prog);
7582 	if (func_proto)
7583 		return func_proto;
7584 
7585 	switch (func_id) {
7586 	case BPF_FUNC_get_socket_cookie:
7587 		return &bpf_get_socket_cookie_sock_proto;
7588 	case BPF_FUNC_get_netns_cookie:
7589 		return &bpf_get_netns_cookie_sock_proto;
7590 	case BPF_FUNC_perf_event_output:
7591 		return &bpf_event_output_data_proto;
7592 	case BPF_FUNC_sk_storage_get:
7593 		return &bpf_sk_storage_get_cg_sock_proto;
7594 	case BPF_FUNC_ktime_get_coarse_ns:
7595 		return &bpf_ktime_get_coarse_ns_proto;
7596 	default:
7597 		return bpf_base_func_proto(func_id);
7598 	}
7599 }
7600 
7601 static const struct bpf_func_proto *
7602 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7603 {
7604 	const struct bpf_func_proto *func_proto;
7605 
7606 	func_proto = cgroup_common_func_proto(func_id, prog);
7607 	if (func_proto)
7608 		return func_proto;
7609 
7610 	func_proto = cgroup_current_func_proto(func_id, prog);
7611 	if (func_proto)
7612 		return func_proto;
7613 
7614 	switch (func_id) {
7615 	case BPF_FUNC_bind:
7616 		switch (prog->expected_attach_type) {
7617 		case BPF_CGROUP_INET4_CONNECT:
7618 		case BPF_CGROUP_INET6_CONNECT:
7619 			return &bpf_bind_proto;
7620 		default:
7621 			return NULL;
7622 		}
7623 	case BPF_FUNC_get_socket_cookie:
7624 		return &bpf_get_socket_cookie_sock_addr_proto;
7625 	case BPF_FUNC_get_netns_cookie:
7626 		return &bpf_get_netns_cookie_sock_addr_proto;
7627 	case BPF_FUNC_perf_event_output:
7628 		return &bpf_event_output_data_proto;
7629 #ifdef CONFIG_INET
7630 	case BPF_FUNC_sk_lookup_tcp:
7631 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7632 	case BPF_FUNC_sk_lookup_udp:
7633 		return &bpf_sock_addr_sk_lookup_udp_proto;
7634 	case BPF_FUNC_sk_release:
7635 		return &bpf_sk_release_proto;
7636 	case BPF_FUNC_skc_lookup_tcp:
7637 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7638 #endif /* CONFIG_INET */
7639 	case BPF_FUNC_sk_storage_get:
7640 		return &bpf_sk_storage_get_proto;
7641 	case BPF_FUNC_sk_storage_delete:
7642 		return &bpf_sk_storage_delete_proto;
7643 	case BPF_FUNC_setsockopt:
7644 		switch (prog->expected_attach_type) {
7645 		case BPF_CGROUP_INET4_BIND:
7646 		case BPF_CGROUP_INET6_BIND:
7647 		case BPF_CGROUP_INET4_CONNECT:
7648 		case BPF_CGROUP_INET6_CONNECT:
7649 		case BPF_CGROUP_UDP4_RECVMSG:
7650 		case BPF_CGROUP_UDP6_RECVMSG:
7651 		case BPF_CGROUP_UDP4_SENDMSG:
7652 		case BPF_CGROUP_UDP6_SENDMSG:
7653 		case BPF_CGROUP_INET4_GETPEERNAME:
7654 		case BPF_CGROUP_INET6_GETPEERNAME:
7655 		case BPF_CGROUP_INET4_GETSOCKNAME:
7656 		case BPF_CGROUP_INET6_GETSOCKNAME:
7657 			return &bpf_sock_addr_setsockopt_proto;
7658 		default:
7659 			return NULL;
7660 		}
7661 	case BPF_FUNC_getsockopt:
7662 		switch (prog->expected_attach_type) {
7663 		case BPF_CGROUP_INET4_BIND:
7664 		case BPF_CGROUP_INET6_BIND:
7665 		case BPF_CGROUP_INET4_CONNECT:
7666 		case BPF_CGROUP_INET6_CONNECT:
7667 		case BPF_CGROUP_UDP4_RECVMSG:
7668 		case BPF_CGROUP_UDP6_RECVMSG:
7669 		case BPF_CGROUP_UDP4_SENDMSG:
7670 		case BPF_CGROUP_UDP6_SENDMSG:
7671 		case BPF_CGROUP_INET4_GETPEERNAME:
7672 		case BPF_CGROUP_INET6_GETPEERNAME:
7673 		case BPF_CGROUP_INET4_GETSOCKNAME:
7674 		case BPF_CGROUP_INET6_GETSOCKNAME:
7675 			return &bpf_sock_addr_getsockopt_proto;
7676 		default:
7677 			return NULL;
7678 		}
7679 	default:
7680 		return bpf_sk_base_func_proto(func_id);
7681 	}
7682 }
7683 
7684 static const struct bpf_func_proto *
7685 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7686 {
7687 	switch (func_id) {
7688 	case BPF_FUNC_skb_load_bytes:
7689 		return &bpf_skb_load_bytes_proto;
7690 	case BPF_FUNC_skb_load_bytes_relative:
7691 		return &bpf_skb_load_bytes_relative_proto;
7692 	case BPF_FUNC_get_socket_cookie:
7693 		return &bpf_get_socket_cookie_proto;
7694 	case BPF_FUNC_get_socket_uid:
7695 		return &bpf_get_socket_uid_proto;
7696 	case BPF_FUNC_perf_event_output:
7697 		return &bpf_skb_event_output_proto;
7698 	default:
7699 		return bpf_sk_base_func_proto(func_id);
7700 	}
7701 }
7702 
7703 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7704 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7705 
7706 static const struct bpf_func_proto *
7707 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7708 {
7709 	const struct bpf_func_proto *func_proto;
7710 
7711 	func_proto = cgroup_common_func_proto(func_id, prog);
7712 	if (func_proto)
7713 		return func_proto;
7714 
7715 	switch (func_id) {
7716 	case BPF_FUNC_sk_fullsock:
7717 		return &bpf_sk_fullsock_proto;
7718 	case BPF_FUNC_sk_storage_get:
7719 		return &bpf_sk_storage_get_proto;
7720 	case BPF_FUNC_sk_storage_delete:
7721 		return &bpf_sk_storage_delete_proto;
7722 	case BPF_FUNC_perf_event_output:
7723 		return &bpf_skb_event_output_proto;
7724 #ifdef CONFIG_SOCK_CGROUP_DATA
7725 	case BPF_FUNC_skb_cgroup_id:
7726 		return &bpf_skb_cgroup_id_proto;
7727 	case BPF_FUNC_skb_ancestor_cgroup_id:
7728 		return &bpf_skb_ancestor_cgroup_id_proto;
7729 	case BPF_FUNC_sk_cgroup_id:
7730 		return &bpf_sk_cgroup_id_proto;
7731 	case BPF_FUNC_sk_ancestor_cgroup_id:
7732 		return &bpf_sk_ancestor_cgroup_id_proto;
7733 #endif
7734 #ifdef CONFIG_INET
7735 	case BPF_FUNC_sk_lookup_tcp:
7736 		return &bpf_sk_lookup_tcp_proto;
7737 	case BPF_FUNC_sk_lookup_udp:
7738 		return &bpf_sk_lookup_udp_proto;
7739 	case BPF_FUNC_sk_release:
7740 		return &bpf_sk_release_proto;
7741 	case BPF_FUNC_skc_lookup_tcp:
7742 		return &bpf_skc_lookup_tcp_proto;
7743 	case BPF_FUNC_tcp_sock:
7744 		return &bpf_tcp_sock_proto;
7745 	case BPF_FUNC_get_listener_sock:
7746 		return &bpf_get_listener_sock_proto;
7747 	case BPF_FUNC_skb_ecn_set_ce:
7748 		return &bpf_skb_ecn_set_ce_proto;
7749 #endif
7750 	default:
7751 		return sk_filter_func_proto(func_id, prog);
7752 	}
7753 }
7754 
7755 static const struct bpf_func_proto *
7756 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7757 {
7758 	switch (func_id) {
7759 	case BPF_FUNC_skb_store_bytes:
7760 		return &bpf_skb_store_bytes_proto;
7761 	case BPF_FUNC_skb_load_bytes:
7762 		return &bpf_skb_load_bytes_proto;
7763 	case BPF_FUNC_skb_load_bytes_relative:
7764 		return &bpf_skb_load_bytes_relative_proto;
7765 	case BPF_FUNC_skb_pull_data:
7766 		return &bpf_skb_pull_data_proto;
7767 	case BPF_FUNC_csum_diff:
7768 		return &bpf_csum_diff_proto;
7769 	case BPF_FUNC_csum_update:
7770 		return &bpf_csum_update_proto;
7771 	case BPF_FUNC_csum_level:
7772 		return &bpf_csum_level_proto;
7773 	case BPF_FUNC_l3_csum_replace:
7774 		return &bpf_l3_csum_replace_proto;
7775 	case BPF_FUNC_l4_csum_replace:
7776 		return &bpf_l4_csum_replace_proto;
7777 	case BPF_FUNC_clone_redirect:
7778 		return &bpf_clone_redirect_proto;
7779 	case BPF_FUNC_get_cgroup_classid:
7780 		return &bpf_get_cgroup_classid_proto;
7781 	case BPF_FUNC_skb_vlan_push:
7782 		return &bpf_skb_vlan_push_proto;
7783 	case BPF_FUNC_skb_vlan_pop:
7784 		return &bpf_skb_vlan_pop_proto;
7785 	case BPF_FUNC_skb_change_proto:
7786 		return &bpf_skb_change_proto_proto;
7787 	case BPF_FUNC_skb_change_type:
7788 		return &bpf_skb_change_type_proto;
7789 	case BPF_FUNC_skb_adjust_room:
7790 		return &bpf_skb_adjust_room_proto;
7791 	case BPF_FUNC_skb_change_tail:
7792 		return &bpf_skb_change_tail_proto;
7793 	case BPF_FUNC_skb_change_head:
7794 		return &bpf_skb_change_head_proto;
7795 	case BPF_FUNC_skb_get_tunnel_key:
7796 		return &bpf_skb_get_tunnel_key_proto;
7797 	case BPF_FUNC_skb_set_tunnel_key:
7798 		return bpf_get_skb_set_tunnel_proto(func_id);
7799 	case BPF_FUNC_skb_get_tunnel_opt:
7800 		return &bpf_skb_get_tunnel_opt_proto;
7801 	case BPF_FUNC_skb_set_tunnel_opt:
7802 		return bpf_get_skb_set_tunnel_proto(func_id);
7803 	case BPF_FUNC_redirect:
7804 		return &bpf_redirect_proto;
7805 	case BPF_FUNC_redirect_neigh:
7806 		return &bpf_redirect_neigh_proto;
7807 	case BPF_FUNC_redirect_peer:
7808 		return &bpf_redirect_peer_proto;
7809 	case BPF_FUNC_get_route_realm:
7810 		return &bpf_get_route_realm_proto;
7811 	case BPF_FUNC_get_hash_recalc:
7812 		return &bpf_get_hash_recalc_proto;
7813 	case BPF_FUNC_set_hash_invalid:
7814 		return &bpf_set_hash_invalid_proto;
7815 	case BPF_FUNC_set_hash:
7816 		return &bpf_set_hash_proto;
7817 	case BPF_FUNC_perf_event_output:
7818 		return &bpf_skb_event_output_proto;
7819 	case BPF_FUNC_get_smp_processor_id:
7820 		return &bpf_get_smp_processor_id_proto;
7821 	case BPF_FUNC_skb_under_cgroup:
7822 		return &bpf_skb_under_cgroup_proto;
7823 	case BPF_FUNC_get_socket_cookie:
7824 		return &bpf_get_socket_cookie_proto;
7825 	case BPF_FUNC_get_socket_uid:
7826 		return &bpf_get_socket_uid_proto;
7827 	case BPF_FUNC_fib_lookup:
7828 		return &bpf_skb_fib_lookup_proto;
7829 	case BPF_FUNC_check_mtu:
7830 		return &bpf_skb_check_mtu_proto;
7831 	case BPF_FUNC_sk_fullsock:
7832 		return &bpf_sk_fullsock_proto;
7833 	case BPF_FUNC_sk_storage_get:
7834 		return &bpf_sk_storage_get_proto;
7835 	case BPF_FUNC_sk_storage_delete:
7836 		return &bpf_sk_storage_delete_proto;
7837 #ifdef CONFIG_XFRM
7838 	case BPF_FUNC_skb_get_xfrm_state:
7839 		return &bpf_skb_get_xfrm_state_proto;
7840 #endif
7841 #ifdef CONFIG_CGROUP_NET_CLASSID
7842 	case BPF_FUNC_skb_cgroup_classid:
7843 		return &bpf_skb_cgroup_classid_proto;
7844 #endif
7845 #ifdef CONFIG_SOCK_CGROUP_DATA
7846 	case BPF_FUNC_skb_cgroup_id:
7847 		return &bpf_skb_cgroup_id_proto;
7848 	case BPF_FUNC_skb_ancestor_cgroup_id:
7849 		return &bpf_skb_ancestor_cgroup_id_proto;
7850 #endif
7851 #ifdef CONFIG_INET
7852 	case BPF_FUNC_sk_lookup_tcp:
7853 		return &bpf_sk_lookup_tcp_proto;
7854 	case BPF_FUNC_sk_lookup_udp:
7855 		return &bpf_sk_lookup_udp_proto;
7856 	case BPF_FUNC_sk_release:
7857 		return &bpf_sk_release_proto;
7858 	case BPF_FUNC_tcp_sock:
7859 		return &bpf_tcp_sock_proto;
7860 	case BPF_FUNC_get_listener_sock:
7861 		return &bpf_get_listener_sock_proto;
7862 	case BPF_FUNC_skc_lookup_tcp:
7863 		return &bpf_skc_lookup_tcp_proto;
7864 	case BPF_FUNC_tcp_check_syncookie:
7865 		return &bpf_tcp_check_syncookie_proto;
7866 	case BPF_FUNC_skb_ecn_set_ce:
7867 		return &bpf_skb_ecn_set_ce_proto;
7868 	case BPF_FUNC_tcp_gen_syncookie:
7869 		return &bpf_tcp_gen_syncookie_proto;
7870 	case BPF_FUNC_sk_assign:
7871 		return &bpf_sk_assign_proto;
7872 	case BPF_FUNC_skb_set_tstamp:
7873 		return &bpf_skb_set_tstamp_proto;
7874 #ifdef CONFIG_SYN_COOKIES
7875 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7876 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7877 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7878 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7879 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7880 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7881 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7882 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7883 #endif
7884 #endif
7885 	default:
7886 		return bpf_sk_base_func_proto(func_id);
7887 	}
7888 }
7889 
7890 static const struct bpf_func_proto *
7891 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7892 {
7893 	switch (func_id) {
7894 	case BPF_FUNC_perf_event_output:
7895 		return &bpf_xdp_event_output_proto;
7896 	case BPF_FUNC_get_smp_processor_id:
7897 		return &bpf_get_smp_processor_id_proto;
7898 	case BPF_FUNC_csum_diff:
7899 		return &bpf_csum_diff_proto;
7900 	case BPF_FUNC_xdp_adjust_head:
7901 		return &bpf_xdp_adjust_head_proto;
7902 	case BPF_FUNC_xdp_adjust_meta:
7903 		return &bpf_xdp_adjust_meta_proto;
7904 	case BPF_FUNC_redirect:
7905 		return &bpf_xdp_redirect_proto;
7906 	case BPF_FUNC_redirect_map:
7907 		return &bpf_xdp_redirect_map_proto;
7908 	case BPF_FUNC_xdp_adjust_tail:
7909 		return &bpf_xdp_adjust_tail_proto;
7910 	case BPF_FUNC_xdp_get_buff_len:
7911 		return &bpf_xdp_get_buff_len_proto;
7912 	case BPF_FUNC_xdp_load_bytes:
7913 		return &bpf_xdp_load_bytes_proto;
7914 	case BPF_FUNC_xdp_store_bytes:
7915 		return &bpf_xdp_store_bytes_proto;
7916 	case BPF_FUNC_fib_lookup:
7917 		return &bpf_xdp_fib_lookup_proto;
7918 	case BPF_FUNC_check_mtu:
7919 		return &bpf_xdp_check_mtu_proto;
7920 #ifdef CONFIG_INET
7921 	case BPF_FUNC_sk_lookup_udp:
7922 		return &bpf_xdp_sk_lookup_udp_proto;
7923 	case BPF_FUNC_sk_lookup_tcp:
7924 		return &bpf_xdp_sk_lookup_tcp_proto;
7925 	case BPF_FUNC_sk_release:
7926 		return &bpf_sk_release_proto;
7927 	case BPF_FUNC_skc_lookup_tcp:
7928 		return &bpf_xdp_skc_lookup_tcp_proto;
7929 	case BPF_FUNC_tcp_check_syncookie:
7930 		return &bpf_tcp_check_syncookie_proto;
7931 	case BPF_FUNC_tcp_gen_syncookie:
7932 		return &bpf_tcp_gen_syncookie_proto;
7933 #ifdef CONFIG_SYN_COOKIES
7934 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7935 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7936 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7937 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7938 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7939 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7940 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7941 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7942 #endif
7943 #endif
7944 	default:
7945 		return bpf_sk_base_func_proto(func_id);
7946 	}
7947 }
7948 
7949 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7950 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7951 
7952 static const struct bpf_func_proto *
7953 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7954 {
7955 	const struct bpf_func_proto *func_proto;
7956 
7957 	func_proto = cgroup_common_func_proto(func_id, prog);
7958 	if (func_proto)
7959 		return func_proto;
7960 
7961 	switch (func_id) {
7962 	case BPF_FUNC_setsockopt:
7963 		return &bpf_sock_ops_setsockopt_proto;
7964 	case BPF_FUNC_getsockopt:
7965 		return &bpf_sock_ops_getsockopt_proto;
7966 	case BPF_FUNC_sock_ops_cb_flags_set:
7967 		return &bpf_sock_ops_cb_flags_set_proto;
7968 	case BPF_FUNC_sock_map_update:
7969 		return &bpf_sock_map_update_proto;
7970 	case BPF_FUNC_sock_hash_update:
7971 		return &bpf_sock_hash_update_proto;
7972 	case BPF_FUNC_get_socket_cookie:
7973 		return &bpf_get_socket_cookie_sock_ops_proto;
7974 	case BPF_FUNC_perf_event_output:
7975 		return &bpf_event_output_data_proto;
7976 	case BPF_FUNC_sk_storage_get:
7977 		return &bpf_sk_storage_get_proto;
7978 	case BPF_FUNC_sk_storage_delete:
7979 		return &bpf_sk_storage_delete_proto;
7980 	case BPF_FUNC_get_netns_cookie:
7981 		return &bpf_get_netns_cookie_sock_ops_proto;
7982 #ifdef CONFIG_INET
7983 	case BPF_FUNC_load_hdr_opt:
7984 		return &bpf_sock_ops_load_hdr_opt_proto;
7985 	case BPF_FUNC_store_hdr_opt:
7986 		return &bpf_sock_ops_store_hdr_opt_proto;
7987 	case BPF_FUNC_reserve_hdr_opt:
7988 		return &bpf_sock_ops_reserve_hdr_opt_proto;
7989 	case BPF_FUNC_tcp_sock:
7990 		return &bpf_tcp_sock_proto;
7991 #endif /* CONFIG_INET */
7992 	default:
7993 		return bpf_sk_base_func_proto(func_id);
7994 	}
7995 }
7996 
7997 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7998 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7999 
8000 static const struct bpf_func_proto *
8001 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8002 {
8003 	switch (func_id) {
8004 	case BPF_FUNC_msg_redirect_map:
8005 		return &bpf_msg_redirect_map_proto;
8006 	case BPF_FUNC_msg_redirect_hash:
8007 		return &bpf_msg_redirect_hash_proto;
8008 	case BPF_FUNC_msg_apply_bytes:
8009 		return &bpf_msg_apply_bytes_proto;
8010 	case BPF_FUNC_msg_cork_bytes:
8011 		return &bpf_msg_cork_bytes_proto;
8012 	case BPF_FUNC_msg_pull_data:
8013 		return &bpf_msg_pull_data_proto;
8014 	case BPF_FUNC_msg_push_data:
8015 		return &bpf_msg_push_data_proto;
8016 	case BPF_FUNC_msg_pop_data:
8017 		return &bpf_msg_pop_data_proto;
8018 	case BPF_FUNC_perf_event_output:
8019 		return &bpf_event_output_data_proto;
8020 	case BPF_FUNC_get_current_uid_gid:
8021 		return &bpf_get_current_uid_gid_proto;
8022 	case BPF_FUNC_get_current_pid_tgid:
8023 		return &bpf_get_current_pid_tgid_proto;
8024 	case BPF_FUNC_sk_storage_get:
8025 		return &bpf_sk_storage_get_proto;
8026 	case BPF_FUNC_sk_storage_delete:
8027 		return &bpf_sk_storage_delete_proto;
8028 	case BPF_FUNC_get_netns_cookie:
8029 		return &bpf_get_netns_cookie_sk_msg_proto;
8030 #ifdef CONFIG_CGROUPS
8031 	case BPF_FUNC_get_current_cgroup_id:
8032 		return &bpf_get_current_cgroup_id_proto;
8033 	case BPF_FUNC_get_current_ancestor_cgroup_id:
8034 		return &bpf_get_current_ancestor_cgroup_id_proto;
8035 #endif
8036 #ifdef CONFIG_CGROUP_NET_CLASSID
8037 	case BPF_FUNC_get_cgroup_classid:
8038 		return &bpf_get_cgroup_classid_curr_proto;
8039 #endif
8040 	default:
8041 		return bpf_sk_base_func_proto(func_id);
8042 	}
8043 }
8044 
8045 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8046 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8047 
8048 static const struct bpf_func_proto *
8049 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8050 {
8051 	switch (func_id) {
8052 	case BPF_FUNC_skb_store_bytes:
8053 		return &bpf_skb_store_bytes_proto;
8054 	case BPF_FUNC_skb_load_bytes:
8055 		return &bpf_skb_load_bytes_proto;
8056 	case BPF_FUNC_skb_pull_data:
8057 		return &sk_skb_pull_data_proto;
8058 	case BPF_FUNC_skb_change_tail:
8059 		return &sk_skb_change_tail_proto;
8060 	case BPF_FUNC_skb_change_head:
8061 		return &sk_skb_change_head_proto;
8062 	case BPF_FUNC_skb_adjust_room:
8063 		return &sk_skb_adjust_room_proto;
8064 	case BPF_FUNC_get_socket_cookie:
8065 		return &bpf_get_socket_cookie_proto;
8066 	case BPF_FUNC_get_socket_uid:
8067 		return &bpf_get_socket_uid_proto;
8068 	case BPF_FUNC_sk_redirect_map:
8069 		return &bpf_sk_redirect_map_proto;
8070 	case BPF_FUNC_sk_redirect_hash:
8071 		return &bpf_sk_redirect_hash_proto;
8072 	case BPF_FUNC_perf_event_output:
8073 		return &bpf_skb_event_output_proto;
8074 #ifdef CONFIG_INET
8075 	case BPF_FUNC_sk_lookup_tcp:
8076 		return &bpf_sk_lookup_tcp_proto;
8077 	case BPF_FUNC_sk_lookup_udp:
8078 		return &bpf_sk_lookup_udp_proto;
8079 	case BPF_FUNC_sk_release:
8080 		return &bpf_sk_release_proto;
8081 	case BPF_FUNC_skc_lookup_tcp:
8082 		return &bpf_skc_lookup_tcp_proto;
8083 #endif
8084 	default:
8085 		return bpf_sk_base_func_proto(func_id);
8086 	}
8087 }
8088 
8089 static const struct bpf_func_proto *
8090 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8091 {
8092 	switch (func_id) {
8093 	case BPF_FUNC_skb_load_bytes:
8094 		return &bpf_flow_dissector_load_bytes_proto;
8095 	default:
8096 		return bpf_sk_base_func_proto(func_id);
8097 	}
8098 }
8099 
8100 static const struct bpf_func_proto *
8101 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8102 {
8103 	switch (func_id) {
8104 	case BPF_FUNC_skb_load_bytes:
8105 		return &bpf_skb_load_bytes_proto;
8106 	case BPF_FUNC_skb_pull_data:
8107 		return &bpf_skb_pull_data_proto;
8108 	case BPF_FUNC_csum_diff:
8109 		return &bpf_csum_diff_proto;
8110 	case BPF_FUNC_get_cgroup_classid:
8111 		return &bpf_get_cgroup_classid_proto;
8112 	case BPF_FUNC_get_route_realm:
8113 		return &bpf_get_route_realm_proto;
8114 	case BPF_FUNC_get_hash_recalc:
8115 		return &bpf_get_hash_recalc_proto;
8116 	case BPF_FUNC_perf_event_output:
8117 		return &bpf_skb_event_output_proto;
8118 	case BPF_FUNC_get_smp_processor_id:
8119 		return &bpf_get_smp_processor_id_proto;
8120 	case BPF_FUNC_skb_under_cgroup:
8121 		return &bpf_skb_under_cgroup_proto;
8122 	default:
8123 		return bpf_sk_base_func_proto(func_id);
8124 	}
8125 }
8126 
8127 static const struct bpf_func_proto *
8128 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8129 {
8130 	switch (func_id) {
8131 	case BPF_FUNC_lwt_push_encap:
8132 		return &bpf_lwt_in_push_encap_proto;
8133 	default:
8134 		return lwt_out_func_proto(func_id, prog);
8135 	}
8136 }
8137 
8138 static const struct bpf_func_proto *
8139 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8140 {
8141 	switch (func_id) {
8142 	case BPF_FUNC_skb_get_tunnel_key:
8143 		return &bpf_skb_get_tunnel_key_proto;
8144 	case BPF_FUNC_skb_set_tunnel_key:
8145 		return bpf_get_skb_set_tunnel_proto(func_id);
8146 	case BPF_FUNC_skb_get_tunnel_opt:
8147 		return &bpf_skb_get_tunnel_opt_proto;
8148 	case BPF_FUNC_skb_set_tunnel_opt:
8149 		return bpf_get_skb_set_tunnel_proto(func_id);
8150 	case BPF_FUNC_redirect:
8151 		return &bpf_redirect_proto;
8152 	case BPF_FUNC_clone_redirect:
8153 		return &bpf_clone_redirect_proto;
8154 	case BPF_FUNC_skb_change_tail:
8155 		return &bpf_skb_change_tail_proto;
8156 	case BPF_FUNC_skb_change_head:
8157 		return &bpf_skb_change_head_proto;
8158 	case BPF_FUNC_skb_store_bytes:
8159 		return &bpf_skb_store_bytes_proto;
8160 	case BPF_FUNC_csum_update:
8161 		return &bpf_csum_update_proto;
8162 	case BPF_FUNC_csum_level:
8163 		return &bpf_csum_level_proto;
8164 	case BPF_FUNC_l3_csum_replace:
8165 		return &bpf_l3_csum_replace_proto;
8166 	case BPF_FUNC_l4_csum_replace:
8167 		return &bpf_l4_csum_replace_proto;
8168 	case BPF_FUNC_set_hash_invalid:
8169 		return &bpf_set_hash_invalid_proto;
8170 	case BPF_FUNC_lwt_push_encap:
8171 		return &bpf_lwt_xmit_push_encap_proto;
8172 	default:
8173 		return lwt_out_func_proto(func_id, prog);
8174 	}
8175 }
8176 
8177 static const struct bpf_func_proto *
8178 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8179 {
8180 	switch (func_id) {
8181 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8182 	case BPF_FUNC_lwt_seg6_store_bytes:
8183 		return &bpf_lwt_seg6_store_bytes_proto;
8184 	case BPF_FUNC_lwt_seg6_action:
8185 		return &bpf_lwt_seg6_action_proto;
8186 	case BPF_FUNC_lwt_seg6_adjust_srh:
8187 		return &bpf_lwt_seg6_adjust_srh_proto;
8188 #endif
8189 	default:
8190 		return lwt_out_func_proto(func_id, prog);
8191 	}
8192 }
8193 
8194 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8195 				    const struct bpf_prog *prog,
8196 				    struct bpf_insn_access_aux *info)
8197 {
8198 	const int size_default = sizeof(__u32);
8199 
8200 	if (off < 0 || off >= sizeof(struct __sk_buff))
8201 		return false;
8202 
8203 	/* The verifier guarantees that size > 0. */
8204 	if (off % size != 0)
8205 		return false;
8206 
8207 	switch (off) {
8208 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8209 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8210 			return false;
8211 		break;
8212 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8213 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8214 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8215 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8216 	case bpf_ctx_range(struct __sk_buff, data):
8217 	case bpf_ctx_range(struct __sk_buff, data_meta):
8218 	case bpf_ctx_range(struct __sk_buff, data_end):
8219 		if (size != size_default)
8220 			return false;
8221 		break;
8222 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8223 		return false;
8224 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8225 		if (type == BPF_WRITE || size != sizeof(__u64))
8226 			return false;
8227 		break;
8228 	case bpf_ctx_range(struct __sk_buff, tstamp):
8229 		if (size != sizeof(__u64))
8230 			return false;
8231 		break;
8232 	case offsetof(struct __sk_buff, sk):
8233 		if (type == BPF_WRITE || size != sizeof(__u64))
8234 			return false;
8235 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8236 		break;
8237 	case offsetof(struct __sk_buff, tstamp_type):
8238 		return false;
8239 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8240 		/* Explicitly prohibit access to padding in __sk_buff. */
8241 		return false;
8242 	default:
8243 		/* Only narrow read access allowed for now. */
8244 		if (type == BPF_WRITE) {
8245 			if (size != size_default)
8246 				return false;
8247 		} else {
8248 			bpf_ctx_record_field_size(info, size_default);
8249 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8250 				return false;
8251 		}
8252 	}
8253 
8254 	return true;
8255 }
8256 
8257 static bool sk_filter_is_valid_access(int off, int size,
8258 				      enum bpf_access_type type,
8259 				      const struct bpf_prog *prog,
8260 				      struct bpf_insn_access_aux *info)
8261 {
8262 	switch (off) {
8263 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8264 	case bpf_ctx_range(struct __sk_buff, data):
8265 	case bpf_ctx_range(struct __sk_buff, data_meta):
8266 	case bpf_ctx_range(struct __sk_buff, data_end):
8267 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8268 	case bpf_ctx_range(struct __sk_buff, tstamp):
8269 	case bpf_ctx_range(struct __sk_buff, wire_len):
8270 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8271 		return false;
8272 	}
8273 
8274 	if (type == BPF_WRITE) {
8275 		switch (off) {
8276 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8277 			break;
8278 		default:
8279 			return false;
8280 		}
8281 	}
8282 
8283 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8284 }
8285 
8286 static bool cg_skb_is_valid_access(int off, int size,
8287 				   enum bpf_access_type type,
8288 				   const struct bpf_prog *prog,
8289 				   struct bpf_insn_access_aux *info)
8290 {
8291 	switch (off) {
8292 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8293 	case bpf_ctx_range(struct __sk_buff, data_meta):
8294 	case bpf_ctx_range(struct __sk_buff, wire_len):
8295 		return false;
8296 	case bpf_ctx_range(struct __sk_buff, data):
8297 	case bpf_ctx_range(struct __sk_buff, data_end):
8298 		if (!bpf_capable())
8299 			return false;
8300 		break;
8301 	}
8302 
8303 	if (type == BPF_WRITE) {
8304 		switch (off) {
8305 		case bpf_ctx_range(struct __sk_buff, mark):
8306 		case bpf_ctx_range(struct __sk_buff, priority):
8307 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8308 			break;
8309 		case bpf_ctx_range(struct __sk_buff, tstamp):
8310 			if (!bpf_capable())
8311 				return false;
8312 			break;
8313 		default:
8314 			return false;
8315 		}
8316 	}
8317 
8318 	switch (off) {
8319 	case bpf_ctx_range(struct __sk_buff, data):
8320 		info->reg_type = PTR_TO_PACKET;
8321 		break;
8322 	case bpf_ctx_range(struct __sk_buff, data_end):
8323 		info->reg_type = PTR_TO_PACKET_END;
8324 		break;
8325 	}
8326 
8327 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8328 }
8329 
8330 static bool lwt_is_valid_access(int off, int size,
8331 				enum bpf_access_type type,
8332 				const struct bpf_prog *prog,
8333 				struct bpf_insn_access_aux *info)
8334 {
8335 	switch (off) {
8336 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8337 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8338 	case bpf_ctx_range(struct __sk_buff, data_meta):
8339 	case bpf_ctx_range(struct __sk_buff, tstamp):
8340 	case bpf_ctx_range(struct __sk_buff, wire_len):
8341 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8342 		return false;
8343 	}
8344 
8345 	if (type == BPF_WRITE) {
8346 		switch (off) {
8347 		case bpf_ctx_range(struct __sk_buff, mark):
8348 		case bpf_ctx_range(struct __sk_buff, priority):
8349 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8350 			break;
8351 		default:
8352 			return false;
8353 		}
8354 	}
8355 
8356 	switch (off) {
8357 	case bpf_ctx_range(struct __sk_buff, data):
8358 		info->reg_type = PTR_TO_PACKET;
8359 		break;
8360 	case bpf_ctx_range(struct __sk_buff, data_end):
8361 		info->reg_type = PTR_TO_PACKET_END;
8362 		break;
8363 	}
8364 
8365 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8366 }
8367 
8368 /* Attach type specific accesses */
8369 static bool __sock_filter_check_attach_type(int off,
8370 					    enum bpf_access_type access_type,
8371 					    enum bpf_attach_type attach_type)
8372 {
8373 	switch (off) {
8374 	case offsetof(struct bpf_sock, bound_dev_if):
8375 	case offsetof(struct bpf_sock, mark):
8376 	case offsetof(struct bpf_sock, priority):
8377 		switch (attach_type) {
8378 		case BPF_CGROUP_INET_SOCK_CREATE:
8379 		case BPF_CGROUP_INET_SOCK_RELEASE:
8380 			goto full_access;
8381 		default:
8382 			return false;
8383 		}
8384 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8385 		switch (attach_type) {
8386 		case BPF_CGROUP_INET4_POST_BIND:
8387 			goto read_only;
8388 		default:
8389 			return false;
8390 		}
8391 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8392 		switch (attach_type) {
8393 		case BPF_CGROUP_INET6_POST_BIND:
8394 			goto read_only;
8395 		default:
8396 			return false;
8397 		}
8398 	case bpf_ctx_range(struct bpf_sock, src_port):
8399 		switch (attach_type) {
8400 		case BPF_CGROUP_INET4_POST_BIND:
8401 		case BPF_CGROUP_INET6_POST_BIND:
8402 			goto read_only;
8403 		default:
8404 			return false;
8405 		}
8406 	}
8407 read_only:
8408 	return access_type == BPF_READ;
8409 full_access:
8410 	return true;
8411 }
8412 
8413 bool bpf_sock_common_is_valid_access(int off, int size,
8414 				     enum bpf_access_type type,
8415 				     struct bpf_insn_access_aux *info)
8416 {
8417 	switch (off) {
8418 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8419 		return false;
8420 	default:
8421 		return bpf_sock_is_valid_access(off, size, type, info);
8422 	}
8423 }
8424 
8425 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8426 			      struct bpf_insn_access_aux *info)
8427 {
8428 	const int size_default = sizeof(__u32);
8429 	int field_size;
8430 
8431 	if (off < 0 || off >= sizeof(struct bpf_sock))
8432 		return false;
8433 	if (off % size != 0)
8434 		return false;
8435 
8436 	switch (off) {
8437 	case offsetof(struct bpf_sock, state):
8438 	case offsetof(struct bpf_sock, family):
8439 	case offsetof(struct bpf_sock, type):
8440 	case offsetof(struct bpf_sock, protocol):
8441 	case offsetof(struct bpf_sock, src_port):
8442 	case offsetof(struct bpf_sock, rx_queue_mapping):
8443 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8444 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8445 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8446 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8447 		bpf_ctx_record_field_size(info, size_default);
8448 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8449 	case bpf_ctx_range(struct bpf_sock, dst_port):
8450 		field_size = size == size_default ?
8451 			size_default : sizeof_field(struct bpf_sock, dst_port);
8452 		bpf_ctx_record_field_size(info, field_size);
8453 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8454 	case offsetofend(struct bpf_sock, dst_port) ...
8455 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8456 		return false;
8457 	}
8458 
8459 	return size == size_default;
8460 }
8461 
8462 static bool sock_filter_is_valid_access(int off, int size,
8463 					enum bpf_access_type type,
8464 					const struct bpf_prog *prog,
8465 					struct bpf_insn_access_aux *info)
8466 {
8467 	if (!bpf_sock_is_valid_access(off, size, type, info))
8468 		return false;
8469 	return __sock_filter_check_attach_type(off, type,
8470 					       prog->expected_attach_type);
8471 }
8472 
8473 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8474 			     const struct bpf_prog *prog)
8475 {
8476 	/* Neither direct read nor direct write requires any preliminary
8477 	 * action.
8478 	 */
8479 	return 0;
8480 }
8481 
8482 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8483 				const struct bpf_prog *prog, int drop_verdict)
8484 {
8485 	struct bpf_insn *insn = insn_buf;
8486 
8487 	if (!direct_write)
8488 		return 0;
8489 
8490 	/* if (!skb->cloned)
8491 	 *       goto start;
8492 	 *
8493 	 * (Fast-path, otherwise approximation that we might be
8494 	 *  a clone, do the rest in helper.)
8495 	 */
8496 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8497 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8498 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8499 
8500 	/* ret = bpf_skb_pull_data(skb, 0); */
8501 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8502 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8503 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8504 			       BPF_FUNC_skb_pull_data);
8505 	/* if (!ret)
8506 	 *      goto restore;
8507 	 * return TC_ACT_SHOT;
8508 	 */
8509 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8510 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8511 	*insn++ = BPF_EXIT_INSN();
8512 
8513 	/* restore: */
8514 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8515 	/* start: */
8516 	*insn++ = prog->insnsi[0];
8517 
8518 	return insn - insn_buf;
8519 }
8520 
8521 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8522 			  struct bpf_insn *insn_buf)
8523 {
8524 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8525 	struct bpf_insn *insn = insn_buf;
8526 
8527 	if (!indirect) {
8528 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8529 	} else {
8530 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8531 		if (orig->imm)
8532 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8533 	}
8534 	/* We're guaranteed here that CTX is in R6. */
8535 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8536 
8537 	switch (BPF_SIZE(orig->code)) {
8538 	case BPF_B:
8539 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8540 		break;
8541 	case BPF_H:
8542 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8543 		break;
8544 	case BPF_W:
8545 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8546 		break;
8547 	}
8548 
8549 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8550 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8551 	*insn++ = BPF_EXIT_INSN();
8552 
8553 	return insn - insn_buf;
8554 }
8555 
8556 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8557 			       const struct bpf_prog *prog)
8558 {
8559 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8560 }
8561 
8562 static bool tc_cls_act_is_valid_access(int off, int size,
8563 				       enum bpf_access_type type,
8564 				       const struct bpf_prog *prog,
8565 				       struct bpf_insn_access_aux *info)
8566 {
8567 	if (type == BPF_WRITE) {
8568 		switch (off) {
8569 		case bpf_ctx_range(struct __sk_buff, mark):
8570 		case bpf_ctx_range(struct __sk_buff, tc_index):
8571 		case bpf_ctx_range(struct __sk_buff, priority):
8572 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8573 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8574 		case bpf_ctx_range(struct __sk_buff, tstamp):
8575 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8576 			break;
8577 		default:
8578 			return false;
8579 		}
8580 	}
8581 
8582 	switch (off) {
8583 	case bpf_ctx_range(struct __sk_buff, data):
8584 		info->reg_type = PTR_TO_PACKET;
8585 		break;
8586 	case bpf_ctx_range(struct __sk_buff, data_meta):
8587 		info->reg_type = PTR_TO_PACKET_META;
8588 		break;
8589 	case bpf_ctx_range(struct __sk_buff, data_end):
8590 		info->reg_type = PTR_TO_PACKET_END;
8591 		break;
8592 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8593 		return false;
8594 	case offsetof(struct __sk_buff, tstamp_type):
8595 		/* The convert_ctx_access() on reading and writing
8596 		 * __sk_buff->tstamp depends on whether the bpf prog
8597 		 * has used __sk_buff->tstamp_type or not.
8598 		 * Thus, we need to set prog->tstamp_type_access
8599 		 * earlier during is_valid_access() here.
8600 		 */
8601 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8602 		return size == sizeof(__u8);
8603 	}
8604 
8605 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8606 }
8607 
8608 static bool __is_valid_xdp_access(int off, int size)
8609 {
8610 	if (off < 0 || off >= sizeof(struct xdp_md))
8611 		return false;
8612 	if (off % size != 0)
8613 		return false;
8614 	if (size != sizeof(__u32))
8615 		return false;
8616 
8617 	return true;
8618 }
8619 
8620 static bool xdp_is_valid_access(int off, int size,
8621 				enum bpf_access_type type,
8622 				const struct bpf_prog *prog,
8623 				struct bpf_insn_access_aux *info)
8624 {
8625 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8626 		switch (off) {
8627 		case offsetof(struct xdp_md, egress_ifindex):
8628 			return false;
8629 		}
8630 	}
8631 
8632 	if (type == BPF_WRITE) {
8633 		if (bpf_prog_is_dev_bound(prog->aux)) {
8634 			switch (off) {
8635 			case offsetof(struct xdp_md, rx_queue_index):
8636 				return __is_valid_xdp_access(off, size);
8637 			}
8638 		}
8639 		return false;
8640 	}
8641 
8642 	switch (off) {
8643 	case offsetof(struct xdp_md, data):
8644 		info->reg_type = PTR_TO_PACKET;
8645 		break;
8646 	case offsetof(struct xdp_md, data_meta):
8647 		info->reg_type = PTR_TO_PACKET_META;
8648 		break;
8649 	case offsetof(struct xdp_md, data_end):
8650 		info->reg_type = PTR_TO_PACKET_END;
8651 		break;
8652 	}
8653 
8654 	return __is_valid_xdp_access(off, size);
8655 }
8656 
8657 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8658 {
8659 	const u32 act_max = XDP_REDIRECT;
8660 
8661 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8662 		     act > act_max ? "Illegal" : "Driver unsupported",
8663 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8664 }
8665 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8666 
8667 static bool sock_addr_is_valid_access(int off, int size,
8668 				      enum bpf_access_type type,
8669 				      const struct bpf_prog *prog,
8670 				      struct bpf_insn_access_aux *info)
8671 {
8672 	const int size_default = sizeof(__u32);
8673 
8674 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8675 		return false;
8676 	if (off % size != 0)
8677 		return false;
8678 
8679 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8680 	 * versa.
8681 	 */
8682 	switch (off) {
8683 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8684 		switch (prog->expected_attach_type) {
8685 		case BPF_CGROUP_INET4_BIND:
8686 		case BPF_CGROUP_INET4_CONNECT:
8687 		case BPF_CGROUP_INET4_GETPEERNAME:
8688 		case BPF_CGROUP_INET4_GETSOCKNAME:
8689 		case BPF_CGROUP_UDP4_SENDMSG:
8690 		case BPF_CGROUP_UDP4_RECVMSG:
8691 			break;
8692 		default:
8693 			return false;
8694 		}
8695 		break;
8696 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8697 		switch (prog->expected_attach_type) {
8698 		case BPF_CGROUP_INET6_BIND:
8699 		case BPF_CGROUP_INET6_CONNECT:
8700 		case BPF_CGROUP_INET6_GETPEERNAME:
8701 		case BPF_CGROUP_INET6_GETSOCKNAME:
8702 		case BPF_CGROUP_UDP6_SENDMSG:
8703 		case BPF_CGROUP_UDP6_RECVMSG:
8704 			break;
8705 		default:
8706 			return false;
8707 		}
8708 		break;
8709 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8710 		switch (prog->expected_attach_type) {
8711 		case BPF_CGROUP_UDP4_SENDMSG:
8712 			break;
8713 		default:
8714 			return false;
8715 		}
8716 		break;
8717 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8718 				msg_src_ip6[3]):
8719 		switch (prog->expected_attach_type) {
8720 		case BPF_CGROUP_UDP6_SENDMSG:
8721 			break;
8722 		default:
8723 			return false;
8724 		}
8725 		break;
8726 	}
8727 
8728 	switch (off) {
8729 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8730 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8731 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8732 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8733 				msg_src_ip6[3]):
8734 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8735 		if (type == BPF_READ) {
8736 			bpf_ctx_record_field_size(info, size_default);
8737 
8738 			if (bpf_ctx_wide_access_ok(off, size,
8739 						   struct bpf_sock_addr,
8740 						   user_ip6))
8741 				return true;
8742 
8743 			if (bpf_ctx_wide_access_ok(off, size,
8744 						   struct bpf_sock_addr,
8745 						   msg_src_ip6))
8746 				return true;
8747 
8748 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8749 				return false;
8750 		} else {
8751 			if (bpf_ctx_wide_access_ok(off, size,
8752 						   struct bpf_sock_addr,
8753 						   user_ip6))
8754 				return true;
8755 
8756 			if (bpf_ctx_wide_access_ok(off, size,
8757 						   struct bpf_sock_addr,
8758 						   msg_src_ip6))
8759 				return true;
8760 
8761 			if (size != size_default)
8762 				return false;
8763 		}
8764 		break;
8765 	case offsetof(struct bpf_sock_addr, sk):
8766 		if (type != BPF_READ)
8767 			return false;
8768 		if (size != sizeof(__u64))
8769 			return false;
8770 		info->reg_type = PTR_TO_SOCKET;
8771 		break;
8772 	default:
8773 		if (type == BPF_READ) {
8774 			if (size != size_default)
8775 				return false;
8776 		} else {
8777 			return false;
8778 		}
8779 	}
8780 
8781 	return true;
8782 }
8783 
8784 static bool sock_ops_is_valid_access(int off, int size,
8785 				     enum bpf_access_type type,
8786 				     const struct bpf_prog *prog,
8787 				     struct bpf_insn_access_aux *info)
8788 {
8789 	const int size_default = sizeof(__u32);
8790 
8791 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8792 		return false;
8793 
8794 	/* The verifier guarantees that size > 0. */
8795 	if (off % size != 0)
8796 		return false;
8797 
8798 	if (type == BPF_WRITE) {
8799 		switch (off) {
8800 		case offsetof(struct bpf_sock_ops, reply):
8801 		case offsetof(struct bpf_sock_ops, sk_txhash):
8802 			if (size != size_default)
8803 				return false;
8804 			break;
8805 		default:
8806 			return false;
8807 		}
8808 	} else {
8809 		switch (off) {
8810 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8811 					bytes_acked):
8812 			if (size != sizeof(__u64))
8813 				return false;
8814 			break;
8815 		case offsetof(struct bpf_sock_ops, sk):
8816 			if (size != sizeof(__u64))
8817 				return false;
8818 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8819 			break;
8820 		case offsetof(struct bpf_sock_ops, skb_data):
8821 			if (size != sizeof(__u64))
8822 				return false;
8823 			info->reg_type = PTR_TO_PACKET;
8824 			break;
8825 		case offsetof(struct bpf_sock_ops, skb_data_end):
8826 			if (size != sizeof(__u64))
8827 				return false;
8828 			info->reg_type = PTR_TO_PACKET_END;
8829 			break;
8830 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8831 			bpf_ctx_record_field_size(info, size_default);
8832 			return bpf_ctx_narrow_access_ok(off, size,
8833 							size_default);
8834 		default:
8835 			if (size != size_default)
8836 				return false;
8837 			break;
8838 		}
8839 	}
8840 
8841 	return true;
8842 }
8843 
8844 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8845 			   const struct bpf_prog *prog)
8846 {
8847 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8848 }
8849 
8850 static bool sk_skb_is_valid_access(int off, int size,
8851 				   enum bpf_access_type type,
8852 				   const struct bpf_prog *prog,
8853 				   struct bpf_insn_access_aux *info)
8854 {
8855 	switch (off) {
8856 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8857 	case bpf_ctx_range(struct __sk_buff, data_meta):
8858 	case bpf_ctx_range(struct __sk_buff, tstamp):
8859 	case bpf_ctx_range(struct __sk_buff, wire_len):
8860 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8861 		return false;
8862 	}
8863 
8864 	if (type == BPF_WRITE) {
8865 		switch (off) {
8866 		case bpf_ctx_range(struct __sk_buff, tc_index):
8867 		case bpf_ctx_range(struct __sk_buff, priority):
8868 			break;
8869 		default:
8870 			return false;
8871 		}
8872 	}
8873 
8874 	switch (off) {
8875 	case bpf_ctx_range(struct __sk_buff, mark):
8876 		return false;
8877 	case bpf_ctx_range(struct __sk_buff, data):
8878 		info->reg_type = PTR_TO_PACKET;
8879 		break;
8880 	case bpf_ctx_range(struct __sk_buff, data_end):
8881 		info->reg_type = PTR_TO_PACKET_END;
8882 		break;
8883 	}
8884 
8885 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8886 }
8887 
8888 static bool sk_msg_is_valid_access(int off, int size,
8889 				   enum bpf_access_type type,
8890 				   const struct bpf_prog *prog,
8891 				   struct bpf_insn_access_aux *info)
8892 {
8893 	if (type == BPF_WRITE)
8894 		return false;
8895 
8896 	if (off % size != 0)
8897 		return false;
8898 
8899 	switch (off) {
8900 	case offsetof(struct sk_msg_md, data):
8901 		info->reg_type = PTR_TO_PACKET;
8902 		if (size != sizeof(__u64))
8903 			return false;
8904 		break;
8905 	case offsetof(struct sk_msg_md, data_end):
8906 		info->reg_type = PTR_TO_PACKET_END;
8907 		if (size != sizeof(__u64))
8908 			return false;
8909 		break;
8910 	case offsetof(struct sk_msg_md, sk):
8911 		if (size != sizeof(__u64))
8912 			return false;
8913 		info->reg_type = PTR_TO_SOCKET;
8914 		break;
8915 	case bpf_ctx_range(struct sk_msg_md, family):
8916 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8917 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
8918 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8919 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8920 	case bpf_ctx_range(struct sk_msg_md, remote_port):
8921 	case bpf_ctx_range(struct sk_msg_md, local_port):
8922 	case bpf_ctx_range(struct sk_msg_md, size):
8923 		if (size != sizeof(__u32))
8924 			return false;
8925 		break;
8926 	default:
8927 		return false;
8928 	}
8929 	return true;
8930 }
8931 
8932 static bool flow_dissector_is_valid_access(int off, int size,
8933 					   enum bpf_access_type type,
8934 					   const struct bpf_prog *prog,
8935 					   struct bpf_insn_access_aux *info)
8936 {
8937 	const int size_default = sizeof(__u32);
8938 
8939 	if (off < 0 || off >= sizeof(struct __sk_buff))
8940 		return false;
8941 
8942 	if (type == BPF_WRITE)
8943 		return false;
8944 
8945 	switch (off) {
8946 	case bpf_ctx_range(struct __sk_buff, data):
8947 		if (size != size_default)
8948 			return false;
8949 		info->reg_type = PTR_TO_PACKET;
8950 		return true;
8951 	case bpf_ctx_range(struct __sk_buff, data_end):
8952 		if (size != size_default)
8953 			return false;
8954 		info->reg_type = PTR_TO_PACKET_END;
8955 		return true;
8956 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8957 		if (size != sizeof(__u64))
8958 			return false;
8959 		info->reg_type = PTR_TO_FLOW_KEYS;
8960 		return true;
8961 	default:
8962 		return false;
8963 	}
8964 }
8965 
8966 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8967 					     const struct bpf_insn *si,
8968 					     struct bpf_insn *insn_buf,
8969 					     struct bpf_prog *prog,
8970 					     u32 *target_size)
8971 
8972 {
8973 	struct bpf_insn *insn = insn_buf;
8974 
8975 	switch (si->off) {
8976 	case offsetof(struct __sk_buff, data):
8977 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8978 				      si->dst_reg, si->src_reg,
8979 				      offsetof(struct bpf_flow_dissector, data));
8980 		break;
8981 
8982 	case offsetof(struct __sk_buff, data_end):
8983 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8984 				      si->dst_reg, si->src_reg,
8985 				      offsetof(struct bpf_flow_dissector, data_end));
8986 		break;
8987 
8988 	case offsetof(struct __sk_buff, flow_keys):
8989 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8990 				      si->dst_reg, si->src_reg,
8991 				      offsetof(struct bpf_flow_dissector, flow_keys));
8992 		break;
8993 	}
8994 
8995 	return insn - insn_buf;
8996 }
8997 
8998 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
8999 						     struct bpf_insn *insn)
9000 {
9001 	__u8 value_reg = si->dst_reg;
9002 	__u8 skb_reg = si->src_reg;
9003 	/* AX is needed because src_reg and dst_reg could be the same */
9004 	__u8 tmp_reg = BPF_REG_AX;
9005 
9006 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9007 			      PKT_VLAN_PRESENT_OFFSET);
9008 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9009 				SKB_MONO_DELIVERY_TIME_MASK, 2);
9010 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9011 	*insn++ = BPF_JMP_A(1);
9012 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9013 
9014 	return insn;
9015 }
9016 
9017 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
9018 						  struct bpf_insn *insn)
9019 {
9020 	/* si->dst_reg = skb_shinfo(SKB); */
9021 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9022 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9023 			      BPF_REG_AX, si->src_reg,
9024 			      offsetof(struct sk_buff, end));
9025 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9026 			      si->dst_reg, si->src_reg,
9027 			      offsetof(struct sk_buff, head));
9028 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9029 #else
9030 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9031 			      si->dst_reg, si->src_reg,
9032 			      offsetof(struct sk_buff, end));
9033 #endif
9034 
9035 	return insn;
9036 }
9037 
9038 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9039 						const struct bpf_insn *si,
9040 						struct bpf_insn *insn)
9041 {
9042 	__u8 value_reg = si->dst_reg;
9043 	__u8 skb_reg = si->src_reg;
9044 
9045 #ifdef CONFIG_NET_CLS_ACT
9046 	/* If the tstamp_type is read,
9047 	 * the bpf prog is aware the tstamp could have delivery time.
9048 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9049 	 */
9050 	if (!prog->tstamp_type_access) {
9051 		/* AX is needed because src_reg and dst_reg could be the same */
9052 		__u8 tmp_reg = BPF_REG_AX;
9053 
9054 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9055 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9056 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9057 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9058 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9059 		/* skb->tc_at_ingress && skb->mono_delivery_time,
9060 		 * read 0 as the (rcv) timestamp.
9061 		 */
9062 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9063 		*insn++ = BPF_JMP_A(1);
9064 	}
9065 #endif
9066 
9067 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9068 			      offsetof(struct sk_buff, tstamp));
9069 	return insn;
9070 }
9071 
9072 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9073 						 const struct bpf_insn *si,
9074 						 struct bpf_insn *insn)
9075 {
9076 	__u8 value_reg = si->src_reg;
9077 	__u8 skb_reg = si->dst_reg;
9078 
9079 #ifdef CONFIG_NET_CLS_ACT
9080 	/* If the tstamp_type is read,
9081 	 * the bpf prog is aware the tstamp could have delivery time.
9082 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9083 	 * Otherwise, writing at ingress will have to clear the
9084 	 * mono_delivery_time bit also.
9085 	 */
9086 	if (!prog->tstamp_type_access) {
9087 		__u8 tmp_reg = BPF_REG_AX;
9088 
9089 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9090 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9091 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9092 		/* goto <store> */
9093 		*insn++ = BPF_JMP_A(2);
9094 		/* <clear>: mono_delivery_time */
9095 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9096 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9097 	}
9098 #endif
9099 
9100 	/* <store>: skb->tstamp = tstamp */
9101 	*insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9102 			      offsetof(struct sk_buff, tstamp));
9103 	return insn;
9104 }
9105 
9106 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9107 				  const struct bpf_insn *si,
9108 				  struct bpf_insn *insn_buf,
9109 				  struct bpf_prog *prog, u32 *target_size)
9110 {
9111 	struct bpf_insn *insn = insn_buf;
9112 	int off;
9113 
9114 	switch (si->off) {
9115 	case offsetof(struct __sk_buff, len):
9116 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9117 				      bpf_target_off(struct sk_buff, len, 4,
9118 						     target_size));
9119 		break;
9120 
9121 	case offsetof(struct __sk_buff, protocol):
9122 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9123 				      bpf_target_off(struct sk_buff, protocol, 2,
9124 						     target_size));
9125 		break;
9126 
9127 	case offsetof(struct __sk_buff, vlan_proto):
9128 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9129 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9130 						     target_size));
9131 		break;
9132 
9133 	case offsetof(struct __sk_buff, priority):
9134 		if (type == BPF_WRITE)
9135 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9136 					      bpf_target_off(struct sk_buff, priority, 4,
9137 							     target_size));
9138 		else
9139 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9140 					      bpf_target_off(struct sk_buff, priority, 4,
9141 							     target_size));
9142 		break;
9143 
9144 	case offsetof(struct __sk_buff, ingress_ifindex):
9145 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9146 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9147 						     target_size));
9148 		break;
9149 
9150 	case offsetof(struct __sk_buff, ifindex):
9151 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9152 				      si->dst_reg, si->src_reg,
9153 				      offsetof(struct sk_buff, dev));
9154 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9155 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9156 				      bpf_target_off(struct net_device, ifindex, 4,
9157 						     target_size));
9158 		break;
9159 
9160 	case offsetof(struct __sk_buff, hash):
9161 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9162 				      bpf_target_off(struct sk_buff, hash, 4,
9163 						     target_size));
9164 		break;
9165 
9166 	case offsetof(struct __sk_buff, mark):
9167 		if (type == BPF_WRITE)
9168 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9169 					      bpf_target_off(struct sk_buff, mark, 4,
9170 							     target_size));
9171 		else
9172 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9173 					      bpf_target_off(struct sk_buff, mark, 4,
9174 							     target_size));
9175 		break;
9176 
9177 	case offsetof(struct __sk_buff, pkt_type):
9178 		*target_size = 1;
9179 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9180 				      PKT_TYPE_OFFSET);
9181 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9182 #ifdef __BIG_ENDIAN_BITFIELD
9183 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9184 #endif
9185 		break;
9186 
9187 	case offsetof(struct __sk_buff, queue_mapping):
9188 		if (type == BPF_WRITE) {
9189 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9190 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9191 					      bpf_target_off(struct sk_buff,
9192 							     queue_mapping,
9193 							     2, target_size));
9194 		} else {
9195 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9196 					      bpf_target_off(struct sk_buff,
9197 							     queue_mapping,
9198 							     2, target_size));
9199 		}
9200 		break;
9201 
9202 	case offsetof(struct __sk_buff, vlan_present):
9203 		*target_size = 1;
9204 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9205 				      PKT_VLAN_PRESENT_OFFSET);
9206 		if (PKT_VLAN_PRESENT_BIT)
9207 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9208 		if (PKT_VLAN_PRESENT_BIT < 7)
9209 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9210 		break;
9211 
9212 	case offsetof(struct __sk_buff, vlan_tci):
9213 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9214 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9215 						     target_size));
9216 		break;
9217 
9218 	case offsetof(struct __sk_buff, cb[0]) ...
9219 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9220 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9221 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9222 			      offsetof(struct qdisc_skb_cb, data)) %
9223 			     sizeof(__u64));
9224 
9225 		prog->cb_access = 1;
9226 		off  = si->off;
9227 		off -= offsetof(struct __sk_buff, cb[0]);
9228 		off += offsetof(struct sk_buff, cb);
9229 		off += offsetof(struct qdisc_skb_cb, data);
9230 		if (type == BPF_WRITE)
9231 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9232 					      si->src_reg, off);
9233 		else
9234 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9235 					      si->src_reg, off);
9236 		break;
9237 
9238 	case offsetof(struct __sk_buff, tc_classid):
9239 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9240 
9241 		off  = si->off;
9242 		off -= offsetof(struct __sk_buff, tc_classid);
9243 		off += offsetof(struct sk_buff, cb);
9244 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9245 		*target_size = 2;
9246 		if (type == BPF_WRITE)
9247 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9248 					      si->src_reg, off);
9249 		else
9250 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9251 					      si->src_reg, off);
9252 		break;
9253 
9254 	case offsetof(struct __sk_buff, data):
9255 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9256 				      si->dst_reg, si->src_reg,
9257 				      offsetof(struct sk_buff, data));
9258 		break;
9259 
9260 	case offsetof(struct __sk_buff, data_meta):
9261 		off  = si->off;
9262 		off -= offsetof(struct __sk_buff, data_meta);
9263 		off += offsetof(struct sk_buff, cb);
9264 		off += offsetof(struct bpf_skb_data_end, data_meta);
9265 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9266 				      si->src_reg, off);
9267 		break;
9268 
9269 	case offsetof(struct __sk_buff, data_end):
9270 		off  = si->off;
9271 		off -= offsetof(struct __sk_buff, data_end);
9272 		off += offsetof(struct sk_buff, cb);
9273 		off += offsetof(struct bpf_skb_data_end, data_end);
9274 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9275 				      si->src_reg, off);
9276 		break;
9277 
9278 	case offsetof(struct __sk_buff, tc_index):
9279 #ifdef CONFIG_NET_SCHED
9280 		if (type == BPF_WRITE)
9281 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9282 					      bpf_target_off(struct sk_buff, tc_index, 2,
9283 							     target_size));
9284 		else
9285 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9286 					      bpf_target_off(struct sk_buff, tc_index, 2,
9287 							     target_size));
9288 #else
9289 		*target_size = 2;
9290 		if (type == BPF_WRITE)
9291 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9292 		else
9293 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9294 #endif
9295 		break;
9296 
9297 	case offsetof(struct __sk_buff, napi_id):
9298 #if defined(CONFIG_NET_RX_BUSY_POLL)
9299 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9300 				      bpf_target_off(struct sk_buff, napi_id, 4,
9301 						     target_size));
9302 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9303 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9304 #else
9305 		*target_size = 4;
9306 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9307 #endif
9308 		break;
9309 	case offsetof(struct __sk_buff, family):
9310 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9311 
9312 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9313 				      si->dst_reg, si->src_reg,
9314 				      offsetof(struct sk_buff, sk));
9315 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9316 				      bpf_target_off(struct sock_common,
9317 						     skc_family,
9318 						     2, target_size));
9319 		break;
9320 	case offsetof(struct __sk_buff, remote_ip4):
9321 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9322 
9323 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9324 				      si->dst_reg, si->src_reg,
9325 				      offsetof(struct sk_buff, sk));
9326 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9327 				      bpf_target_off(struct sock_common,
9328 						     skc_daddr,
9329 						     4, target_size));
9330 		break;
9331 	case offsetof(struct __sk_buff, local_ip4):
9332 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9333 					  skc_rcv_saddr) != 4);
9334 
9335 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9336 				      si->dst_reg, si->src_reg,
9337 				      offsetof(struct sk_buff, sk));
9338 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9339 				      bpf_target_off(struct sock_common,
9340 						     skc_rcv_saddr,
9341 						     4, target_size));
9342 		break;
9343 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9344 	     offsetof(struct __sk_buff, remote_ip6[3]):
9345 #if IS_ENABLED(CONFIG_IPV6)
9346 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9347 					  skc_v6_daddr.s6_addr32[0]) != 4);
9348 
9349 		off = si->off;
9350 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9351 
9352 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9353 				      si->dst_reg, si->src_reg,
9354 				      offsetof(struct sk_buff, sk));
9355 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9356 				      offsetof(struct sock_common,
9357 					       skc_v6_daddr.s6_addr32[0]) +
9358 				      off);
9359 #else
9360 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9361 #endif
9362 		break;
9363 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9364 	     offsetof(struct __sk_buff, local_ip6[3]):
9365 #if IS_ENABLED(CONFIG_IPV6)
9366 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9367 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9368 
9369 		off = si->off;
9370 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9371 
9372 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9373 				      si->dst_reg, si->src_reg,
9374 				      offsetof(struct sk_buff, sk));
9375 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9376 				      offsetof(struct sock_common,
9377 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9378 				      off);
9379 #else
9380 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9381 #endif
9382 		break;
9383 
9384 	case offsetof(struct __sk_buff, remote_port):
9385 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9386 
9387 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9388 				      si->dst_reg, si->src_reg,
9389 				      offsetof(struct sk_buff, sk));
9390 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9391 				      bpf_target_off(struct sock_common,
9392 						     skc_dport,
9393 						     2, target_size));
9394 #ifndef __BIG_ENDIAN_BITFIELD
9395 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9396 #endif
9397 		break;
9398 
9399 	case offsetof(struct __sk_buff, local_port):
9400 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9401 
9402 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9403 				      si->dst_reg, si->src_reg,
9404 				      offsetof(struct sk_buff, sk));
9405 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9406 				      bpf_target_off(struct sock_common,
9407 						     skc_num, 2, target_size));
9408 		break;
9409 
9410 	case offsetof(struct __sk_buff, tstamp):
9411 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9412 
9413 		if (type == BPF_WRITE)
9414 			insn = bpf_convert_tstamp_write(prog, si, insn);
9415 		else
9416 			insn = bpf_convert_tstamp_read(prog, si, insn);
9417 		break;
9418 
9419 	case offsetof(struct __sk_buff, tstamp_type):
9420 		insn = bpf_convert_tstamp_type_read(si, insn);
9421 		break;
9422 
9423 	case offsetof(struct __sk_buff, gso_segs):
9424 		insn = bpf_convert_shinfo_access(si, insn);
9425 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9426 				      si->dst_reg, si->dst_reg,
9427 				      bpf_target_off(struct skb_shared_info,
9428 						     gso_segs, 2,
9429 						     target_size));
9430 		break;
9431 	case offsetof(struct __sk_buff, gso_size):
9432 		insn = bpf_convert_shinfo_access(si, insn);
9433 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9434 				      si->dst_reg, si->dst_reg,
9435 				      bpf_target_off(struct skb_shared_info,
9436 						     gso_size, 2,
9437 						     target_size));
9438 		break;
9439 	case offsetof(struct __sk_buff, wire_len):
9440 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9441 
9442 		off = si->off;
9443 		off -= offsetof(struct __sk_buff, wire_len);
9444 		off += offsetof(struct sk_buff, cb);
9445 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9446 		*target_size = 4;
9447 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9448 		break;
9449 
9450 	case offsetof(struct __sk_buff, sk):
9451 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9452 				      si->dst_reg, si->src_reg,
9453 				      offsetof(struct sk_buff, sk));
9454 		break;
9455 	case offsetof(struct __sk_buff, hwtstamp):
9456 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9457 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9458 
9459 		insn = bpf_convert_shinfo_access(si, insn);
9460 		*insn++ = BPF_LDX_MEM(BPF_DW,
9461 				      si->dst_reg, si->dst_reg,
9462 				      bpf_target_off(struct skb_shared_info,
9463 						     hwtstamps, 8,
9464 						     target_size));
9465 		break;
9466 	}
9467 
9468 	return insn - insn_buf;
9469 }
9470 
9471 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9472 				const struct bpf_insn *si,
9473 				struct bpf_insn *insn_buf,
9474 				struct bpf_prog *prog, u32 *target_size)
9475 {
9476 	struct bpf_insn *insn = insn_buf;
9477 	int off;
9478 
9479 	switch (si->off) {
9480 	case offsetof(struct bpf_sock, bound_dev_if):
9481 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9482 
9483 		if (type == BPF_WRITE)
9484 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9485 					offsetof(struct sock, sk_bound_dev_if));
9486 		else
9487 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9488 				      offsetof(struct sock, sk_bound_dev_if));
9489 		break;
9490 
9491 	case offsetof(struct bpf_sock, mark):
9492 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9493 
9494 		if (type == BPF_WRITE)
9495 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9496 					offsetof(struct sock, sk_mark));
9497 		else
9498 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9499 				      offsetof(struct sock, sk_mark));
9500 		break;
9501 
9502 	case offsetof(struct bpf_sock, priority):
9503 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9504 
9505 		if (type == BPF_WRITE)
9506 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9507 					offsetof(struct sock, sk_priority));
9508 		else
9509 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9510 				      offsetof(struct sock, sk_priority));
9511 		break;
9512 
9513 	case offsetof(struct bpf_sock, family):
9514 		*insn++ = BPF_LDX_MEM(
9515 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9516 			si->dst_reg, si->src_reg,
9517 			bpf_target_off(struct sock_common,
9518 				       skc_family,
9519 				       sizeof_field(struct sock_common,
9520 						    skc_family),
9521 				       target_size));
9522 		break;
9523 
9524 	case offsetof(struct bpf_sock, type):
9525 		*insn++ = BPF_LDX_MEM(
9526 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9527 			si->dst_reg, si->src_reg,
9528 			bpf_target_off(struct sock, sk_type,
9529 				       sizeof_field(struct sock, sk_type),
9530 				       target_size));
9531 		break;
9532 
9533 	case offsetof(struct bpf_sock, protocol):
9534 		*insn++ = BPF_LDX_MEM(
9535 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9536 			si->dst_reg, si->src_reg,
9537 			bpf_target_off(struct sock, sk_protocol,
9538 				       sizeof_field(struct sock, sk_protocol),
9539 				       target_size));
9540 		break;
9541 
9542 	case offsetof(struct bpf_sock, src_ip4):
9543 		*insn++ = BPF_LDX_MEM(
9544 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9545 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9546 				       sizeof_field(struct sock_common,
9547 						    skc_rcv_saddr),
9548 				       target_size));
9549 		break;
9550 
9551 	case offsetof(struct bpf_sock, dst_ip4):
9552 		*insn++ = BPF_LDX_MEM(
9553 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9554 			bpf_target_off(struct sock_common, skc_daddr,
9555 				       sizeof_field(struct sock_common,
9556 						    skc_daddr),
9557 				       target_size));
9558 		break;
9559 
9560 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9561 #if IS_ENABLED(CONFIG_IPV6)
9562 		off = si->off;
9563 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9564 		*insn++ = BPF_LDX_MEM(
9565 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9566 			bpf_target_off(
9567 				struct sock_common,
9568 				skc_v6_rcv_saddr.s6_addr32[0],
9569 				sizeof_field(struct sock_common,
9570 					     skc_v6_rcv_saddr.s6_addr32[0]),
9571 				target_size) + off);
9572 #else
9573 		(void)off;
9574 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9575 #endif
9576 		break;
9577 
9578 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9579 #if IS_ENABLED(CONFIG_IPV6)
9580 		off = si->off;
9581 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9582 		*insn++ = BPF_LDX_MEM(
9583 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9584 			bpf_target_off(struct sock_common,
9585 				       skc_v6_daddr.s6_addr32[0],
9586 				       sizeof_field(struct sock_common,
9587 						    skc_v6_daddr.s6_addr32[0]),
9588 				       target_size) + off);
9589 #else
9590 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9591 		*target_size = 4;
9592 #endif
9593 		break;
9594 
9595 	case offsetof(struct bpf_sock, src_port):
9596 		*insn++ = BPF_LDX_MEM(
9597 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9598 			si->dst_reg, si->src_reg,
9599 			bpf_target_off(struct sock_common, skc_num,
9600 				       sizeof_field(struct sock_common,
9601 						    skc_num),
9602 				       target_size));
9603 		break;
9604 
9605 	case offsetof(struct bpf_sock, dst_port):
9606 		*insn++ = BPF_LDX_MEM(
9607 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9608 			si->dst_reg, si->src_reg,
9609 			bpf_target_off(struct sock_common, skc_dport,
9610 				       sizeof_field(struct sock_common,
9611 						    skc_dport),
9612 				       target_size));
9613 		break;
9614 
9615 	case offsetof(struct bpf_sock, state):
9616 		*insn++ = BPF_LDX_MEM(
9617 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9618 			si->dst_reg, si->src_reg,
9619 			bpf_target_off(struct sock_common, skc_state,
9620 				       sizeof_field(struct sock_common,
9621 						    skc_state),
9622 				       target_size));
9623 		break;
9624 	case offsetof(struct bpf_sock, rx_queue_mapping):
9625 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9626 		*insn++ = BPF_LDX_MEM(
9627 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9628 			si->dst_reg, si->src_reg,
9629 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9630 				       sizeof_field(struct sock,
9631 						    sk_rx_queue_mapping),
9632 				       target_size));
9633 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9634 				      1);
9635 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9636 #else
9637 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9638 		*target_size = 2;
9639 #endif
9640 		break;
9641 	}
9642 
9643 	return insn - insn_buf;
9644 }
9645 
9646 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9647 					 const struct bpf_insn *si,
9648 					 struct bpf_insn *insn_buf,
9649 					 struct bpf_prog *prog, u32 *target_size)
9650 {
9651 	struct bpf_insn *insn = insn_buf;
9652 
9653 	switch (si->off) {
9654 	case offsetof(struct __sk_buff, ifindex):
9655 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9656 				      si->dst_reg, si->src_reg,
9657 				      offsetof(struct sk_buff, dev));
9658 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9659 				      bpf_target_off(struct net_device, ifindex, 4,
9660 						     target_size));
9661 		break;
9662 	default:
9663 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9664 					      target_size);
9665 	}
9666 
9667 	return insn - insn_buf;
9668 }
9669 
9670 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9671 				  const struct bpf_insn *si,
9672 				  struct bpf_insn *insn_buf,
9673 				  struct bpf_prog *prog, u32 *target_size)
9674 {
9675 	struct bpf_insn *insn = insn_buf;
9676 
9677 	switch (si->off) {
9678 	case offsetof(struct xdp_md, data):
9679 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9680 				      si->dst_reg, si->src_reg,
9681 				      offsetof(struct xdp_buff, data));
9682 		break;
9683 	case offsetof(struct xdp_md, data_meta):
9684 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9685 				      si->dst_reg, si->src_reg,
9686 				      offsetof(struct xdp_buff, data_meta));
9687 		break;
9688 	case offsetof(struct xdp_md, data_end):
9689 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9690 				      si->dst_reg, si->src_reg,
9691 				      offsetof(struct xdp_buff, data_end));
9692 		break;
9693 	case offsetof(struct xdp_md, ingress_ifindex):
9694 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9695 				      si->dst_reg, si->src_reg,
9696 				      offsetof(struct xdp_buff, rxq));
9697 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9698 				      si->dst_reg, si->dst_reg,
9699 				      offsetof(struct xdp_rxq_info, dev));
9700 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9701 				      offsetof(struct net_device, ifindex));
9702 		break;
9703 	case offsetof(struct xdp_md, rx_queue_index):
9704 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9705 				      si->dst_reg, si->src_reg,
9706 				      offsetof(struct xdp_buff, rxq));
9707 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9708 				      offsetof(struct xdp_rxq_info,
9709 					       queue_index));
9710 		break;
9711 	case offsetof(struct xdp_md, egress_ifindex):
9712 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9713 				      si->dst_reg, si->src_reg,
9714 				      offsetof(struct xdp_buff, txq));
9715 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9716 				      si->dst_reg, si->dst_reg,
9717 				      offsetof(struct xdp_txq_info, dev));
9718 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9719 				      offsetof(struct net_device, ifindex));
9720 		break;
9721 	}
9722 
9723 	return insn - insn_buf;
9724 }
9725 
9726 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9727  * context Structure, F is Field in context structure that contains a pointer
9728  * to Nested Structure of type NS that has the field NF.
9729  *
9730  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9731  * sure that SIZE is not greater than actual size of S.F.NF.
9732  *
9733  * If offset OFF is provided, the load happens from that offset relative to
9734  * offset of NF.
9735  */
9736 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9737 	do {								       \
9738 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9739 				      si->src_reg, offsetof(S, F));	       \
9740 		*insn++ = BPF_LDX_MEM(					       \
9741 			SIZE, si->dst_reg, si->dst_reg,			       \
9742 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9743 				       target_size)			       \
9744 				+ OFF);					       \
9745 	} while (0)
9746 
9747 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9748 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9749 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9750 
9751 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9752  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9753  *
9754  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9755  * "register" since two registers available in convert_ctx_access are not
9756  * enough: we can't override neither SRC, since it contains value to store, nor
9757  * DST since it contains pointer to context that may be used by later
9758  * instructions. But we need a temporary place to save pointer to nested
9759  * structure whose field we want to store to.
9760  */
9761 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9762 	do {								       \
9763 		int tmp_reg = BPF_REG_9;				       \
9764 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9765 			--tmp_reg;					       \
9766 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9767 			--tmp_reg;					       \
9768 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9769 				      offsetof(S, TF));			       \
9770 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9771 				      si->dst_reg, offsetof(S, F));	       \
9772 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
9773 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9774 				       target_size)			       \
9775 				+ OFF);					       \
9776 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9777 				      offsetof(S, TF));			       \
9778 	} while (0)
9779 
9780 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9781 						      TF)		       \
9782 	do {								       \
9783 		if (type == BPF_WRITE) {				       \
9784 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9785 							 OFF, TF);	       \
9786 		} else {						       \
9787 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9788 				S, NS, F, NF, SIZE, OFF);  \
9789 		}							       \
9790 	} while (0)
9791 
9792 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9793 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9794 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9795 
9796 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9797 					const struct bpf_insn *si,
9798 					struct bpf_insn *insn_buf,
9799 					struct bpf_prog *prog, u32 *target_size)
9800 {
9801 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9802 	struct bpf_insn *insn = insn_buf;
9803 
9804 	switch (si->off) {
9805 	case offsetof(struct bpf_sock_addr, user_family):
9806 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9807 					    struct sockaddr, uaddr, sa_family);
9808 		break;
9809 
9810 	case offsetof(struct bpf_sock_addr, user_ip4):
9811 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9812 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9813 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9814 		break;
9815 
9816 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9817 		off = si->off;
9818 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9819 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9820 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9821 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9822 			tmp_reg);
9823 		break;
9824 
9825 	case offsetof(struct bpf_sock_addr, user_port):
9826 		/* To get port we need to know sa_family first and then treat
9827 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9828 		 * Though we can simplify since port field has same offset and
9829 		 * size in both structures.
9830 		 * Here we check this invariant and use just one of the
9831 		 * structures if it's true.
9832 		 */
9833 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9834 			     offsetof(struct sockaddr_in6, sin6_port));
9835 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9836 			     sizeof_field(struct sockaddr_in6, sin6_port));
9837 		/* Account for sin6_port being smaller than user_port. */
9838 		port_size = min(port_size, BPF_LDST_BYTES(si));
9839 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9840 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9841 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9842 		break;
9843 
9844 	case offsetof(struct bpf_sock_addr, family):
9845 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9846 					    struct sock, sk, sk_family);
9847 		break;
9848 
9849 	case offsetof(struct bpf_sock_addr, type):
9850 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9851 					    struct sock, sk, sk_type);
9852 		break;
9853 
9854 	case offsetof(struct bpf_sock_addr, protocol):
9855 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9856 					    struct sock, sk, sk_protocol);
9857 		break;
9858 
9859 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9860 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9861 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9862 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9863 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9864 		break;
9865 
9866 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9867 				msg_src_ip6[3]):
9868 		off = si->off;
9869 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9870 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9871 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9872 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9873 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9874 		break;
9875 	case offsetof(struct bpf_sock_addr, sk):
9876 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9877 				      si->dst_reg, si->src_reg,
9878 				      offsetof(struct bpf_sock_addr_kern, sk));
9879 		break;
9880 	}
9881 
9882 	return insn - insn_buf;
9883 }
9884 
9885 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9886 				       const struct bpf_insn *si,
9887 				       struct bpf_insn *insn_buf,
9888 				       struct bpf_prog *prog,
9889 				       u32 *target_size)
9890 {
9891 	struct bpf_insn *insn = insn_buf;
9892 	int off;
9893 
9894 /* Helper macro for adding read access to tcp_sock or sock fields. */
9895 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9896 	do {								      \
9897 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9898 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9899 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9900 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9901 			reg--;						      \
9902 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9903 			reg--;						      \
9904 		if (si->dst_reg == si->src_reg) {			      \
9905 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9906 					  offsetof(struct bpf_sock_ops_kern,  \
9907 					  temp));			      \
9908 			fullsock_reg = reg;				      \
9909 			jmp += 2;					      \
9910 		}							      \
9911 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9912 						struct bpf_sock_ops_kern,     \
9913 						is_fullsock),		      \
9914 				      fullsock_reg, si->src_reg,	      \
9915 				      offsetof(struct bpf_sock_ops_kern,      \
9916 					       is_fullsock));		      \
9917 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9918 		if (si->dst_reg == si->src_reg)				      \
9919 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9920 				      offsetof(struct bpf_sock_ops_kern,      \
9921 				      temp));				      \
9922 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9923 						struct bpf_sock_ops_kern, sk),\
9924 				      si->dst_reg, si->src_reg,		      \
9925 				      offsetof(struct bpf_sock_ops_kern, sk));\
9926 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
9927 						       OBJ_FIELD),	      \
9928 				      si->dst_reg, si->dst_reg,		      \
9929 				      offsetof(OBJ, OBJ_FIELD));	      \
9930 		if (si->dst_reg == si->src_reg)	{			      \
9931 			*insn++ = BPF_JMP_A(1);				      \
9932 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9933 				      offsetof(struct bpf_sock_ops_kern,      \
9934 				      temp));				      \
9935 		}							      \
9936 	} while (0)
9937 
9938 #define SOCK_OPS_GET_SK()							      \
9939 	do {								      \
9940 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9941 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9942 			reg--;						      \
9943 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9944 			reg--;						      \
9945 		if (si->dst_reg == si->src_reg) {			      \
9946 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9947 					  offsetof(struct bpf_sock_ops_kern,  \
9948 					  temp));			      \
9949 			fullsock_reg = reg;				      \
9950 			jmp += 2;					      \
9951 		}							      \
9952 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9953 						struct bpf_sock_ops_kern,     \
9954 						is_fullsock),		      \
9955 				      fullsock_reg, si->src_reg,	      \
9956 				      offsetof(struct bpf_sock_ops_kern,      \
9957 					       is_fullsock));		      \
9958 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9959 		if (si->dst_reg == si->src_reg)				      \
9960 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9961 				      offsetof(struct bpf_sock_ops_kern,      \
9962 				      temp));				      \
9963 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9964 						struct bpf_sock_ops_kern, sk),\
9965 				      si->dst_reg, si->src_reg,		      \
9966 				      offsetof(struct bpf_sock_ops_kern, sk));\
9967 		if (si->dst_reg == si->src_reg)	{			      \
9968 			*insn++ = BPF_JMP_A(1);				      \
9969 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9970 				      offsetof(struct bpf_sock_ops_kern,      \
9971 				      temp));				      \
9972 		}							      \
9973 	} while (0)
9974 
9975 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9976 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9977 
9978 /* Helper macro for adding write access to tcp_sock or sock fields.
9979  * The macro is called with two registers, dst_reg which contains a pointer
9980  * to ctx (context) and src_reg which contains the value that should be
9981  * stored. However, we need an additional register since we cannot overwrite
9982  * dst_reg because it may be used later in the program.
9983  * Instead we "borrow" one of the other register. We first save its value
9984  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9985  * it at the end of the macro.
9986  */
9987 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9988 	do {								      \
9989 		int reg = BPF_REG_9;					      \
9990 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9991 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9992 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9993 			reg--;						      \
9994 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9995 			reg--;						      \
9996 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
9997 				      offsetof(struct bpf_sock_ops_kern,      \
9998 					       temp));			      \
9999 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10000 						struct bpf_sock_ops_kern,     \
10001 						is_fullsock),		      \
10002 				      reg, si->dst_reg,			      \
10003 				      offsetof(struct bpf_sock_ops_kern,      \
10004 					       is_fullsock));		      \
10005 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10006 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10007 						struct bpf_sock_ops_kern, sk),\
10008 				      reg, si->dst_reg,			      \
10009 				      offsetof(struct bpf_sock_ops_kern, sk));\
10010 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
10011 				      reg, si->src_reg,			      \
10012 				      offsetof(OBJ, OBJ_FIELD));	      \
10013 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10014 				      offsetof(struct bpf_sock_ops_kern,      \
10015 					       temp));			      \
10016 	} while (0)
10017 
10018 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10019 	do {								      \
10020 		if (TYPE == BPF_WRITE)					      \
10021 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10022 		else							      \
10023 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10024 	} while (0)
10025 
10026 	if (insn > insn_buf)
10027 		return insn - insn_buf;
10028 
10029 	switch (si->off) {
10030 	case offsetof(struct bpf_sock_ops, op):
10031 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10032 						       op),
10033 				      si->dst_reg, si->src_reg,
10034 				      offsetof(struct bpf_sock_ops_kern, op));
10035 		break;
10036 
10037 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10038 	     offsetof(struct bpf_sock_ops, replylong[3]):
10039 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10040 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10041 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10042 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10043 		off = si->off;
10044 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10045 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10046 		if (type == BPF_WRITE)
10047 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10048 					      off);
10049 		else
10050 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10051 					      off);
10052 		break;
10053 
10054 	case offsetof(struct bpf_sock_ops, family):
10055 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10056 
10057 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10058 					      struct bpf_sock_ops_kern, sk),
10059 				      si->dst_reg, si->src_reg,
10060 				      offsetof(struct bpf_sock_ops_kern, sk));
10061 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10062 				      offsetof(struct sock_common, skc_family));
10063 		break;
10064 
10065 	case offsetof(struct bpf_sock_ops, remote_ip4):
10066 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10067 
10068 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10069 						struct bpf_sock_ops_kern, sk),
10070 				      si->dst_reg, si->src_reg,
10071 				      offsetof(struct bpf_sock_ops_kern, sk));
10072 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10073 				      offsetof(struct sock_common, skc_daddr));
10074 		break;
10075 
10076 	case offsetof(struct bpf_sock_ops, local_ip4):
10077 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10078 					  skc_rcv_saddr) != 4);
10079 
10080 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10081 					      struct bpf_sock_ops_kern, sk),
10082 				      si->dst_reg, si->src_reg,
10083 				      offsetof(struct bpf_sock_ops_kern, sk));
10084 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10085 				      offsetof(struct sock_common,
10086 					       skc_rcv_saddr));
10087 		break;
10088 
10089 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10090 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10091 #if IS_ENABLED(CONFIG_IPV6)
10092 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10093 					  skc_v6_daddr.s6_addr32[0]) != 4);
10094 
10095 		off = si->off;
10096 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10097 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10098 						struct bpf_sock_ops_kern, sk),
10099 				      si->dst_reg, si->src_reg,
10100 				      offsetof(struct bpf_sock_ops_kern, sk));
10101 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10102 				      offsetof(struct sock_common,
10103 					       skc_v6_daddr.s6_addr32[0]) +
10104 				      off);
10105 #else
10106 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10107 #endif
10108 		break;
10109 
10110 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10111 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10112 #if IS_ENABLED(CONFIG_IPV6)
10113 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10114 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10115 
10116 		off = si->off;
10117 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10118 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10119 						struct bpf_sock_ops_kern, sk),
10120 				      si->dst_reg, si->src_reg,
10121 				      offsetof(struct bpf_sock_ops_kern, sk));
10122 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10123 				      offsetof(struct sock_common,
10124 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10125 				      off);
10126 #else
10127 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10128 #endif
10129 		break;
10130 
10131 	case offsetof(struct bpf_sock_ops, remote_port):
10132 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10133 
10134 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10135 						struct bpf_sock_ops_kern, sk),
10136 				      si->dst_reg, si->src_reg,
10137 				      offsetof(struct bpf_sock_ops_kern, sk));
10138 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10139 				      offsetof(struct sock_common, skc_dport));
10140 #ifndef __BIG_ENDIAN_BITFIELD
10141 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10142 #endif
10143 		break;
10144 
10145 	case offsetof(struct bpf_sock_ops, local_port):
10146 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10147 
10148 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10149 						struct bpf_sock_ops_kern, sk),
10150 				      si->dst_reg, si->src_reg,
10151 				      offsetof(struct bpf_sock_ops_kern, sk));
10152 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10153 				      offsetof(struct sock_common, skc_num));
10154 		break;
10155 
10156 	case offsetof(struct bpf_sock_ops, is_fullsock):
10157 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10158 						struct bpf_sock_ops_kern,
10159 						is_fullsock),
10160 				      si->dst_reg, si->src_reg,
10161 				      offsetof(struct bpf_sock_ops_kern,
10162 					       is_fullsock));
10163 		break;
10164 
10165 	case offsetof(struct bpf_sock_ops, state):
10166 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10167 
10168 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10169 						struct bpf_sock_ops_kern, sk),
10170 				      si->dst_reg, si->src_reg,
10171 				      offsetof(struct bpf_sock_ops_kern, sk));
10172 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10173 				      offsetof(struct sock_common, skc_state));
10174 		break;
10175 
10176 	case offsetof(struct bpf_sock_ops, rtt_min):
10177 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10178 			     sizeof(struct minmax));
10179 		BUILD_BUG_ON(sizeof(struct minmax) <
10180 			     sizeof(struct minmax_sample));
10181 
10182 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10183 						struct bpf_sock_ops_kern, sk),
10184 				      si->dst_reg, si->src_reg,
10185 				      offsetof(struct bpf_sock_ops_kern, sk));
10186 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10187 				      offsetof(struct tcp_sock, rtt_min) +
10188 				      sizeof_field(struct minmax_sample, t));
10189 		break;
10190 
10191 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10192 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10193 				   struct tcp_sock);
10194 		break;
10195 
10196 	case offsetof(struct bpf_sock_ops, sk_txhash):
10197 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10198 					  struct sock, type);
10199 		break;
10200 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10201 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10202 		break;
10203 	case offsetof(struct bpf_sock_ops, srtt_us):
10204 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10205 		break;
10206 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10207 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10208 		break;
10209 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10210 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10211 		break;
10212 	case offsetof(struct bpf_sock_ops, snd_nxt):
10213 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10214 		break;
10215 	case offsetof(struct bpf_sock_ops, snd_una):
10216 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10217 		break;
10218 	case offsetof(struct bpf_sock_ops, mss_cache):
10219 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10220 		break;
10221 	case offsetof(struct bpf_sock_ops, ecn_flags):
10222 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10223 		break;
10224 	case offsetof(struct bpf_sock_ops, rate_delivered):
10225 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10226 		break;
10227 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10228 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10229 		break;
10230 	case offsetof(struct bpf_sock_ops, packets_out):
10231 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10232 		break;
10233 	case offsetof(struct bpf_sock_ops, retrans_out):
10234 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10235 		break;
10236 	case offsetof(struct bpf_sock_ops, total_retrans):
10237 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10238 		break;
10239 	case offsetof(struct bpf_sock_ops, segs_in):
10240 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10241 		break;
10242 	case offsetof(struct bpf_sock_ops, data_segs_in):
10243 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10244 		break;
10245 	case offsetof(struct bpf_sock_ops, segs_out):
10246 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10247 		break;
10248 	case offsetof(struct bpf_sock_ops, data_segs_out):
10249 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10250 		break;
10251 	case offsetof(struct bpf_sock_ops, lost_out):
10252 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10253 		break;
10254 	case offsetof(struct bpf_sock_ops, sacked_out):
10255 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10256 		break;
10257 	case offsetof(struct bpf_sock_ops, bytes_received):
10258 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10259 		break;
10260 	case offsetof(struct bpf_sock_ops, bytes_acked):
10261 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10262 		break;
10263 	case offsetof(struct bpf_sock_ops, sk):
10264 		SOCK_OPS_GET_SK();
10265 		break;
10266 	case offsetof(struct bpf_sock_ops, skb_data_end):
10267 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10268 						       skb_data_end),
10269 				      si->dst_reg, si->src_reg,
10270 				      offsetof(struct bpf_sock_ops_kern,
10271 					       skb_data_end));
10272 		break;
10273 	case offsetof(struct bpf_sock_ops, skb_data):
10274 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10275 						       skb),
10276 				      si->dst_reg, si->src_reg,
10277 				      offsetof(struct bpf_sock_ops_kern,
10278 					       skb));
10279 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10280 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10281 				      si->dst_reg, si->dst_reg,
10282 				      offsetof(struct sk_buff, data));
10283 		break;
10284 	case offsetof(struct bpf_sock_ops, skb_len):
10285 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10286 						       skb),
10287 				      si->dst_reg, si->src_reg,
10288 				      offsetof(struct bpf_sock_ops_kern,
10289 					       skb));
10290 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10291 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10292 				      si->dst_reg, si->dst_reg,
10293 				      offsetof(struct sk_buff, len));
10294 		break;
10295 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10296 		off = offsetof(struct sk_buff, cb);
10297 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10298 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10299 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10300 						       skb),
10301 				      si->dst_reg, si->src_reg,
10302 				      offsetof(struct bpf_sock_ops_kern,
10303 					       skb));
10304 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10305 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10306 						       tcp_flags),
10307 				      si->dst_reg, si->dst_reg, off);
10308 		break;
10309 	}
10310 	return insn - insn_buf;
10311 }
10312 
10313 /* data_end = skb->data + skb_headlen() */
10314 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10315 						    struct bpf_insn *insn)
10316 {
10317 	int reg;
10318 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10319 			   offsetof(struct sk_skb_cb, temp_reg);
10320 
10321 	if (si->src_reg == si->dst_reg) {
10322 		/* We need an extra register, choose and save a register. */
10323 		reg = BPF_REG_9;
10324 		if (si->src_reg == reg || si->dst_reg == reg)
10325 			reg--;
10326 		if (si->src_reg == reg || si->dst_reg == reg)
10327 			reg--;
10328 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10329 	} else {
10330 		reg = si->dst_reg;
10331 	}
10332 
10333 	/* reg = skb->data */
10334 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10335 			      reg, si->src_reg,
10336 			      offsetof(struct sk_buff, data));
10337 	/* AX = skb->len */
10338 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10339 			      BPF_REG_AX, si->src_reg,
10340 			      offsetof(struct sk_buff, len));
10341 	/* reg = skb->data + skb->len */
10342 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10343 	/* AX = skb->data_len */
10344 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10345 			      BPF_REG_AX, si->src_reg,
10346 			      offsetof(struct sk_buff, data_len));
10347 
10348 	/* reg = skb->data + skb->len - skb->data_len */
10349 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10350 
10351 	if (si->src_reg == si->dst_reg) {
10352 		/* Restore the saved register */
10353 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10354 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10355 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10356 	}
10357 
10358 	return insn;
10359 }
10360 
10361 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10362 				     const struct bpf_insn *si,
10363 				     struct bpf_insn *insn_buf,
10364 				     struct bpf_prog *prog, u32 *target_size)
10365 {
10366 	struct bpf_insn *insn = insn_buf;
10367 	int off;
10368 
10369 	switch (si->off) {
10370 	case offsetof(struct __sk_buff, data_end):
10371 		insn = bpf_convert_data_end_access(si, insn);
10372 		break;
10373 	case offsetof(struct __sk_buff, cb[0]) ...
10374 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10375 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10376 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10377 			      offsetof(struct sk_skb_cb, data)) %
10378 			     sizeof(__u64));
10379 
10380 		prog->cb_access = 1;
10381 		off  = si->off;
10382 		off -= offsetof(struct __sk_buff, cb[0]);
10383 		off += offsetof(struct sk_buff, cb);
10384 		off += offsetof(struct sk_skb_cb, data);
10385 		if (type == BPF_WRITE)
10386 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10387 					      si->src_reg, off);
10388 		else
10389 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10390 					      si->src_reg, off);
10391 		break;
10392 
10393 
10394 	default:
10395 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10396 					      target_size);
10397 	}
10398 
10399 	return insn - insn_buf;
10400 }
10401 
10402 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10403 				     const struct bpf_insn *si,
10404 				     struct bpf_insn *insn_buf,
10405 				     struct bpf_prog *prog, u32 *target_size)
10406 {
10407 	struct bpf_insn *insn = insn_buf;
10408 #if IS_ENABLED(CONFIG_IPV6)
10409 	int off;
10410 #endif
10411 
10412 	/* convert ctx uses the fact sg element is first in struct */
10413 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10414 
10415 	switch (si->off) {
10416 	case offsetof(struct sk_msg_md, data):
10417 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10418 				      si->dst_reg, si->src_reg,
10419 				      offsetof(struct sk_msg, data));
10420 		break;
10421 	case offsetof(struct sk_msg_md, data_end):
10422 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10423 				      si->dst_reg, si->src_reg,
10424 				      offsetof(struct sk_msg, data_end));
10425 		break;
10426 	case offsetof(struct sk_msg_md, family):
10427 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10428 
10429 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10430 					      struct sk_msg, sk),
10431 				      si->dst_reg, si->src_reg,
10432 				      offsetof(struct sk_msg, sk));
10433 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10434 				      offsetof(struct sock_common, skc_family));
10435 		break;
10436 
10437 	case offsetof(struct sk_msg_md, remote_ip4):
10438 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10439 
10440 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10441 						struct sk_msg, sk),
10442 				      si->dst_reg, si->src_reg,
10443 				      offsetof(struct sk_msg, sk));
10444 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10445 				      offsetof(struct sock_common, skc_daddr));
10446 		break;
10447 
10448 	case offsetof(struct sk_msg_md, local_ip4):
10449 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10450 					  skc_rcv_saddr) != 4);
10451 
10452 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10453 					      struct sk_msg, sk),
10454 				      si->dst_reg, si->src_reg,
10455 				      offsetof(struct sk_msg, sk));
10456 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10457 				      offsetof(struct sock_common,
10458 					       skc_rcv_saddr));
10459 		break;
10460 
10461 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10462 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10463 #if IS_ENABLED(CONFIG_IPV6)
10464 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10465 					  skc_v6_daddr.s6_addr32[0]) != 4);
10466 
10467 		off = si->off;
10468 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10469 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10470 						struct sk_msg, sk),
10471 				      si->dst_reg, si->src_reg,
10472 				      offsetof(struct sk_msg, sk));
10473 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10474 				      offsetof(struct sock_common,
10475 					       skc_v6_daddr.s6_addr32[0]) +
10476 				      off);
10477 #else
10478 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10479 #endif
10480 		break;
10481 
10482 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10483 	     offsetof(struct sk_msg_md, local_ip6[3]):
10484 #if IS_ENABLED(CONFIG_IPV6)
10485 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10486 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10487 
10488 		off = si->off;
10489 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10490 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10491 						struct sk_msg, sk),
10492 				      si->dst_reg, si->src_reg,
10493 				      offsetof(struct sk_msg, sk));
10494 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10495 				      offsetof(struct sock_common,
10496 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10497 				      off);
10498 #else
10499 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10500 #endif
10501 		break;
10502 
10503 	case offsetof(struct sk_msg_md, remote_port):
10504 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10505 
10506 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10507 						struct sk_msg, sk),
10508 				      si->dst_reg, si->src_reg,
10509 				      offsetof(struct sk_msg, sk));
10510 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10511 				      offsetof(struct sock_common, skc_dport));
10512 #ifndef __BIG_ENDIAN_BITFIELD
10513 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10514 #endif
10515 		break;
10516 
10517 	case offsetof(struct sk_msg_md, local_port):
10518 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10519 
10520 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10521 						struct sk_msg, sk),
10522 				      si->dst_reg, si->src_reg,
10523 				      offsetof(struct sk_msg, sk));
10524 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10525 				      offsetof(struct sock_common, skc_num));
10526 		break;
10527 
10528 	case offsetof(struct sk_msg_md, size):
10529 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10530 				      si->dst_reg, si->src_reg,
10531 				      offsetof(struct sk_msg_sg, size));
10532 		break;
10533 
10534 	case offsetof(struct sk_msg_md, sk):
10535 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10536 				      si->dst_reg, si->src_reg,
10537 				      offsetof(struct sk_msg, sk));
10538 		break;
10539 	}
10540 
10541 	return insn - insn_buf;
10542 }
10543 
10544 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10545 	.get_func_proto		= sk_filter_func_proto,
10546 	.is_valid_access	= sk_filter_is_valid_access,
10547 	.convert_ctx_access	= bpf_convert_ctx_access,
10548 	.gen_ld_abs		= bpf_gen_ld_abs,
10549 };
10550 
10551 const struct bpf_prog_ops sk_filter_prog_ops = {
10552 	.test_run		= bpf_prog_test_run_skb,
10553 };
10554 
10555 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10556 	.get_func_proto		= tc_cls_act_func_proto,
10557 	.is_valid_access	= tc_cls_act_is_valid_access,
10558 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10559 	.gen_prologue		= tc_cls_act_prologue,
10560 	.gen_ld_abs		= bpf_gen_ld_abs,
10561 };
10562 
10563 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10564 	.test_run		= bpf_prog_test_run_skb,
10565 };
10566 
10567 const struct bpf_verifier_ops xdp_verifier_ops = {
10568 	.get_func_proto		= xdp_func_proto,
10569 	.is_valid_access	= xdp_is_valid_access,
10570 	.convert_ctx_access	= xdp_convert_ctx_access,
10571 	.gen_prologue		= bpf_noop_prologue,
10572 };
10573 
10574 const struct bpf_prog_ops xdp_prog_ops = {
10575 	.test_run		= bpf_prog_test_run_xdp,
10576 };
10577 
10578 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10579 	.get_func_proto		= cg_skb_func_proto,
10580 	.is_valid_access	= cg_skb_is_valid_access,
10581 	.convert_ctx_access	= bpf_convert_ctx_access,
10582 };
10583 
10584 const struct bpf_prog_ops cg_skb_prog_ops = {
10585 	.test_run		= bpf_prog_test_run_skb,
10586 };
10587 
10588 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10589 	.get_func_proto		= lwt_in_func_proto,
10590 	.is_valid_access	= lwt_is_valid_access,
10591 	.convert_ctx_access	= bpf_convert_ctx_access,
10592 };
10593 
10594 const struct bpf_prog_ops lwt_in_prog_ops = {
10595 	.test_run		= bpf_prog_test_run_skb,
10596 };
10597 
10598 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10599 	.get_func_proto		= lwt_out_func_proto,
10600 	.is_valid_access	= lwt_is_valid_access,
10601 	.convert_ctx_access	= bpf_convert_ctx_access,
10602 };
10603 
10604 const struct bpf_prog_ops lwt_out_prog_ops = {
10605 	.test_run		= bpf_prog_test_run_skb,
10606 };
10607 
10608 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10609 	.get_func_proto		= lwt_xmit_func_proto,
10610 	.is_valid_access	= lwt_is_valid_access,
10611 	.convert_ctx_access	= bpf_convert_ctx_access,
10612 	.gen_prologue		= tc_cls_act_prologue,
10613 };
10614 
10615 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10616 	.test_run		= bpf_prog_test_run_skb,
10617 };
10618 
10619 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10620 	.get_func_proto		= lwt_seg6local_func_proto,
10621 	.is_valid_access	= lwt_is_valid_access,
10622 	.convert_ctx_access	= bpf_convert_ctx_access,
10623 };
10624 
10625 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10626 	.test_run		= bpf_prog_test_run_skb,
10627 };
10628 
10629 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10630 	.get_func_proto		= sock_filter_func_proto,
10631 	.is_valid_access	= sock_filter_is_valid_access,
10632 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10633 };
10634 
10635 const struct bpf_prog_ops cg_sock_prog_ops = {
10636 };
10637 
10638 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10639 	.get_func_proto		= sock_addr_func_proto,
10640 	.is_valid_access	= sock_addr_is_valid_access,
10641 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10642 };
10643 
10644 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10645 };
10646 
10647 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10648 	.get_func_proto		= sock_ops_func_proto,
10649 	.is_valid_access	= sock_ops_is_valid_access,
10650 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10651 };
10652 
10653 const struct bpf_prog_ops sock_ops_prog_ops = {
10654 };
10655 
10656 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10657 	.get_func_proto		= sk_skb_func_proto,
10658 	.is_valid_access	= sk_skb_is_valid_access,
10659 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10660 	.gen_prologue		= sk_skb_prologue,
10661 };
10662 
10663 const struct bpf_prog_ops sk_skb_prog_ops = {
10664 };
10665 
10666 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10667 	.get_func_proto		= sk_msg_func_proto,
10668 	.is_valid_access	= sk_msg_is_valid_access,
10669 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10670 	.gen_prologue		= bpf_noop_prologue,
10671 };
10672 
10673 const struct bpf_prog_ops sk_msg_prog_ops = {
10674 };
10675 
10676 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10677 	.get_func_proto		= flow_dissector_func_proto,
10678 	.is_valid_access	= flow_dissector_is_valid_access,
10679 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10680 };
10681 
10682 const struct bpf_prog_ops flow_dissector_prog_ops = {
10683 	.test_run		= bpf_prog_test_run_flow_dissector,
10684 };
10685 
10686 int sk_detach_filter(struct sock *sk)
10687 {
10688 	int ret = -ENOENT;
10689 	struct sk_filter *filter;
10690 
10691 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10692 		return -EPERM;
10693 
10694 	filter = rcu_dereference_protected(sk->sk_filter,
10695 					   lockdep_sock_is_held(sk));
10696 	if (filter) {
10697 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10698 		sk_filter_uncharge(sk, filter);
10699 		ret = 0;
10700 	}
10701 
10702 	return ret;
10703 }
10704 EXPORT_SYMBOL_GPL(sk_detach_filter);
10705 
10706 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10707 {
10708 	struct sock_fprog_kern *fprog;
10709 	struct sk_filter *filter;
10710 	int ret = 0;
10711 
10712 	sockopt_lock_sock(sk);
10713 	filter = rcu_dereference_protected(sk->sk_filter,
10714 					   lockdep_sock_is_held(sk));
10715 	if (!filter)
10716 		goto out;
10717 
10718 	/* We're copying the filter that has been originally attached,
10719 	 * so no conversion/decode needed anymore. eBPF programs that
10720 	 * have no original program cannot be dumped through this.
10721 	 */
10722 	ret = -EACCES;
10723 	fprog = filter->prog->orig_prog;
10724 	if (!fprog)
10725 		goto out;
10726 
10727 	ret = fprog->len;
10728 	if (!len)
10729 		/* User space only enquires number of filter blocks. */
10730 		goto out;
10731 
10732 	ret = -EINVAL;
10733 	if (len < fprog->len)
10734 		goto out;
10735 
10736 	ret = -EFAULT;
10737 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
10738 		goto out;
10739 
10740 	/* Instead of bytes, the API requests to return the number
10741 	 * of filter blocks.
10742 	 */
10743 	ret = fprog->len;
10744 out:
10745 	sockopt_release_sock(sk);
10746 	return ret;
10747 }
10748 
10749 #ifdef CONFIG_INET
10750 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10751 				    struct sock_reuseport *reuse,
10752 				    struct sock *sk, struct sk_buff *skb,
10753 				    struct sock *migrating_sk,
10754 				    u32 hash)
10755 {
10756 	reuse_kern->skb = skb;
10757 	reuse_kern->sk = sk;
10758 	reuse_kern->selected_sk = NULL;
10759 	reuse_kern->migrating_sk = migrating_sk;
10760 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10761 	reuse_kern->hash = hash;
10762 	reuse_kern->reuseport_id = reuse->reuseport_id;
10763 	reuse_kern->bind_inany = reuse->bind_inany;
10764 }
10765 
10766 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10767 				  struct bpf_prog *prog, struct sk_buff *skb,
10768 				  struct sock *migrating_sk,
10769 				  u32 hash)
10770 {
10771 	struct sk_reuseport_kern reuse_kern;
10772 	enum sk_action action;
10773 
10774 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10775 	action = bpf_prog_run(prog, &reuse_kern);
10776 
10777 	if (action == SK_PASS)
10778 		return reuse_kern.selected_sk;
10779 	else
10780 		return ERR_PTR(-ECONNREFUSED);
10781 }
10782 
10783 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10784 	   struct bpf_map *, map, void *, key, u32, flags)
10785 {
10786 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10787 	struct sock_reuseport *reuse;
10788 	struct sock *selected_sk;
10789 
10790 	selected_sk = map->ops->map_lookup_elem(map, key);
10791 	if (!selected_sk)
10792 		return -ENOENT;
10793 
10794 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10795 	if (!reuse) {
10796 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10797 		if (sk_is_refcounted(selected_sk))
10798 			sock_put(selected_sk);
10799 
10800 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
10801 		 * The only (!reuse) case here is - the sk has already been
10802 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
10803 		 *
10804 		 * Other maps (e.g. sock_map) do not provide this guarantee and
10805 		 * the sk may never be in the reuseport group to begin with.
10806 		 */
10807 		return is_sockarray ? -ENOENT : -EINVAL;
10808 	}
10809 
10810 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10811 		struct sock *sk = reuse_kern->sk;
10812 
10813 		if (sk->sk_protocol != selected_sk->sk_protocol)
10814 			return -EPROTOTYPE;
10815 		else if (sk->sk_family != selected_sk->sk_family)
10816 			return -EAFNOSUPPORT;
10817 
10818 		/* Catch all. Likely bound to a different sockaddr. */
10819 		return -EBADFD;
10820 	}
10821 
10822 	reuse_kern->selected_sk = selected_sk;
10823 
10824 	return 0;
10825 }
10826 
10827 static const struct bpf_func_proto sk_select_reuseport_proto = {
10828 	.func           = sk_select_reuseport,
10829 	.gpl_only       = false,
10830 	.ret_type       = RET_INTEGER,
10831 	.arg1_type	= ARG_PTR_TO_CTX,
10832 	.arg2_type      = ARG_CONST_MAP_PTR,
10833 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
10834 	.arg4_type	= ARG_ANYTHING,
10835 };
10836 
10837 BPF_CALL_4(sk_reuseport_load_bytes,
10838 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10839 	   void *, to, u32, len)
10840 {
10841 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10842 }
10843 
10844 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10845 	.func		= sk_reuseport_load_bytes,
10846 	.gpl_only	= false,
10847 	.ret_type	= RET_INTEGER,
10848 	.arg1_type	= ARG_PTR_TO_CTX,
10849 	.arg2_type	= ARG_ANYTHING,
10850 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10851 	.arg4_type	= ARG_CONST_SIZE,
10852 };
10853 
10854 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10855 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10856 	   void *, to, u32, len, u32, start_header)
10857 {
10858 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10859 					       len, start_header);
10860 }
10861 
10862 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10863 	.func		= sk_reuseport_load_bytes_relative,
10864 	.gpl_only	= false,
10865 	.ret_type	= RET_INTEGER,
10866 	.arg1_type	= ARG_PTR_TO_CTX,
10867 	.arg2_type	= ARG_ANYTHING,
10868 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10869 	.arg4_type	= ARG_CONST_SIZE,
10870 	.arg5_type	= ARG_ANYTHING,
10871 };
10872 
10873 static const struct bpf_func_proto *
10874 sk_reuseport_func_proto(enum bpf_func_id func_id,
10875 			const struct bpf_prog *prog)
10876 {
10877 	switch (func_id) {
10878 	case BPF_FUNC_sk_select_reuseport:
10879 		return &sk_select_reuseport_proto;
10880 	case BPF_FUNC_skb_load_bytes:
10881 		return &sk_reuseport_load_bytes_proto;
10882 	case BPF_FUNC_skb_load_bytes_relative:
10883 		return &sk_reuseport_load_bytes_relative_proto;
10884 	case BPF_FUNC_get_socket_cookie:
10885 		return &bpf_get_socket_ptr_cookie_proto;
10886 	case BPF_FUNC_ktime_get_coarse_ns:
10887 		return &bpf_ktime_get_coarse_ns_proto;
10888 	default:
10889 		return bpf_base_func_proto(func_id);
10890 	}
10891 }
10892 
10893 static bool
10894 sk_reuseport_is_valid_access(int off, int size,
10895 			     enum bpf_access_type type,
10896 			     const struct bpf_prog *prog,
10897 			     struct bpf_insn_access_aux *info)
10898 {
10899 	const u32 size_default = sizeof(__u32);
10900 
10901 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10902 	    off % size || type != BPF_READ)
10903 		return false;
10904 
10905 	switch (off) {
10906 	case offsetof(struct sk_reuseport_md, data):
10907 		info->reg_type = PTR_TO_PACKET;
10908 		return size == sizeof(__u64);
10909 
10910 	case offsetof(struct sk_reuseport_md, data_end):
10911 		info->reg_type = PTR_TO_PACKET_END;
10912 		return size == sizeof(__u64);
10913 
10914 	case offsetof(struct sk_reuseport_md, hash):
10915 		return size == size_default;
10916 
10917 	case offsetof(struct sk_reuseport_md, sk):
10918 		info->reg_type = PTR_TO_SOCKET;
10919 		return size == sizeof(__u64);
10920 
10921 	case offsetof(struct sk_reuseport_md, migrating_sk):
10922 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10923 		return size == sizeof(__u64);
10924 
10925 	/* Fields that allow narrowing */
10926 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10927 		if (size < sizeof_field(struct sk_buff, protocol))
10928 			return false;
10929 		fallthrough;
10930 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10931 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10932 	case bpf_ctx_range(struct sk_reuseport_md, len):
10933 		bpf_ctx_record_field_size(info, size_default);
10934 		return bpf_ctx_narrow_access_ok(off, size, size_default);
10935 
10936 	default:
10937 		return false;
10938 	}
10939 }
10940 
10941 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
10942 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10943 			      si->dst_reg, si->src_reg,			\
10944 			      bpf_target_off(struct sk_reuseport_kern, F, \
10945 					     sizeof_field(struct sk_reuseport_kern, F), \
10946 					     target_size));		\
10947 	})
10948 
10949 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
10950 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10951 				    struct sk_buff,			\
10952 				    skb,				\
10953 				    SKB_FIELD)
10954 
10955 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
10956 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10957 				    struct sock,			\
10958 				    sk,					\
10959 				    SK_FIELD)
10960 
10961 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10962 					   const struct bpf_insn *si,
10963 					   struct bpf_insn *insn_buf,
10964 					   struct bpf_prog *prog,
10965 					   u32 *target_size)
10966 {
10967 	struct bpf_insn *insn = insn_buf;
10968 
10969 	switch (si->off) {
10970 	case offsetof(struct sk_reuseport_md, data):
10971 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
10972 		break;
10973 
10974 	case offsetof(struct sk_reuseport_md, len):
10975 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
10976 		break;
10977 
10978 	case offsetof(struct sk_reuseport_md, eth_protocol):
10979 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10980 		break;
10981 
10982 	case offsetof(struct sk_reuseport_md, ip_protocol):
10983 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10984 		break;
10985 
10986 	case offsetof(struct sk_reuseport_md, data_end):
10987 		SK_REUSEPORT_LOAD_FIELD(data_end);
10988 		break;
10989 
10990 	case offsetof(struct sk_reuseport_md, hash):
10991 		SK_REUSEPORT_LOAD_FIELD(hash);
10992 		break;
10993 
10994 	case offsetof(struct sk_reuseport_md, bind_inany):
10995 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
10996 		break;
10997 
10998 	case offsetof(struct sk_reuseport_md, sk):
10999 		SK_REUSEPORT_LOAD_FIELD(sk);
11000 		break;
11001 
11002 	case offsetof(struct sk_reuseport_md, migrating_sk):
11003 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11004 		break;
11005 	}
11006 
11007 	return insn - insn_buf;
11008 }
11009 
11010 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11011 	.get_func_proto		= sk_reuseport_func_proto,
11012 	.is_valid_access	= sk_reuseport_is_valid_access,
11013 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11014 };
11015 
11016 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11017 };
11018 
11019 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11020 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11021 
11022 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11023 	   struct sock *, sk, u64, flags)
11024 {
11025 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11026 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11027 		return -EINVAL;
11028 	if (unlikely(sk && sk_is_refcounted(sk)))
11029 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11030 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11031 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11032 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11033 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11034 
11035 	/* Check if socket is suitable for packet L3/L4 protocol */
11036 	if (sk && sk->sk_protocol != ctx->protocol)
11037 		return -EPROTOTYPE;
11038 	if (sk && sk->sk_family != ctx->family &&
11039 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11040 		return -EAFNOSUPPORT;
11041 
11042 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11043 		return -EEXIST;
11044 
11045 	/* Select socket as lookup result */
11046 	ctx->selected_sk = sk;
11047 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11048 	return 0;
11049 }
11050 
11051 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11052 	.func		= bpf_sk_lookup_assign,
11053 	.gpl_only	= false,
11054 	.ret_type	= RET_INTEGER,
11055 	.arg1_type	= ARG_PTR_TO_CTX,
11056 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11057 	.arg3_type	= ARG_ANYTHING,
11058 };
11059 
11060 static const struct bpf_func_proto *
11061 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11062 {
11063 	switch (func_id) {
11064 	case BPF_FUNC_perf_event_output:
11065 		return &bpf_event_output_data_proto;
11066 	case BPF_FUNC_sk_assign:
11067 		return &bpf_sk_lookup_assign_proto;
11068 	case BPF_FUNC_sk_release:
11069 		return &bpf_sk_release_proto;
11070 	default:
11071 		return bpf_sk_base_func_proto(func_id);
11072 	}
11073 }
11074 
11075 static bool sk_lookup_is_valid_access(int off, int size,
11076 				      enum bpf_access_type type,
11077 				      const struct bpf_prog *prog,
11078 				      struct bpf_insn_access_aux *info)
11079 {
11080 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11081 		return false;
11082 	if (off % size != 0)
11083 		return false;
11084 	if (type != BPF_READ)
11085 		return false;
11086 
11087 	switch (off) {
11088 	case offsetof(struct bpf_sk_lookup, sk):
11089 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11090 		return size == sizeof(__u64);
11091 
11092 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11093 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11094 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11095 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11096 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11097 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11098 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11099 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11100 		bpf_ctx_record_field_size(info, sizeof(__u32));
11101 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11102 
11103 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11104 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11105 		if (size == sizeof(__u32))
11106 			return true;
11107 		bpf_ctx_record_field_size(info, sizeof(__be16));
11108 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11109 
11110 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11111 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11112 		/* Allow access to zero padding for backward compatibility */
11113 		bpf_ctx_record_field_size(info, sizeof(__u16));
11114 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11115 
11116 	default:
11117 		return false;
11118 	}
11119 }
11120 
11121 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11122 					const struct bpf_insn *si,
11123 					struct bpf_insn *insn_buf,
11124 					struct bpf_prog *prog,
11125 					u32 *target_size)
11126 {
11127 	struct bpf_insn *insn = insn_buf;
11128 
11129 	switch (si->off) {
11130 	case offsetof(struct bpf_sk_lookup, sk):
11131 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11132 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11133 		break;
11134 
11135 	case offsetof(struct bpf_sk_lookup, family):
11136 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11137 				      bpf_target_off(struct bpf_sk_lookup_kern,
11138 						     family, 2, target_size));
11139 		break;
11140 
11141 	case offsetof(struct bpf_sk_lookup, protocol):
11142 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11143 				      bpf_target_off(struct bpf_sk_lookup_kern,
11144 						     protocol, 2, target_size));
11145 		break;
11146 
11147 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11148 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11149 				      bpf_target_off(struct bpf_sk_lookup_kern,
11150 						     v4.saddr, 4, target_size));
11151 		break;
11152 
11153 	case offsetof(struct bpf_sk_lookup, local_ip4):
11154 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11155 				      bpf_target_off(struct bpf_sk_lookup_kern,
11156 						     v4.daddr, 4, target_size));
11157 		break;
11158 
11159 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11160 				remote_ip6[0], remote_ip6[3]): {
11161 #if IS_ENABLED(CONFIG_IPV6)
11162 		int off = si->off;
11163 
11164 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11165 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11166 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11167 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11168 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11169 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11170 #else
11171 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11172 #endif
11173 		break;
11174 	}
11175 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11176 				local_ip6[0], local_ip6[3]): {
11177 #if IS_ENABLED(CONFIG_IPV6)
11178 		int off = si->off;
11179 
11180 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11181 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11182 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11183 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11184 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11185 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11186 #else
11187 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11188 #endif
11189 		break;
11190 	}
11191 	case offsetof(struct bpf_sk_lookup, remote_port):
11192 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11193 				      bpf_target_off(struct bpf_sk_lookup_kern,
11194 						     sport, 2, target_size));
11195 		break;
11196 
11197 	case offsetofend(struct bpf_sk_lookup, remote_port):
11198 		*target_size = 2;
11199 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11200 		break;
11201 
11202 	case offsetof(struct bpf_sk_lookup, local_port):
11203 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11204 				      bpf_target_off(struct bpf_sk_lookup_kern,
11205 						     dport, 2, target_size));
11206 		break;
11207 
11208 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11209 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11210 				      bpf_target_off(struct bpf_sk_lookup_kern,
11211 						     ingress_ifindex, 4, target_size));
11212 		break;
11213 	}
11214 
11215 	return insn - insn_buf;
11216 }
11217 
11218 const struct bpf_prog_ops sk_lookup_prog_ops = {
11219 	.test_run = bpf_prog_test_run_sk_lookup,
11220 };
11221 
11222 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11223 	.get_func_proto		= sk_lookup_func_proto,
11224 	.is_valid_access	= sk_lookup_is_valid_access,
11225 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11226 };
11227 
11228 #endif /* CONFIG_INET */
11229 
11230 DEFINE_BPF_DISPATCHER(xdp)
11231 
11232 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11233 {
11234 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11235 }
11236 
11237 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11238 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11239 BTF_SOCK_TYPE_xxx
11240 #undef BTF_SOCK_TYPE
11241 
11242 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11243 {
11244 	/* tcp6_sock type is not generated in dwarf and hence btf,
11245 	 * trigger an explicit type generation here.
11246 	 */
11247 	BTF_TYPE_EMIT(struct tcp6_sock);
11248 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11249 	    sk->sk_family == AF_INET6)
11250 		return (unsigned long)sk;
11251 
11252 	return (unsigned long)NULL;
11253 }
11254 
11255 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11256 	.func			= bpf_skc_to_tcp6_sock,
11257 	.gpl_only		= false,
11258 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11259 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11260 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11261 };
11262 
11263 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11264 {
11265 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11266 		return (unsigned long)sk;
11267 
11268 	return (unsigned long)NULL;
11269 }
11270 
11271 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11272 	.func			= bpf_skc_to_tcp_sock,
11273 	.gpl_only		= false,
11274 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11275 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11276 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11277 };
11278 
11279 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11280 {
11281 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11282 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11283 	 */
11284 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11285 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11286 
11287 #ifdef CONFIG_INET
11288 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11289 		return (unsigned long)sk;
11290 #endif
11291 
11292 #if IS_BUILTIN(CONFIG_IPV6)
11293 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11294 		return (unsigned long)sk;
11295 #endif
11296 
11297 	return (unsigned long)NULL;
11298 }
11299 
11300 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11301 	.func			= bpf_skc_to_tcp_timewait_sock,
11302 	.gpl_only		= false,
11303 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11304 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11305 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11306 };
11307 
11308 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11309 {
11310 #ifdef CONFIG_INET
11311 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11312 		return (unsigned long)sk;
11313 #endif
11314 
11315 #if IS_BUILTIN(CONFIG_IPV6)
11316 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11317 		return (unsigned long)sk;
11318 #endif
11319 
11320 	return (unsigned long)NULL;
11321 }
11322 
11323 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11324 	.func			= bpf_skc_to_tcp_request_sock,
11325 	.gpl_only		= false,
11326 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11327 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11328 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11329 };
11330 
11331 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11332 {
11333 	/* udp6_sock type is not generated in dwarf and hence btf,
11334 	 * trigger an explicit type generation here.
11335 	 */
11336 	BTF_TYPE_EMIT(struct udp6_sock);
11337 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11338 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11339 		return (unsigned long)sk;
11340 
11341 	return (unsigned long)NULL;
11342 }
11343 
11344 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11345 	.func			= bpf_skc_to_udp6_sock,
11346 	.gpl_only		= false,
11347 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11348 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11349 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11350 };
11351 
11352 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11353 {
11354 	/* unix_sock type is not generated in dwarf and hence btf,
11355 	 * trigger an explicit type generation here.
11356 	 */
11357 	BTF_TYPE_EMIT(struct unix_sock);
11358 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11359 		return (unsigned long)sk;
11360 
11361 	return (unsigned long)NULL;
11362 }
11363 
11364 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11365 	.func			= bpf_skc_to_unix_sock,
11366 	.gpl_only		= false,
11367 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11368 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11369 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11370 };
11371 
11372 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11373 {
11374 	BTF_TYPE_EMIT(struct mptcp_sock);
11375 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11376 }
11377 
11378 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11379 	.func		= bpf_skc_to_mptcp_sock,
11380 	.gpl_only	= false,
11381 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11382 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11383 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11384 };
11385 
11386 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11387 {
11388 	return (unsigned long)sock_from_file(file);
11389 }
11390 
11391 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11392 BTF_ID(struct, socket)
11393 BTF_ID(struct, file)
11394 
11395 const struct bpf_func_proto bpf_sock_from_file_proto = {
11396 	.func		= bpf_sock_from_file,
11397 	.gpl_only	= false,
11398 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11399 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11400 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11401 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11402 };
11403 
11404 static const struct bpf_func_proto *
11405 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11406 {
11407 	const struct bpf_func_proto *func;
11408 
11409 	switch (func_id) {
11410 	case BPF_FUNC_skc_to_tcp6_sock:
11411 		func = &bpf_skc_to_tcp6_sock_proto;
11412 		break;
11413 	case BPF_FUNC_skc_to_tcp_sock:
11414 		func = &bpf_skc_to_tcp_sock_proto;
11415 		break;
11416 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11417 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11418 		break;
11419 	case BPF_FUNC_skc_to_tcp_request_sock:
11420 		func = &bpf_skc_to_tcp_request_sock_proto;
11421 		break;
11422 	case BPF_FUNC_skc_to_udp6_sock:
11423 		func = &bpf_skc_to_udp6_sock_proto;
11424 		break;
11425 	case BPF_FUNC_skc_to_unix_sock:
11426 		func = &bpf_skc_to_unix_sock_proto;
11427 		break;
11428 	case BPF_FUNC_skc_to_mptcp_sock:
11429 		func = &bpf_skc_to_mptcp_sock_proto;
11430 		break;
11431 	case BPF_FUNC_ktime_get_coarse_ns:
11432 		return &bpf_ktime_get_coarse_ns_proto;
11433 	default:
11434 		return bpf_base_func_proto(func_id);
11435 	}
11436 
11437 	if (!perfmon_capable())
11438 		return NULL;
11439 
11440 	return func;
11441 }
11442