xref: /openbmc/linux/net/core/filter.c (revision 5927145e)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/ip.h>
37 #include <net/protocol.h>
38 #include <net/netlink.h>
39 #include <linux/skbuff.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <asm/cmpxchg.h>
47 #include <linux/filter.h>
48 #include <linux/ratelimit.h>
49 #include <linux/seccomp.h>
50 #include <linux/if_vlan.h>
51 #include <linux/bpf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <linux/bpf_trace.h>
60 
61 /**
62  *	sk_filter_trim_cap - run a packet through a socket filter
63  *	@sk: sock associated with &sk_buff
64  *	@skb: buffer to filter
65  *	@cap: limit on how short the eBPF program may trim the packet
66  *
67  * Run the eBPF program and then cut skb->data to correct size returned by
68  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
69  * than pkt_len we keep whole skb->data. This is the socket level
70  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
71  * be accepted or -EPERM if the packet should be tossed.
72  *
73  */
74 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
75 {
76 	int err;
77 	struct sk_filter *filter;
78 
79 	/*
80 	 * If the skb was allocated from pfmemalloc reserves, only
81 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
82 	 * helping free memory
83 	 */
84 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
85 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
86 		return -ENOMEM;
87 	}
88 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
89 	if (err)
90 		return err;
91 
92 	err = security_sock_rcv_skb(sk, skb);
93 	if (err)
94 		return err;
95 
96 	rcu_read_lock();
97 	filter = rcu_dereference(sk->sk_filter);
98 	if (filter) {
99 		struct sock *save_sk = skb->sk;
100 		unsigned int pkt_len;
101 
102 		skb->sk = sk;
103 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
104 		skb->sk = save_sk;
105 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
106 	}
107 	rcu_read_unlock();
108 
109 	return err;
110 }
111 EXPORT_SYMBOL(sk_filter_trim_cap);
112 
113 BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
114 {
115 	return skb_get_poff(skb);
116 }
117 
118 BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
119 {
120 	struct nlattr *nla;
121 
122 	if (skb_is_nonlinear(skb))
123 		return 0;
124 
125 	if (skb->len < sizeof(struct nlattr))
126 		return 0;
127 
128 	if (a > skb->len - sizeof(struct nlattr))
129 		return 0;
130 
131 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
132 	if (nla)
133 		return (void *) nla - (void *) skb->data;
134 
135 	return 0;
136 }
137 
138 BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
139 {
140 	struct nlattr *nla;
141 
142 	if (skb_is_nonlinear(skb))
143 		return 0;
144 
145 	if (skb->len < sizeof(struct nlattr))
146 		return 0;
147 
148 	if (a > skb->len - sizeof(struct nlattr))
149 		return 0;
150 
151 	nla = (struct nlattr *) &skb->data[a];
152 	if (nla->nla_len > skb->len - a)
153 		return 0;
154 
155 	nla = nla_find_nested(nla, x);
156 	if (nla)
157 		return (void *) nla - (void *) skb->data;
158 
159 	return 0;
160 }
161 
162 BPF_CALL_0(__get_raw_cpu_id)
163 {
164 	return raw_smp_processor_id();
165 }
166 
167 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
168 	.func		= __get_raw_cpu_id,
169 	.gpl_only	= false,
170 	.ret_type	= RET_INTEGER,
171 };
172 
173 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
174 			      struct bpf_insn *insn_buf)
175 {
176 	struct bpf_insn *insn = insn_buf;
177 
178 	switch (skb_field) {
179 	case SKF_AD_MARK:
180 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
181 
182 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
183 				      offsetof(struct sk_buff, mark));
184 		break;
185 
186 	case SKF_AD_PKTTYPE:
187 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
188 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
189 #ifdef __BIG_ENDIAN_BITFIELD
190 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
191 #endif
192 		break;
193 
194 	case SKF_AD_QUEUE:
195 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
196 
197 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
198 				      offsetof(struct sk_buff, queue_mapping));
199 		break;
200 
201 	case SKF_AD_VLAN_TAG:
202 	case SKF_AD_VLAN_TAG_PRESENT:
203 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
204 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
205 
206 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
207 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
208 				      offsetof(struct sk_buff, vlan_tci));
209 		if (skb_field == SKF_AD_VLAN_TAG) {
210 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
211 						~VLAN_TAG_PRESENT);
212 		} else {
213 			/* dst_reg >>= 12 */
214 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
215 			/* dst_reg &= 1 */
216 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
217 		}
218 		break;
219 	}
220 
221 	return insn - insn_buf;
222 }
223 
224 static bool convert_bpf_extensions(struct sock_filter *fp,
225 				   struct bpf_insn **insnp)
226 {
227 	struct bpf_insn *insn = *insnp;
228 	u32 cnt;
229 
230 	switch (fp->k) {
231 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
232 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
233 
234 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
235 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
236 				      offsetof(struct sk_buff, protocol));
237 		/* A = ntohs(A) [emitting a nop or swap16] */
238 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
239 		break;
240 
241 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
242 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
243 		insn += cnt - 1;
244 		break;
245 
246 	case SKF_AD_OFF + SKF_AD_IFINDEX:
247 	case SKF_AD_OFF + SKF_AD_HATYPE:
248 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
249 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
250 
251 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
252 				      BPF_REG_TMP, BPF_REG_CTX,
253 				      offsetof(struct sk_buff, dev));
254 		/* if (tmp != 0) goto pc + 1 */
255 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
256 		*insn++ = BPF_EXIT_INSN();
257 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
258 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
259 					    offsetof(struct net_device, ifindex));
260 		else
261 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
262 					    offsetof(struct net_device, type));
263 		break;
264 
265 	case SKF_AD_OFF + SKF_AD_MARK:
266 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
267 		insn += cnt - 1;
268 		break;
269 
270 	case SKF_AD_OFF + SKF_AD_RXHASH:
271 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
272 
273 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
274 				    offsetof(struct sk_buff, hash));
275 		break;
276 
277 	case SKF_AD_OFF + SKF_AD_QUEUE:
278 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
279 		insn += cnt - 1;
280 		break;
281 
282 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
283 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
284 					 BPF_REG_A, BPF_REG_CTX, insn);
285 		insn += cnt - 1;
286 		break;
287 
288 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
289 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
290 					 BPF_REG_A, BPF_REG_CTX, insn);
291 		insn += cnt - 1;
292 		break;
293 
294 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
295 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
296 
297 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
298 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
299 				      offsetof(struct sk_buff, vlan_proto));
300 		/* A = ntohs(A) [emitting a nop or swap16] */
301 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
302 		break;
303 
304 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
305 	case SKF_AD_OFF + SKF_AD_NLATTR:
306 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
307 	case SKF_AD_OFF + SKF_AD_CPU:
308 	case SKF_AD_OFF + SKF_AD_RANDOM:
309 		/* arg1 = CTX */
310 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
311 		/* arg2 = A */
312 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
313 		/* arg3 = X */
314 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
315 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
316 		switch (fp->k) {
317 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
318 			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
319 			break;
320 		case SKF_AD_OFF + SKF_AD_NLATTR:
321 			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
322 			break;
323 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
324 			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
325 			break;
326 		case SKF_AD_OFF + SKF_AD_CPU:
327 			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
328 			break;
329 		case SKF_AD_OFF + SKF_AD_RANDOM:
330 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
331 			bpf_user_rnd_init_once();
332 			break;
333 		}
334 		break;
335 
336 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
337 		/* A ^= X */
338 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
339 		break;
340 
341 	default:
342 		/* This is just a dummy call to avoid letting the compiler
343 		 * evict __bpf_call_base() as an optimization. Placed here
344 		 * where no-one bothers.
345 		 */
346 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
347 		return false;
348 	}
349 
350 	*insnp = insn;
351 	return true;
352 }
353 
354 /**
355  *	bpf_convert_filter - convert filter program
356  *	@prog: the user passed filter program
357  *	@len: the length of the user passed filter program
358  *	@new_prog: allocated 'struct bpf_prog' or NULL
359  *	@new_len: pointer to store length of converted program
360  *
361  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
362  * style extended BPF (eBPF).
363  * Conversion workflow:
364  *
365  * 1) First pass for calculating the new program length:
366  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
367  *
368  * 2) 2nd pass to remap in two passes: 1st pass finds new
369  *    jump offsets, 2nd pass remapping:
370  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
371  */
372 static int bpf_convert_filter(struct sock_filter *prog, int len,
373 			      struct bpf_prog *new_prog, int *new_len)
374 {
375 	int new_flen = 0, pass = 0, target, i, stack_off;
376 	struct bpf_insn *new_insn, *first_insn = NULL;
377 	struct sock_filter *fp;
378 	int *addrs = NULL;
379 	u8 bpf_src;
380 
381 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
382 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
383 
384 	if (len <= 0 || len > BPF_MAXINSNS)
385 		return -EINVAL;
386 
387 	if (new_prog) {
388 		first_insn = new_prog->insnsi;
389 		addrs = kcalloc(len, sizeof(*addrs),
390 				GFP_KERNEL | __GFP_NOWARN);
391 		if (!addrs)
392 			return -ENOMEM;
393 	}
394 
395 do_pass:
396 	new_insn = first_insn;
397 	fp = prog;
398 
399 	/* Classic BPF related prologue emission. */
400 	if (new_prog) {
401 		/* Classic BPF expects A and X to be reset first. These need
402 		 * to be guaranteed to be the first two instructions.
403 		 */
404 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
405 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
406 
407 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
408 		 * In eBPF case it's done by the compiler, here we need to
409 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
410 		 */
411 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
412 	} else {
413 		new_insn += 3;
414 	}
415 
416 	for (i = 0; i < len; fp++, i++) {
417 		struct bpf_insn tmp_insns[6] = { };
418 		struct bpf_insn *insn = tmp_insns;
419 
420 		if (addrs)
421 			addrs[i] = new_insn - first_insn;
422 
423 		switch (fp->code) {
424 		/* All arithmetic insns and skb loads map as-is. */
425 		case BPF_ALU | BPF_ADD | BPF_X:
426 		case BPF_ALU | BPF_ADD | BPF_K:
427 		case BPF_ALU | BPF_SUB | BPF_X:
428 		case BPF_ALU | BPF_SUB | BPF_K:
429 		case BPF_ALU | BPF_AND | BPF_X:
430 		case BPF_ALU | BPF_AND | BPF_K:
431 		case BPF_ALU | BPF_OR | BPF_X:
432 		case BPF_ALU | BPF_OR | BPF_K:
433 		case BPF_ALU | BPF_LSH | BPF_X:
434 		case BPF_ALU | BPF_LSH | BPF_K:
435 		case BPF_ALU | BPF_RSH | BPF_X:
436 		case BPF_ALU | BPF_RSH | BPF_K:
437 		case BPF_ALU | BPF_XOR | BPF_X:
438 		case BPF_ALU | BPF_XOR | BPF_K:
439 		case BPF_ALU | BPF_MUL | BPF_X:
440 		case BPF_ALU | BPF_MUL | BPF_K:
441 		case BPF_ALU | BPF_DIV | BPF_X:
442 		case BPF_ALU | BPF_DIV | BPF_K:
443 		case BPF_ALU | BPF_MOD | BPF_X:
444 		case BPF_ALU | BPF_MOD | BPF_K:
445 		case BPF_ALU | BPF_NEG:
446 		case BPF_LD | BPF_ABS | BPF_W:
447 		case BPF_LD | BPF_ABS | BPF_H:
448 		case BPF_LD | BPF_ABS | BPF_B:
449 		case BPF_LD | BPF_IND | BPF_W:
450 		case BPF_LD | BPF_IND | BPF_H:
451 		case BPF_LD | BPF_IND | BPF_B:
452 			/* Check for overloaded BPF extension and
453 			 * directly convert it if found, otherwise
454 			 * just move on with mapping.
455 			 */
456 			if (BPF_CLASS(fp->code) == BPF_LD &&
457 			    BPF_MODE(fp->code) == BPF_ABS &&
458 			    convert_bpf_extensions(fp, &insn))
459 				break;
460 
461 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
462 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
463 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
464 				/* Error with exception code on div/mod by 0.
465 				 * For cBPF programs, this was always return 0.
466 				 */
467 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
468 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
469 				*insn++ = BPF_EXIT_INSN();
470 			}
471 
472 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
473 			break;
474 
475 		/* Jump transformation cannot use BPF block macros
476 		 * everywhere as offset calculation and target updates
477 		 * require a bit more work than the rest, i.e. jump
478 		 * opcodes map as-is, but offsets need adjustment.
479 		 */
480 
481 #define BPF_EMIT_JMP							\
482 	do {								\
483 		if (target >= len || target < 0)			\
484 			goto err;					\
485 		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
486 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
487 		insn->off -= insn - tmp_insns;				\
488 	} while (0)
489 
490 		case BPF_JMP | BPF_JA:
491 			target = i + fp->k + 1;
492 			insn->code = fp->code;
493 			BPF_EMIT_JMP;
494 			break;
495 
496 		case BPF_JMP | BPF_JEQ | BPF_K:
497 		case BPF_JMP | BPF_JEQ | BPF_X:
498 		case BPF_JMP | BPF_JSET | BPF_K:
499 		case BPF_JMP | BPF_JSET | BPF_X:
500 		case BPF_JMP | BPF_JGT | BPF_K:
501 		case BPF_JMP | BPF_JGT | BPF_X:
502 		case BPF_JMP | BPF_JGE | BPF_K:
503 		case BPF_JMP | BPF_JGE | BPF_X:
504 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
505 				/* BPF immediates are signed, zero extend
506 				 * immediate into tmp register and use it
507 				 * in compare insn.
508 				 */
509 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
510 
511 				insn->dst_reg = BPF_REG_A;
512 				insn->src_reg = BPF_REG_TMP;
513 				bpf_src = BPF_X;
514 			} else {
515 				insn->dst_reg = BPF_REG_A;
516 				insn->imm = fp->k;
517 				bpf_src = BPF_SRC(fp->code);
518 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
519 			}
520 
521 			/* Common case where 'jump_false' is next insn. */
522 			if (fp->jf == 0) {
523 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
524 				target = i + fp->jt + 1;
525 				BPF_EMIT_JMP;
526 				break;
527 			}
528 
529 			/* Convert some jumps when 'jump_true' is next insn. */
530 			if (fp->jt == 0) {
531 				switch (BPF_OP(fp->code)) {
532 				case BPF_JEQ:
533 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
534 					break;
535 				case BPF_JGT:
536 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
537 					break;
538 				case BPF_JGE:
539 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
540 					break;
541 				default:
542 					goto jmp_rest;
543 				}
544 
545 				target = i + fp->jf + 1;
546 				BPF_EMIT_JMP;
547 				break;
548 			}
549 jmp_rest:
550 			/* Other jumps are mapped into two insns: Jxx and JA. */
551 			target = i + fp->jt + 1;
552 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
553 			BPF_EMIT_JMP;
554 			insn++;
555 
556 			insn->code = BPF_JMP | BPF_JA;
557 			target = i + fp->jf + 1;
558 			BPF_EMIT_JMP;
559 			break;
560 
561 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
562 		case BPF_LDX | BPF_MSH | BPF_B:
563 			/* tmp = A */
564 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
565 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
566 			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
567 			/* A &= 0xf */
568 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
569 			/* A <<= 2 */
570 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
571 			/* X = A */
572 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
573 			/* A = tmp */
574 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
575 			break;
576 
577 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
578 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
579 		 */
580 		case BPF_RET | BPF_A:
581 		case BPF_RET | BPF_K:
582 			if (BPF_RVAL(fp->code) == BPF_K)
583 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
584 							0, fp->k);
585 			*insn = BPF_EXIT_INSN();
586 			break;
587 
588 		/* Store to stack. */
589 		case BPF_ST:
590 		case BPF_STX:
591 			stack_off = fp->k * 4  + 4;
592 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
593 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
594 					    -stack_off);
595 			/* check_load_and_stores() verifies that classic BPF can
596 			 * load from stack only after write, so tracking
597 			 * stack_depth for ST|STX insns is enough
598 			 */
599 			if (new_prog && new_prog->aux->stack_depth < stack_off)
600 				new_prog->aux->stack_depth = stack_off;
601 			break;
602 
603 		/* Load from stack. */
604 		case BPF_LD | BPF_MEM:
605 		case BPF_LDX | BPF_MEM:
606 			stack_off = fp->k * 4  + 4;
607 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
608 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
609 					    -stack_off);
610 			break;
611 
612 		/* A = K or X = K */
613 		case BPF_LD | BPF_IMM:
614 		case BPF_LDX | BPF_IMM:
615 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
616 					      BPF_REG_A : BPF_REG_X, fp->k);
617 			break;
618 
619 		/* X = A */
620 		case BPF_MISC | BPF_TAX:
621 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
622 			break;
623 
624 		/* A = X */
625 		case BPF_MISC | BPF_TXA:
626 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
627 			break;
628 
629 		/* A = skb->len or X = skb->len */
630 		case BPF_LD | BPF_W | BPF_LEN:
631 		case BPF_LDX | BPF_W | BPF_LEN:
632 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
633 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
634 					    offsetof(struct sk_buff, len));
635 			break;
636 
637 		/* Access seccomp_data fields. */
638 		case BPF_LDX | BPF_ABS | BPF_W:
639 			/* A = *(u32 *) (ctx + K) */
640 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
641 			break;
642 
643 		/* Unknown instruction. */
644 		default:
645 			goto err;
646 		}
647 
648 		insn++;
649 		if (new_prog)
650 			memcpy(new_insn, tmp_insns,
651 			       sizeof(*insn) * (insn - tmp_insns));
652 		new_insn += insn - tmp_insns;
653 	}
654 
655 	if (!new_prog) {
656 		/* Only calculating new length. */
657 		*new_len = new_insn - first_insn;
658 		return 0;
659 	}
660 
661 	pass++;
662 	if (new_flen != new_insn - first_insn) {
663 		new_flen = new_insn - first_insn;
664 		if (pass > 2)
665 			goto err;
666 		goto do_pass;
667 	}
668 
669 	kfree(addrs);
670 	BUG_ON(*new_len != new_flen);
671 	return 0;
672 err:
673 	kfree(addrs);
674 	return -EINVAL;
675 }
676 
677 /* Security:
678  *
679  * As we dont want to clear mem[] array for each packet going through
680  * __bpf_prog_run(), we check that filter loaded by user never try to read
681  * a cell if not previously written, and we check all branches to be sure
682  * a malicious user doesn't try to abuse us.
683  */
684 static int check_load_and_stores(const struct sock_filter *filter, int flen)
685 {
686 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
687 	int pc, ret = 0;
688 
689 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
690 
691 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
692 	if (!masks)
693 		return -ENOMEM;
694 
695 	memset(masks, 0xff, flen * sizeof(*masks));
696 
697 	for (pc = 0; pc < flen; pc++) {
698 		memvalid &= masks[pc];
699 
700 		switch (filter[pc].code) {
701 		case BPF_ST:
702 		case BPF_STX:
703 			memvalid |= (1 << filter[pc].k);
704 			break;
705 		case BPF_LD | BPF_MEM:
706 		case BPF_LDX | BPF_MEM:
707 			if (!(memvalid & (1 << filter[pc].k))) {
708 				ret = -EINVAL;
709 				goto error;
710 			}
711 			break;
712 		case BPF_JMP | BPF_JA:
713 			/* A jump must set masks on target */
714 			masks[pc + 1 + filter[pc].k] &= memvalid;
715 			memvalid = ~0;
716 			break;
717 		case BPF_JMP | BPF_JEQ | BPF_K:
718 		case BPF_JMP | BPF_JEQ | BPF_X:
719 		case BPF_JMP | BPF_JGE | BPF_K:
720 		case BPF_JMP | BPF_JGE | BPF_X:
721 		case BPF_JMP | BPF_JGT | BPF_K:
722 		case BPF_JMP | BPF_JGT | BPF_X:
723 		case BPF_JMP | BPF_JSET | BPF_K:
724 		case BPF_JMP | BPF_JSET | BPF_X:
725 			/* A jump must set masks on targets */
726 			masks[pc + 1 + filter[pc].jt] &= memvalid;
727 			masks[pc + 1 + filter[pc].jf] &= memvalid;
728 			memvalid = ~0;
729 			break;
730 		}
731 	}
732 error:
733 	kfree(masks);
734 	return ret;
735 }
736 
737 static bool chk_code_allowed(u16 code_to_probe)
738 {
739 	static const bool codes[] = {
740 		/* 32 bit ALU operations */
741 		[BPF_ALU | BPF_ADD | BPF_K] = true,
742 		[BPF_ALU | BPF_ADD | BPF_X] = true,
743 		[BPF_ALU | BPF_SUB | BPF_K] = true,
744 		[BPF_ALU | BPF_SUB | BPF_X] = true,
745 		[BPF_ALU | BPF_MUL | BPF_K] = true,
746 		[BPF_ALU | BPF_MUL | BPF_X] = true,
747 		[BPF_ALU | BPF_DIV | BPF_K] = true,
748 		[BPF_ALU | BPF_DIV | BPF_X] = true,
749 		[BPF_ALU | BPF_MOD | BPF_K] = true,
750 		[BPF_ALU | BPF_MOD | BPF_X] = true,
751 		[BPF_ALU | BPF_AND | BPF_K] = true,
752 		[BPF_ALU | BPF_AND | BPF_X] = true,
753 		[BPF_ALU | BPF_OR | BPF_K] = true,
754 		[BPF_ALU | BPF_OR | BPF_X] = true,
755 		[BPF_ALU | BPF_XOR | BPF_K] = true,
756 		[BPF_ALU | BPF_XOR | BPF_X] = true,
757 		[BPF_ALU | BPF_LSH | BPF_K] = true,
758 		[BPF_ALU | BPF_LSH | BPF_X] = true,
759 		[BPF_ALU | BPF_RSH | BPF_K] = true,
760 		[BPF_ALU | BPF_RSH | BPF_X] = true,
761 		[BPF_ALU | BPF_NEG] = true,
762 		/* Load instructions */
763 		[BPF_LD | BPF_W | BPF_ABS] = true,
764 		[BPF_LD | BPF_H | BPF_ABS] = true,
765 		[BPF_LD | BPF_B | BPF_ABS] = true,
766 		[BPF_LD | BPF_W | BPF_LEN] = true,
767 		[BPF_LD | BPF_W | BPF_IND] = true,
768 		[BPF_LD | BPF_H | BPF_IND] = true,
769 		[BPF_LD | BPF_B | BPF_IND] = true,
770 		[BPF_LD | BPF_IMM] = true,
771 		[BPF_LD | BPF_MEM] = true,
772 		[BPF_LDX | BPF_W | BPF_LEN] = true,
773 		[BPF_LDX | BPF_B | BPF_MSH] = true,
774 		[BPF_LDX | BPF_IMM] = true,
775 		[BPF_LDX | BPF_MEM] = true,
776 		/* Store instructions */
777 		[BPF_ST] = true,
778 		[BPF_STX] = true,
779 		/* Misc instructions */
780 		[BPF_MISC | BPF_TAX] = true,
781 		[BPF_MISC | BPF_TXA] = true,
782 		/* Return instructions */
783 		[BPF_RET | BPF_K] = true,
784 		[BPF_RET | BPF_A] = true,
785 		/* Jump instructions */
786 		[BPF_JMP | BPF_JA] = true,
787 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
788 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
789 		[BPF_JMP | BPF_JGE | BPF_K] = true,
790 		[BPF_JMP | BPF_JGE | BPF_X] = true,
791 		[BPF_JMP | BPF_JGT | BPF_K] = true,
792 		[BPF_JMP | BPF_JGT | BPF_X] = true,
793 		[BPF_JMP | BPF_JSET | BPF_K] = true,
794 		[BPF_JMP | BPF_JSET | BPF_X] = true,
795 	};
796 
797 	if (code_to_probe >= ARRAY_SIZE(codes))
798 		return false;
799 
800 	return codes[code_to_probe];
801 }
802 
803 static bool bpf_check_basics_ok(const struct sock_filter *filter,
804 				unsigned int flen)
805 {
806 	if (filter == NULL)
807 		return false;
808 	if (flen == 0 || flen > BPF_MAXINSNS)
809 		return false;
810 
811 	return true;
812 }
813 
814 /**
815  *	bpf_check_classic - verify socket filter code
816  *	@filter: filter to verify
817  *	@flen: length of filter
818  *
819  * Check the user's filter code. If we let some ugly
820  * filter code slip through kaboom! The filter must contain
821  * no references or jumps that are out of range, no illegal
822  * instructions, and must end with a RET instruction.
823  *
824  * All jumps are forward as they are not signed.
825  *
826  * Returns 0 if the rule set is legal or -EINVAL if not.
827  */
828 static int bpf_check_classic(const struct sock_filter *filter,
829 			     unsigned int flen)
830 {
831 	bool anc_found;
832 	int pc;
833 
834 	/* Check the filter code now */
835 	for (pc = 0; pc < flen; pc++) {
836 		const struct sock_filter *ftest = &filter[pc];
837 
838 		/* May we actually operate on this code? */
839 		if (!chk_code_allowed(ftest->code))
840 			return -EINVAL;
841 
842 		/* Some instructions need special checks */
843 		switch (ftest->code) {
844 		case BPF_ALU | BPF_DIV | BPF_K:
845 		case BPF_ALU | BPF_MOD | BPF_K:
846 			/* Check for division by zero */
847 			if (ftest->k == 0)
848 				return -EINVAL;
849 			break;
850 		case BPF_ALU | BPF_LSH | BPF_K:
851 		case BPF_ALU | BPF_RSH | BPF_K:
852 			if (ftest->k >= 32)
853 				return -EINVAL;
854 			break;
855 		case BPF_LD | BPF_MEM:
856 		case BPF_LDX | BPF_MEM:
857 		case BPF_ST:
858 		case BPF_STX:
859 			/* Check for invalid memory addresses */
860 			if (ftest->k >= BPF_MEMWORDS)
861 				return -EINVAL;
862 			break;
863 		case BPF_JMP | BPF_JA:
864 			/* Note, the large ftest->k might cause loops.
865 			 * Compare this with conditional jumps below,
866 			 * where offsets are limited. --ANK (981016)
867 			 */
868 			if (ftest->k >= (unsigned int)(flen - pc - 1))
869 				return -EINVAL;
870 			break;
871 		case BPF_JMP | BPF_JEQ | BPF_K:
872 		case BPF_JMP | BPF_JEQ | BPF_X:
873 		case BPF_JMP | BPF_JGE | BPF_K:
874 		case BPF_JMP | BPF_JGE | BPF_X:
875 		case BPF_JMP | BPF_JGT | BPF_K:
876 		case BPF_JMP | BPF_JGT | BPF_X:
877 		case BPF_JMP | BPF_JSET | BPF_K:
878 		case BPF_JMP | BPF_JSET | BPF_X:
879 			/* Both conditionals must be safe */
880 			if (pc + ftest->jt + 1 >= flen ||
881 			    pc + ftest->jf + 1 >= flen)
882 				return -EINVAL;
883 			break;
884 		case BPF_LD | BPF_W | BPF_ABS:
885 		case BPF_LD | BPF_H | BPF_ABS:
886 		case BPF_LD | BPF_B | BPF_ABS:
887 			anc_found = false;
888 			if (bpf_anc_helper(ftest) & BPF_ANC)
889 				anc_found = true;
890 			/* Ancillary operation unknown or unsupported */
891 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
892 				return -EINVAL;
893 		}
894 	}
895 
896 	/* Last instruction must be a RET code */
897 	switch (filter[flen - 1].code) {
898 	case BPF_RET | BPF_K:
899 	case BPF_RET | BPF_A:
900 		return check_load_and_stores(filter, flen);
901 	}
902 
903 	return -EINVAL;
904 }
905 
906 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
907 				      const struct sock_fprog *fprog)
908 {
909 	unsigned int fsize = bpf_classic_proglen(fprog);
910 	struct sock_fprog_kern *fkprog;
911 
912 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
913 	if (!fp->orig_prog)
914 		return -ENOMEM;
915 
916 	fkprog = fp->orig_prog;
917 	fkprog->len = fprog->len;
918 
919 	fkprog->filter = kmemdup(fp->insns, fsize,
920 				 GFP_KERNEL | __GFP_NOWARN);
921 	if (!fkprog->filter) {
922 		kfree(fp->orig_prog);
923 		return -ENOMEM;
924 	}
925 
926 	return 0;
927 }
928 
929 static void bpf_release_orig_filter(struct bpf_prog *fp)
930 {
931 	struct sock_fprog_kern *fprog = fp->orig_prog;
932 
933 	if (fprog) {
934 		kfree(fprog->filter);
935 		kfree(fprog);
936 	}
937 }
938 
939 static void __bpf_prog_release(struct bpf_prog *prog)
940 {
941 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
942 		bpf_prog_put(prog);
943 	} else {
944 		bpf_release_orig_filter(prog);
945 		bpf_prog_free(prog);
946 	}
947 }
948 
949 static void __sk_filter_release(struct sk_filter *fp)
950 {
951 	__bpf_prog_release(fp->prog);
952 	kfree(fp);
953 }
954 
955 /**
956  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
957  *	@rcu: rcu_head that contains the sk_filter to free
958  */
959 static void sk_filter_release_rcu(struct rcu_head *rcu)
960 {
961 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
962 
963 	__sk_filter_release(fp);
964 }
965 
966 /**
967  *	sk_filter_release - release a socket filter
968  *	@fp: filter to remove
969  *
970  *	Remove a filter from a socket and release its resources.
971  */
972 static void sk_filter_release(struct sk_filter *fp)
973 {
974 	if (refcount_dec_and_test(&fp->refcnt))
975 		call_rcu(&fp->rcu, sk_filter_release_rcu);
976 }
977 
978 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
979 {
980 	u32 filter_size = bpf_prog_size(fp->prog->len);
981 
982 	atomic_sub(filter_size, &sk->sk_omem_alloc);
983 	sk_filter_release(fp);
984 }
985 
986 /* try to charge the socket memory if there is space available
987  * return true on success
988  */
989 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
990 {
991 	u32 filter_size = bpf_prog_size(fp->prog->len);
992 
993 	/* same check as in sock_kmalloc() */
994 	if (filter_size <= sysctl_optmem_max &&
995 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
996 		atomic_add(filter_size, &sk->sk_omem_alloc);
997 		return true;
998 	}
999 	return false;
1000 }
1001 
1002 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1003 {
1004 	if (!refcount_inc_not_zero(&fp->refcnt))
1005 		return false;
1006 
1007 	if (!__sk_filter_charge(sk, fp)) {
1008 		sk_filter_release(fp);
1009 		return false;
1010 	}
1011 	return true;
1012 }
1013 
1014 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1015 {
1016 	struct sock_filter *old_prog;
1017 	struct bpf_prog *old_fp;
1018 	int err, new_len, old_len = fp->len;
1019 
1020 	/* We are free to overwrite insns et al right here as it
1021 	 * won't be used at this point in time anymore internally
1022 	 * after the migration to the internal BPF instruction
1023 	 * representation.
1024 	 */
1025 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1026 		     sizeof(struct bpf_insn));
1027 
1028 	/* Conversion cannot happen on overlapping memory areas,
1029 	 * so we need to keep the user BPF around until the 2nd
1030 	 * pass. At this time, the user BPF is stored in fp->insns.
1031 	 */
1032 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1033 			   GFP_KERNEL | __GFP_NOWARN);
1034 	if (!old_prog) {
1035 		err = -ENOMEM;
1036 		goto out_err;
1037 	}
1038 
1039 	/* 1st pass: calculate the new program length. */
1040 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
1041 	if (err)
1042 		goto out_err_free;
1043 
1044 	/* Expand fp for appending the new filter representation. */
1045 	old_fp = fp;
1046 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1047 	if (!fp) {
1048 		/* The old_fp is still around in case we couldn't
1049 		 * allocate new memory, so uncharge on that one.
1050 		 */
1051 		fp = old_fp;
1052 		err = -ENOMEM;
1053 		goto out_err_free;
1054 	}
1055 
1056 	fp->len = new_len;
1057 
1058 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1059 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len);
1060 	if (err)
1061 		/* 2nd bpf_convert_filter() can fail only if it fails
1062 		 * to allocate memory, remapping must succeed. Note,
1063 		 * that at this time old_fp has already been released
1064 		 * by krealloc().
1065 		 */
1066 		goto out_err_free;
1067 
1068 	fp = bpf_prog_select_runtime(fp, &err);
1069 	if (err)
1070 		goto out_err_free;
1071 
1072 	kfree(old_prog);
1073 	return fp;
1074 
1075 out_err_free:
1076 	kfree(old_prog);
1077 out_err:
1078 	__bpf_prog_release(fp);
1079 	return ERR_PTR(err);
1080 }
1081 
1082 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1083 					   bpf_aux_classic_check_t trans)
1084 {
1085 	int err;
1086 
1087 	fp->bpf_func = NULL;
1088 	fp->jited = 0;
1089 
1090 	err = bpf_check_classic(fp->insns, fp->len);
1091 	if (err) {
1092 		__bpf_prog_release(fp);
1093 		return ERR_PTR(err);
1094 	}
1095 
1096 	/* There might be additional checks and transformations
1097 	 * needed on classic filters, f.e. in case of seccomp.
1098 	 */
1099 	if (trans) {
1100 		err = trans(fp->insns, fp->len);
1101 		if (err) {
1102 			__bpf_prog_release(fp);
1103 			return ERR_PTR(err);
1104 		}
1105 	}
1106 
1107 	/* Probe if we can JIT compile the filter and if so, do
1108 	 * the compilation of the filter.
1109 	 */
1110 	bpf_jit_compile(fp);
1111 
1112 	/* JIT compiler couldn't process this filter, so do the
1113 	 * internal BPF translation for the optimized interpreter.
1114 	 */
1115 	if (!fp->jited)
1116 		fp = bpf_migrate_filter(fp);
1117 
1118 	return fp;
1119 }
1120 
1121 /**
1122  *	bpf_prog_create - create an unattached filter
1123  *	@pfp: the unattached filter that is created
1124  *	@fprog: the filter program
1125  *
1126  * Create a filter independent of any socket. We first run some
1127  * sanity checks on it to make sure it does not explode on us later.
1128  * If an error occurs or there is insufficient memory for the filter
1129  * a negative errno code is returned. On success the return is zero.
1130  */
1131 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1132 {
1133 	unsigned int fsize = bpf_classic_proglen(fprog);
1134 	struct bpf_prog *fp;
1135 
1136 	/* Make sure new filter is there and in the right amounts. */
1137 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1138 		return -EINVAL;
1139 
1140 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1141 	if (!fp)
1142 		return -ENOMEM;
1143 
1144 	memcpy(fp->insns, fprog->filter, fsize);
1145 
1146 	fp->len = fprog->len;
1147 	/* Since unattached filters are not copied back to user
1148 	 * space through sk_get_filter(), we do not need to hold
1149 	 * a copy here, and can spare us the work.
1150 	 */
1151 	fp->orig_prog = NULL;
1152 
1153 	/* bpf_prepare_filter() already takes care of freeing
1154 	 * memory in case something goes wrong.
1155 	 */
1156 	fp = bpf_prepare_filter(fp, NULL);
1157 	if (IS_ERR(fp))
1158 		return PTR_ERR(fp);
1159 
1160 	*pfp = fp;
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL_GPL(bpf_prog_create);
1164 
1165 /**
1166  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1167  *	@pfp: the unattached filter that is created
1168  *	@fprog: the filter program
1169  *	@trans: post-classic verifier transformation handler
1170  *	@save_orig: save classic BPF program
1171  *
1172  * This function effectively does the same as bpf_prog_create(), only
1173  * that it builds up its insns buffer from user space provided buffer.
1174  * It also allows for passing a bpf_aux_classic_check_t handler.
1175  */
1176 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1177 			      bpf_aux_classic_check_t trans, bool save_orig)
1178 {
1179 	unsigned int fsize = bpf_classic_proglen(fprog);
1180 	struct bpf_prog *fp;
1181 	int err;
1182 
1183 	/* Make sure new filter is there and in the right amounts. */
1184 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1185 		return -EINVAL;
1186 
1187 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1188 	if (!fp)
1189 		return -ENOMEM;
1190 
1191 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1192 		__bpf_prog_free(fp);
1193 		return -EFAULT;
1194 	}
1195 
1196 	fp->len = fprog->len;
1197 	fp->orig_prog = NULL;
1198 
1199 	if (save_orig) {
1200 		err = bpf_prog_store_orig_filter(fp, fprog);
1201 		if (err) {
1202 			__bpf_prog_free(fp);
1203 			return -ENOMEM;
1204 		}
1205 	}
1206 
1207 	/* bpf_prepare_filter() already takes care of freeing
1208 	 * memory in case something goes wrong.
1209 	 */
1210 	fp = bpf_prepare_filter(fp, trans);
1211 	if (IS_ERR(fp))
1212 		return PTR_ERR(fp);
1213 
1214 	*pfp = fp;
1215 	return 0;
1216 }
1217 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1218 
1219 void bpf_prog_destroy(struct bpf_prog *fp)
1220 {
1221 	__bpf_prog_release(fp);
1222 }
1223 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1224 
1225 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1226 {
1227 	struct sk_filter *fp, *old_fp;
1228 
1229 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1230 	if (!fp)
1231 		return -ENOMEM;
1232 
1233 	fp->prog = prog;
1234 
1235 	if (!__sk_filter_charge(sk, fp)) {
1236 		kfree(fp);
1237 		return -ENOMEM;
1238 	}
1239 	refcount_set(&fp->refcnt, 1);
1240 
1241 	old_fp = rcu_dereference_protected(sk->sk_filter,
1242 					   lockdep_sock_is_held(sk));
1243 	rcu_assign_pointer(sk->sk_filter, fp);
1244 
1245 	if (old_fp)
1246 		sk_filter_uncharge(sk, old_fp);
1247 
1248 	return 0;
1249 }
1250 
1251 static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1252 {
1253 	struct bpf_prog *old_prog;
1254 	int err;
1255 
1256 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1257 		return -ENOMEM;
1258 
1259 	if (sk_unhashed(sk) && sk->sk_reuseport) {
1260 		err = reuseport_alloc(sk);
1261 		if (err)
1262 			return err;
1263 	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1264 		/* The socket wasn't bound with SO_REUSEPORT */
1265 		return -EINVAL;
1266 	}
1267 
1268 	old_prog = reuseport_attach_prog(sk, prog);
1269 	if (old_prog)
1270 		bpf_prog_destroy(old_prog);
1271 
1272 	return 0;
1273 }
1274 
1275 static
1276 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1277 {
1278 	unsigned int fsize = bpf_classic_proglen(fprog);
1279 	struct bpf_prog *prog;
1280 	int err;
1281 
1282 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1283 		return ERR_PTR(-EPERM);
1284 
1285 	/* Make sure new filter is there and in the right amounts. */
1286 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1287 		return ERR_PTR(-EINVAL);
1288 
1289 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1290 	if (!prog)
1291 		return ERR_PTR(-ENOMEM);
1292 
1293 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1294 		__bpf_prog_free(prog);
1295 		return ERR_PTR(-EFAULT);
1296 	}
1297 
1298 	prog->len = fprog->len;
1299 
1300 	err = bpf_prog_store_orig_filter(prog, fprog);
1301 	if (err) {
1302 		__bpf_prog_free(prog);
1303 		return ERR_PTR(-ENOMEM);
1304 	}
1305 
1306 	/* bpf_prepare_filter() already takes care of freeing
1307 	 * memory in case something goes wrong.
1308 	 */
1309 	return bpf_prepare_filter(prog, NULL);
1310 }
1311 
1312 /**
1313  *	sk_attach_filter - attach a socket filter
1314  *	@fprog: the filter program
1315  *	@sk: the socket to use
1316  *
1317  * Attach the user's filter code. We first run some sanity checks on
1318  * it to make sure it does not explode on us later. If an error
1319  * occurs or there is insufficient memory for the filter a negative
1320  * errno code is returned. On success the return is zero.
1321  */
1322 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1323 {
1324 	struct bpf_prog *prog = __get_filter(fprog, sk);
1325 	int err;
1326 
1327 	if (IS_ERR(prog))
1328 		return PTR_ERR(prog);
1329 
1330 	err = __sk_attach_prog(prog, sk);
1331 	if (err < 0) {
1332 		__bpf_prog_release(prog);
1333 		return err;
1334 	}
1335 
1336 	return 0;
1337 }
1338 EXPORT_SYMBOL_GPL(sk_attach_filter);
1339 
1340 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1341 {
1342 	struct bpf_prog *prog = __get_filter(fprog, sk);
1343 	int err;
1344 
1345 	if (IS_ERR(prog))
1346 		return PTR_ERR(prog);
1347 
1348 	err = __reuseport_attach_prog(prog, sk);
1349 	if (err < 0) {
1350 		__bpf_prog_release(prog);
1351 		return err;
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1358 {
1359 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1360 		return ERR_PTR(-EPERM);
1361 
1362 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1363 }
1364 
1365 int sk_attach_bpf(u32 ufd, struct sock *sk)
1366 {
1367 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1368 	int err;
1369 
1370 	if (IS_ERR(prog))
1371 		return PTR_ERR(prog);
1372 
1373 	err = __sk_attach_prog(prog, sk);
1374 	if (err < 0) {
1375 		bpf_prog_put(prog);
1376 		return err;
1377 	}
1378 
1379 	return 0;
1380 }
1381 
1382 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1383 {
1384 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1385 	int err;
1386 
1387 	if (IS_ERR(prog))
1388 		return PTR_ERR(prog);
1389 
1390 	err = __reuseport_attach_prog(prog, sk);
1391 	if (err < 0) {
1392 		bpf_prog_put(prog);
1393 		return err;
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 struct bpf_scratchpad {
1400 	union {
1401 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1402 		u8     buff[MAX_BPF_STACK];
1403 	};
1404 };
1405 
1406 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1407 
1408 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1409 					  unsigned int write_len)
1410 {
1411 	return skb_ensure_writable(skb, write_len);
1412 }
1413 
1414 static inline int bpf_try_make_writable(struct sk_buff *skb,
1415 					unsigned int write_len)
1416 {
1417 	int err = __bpf_try_make_writable(skb, write_len);
1418 
1419 	bpf_compute_data_pointers(skb);
1420 	return err;
1421 }
1422 
1423 static int bpf_try_make_head_writable(struct sk_buff *skb)
1424 {
1425 	return bpf_try_make_writable(skb, skb_headlen(skb));
1426 }
1427 
1428 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1429 {
1430 	if (skb_at_tc_ingress(skb))
1431 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1432 }
1433 
1434 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1435 {
1436 	if (skb_at_tc_ingress(skb))
1437 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1438 }
1439 
1440 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1441 	   const void *, from, u32, len, u64, flags)
1442 {
1443 	void *ptr;
1444 
1445 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1446 		return -EINVAL;
1447 	if (unlikely(offset > 0xffff))
1448 		return -EFAULT;
1449 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1450 		return -EFAULT;
1451 
1452 	ptr = skb->data + offset;
1453 	if (flags & BPF_F_RECOMPUTE_CSUM)
1454 		__skb_postpull_rcsum(skb, ptr, len, offset);
1455 
1456 	memcpy(ptr, from, len);
1457 
1458 	if (flags & BPF_F_RECOMPUTE_CSUM)
1459 		__skb_postpush_rcsum(skb, ptr, len, offset);
1460 	if (flags & BPF_F_INVALIDATE_HASH)
1461 		skb_clear_hash(skb);
1462 
1463 	return 0;
1464 }
1465 
1466 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1467 	.func		= bpf_skb_store_bytes,
1468 	.gpl_only	= false,
1469 	.ret_type	= RET_INTEGER,
1470 	.arg1_type	= ARG_PTR_TO_CTX,
1471 	.arg2_type	= ARG_ANYTHING,
1472 	.arg3_type	= ARG_PTR_TO_MEM,
1473 	.arg4_type	= ARG_CONST_SIZE,
1474 	.arg5_type	= ARG_ANYTHING,
1475 };
1476 
1477 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1478 	   void *, to, u32, len)
1479 {
1480 	void *ptr;
1481 
1482 	if (unlikely(offset > 0xffff))
1483 		goto err_clear;
1484 
1485 	ptr = skb_header_pointer(skb, offset, len, to);
1486 	if (unlikely(!ptr))
1487 		goto err_clear;
1488 	if (ptr != to)
1489 		memcpy(to, ptr, len);
1490 
1491 	return 0;
1492 err_clear:
1493 	memset(to, 0, len);
1494 	return -EFAULT;
1495 }
1496 
1497 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1498 	.func		= bpf_skb_load_bytes,
1499 	.gpl_only	= false,
1500 	.ret_type	= RET_INTEGER,
1501 	.arg1_type	= ARG_PTR_TO_CTX,
1502 	.arg2_type	= ARG_ANYTHING,
1503 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1504 	.arg4_type	= ARG_CONST_SIZE,
1505 };
1506 
1507 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1508 {
1509 	/* Idea is the following: should the needed direct read/write
1510 	 * test fail during runtime, we can pull in more data and redo
1511 	 * again, since implicitly, we invalidate previous checks here.
1512 	 *
1513 	 * Or, since we know how much we need to make read/writeable,
1514 	 * this can be done once at the program beginning for direct
1515 	 * access case. By this we overcome limitations of only current
1516 	 * headroom being accessible.
1517 	 */
1518 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1519 }
1520 
1521 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1522 	.func		= bpf_skb_pull_data,
1523 	.gpl_only	= false,
1524 	.ret_type	= RET_INTEGER,
1525 	.arg1_type	= ARG_PTR_TO_CTX,
1526 	.arg2_type	= ARG_ANYTHING,
1527 };
1528 
1529 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1530 	   u64, from, u64, to, u64, flags)
1531 {
1532 	__sum16 *ptr;
1533 
1534 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1535 		return -EINVAL;
1536 	if (unlikely(offset > 0xffff || offset & 1))
1537 		return -EFAULT;
1538 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1539 		return -EFAULT;
1540 
1541 	ptr = (__sum16 *)(skb->data + offset);
1542 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1543 	case 0:
1544 		if (unlikely(from != 0))
1545 			return -EINVAL;
1546 
1547 		csum_replace_by_diff(ptr, to);
1548 		break;
1549 	case 2:
1550 		csum_replace2(ptr, from, to);
1551 		break;
1552 	case 4:
1553 		csum_replace4(ptr, from, to);
1554 		break;
1555 	default:
1556 		return -EINVAL;
1557 	}
1558 
1559 	return 0;
1560 }
1561 
1562 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1563 	.func		= bpf_l3_csum_replace,
1564 	.gpl_only	= false,
1565 	.ret_type	= RET_INTEGER,
1566 	.arg1_type	= ARG_PTR_TO_CTX,
1567 	.arg2_type	= ARG_ANYTHING,
1568 	.arg3_type	= ARG_ANYTHING,
1569 	.arg4_type	= ARG_ANYTHING,
1570 	.arg5_type	= ARG_ANYTHING,
1571 };
1572 
1573 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1574 	   u64, from, u64, to, u64, flags)
1575 {
1576 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1577 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1578 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1579 	__sum16 *ptr;
1580 
1581 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1582 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1583 		return -EINVAL;
1584 	if (unlikely(offset > 0xffff || offset & 1))
1585 		return -EFAULT;
1586 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1587 		return -EFAULT;
1588 
1589 	ptr = (__sum16 *)(skb->data + offset);
1590 	if (is_mmzero && !do_mforce && !*ptr)
1591 		return 0;
1592 
1593 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1594 	case 0:
1595 		if (unlikely(from != 0))
1596 			return -EINVAL;
1597 
1598 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1599 		break;
1600 	case 2:
1601 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1602 		break;
1603 	case 4:
1604 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1605 		break;
1606 	default:
1607 		return -EINVAL;
1608 	}
1609 
1610 	if (is_mmzero && !*ptr)
1611 		*ptr = CSUM_MANGLED_0;
1612 	return 0;
1613 }
1614 
1615 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1616 	.func		= bpf_l4_csum_replace,
1617 	.gpl_only	= false,
1618 	.ret_type	= RET_INTEGER,
1619 	.arg1_type	= ARG_PTR_TO_CTX,
1620 	.arg2_type	= ARG_ANYTHING,
1621 	.arg3_type	= ARG_ANYTHING,
1622 	.arg4_type	= ARG_ANYTHING,
1623 	.arg5_type	= ARG_ANYTHING,
1624 };
1625 
1626 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1627 	   __be32 *, to, u32, to_size, __wsum, seed)
1628 {
1629 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1630 	u32 diff_size = from_size + to_size;
1631 	int i, j = 0;
1632 
1633 	/* This is quite flexible, some examples:
1634 	 *
1635 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1636 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1637 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1638 	 *
1639 	 * Even for diffing, from_size and to_size don't need to be equal.
1640 	 */
1641 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1642 		     diff_size > sizeof(sp->diff)))
1643 		return -EINVAL;
1644 
1645 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1646 		sp->diff[j] = ~from[i];
1647 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1648 		sp->diff[j] = to[i];
1649 
1650 	return csum_partial(sp->diff, diff_size, seed);
1651 }
1652 
1653 static const struct bpf_func_proto bpf_csum_diff_proto = {
1654 	.func		= bpf_csum_diff,
1655 	.gpl_only	= false,
1656 	.pkt_access	= true,
1657 	.ret_type	= RET_INTEGER,
1658 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1659 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1660 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
1661 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1662 	.arg5_type	= ARG_ANYTHING,
1663 };
1664 
1665 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1666 {
1667 	/* The interface is to be used in combination with bpf_csum_diff()
1668 	 * for direct packet writes. csum rotation for alignment as well
1669 	 * as emulating csum_sub() can be done from the eBPF program.
1670 	 */
1671 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1672 		return (skb->csum = csum_add(skb->csum, csum));
1673 
1674 	return -ENOTSUPP;
1675 }
1676 
1677 static const struct bpf_func_proto bpf_csum_update_proto = {
1678 	.func		= bpf_csum_update,
1679 	.gpl_only	= false,
1680 	.ret_type	= RET_INTEGER,
1681 	.arg1_type	= ARG_PTR_TO_CTX,
1682 	.arg2_type	= ARG_ANYTHING,
1683 };
1684 
1685 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1686 {
1687 	return dev_forward_skb(dev, skb);
1688 }
1689 
1690 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1691 				      struct sk_buff *skb)
1692 {
1693 	int ret = ____dev_forward_skb(dev, skb);
1694 
1695 	if (likely(!ret)) {
1696 		skb->dev = dev;
1697 		ret = netif_rx(skb);
1698 	}
1699 
1700 	return ret;
1701 }
1702 
1703 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
1704 {
1705 	int ret;
1706 
1707 	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
1708 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
1709 		kfree_skb(skb);
1710 		return -ENETDOWN;
1711 	}
1712 
1713 	skb->dev = dev;
1714 
1715 	__this_cpu_inc(xmit_recursion);
1716 	ret = dev_queue_xmit(skb);
1717 	__this_cpu_dec(xmit_recursion);
1718 
1719 	return ret;
1720 }
1721 
1722 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
1723 				 u32 flags)
1724 {
1725 	/* skb->mac_len is not set on normal egress */
1726 	unsigned int mlen = skb->network_header - skb->mac_header;
1727 
1728 	__skb_pull(skb, mlen);
1729 
1730 	/* At ingress, the mac header has already been pulled once.
1731 	 * At egress, skb_pospull_rcsum has to be done in case that
1732 	 * the skb is originated from ingress (i.e. a forwarded skb)
1733 	 * to ensure that rcsum starts at net header.
1734 	 */
1735 	if (!skb_at_tc_ingress(skb))
1736 		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
1737 	skb_pop_mac_header(skb);
1738 	skb_reset_mac_len(skb);
1739 	return flags & BPF_F_INGRESS ?
1740 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
1741 }
1742 
1743 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
1744 				 u32 flags)
1745 {
1746 	/* Verify that a link layer header is carried */
1747 	if (unlikely(skb->mac_header >= skb->network_header)) {
1748 		kfree_skb(skb);
1749 		return -ERANGE;
1750 	}
1751 
1752 	bpf_push_mac_rcsum(skb);
1753 	return flags & BPF_F_INGRESS ?
1754 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1755 }
1756 
1757 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
1758 			  u32 flags)
1759 {
1760 	if (dev_is_mac_header_xmit(dev))
1761 		return __bpf_redirect_common(skb, dev, flags);
1762 	else
1763 		return __bpf_redirect_no_mac(skb, dev, flags);
1764 }
1765 
1766 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1767 {
1768 	struct net_device *dev;
1769 	struct sk_buff *clone;
1770 	int ret;
1771 
1772 	if (unlikely(flags & ~(BPF_F_INGRESS)))
1773 		return -EINVAL;
1774 
1775 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1776 	if (unlikely(!dev))
1777 		return -EINVAL;
1778 
1779 	clone = skb_clone(skb, GFP_ATOMIC);
1780 	if (unlikely(!clone))
1781 		return -ENOMEM;
1782 
1783 	/* For direct write, we need to keep the invariant that the skbs
1784 	 * we're dealing with need to be uncloned. Should uncloning fail
1785 	 * here, we need to free the just generated clone to unclone once
1786 	 * again.
1787 	 */
1788 	ret = bpf_try_make_head_writable(skb);
1789 	if (unlikely(ret)) {
1790 		kfree_skb(clone);
1791 		return -ENOMEM;
1792 	}
1793 
1794 	return __bpf_redirect(clone, dev, flags);
1795 }
1796 
1797 static const struct bpf_func_proto bpf_clone_redirect_proto = {
1798 	.func           = bpf_clone_redirect,
1799 	.gpl_only       = false,
1800 	.ret_type       = RET_INTEGER,
1801 	.arg1_type      = ARG_PTR_TO_CTX,
1802 	.arg2_type      = ARG_ANYTHING,
1803 	.arg3_type      = ARG_ANYTHING,
1804 };
1805 
1806 struct redirect_info {
1807 	u32 ifindex;
1808 	u32 flags;
1809 	struct bpf_map *map;
1810 	struct bpf_map *map_to_flush;
1811 	unsigned long   map_owner;
1812 };
1813 
1814 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1815 
1816 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1817 {
1818 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1819 
1820 	if (unlikely(flags & ~(BPF_F_INGRESS)))
1821 		return TC_ACT_SHOT;
1822 
1823 	ri->ifindex = ifindex;
1824 	ri->flags = flags;
1825 
1826 	return TC_ACT_REDIRECT;
1827 }
1828 
1829 int skb_do_redirect(struct sk_buff *skb)
1830 {
1831 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1832 	struct net_device *dev;
1833 
1834 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1835 	ri->ifindex = 0;
1836 	if (unlikely(!dev)) {
1837 		kfree_skb(skb);
1838 		return -EINVAL;
1839 	}
1840 
1841 	return __bpf_redirect(skb, dev, ri->flags);
1842 }
1843 
1844 static const struct bpf_func_proto bpf_redirect_proto = {
1845 	.func           = bpf_redirect,
1846 	.gpl_only       = false,
1847 	.ret_type       = RET_INTEGER,
1848 	.arg1_type      = ARG_ANYTHING,
1849 	.arg2_type      = ARG_ANYTHING,
1850 };
1851 
1852 BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
1853 	   struct bpf_map *, map, u32, key, u64, flags)
1854 {
1855 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1856 
1857 	/* If user passes invalid input drop the packet. */
1858 	if (unlikely(flags))
1859 		return SK_DROP;
1860 
1861 	tcb->bpf.key = key;
1862 	tcb->bpf.flags = flags;
1863 	tcb->bpf.map = map;
1864 
1865 	return SK_PASS;
1866 }
1867 
1868 struct sock *do_sk_redirect_map(struct sk_buff *skb)
1869 {
1870 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1871 	struct sock *sk = NULL;
1872 
1873 	if (tcb->bpf.map) {
1874 		sk = __sock_map_lookup_elem(tcb->bpf.map, tcb->bpf.key);
1875 
1876 		tcb->bpf.key = 0;
1877 		tcb->bpf.map = NULL;
1878 	}
1879 
1880 	return sk;
1881 }
1882 
1883 static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
1884 	.func           = bpf_sk_redirect_map,
1885 	.gpl_only       = false,
1886 	.ret_type       = RET_INTEGER,
1887 	.arg1_type	= ARG_PTR_TO_CTX,
1888 	.arg2_type      = ARG_CONST_MAP_PTR,
1889 	.arg3_type      = ARG_ANYTHING,
1890 	.arg4_type      = ARG_ANYTHING,
1891 };
1892 
1893 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
1894 {
1895 	return task_get_classid(skb);
1896 }
1897 
1898 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1899 	.func           = bpf_get_cgroup_classid,
1900 	.gpl_only       = false,
1901 	.ret_type       = RET_INTEGER,
1902 	.arg1_type      = ARG_PTR_TO_CTX,
1903 };
1904 
1905 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
1906 {
1907 	return dst_tclassid(skb);
1908 }
1909 
1910 static const struct bpf_func_proto bpf_get_route_realm_proto = {
1911 	.func           = bpf_get_route_realm,
1912 	.gpl_only       = false,
1913 	.ret_type       = RET_INTEGER,
1914 	.arg1_type      = ARG_PTR_TO_CTX,
1915 };
1916 
1917 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
1918 {
1919 	/* If skb_clear_hash() was called due to mangling, we can
1920 	 * trigger SW recalculation here. Later access to hash
1921 	 * can then use the inline skb->hash via context directly
1922 	 * instead of calling this helper again.
1923 	 */
1924 	return skb_get_hash(skb);
1925 }
1926 
1927 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
1928 	.func		= bpf_get_hash_recalc,
1929 	.gpl_only	= false,
1930 	.ret_type	= RET_INTEGER,
1931 	.arg1_type	= ARG_PTR_TO_CTX,
1932 };
1933 
1934 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
1935 {
1936 	/* After all direct packet write, this can be used once for
1937 	 * triggering a lazy recalc on next skb_get_hash() invocation.
1938 	 */
1939 	skb_clear_hash(skb);
1940 	return 0;
1941 }
1942 
1943 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
1944 	.func		= bpf_set_hash_invalid,
1945 	.gpl_only	= false,
1946 	.ret_type	= RET_INTEGER,
1947 	.arg1_type	= ARG_PTR_TO_CTX,
1948 };
1949 
1950 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
1951 {
1952 	/* Set user specified hash as L4(+), so that it gets returned
1953 	 * on skb_get_hash() call unless BPF prog later on triggers a
1954 	 * skb_clear_hash().
1955 	 */
1956 	__skb_set_sw_hash(skb, hash, true);
1957 	return 0;
1958 }
1959 
1960 static const struct bpf_func_proto bpf_set_hash_proto = {
1961 	.func		= bpf_set_hash,
1962 	.gpl_only	= false,
1963 	.ret_type	= RET_INTEGER,
1964 	.arg1_type	= ARG_PTR_TO_CTX,
1965 	.arg2_type	= ARG_ANYTHING,
1966 };
1967 
1968 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
1969 	   u16, vlan_tci)
1970 {
1971 	int ret;
1972 
1973 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1974 		     vlan_proto != htons(ETH_P_8021AD)))
1975 		vlan_proto = htons(ETH_P_8021Q);
1976 
1977 	bpf_push_mac_rcsum(skb);
1978 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
1979 	bpf_pull_mac_rcsum(skb);
1980 
1981 	bpf_compute_data_pointers(skb);
1982 	return ret;
1983 }
1984 
1985 const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1986 	.func           = bpf_skb_vlan_push,
1987 	.gpl_only       = false,
1988 	.ret_type       = RET_INTEGER,
1989 	.arg1_type      = ARG_PTR_TO_CTX,
1990 	.arg2_type      = ARG_ANYTHING,
1991 	.arg3_type      = ARG_ANYTHING,
1992 };
1993 EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1994 
1995 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
1996 {
1997 	int ret;
1998 
1999 	bpf_push_mac_rcsum(skb);
2000 	ret = skb_vlan_pop(skb);
2001 	bpf_pull_mac_rcsum(skb);
2002 
2003 	bpf_compute_data_pointers(skb);
2004 	return ret;
2005 }
2006 
2007 const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2008 	.func           = bpf_skb_vlan_pop,
2009 	.gpl_only       = false,
2010 	.ret_type       = RET_INTEGER,
2011 	.arg1_type      = ARG_PTR_TO_CTX,
2012 };
2013 EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
2014 
2015 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2016 {
2017 	/* Caller already did skb_cow() with len as headroom,
2018 	 * so no need to do it here.
2019 	 */
2020 	skb_push(skb, len);
2021 	memmove(skb->data, skb->data + len, off);
2022 	memset(skb->data + off, 0, len);
2023 
2024 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
2025 	 * needed here as it does not change the skb->csum
2026 	 * result for checksum complete when summing over
2027 	 * zeroed blocks.
2028 	 */
2029 	return 0;
2030 }
2031 
2032 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2033 {
2034 	/* skb_ensure_writable() is not needed here, as we're
2035 	 * already working on an uncloned skb.
2036 	 */
2037 	if (unlikely(!pskb_may_pull(skb, off + len)))
2038 		return -ENOMEM;
2039 
2040 	skb_postpull_rcsum(skb, skb->data + off, len);
2041 	memmove(skb->data + len, skb->data, off);
2042 	__skb_pull(skb, len);
2043 
2044 	return 0;
2045 }
2046 
2047 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2048 {
2049 	bool trans_same = skb->transport_header == skb->network_header;
2050 	int ret;
2051 
2052 	/* There's no need for __skb_push()/__skb_pull() pair to
2053 	 * get to the start of the mac header as we're guaranteed
2054 	 * to always start from here under eBPF.
2055 	 */
2056 	ret = bpf_skb_generic_push(skb, off, len);
2057 	if (likely(!ret)) {
2058 		skb->mac_header -= len;
2059 		skb->network_header -= len;
2060 		if (trans_same)
2061 			skb->transport_header = skb->network_header;
2062 	}
2063 
2064 	return ret;
2065 }
2066 
2067 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2068 {
2069 	bool trans_same = skb->transport_header == skb->network_header;
2070 	int ret;
2071 
2072 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
2073 	ret = bpf_skb_generic_pop(skb, off, len);
2074 	if (likely(!ret)) {
2075 		skb->mac_header += len;
2076 		skb->network_header += len;
2077 		if (trans_same)
2078 			skb->transport_header = skb->network_header;
2079 	}
2080 
2081 	return ret;
2082 }
2083 
2084 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2085 {
2086 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2087 	u32 off = skb_mac_header_len(skb);
2088 	int ret;
2089 
2090 	ret = skb_cow(skb, len_diff);
2091 	if (unlikely(ret < 0))
2092 		return ret;
2093 
2094 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2095 	if (unlikely(ret < 0))
2096 		return ret;
2097 
2098 	if (skb_is_gso(skb)) {
2099 		/* SKB_GSO_TCPV4 needs to be changed into
2100 		 * SKB_GSO_TCPV6.
2101 		 */
2102 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2103 			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV4;
2104 			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV6;
2105 		}
2106 
2107 		/* Due to IPv6 header, MSS needs to be downgraded. */
2108 		skb_shinfo(skb)->gso_size -= len_diff;
2109 		/* Header must be checked, and gso_segs recomputed. */
2110 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2111 		skb_shinfo(skb)->gso_segs = 0;
2112 	}
2113 
2114 	skb->protocol = htons(ETH_P_IPV6);
2115 	skb_clear_hash(skb);
2116 
2117 	return 0;
2118 }
2119 
2120 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2121 {
2122 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2123 	u32 off = skb_mac_header_len(skb);
2124 	int ret;
2125 
2126 	ret = skb_unclone(skb, GFP_ATOMIC);
2127 	if (unlikely(ret < 0))
2128 		return ret;
2129 
2130 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2131 	if (unlikely(ret < 0))
2132 		return ret;
2133 
2134 	if (skb_is_gso(skb)) {
2135 		/* SKB_GSO_TCPV6 needs to be changed into
2136 		 * SKB_GSO_TCPV4.
2137 		 */
2138 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
2139 			skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV6;
2140 			skb_shinfo(skb)->gso_type |=  SKB_GSO_TCPV4;
2141 		}
2142 
2143 		/* Due to IPv4 header, MSS can be upgraded. */
2144 		skb_shinfo(skb)->gso_size += len_diff;
2145 		/* Header must be checked, and gso_segs recomputed. */
2146 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2147 		skb_shinfo(skb)->gso_segs = 0;
2148 	}
2149 
2150 	skb->protocol = htons(ETH_P_IP);
2151 	skb_clear_hash(skb);
2152 
2153 	return 0;
2154 }
2155 
2156 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2157 {
2158 	__be16 from_proto = skb->protocol;
2159 
2160 	if (from_proto == htons(ETH_P_IP) &&
2161 	      to_proto == htons(ETH_P_IPV6))
2162 		return bpf_skb_proto_4_to_6(skb);
2163 
2164 	if (from_proto == htons(ETH_P_IPV6) &&
2165 	      to_proto == htons(ETH_P_IP))
2166 		return bpf_skb_proto_6_to_4(skb);
2167 
2168 	return -ENOTSUPP;
2169 }
2170 
2171 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2172 	   u64, flags)
2173 {
2174 	int ret;
2175 
2176 	if (unlikely(flags))
2177 		return -EINVAL;
2178 
2179 	/* General idea is that this helper does the basic groundwork
2180 	 * needed for changing the protocol, and eBPF program fills the
2181 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2182 	 * and other helpers, rather than passing a raw buffer here.
2183 	 *
2184 	 * The rationale is to keep this minimal and without a need to
2185 	 * deal with raw packet data. F.e. even if we would pass buffers
2186 	 * here, the program still needs to call the bpf_lX_csum_replace()
2187 	 * helpers anyway. Plus, this way we keep also separation of
2188 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
2189 	 * care of stores.
2190 	 *
2191 	 * Currently, additional options and extension header space are
2192 	 * not supported, but flags register is reserved so we can adapt
2193 	 * that. For offloads, we mark packet as dodgy, so that headers
2194 	 * need to be verified first.
2195 	 */
2196 	ret = bpf_skb_proto_xlat(skb, proto);
2197 	bpf_compute_data_pointers(skb);
2198 	return ret;
2199 }
2200 
2201 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2202 	.func		= bpf_skb_change_proto,
2203 	.gpl_only	= false,
2204 	.ret_type	= RET_INTEGER,
2205 	.arg1_type	= ARG_PTR_TO_CTX,
2206 	.arg2_type	= ARG_ANYTHING,
2207 	.arg3_type	= ARG_ANYTHING,
2208 };
2209 
2210 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2211 {
2212 	/* We only allow a restricted subset to be changed for now. */
2213 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2214 		     !skb_pkt_type_ok(pkt_type)))
2215 		return -EINVAL;
2216 
2217 	skb->pkt_type = pkt_type;
2218 	return 0;
2219 }
2220 
2221 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2222 	.func		= bpf_skb_change_type,
2223 	.gpl_only	= false,
2224 	.ret_type	= RET_INTEGER,
2225 	.arg1_type	= ARG_PTR_TO_CTX,
2226 	.arg2_type	= ARG_ANYTHING,
2227 };
2228 
2229 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2230 {
2231 	switch (skb->protocol) {
2232 	case htons(ETH_P_IP):
2233 		return sizeof(struct iphdr);
2234 	case htons(ETH_P_IPV6):
2235 		return sizeof(struct ipv6hdr);
2236 	default:
2237 		return ~0U;
2238 	}
2239 }
2240 
2241 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2242 {
2243 	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2244 	int ret;
2245 
2246 	ret = skb_cow(skb, len_diff);
2247 	if (unlikely(ret < 0))
2248 		return ret;
2249 
2250 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2251 	if (unlikely(ret < 0))
2252 		return ret;
2253 
2254 	if (skb_is_gso(skb)) {
2255 		/* Due to header grow, MSS needs to be downgraded. */
2256 		skb_shinfo(skb)->gso_size -= len_diff;
2257 		/* Header must be checked, and gso_segs recomputed. */
2258 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2259 		skb_shinfo(skb)->gso_segs = 0;
2260 	}
2261 
2262 	return 0;
2263 }
2264 
2265 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2266 {
2267 	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2268 	int ret;
2269 
2270 	ret = skb_unclone(skb, GFP_ATOMIC);
2271 	if (unlikely(ret < 0))
2272 		return ret;
2273 
2274 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2275 	if (unlikely(ret < 0))
2276 		return ret;
2277 
2278 	if (skb_is_gso(skb)) {
2279 		/* Due to header shrink, MSS can be upgraded. */
2280 		skb_shinfo(skb)->gso_size += len_diff;
2281 		/* Header must be checked, and gso_segs recomputed. */
2282 		skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2283 		skb_shinfo(skb)->gso_segs = 0;
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2290 {
2291 	return skb->dev->mtu + skb->dev->hard_header_len;
2292 }
2293 
2294 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2295 {
2296 	bool trans_same = skb->transport_header == skb->network_header;
2297 	u32 len_cur, len_diff_abs = abs(len_diff);
2298 	u32 len_min = bpf_skb_net_base_len(skb);
2299 	u32 len_max = __bpf_skb_max_len(skb);
2300 	__be16 proto = skb->protocol;
2301 	bool shrink = len_diff < 0;
2302 	int ret;
2303 
2304 	if (unlikely(len_diff_abs > 0xfffU))
2305 		return -EFAULT;
2306 	if (unlikely(proto != htons(ETH_P_IP) &&
2307 		     proto != htons(ETH_P_IPV6)))
2308 		return -ENOTSUPP;
2309 
2310 	len_cur = skb->len - skb_network_offset(skb);
2311 	if (skb_transport_header_was_set(skb) && !trans_same)
2312 		len_cur = skb_network_header_len(skb);
2313 	if ((shrink && (len_diff_abs >= len_cur ||
2314 			len_cur - len_diff_abs < len_min)) ||
2315 	    (!shrink && (skb->len + len_diff_abs > len_max &&
2316 			 !skb_is_gso(skb))))
2317 		return -ENOTSUPP;
2318 
2319 	ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2320 		       bpf_skb_net_grow(skb, len_diff_abs);
2321 
2322 	bpf_compute_data_pointers(skb);
2323 	return ret;
2324 }
2325 
2326 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2327 	   u32, mode, u64, flags)
2328 {
2329 	if (unlikely(flags))
2330 		return -EINVAL;
2331 	if (likely(mode == BPF_ADJ_ROOM_NET))
2332 		return bpf_skb_adjust_net(skb, len_diff);
2333 
2334 	return -ENOTSUPP;
2335 }
2336 
2337 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2338 	.func		= bpf_skb_adjust_room,
2339 	.gpl_only	= false,
2340 	.ret_type	= RET_INTEGER,
2341 	.arg1_type	= ARG_PTR_TO_CTX,
2342 	.arg2_type	= ARG_ANYTHING,
2343 	.arg3_type	= ARG_ANYTHING,
2344 	.arg4_type	= ARG_ANYTHING,
2345 };
2346 
2347 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2348 {
2349 	u32 min_len = skb_network_offset(skb);
2350 
2351 	if (skb_transport_header_was_set(skb))
2352 		min_len = skb_transport_offset(skb);
2353 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2354 		min_len = skb_checksum_start_offset(skb) +
2355 			  skb->csum_offset + sizeof(__sum16);
2356 	return min_len;
2357 }
2358 
2359 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2360 {
2361 	unsigned int old_len = skb->len;
2362 	int ret;
2363 
2364 	ret = __skb_grow_rcsum(skb, new_len);
2365 	if (!ret)
2366 		memset(skb->data + old_len, 0, new_len - old_len);
2367 	return ret;
2368 }
2369 
2370 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2371 {
2372 	return __skb_trim_rcsum(skb, new_len);
2373 }
2374 
2375 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2376 	   u64, flags)
2377 {
2378 	u32 max_len = __bpf_skb_max_len(skb);
2379 	u32 min_len = __bpf_skb_min_len(skb);
2380 	int ret;
2381 
2382 	if (unlikely(flags || new_len > max_len || new_len < min_len))
2383 		return -EINVAL;
2384 	if (skb->encapsulation)
2385 		return -ENOTSUPP;
2386 
2387 	/* The basic idea of this helper is that it's performing the
2388 	 * needed work to either grow or trim an skb, and eBPF program
2389 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
2390 	 * bpf_lX_csum_replace() and others rather than passing a raw
2391 	 * buffer here. This one is a slow path helper and intended
2392 	 * for replies with control messages.
2393 	 *
2394 	 * Like in bpf_skb_change_proto(), we want to keep this rather
2395 	 * minimal and without protocol specifics so that we are able
2396 	 * to separate concerns as in bpf_skb_store_bytes() should only
2397 	 * be the one responsible for writing buffers.
2398 	 *
2399 	 * It's really expected to be a slow path operation here for
2400 	 * control message replies, so we're implicitly linearizing,
2401 	 * uncloning and drop offloads from the skb by this.
2402 	 */
2403 	ret = __bpf_try_make_writable(skb, skb->len);
2404 	if (!ret) {
2405 		if (new_len > skb->len)
2406 			ret = bpf_skb_grow_rcsum(skb, new_len);
2407 		else if (new_len < skb->len)
2408 			ret = bpf_skb_trim_rcsum(skb, new_len);
2409 		if (!ret && skb_is_gso(skb))
2410 			skb_gso_reset(skb);
2411 	}
2412 
2413 	bpf_compute_data_pointers(skb);
2414 	return ret;
2415 }
2416 
2417 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2418 	.func		= bpf_skb_change_tail,
2419 	.gpl_only	= false,
2420 	.ret_type	= RET_INTEGER,
2421 	.arg1_type	= ARG_PTR_TO_CTX,
2422 	.arg2_type	= ARG_ANYTHING,
2423 	.arg3_type	= ARG_ANYTHING,
2424 };
2425 
2426 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
2427 	   u64, flags)
2428 {
2429 	u32 max_len = __bpf_skb_max_len(skb);
2430 	u32 new_len = skb->len + head_room;
2431 	int ret;
2432 
2433 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
2434 		     new_len < skb->len))
2435 		return -EINVAL;
2436 
2437 	ret = skb_cow(skb, head_room);
2438 	if (likely(!ret)) {
2439 		/* Idea for this helper is that we currently only
2440 		 * allow to expand on mac header. This means that
2441 		 * skb->protocol network header, etc, stay as is.
2442 		 * Compared to bpf_skb_change_tail(), we're more
2443 		 * flexible due to not needing to linearize or
2444 		 * reset GSO. Intention for this helper is to be
2445 		 * used by an L3 skb that needs to push mac header
2446 		 * for redirection into L2 device.
2447 		 */
2448 		__skb_push(skb, head_room);
2449 		memset(skb->data, 0, head_room);
2450 		skb_reset_mac_header(skb);
2451 	}
2452 
2453 	bpf_compute_data_pointers(skb);
2454 	return 0;
2455 }
2456 
2457 static const struct bpf_func_proto bpf_skb_change_head_proto = {
2458 	.func		= bpf_skb_change_head,
2459 	.gpl_only	= false,
2460 	.ret_type	= RET_INTEGER,
2461 	.arg1_type	= ARG_PTR_TO_CTX,
2462 	.arg2_type	= ARG_ANYTHING,
2463 	.arg3_type	= ARG_ANYTHING,
2464 };
2465 
2466 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
2467 {
2468 	return xdp_data_meta_unsupported(xdp) ? 0 :
2469 	       xdp->data - xdp->data_meta;
2470 }
2471 
2472 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
2473 {
2474 	unsigned long metalen = xdp_get_metalen(xdp);
2475 	void *data_start = xdp->data_hard_start + metalen;
2476 	void *data = xdp->data + offset;
2477 
2478 	if (unlikely(data < data_start ||
2479 		     data > xdp->data_end - ETH_HLEN))
2480 		return -EINVAL;
2481 
2482 	if (metalen)
2483 		memmove(xdp->data_meta + offset,
2484 			xdp->data_meta, metalen);
2485 	xdp->data_meta += offset;
2486 	xdp->data = data;
2487 
2488 	return 0;
2489 }
2490 
2491 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
2492 	.func		= bpf_xdp_adjust_head,
2493 	.gpl_only	= false,
2494 	.ret_type	= RET_INTEGER,
2495 	.arg1_type	= ARG_PTR_TO_CTX,
2496 	.arg2_type	= ARG_ANYTHING,
2497 };
2498 
2499 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
2500 {
2501 	void *meta = xdp->data_meta + offset;
2502 	unsigned long metalen = xdp->data - meta;
2503 
2504 	if (xdp_data_meta_unsupported(xdp))
2505 		return -ENOTSUPP;
2506 	if (unlikely(meta < xdp->data_hard_start ||
2507 		     meta > xdp->data))
2508 		return -EINVAL;
2509 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
2510 		     (metalen > 32)))
2511 		return -EACCES;
2512 
2513 	xdp->data_meta = meta;
2514 
2515 	return 0;
2516 }
2517 
2518 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
2519 	.func		= bpf_xdp_adjust_meta,
2520 	.gpl_only	= false,
2521 	.ret_type	= RET_INTEGER,
2522 	.arg1_type	= ARG_PTR_TO_CTX,
2523 	.arg2_type	= ARG_ANYTHING,
2524 };
2525 
2526 static int __bpf_tx_xdp(struct net_device *dev,
2527 			struct bpf_map *map,
2528 			struct xdp_buff *xdp,
2529 			u32 index)
2530 {
2531 	int err;
2532 
2533 	if (!dev->netdev_ops->ndo_xdp_xmit) {
2534 		return -EOPNOTSUPP;
2535 	}
2536 
2537 	err = dev->netdev_ops->ndo_xdp_xmit(dev, xdp);
2538 	if (err)
2539 		return err;
2540 	dev->netdev_ops->ndo_xdp_flush(dev);
2541 	return 0;
2542 }
2543 
2544 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
2545 			    struct bpf_map *map,
2546 			    struct xdp_buff *xdp,
2547 			    u32 index)
2548 {
2549 	int err;
2550 
2551 	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
2552 		struct net_device *dev = fwd;
2553 
2554 		if (!dev->netdev_ops->ndo_xdp_xmit)
2555 			return -EOPNOTSUPP;
2556 
2557 		err = dev->netdev_ops->ndo_xdp_xmit(dev, xdp);
2558 		if (err)
2559 			return err;
2560 		__dev_map_insert_ctx(map, index);
2561 
2562 	} else if (map->map_type == BPF_MAP_TYPE_CPUMAP) {
2563 		struct bpf_cpu_map_entry *rcpu = fwd;
2564 
2565 		err = cpu_map_enqueue(rcpu, xdp, dev_rx);
2566 		if (err)
2567 			return err;
2568 		__cpu_map_insert_ctx(map, index);
2569 	}
2570 	return 0;
2571 }
2572 
2573 void xdp_do_flush_map(void)
2574 {
2575 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2576 	struct bpf_map *map = ri->map_to_flush;
2577 
2578 	ri->map_to_flush = NULL;
2579 	if (map) {
2580 		switch (map->map_type) {
2581 		case BPF_MAP_TYPE_DEVMAP:
2582 			__dev_map_flush(map);
2583 			break;
2584 		case BPF_MAP_TYPE_CPUMAP:
2585 			__cpu_map_flush(map);
2586 			break;
2587 		default:
2588 			break;
2589 		}
2590 	}
2591 }
2592 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
2593 
2594 static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
2595 {
2596 	switch (map->map_type) {
2597 	case BPF_MAP_TYPE_DEVMAP:
2598 		return __dev_map_lookup_elem(map, index);
2599 	case BPF_MAP_TYPE_CPUMAP:
2600 		return __cpu_map_lookup_elem(map, index);
2601 	default:
2602 		return NULL;
2603 	}
2604 }
2605 
2606 static inline bool xdp_map_invalid(const struct bpf_prog *xdp_prog,
2607 				   unsigned long aux)
2608 {
2609 	return (unsigned long)xdp_prog->aux != aux;
2610 }
2611 
2612 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
2613 			       struct bpf_prog *xdp_prog)
2614 {
2615 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2616 	unsigned long map_owner = ri->map_owner;
2617 	struct bpf_map *map = ri->map;
2618 	u32 index = ri->ifindex;
2619 	void *fwd = NULL;
2620 	int err;
2621 
2622 	ri->ifindex = 0;
2623 	ri->map = NULL;
2624 	ri->map_owner = 0;
2625 
2626 	if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2627 		err = -EFAULT;
2628 		map = NULL;
2629 		goto err;
2630 	}
2631 
2632 	fwd = __xdp_map_lookup_elem(map, index);
2633 	if (!fwd) {
2634 		err = -EINVAL;
2635 		goto err;
2636 	}
2637 	if (ri->map_to_flush && ri->map_to_flush != map)
2638 		xdp_do_flush_map();
2639 
2640 	err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
2641 	if (unlikely(err))
2642 		goto err;
2643 
2644 	ri->map_to_flush = map;
2645 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
2646 	return 0;
2647 err:
2648 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
2649 	return err;
2650 }
2651 
2652 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
2653 		    struct bpf_prog *xdp_prog)
2654 {
2655 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2656 	struct net_device *fwd;
2657 	u32 index = ri->ifindex;
2658 	int err;
2659 
2660 	if (ri->map)
2661 		return xdp_do_redirect_map(dev, xdp, xdp_prog);
2662 
2663 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
2664 	ri->ifindex = 0;
2665 	if (unlikely(!fwd)) {
2666 		err = -EINVAL;
2667 		goto err;
2668 	}
2669 
2670 	err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
2671 	if (unlikely(err))
2672 		goto err;
2673 
2674 	_trace_xdp_redirect(dev, xdp_prog, index);
2675 	return 0;
2676 err:
2677 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
2678 	return err;
2679 }
2680 EXPORT_SYMBOL_GPL(xdp_do_redirect);
2681 
2682 static int __xdp_generic_ok_fwd_dev(struct sk_buff *skb, struct net_device *fwd)
2683 {
2684 	unsigned int len;
2685 
2686 	if (unlikely(!(fwd->flags & IFF_UP)))
2687 		return -ENETDOWN;
2688 
2689 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
2690 	if (skb->len > len)
2691 		return -EMSGSIZE;
2692 
2693 	return 0;
2694 }
2695 
2696 static int xdp_do_generic_redirect_map(struct net_device *dev,
2697 				       struct sk_buff *skb,
2698 				       struct bpf_prog *xdp_prog)
2699 {
2700 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2701 	unsigned long map_owner = ri->map_owner;
2702 	struct bpf_map *map = ri->map;
2703 	struct net_device *fwd = NULL;
2704 	u32 index = ri->ifindex;
2705 	int err = 0;
2706 
2707 	ri->ifindex = 0;
2708 	ri->map = NULL;
2709 	ri->map_owner = 0;
2710 
2711 	if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2712 		err = -EFAULT;
2713 		map = NULL;
2714 		goto err;
2715 	}
2716 	fwd = __xdp_map_lookup_elem(map, index);
2717 	if (unlikely(!fwd)) {
2718 		err = -EINVAL;
2719 		goto err;
2720 	}
2721 
2722 	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
2723 		if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
2724 			goto err;
2725 		skb->dev = fwd;
2726 	} else {
2727 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
2728 		err = -EBADRQC;
2729 		goto err;
2730 	}
2731 
2732 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
2733 	return 0;
2734 err:
2735 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
2736 	return err;
2737 }
2738 
2739 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
2740 			    struct bpf_prog *xdp_prog)
2741 {
2742 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2743 	u32 index = ri->ifindex;
2744 	struct net_device *fwd;
2745 	int err = 0;
2746 
2747 	if (ri->map)
2748 		return xdp_do_generic_redirect_map(dev, skb, xdp_prog);
2749 
2750 	ri->ifindex = 0;
2751 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
2752 	if (unlikely(!fwd)) {
2753 		err = -EINVAL;
2754 		goto err;
2755 	}
2756 
2757 	if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
2758 		goto err;
2759 
2760 	skb->dev = fwd;
2761 	_trace_xdp_redirect(dev, xdp_prog, index);
2762 	return 0;
2763 err:
2764 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
2765 	return err;
2766 }
2767 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
2768 
2769 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
2770 {
2771 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2772 
2773 	if (unlikely(flags))
2774 		return XDP_ABORTED;
2775 
2776 	ri->ifindex = ifindex;
2777 	ri->flags = flags;
2778 	ri->map = NULL;
2779 	ri->map_owner = 0;
2780 
2781 	return XDP_REDIRECT;
2782 }
2783 
2784 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
2785 	.func           = bpf_xdp_redirect,
2786 	.gpl_only       = false,
2787 	.ret_type       = RET_INTEGER,
2788 	.arg1_type      = ARG_ANYTHING,
2789 	.arg2_type      = ARG_ANYTHING,
2790 };
2791 
2792 BPF_CALL_4(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags,
2793 	   unsigned long, map_owner)
2794 {
2795 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2796 
2797 	if (unlikely(flags))
2798 		return XDP_ABORTED;
2799 
2800 	ri->ifindex = ifindex;
2801 	ri->flags = flags;
2802 	ri->map = map;
2803 	ri->map_owner = map_owner;
2804 
2805 	return XDP_REDIRECT;
2806 }
2807 
2808 /* Note, arg4 is hidden from users and populated by the verifier
2809  * with the right pointer.
2810  */
2811 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
2812 	.func           = bpf_xdp_redirect_map,
2813 	.gpl_only       = false,
2814 	.ret_type       = RET_INTEGER,
2815 	.arg1_type      = ARG_CONST_MAP_PTR,
2816 	.arg2_type      = ARG_ANYTHING,
2817 	.arg3_type      = ARG_ANYTHING,
2818 };
2819 
2820 bool bpf_helper_changes_pkt_data(void *func)
2821 {
2822 	if (func == bpf_skb_vlan_push ||
2823 	    func == bpf_skb_vlan_pop ||
2824 	    func == bpf_skb_store_bytes ||
2825 	    func == bpf_skb_change_proto ||
2826 	    func == bpf_skb_change_head ||
2827 	    func == bpf_skb_change_tail ||
2828 	    func == bpf_skb_adjust_room ||
2829 	    func == bpf_skb_pull_data ||
2830 	    func == bpf_clone_redirect ||
2831 	    func == bpf_l3_csum_replace ||
2832 	    func == bpf_l4_csum_replace ||
2833 	    func == bpf_xdp_adjust_head ||
2834 	    func == bpf_xdp_adjust_meta)
2835 		return true;
2836 
2837 	return false;
2838 }
2839 
2840 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
2841 				  unsigned long off, unsigned long len)
2842 {
2843 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
2844 
2845 	if (unlikely(!ptr))
2846 		return len;
2847 	if (ptr != dst_buff)
2848 		memcpy(dst_buff, ptr, len);
2849 
2850 	return 0;
2851 }
2852 
2853 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
2854 	   u64, flags, void *, meta, u64, meta_size)
2855 {
2856 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
2857 
2858 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
2859 		return -EINVAL;
2860 	if (unlikely(skb_size > skb->len))
2861 		return -EFAULT;
2862 
2863 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
2864 				bpf_skb_copy);
2865 }
2866 
2867 static const struct bpf_func_proto bpf_skb_event_output_proto = {
2868 	.func		= bpf_skb_event_output,
2869 	.gpl_only	= true,
2870 	.ret_type	= RET_INTEGER,
2871 	.arg1_type	= ARG_PTR_TO_CTX,
2872 	.arg2_type	= ARG_CONST_MAP_PTR,
2873 	.arg3_type	= ARG_ANYTHING,
2874 	.arg4_type	= ARG_PTR_TO_MEM,
2875 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
2876 };
2877 
2878 static unsigned short bpf_tunnel_key_af(u64 flags)
2879 {
2880 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
2881 }
2882 
2883 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
2884 	   u32, size, u64, flags)
2885 {
2886 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2887 	u8 compat[sizeof(struct bpf_tunnel_key)];
2888 	void *to_orig = to;
2889 	int err;
2890 
2891 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
2892 		err = -EINVAL;
2893 		goto err_clear;
2894 	}
2895 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
2896 		err = -EPROTO;
2897 		goto err_clear;
2898 	}
2899 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2900 		err = -EINVAL;
2901 		switch (size) {
2902 		case offsetof(struct bpf_tunnel_key, tunnel_label):
2903 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
2904 			goto set_compat;
2905 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
2906 			/* Fixup deprecated structure layouts here, so we have
2907 			 * a common path later on.
2908 			 */
2909 			if (ip_tunnel_info_af(info) != AF_INET)
2910 				goto err_clear;
2911 set_compat:
2912 			to = (struct bpf_tunnel_key *)compat;
2913 			break;
2914 		default:
2915 			goto err_clear;
2916 		}
2917 	}
2918 
2919 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
2920 	to->tunnel_tos = info->key.tos;
2921 	to->tunnel_ttl = info->key.ttl;
2922 
2923 	if (flags & BPF_F_TUNINFO_IPV6) {
2924 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
2925 		       sizeof(to->remote_ipv6));
2926 		to->tunnel_label = be32_to_cpu(info->key.label);
2927 	} else {
2928 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
2929 	}
2930 
2931 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
2932 		memcpy(to_orig, to, size);
2933 
2934 	return 0;
2935 err_clear:
2936 	memset(to_orig, 0, size);
2937 	return err;
2938 }
2939 
2940 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
2941 	.func		= bpf_skb_get_tunnel_key,
2942 	.gpl_only	= false,
2943 	.ret_type	= RET_INTEGER,
2944 	.arg1_type	= ARG_PTR_TO_CTX,
2945 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
2946 	.arg3_type	= ARG_CONST_SIZE,
2947 	.arg4_type	= ARG_ANYTHING,
2948 };
2949 
2950 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
2951 {
2952 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2953 	int err;
2954 
2955 	if (unlikely(!info ||
2956 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
2957 		err = -ENOENT;
2958 		goto err_clear;
2959 	}
2960 	if (unlikely(size < info->options_len)) {
2961 		err = -ENOMEM;
2962 		goto err_clear;
2963 	}
2964 
2965 	ip_tunnel_info_opts_get(to, info);
2966 	if (size > info->options_len)
2967 		memset(to + info->options_len, 0, size - info->options_len);
2968 
2969 	return info->options_len;
2970 err_clear:
2971 	memset(to, 0, size);
2972 	return err;
2973 }
2974 
2975 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
2976 	.func		= bpf_skb_get_tunnel_opt,
2977 	.gpl_only	= false,
2978 	.ret_type	= RET_INTEGER,
2979 	.arg1_type	= ARG_PTR_TO_CTX,
2980 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
2981 	.arg3_type	= ARG_CONST_SIZE,
2982 };
2983 
2984 static struct metadata_dst __percpu *md_dst;
2985 
2986 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
2987 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
2988 {
2989 	struct metadata_dst *md = this_cpu_ptr(md_dst);
2990 	u8 compat[sizeof(struct bpf_tunnel_key)];
2991 	struct ip_tunnel_info *info;
2992 
2993 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
2994 			       BPF_F_DONT_FRAGMENT)))
2995 		return -EINVAL;
2996 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2997 		switch (size) {
2998 		case offsetof(struct bpf_tunnel_key, tunnel_label):
2999 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3000 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3001 			/* Fixup deprecated structure layouts here, so we have
3002 			 * a common path later on.
3003 			 */
3004 			memcpy(compat, from, size);
3005 			memset(compat + size, 0, sizeof(compat) - size);
3006 			from = (const struct bpf_tunnel_key *) compat;
3007 			break;
3008 		default:
3009 			return -EINVAL;
3010 		}
3011 	}
3012 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3013 		     from->tunnel_ext))
3014 		return -EINVAL;
3015 
3016 	skb_dst_drop(skb);
3017 	dst_hold((struct dst_entry *) md);
3018 	skb_dst_set(skb, (struct dst_entry *) md);
3019 
3020 	info = &md->u.tun_info;
3021 	info->mode = IP_TUNNEL_INFO_TX;
3022 
3023 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3024 	if (flags & BPF_F_DONT_FRAGMENT)
3025 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3026 	if (flags & BPF_F_ZERO_CSUM_TX)
3027 		info->key.tun_flags &= ~TUNNEL_CSUM;
3028 
3029 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3030 	info->key.tos = from->tunnel_tos;
3031 	info->key.ttl = from->tunnel_ttl;
3032 
3033 	if (flags & BPF_F_TUNINFO_IPV6) {
3034 		info->mode |= IP_TUNNEL_INFO_IPV6;
3035 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3036 		       sizeof(from->remote_ipv6));
3037 		info->key.label = cpu_to_be32(from->tunnel_label) &
3038 				  IPV6_FLOWLABEL_MASK;
3039 	} else {
3040 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3047 	.func		= bpf_skb_set_tunnel_key,
3048 	.gpl_only	= false,
3049 	.ret_type	= RET_INTEGER,
3050 	.arg1_type	= ARG_PTR_TO_CTX,
3051 	.arg2_type	= ARG_PTR_TO_MEM,
3052 	.arg3_type	= ARG_CONST_SIZE,
3053 	.arg4_type	= ARG_ANYTHING,
3054 };
3055 
3056 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3057 	   const u8 *, from, u32, size)
3058 {
3059 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
3060 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
3061 
3062 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3063 		return -EINVAL;
3064 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3065 		return -ENOMEM;
3066 
3067 	ip_tunnel_info_opts_set(info, from, size);
3068 
3069 	return 0;
3070 }
3071 
3072 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3073 	.func		= bpf_skb_set_tunnel_opt,
3074 	.gpl_only	= false,
3075 	.ret_type	= RET_INTEGER,
3076 	.arg1_type	= ARG_PTR_TO_CTX,
3077 	.arg2_type	= ARG_PTR_TO_MEM,
3078 	.arg3_type	= ARG_CONST_SIZE,
3079 };
3080 
3081 static const struct bpf_func_proto *
3082 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3083 {
3084 	if (!md_dst) {
3085 		struct metadata_dst __percpu *tmp;
3086 
3087 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3088 						METADATA_IP_TUNNEL,
3089 						GFP_KERNEL);
3090 		if (!tmp)
3091 			return NULL;
3092 		if (cmpxchg(&md_dst, NULL, tmp))
3093 			metadata_dst_free_percpu(tmp);
3094 	}
3095 
3096 	switch (which) {
3097 	case BPF_FUNC_skb_set_tunnel_key:
3098 		return &bpf_skb_set_tunnel_key_proto;
3099 	case BPF_FUNC_skb_set_tunnel_opt:
3100 		return &bpf_skb_set_tunnel_opt_proto;
3101 	default:
3102 		return NULL;
3103 	}
3104 }
3105 
3106 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3107 	   u32, idx)
3108 {
3109 	struct bpf_array *array = container_of(map, struct bpf_array, map);
3110 	struct cgroup *cgrp;
3111 	struct sock *sk;
3112 
3113 	sk = skb_to_full_sk(skb);
3114 	if (!sk || !sk_fullsock(sk))
3115 		return -ENOENT;
3116 	if (unlikely(idx >= array->map.max_entries))
3117 		return -E2BIG;
3118 
3119 	cgrp = READ_ONCE(array->ptrs[idx]);
3120 	if (unlikely(!cgrp))
3121 		return -EAGAIN;
3122 
3123 	return sk_under_cgroup_hierarchy(sk, cgrp);
3124 }
3125 
3126 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3127 	.func		= bpf_skb_under_cgroup,
3128 	.gpl_only	= false,
3129 	.ret_type	= RET_INTEGER,
3130 	.arg1_type	= ARG_PTR_TO_CTX,
3131 	.arg2_type	= ARG_CONST_MAP_PTR,
3132 	.arg3_type	= ARG_ANYTHING,
3133 };
3134 
3135 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3136 				  unsigned long off, unsigned long len)
3137 {
3138 	memcpy(dst_buff, src_buff + off, len);
3139 	return 0;
3140 }
3141 
3142 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3143 	   u64, flags, void *, meta, u64, meta_size)
3144 {
3145 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3146 
3147 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3148 		return -EINVAL;
3149 	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
3150 		return -EFAULT;
3151 
3152 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
3153 				xdp_size, bpf_xdp_copy);
3154 }
3155 
3156 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
3157 	.func		= bpf_xdp_event_output,
3158 	.gpl_only	= true,
3159 	.ret_type	= RET_INTEGER,
3160 	.arg1_type	= ARG_PTR_TO_CTX,
3161 	.arg2_type	= ARG_CONST_MAP_PTR,
3162 	.arg3_type	= ARG_ANYTHING,
3163 	.arg4_type	= ARG_PTR_TO_MEM,
3164 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3165 };
3166 
3167 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
3168 {
3169 	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
3170 }
3171 
3172 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
3173 	.func           = bpf_get_socket_cookie,
3174 	.gpl_only       = false,
3175 	.ret_type       = RET_INTEGER,
3176 	.arg1_type      = ARG_PTR_TO_CTX,
3177 };
3178 
3179 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
3180 {
3181 	struct sock *sk = sk_to_full_sk(skb->sk);
3182 	kuid_t kuid;
3183 
3184 	if (!sk || !sk_fullsock(sk))
3185 		return overflowuid;
3186 	kuid = sock_net_uid(sock_net(sk), sk);
3187 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
3188 }
3189 
3190 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
3191 	.func           = bpf_get_socket_uid,
3192 	.gpl_only       = false,
3193 	.ret_type       = RET_INTEGER,
3194 	.arg1_type      = ARG_PTR_TO_CTX,
3195 };
3196 
3197 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3198 	   int, level, int, optname, char *, optval, int, optlen)
3199 {
3200 	struct sock *sk = bpf_sock->sk;
3201 	int ret = 0;
3202 	int val;
3203 
3204 	if (!sk_fullsock(sk))
3205 		return -EINVAL;
3206 
3207 	if (level == SOL_SOCKET) {
3208 		if (optlen != sizeof(int))
3209 			return -EINVAL;
3210 		val = *((int *)optval);
3211 
3212 		/* Only some socketops are supported */
3213 		switch (optname) {
3214 		case SO_RCVBUF:
3215 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
3216 			sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
3217 			break;
3218 		case SO_SNDBUF:
3219 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
3220 			sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
3221 			break;
3222 		case SO_MAX_PACING_RATE:
3223 			sk->sk_max_pacing_rate = val;
3224 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
3225 						 sk->sk_max_pacing_rate);
3226 			break;
3227 		case SO_PRIORITY:
3228 			sk->sk_priority = val;
3229 			break;
3230 		case SO_RCVLOWAT:
3231 			if (val < 0)
3232 				val = INT_MAX;
3233 			sk->sk_rcvlowat = val ? : 1;
3234 			break;
3235 		case SO_MARK:
3236 			sk->sk_mark = val;
3237 			break;
3238 		default:
3239 			ret = -EINVAL;
3240 		}
3241 #ifdef CONFIG_INET
3242 #if IS_ENABLED(CONFIG_IPV6)
3243 	} else if (level == SOL_IPV6) {
3244 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3245 			return -EINVAL;
3246 
3247 		val = *((int *)optval);
3248 		/* Only some options are supported */
3249 		switch (optname) {
3250 		case IPV6_TCLASS:
3251 			if (val < -1 || val > 0xff) {
3252 				ret = -EINVAL;
3253 			} else {
3254 				struct ipv6_pinfo *np = inet6_sk(sk);
3255 
3256 				if (val == -1)
3257 					val = 0;
3258 				np->tclass = val;
3259 			}
3260 			break;
3261 		default:
3262 			ret = -EINVAL;
3263 		}
3264 #endif
3265 	} else if (level == SOL_TCP &&
3266 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
3267 		if (optname == TCP_CONGESTION) {
3268 			char name[TCP_CA_NAME_MAX];
3269 			bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3270 
3271 			strncpy(name, optval, min_t(long, optlen,
3272 						    TCP_CA_NAME_MAX-1));
3273 			name[TCP_CA_NAME_MAX-1] = 0;
3274 			ret = tcp_set_congestion_control(sk, name, false,
3275 							 reinit);
3276 		} else {
3277 			struct tcp_sock *tp = tcp_sk(sk);
3278 
3279 			if (optlen != sizeof(int))
3280 				return -EINVAL;
3281 
3282 			val = *((int *)optval);
3283 			/* Only some options are supported */
3284 			switch (optname) {
3285 			case TCP_BPF_IW:
3286 				if (val <= 0 || tp->data_segs_out > 0)
3287 					ret = -EINVAL;
3288 				else
3289 					tp->snd_cwnd = val;
3290 				break;
3291 			case TCP_BPF_SNDCWND_CLAMP:
3292 				if (val <= 0) {
3293 					ret = -EINVAL;
3294 				} else {
3295 					tp->snd_cwnd_clamp = val;
3296 					tp->snd_ssthresh = val;
3297 				}
3298 				break;
3299 			default:
3300 				ret = -EINVAL;
3301 			}
3302 		}
3303 #endif
3304 	} else {
3305 		ret = -EINVAL;
3306 	}
3307 	return ret;
3308 }
3309 
3310 static const struct bpf_func_proto bpf_setsockopt_proto = {
3311 	.func		= bpf_setsockopt,
3312 	.gpl_only	= false,
3313 	.ret_type	= RET_INTEGER,
3314 	.arg1_type	= ARG_PTR_TO_CTX,
3315 	.arg2_type	= ARG_ANYTHING,
3316 	.arg3_type	= ARG_ANYTHING,
3317 	.arg4_type	= ARG_PTR_TO_MEM,
3318 	.arg5_type	= ARG_CONST_SIZE,
3319 };
3320 
3321 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3322 	   int, level, int, optname, char *, optval, int, optlen)
3323 {
3324 	struct sock *sk = bpf_sock->sk;
3325 
3326 	if (!sk_fullsock(sk))
3327 		goto err_clear;
3328 
3329 #ifdef CONFIG_INET
3330 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
3331 		if (optname == TCP_CONGESTION) {
3332 			struct inet_connection_sock *icsk = inet_csk(sk);
3333 
3334 			if (!icsk->icsk_ca_ops || optlen <= 1)
3335 				goto err_clear;
3336 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
3337 			optval[optlen - 1] = 0;
3338 		} else {
3339 			goto err_clear;
3340 		}
3341 #if IS_ENABLED(CONFIG_IPV6)
3342 	} else if (level == SOL_IPV6) {
3343 		struct ipv6_pinfo *np = inet6_sk(sk);
3344 
3345 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3346 			goto err_clear;
3347 
3348 		/* Only some options are supported */
3349 		switch (optname) {
3350 		case IPV6_TCLASS:
3351 			*((int *)optval) = (int)np->tclass;
3352 			break;
3353 		default:
3354 			goto err_clear;
3355 		}
3356 #endif
3357 	} else {
3358 		goto err_clear;
3359 	}
3360 	return 0;
3361 #endif
3362 err_clear:
3363 	memset(optval, 0, optlen);
3364 	return -EINVAL;
3365 }
3366 
3367 static const struct bpf_func_proto bpf_getsockopt_proto = {
3368 	.func		= bpf_getsockopt,
3369 	.gpl_only	= false,
3370 	.ret_type	= RET_INTEGER,
3371 	.arg1_type	= ARG_PTR_TO_CTX,
3372 	.arg2_type	= ARG_ANYTHING,
3373 	.arg3_type	= ARG_ANYTHING,
3374 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
3375 	.arg5_type	= ARG_CONST_SIZE,
3376 };
3377 
3378 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
3379 	   int, argval)
3380 {
3381 	struct sock *sk = bpf_sock->sk;
3382 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
3383 
3384 	if (!sk_fullsock(sk))
3385 		return -EINVAL;
3386 
3387 #ifdef CONFIG_INET
3388 	if (val)
3389 		tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
3390 
3391 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
3392 #else
3393 	return -EINVAL;
3394 #endif
3395 }
3396 
3397 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
3398 	.func		= bpf_sock_ops_cb_flags_set,
3399 	.gpl_only	= false,
3400 	.ret_type	= RET_INTEGER,
3401 	.arg1_type	= ARG_PTR_TO_CTX,
3402 	.arg2_type	= ARG_ANYTHING,
3403 };
3404 
3405 static const struct bpf_func_proto *
3406 bpf_base_func_proto(enum bpf_func_id func_id)
3407 {
3408 	switch (func_id) {
3409 	case BPF_FUNC_map_lookup_elem:
3410 		return &bpf_map_lookup_elem_proto;
3411 	case BPF_FUNC_map_update_elem:
3412 		return &bpf_map_update_elem_proto;
3413 	case BPF_FUNC_map_delete_elem:
3414 		return &bpf_map_delete_elem_proto;
3415 	case BPF_FUNC_get_prandom_u32:
3416 		return &bpf_get_prandom_u32_proto;
3417 	case BPF_FUNC_get_smp_processor_id:
3418 		return &bpf_get_raw_smp_processor_id_proto;
3419 	case BPF_FUNC_get_numa_node_id:
3420 		return &bpf_get_numa_node_id_proto;
3421 	case BPF_FUNC_tail_call:
3422 		return &bpf_tail_call_proto;
3423 	case BPF_FUNC_ktime_get_ns:
3424 		return &bpf_ktime_get_ns_proto;
3425 	case BPF_FUNC_trace_printk:
3426 		if (capable(CAP_SYS_ADMIN))
3427 			return bpf_get_trace_printk_proto();
3428 	default:
3429 		return NULL;
3430 	}
3431 }
3432 
3433 static const struct bpf_func_proto *
3434 sock_filter_func_proto(enum bpf_func_id func_id)
3435 {
3436 	switch (func_id) {
3437 	/* inet and inet6 sockets are created in a process
3438 	 * context so there is always a valid uid/gid
3439 	 */
3440 	case BPF_FUNC_get_current_uid_gid:
3441 		return &bpf_get_current_uid_gid_proto;
3442 	default:
3443 		return bpf_base_func_proto(func_id);
3444 	}
3445 }
3446 
3447 static const struct bpf_func_proto *
3448 sk_filter_func_proto(enum bpf_func_id func_id)
3449 {
3450 	switch (func_id) {
3451 	case BPF_FUNC_skb_load_bytes:
3452 		return &bpf_skb_load_bytes_proto;
3453 	case BPF_FUNC_get_socket_cookie:
3454 		return &bpf_get_socket_cookie_proto;
3455 	case BPF_FUNC_get_socket_uid:
3456 		return &bpf_get_socket_uid_proto;
3457 	default:
3458 		return bpf_base_func_proto(func_id);
3459 	}
3460 }
3461 
3462 static const struct bpf_func_proto *
3463 tc_cls_act_func_proto(enum bpf_func_id func_id)
3464 {
3465 	switch (func_id) {
3466 	case BPF_FUNC_skb_store_bytes:
3467 		return &bpf_skb_store_bytes_proto;
3468 	case BPF_FUNC_skb_load_bytes:
3469 		return &bpf_skb_load_bytes_proto;
3470 	case BPF_FUNC_skb_pull_data:
3471 		return &bpf_skb_pull_data_proto;
3472 	case BPF_FUNC_csum_diff:
3473 		return &bpf_csum_diff_proto;
3474 	case BPF_FUNC_csum_update:
3475 		return &bpf_csum_update_proto;
3476 	case BPF_FUNC_l3_csum_replace:
3477 		return &bpf_l3_csum_replace_proto;
3478 	case BPF_FUNC_l4_csum_replace:
3479 		return &bpf_l4_csum_replace_proto;
3480 	case BPF_FUNC_clone_redirect:
3481 		return &bpf_clone_redirect_proto;
3482 	case BPF_FUNC_get_cgroup_classid:
3483 		return &bpf_get_cgroup_classid_proto;
3484 	case BPF_FUNC_skb_vlan_push:
3485 		return &bpf_skb_vlan_push_proto;
3486 	case BPF_FUNC_skb_vlan_pop:
3487 		return &bpf_skb_vlan_pop_proto;
3488 	case BPF_FUNC_skb_change_proto:
3489 		return &bpf_skb_change_proto_proto;
3490 	case BPF_FUNC_skb_change_type:
3491 		return &bpf_skb_change_type_proto;
3492 	case BPF_FUNC_skb_adjust_room:
3493 		return &bpf_skb_adjust_room_proto;
3494 	case BPF_FUNC_skb_change_tail:
3495 		return &bpf_skb_change_tail_proto;
3496 	case BPF_FUNC_skb_get_tunnel_key:
3497 		return &bpf_skb_get_tunnel_key_proto;
3498 	case BPF_FUNC_skb_set_tunnel_key:
3499 		return bpf_get_skb_set_tunnel_proto(func_id);
3500 	case BPF_FUNC_skb_get_tunnel_opt:
3501 		return &bpf_skb_get_tunnel_opt_proto;
3502 	case BPF_FUNC_skb_set_tunnel_opt:
3503 		return bpf_get_skb_set_tunnel_proto(func_id);
3504 	case BPF_FUNC_redirect:
3505 		return &bpf_redirect_proto;
3506 	case BPF_FUNC_get_route_realm:
3507 		return &bpf_get_route_realm_proto;
3508 	case BPF_FUNC_get_hash_recalc:
3509 		return &bpf_get_hash_recalc_proto;
3510 	case BPF_FUNC_set_hash_invalid:
3511 		return &bpf_set_hash_invalid_proto;
3512 	case BPF_FUNC_set_hash:
3513 		return &bpf_set_hash_proto;
3514 	case BPF_FUNC_perf_event_output:
3515 		return &bpf_skb_event_output_proto;
3516 	case BPF_FUNC_get_smp_processor_id:
3517 		return &bpf_get_smp_processor_id_proto;
3518 	case BPF_FUNC_skb_under_cgroup:
3519 		return &bpf_skb_under_cgroup_proto;
3520 	case BPF_FUNC_get_socket_cookie:
3521 		return &bpf_get_socket_cookie_proto;
3522 	case BPF_FUNC_get_socket_uid:
3523 		return &bpf_get_socket_uid_proto;
3524 	default:
3525 		return bpf_base_func_proto(func_id);
3526 	}
3527 }
3528 
3529 static const struct bpf_func_proto *
3530 xdp_func_proto(enum bpf_func_id func_id)
3531 {
3532 	switch (func_id) {
3533 	case BPF_FUNC_perf_event_output:
3534 		return &bpf_xdp_event_output_proto;
3535 	case BPF_FUNC_get_smp_processor_id:
3536 		return &bpf_get_smp_processor_id_proto;
3537 	case BPF_FUNC_csum_diff:
3538 		return &bpf_csum_diff_proto;
3539 	case BPF_FUNC_xdp_adjust_head:
3540 		return &bpf_xdp_adjust_head_proto;
3541 	case BPF_FUNC_xdp_adjust_meta:
3542 		return &bpf_xdp_adjust_meta_proto;
3543 	case BPF_FUNC_redirect:
3544 		return &bpf_xdp_redirect_proto;
3545 	case BPF_FUNC_redirect_map:
3546 		return &bpf_xdp_redirect_map_proto;
3547 	default:
3548 		return bpf_base_func_proto(func_id);
3549 	}
3550 }
3551 
3552 static const struct bpf_func_proto *
3553 lwt_inout_func_proto(enum bpf_func_id func_id)
3554 {
3555 	switch (func_id) {
3556 	case BPF_FUNC_skb_load_bytes:
3557 		return &bpf_skb_load_bytes_proto;
3558 	case BPF_FUNC_skb_pull_data:
3559 		return &bpf_skb_pull_data_proto;
3560 	case BPF_FUNC_csum_diff:
3561 		return &bpf_csum_diff_proto;
3562 	case BPF_FUNC_get_cgroup_classid:
3563 		return &bpf_get_cgroup_classid_proto;
3564 	case BPF_FUNC_get_route_realm:
3565 		return &bpf_get_route_realm_proto;
3566 	case BPF_FUNC_get_hash_recalc:
3567 		return &bpf_get_hash_recalc_proto;
3568 	case BPF_FUNC_perf_event_output:
3569 		return &bpf_skb_event_output_proto;
3570 	case BPF_FUNC_get_smp_processor_id:
3571 		return &bpf_get_smp_processor_id_proto;
3572 	case BPF_FUNC_skb_under_cgroup:
3573 		return &bpf_skb_under_cgroup_proto;
3574 	default:
3575 		return bpf_base_func_proto(func_id);
3576 	}
3577 }
3578 
3579 static const struct bpf_func_proto *
3580 	sock_ops_func_proto(enum bpf_func_id func_id)
3581 {
3582 	switch (func_id) {
3583 	case BPF_FUNC_setsockopt:
3584 		return &bpf_setsockopt_proto;
3585 	case BPF_FUNC_getsockopt:
3586 		return &bpf_getsockopt_proto;
3587 	case BPF_FUNC_sock_ops_cb_flags_set:
3588 		return &bpf_sock_ops_cb_flags_set_proto;
3589 	case BPF_FUNC_sock_map_update:
3590 		return &bpf_sock_map_update_proto;
3591 	default:
3592 		return bpf_base_func_proto(func_id);
3593 	}
3594 }
3595 
3596 static const struct bpf_func_proto *sk_skb_func_proto(enum bpf_func_id func_id)
3597 {
3598 	switch (func_id) {
3599 	case BPF_FUNC_skb_store_bytes:
3600 		return &bpf_skb_store_bytes_proto;
3601 	case BPF_FUNC_skb_load_bytes:
3602 		return &bpf_skb_load_bytes_proto;
3603 	case BPF_FUNC_skb_pull_data:
3604 		return &bpf_skb_pull_data_proto;
3605 	case BPF_FUNC_skb_change_tail:
3606 		return &bpf_skb_change_tail_proto;
3607 	case BPF_FUNC_skb_change_head:
3608 		return &bpf_skb_change_head_proto;
3609 	case BPF_FUNC_get_socket_cookie:
3610 		return &bpf_get_socket_cookie_proto;
3611 	case BPF_FUNC_get_socket_uid:
3612 		return &bpf_get_socket_uid_proto;
3613 	case BPF_FUNC_sk_redirect_map:
3614 		return &bpf_sk_redirect_map_proto;
3615 	default:
3616 		return bpf_base_func_proto(func_id);
3617 	}
3618 }
3619 
3620 static const struct bpf_func_proto *
3621 lwt_xmit_func_proto(enum bpf_func_id func_id)
3622 {
3623 	switch (func_id) {
3624 	case BPF_FUNC_skb_get_tunnel_key:
3625 		return &bpf_skb_get_tunnel_key_proto;
3626 	case BPF_FUNC_skb_set_tunnel_key:
3627 		return bpf_get_skb_set_tunnel_proto(func_id);
3628 	case BPF_FUNC_skb_get_tunnel_opt:
3629 		return &bpf_skb_get_tunnel_opt_proto;
3630 	case BPF_FUNC_skb_set_tunnel_opt:
3631 		return bpf_get_skb_set_tunnel_proto(func_id);
3632 	case BPF_FUNC_redirect:
3633 		return &bpf_redirect_proto;
3634 	case BPF_FUNC_clone_redirect:
3635 		return &bpf_clone_redirect_proto;
3636 	case BPF_FUNC_skb_change_tail:
3637 		return &bpf_skb_change_tail_proto;
3638 	case BPF_FUNC_skb_change_head:
3639 		return &bpf_skb_change_head_proto;
3640 	case BPF_FUNC_skb_store_bytes:
3641 		return &bpf_skb_store_bytes_proto;
3642 	case BPF_FUNC_csum_update:
3643 		return &bpf_csum_update_proto;
3644 	case BPF_FUNC_l3_csum_replace:
3645 		return &bpf_l3_csum_replace_proto;
3646 	case BPF_FUNC_l4_csum_replace:
3647 		return &bpf_l4_csum_replace_proto;
3648 	case BPF_FUNC_set_hash_invalid:
3649 		return &bpf_set_hash_invalid_proto;
3650 	default:
3651 		return lwt_inout_func_proto(func_id);
3652 	}
3653 }
3654 
3655 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
3656 				    struct bpf_insn_access_aux *info)
3657 {
3658 	const int size_default = sizeof(__u32);
3659 
3660 	if (off < 0 || off >= sizeof(struct __sk_buff))
3661 		return false;
3662 
3663 	/* The verifier guarantees that size > 0. */
3664 	if (off % size != 0)
3665 		return false;
3666 
3667 	switch (off) {
3668 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3669 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
3670 			return false;
3671 		break;
3672 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
3673 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
3674 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
3675 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
3676 	case bpf_ctx_range(struct __sk_buff, data):
3677 	case bpf_ctx_range(struct __sk_buff, data_meta):
3678 	case bpf_ctx_range(struct __sk_buff, data_end):
3679 		if (size != size_default)
3680 			return false;
3681 		break;
3682 	default:
3683 		/* Only narrow read access allowed for now. */
3684 		if (type == BPF_WRITE) {
3685 			if (size != size_default)
3686 				return false;
3687 		} else {
3688 			bpf_ctx_record_field_size(info, size_default);
3689 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
3690 				return false;
3691 		}
3692 	}
3693 
3694 	return true;
3695 }
3696 
3697 static bool sk_filter_is_valid_access(int off, int size,
3698 				      enum bpf_access_type type,
3699 				      struct bpf_insn_access_aux *info)
3700 {
3701 	switch (off) {
3702 	case bpf_ctx_range(struct __sk_buff, tc_classid):
3703 	case bpf_ctx_range(struct __sk_buff, data):
3704 	case bpf_ctx_range(struct __sk_buff, data_meta):
3705 	case bpf_ctx_range(struct __sk_buff, data_end):
3706 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
3707 		return false;
3708 	}
3709 
3710 	if (type == BPF_WRITE) {
3711 		switch (off) {
3712 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3713 			break;
3714 		default:
3715 			return false;
3716 		}
3717 	}
3718 
3719 	return bpf_skb_is_valid_access(off, size, type, info);
3720 }
3721 
3722 static bool lwt_is_valid_access(int off, int size,
3723 				enum bpf_access_type type,
3724 				struct bpf_insn_access_aux *info)
3725 {
3726 	switch (off) {
3727 	case bpf_ctx_range(struct __sk_buff, tc_classid):
3728 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
3729 	case bpf_ctx_range(struct __sk_buff, data_meta):
3730 		return false;
3731 	}
3732 
3733 	if (type == BPF_WRITE) {
3734 		switch (off) {
3735 		case bpf_ctx_range(struct __sk_buff, mark):
3736 		case bpf_ctx_range(struct __sk_buff, priority):
3737 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3738 			break;
3739 		default:
3740 			return false;
3741 		}
3742 	}
3743 
3744 	switch (off) {
3745 	case bpf_ctx_range(struct __sk_buff, data):
3746 		info->reg_type = PTR_TO_PACKET;
3747 		break;
3748 	case bpf_ctx_range(struct __sk_buff, data_end):
3749 		info->reg_type = PTR_TO_PACKET_END;
3750 		break;
3751 	}
3752 
3753 	return bpf_skb_is_valid_access(off, size, type, info);
3754 }
3755 
3756 static bool sock_filter_is_valid_access(int off, int size,
3757 					enum bpf_access_type type,
3758 					struct bpf_insn_access_aux *info)
3759 {
3760 	if (type == BPF_WRITE) {
3761 		switch (off) {
3762 		case offsetof(struct bpf_sock, bound_dev_if):
3763 		case offsetof(struct bpf_sock, mark):
3764 		case offsetof(struct bpf_sock, priority):
3765 			break;
3766 		default:
3767 			return false;
3768 		}
3769 	}
3770 
3771 	if (off < 0 || off + size > sizeof(struct bpf_sock))
3772 		return false;
3773 	/* The verifier guarantees that size > 0. */
3774 	if (off % size != 0)
3775 		return false;
3776 	if (size != sizeof(__u32))
3777 		return false;
3778 
3779 	return true;
3780 }
3781 
3782 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
3783 				const struct bpf_prog *prog, int drop_verdict)
3784 {
3785 	struct bpf_insn *insn = insn_buf;
3786 
3787 	if (!direct_write)
3788 		return 0;
3789 
3790 	/* if (!skb->cloned)
3791 	 *       goto start;
3792 	 *
3793 	 * (Fast-path, otherwise approximation that we might be
3794 	 *  a clone, do the rest in helper.)
3795 	 */
3796 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
3797 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
3798 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
3799 
3800 	/* ret = bpf_skb_pull_data(skb, 0); */
3801 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
3802 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
3803 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
3804 			       BPF_FUNC_skb_pull_data);
3805 	/* if (!ret)
3806 	 *      goto restore;
3807 	 * return TC_ACT_SHOT;
3808 	 */
3809 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
3810 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
3811 	*insn++ = BPF_EXIT_INSN();
3812 
3813 	/* restore: */
3814 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
3815 	/* start: */
3816 	*insn++ = prog->insnsi[0];
3817 
3818 	return insn - insn_buf;
3819 }
3820 
3821 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
3822 			       const struct bpf_prog *prog)
3823 {
3824 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
3825 }
3826 
3827 static bool tc_cls_act_is_valid_access(int off, int size,
3828 				       enum bpf_access_type type,
3829 				       struct bpf_insn_access_aux *info)
3830 {
3831 	if (type == BPF_WRITE) {
3832 		switch (off) {
3833 		case bpf_ctx_range(struct __sk_buff, mark):
3834 		case bpf_ctx_range(struct __sk_buff, tc_index):
3835 		case bpf_ctx_range(struct __sk_buff, priority):
3836 		case bpf_ctx_range(struct __sk_buff, tc_classid):
3837 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3838 			break;
3839 		default:
3840 			return false;
3841 		}
3842 	}
3843 
3844 	switch (off) {
3845 	case bpf_ctx_range(struct __sk_buff, data):
3846 		info->reg_type = PTR_TO_PACKET;
3847 		break;
3848 	case bpf_ctx_range(struct __sk_buff, data_meta):
3849 		info->reg_type = PTR_TO_PACKET_META;
3850 		break;
3851 	case bpf_ctx_range(struct __sk_buff, data_end):
3852 		info->reg_type = PTR_TO_PACKET_END;
3853 		break;
3854 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
3855 		return false;
3856 	}
3857 
3858 	return bpf_skb_is_valid_access(off, size, type, info);
3859 }
3860 
3861 static bool __is_valid_xdp_access(int off, int size)
3862 {
3863 	if (off < 0 || off >= sizeof(struct xdp_md))
3864 		return false;
3865 	if (off % size != 0)
3866 		return false;
3867 	if (size != sizeof(__u32))
3868 		return false;
3869 
3870 	return true;
3871 }
3872 
3873 static bool xdp_is_valid_access(int off, int size,
3874 				enum bpf_access_type type,
3875 				struct bpf_insn_access_aux *info)
3876 {
3877 	if (type == BPF_WRITE)
3878 		return false;
3879 
3880 	switch (off) {
3881 	case offsetof(struct xdp_md, data):
3882 		info->reg_type = PTR_TO_PACKET;
3883 		break;
3884 	case offsetof(struct xdp_md, data_meta):
3885 		info->reg_type = PTR_TO_PACKET_META;
3886 		break;
3887 	case offsetof(struct xdp_md, data_end):
3888 		info->reg_type = PTR_TO_PACKET_END;
3889 		break;
3890 	}
3891 
3892 	return __is_valid_xdp_access(off, size);
3893 }
3894 
3895 void bpf_warn_invalid_xdp_action(u32 act)
3896 {
3897 	const u32 act_max = XDP_REDIRECT;
3898 
3899 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
3900 		  act > act_max ? "Illegal" : "Driver unsupported",
3901 		  act);
3902 }
3903 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
3904 
3905 static bool sock_ops_is_valid_access(int off, int size,
3906 				     enum bpf_access_type type,
3907 				     struct bpf_insn_access_aux *info)
3908 {
3909 	const int size_default = sizeof(__u32);
3910 
3911 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
3912 		return false;
3913 
3914 	/* The verifier guarantees that size > 0. */
3915 	if (off % size != 0)
3916 		return false;
3917 
3918 	if (type == BPF_WRITE) {
3919 		switch (off) {
3920 		case offsetof(struct bpf_sock_ops, reply):
3921 		case offsetof(struct bpf_sock_ops, sk_txhash):
3922 			if (size != size_default)
3923 				return false;
3924 			break;
3925 		default:
3926 			return false;
3927 		}
3928 	} else {
3929 		switch (off) {
3930 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
3931 					bytes_acked):
3932 			if (size != sizeof(__u64))
3933 				return false;
3934 			break;
3935 		default:
3936 			if (size != size_default)
3937 				return false;
3938 			break;
3939 		}
3940 	}
3941 
3942 	return true;
3943 }
3944 
3945 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
3946 			   const struct bpf_prog *prog)
3947 {
3948 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
3949 }
3950 
3951 static bool sk_skb_is_valid_access(int off, int size,
3952 				   enum bpf_access_type type,
3953 				   struct bpf_insn_access_aux *info)
3954 {
3955 	switch (off) {
3956 	case bpf_ctx_range(struct __sk_buff, tc_classid):
3957 	case bpf_ctx_range(struct __sk_buff, data_meta):
3958 		return false;
3959 	}
3960 
3961 	if (type == BPF_WRITE) {
3962 		switch (off) {
3963 		case bpf_ctx_range(struct __sk_buff, tc_index):
3964 		case bpf_ctx_range(struct __sk_buff, priority):
3965 			break;
3966 		default:
3967 			return false;
3968 		}
3969 	}
3970 
3971 	switch (off) {
3972 	case bpf_ctx_range(struct __sk_buff, mark):
3973 		return false;
3974 	case bpf_ctx_range(struct __sk_buff, data):
3975 		info->reg_type = PTR_TO_PACKET;
3976 		break;
3977 	case bpf_ctx_range(struct __sk_buff, data_end):
3978 		info->reg_type = PTR_TO_PACKET_END;
3979 		break;
3980 	}
3981 
3982 	return bpf_skb_is_valid_access(off, size, type, info);
3983 }
3984 
3985 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
3986 				  const struct bpf_insn *si,
3987 				  struct bpf_insn *insn_buf,
3988 				  struct bpf_prog *prog, u32 *target_size)
3989 {
3990 	struct bpf_insn *insn = insn_buf;
3991 	int off;
3992 
3993 	switch (si->off) {
3994 	case offsetof(struct __sk_buff, len):
3995 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3996 				      bpf_target_off(struct sk_buff, len, 4,
3997 						     target_size));
3998 		break;
3999 
4000 	case offsetof(struct __sk_buff, protocol):
4001 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4002 				      bpf_target_off(struct sk_buff, protocol, 2,
4003 						     target_size));
4004 		break;
4005 
4006 	case offsetof(struct __sk_buff, vlan_proto):
4007 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4008 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
4009 						     target_size));
4010 		break;
4011 
4012 	case offsetof(struct __sk_buff, priority):
4013 		if (type == BPF_WRITE)
4014 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4015 					      bpf_target_off(struct sk_buff, priority, 4,
4016 							     target_size));
4017 		else
4018 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4019 					      bpf_target_off(struct sk_buff, priority, 4,
4020 							     target_size));
4021 		break;
4022 
4023 	case offsetof(struct __sk_buff, ingress_ifindex):
4024 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4025 				      bpf_target_off(struct sk_buff, skb_iif, 4,
4026 						     target_size));
4027 		break;
4028 
4029 	case offsetof(struct __sk_buff, ifindex):
4030 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
4031 				      si->dst_reg, si->src_reg,
4032 				      offsetof(struct sk_buff, dev));
4033 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
4034 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4035 				      bpf_target_off(struct net_device, ifindex, 4,
4036 						     target_size));
4037 		break;
4038 
4039 	case offsetof(struct __sk_buff, hash):
4040 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4041 				      bpf_target_off(struct sk_buff, hash, 4,
4042 						     target_size));
4043 		break;
4044 
4045 	case offsetof(struct __sk_buff, mark):
4046 		if (type == BPF_WRITE)
4047 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4048 					      bpf_target_off(struct sk_buff, mark, 4,
4049 							     target_size));
4050 		else
4051 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4052 					      bpf_target_off(struct sk_buff, mark, 4,
4053 							     target_size));
4054 		break;
4055 
4056 	case offsetof(struct __sk_buff, pkt_type):
4057 		*target_size = 1;
4058 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
4059 				      PKT_TYPE_OFFSET());
4060 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
4061 #ifdef __BIG_ENDIAN_BITFIELD
4062 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
4063 #endif
4064 		break;
4065 
4066 	case offsetof(struct __sk_buff, queue_mapping):
4067 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4068 				      bpf_target_off(struct sk_buff, queue_mapping, 2,
4069 						     target_size));
4070 		break;
4071 
4072 	case offsetof(struct __sk_buff, vlan_present):
4073 	case offsetof(struct __sk_buff, vlan_tci):
4074 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
4075 
4076 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4077 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
4078 						     target_size));
4079 		if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
4080 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
4081 						~VLAN_TAG_PRESENT);
4082 		} else {
4083 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
4084 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
4085 		}
4086 		break;
4087 
4088 	case offsetof(struct __sk_buff, cb[0]) ...
4089 	     offsetofend(struct __sk_buff, cb[4]) - 1:
4090 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
4091 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
4092 			      offsetof(struct qdisc_skb_cb, data)) %
4093 			     sizeof(__u64));
4094 
4095 		prog->cb_access = 1;
4096 		off  = si->off;
4097 		off -= offsetof(struct __sk_buff, cb[0]);
4098 		off += offsetof(struct sk_buff, cb);
4099 		off += offsetof(struct qdisc_skb_cb, data);
4100 		if (type == BPF_WRITE)
4101 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
4102 					      si->src_reg, off);
4103 		else
4104 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
4105 					      si->src_reg, off);
4106 		break;
4107 
4108 	case offsetof(struct __sk_buff, tc_classid):
4109 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
4110 
4111 		off  = si->off;
4112 		off -= offsetof(struct __sk_buff, tc_classid);
4113 		off += offsetof(struct sk_buff, cb);
4114 		off += offsetof(struct qdisc_skb_cb, tc_classid);
4115 		*target_size = 2;
4116 		if (type == BPF_WRITE)
4117 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
4118 					      si->src_reg, off);
4119 		else
4120 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
4121 					      si->src_reg, off);
4122 		break;
4123 
4124 	case offsetof(struct __sk_buff, data):
4125 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
4126 				      si->dst_reg, si->src_reg,
4127 				      offsetof(struct sk_buff, data));
4128 		break;
4129 
4130 	case offsetof(struct __sk_buff, data_meta):
4131 		off  = si->off;
4132 		off -= offsetof(struct __sk_buff, data_meta);
4133 		off += offsetof(struct sk_buff, cb);
4134 		off += offsetof(struct bpf_skb_data_end, data_meta);
4135 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
4136 				      si->src_reg, off);
4137 		break;
4138 
4139 	case offsetof(struct __sk_buff, data_end):
4140 		off  = si->off;
4141 		off -= offsetof(struct __sk_buff, data_end);
4142 		off += offsetof(struct sk_buff, cb);
4143 		off += offsetof(struct bpf_skb_data_end, data_end);
4144 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
4145 				      si->src_reg, off);
4146 		break;
4147 
4148 	case offsetof(struct __sk_buff, tc_index):
4149 #ifdef CONFIG_NET_SCHED
4150 		if (type == BPF_WRITE)
4151 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
4152 					      bpf_target_off(struct sk_buff, tc_index, 2,
4153 							     target_size));
4154 		else
4155 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4156 					      bpf_target_off(struct sk_buff, tc_index, 2,
4157 							     target_size));
4158 #else
4159 		*target_size = 2;
4160 		if (type == BPF_WRITE)
4161 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
4162 		else
4163 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
4164 #endif
4165 		break;
4166 
4167 	case offsetof(struct __sk_buff, napi_id):
4168 #if defined(CONFIG_NET_RX_BUSY_POLL)
4169 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4170 				      bpf_target_off(struct sk_buff, napi_id, 4,
4171 						     target_size));
4172 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
4173 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
4174 #else
4175 		*target_size = 4;
4176 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
4177 #endif
4178 		break;
4179 	case offsetof(struct __sk_buff, family):
4180 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
4181 
4182 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4183 				      si->dst_reg, si->src_reg,
4184 				      offsetof(struct sk_buff, sk));
4185 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4186 				      bpf_target_off(struct sock_common,
4187 						     skc_family,
4188 						     2, target_size));
4189 		break;
4190 	case offsetof(struct __sk_buff, remote_ip4):
4191 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
4192 
4193 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4194 				      si->dst_reg, si->src_reg,
4195 				      offsetof(struct sk_buff, sk));
4196 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4197 				      bpf_target_off(struct sock_common,
4198 						     skc_daddr,
4199 						     4, target_size));
4200 		break;
4201 	case offsetof(struct __sk_buff, local_ip4):
4202 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4203 					  skc_rcv_saddr) != 4);
4204 
4205 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4206 				      si->dst_reg, si->src_reg,
4207 				      offsetof(struct sk_buff, sk));
4208 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4209 				      bpf_target_off(struct sock_common,
4210 						     skc_rcv_saddr,
4211 						     4, target_size));
4212 		break;
4213 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
4214 	     offsetof(struct __sk_buff, remote_ip6[3]):
4215 #if IS_ENABLED(CONFIG_IPV6)
4216 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4217 					  skc_v6_daddr.s6_addr32[0]) != 4);
4218 
4219 		off = si->off;
4220 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
4221 
4222 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4223 				      si->dst_reg, si->src_reg,
4224 				      offsetof(struct sk_buff, sk));
4225 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4226 				      offsetof(struct sock_common,
4227 					       skc_v6_daddr.s6_addr32[0]) +
4228 				      off);
4229 #else
4230 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
4231 #endif
4232 		break;
4233 	case offsetof(struct __sk_buff, local_ip6[0]) ...
4234 	     offsetof(struct __sk_buff, local_ip6[3]):
4235 #if IS_ENABLED(CONFIG_IPV6)
4236 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4237 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
4238 
4239 		off = si->off;
4240 		off -= offsetof(struct __sk_buff, local_ip6[0]);
4241 
4242 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4243 				      si->dst_reg, si->src_reg,
4244 				      offsetof(struct sk_buff, sk));
4245 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4246 				      offsetof(struct sock_common,
4247 					       skc_v6_rcv_saddr.s6_addr32[0]) +
4248 				      off);
4249 #else
4250 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
4251 #endif
4252 		break;
4253 
4254 	case offsetof(struct __sk_buff, remote_port):
4255 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
4256 
4257 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4258 				      si->dst_reg, si->src_reg,
4259 				      offsetof(struct sk_buff, sk));
4260 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4261 				      bpf_target_off(struct sock_common,
4262 						     skc_dport,
4263 						     2, target_size));
4264 #ifndef __BIG_ENDIAN_BITFIELD
4265 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
4266 #endif
4267 		break;
4268 
4269 	case offsetof(struct __sk_buff, local_port):
4270 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
4271 
4272 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4273 				      si->dst_reg, si->src_reg,
4274 				      offsetof(struct sk_buff, sk));
4275 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4276 				      bpf_target_off(struct sock_common,
4277 						     skc_num, 2, target_size));
4278 		break;
4279 	}
4280 
4281 	return insn - insn_buf;
4282 }
4283 
4284 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
4285 					  const struct bpf_insn *si,
4286 					  struct bpf_insn *insn_buf,
4287 					  struct bpf_prog *prog, u32 *target_size)
4288 {
4289 	struct bpf_insn *insn = insn_buf;
4290 
4291 	switch (si->off) {
4292 	case offsetof(struct bpf_sock, bound_dev_if):
4293 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
4294 
4295 		if (type == BPF_WRITE)
4296 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4297 					offsetof(struct sock, sk_bound_dev_if));
4298 		else
4299 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4300 				      offsetof(struct sock, sk_bound_dev_if));
4301 		break;
4302 
4303 	case offsetof(struct bpf_sock, mark):
4304 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
4305 
4306 		if (type == BPF_WRITE)
4307 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4308 					offsetof(struct sock, sk_mark));
4309 		else
4310 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4311 				      offsetof(struct sock, sk_mark));
4312 		break;
4313 
4314 	case offsetof(struct bpf_sock, priority):
4315 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
4316 
4317 		if (type == BPF_WRITE)
4318 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4319 					offsetof(struct sock, sk_priority));
4320 		else
4321 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4322 				      offsetof(struct sock, sk_priority));
4323 		break;
4324 
4325 	case offsetof(struct bpf_sock, family):
4326 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
4327 
4328 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4329 				      offsetof(struct sock, sk_family));
4330 		break;
4331 
4332 	case offsetof(struct bpf_sock, type):
4333 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4334 				      offsetof(struct sock, __sk_flags_offset));
4335 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
4336 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
4337 		break;
4338 
4339 	case offsetof(struct bpf_sock, protocol):
4340 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4341 				      offsetof(struct sock, __sk_flags_offset));
4342 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
4343 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
4344 		break;
4345 	}
4346 
4347 	return insn - insn_buf;
4348 }
4349 
4350 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
4351 					 const struct bpf_insn *si,
4352 					 struct bpf_insn *insn_buf,
4353 					 struct bpf_prog *prog, u32 *target_size)
4354 {
4355 	struct bpf_insn *insn = insn_buf;
4356 
4357 	switch (si->off) {
4358 	case offsetof(struct __sk_buff, ifindex):
4359 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
4360 				      si->dst_reg, si->src_reg,
4361 				      offsetof(struct sk_buff, dev));
4362 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4363 				      bpf_target_off(struct net_device, ifindex, 4,
4364 						     target_size));
4365 		break;
4366 	default:
4367 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
4368 					      target_size);
4369 	}
4370 
4371 	return insn - insn_buf;
4372 }
4373 
4374 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
4375 				  const struct bpf_insn *si,
4376 				  struct bpf_insn *insn_buf,
4377 				  struct bpf_prog *prog, u32 *target_size)
4378 {
4379 	struct bpf_insn *insn = insn_buf;
4380 
4381 	switch (si->off) {
4382 	case offsetof(struct xdp_md, data):
4383 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
4384 				      si->dst_reg, si->src_reg,
4385 				      offsetof(struct xdp_buff, data));
4386 		break;
4387 	case offsetof(struct xdp_md, data_meta):
4388 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
4389 				      si->dst_reg, si->src_reg,
4390 				      offsetof(struct xdp_buff, data_meta));
4391 		break;
4392 	case offsetof(struct xdp_md, data_end):
4393 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
4394 				      si->dst_reg, si->src_reg,
4395 				      offsetof(struct xdp_buff, data_end));
4396 		break;
4397 	case offsetof(struct xdp_md, ingress_ifindex):
4398 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
4399 				      si->dst_reg, si->src_reg,
4400 				      offsetof(struct xdp_buff, rxq));
4401 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
4402 				      si->dst_reg, si->dst_reg,
4403 				      offsetof(struct xdp_rxq_info, dev));
4404 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4405 				      offsetof(struct net_device, ifindex));
4406 		break;
4407 	case offsetof(struct xdp_md, rx_queue_index):
4408 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
4409 				      si->dst_reg, si->src_reg,
4410 				      offsetof(struct xdp_buff, rxq));
4411 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4412 				      offsetof(struct xdp_rxq_info,
4413 					       queue_index));
4414 		break;
4415 	}
4416 
4417 	return insn - insn_buf;
4418 }
4419 
4420 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
4421 				       const struct bpf_insn *si,
4422 				       struct bpf_insn *insn_buf,
4423 				       struct bpf_prog *prog,
4424 				       u32 *target_size)
4425 {
4426 	struct bpf_insn *insn = insn_buf;
4427 	int off;
4428 
4429 	switch (si->off) {
4430 	case offsetof(struct bpf_sock_ops, op) ...
4431 	     offsetof(struct bpf_sock_ops, replylong[3]):
4432 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
4433 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
4434 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
4435 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
4436 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
4437 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
4438 		off = si->off;
4439 		off -= offsetof(struct bpf_sock_ops, op);
4440 		off += offsetof(struct bpf_sock_ops_kern, op);
4441 		if (type == BPF_WRITE)
4442 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4443 					      off);
4444 		else
4445 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4446 					      off);
4447 		break;
4448 
4449 	case offsetof(struct bpf_sock_ops, family):
4450 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
4451 
4452 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4453 					      struct bpf_sock_ops_kern, sk),
4454 				      si->dst_reg, si->src_reg,
4455 				      offsetof(struct bpf_sock_ops_kern, sk));
4456 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4457 				      offsetof(struct sock_common, skc_family));
4458 		break;
4459 
4460 	case offsetof(struct bpf_sock_ops, remote_ip4):
4461 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
4462 
4463 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4464 						struct bpf_sock_ops_kern, sk),
4465 				      si->dst_reg, si->src_reg,
4466 				      offsetof(struct bpf_sock_ops_kern, sk));
4467 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4468 				      offsetof(struct sock_common, skc_daddr));
4469 		break;
4470 
4471 	case offsetof(struct bpf_sock_ops, local_ip4):
4472 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_rcv_saddr) != 4);
4473 
4474 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4475 					      struct bpf_sock_ops_kern, sk),
4476 				      si->dst_reg, si->src_reg,
4477 				      offsetof(struct bpf_sock_ops_kern, sk));
4478 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4479 				      offsetof(struct sock_common,
4480 					       skc_rcv_saddr));
4481 		break;
4482 
4483 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
4484 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
4485 #if IS_ENABLED(CONFIG_IPV6)
4486 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4487 					  skc_v6_daddr.s6_addr32[0]) != 4);
4488 
4489 		off = si->off;
4490 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
4491 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4492 						struct bpf_sock_ops_kern, sk),
4493 				      si->dst_reg, si->src_reg,
4494 				      offsetof(struct bpf_sock_ops_kern, sk));
4495 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4496 				      offsetof(struct sock_common,
4497 					       skc_v6_daddr.s6_addr32[0]) +
4498 				      off);
4499 #else
4500 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
4501 #endif
4502 		break;
4503 
4504 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
4505 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
4506 #if IS_ENABLED(CONFIG_IPV6)
4507 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4508 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
4509 
4510 		off = si->off;
4511 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
4512 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4513 						struct bpf_sock_ops_kern, sk),
4514 				      si->dst_reg, si->src_reg,
4515 				      offsetof(struct bpf_sock_ops_kern, sk));
4516 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4517 				      offsetof(struct sock_common,
4518 					       skc_v6_rcv_saddr.s6_addr32[0]) +
4519 				      off);
4520 #else
4521 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
4522 #endif
4523 		break;
4524 
4525 	case offsetof(struct bpf_sock_ops, remote_port):
4526 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
4527 
4528 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4529 						struct bpf_sock_ops_kern, sk),
4530 				      si->dst_reg, si->src_reg,
4531 				      offsetof(struct bpf_sock_ops_kern, sk));
4532 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4533 				      offsetof(struct sock_common, skc_dport));
4534 #ifndef __BIG_ENDIAN_BITFIELD
4535 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
4536 #endif
4537 		break;
4538 
4539 	case offsetof(struct bpf_sock_ops, local_port):
4540 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
4541 
4542 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4543 						struct bpf_sock_ops_kern, sk),
4544 				      si->dst_reg, si->src_reg,
4545 				      offsetof(struct bpf_sock_ops_kern, sk));
4546 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4547 				      offsetof(struct sock_common, skc_num));
4548 		break;
4549 
4550 	case offsetof(struct bpf_sock_ops, is_fullsock):
4551 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4552 						struct bpf_sock_ops_kern,
4553 						is_fullsock),
4554 				      si->dst_reg, si->src_reg,
4555 				      offsetof(struct bpf_sock_ops_kern,
4556 					       is_fullsock));
4557 		break;
4558 
4559 	case offsetof(struct bpf_sock_ops, state):
4560 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
4561 
4562 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4563 						struct bpf_sock_ops_kern, sk),
4564 				      si->dst_reg, si->src_reg,
4565 				      offsetof(struct bpf_sock_ops_kern, sk));
4566 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
4567 				      offsetof(struct sock_common, skc_state));
4568 		break;
4569 
4570 	case offsetof(struct bpf_sock_ops, rtt_min):
4571 		BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
4572 			     sizeof(struct minmax));
4573 		BUILD_BUG_ON(sizeof(struct minmax) <
4574 			     sizeof(struct minmax_sample));
4575 
4576 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4577 						struct bpf_sock_ops_kern, sk),
4578 				      si->dst_reg, si->src_reg,
4579 				      offsetof(struct bpf_sock_ops_kern, sk));
4580 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4581 				      offsetof(struct tcp_sock, rtt_min) +
4582 				      FIELD_SIZEOF(struct minmax_sample, t));
4583 		break;
4584 
4585 /* Helper macro for adding read access to tcp_sock or sock fields. */
4586 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
4587 	do {								      \
4588 		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
4589 			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
4590 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
4591 						struct bpf_sock_ops_kern,     \
4592 						is_fullsock),		      \
4593 				      si->dst_reg, si->src_reg,		      \
4594 				      offsetof(struct bpf_sock_ops_kern,      \
4595 					       is_fullsock));		      \
4596 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);	      \
4597 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
4598 						struct bpf_sock_ops_kern, sk),\
4599 				      si->dst_reg, si->src_reg,		      \
4600 				      offsetof(struct bpf_sock_ops_kern, sk));\
4601 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
4602 						       OBJ_FIELD),	      \
4603 				      si->dst_reg, si->dst_reg,		      \
4604 				      offsetof(OBJ, OBJ_FIELD));	      \
4605 	} while (0)
4606 
4607 /* Helper macro for adding write access to tcp_sock or sock fields.
4608  * The macro is called with two registers, dst_reg which contains a pointer
4609  * to ctx (context) and src_reg which contains the value that should be
4610  * stored. However, we need an additional register since we cannot overwrite
4611  * dst_reg because it may be used later in the program.
4612  * Instead we "borrow" one of the other register. We first save its value
4613  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
4614  * it at the end of the macro.
4615  */
4616 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
4617 	do {								      \
4618 		int reg = BPF_REG_9;					      \
4619 		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
4620 			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
4621 		if (si->dst_reg == reg || si->src_reg == reg)		      \
4622 			reg--;						      \
4623 		if (si->dst_reg == reg || si->src_reg == reg)		      \
4624 			reg--;						      \
4625 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
4626 				      offsetof(struct bpf_sock_ops_kern,      \
4627 					       temp));			      \
4628 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
4629 						struct bpf_sock_ops_kern,     \
4630 						is_fullsock),		      \
4631 				      reg, si->dst_reg,			      \
4632 				      offsetof(struct bpf_sock_ops_kern,      \
4633 					       is_fullsock));		      \
4634 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
4635 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
4636 						struct bpf_sock_ops_kern, sk),\
4637 				      reg, si->dst_reg,			      \
4638 				      offsetof(struct bpf_sock_ops_kern, sk));\
4639 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
4640 				      reg, si->src_reg,			      \
4641 				      offsetof(OBJ, OBJ_FIELD));	      \
4642 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
4643 				      offsetof(struct bpf_sock_ops_kern,      \
4644 					       temp));			      \
4645 	} while (0)
4646 
4647 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
4648 	do {								      \
4649 		if (TYPE == BPF_WRITE)					      \
4650 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
4651 		else							      \
4652 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
4653 	} while (0)
4654 
4655 	case offsetof(struct bpf_sock_ops, snd_cwnd):
4656 		SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
4657 		break;
4658 
4659 	case offsetof(struct bpf_sock_ops, srtt_us):
4660 		SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
4661 		break;
4662 
4663 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
4664 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
4665 				   struct tcp_sock);
4666 		break;
4667 
4668 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
4669 		SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
4670 		break;
4671 
4672 	case offsetof(struct bpf_sock_ops, rcv_nxt):
4673 		SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
4674 		break;
4675 
4676 	case offsetof(struct bpf_sock_ops, snd_nxt):
4677 		SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
4678 		break;
4679 
4680 	case offsetof(struct bpf_sock_ops, snd_una):
4681 		SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
4682 		break;
4683 
4684 	case offsetof(struct bpf_sock_ops, mss_cache):
4685 		SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
4686 		break;
4687 
4688 	case offsetof(struct bpf_sock_ops, ecn_flags):
4689 		SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
4690 		break;
4691 
4692 	case offsetof(struct bpf_sock_ops, rate_delivered):
4693 		SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
4694 				   struct tcp_sock);
4695 		break;
4696 
4697 	case offsetof(struct bpf_sock_ops, rate_interval_us):
4698 		SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
4699 				   struct tcp_sock);
4700 		break;
4701 
4702 	case offsetof(struct bpf_sock_ops, packets_out):
4703 		SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
4704 		break;
4705 
4706 	case offsetof(struct bpf_sock_ops, retrans_out):
4707 		SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
4708 		break;
4709 
4710 	case offsetof(struct bpf_sock_ops, total_retrans):
4711 		SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
4712 				   struct tcp_sock);
4713 		break;
4714 
4715 	case offsetof(struct bpf_sock_ops, segs_in):
4716 		SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
4717 		break;
4718 
4719 	case offsetof(struct bpf_sock_ops, data_segs_in):
4720 		SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
4721 		break;
4722 
4723 	case offsetof(struct bpf_sock_ops, segs_out):
4724 		SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
4725 		break;
4726 
4727 	case offsetof(struct bpf_sock_ops, data_segs_out):
4728 		SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
4729 				   struct tcp_sock);
4730 		break;
4731 
4732 	case offsetof(struct bpf_sock_ops, lost_out):
4733 		SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
4734 		break;
4735 
4736 	case offsetof(struct bpf_sock_ops, sacked_out):
4737 		SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
4738 		break;
4739 
4740 	case offsetof(struct bpf_sock_ops, sk_txhash):
4741 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
4742 					  struct sock, type);
4743 		break;
4744 
4745 	case offsetof(struct bpf_sock_ops, bytes_received):
4746 		SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
4747 				   struct tcp_sock);
4748 		break;
4749 
4750 	case offsetof(struct bpf_sock_ops, bytes_acked):
4751 		SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
4752 		break;
4753 
4754 	}
4755 	return insn - insn_buf;
4756 }
4757 
4758 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
4759 				     const struct bpf_insn *si,
4760 				     struct bpf_insn *insn_buf,
4761 				     struct bpf_prog *prog, u32 *target_size)
4762 {
4763 	struct bpf_insn *insn = insn_buf;
4764 	int off;
4765 
4766 	switch (si->off) {
4767 	case offsetof(struct __sk_buff, data_end):
4768 		off  = si->off;
4769 		off -= offsetof(struct __sk_buff, data_end);
4770 		off += offsetof(struct sk_buff, cb);
4771 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
4772 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
4773 				      si->src_reg, off);
4774 		break;
4775 	default:
4776 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
4777 					      target_size);
4778 	}
4779 
4780 	return insn - insn_buf;
4781 }
4782 
4783 const struct bpf_verifier_ops sk_filter_verifier_ops = {
4784 	.get_func_proto		= sk_filter_func_proto,
4785 	.is_valid_access	= sk_filter_is_valid_access,
4786 	.convert_ctx_access	= bpf_convert_ctx_access,
4787 };
4788 
4789 const struct bpf_prog_ops sk_filter_prog_ops = {
4790 	.test_run		= bpf_prog_test_run_skb,
4791 };
4792 
4793 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
4794 	.get_func_proto		= tc_cls_act_func_proto,
4795 	.is_valid_access	= tc_cls_act_is_valid_access,
4796 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
4797 	.gen_prologue		= tc_cls_act_prologue,
4798 };
4799 
4800 const struct bpf_prog_ops tc_cls_act_prog_ops = {
4801 	.test_run		= bpf_prog_test_run_skb,
4802 };
4803 
4804 const struct bpf_verifier_ops xdp_verifier_ops = {
4805 	.get_func_proto		= xdp_func_proto,
4806 	.is_valid_access	= xdp_is_valid_access,
4807 	.convert_ctx_access	= xdp_convert_ctx_access,
4808 };
4809 
4810 const struct bpf_prog_ops xdp_prog_ops = {
4811 	.test_run		= bpf_prog_test_run_xdp,
4812 };
4813 
4814 const struct bpf_verifier_ops cg_skb_verifier_ops = {
4815 	.get_func_proto		= sk_filter_func_proto,
4816 	.is_valid_access	= sk_filter_is_valid_access,
4817 	.convert_ctx_access	= bpf_convert_ctx_access,
4818 };
4819 
4820 const struct bpf_prog_ops cg_skb_prog_ops = {
4821 	.test_run		= bpf_prog_test_run_skb,
4822 };
4823 
4824 const struct bpf_verifier_ops lwt_inout_verifier_ops = {
4825 	.get_func_proto		= lwt_inout_func_proto,
4826 	.is_valid_access	= lwt_is_valid_access,
4827 	.convert_ctx_access	= bpf_convert_ctx_access,
4828 };
4829 
4830 const struct bpf_prog_ops lwt_inout_prog_ops = {
4831 	.test_run		= bpf_prog_test_run_skb,
4832 };
4833 
4834 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
4835 	.get_func_proto		= lwt_xmit_func_proto,
4836 	.is_valid_access	= lwt_is_valid_access,
4837 	.convert_ctx_access	= bpf_convert_ctx_access,
4838 	.gen_prologue		= tc_cls_act_prologue,
4839 };
4840 
4841 const struct bpf_prog_ops lwt_xmit_prog_ops = {
4842 	.test_run		= bpf_prog_test_run_skb,
4843 };
4844 
4845 const struct bpf_verifier_ops cg_sock_verifier_ops = {
4846 	.get_func_proto		= sock_filter_func_proto,
4847 	.is_valid_access	= sock_filter_is_valid_access,
4848 	.convert_ctx_access	= sock_filter_convert_ctx_access,
4849 };
4850 
4851 const struct bpf_prog_ops cg_sock_prog_ops = {
4852 };
4853 
4854 const struct bpf_verifier_ops sock_ops_verifier_ops = {
4855 	.get_func_proto		= sock_ops_func_proto,
4856 	.is_valid_access	= sock_ops_is_valid_access,
4857 	.convert_ctx_access	= sock_ops_convert_ctx_access,
4858 };
4859 
4860 const struct bpf_prog_ops sock_ops_prog_ops = {
4861 };
4862 
4863 const struct bpf_verifier_ops sk_skb_verifier_ops = {
4864 	.get_func_proto		= sk_skb_func_proto,
4865 	.is_valid_access	= sk_skb_is_valid_access,
4866 	.convert_ctx_access	= sk_skb_convert_ctx_access,
4867 	.gen_prologue		= sk_skb_prologue,
4868 };
4869 
4870 const struct bpf_prog_ops sk_skb_prog_ops = {
4871 };
4872 
4873 int sk_detach_filter(struct sock *sk)
4874 {
4875 	int ret = -ENOENT;
4876 	struct sk_filter *filter;
4877 
4878 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
4879 		return -EPERM;
4880 
4881 	filter = rcu_dereference_protected(sk->sk_filter,
4882 					   lockdep_sock_is_held(sk));
4883 	if (filter) {
4884 		RCU_INIT_POINTER(sk->sk_filter, NULL);
4885 		sk_filter_uncharge(sk, filter);
4886 		ret = 0;
4887 	}
4888 
4889 	return ret;
4890 }
4891 EXPORT_SYMBOL_GPL(sk_detach_filter);
4892 
4893 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
4894 		  unsigned int len)
4895 {
4896 	struct sock_fprog_kern *fprog;
4897 	struct sk_filter *filter;
4898 	int ret = 0;
4899 
4900 	lock_sock(sk);
4901 	filter = rcu_dereference_protected(sk->sk_filter,
4902 					   lockdep_sock_is_held(sk));
4903 	if (!filter)
4904 		goto out;
4905 
4906 	/* We're copying the filter that has been originally attached,
4907 	 * so no conversion/decode needed anymore. eBPF programs that
4908 	 * have no original program cannot be dumped through this.
4909 	 */
4910 	ret = -EACCES;
4911 	fprog = filter->prog->orig_prog;
4912 	if (!fprog)
4913 		goto out;
4914 
4915 	ret = fprog->len;
4916 	if (!len)
4917 		/* User space only enquires number of filter blocks. */
4918 		goto out;
4919 
4920 	ret = -EINVAL;
4921 	if (len < fprog->len)
4922 		goto out;
4923 
4924 	ret = -EFAULT;
4925 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
4926 		goto out;
4927 
4928 	/* Instead of bytes, the API requests to return the number
4929 	 * of filter blocks.
4930 	 */
4931 	ret = fprog->len;
4932 out:
4933 	release_sock(sk);
4934 	return ret;
4935 }
4936